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Principledmethods with which to appropriately analyzemissing data have long existed; however, broad implemen-
tation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576–
584 and Am J Epidemiol. 2018;187(3):585–591), we discuss issues pertaining to missing data in the epidemiologic
literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of
principled analyses through a detailed comparison ofmultiple imputation and inverse probability weighting. Data from
the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked
data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of
missing data with naive methods and show how principled methods can sometimes mitigate such effects. For exam-
ple, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of
spontaneous abortion (odds ratio (OR)= 0.43, 95%confidence interval (CI): 0.19, 0.93), while implementation of prin-
cipled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting
(OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the “true” full-data effect (OR = 1.31, 95% CI: 1.05,
1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled
missing-datamethods in epidemiologic research.

bias (epidemiology); complete-case analysis; inverse probability weighting; missing data; multiple imputation

Abbreviations: BMI, body mass index; CPP, Collaborative Perinatal Project; IPW, inverse probability weighting; MAR, missing at
random; MCAR, missing completely at random; MI, multiple imputation; MNAR, missing not at random.

Missing data are a pervasive challenge in biomedical research
(1). For example, of 262 studies published in the 2010 volumes
of the American Journal of Epidemiology, Epidemiology, and
the International Journal of Epidemiology, the amount of
missing data was not sufficiently reported to be quantified by
reviewers in 68% (2).When quantifiable, the extent of missing
data can be substantial. For example, Eekhout et al. (2) re-
ported a prevalence of 26% missing data in 84 epidemiologic
studies. Although missing data are nearly ubiquitous in epi-
demiologic research, the impact of missing data on inference
can vary greatly.

Despite a rich body of literature on statistical methods for
the analysis of missing data, the most widely used technique
in epidemiology remains the most basic: “complete-case”
analysis (2–10), which ignores potentially valuable observed

information by excluding participants with only partially
available data on the variables of interest (11, 12).

To demonstrate the impact ofmissing data and illustrate prin-
cipled methods that account for missingness, we constructed a
challenge with 2 independent teams of missing-data experts.
The goal of their work was to illustrate the use of methods of
their choice to analyze epidemiologic studies with missing data
and to evaluate and relax (to the extent possible) the assump-
tionsmade about missing data.

The motivating example is taken from the Collaborative
Perinatal Project (CPP) (13), a prototypical epidemiologic
study, and focuses on estimating the association of smoking
during pregnancy with risk of spontaneous abortion. Exam-
ple data sets were created from a completely observed subset
of the CPP data, where missingness was introduced using 3



MNAR cannot be ruled out empirically and typically implies
that aspects of the missing-data mechanism need to be properly
modeled to identify the parameter of interest. Intuitively, the
observed data are of little help, because the information neces-
sary to model the missing-data mechanism is unobserved by
definition (18, 19). Therefore, modeling missing data that are
MNAR often requires additional assumptions either in the
form of external information or fairly strong parametric as-
sumptions when such information is not available (20, 21).
Other approaches to handling MNAR data include conducting
a sensitivity analysis, which in extreme scenarios will produce
bounds for the impact of missing data. If data are MNAR, then
both complete-case analysis and the principled methods dis-
cussed in the companion papers may provide biased estimates.
Notably, MNAR does not imply or guarantee biased estimates,
which depends on the particular causal structure; it only guaran-
tees that we cannot correct for it if present (22).

Finally, ignorability is a criterion that is often used inter-
changeably with MAR but requires that the missing data are
MAR (or MCAR) and that the parameters governing the
missing-data mechanism are distinct from the parameters
governing the full-data model (16, 23). Little and Zanganeh
(24) have provided a variety of examples where a data set is
MNAR and how ignorability can arise and be used in a subset
to perform valid inference on that subset of data. Distinct param-
eters are those for which, in the likelihood setting, the domain of
the parameters is the Cartesian product of their individual do-
mains (values taken by one parameter do not restrict values
taken by another parameter); and in the Bayesian setting,
distinct parameters require independent priors for the param-
eters. Ignorability (e.g., MAR with distinct parameters) is the
weakest general assumption that allows the likelihood to factor
such that one can identify the parameter of interest. In set-
tings where ignorability does not appear to hold, methods
for nonignorable models (e.g., pattern mixture models) can be
useful (25).

MOTIVATING EXAMPLE

Data for this challenge comprised information on a subsample
of participants from the CPP. The CPPwas a multisite US study
of pregnancy and pediatric outcomes conducted from 1959 to
1974 (13). The CPP investigators recruited and enrolled 48,197
participants whowere seeking prenatal care. Data on demographic
factors and medical history were collected at entry into the study.
For illustrative purposes, we selected 11,373 women entering the
cohort prior to 20weeks’ gestationwho had complete data on the
variables birth outcome (spontaneous abortion (<20 weeks’ ges-
tation) or live birth), maternal smoking, maternal age (years),
maternal race, and maternal body mass index (BMI; weight (kg)/
height (m)2). Spontaneous abortion or live birth and smoking sta-
tus were binary variables; race was categorized as white, black, or
other; and age and BMI were continuous. This subsample is
referred to as the “full” data set. The characteristics of the
full data set are displayed in Table 1, overall and by birth out-
come, with 411 spontaneous abortions and 10,962 live births.

The missing-data analytical teams were asked to estimate
the relationship between smoking exposure measured dur-
ing early pregnancy and the risk of spontaneous abortion

different mechanisms. Two teams then analyzed the example 
data sets, one using multiple imputation (MI) to account for 
the missing data (14) and the other using inverse probability 
weighting (IPW) (15). While in practice researchers may have 
substantive information regarding the missingness process, 
the teams here were blinded to the mechanisms that generated 
the missing data, as well as to the full data from which the 3 
incomplete data sets were drawn.

In this paper, we review existing nomenclature for missing-
data mechanisms and introduce the CPP, along with the series 
of 3 derived data sets with missingness. We close by revealing 
the underlying true missing-data-generating mechanisms, sum-
marizing the teams’ findings in the context of the unmasked 
missing-data mechanisms, and discussing best practices and 
future directions. In 2 companion papers in this issue of the 
Journal, each team describes, in turn, the application of a princi-
pled approach—one parametric (14) and one semiparametric 
(15)—to account for the missing data.

TYPES OF MISSING DATA

Throughout this paper we focus on explicit missing data, 
characterized by missing values for the exposure, outcome, 
or covariates in an analytical data set. Observational studies 
are particularly prone to such missing data, because even in 
the rare settings where there are no missing data for the expo-
sure and outcome, there are invariably missing values for the 
covariates necessary to obtain adjusted estimates.

Data may be categorized as missing completely at random 
(MCAR), missing at random (MAR), or missing not at ran-
dom (MNAR) (16, 17). Data are MCAR when the probability 
of having a variable with missing data does not depend on any 
observed or missing variables. Missing data are MAR if the 
probability that a given subset of variables (i.e., a “pattern”) is  
observed depends only on the values of observed variables. 
Data are MNAR if the missingness pattern depends on the val-
ues of unobserved variables. MCAR is the strongest assump-
tion, and it is unrealistic in typical epidemiologic studies. MAR 
is a weaker assumption, and it is generally more likely than 
MCAR to hold in epidemiologic studies, while MNAR is the 
weakest assumption of the three. Using observed data, one can 
test the MCAR assumption by empirically refuting it. Given 
observed data alone, however, the MAR and MNAR mecha-
nisms are indistinguishable.

While complete-case analysis of MCAR data will generally 
yield asymptotically unbiased (henceforth unbiased) estimates, 
efficiency is often lost because this technique discards informa-
tion on incomplete cases. If data are MCAR, application of the 
principled methods in the companion papers (14, 15) will also 
yield unbiased estimates, but it can also improve efficiency by 
recovering information from incomplete cases.

A complete-case analysis of MAR data may or may not 
yield biased results. When a complete-case analysis of MAR 
data yields valid inference, such inference can be inefficient 
because data on incomplete cases are discarded. However, the 
principled methods applied and discussed in the companion 
papers can provide unbiased results and recover efficiency when 
data are MAR, as demonstrated later in this paper.



(i.e., <20 weeks’ gestation), adjusted for race, age, and BMI.
Linear logistic regression was employed to estimate the odds
ratio quantifying this relationship between smoking and spon-
taneous abortion.

Missing data can occur in a variety of ways. Therefore, to
broaden our demonstration, we applied 3 missing-data mecha-
nisms. From the full data, we constructed 3 data sets with
missing data for the variables spontaneous abortion, smok-
ing, and BMI, for 8 possible missing-data patterns. The pat-
terns of missingness for each data set are shown in Table 2.
We attempted to hold the proportion and pattern of missing
data approximately constant across the 3 data sets, with some
departures as seen in Table 2. One constructed data set had

missing data generated under MCAR, one under MAR, and one
under MNAR. The parameters governing the missing-data
mechanism (see the Web Appendix, available at https://
academic.oup.com/aje) were distinct from the parameters
governing the substantive model, implying ignorability
in the MCAR and MAR data sets. The characteristics of the
data sets, arbitrarily numbered as 1, 2, and 3, are displayed in
Table 3.

Missing data were generated under the MAR, MCAR, and
MNARmissingnessmechanisms for data sets 1, 2, and 3, respec-
tively. For all 3 data sets, missing data for the variables BMI,
smoking, and spontaneous abortion were generated using the
followingmultinomial model:

Table 1. Distribution of Maternal Characteristics in the Full Subset of Data From the Collaborative Perinatal Project,
1959–1974

Variable

Birth Outcome

Overall
(n= 11,373)

Live Birth
(n= 10,962)

Spontaneous Abortion
(n= 411)

No. of Women % No. ofWomen % No. ofWomen %

Smoking

No 8,458 74.4 8,169 74.5 289 70.3

Yes 2,915 25.6 2,793 25.5 122 29.7

Race

White 7,192 63.2 6,955 63.5 237 57.7

Black 3,475 30.6 3,333 30.4 142 34.5

Other 706 6.2 674 6.1 32 7.8

Age, yearsa 25.2 (5.9) 25.1 (5.8) 27.2 (6.9)

Bodymass indexa,b 22.5 (4.1) 22.5 (4.1) 22.8 (4.1)

a Values are expressed asmean (standard deviation).
b Weight (kg)/height (m)2.

Table 2. Mechanism-SpecificMissing-Data Patterns and Percentages Induced in the Full Subset of Data From the
Collaborative Perinatal Project, 1959–1974

Missing-Data Patterna Missing Pattern Percentage

Pattern SA Smoking Black
Race

Other
Race Age BMIb Fixed

Data Set

1
(MAR)

2
(MCAR)

3
(MNAR)

1 X X X X X X 60 61.09 62.32 52.86

2 X X X X X M 5 5.32 5.17 5.33

3 X M X X X X 5 5.48 5.25 7.16

4 X M X X X M 5 5.20 4.95 7.59

5 M X X X X X 1 1.15 0.92 1.16

6 M X X X X M 10 11.07 10.56 11.25

7 M M X X X X 10 9.82 9.84 13.80

8 M M X X X M 1 0.87 0.98 0.86

Abbreviations: BMI, body mass index; MAR, missing at random; MCAR, missing completely at random; MNAR,
missing not at random; SA, spontaneous abortion.

a
“X” denotes that data are observed in that pattern, and “M” denotes that data are missing in that pattern.

b Weight (kg)/height (m)2.

http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/
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where =K 3 denotes the number of variables with missing-
ness and R denotes the missing-data pattern with possible
patterns = …r 1, ,2K . Explicitly, =r 1 was the pattern of
complete data and =r 8 was the pattern with missing data
on BMI, smoking, and spontaneous abortion. L is the set

Table 3. Characteristics of 3 ObservedData SetsWith ConstructedMissing Data From the Full Subset of Data,
Collaborative Perinatal Project, 1959–1974

Data Set and Variablea
Birth Outcome

Overall Live Birth Spontaneous Abortion

No. of Women % No. ofWomen % No. ofWomen %

Data set 1 (MAR)

Total 8,767 8,464 303

Smoking

No 6,670 74.6 5,828 78.6 108 76.6

Yes 2,273 25.4 1,584 21.4 33 23.4

Race

White 7,192 63.2 5,308 62.7 176 58.1

Black 3,475 30.6 2,627 31.0 104 34.3

Other 706 6.2 529 6.3 23 7.6

Age, yearsb 25.1 (5.8) 25 (5.8) 26.9 (6.8)

BMIc 22.5 (4.0) 22.5 (4.0) 23 (4.5)

Data set 2 (MCAR)

Total 8,836 8,517 319

Smoking

No 6,684 74.4 5,500 74.4 192 68.6

Yes 2,298 25.6 1,896 25.6 88 31.4

Race

White 7,192 63.2 5,416 63.6 184 57.7

Black 3,475 30.6 2,584 30.3 113 35.4

Other 706 6.2 517 6.1 22 6.9

Age, years 25.2 (5.8) 25.1 (5.8) 27.5 (6.9)

BMI 22.6 (4.1) 22.6 (4.1) 22.9 (4.2)

Data set 3 (MNAR)

Total 8,295 8,033 262

Smoking

No 5,961 74.2 5,111 79.1 121 76.1

Yes 2,068 25.8 1,348 20.9 38 23.9

Race

White 7,192 63.2 5,032 62.6 153 58.4

Black 3,475 30.6 2,480 30.9 88 33.6

Other 706 6.2 521 6.5 21 8.0

Age, years 25.2 (5.9) 25.1 (5.8) 27.2 (7.1)

BMI 22.5 (4.1) 22.5 (4.1) 22.8 (3.9)

Abbreviations: BMI, body mass index; MAR, missing at random; MCAR, missing completely at random; MNAR,
missing not at random.

a Subgroup counts for smoking and race do not sum to the totals because of missingness patterns.
b Values for age and BMI are expressed as mean (standard deviation).
c Weight (kg)/height (m)2.



of measured variables. The set V denotes the subset of L
that is always observed; in this example, V = (age, race).
The set ( )L r is the subset of L observed under pattern r but miss-
ing in at least one pattern (else the variable would be found in
V), while ( )Wr is the complement of ( )L r , or the subset of L not
observed under pattern r. For example, in pattern =r 7, ( )L r is
the observed BMI and ( )Wr is the missing data on smoking
and spontaneous abortion. Finally,U is an unmeasured variable.

For data set 1, MARwas created by setting β ≠ γ ≠0, 0,r r
and η = θ = 0r r , so that the missingness pattern depended on
the variables that were always observed (age and race) and the
observed values of spontaneous abortion, BMI, and smoking.
For data set 2, MCAR was achieved by setting β = γ =r r
η = θ = 0r r , so that the missingness pattern was a function of
a constant and thus was completely random. For data set 3,
β ≠ γ ≠0, 0,r r and η ≠ 0r or θ ≠ 0r , corresponding to an
MNARmechanism because the set of unobserved values ( )( )Wr
as well as a completely unobserved variable (U) defined the
missingness mechanism. See the Web Appendix for detailed
SAS code (SAS Institute, Inc., Cary, North Carolina), as well
as the parameter values used to induce missingness in the 3
data sets. Notably, the MNAR mechanism of data set 3 was
introduced via ( )Wr (Table 2, pattern 6, specifically) or U
(Table 2, patterns 3, 4, and 7) but could be introduced via

( )Wr andU simultaneously. Across the 3 data sets, the intercepts
α r0 were chosen to maintain approximately 60% complete data
(see Table 2).

The analysis teams were provided with the 3 observed data
sets, with instructions to estimate the association of smoking
with risk of spontaneous abortion, adjusted for the list of poten-
tial confounders provided. The teamswere not given any indica-
tion or instructions regarding the role or use of these variables in
the missingness mechanisms or in their analysis, respectively.
The analysts applied the methodology they deemed appropriate.
Again, the teams were masked to the underlying missing-data
mechanisms for each observed data set and did not have access
to the full data set.

SUMMARYOF FINDINGS

In each of the 3 data sets, both teams conducted complete-
case analysis as well as used a principled method (i.e., MI or
IPW) to estimate the association of smoking with spontaneous
abortion (14, 15). The goal in conducting a complete-case

analysis was to triangulate results and highlight potential pitfalls
of this common technique, particularly in comparison with the
principled methods.

In the corresponding companion papers (14, 15), the analyti-
cal teams closely mimicked the real-world application of these
missing-data methods because the underlying mechanism used
to create the missing data is rarely known in practice and was
not known to the investigators in this exercise. The results from
the analyses are unmasked here and consolidated in Table 4,
along with the (“true”) results from the full data. The “Full
Data” column represents the association of smoking with spon-
taneous abortion after adjustment for race, age, and BMI in the
complete subsample from the CPP cohort, showing an odds
ratio of 1.31 (95% confidence interval: 1.05, 1.64) for all 3 data
sets. The rows of Table 4 correspond to the data sets in which a
givenmissing-data mechanismwas imposed. Results are pro-
vided for complete-case analyses, MI, and augmented IPW,
along with the results from the full data. Of course, some varia-
tion in the point estimateswill be expected even for unbiased sce-
narios due to sampling variability, as these are single realizations
of the data.

For MCAR (i.e., data set 2 in the companion papers),
complete-case analyses and use of both principled methods re-
sulted in similar point estimates and confidence intervals. For this
realization of the data, all 3 methods estimated odds ratios that
were close to those from the full data, with slightly wider confi-
dence intervals, reflecting the loss of information due to themiss-
ing data, essentially a consequence of a reduced sample size.

For theMARmechanism (i.e., data set 1 in the companion pa-
pers), the complete-case analysis estimate of 0.43 shows a nota-
ble and spurious protective effect of smoking on spontaneous
abortion. This effect reversal is primarily due to the violated
assumption that the missingness is MCAR, when in fact it is
a function of the observed variables. In some settings, complete-
case analysis can be valid under MAR and even MNAR—for
example, if the missingness process depends only on covar-
iates in the regression, even if some of them are not fully
observed (26). However, this assumption is notmet in our exam-
ple, which serves to highlight the potential consequences of
applying complete-case analysis and subsequently failing to
address the impact of the missing data. On the other hand, em-
ploying either MI or augmented IPW resulted in point esti-
mates of 1.30 and 1.40, respectively, with similar confidence
intervals. Both estimates showed a drastic shift from the (naive)

Table 4. EstimatedOdds Ratiosa for the Association Between Smoking and Spontaneous Abortion According to
Data Analysis Approach, Collaborative Perinatal Project, 1959–1965

Missing-Data
Process

Approach

Full Data Complete-Case Multiple Imputation Augmented IPW

OR 95%CI OR 95%CI OR 95%CI OR 95%CI

MCAR (data set 2) 1.31 1.05, 1.64 1.39 1.06, 1.82 1.36 1.05, 1.77 1.42 1.09, 1.86

MAR (data set 1) 1.31 1.05, 1.64 0.43 0.19, 0.93 1.30 0.95, 1.77 1.40 1.00, 1.97

MNAR (data set 3) 1.31 1.05, 1.64 0.93 0.55, 1.57 1.14 0.81, 1.60 1.57 1.09, 2.23

Abbreviations: CI, confidence interval; IPW, inverse probability weighting; MAR, missing at random; MCAR, miss-
ing completely at random; MNAR, missing not at random; OR, odds ratio.

a Adjusted for age, race, and bodymass index.



Rather, all available and relevant data should be used to impute
or model the missingness mechanism, regardless of its temporal
relationship to the exposure or outcome. For instance, there may
be observed variables that are highly predictive of the missing
variables or the missingness mechanism but do not enter into the
analysis model, either because they are not predictive of the out-
come or because they are not confounders. These auxiliary vari-
ables are beneficial and easy to use in MI and are considered one
of the advantages of the method. In this exercise, only variables
chosen a priori to be included in the analysis model were avail-
able, implying that the variable sets for the imputation and analy-
sis models were the same.

In contrast to MI, IPW assumes that a model for the nonre-
sponse process given the observed data is correctly specified.
Because the model for the missing-data process does not
restrict the model of substantive interest and vice versa, IPW
(and augmented IPW) is not limited by a compatibility of con-
ditional densities under the MAR assumption. However, IPW
requires that for all possible realizations of the full data, there
is a nonzero probability of observing a person with complete
data (i.e., the positivity assumption) (29). IPW as implemen-
ted here relies on large-sample theory for valid inference. In
practice, MI-based inference also often relies on large-sample
inference (30–32). However, when proper imputation is applied
under a strict Bayesian framework (implying no P values or
confidence intervals), MI can in principle be applied in small
samples as well, so long as additional assumptions concern-
ing the fully conditional distribution hold.

In actuality, MI and IPW make somewhat complementary
modeling assumptions, as they rely on parametric models for
distinct components of the joint likelihood for the full data and
the missingness process. As stated above, MI relies on a
model for the underlying full data but allows the missingness
mechanism to remain completely unrestricted. Conversely,
IPW models the missingness mechanism, but the full-data
model is unrestricted beyond the model of substantive interest.
As with a complete-case analysis, IPW does not efficiently use
information available in incomplete cases, although these data
are used to estimate the nonresponse rates, therefore recovering
some information from incomplete cases. This issue does not
arise with MI because available information among incom-
plete cases serves as a basis for imputing missing information.
In the other companion paper, Sun et al. (15) considered an
augmented IPW, an extension of IPW attributable to Robins
et al. (29) and recently implemented for nonmonotone MAR
patterns by Sun and Tchetgen Tchetgen (33), which largely
resolves the efficiency limitation of standard IPW by allow-
ing the analyst to recover information in incomplete cases.

DISCUSSION

Based on the above considerations, complete-case analysis
should be used with the same caution we ascribe to unadjusted
estimates, as its validity relies on strong, often unrealistic as-
sumptions. In contrast, principled methods such as MI or IPW
may account for bias due to missing data under weaker assump-
tions. The most standard application of these methods relies on
theMAR assumption. In the absence ofmodelmisspecification,
we expect that MI will be more efficient than IPW, because the

complete-case analyses estimate toward the effect observed in 
the full data.

For the MNAR case (i.e., data set 3 in the companion pa-
pers), complete-case analyses resulted in an estimated  odds  
ratio of 0.93 (95% confidence interval: 0.55, 1.57). While both 
MI and IPW resulted in point estimates closer to the full-data 
effect estimate, such a finding cannot be expected generally.

PRINCIPLED METHODS: PROS, CONS, AND 
ASSUMPTIONS

In general, standard complete-case analyses rely on an 
assumption that the missing data are MCAR or an equivalent 
assumption to yield unbiased estimates (26). This assumption 
may often be unrealistic in epidemiologic settings, in which 
complete-case analyses will likely result in bias (e.g., data set 2). 
Furthermore, even if data are MCAR, such a complete-case 
analysis will typically be inefficient, as it ignores valuable infor-
mation in incomplete cases, which can be particularly dele-
terious when a necessary covariate is the predominantly 
missing variable.

When data are MAR, both MI and IPW may still return unbi-
ased estimates when appropriate assumptions are met. In partic-
ular, standard MI and IPW as implemented in the companion 
papers (14, 15) rely on specific modeling assumptions beyond 
assuming an ignorable nonresponse process (27). MI is for-
mally a Bayesian approach which, as implemented in the com-
panion paper by Harel et al. (14), assumes that the parameters 
indexing models of interest have a normal prior distribution. 
The imputation model and the analysis model are also assumed 
to be correctly specified, which includes correct specification of 
the conditional distribution of incomplete variables given the 
observed variables. This also implies that the imputation model 
for the distribution of covariates given the outcome is compati-
ble with the underlying model of substantive interest for the 
density of the outcome given covariates. This is guaranteed to 
occur when the joint distribution of the covariates and outcome 
is joint normal and for certain model choices within the natural 
exponential family, but not in general.

There are different types of imputation models; some require 
parametric assumptions (e.g., joint normal distribution in MI) 
and some do not (e.g., hot-deck). While misspecified models 
should not be expected to produce unbiased results, simulations 
have shown that MI is somewhat robust to the choice of imputa-
tion model for moderate rates of missing information. All MI im-
plemented by Harel et al. in the companion paper (14) used a  
“proper” parametric imputation model, which respects the distri-
butional properties of the imputation draws, typically by draw-
ing values of parameters before drawing imputations (12, 28).

The goal of MI is not to estimate the missing values them-
selves but rather to produce unbiased and efficient estimates 
for the population parameters of interest, by essentially aver-
aging over the (unknown) distribution of the missing data. 
Thus, a joint normal model might be an appropriate choice, 
even for nonnormal variables, because it is more important to 
preserve the relationship between the variables than to impute 
feasible values for all of the missing variables. In addition, the 
purpose of the imputation model in MI is to predict, not establish 
causality, and therefore it does not need to preserve temporality.



latter assumes that the full-data model is completely unre-
stricted other than by the model of substantive interest, while
the former uses a restricted parametric formulation for the full
data (29, 30).While IPW fails to efficiently recover all available
information from incomplete cases, augmented IPW recovers
such information, at least the portion recoverable without rely-
ing on a finite-dimension full-data model.

Now, given that we wish to use principled methods, which
are we to choose?We can choose a version of MI, a version of
IPW, or another formal approach not considered in this set of
articles (e.g., direct maximum likelihood, Bayesian analysis)
that equally applies under MAR. We believe foremost that we
should prioritize a consistent estimator under ignorable MAR
settings. Then, to the extent possible, we should minimize var-
iance, although reasonable tradeoffs in allowing some bias in
exchange for increased precision may be prudent (e.g., to min-
imize mean squared error). We remain without consensus as
to the extent to which flexible parametric models may be
overly restrictive and hide some amount of estimation error,
but we do have consensus that low-dimension parametric
models can be overly restrictive and hinder our ability to
see the world more clearly: In such cases, in our results we
might see more of our assumptions than we see of our world
(1). Indeed, nuisance models required for controlling selection
bias (e.g., the imputation model, the missing-data mechanism
model) do not need to return interpretable finite-dimension
parameters, and therefore they might be restricted only by the
requirement to achieve a consistent estimator of the parameter(s)
of interest from the substantivemodel.

This leaves us the ability to pick from several candidate
methods. Some of these candidate methods have nonoverlap-
ping assumptions, as mentioned above. Therefore, there should
be advantages to conducting more than 1 analysis and compar-
ing results, as we have done with IPW andMI. When results
with nonoverlapping assumptions agree, then our confidence
in the results should be higher—emboldened, but never cer-
tain, because even nonoverlapping assumptions may jointly
fail. When results disagree, we should pause and reconsider
our assumptions and methods.

Current research on missing data is producing more flexible
procedures, such as doubly robust estimators, that combine a
model for the full data with a model for the missing-data pro-
cess, such that only 1 of the models need be correctly specified
to produce unbiased inferences. While the advent of accessible
software packages for these methods may be on the horizon,
moving away from complete-case analysis towards a principled
method like MI or IPW as demonstrated in the companion pa-
pers (14, 15) is vital to ensuring proper analysis of current epi-
demiologic studies.

When analyzing observational data, an epidemiologist
presented with a crude odds ratio of 0.43 (analogous to the
complete-case analysis estimate) and an adjusted odds ratio of
1.35 (analogous to MI or IPW estimate) might posit that con-
founding bias is the culprit and report both, while interpreting
the adjusted result as probably closer to the underlying truth
(barring collider-stratification bias and assuming a rare out-
come such that the odds ratio is collapsible). Reporting only
the results from a complete-case analysis in the presence of
nontrivial missing data is commensurate with reporting only
crude associations from nonrandomized studies. We therefore

advocate that the same reasoning be followed when dealing
with missing data. If we are principled, we are more likely to
get closer to the truth.

We urge researchers, reviewers, and journal editors to
think about the missing-data problem prior to making decisions
about a plan of action. We would be wise to plan for missing
values, minimize nonresponse, determine the missing-data as-
sumptions, and report them appropriately. Of course, there may
be reasonable extenuating circumstances that support reporting
a crude association, or an equivalent rationale for reporting re-
sults from a complete-case analysis. But we surmise that such
cases are rare. In closing, we ask that researchers join us in re-
evaluating the context of our work, to thinkmore carefully about
the assumptions that underlie the claimswemake.
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