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Abstract

Background

Randomized controlled trials are often used to inform policy and practice for broad popula-

tions. The average treatment effect (ATE) for a target population, however, may be different 
from the ATE observed in a trial if there are effect modifiers whose distribution in the target 
population is different that from that in the trial. Methods exist to use trial data to estimate the 
target population ATE, provided the distributions of treatment effect modifiers are observed 
in both the trial and target population—an assumption that may not hold in practice.

Methods

The proposed sensitivity analyses address the situation where a treatment effect modifier is 
observed in the trial but not the target population. These methods are based on an outcome 
model or the combination of such a model and weighting adjustment for observed differ-

ences between the trial sample and target population. They accommodate several types of 
outcome models: linear models (including single time outcome and pre- and post-treatment 
outcomes) for additive effects, and models with log or logit link for multiplicative effects. We 
clarify the methods’ assumptions and provide detailed implementation instructions.

Illustration

We illustrate the methods using an example generalizing the effects of an HIV treatment 
regimen from a randomized trial to a relevant target population.
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Conclusion

These methods allow researchers and decision-makers to have more appropriate confi-

dence when drawing conclusions about target population effects.

Introduction

Randomized controlled trials (trials) are often used to inform policy and practice for broad

populations. A well designed and implemented trial allows consistent estimation of the average

treatment/intervention effect (ATE) for the trial sample. We refer to this as the Study-specific
ATE (SATE). If the question is whether that treatment should be used for people in a certain

population (target population), then of interest is the Target population ATE (TATE). Since

trial samples are often not representative of target populations, SATE may not be a good esti-

mate of TATE. SATE departs from TATE if the trial sample differs from the target population

with respect to the distribution of treatment effect modifiers.

Methods exist to use trial data to estimate TATE, e.g., [1–3], assuming treatment effect vari-

ation is explained by pre-treatment variables that are observed in both the trial and target pop-

ulation. Often, however, the variables observed for the target population are limited compared

to those measured in the trial [4, 5]. This paper presents simple methods to assess the sensitiv-

ity of TATE estimates to effect modifiers observed in the trial but not in the target population.

The paper starts from the simple case of additive effects based on an uncomplicated linear

model (previously addressed in [6]) and extends to cases with more complex models and mul-

tiplicative effects. We clarify the assumptions of these methods for a general audience and pro-

vide detailed implementation instructions.

We illustrate the sensitivity analyses using an example based on the AIDS Clinical Trial

Group (ACTG) 320 Study [7]. This trial randomized HIV-infected adults to two antiretroviral

regimens: (i) two nucleoside reverse-transcriptase inhibitors (AZT or d4T and 3TC) plus a

protease inhibitor (Indinavir), and (ii) AZT/d4T and 3TC only—referred to as new and old

treatment, respectively. The trial found that relative to the old treatment, the new treatment

lowered the hazard of AIDS and/or death. Cole & Stuart [1] generalized this effect to the popu-

lation of people diagnosed with HIV in the US in 2006, using a set of covariates observed in

both the trial and target population. Our example is based on this trial-population pair. We

consider a different outcome, CD4 count (number of T-CD4 cells per ml blood), which is an

important indicator of immunity status. We use the same target population dataset that Cole

& Stuart created for [1] based on the CDC-estimated joint distribution of demographic charac-

teristics in this population [8]. As the trial data are not for open access, for this illustration, we

use a synthetic trial dataset created to mimic the distributions in the real trial data.

Methods for the simplest case: Additive effects on potential

outcome based on a linear causal model

For this case, the basic mathematical results of the methods and one of their key assumptions

were developed in [6]. The current paper elaborates on the full set of assumptions required by

these methods, and pays close attention to details relevant to their effective use, such as differ-

ent data scenarios and corresponding implementation instructions, including variation in

weighting procedures for the method that involves weighting.
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Trial sample, target population data, effect definitions

Consider a trial evaluating the effect of treatment A on outcome Y. Let S = 1 denote trial partic-

ipation, P = 1 denote membership in the target population. In Fig 1, the trial sample is drawn

from the target population (i.e., individuals i with Si = 1 also have Pi = 1); and the purpose is to

generalize trial results back to the target population. If the trial sample is drawn from a differ-

ent population (i.e., S = 1 is outside of P = 1), the problem is to transport [9] results to the tar-

get population.

We present the methods using a binary treatment. Let Yi(a) denote individual i’s potential

outcome [10] if treatment were set to a, with a = 1, 0 (treatment or control). Treatment effect

for individual i is defined on the additive scale as Yi(1) − Yi(0), the difference between potential

outcomes under treatment and under control.

SATE is defined as the average treatment effect in the trial sample, E[Y(1) − Y(0)|S = 1].

Due to randomization, SATE is unbiasedly estimated, for example, by the difference in

mean outcome between the trial’s treatment arms. Of interest, however, is TATE, defined as

E[Y(1) − Y(0)|P = 1], the average treatment effect in the target population.

The sensitivity analyses require data on the distribution of pre-treatment covariates in the

target population. Such data may come from a full population (P = 1) dataset, a representative

(S = 2) sub-sample, or population summary statistics (see Fig 1).

Assumptions

Several assumptions are required. The first assumption is that the trial has internal validity

(A1), which itself consists of several conditions listed in Table 1. We will not discuss interval

validity further, but this is a key assumption. On top of this, we need a set of assumptions com-

monly used in generalization [1–3]: across-setting treatment variance irrelevance (A2), trial

coverage of target population ranges of the effect modifiers (A3), conditional ignorability for

treatment effects (A4), and consistent measurement and no measurement error (A5)—see

detailed explanations of and practical comments on these assumptions in Table 1.

Assumptions A1-A5 are sufficient for estimating TATE if all effect modifiers are observed

in both the trial and target population, via either G-computation or weighting the trial sample

to the target population [1–3, 11, 12]. When some effect modifiers are not observed in the tar-

get population, however, such strategies fail. In this case, in order to use the proposed sensitiv-

ity analyses to glean some information on TATE, we make the additional assumption (A6) of a

Fig 1. Several data source scenarios for generalization from the trial (S = 1) to the target population (P = 1). (a) the trial sample

and a full population dataset; (b) the trial sample and a dataset (S = 2) that is representative of the population; (c) the trial sample and

some summary statistics about the population.

https://doi.org/10.1371/journal.pone.0208795.g001

https://doi.org/10.1371/journal.pone.0208795.g001


causal model. In this section we assume the linear causal model

E½YiðaÞ� ¼ b0 þ baaþ bxXi þ bzZi þ bzaZiaþ bvVi þ bvaVia; ðM1Þ

where potential outcomes are influenced by treatment condition a and baseline covariates

X, Z, V, all observed in the trial. X, Z and V may be multivariate; the use of univariate notation

is to simplify presentation. Z and V both denote effect modifiers; the difference is Z is observed

in the target population while V is not.

(The letter M in the equation label M1 indicates that this is a causal model. We will also use

T in labels to indicate TATE formulas, and R to indicate regression models).

This model assumption should not be made lightly. With a binary outcome, for instance,

this model would imply additive effects on the risk difference scale, which may be inappropriate.

Table 1. Key assumptions.

Assumption Details

A1. Internal validity of the trial We make all the assumptions required for the trial’s internal validity,

e.g., conditional ignorability of treatment assignment, positivity,

treatment variance irrelevance, no interference, etc.

A2. Across-setting treatment variation

irrelevance

When a treatment is applied to the target population, it is administered

in settings that are likely different from the trial setting. The

assumption is that the differences in the treatment that result do not

change its effect.

This assumption is non-trivial in some settings and should be

examined explicitly in generalization practice. In this paper, we simply

make the assumption; its plausibility is not the problem we currently

aim to discuss.

A3. Treatment effect modifiers coverage Treatment effects depend on a set of pre-treatment variables observed

in the trial (denoted Z if observed and V if not observed in the target

population), and the range of these (observed and unobserved) effect

modifiers in the target population is covered by their range in the trial.

The rationale is that if there are members of the target population with

effect modifier values outside the range observed in the trial, we cannot

use trial data to learn about their treatment effects. This assumption,

which is similar to positivity, is formally Pr(S = 1|Z = z, V = v) > 0 if Pr

(Z = z, V = v|P = 1) > 0 where Pr[�] is the probability function [17].

This assumption can be checked for Z variables but not for V.

A4. Conditional sample ignorability for

treatment effects [3]

For an individual (in the trial or the target population) with effect

modifiers within the target population range, “sample membership”

(i.e., whether the individual is in the trial or in the target population)

does not carry any information about the treatment effect once we

condition on the effect modifiers. For additive effects, this is formally

[Y(1) − Y(0)]⫫ {S, P}jZ, V, (S = 1 or P = 1).

This assumption allows generalizing treatment effects from individuals

in the trial to individuals in the target population with similar patterns

of the effect modifiers.

This assumption is less strict than conditional sample ignorability for

potential outcomes, {Y(1), Y(0)}⫫ {S, P}jX, Z, V, (S = 1 or P = 1) where

X denotes predictors of the potential outcomes that are not part of the

set of effect modifiers {Z, V}. Yet this assumption is tied to the scale on

which effects are defined.

A5. Consistent measurement and no

measurement error

The trial’s internal validity requires no systematic measurement error

of a continuous outcome and no misclassification of a categorical

outcome. Here we also need to assume that all covariate measurements

are without error, and that X and Z are measured the same way

between the trial and the target population.

A6. A specific causal model We assume a causal model with effect modification; effects should be

defined on a scale that connects naturally to the model.

The main methods section assumes a linear causal model (with

interaction terms) and defines effects on the additive scale.

https://doi.org/10.1371/journal.pone.0208795.t001

https://doi.org/10.1371/journal.pone.0208795.t001


(See the next section for an extension of these methods to a broader class of models). Also, the

selection of which pre-treatment variables to include in the model and which variables to con-

sider effect modifiers requires serious investigation, and is discussed is great length in relevant

literature, e.g., [13–16]. With the current focus on sensitivity analysis, we presume that such a

model has been selected. If unsure whether a variable is an effect modifier (e.g., because its inter-

action with treatment has a non-negligible coefficient but its p-value is large), our recommenda-

tion is to treat it as one for the purpose of TATE estimation, since trials usually lack power to

investigate effect modification.

TATE formula

Based on the causal model M1, individual i’s treatment effect has expectation E[Yi(1) − Yi(0)]

= βa + βza Zi + βva Vi, therefore

TATE ¼ ba þ bzaE½ZjP ¼ 1� þ bvaE½VjP ¼ 1�; ðT1Þ

where E[Z|P = 1] and E[V|P = 1] are the means of Z and V in the target population. Under

Assumptions A1-A6, βa, βza and βva are the same for the trial sample and target population,

and can be estimated using trial data.

The problematic quantity in this formula is E[V|P = 1], because we do not observe V in

the target population. However, if we specify a plausible range for E[V|P = 1] (the sensitivity
parameter), we obtain a range of TATE estimates. We outline here two ways to do this, and

provide detailed implementation instructions in Table 2.

Method 1: Outcome-model-based sensitivity analysis

This method requires an estimate for E[Z|P = 1] (target population mean Z), but not a target

population dataset. It involves: (1) obtaining an estimate for E[Z|P = 1]; (2) specifying a plausi-

ble range for the sensitivity parameter E[V|P = 1]; (3) fitting to trial data the regression model

E½YjA;X;Z;V� ¼ b0 þ baAþ bxX þ bzaZAþ bvV þ bvaVA; ðR1Þ

(4) combining the estimated E[Z|P = 1] and specified E[V|P = 1] with model coefficients to

obtain TATE estimates (using formula T1); and (5) plotting results against the sensitivity

parameter.

Method 2: Weighted-outcome-model-based sensitivity analysis

If a target population dataset is available, an alternative is to weight the trial sample to mimic

the target population distribution of X, Z, before implementing the same steps as in method 1.

Simulations (see description and full results in the S1 Appendix) found that Method 2 has

an advantage over method 1 with respect to bias; it provides some protection against bias due

to misspecification of the outcome model. Specifically, if the outcome model is misspecified

with respect to Z, method 1 is biased, but method 2 is unbiased because the weighting adjusts

for the difference between the trial and target population in effect variation due to the differ-

ence in distribution of Z. Also, if the outcome model is misspecified with respect to V then

both methods are biased, but if V is positively correlated with Z in the trial and influences

treatment effect in the same direction as Z, method 2 is less biased than method 1, because the

weighting adjustment for Z helps partially adjust for V. Method 2’s disadvantage is that it has

larger variance than method 1, and suffers from some degree of variance underestimation—

the variance estimated based on the fitted outcome model is on average smaller than true vari-

ance. Bias and variance combined leads to the two methods both performing well when the



outcome model is correctly specified, with the method 1 confidence interval (CI) having nomi-

nal coverage (about 95%) and the method 2 CI’s coverage being only slightly smaller (around

93-94%). When the outcome model is misspecified, due to bias reduction, method 2’s CI gen-

erally has better variance than method 1’s.

Given these findings, we generally recommend method 2 (with the weighting), unless the

two methods agree on TATE point estimates, in which case method 1’s unweighted results can

be used.

Weighting procedures. Method 2 involves weighting the trial sample to mimic the target

population distribution of X, Z. In most situations where a population dataset (either P = 1

or S = 2—see Fig 1) is available, we use weighting by the odds [3, 18]. The exception is when

trial participants are part of AND can be identified within the population dataset, then inverse
probability weighting is used. If only population summary statistics are available, weighting is

generally not used. However, if information on the joint distribution of X, Z in the target pop-

ulation is available, and X, Z are discrete with few combined categories, weighting may be

implemented. See Table 3 for details on weights computation in these cases. For why they

apply, see the S2 Appendix.

Table 2. Implementation instructions.

Method 1: Outcome-model-based sensitivity analysis

Step 1 Obtain an estimate for E[Z|P = 1] (mean of Z in the target population), with confidence limits to reflect

uncertainty (unless it is known with certainty, e.g., from a full population dataset).

Step 2 Specify a plausible range for E[V|P = 1] (aka the sensitivity parameter).
• This range should ideally be informed by knowledge about this variable from other data or from the

literature regarding the target population or similar populations.

• When little information is available, a wide range can be used so that consumers of the research could

be selective in interpreting the results based on information they may have on this parameter.

Step 3 Fit to the trial data the regression model R1.

Step 4 For each of the lower and upper ends of the range specified for E[V|P = 1], obtain a corresponding

estimate of TATE (including point estimate and confidence limits).

Suppose that for E[Z|P = 1], we have a point estimate of 2 and 95% confidence interval of (1.5, 2.5); and

for E[V|P = 1], we specify a plausible range of 30 to 70. TATE corresponding to one end of this range,

e.g., the lower end (E[V|P = 1] = 30), is estimated as follows:

• Point estimate: Take a linear combination of the coefficients from model R1—based on the TATE

formula T1—using the point estimate 2 of E[Z|P = 1], that is, (βa + 2βza + 30βva). This can be done

using the lincom statement after fitting the model in Stata or using the estimate statement

when specifying the model in SAS. The output for this linear combination includes a point estimate,

standard error and confidence interval. Take the point estimate of this linear combination as the point

estimate for TATE.

• Confidence limits: Use the confidence limits (1.5 and 2.5) of E[Z|P = 1] to take two additional linear

combinations: (βa + 1.5βza + 30βva) and (βa + 2.5βza + 30βva). Consider the confidence limits of these

linear combinations: take the more extreme of their two upper confidence limits, and the more

extreme of their two lower confidence limits, as the confidence limits for TATE.

Step 5 Plot the range of TATE with confidence bounds (y-axis) against the range specified for the sensitivity

parameter E[V|P = 1] (x-axis). Specifically,

• Plot the TATE estimates corresponding to the two ends of the range obtained in step 4, each with three

points, one for the point estimate and two for the confidence limits; and

• Connect the two point estimates, the two lower confidence limits, and the two upper confidence limits,

using three straight lines.

Method 2: Weighted-utcome-model-based sensitivity analysis

Step 0 Weight the trial sample so that it resembles the target population with respect to X, Z.

Steps 1-

2

Same as in method 1

Step 3 Fit model R1 to the weighted trial sample.

Step 4-5 Same as in method 1

https://doi.org/10.1371/journal.pone.0208795.t002

https://doi.org/10.1371/journal.pone.0208795.t002


An additional note: The desired result of weighting is that the arms of the trial (i) each mim-

ics the target population in the distribution of X, Z, and (ii) remain similar to each other in the

distribution of X, Z, V. We recommend a two step procedure: first checking balance between

the trial arms and adjusting via within-trial reweighting if needed; and then weighting the

(adjusted) trial sample to the target population. We do not recommend weighting each trial

arm to the target population separately, because it may distort between-arms balance on vari-

ables not observed in the target population.

What if an effect modifier is not even observed in the trial?

There are times when instead of an effect modifier observed in the trial but not in the target

population, researchers are concerned about effect modifiers that were not measured in the

trial. This may be a specific variable, e.g., addiction severity was not measured in a substance

abuse treatment trial, but it is suspected to modify treatment effect and it may very well be dis-

tributed differently between the trial and the target population. Or it may be generic, when

researchers are concerned that there is effect modification by unknown factors.

The question is whether the above-described sensitivity analyses can be extended to cover

an effect modifier U (be it a specific or generic variable) that is unobserved in the trial. Unfor-

tunately, the answer is no. It is clear from the causal model

E½YiðaÞ� ¼ b0 þ baaþ bxXi þ bzZi þ bzaZiaþ buUi þ buaUia

that if we use the approach without weighting, we would need an estimate of βza, which is

Table 3. Weighting procedures for different target population data scenarios.

Target population data Weighting procedures

A P = 1 dataset is available. Trial participants

cannot be identified in this P = 1 dataset.

Weighting-by-the-odds, i.e., weight the trial participants using

weights computed as follows

1. stacking the trial and target population datasets into one

dataset, and creating a new variable S0 coded S0 = 1 for

observations from the trial dataset, and S0 = 0 for observations

from the target population dataset

2. fitting a model using X and Z to predict S0; and for each trial

participant, obtaining the predicted probability of S0 = 1 from

that model (aka the trial participation score), psi = Pr(S0 = 1|

Xi, Zi)
3. for every trial participant, computing the weights as Wi = (1 −
psi)/psi, the odds of being in the target population dataset.

A S = 2 dataset is available. Trial participants are

either not part of the S = 2 sample, or if they are,

they cannot be identified in this S = 2 dataset.

A P = 1 dataset is available. Trial participants are

identified in this P = 1 dataset.

Inverse-probability-weighting, i.e., weight the trial participants

using weights computed as follows

1. using the target poplation dataset, creating a new variable S0
coded S0 = 1 for observations that belong to the trial

participants, and S0 = 0 for the remaining observations

2. fitting a model using X and Z to predict S0; and for each trial

participant, obtaining the predicted probability of S0 = 1 from

that model (aka the trial participation score), psi = Pr(S0 = 1|

Xi, Zi)
3. for every trial participant, computing the weights as Wi = 1/

psi, the inverse of the probability of participating in the trial.

A S = 2 dataset is available. Trial participants are

part of the S = 2 sample, and are identified in this

S = 2 dataset.

Information on the joint distribution of {X, Z} in

the target population is available.

X, Z are categorical with a small number of

combined categories.

Ratio-of-probability-weighting, specifically, weight the trial

participants using weights computed by the formula

Wi ¼
PrðX ¼ Xi;Z ¼ ZijP ¼ 1Þ

PrðX ¼ Xi;Z ¼ ZijS ¼ 1Þ
, where the numerator and

denominator are the prevalences of the {Xi, Zi} pattern in the

target population and in the trial sample, respectively.

https://doi.org/10.1371/journal.pone.0208795.t003

https://doi.org/10.1371/journal.pone.0208795.t003


unidentified from the trial because U is not observed. If we use the weighting approach and

manage to equate the mean of Z between the trial sample and the target population, then we

could do without βza but instead would have to deal with the mean of U in the weighted trial

sample, an obscure quantity that is not suitable to serve as a sensitivity parameter. (For techni-

cal details, see the S3 Appendix).

Note that this is a correction of the U case results reported in [6]; the appendix explains the

error in those previous results.

Method extensions

Turning our attention back to effect modifiers that are observed in the trial but not in the tar-

get population (V), note that the last section (and [6]) addressed a simple setting. We now

offer two extensions of the sensitivity analyses to more complex situations.

Extension 1: When both pre- and post-treatment outcomes are available

and are modeled using random intercepts models

When both pre- and post-treatment measures of the outcome are available, there are several

options for modeling such data. One option is to treat the pre-treatment outcome measure as a

baseline covariate. Another option, which we consider here, is to model the combination of

both pre- and post-treatment outcomes using random intercepts models.

The simplest random intercepts model in this case is the model without covariates

E½YijjAi; Fij� ¼ c0i þ g0 þ gaAi þ gf Fij þ gfaFijAi;

where i indexes person, j indexes observation (each person has two observations), A indicates

treatment arm, F indicates whether the observation is pre-treatment (Fi1 = 0) or post-treat-

ment (Fi2 = 1), and the coefficient γfa of FA represents treatment effect. Given randomization

of treatment in the trial, when this model is fit to the trial data, γfa estimates SATE. Note that

the coefficient of FA in models with baseline covariates (X, Z, V) that may interact with A or F
but not with FA also estimates SATE; such models adjust for covariates when estimating the

average treatment effect.

For the sensitivity analyses, we assume a model with effect modification analogous to M1.

The full details, which are somewhat more complicated than are informative, are relegated to

the S4 Appendix. The key point is that this model includes not only the FA term (βfa Fij Ai),

but also interaction terms of effect modifiers with FA (βzfa Zi Fij Ai and βvfa Vi Fij Ai). The

TATE formula in this case is

TATE ¼ bfa þ bzfaE½ZjP ¼ 1� þ bvfaE½VjP ¼ 1�: ðT2Þ

This formula is used with both method 1 and method 2—when the effect modification

regression model is fit to the unweighted and weighted trial data, respectively.

While it is usually natural to clarify effect definitions before discussing models used to esti-

mate such effects, in this section we have done the opposite, starting with models first. This

choice is intentional because in the current case it is easier to point out the effect definition

after explaining the model. As FA is an interaction of treatment arm and time (post- vs. pre-

treatment), its coefficient represents a difference in difference, specifically a difference between

the two treatment conditions with respect to the difference between post- and pre-treatment

outcomes in each condition. This means the individual treatment effect definition here is the

effect of treatment on the ‘potential outcome change’ from before to after treatment. Since

pre-treatment outcome is not affected by treatment, this is equivalent to the effect of treatment



on the potential post-treatment outcome. That is, the TATE and SATE in this case are exactly

the same average effects defined in the previous section.

Extension 2: Multiplicative effects on potential outcome rate/probability/

odds, based on a log/logit link model

In the previous section, we commented that the linear model assumption is not always appro-

priate. We now extend the methods to cases where log/logit link outcome models are used

(e.g., log mean model for a count outcome, log probability or logit model for a binary out-

come). Here the individual treatment effect is defined on the multiplicative scale that matches

the model (e.g., rate ratio, risk ratio, or odds ratio), and an ATE is defined as the geometric

mean of the individual effects. Or equivalently, one could define the individual effect as the

corresponding log rate ratio, log risk ratio or log odds ratio, and have the usual definition of

ATE as the arithmetic mean of individual effects.

We describe the extension formally here using a binary outcome with logit model (leaving

details for the other cases in the S5 Appendix). In this case we assume the logistic causal model

log
Pr½YiðaÞ ¼ 1�

Pr½YiðaÞ ¼ 0�

� �

¼ b0 þ baaþ bxXi þ bzZi þ bzaZiaþ bvVi þ bvaVia; ðM3Þ

the coefficients of which can be estimated by fitting the logistic regression model

log
Pr½Y ¼ 1jA;X;Z;V�
Pr½Y ¼ 0jA;X;Z;V�

� �

¼ b0 þ baAþ bxX þ bzZ þ bzaZAþ bvV þ bvaVA ðR3Þ

to the original or the weighted trial sample (corresponding to method 1 or 2). Define the indi-

vidual treatment effect as the odds ratio (OR) of the individual’s potential outcomes,

TEOR
i ¼

Pr½Yið1Þ ¼ 1�=Pr½Yið1Þ ¼ 0�

Pr½Yið0Þ ¼ 1�=Pr½Yið0Þ ¼ 0�
;

or the corresponding log OR

TElog OR
i ¼ log ðTEOR

i Þ:

Model M3 implies,

TElog OR
i ¼ ba þ bzaZi þ bvaVi;

TEOR
i ¼ exp ðba þ bzaZi þ bvaViÞ:

On the log OR scale, we have the familiar formula

TATElog OR ¼ ba þ bzaE½ZjP ¼ 1� þ bvaE½VjP ¼ 1� ðT3aÞ

for TATE defined as the average of the individual effects in the target population. Note that

‘average’ in this definition means arithmetic mean. For effects defined on the OR scale, how-

ever, the arithmetic mean does not have a nice formula. Yet we can use another type of average

that is natural to quantities on a multiplicative scale and thus is both meaningful and mathe-

matically convenient in this case, the geometric mean. Defining TATE on the OR scale as the

geometric mean of the individual ORs in the target population, we obtain

TATEOR ¼ expfba þ bzaE½ZjP ¼ 1� þ bvaE½VjP ¼ 1�g: ðT3bÞ



These two TATE formulas serve as the basis for essentially the same sensitivity analyses, as

TATEOR = exp(TATElog_OR).

As an aside, an ATE defined as geometric mean of individual OR effects (termed average
causal OR) is closely related to the conditional OR routinely estimated by logistic regression

with main effects only. Indeed the latter is an approximate estimate of the former (see more

about this in the S5 Appendix).

Illustration

The analyses presented here are merely illustrative. Results should not be taken as clinically

informative. In addition to the concise presentation here, the detailed analyses can be found in

S6 Appendix, with most of the code (R-code) included in the same appendix, and some Stata

code in S7 Appendix. The data are provided in S8 and S9 Appendices.

The trial data include baseline and post-treatment CD4 counts and several baseline char-

acteristics—age in years, sex, race, and severe immune suppression (SIS). The target popula-

tion data include age groups, sex, and race. See Table 4 for a description of these variables.

As noted above, when data include pre- and post-treatment measures of the outcome, there

are more than one analysis options. Here we use random intercepts models on the combina-

tion of both measures. (For an application modeling post-treatment outcome only, see [6]).

The definition of TATE is the average effect of treatment on potential CD4 count gain, and

equivalently, the average effect of treatment on potential CD4 count post-treatment, in the

target population.

We start by analyzing the trial data. The first question is whether to model CD4 count (and

thereby consider its change) on the additive or multiplicative scale. CD4 count is a non-nega-

tive variable, so the additive scale may predict out of range, but it is also generally bounded

above, which is more restrictive on multiplicative than on additive effects. We follow the HIV

literature convention of using the additive scale for CD4 count, noting that our models may be

suboptimal in this respect.

The two treatment arms in the trial are similar but the new treatment arm has more female

patients and the old treatment arm has a higher SIS proportion (see Table 5). For the moment,

assume we have good enough balance; we will come back to this.

SATE (i.e., the average difference, between the two treatments in the trial, in CD4 count

change, or equivalently, in post-treatment CD4 counts) is estimated to be 36.6, 95% CI =

(28.0,45.2) cells/ml by a simple model with no covariates, and 35.8, 95% CI = (27.3,44.4) by a

model that adjusts for baseline covariates. Table 6 shows substantial differences in covariate

Table 4. Illustration. Data availability.

Variable Description Observed in

trial population

Pre-treatment CD4 count CD4 count, i.e., number of T-CD4 cells per ml blood, within 10 days of treatment initiation (average if more than one

available)

✔

Post-treatment CD4 count CD4 count within 10 days of two months on treatment (average if more than one available) ✔
Continuous age Age in years ✔
Categorical age 4 categories: up to 29, 30-39, 40-49, and 50+ ✔ ✔
Sex Binary, male or female ✔ ✔
Race Dichotomized as White or non-White ✔ ✔
Severe immune

suppression

Any CD4 count of 50 or lower within the baseline period ✔

https://doi.org/10.1371/journal.pone.0208795.t004

https://doi.org/10.1371/journal.pone.0208795.t004


distribution between the trial sample and target population, suggesting these SATE estimates

should not be used as estimates of TATE.

Through a simple analysis examining interactions of FA with baseline covariates (e.g.,

FA�sex), covariate pairs (e.g., FA�sex�age), and cross-classifications of categorical covariates

(e.g., FA�‘nonwhite-female’), we identify that the cross-classification of race and SIS status is

an effect modifier (see Table 7). This variation in treatment effects is visualized in Fig 2.

As treatment effects vary across race-by-SIS-status categories, to obtain TATE estimates,

we need the proportions of the target population that are in these categories. Race is observed

in the target population, with 63.9% being nonwhite. SIS status (in the white and nonwhite

groups), however, is not observed. If this were a substantive study, we would comb the litera-

ture to seek a plausible range for the proportions with SIS among White and among nonWhite

people in the target population. As this is only illustrative, we specify a wide range (0.2, 0.6) for

this proportion (which covers the proportion 0.456 in the trial), and assume that this propor-

tion is the same between White and nonWhite people in the target population. With this

assumption, this single proportion with SIS in the target population is now our sensitivity
parameter.

Table 6. Illustration. Covariate distribution in the trial sample and target population.

Trial sample

(n = 933)

Target population

(n = 54,220)

Age (mean) 39.5 not available

Age (range) 16 to 75 13 to 80

Age groups (proportions)

29 and younger 0.107 0.341

30 to 39 0.421 0.309

40 to 49 0.348 0.247

50 and older 0.123 0.103

Sex (proportion female) 0.159 0.266

Race (proportion nonWhite) 0.471 0.639

SIS (proportion) 0.456 not available

https://doi.org/10.1371/journal.pone.0208795.t006

Table 5. Illustration. Covariate balance within the trial sample.

New treatment

(n = 478)

Old treatment

(n = 455)

Age (mean) 39.4 39.5

Sex (proportion female) 0.174 0.143

Race (proportion nonWhite) 0.473 0.468

SIS (proportion) 0.437 0.475

https://doi.org/10.1371/journal.pone.0208795.t005

Table 7. Illustration. Excerpt from effect modification modela fit to trial data.

Estimate Std. Error df t value

FA 19.72150 7.862622 923 2.508260

FA � nonWhite-noSIS 23.44112 11.979436 923 1.956780

FA � White-SIS 24.93563 12.135934 923 2.054694

FA � nonWhite-SIS 21.43789 11.956149 923 1.793043

a The referent category is White-noSIS. The other covariates included are age and sex.

https://doi.org/10.1371/journal.pone.0208795.t007

https://doi.org/10.1371/journal.pone.0208795.t006
https://doi.org/10.1371/journal.pone.0208795.t005
https://doi.org/10.1371/journal.pone.0208795.t007


A comment is warranted on assumption A3, that the range of the treatment effect modifiers

in the target population is covered by the trial. In the current example, it is apparent that we do

not have a problem with this assumption, because effect modification involves the four race-

by-SIS-status categories, all of which are present in the trial sample. What might go unnoticed

is that the age range in the trial sample (16 to 75) is smaller than that in the target population

(13 to 80), and while we did not detect any treatment effect modification by age in the trial

sample, we do not know if treatment effects for those younger than 16 or older than 75 (who

are not represented in the trial sample) are the same as or different from treatment effects for

those in the trial sample age range; this would be an area to consult clinical experts for their

judgment. In the absence of such expert knowledge, were actual age values (rather than just

age group) observed in the target population, one option would be to generalize treatment

effects only to those aged 16 to 75 in the target population. This target population trimming is

not an option in the current case as age values are not observed. In order to move forward, we

assume that there is no effect modification by age.

We now apply the outcome-model-based sensitivity analysis (method 1) with the specified

(0.2, 0.6) range for the sensitivity parameter (proportion with SIS in the target population).

This obtains a range of TATE estimates from 36.2, 95% CI = (25.9,46.6) (corresponding to the

lower end of the sensitivity parameter range) to 39.3, 95% CI = (30.0,48.6) (corresponding to

the upper end of the sensitivity parameter range).

To apply the weighted-outcome-model-based sensitivity analysis (method 2), we need to

weight the trial data to mimic the target population with respect to covariates observed in both

(age group, sex, race). Heeding the recommendation of the two-step procedure, we first adjust

the between-arms balance in the trial sample by inverse treatment propensity score weighting.

Note that this results in a balance-adjusted SATE estimate of 33.9, 95% CI = (25.4, 42.3), which

is very similar to (but slightly smaller than) the original SATE estimates. The effect modifica-

tion model fit to the balance-adjusted trial data is very similar to that fit to the raw trial data.

If we use that model and apply method 1, we obtain TATE estimates ranging from 34.2, 95%

CI = (23.5, 44.8) to 37.1, 95% CI = (28.5, 45.7); these are slightly lower than those based on the

model fit to the raw data. To use method 2, after adjusting within-trial balance, we weight the

adjusted trial sample to the target population, using the weighting-by-the-odds procedure

described in Table 3. This results in covariate balance shown in Table 8. The ATE in this

Fig 2. Illustration. Visualization of effect modification model.

https://doi.org/10.1371/journal.pone.0208795.g002

https://doi.org/10.1371/journal.pone.0208795.g002


weighted trial sample (which we will refer to as the (X, Z)- adjusted ATE) is 37.4, 95% CI =

(27.0, 47.8), which is slightly higher than our SATE estimates. This is consistent with the fact

that the weighted trial sample has higher nonWhite and SIS proportions than the original trial

sample.

We now fit the same effect modification model to the weighted trial sample (see model fit

in Table 9). Interestingly, the coefficients have changed substantially from the model fit to raw

data (Table 7). This is not surprising as it could be a result of model misspecification (which

we suspected), and it underscores our recommendation to use the weighted method so that

the model that is the basis for estimating (sensitivity analysis of) TATE is the model fit to data

that is close to the target population with respect to observed variables.

Generally we should not read much into the (lack of) statistical significance of interaction

terms in the weighted model because weighting increases variance. However, the underwhelm-

ing coefficients in the fitted model above suggest that in the weighted dataset, there is not

much differentiation of the group specific effects, and one could argue for using the (X, Z)-

adjusted ATE as an estimate of TATE.

Or we could choose to proceed with a full implementation of method 2. Based on this effect

modification model, we obtain TATE estimates ranging from 38.4, 95% CI = (26.0,50.9) (cor-

responding to the lower end, 0.20, of the range of the sensitivity parameter) to 37.5, 95% CI =

(27.4,47.7) (corresponding to the upper end, 0.60, of the range of the sensitivity parameter).

Results from both methods are plotted in Fig 3. In this particular case, as there is not a clear

slope of TATE estimates on the sensitivity parameter, we could combine these results to con-

clude that when between 20 and 60% of the target population have SIS, we could expect the tar-

get population average effect of the new treatment (relative to the old treatment) to be a gain

in CD4 count of about 36 to 39 cells per ml (point estimate) with lower and upper confidence

bounds of 26 and 51.

Table 8. Illustration. Covariate balance between two trial arms and target population after weighting.

Trial: new

(n = 478)

Trial: old

(n = 455)

Target population

(n = 54,220)

Age (mean) 35.8 36.1 not available

Age (range) 16 to 75 16 to 75 13 to 80

Age groups (proportions)

29 and younger 0.349 0.333 0.341

30 to 39 0.304 0.313 0.309

40 to 49 0.247 0.246 0.247

50 and older 0.100 0.107 0.103

Sex (proportion female) 0.272 0.260 0.266

Race (proportion nonWhite) 0.642 0.636 0.639

SIS (proportion) 0.515 0.522 not available

https://doi.org/10.1371/journal.pone.0208795.t008

Table 9. Illustration. Excerpt from effect modification model fit to trial data that have been weighted to the target

population.

Estimate Std. Error z value

FA 32.903852 11.93896 2.76

FA � nonWhite-noSIS 9.335134 15.74757 0.59

FA � White-SIS 4.593148 14.53369 0.32

FA � nonWhite-SIS 3.294465 15.46597 0.21

https://doi.org/10.1371/journal.pone.0208795.t009

https://doi.org/10.1371/journal.pone.0208795.t008
https://doi.org/10.1371/journal.pone.0208795.t009


Discussion

Policy-makers may want to use trial results to inform decisions for specific target populations.

There are now methods to calibrate trial results to target populations, increasing potential for

evidence-based decision-making [19]. However, these methods generally rely on a strong

assumption that all effect modifiers differentially distributed between sample and population

are observed and can be adjusted for. In this paper, we describe sensitivity analyses when this

is not the case. Sensitivity analyses such as these allow researchers and decision-makers to have

more appropriate confidence about population effects.

The methods proposed in this paper address situations where the effect definition matches

the model assumed—additive effect with linear model, ratio effect with logit/log link model.

While this kind of pairing is natural and commonplace, it is somewhat restrictive; there are sit-

uations where the effect definition of policy interest may not be on the same effect scale that

best matches the model scientifically deemed appropriate. Our ongoing work aims to provide

sensitivity analyses to situations where the model assumed is nonlinear but the effect scale of

interest is additive.

That these sensitivity analyses rely on the assumption of a specific causal model deserves

discussion, as the assumed model may or may not be close to the truth. Method 2, which com-

bines this model with weighting, provides some protection against model misspecification,

and thus has a flavor of double robustness. It is not truly doubly robust, however, because the

weighting does not adjust for difference in the distribution of the partially unobserved effect

modifier V. An area for further development is the search for sensitivity analysis procedures

that are more flexible regarding model assumptions.

A challenge in generalization which we commented on is that the effect modifier range cov-

erage assumption (A3) is perhaps commonly not met, because trial samples tend to be less

diverse than target populations [20]. Strategies for this situation include combining evidence

from multiple trials, combining experimental and non-experimental evidence using cross-

Fig 3. Illustration. Results from both methods.

https://doi.org/10.1371/journal.pone.0208795.g003

https://doi.org/10.1371/journal.pone.0208795.g003


design synthesis [21], or redefining the population to the area with overlap [22]. These com-

plex approaches will require adapting sensitivity analyses.

Finally, it is important to note that these sensitivity analyses are not a panacea. It is best to

limit the need for them in the first place. This can be done through careful consideration of tar-

get populations when designing trials, and efforts to enroll more representative trial samples.

If that is not possible, trialists should carefully consider potential effect modifiers and investi-

gate treatment effect heterogeneity. Also, to be able to adjust for effect modifiers when general-

izing treatment effects, effect modifiers need to be measured consistently in trials and target

population datasets [5, 23]. We encourage trialists to collect covariates in the same way as is

done in common population datasets in their fields. When design strategies fall short, the

methods discussed here provide a sense for the robustness (or lack thereof) of results when

generalizing to target populations.
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