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Abstract— Embedded systems augmented with graphics pro-
cessing units (GPUs) are seeing increased use in safety-critical
real-time systems such as autonomous vehicles. The current
black-box and proprietary nature of these GPUs has made it
difficult to determine their behavior in worst-case scenarios,
threatening the safety of autonomous systems. In this work, we
introduce a new automated validation framework to analyze
GPU execution traces and determine if behavioral assumptions
inferred from black-box experiments consistently match behav-
ior of real-world devices. We find that the behaviors observed
in prior work are consistent on a small scale, but the rules
do not stretch to significantly older GPUs and struggle with
complex GPU workloads.

I. INTRODUCTION

Recent advancements in artificial intelligence and embed-
ded computing have started to bring the revolution of self-
driving vehicles closer to reality, but a multitude of unan-
swered questions still stand in their path to mass adoption.
One key open question, how good is good enough? Recent
fatalities [15, 19] have shown that the current standard
of “good enough” falls short in more than one commer-
cial system. To eliminate a subjective definition of “good
enough”, this paper envisions autonomous vehicle hardware
eventually requiring certification for manufacturer, customer,
and regulatory acceptance.

However, the hardware increasingly used in vehicles and
labs today to meet size, weight, and power (SWaP) re-
quirements utilizes proprietary architectures with vague and
lacking public documentation. This presents a tremendous
quandary to those attempting certification. This issue is ex-
emplified in systems based on NVIDIA’s Parker system-on-
a-chip (SoC). This SoC powers NVIDIA’s TX2 development
board as well as the NVIDIA’s DRIVE PX AutoChauffeur
and AutoCruise boards marketed towards autonomous ve-
hicles [10]. Known users of this platform include Tesla’s
Autopilot 2.0 system [8]. Due to the TX2’s public avail-
ability, recent work [2, 21] has focused on that board as a
representative for NVIDIA’s other, more tightly controlled,
Parker SoC-based boards.

These embedded platforms contain the majority of their
raw computing power in their graphical processing units
(GPUs), so it becomes essential to thoroughly understand
how these devices behave when multiple general purpose
GPU (GPGPU) workloads share a single GPU. Danger lies
in justifying the use of these components in a self-driving
vehicle without reasoning from fundamental behaviors [14].
Making simulation-based statistical assertions about the over-
all observed lack of failures of a self-driving vehicle system
cannot carry over to the real world. Systems must either be
statically, provably safe or allowed to drive for millions of
representative miles without demonstrating any error [14].
The infeasibility of the latter option leaves us with the
former, and returns us to the importance of understanding
GPU behavior in these systems.

Our prior work attempted to solve this problem by forming
rules of behavior for CUDA (a common GPGPU program-
ming API for NVIDIA GPUs). Unfortunately, safety-critical
systems could not yet rely on our rules. The rules were

Fig. 1. EE queue benchmark trace on NIVIDA TX2

formulated from empirical observation, and rigorous applica-
bility of the rules remained untested. Our rules also suffered
from fragility and limited scope. As new GPU architectures
appear almost every other year and new processors based on
those architectures appear every few months, the possibility
of rigorously testing all these devices by hand becomes
vanishingly small. A field dominated by rapid and regular
change needs some automated method to validate past results
on new or more complicated devices.

To emphasize this point, consider Fig. 1, which displays
a GPU execution trace used in recent work [12]. Shaded
rectangles represent GPU executions over time. The trace
appears well-ordered and reasonably easy to step through by
hand, given familiarity with prior work. Now take Fig. 2.
This presents a trace from the same benchmark, but on a
GPU with more compute capacity. A trained eye will pick out
the subtly different rules in effect here, but even this simple
modification tests the limits of empirical observation. Real-
world executions can be far more complex. Fig. 3 provides
an extreme example. It displays a trace from the execution of
a randomly generated four-thread workload on a mainstream
GPU. So many different interactions take place that even our
graphing software struggles to cope.

No human can hand-validate what behavioral rules apply
in traces like this. But comprehensive testing of our proposed
rules requires the validation of these sorts of traces. To
accomplish that, this paper introduces an automated rule-
validation framework which provides a path to scalable,
rigorous validation.

II. BACKGROUND

Our solution builds on elements of NVIDIA GPUs, con-
cepts from CUDA, and properties of a number of represen-
tative test platforms.

A. GPU and CUDA Fundamentals

A GPU represents a highly parallel co-processor. Tradi-
tionally used for fast 3D scene rasterisation, recent years
have seen them used increasingly for GPGPU tasks. For the



Fig. 2. EE queue benchmark trace on NIVIDA K5000

Fig. 3. Benchmark trace of random work on NVIDIA GTX 970

NVIDIA GPUs considered in this paper, CUDA provides the
best API available to execute non-graphical computations on
the GPU. Built as a C/C++ extension, valid CUDA code
looks very similar to embedded C code. See Algorithm 1
for a loose example of vector addition in a CUDA program.

Some key GPU and CUDA terms used throughout this
paper:

1) CUDA Thread Block: A group of GPU threads ex-
ecuting the same set of user-defined instructions in
lockstep. This is the lowest-level GPU scheduling unit
considered in this paper.

2) CUDA Kernel: A combination of instruction code
and CUDA thread block specifications. Dispatched
asynchronously by a user-space process.

3) CUDA Stream: A first-in-first-out (FIFO) work queue
into which processes on the CPU can dispatch kernels.

4) SM (Streaming Multiprocessor): A subdivision of an
NVIDIA GPU. Single thread blocks cannot be split
across multiple SMs [11, p. 7].

5) EE (Execution Engine) Queue: A special internal
queue of kernels that our past work has defined to exist
between CUDA stream queues and the actual GPU.
Fig. 6 illustrates its location in the execution flow.

Algorithm 1 Vector Addition Pseudocode from [21, p. 7].
1: kernel VECADD(A ptr to int, B: ptr to int, C: ptr to int)

. Calculate index based on built-in thread and block information
2: i := blockDim.x * blockIdx.x + threadIdx.x
3: C[i] := A[i] + B[i]
4: end kernel

5: procedure MAIN
. (i) Allocate GPU memory for arrays A, B, and C

6: cudaMalloc(d A)
7: . . .

. (ii) Copy data from CPU to GPU memory for arrays A and B
8: cudaMemcpy(d A, h A)
9: . . .

. (iii) Launch the kernel
10: vecAdd<<<numBlocks, threadsPerBlock>>>(d A, d B, d C)

. (iv) Copy results from GPU to CPU array C
11: cudaMemcpy(h C, d C)

. (v) Free GPU memory for arrays A, B, and C
12: cudaFree(d A)
13: . . .

B. Test Platforms

To demonstrate the scalability and broad applicability
of the framework presented in this paper, we test four
generations of NVIDIA’s graphics processors. The following
list notes the specifications and release dates of the repre-
sentatives from each generation:

Kepler The Quadro K5000 discrete GPU (Nov. 2012)
with 8 SMs.

Maxwell The GeForce GTX 970 discrete GPU (Sep.
2014) with 13 SMs.

Pascal The GeForce GTX 1070 discrete GPU (June
2016) with 15 SMs and the Jetson TX2 (March
2017) with 2 SMs.

Volta The Titan V discrete GPU (Dec. 2017) with 80
SMs.

C. Related Work

Due to a lack of public documentation on how concurrent
execution of GPU workloads behave, much past work in this
area focuses on efficiently providing an exclusive locking
mechanism for the GPU [5, 6, 7, 16, 17, 18, 20]. This
effectively prevents any interference after lock acquisition (as
processes only ever own an independent portion of the GPU)
but this approach does not fully address worst-case execution
times (WCETs). Tasks can still interfere with themselves.

Moving in a different direction, some work has also been
done on increasing utilization at the cost of predictability.
For example, Zhong et. al.’s scheduling approach showed
increased utilization, but adds overhead and also does not
account for potentially destructive interference between mul-
tiple concurrent GPU operations. [22]

Other work in [22, 4, 6, 9] attempts to expose more
degrees of scheduling freedom in CUDA by using software
to approximate preemptive hardware. Unfortunately, this
research also does not concern itself with WCETs.

Our recent work addresses an orthogonal problem. It
attempts to address WCETs in any GPU context by better
understanding and leveraging existing undocumented GPU
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Fig. 4. State machine for rules G1-G4, X1, and R2 (all-caps annotations denote what events trigger each transition)

hardware behaviors to enable real-time systems. Our group
has postulated scheduling rules for the Jetson TX1 [12, 13]
and Jetson TX2 [2] development boards while also discov-
ering some more generally applicable behaviors and pitfalls
in CUDA [21]. This paper expands on that work.

III. EXPERIMENTAL APPROACH

Beyond rules, our past work provides a GPU benchmark-
ing framework that allows for sets of CUDA kernels to be run
in a reproducible manner. This framework provides logs of
the executions with events such as a kernel dispatch or thread
block end marked with high-precision timestamps. Our prior
work graphed these traces for visual empirical analysis, but
the traces also provide all the information necessary to enable
an automated validation framework.

A. Validator Design

We use a state machine to validate if these logged behav-
iors adhere to what we expect from our rules. We prefer the
approach because it most easily lends itself to the problem.
Some past work (namely GPGPU-Sim [3]) has applied a
custom GPU simulator to confirm behaviors, but we find the
inherent complexity of a full simulation too burdensome.
Even the most recent simulators fall generations behind
today’s GPUs [1]. Our approach instead takes a subset of
the events recorded from actual executions and uses each
event to trigger state transitions.

B. Sourcing Traces

To obtain the event series which will trigger these transi-
tions, we parse a selection of the information logged by the
benchmarking framework and sort events by timestamp. The
current version of the validation tool focuses on the following
events:

• Kernel launch start
• Kernel launch end
• Kernel end1

• Thread block start
• Thread block end

During parsing, we extract and attach contextual data about
each event. For kernel events, that includes a list of child
thread blocks and the ID of the CUDA stream submitted
to. For thread block events, context includes the number of
threads in the block, the parent kernel, and the SM used.

C. Building the State Machine

After preparing the series of events, the actual state
machine can proceed. Building off the scheduling rules
postulated in our recent work [2], the constructed state
machine appears as a flow chart in Fig. 4. This machine
only validates a core, always-applicable subset of the recently
published rules (6 of 16 rules). It covers only the “general
scheduling rules” and a couple of closely connected ones.
These chosen rules and labels have been reproduced from
[2] in the following list:

G1 “A copy operation or kernel is enqueued on the
[CUDA] stream queue for its stream when the
associated CUDA API function (memory transfer
or kernel launch) is invoked.”

G2 “A kernel is enqueued on the EE queue when it
reaches the head of its [CUDA] stream queue.”

G3 “A kernel at the head of the EE queue is dequeued
from that queue once it becomes fully dispatched.”

1Pseudo-event; sometimes it is undesirable for a benchmark to perform
a cudaStreamSyncronize to retrieve the actual kernel execution end
time. In those cases, the parser uses the end time of the last thread block
in the kernel as a substitute.



G4 “A kernel is dequeued from its [CUDA] stream
queue once all of its blocks complete execution.”

X1 “Only blocks of the kernel at the head of the EE
queue are eligible to be assigned.”

R2 “A block of the kernel at the head of the EE queue
is eligible to be assigned only if there are sufficient
thread resources available on some SM.”

Validation proceeds by processing execution events in
chronological order. At each event, state updates and a
validity check can occur on the path between states. Fig. 4
represents events in all-caps, states as vertical rectangles,
updates with horizontal rectangles, and checks as diamonds.
Validation succeeds or fails dependent on entry into the red,
terminal failure state. Our Python implementation of this
state machine and the event stream parser is open-source
software available online2.

IV. EVALUATION

We evaluated our framework by assuring that it properly
categorized known good traces and known bad traces.

A. Validating Base Rules

We demonstrated that known correct traces do not falsely
enter the validation failure state by applying the convenient
fact that our selected scheduling rules mirror those first
discussed in one of our papers from last year [12]. In
that paper, we provided clear benchmark configurations to
demonstrate each scheduling rule in action. For this paper,
we ran those configurations again and confirmed that our
automated validation of each of their traces succeeded. That
verified that no single proper rule behavior would be flagged
as incorrect by our framework.

We demonstrated that rule violations produce validation
failures in practice by testing specifically crafted invalid
traces. Some example modifications to previously correct
traces were swapping the order that two thread blocks
execute in, adding just one too many threads to a block, or
creating timing abnormalities. By testing all of the possible
ways that each individual rule could fail, we assured that
all real failures or combinations of multiple failures will be
caught by the framework. (To examine the exact violations
added, the tests/bad directory in our online code repos-
itory contains all of these tests.) Importantly, these invalid
traces all originate from static modifications to previously
generated valid traces - we never expect the GPU to directly
generate an invalid trace.

B. Results on Maxwell, Pascal, and Volta

After using this approach to confirm that our validator
behaves as expected for the specific platform analyzed by
hand in our past work (the TX2), we expanded tests to
cover all of the platforms detailed in Sec. II-B. We found
our scheduling rules to be broadly applicable to GPUs
running NIVIDA’s Maxwell, Pascal, and Volta architectures.
This encompasses all major NVIDIA GPUs released since

2See https://github.com/JoshuaJB/cuda_scheduling_
validator_mirror

Fig. 5. EE queue benchmark trace on NVIDIA K5000 with thread
block count adjusted to saturate the GPU

late 2014. However, we ran into unexpected results when
attempting to validate large, randomly generated workloads
such as the one demonstrated in Fig. 3.

For example, on our GTX 970, only about 13% of 2,000
randomly generated 40-kernel tests passed validation. Upon
further inspection, we found that the framework was correct;
there appeared to be subtle violations of rule X1 (that only
the head of the EE queue should be eligible for dispatching)
recorded in the benchmark logs. However, the extent of
this incorrect ordering never appeared to be more than
a few microseconds. We currently hypothesize that these
“violations” are merely figments of our current, accuracy-
limited time-stamping approach.

Specifically, CUDA does not provide thread-block-level
start or stop timestamps, so our benchmarking framework
must instead obtain these by reading a global GPU time
register immediately on start and before end inside each
thread block. We believe that momentary stalls or propaga-
tion delays may cause these reads to sometimes not perfectly
correspond to actual block start and end times. Preliminary
investigation into the traces that failed validation have found
support for this hypothesis, but we hope to further analyze
and clarify this behavior in future work.

C. Results on Kepler

While we found the rules seem to apply to the three-most-
recent architectures considered, the older Kepler architecture
behaved rather differently. The framework revealed that a
rule violation occurred during validation of the trace from
the benchmark designed to demonstrate rule G2 in action.

During the subsequent empirical investigation, it became
clear that the validator correctly detected a rule violation.
Kepler architecture GPUs do not follow the same rules as
their successors. This peculiarity brings us back to Fig. 1
and Fig. 2.

Each graph plots GPU time on the horizontal axis for
each SM plotted on the vertical axis. Every rectangle in the
plot area represents a thread block running over some time
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period. The digit immediately prior to the colon in the label
on each block indicates the block’s kernel affiliation, and the
number immediately after indicates the unique identification
number of this thread block among all the kernel’s thread
blocks. Different colors indicate different CUDA streams,
and the colored arrows along the horizontal axis indicate
when kernels are released from our CPU process.

Now consider the simple plot presented in Figure Fig. 1
generated from a benchmark trace on the Pascal-based TX2.
To walk through the series of events represented by this plot,
kernels K1 and K2 release into stream 1 before 0.1s. At
this point, K1 and K2 are in the stream 1 queue and K2
is in the EE queue. K1 quickly dispatches all of its blocks,
nearly occupies all of the GPU’s resources, and leaves the
EE queue. K3 then releases shortly after the 0.3s mark and
immediately moves to the head of the EE queue. It goes
on the EE queue before K2 because rule G4 has kept K2
blocked behind K1 in the stream 1 queue. (Fig. 6 illustrates
this point in time.) Once K1 completes execution around

0.55s, it leaves stream 1 and allows K2 to enqueue on the
EE queue behind K3. K3 then fully dispatches, saturates the
GPU, and leaves the EE queue. At K3’s completion point
around 1.05s, K2 then has space for at least one of its thread
blocks, begins execution, and runs to completion. In this plot,
nothing unexpected occurs. All the rules hold and operate
correctly.

However, consider Fig. 2. Generated from the same bench-
mark configuration as Fig. 1, but on the Quadro K5000
Kepler-based GPU. A similar pattern emerges up to just
before timestamp 0.4s. As in the prior example, K3 is
expected to be on the EE queue and K2 is expected to be
blocked in the stream 1 queue. (See Fig. 6.) That is not what
we observe. If K3 were immediately moved to the head of
the EE queue as we expect, it should near-immediately start
on release due to more than enough capacity available for
at least one thread block. What is occurring becomes clearer
when examining the execution trace timestamps by hand. At
a nanosecond level, K2 starts before K3. This indicates that
both rules G2 and G4 do not properly apply on Kepler GPUs.

The violation becomes much clearer with scrutiny of
Fig. 5. The trace plotted here comes from the same bench-
mark configuration used in Fig. 1 and Fig. 2, but with
the number of thread blocks scaled up to compensate for
the increased capacity of the K5000. The flipped order of
execution of K2 and K3 becomes obvious in comparison to
Fig. 1.

No head-of-line blocking on stream queues forms a poten-
tial explanation for this behavior. In that scenario, the GPU
would immediately move kernels to the EE queue as they are
received. More specifically, rule G4 would no longer apply
and rule G2 would change to the following:

G2 (Kepler) A kernel is dequeued from its stream queue
and enqueued on the EE queue when it
reaches the head of its stream queue.

In essence, all the stream queues become aliases to only one
single hardware queue. One can verify that these rules for
Kepler work in at least some cases by stepping through Fig. 2
and Fig. 5. Each figure support our hypothesis by behaving
as expected under the proposed rule variation.

V. CONCLUSION

A solid understanding of hardware scheduling behavior
forms the essential foundation for any safety-critical system.
To meet SWaP requirements, GPUs have emerged as one of
the premier compute accelerators used in these platforms.
Unfortunately, sufficient low-level documentation for these
accelerators has not been forthcoming. Past solutions to
this uncertainty have precluded parallelism via locking or
introduced overheads without addressing questions about
interference. Our recent work to cast light on GPU behavior
rules has heavily depended on empirical observation. That
approach quickly proves impractical and insufficient on large
GPUs or in complicated test programs.

Our solution addresses that problem via an automated
validation framework. By minimizing human input, our
framework enables rigorous validation of scheduling rules



across a multitude of complex platforms and workloads
without the limitations of human error and inefficiency.

Future work could expand the state machine used for val-
idation in this work to include the rules for priority streams,
the NULL stream, copy operations, shared-memory blocking,
and other yet-to-be codified rules. In the more distant future,
one hopes that this framework could be modified to support
traces from NVIDIA’s native nvprof profiler, and thus be
used to validate rule authority on execution traces from any
CUDA program rather than just logs from the benchmarking
framework.

Separately, we hope to further explore the irregularities
causing complex tasks to fail validation. While we are
reasonably confident that these unexpected results are being
triggered by inaccurate timing information, we would like to
more rigorously confirm that there are no fundamental flaws
in our rules.

However, the framework developed in this paper should
enable work to proceed faster than before. We need a
comprehensive understanding of hardware to build safe au-
tonomy, and this framework helps accelerate the assembly
of that core foundation.
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