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Abstract
In this work, the process of mist deposition is explored as a method used to deposit organic
semiconductors for applications in organic light emitting diodes (OLEDs). The deposition
kinetics of a specially formulated hole transport agent is studied. The results indicate that the
mist-deposited organic film thickness varies linearly with precursor concentration, deposition
time and substrate potential. Depending upon process parameters, a deposition rate in the
range of 50 nm min−1 is readily achievable. Evolution of surface roughness revealed distinct
stages in the film formation process. The growth of secondary layers was observed before the
formation of a complete initial film layer. A working OLED with the hole transport layer
deposited by mist deposition was demonstrated. The luminance of the device was measured to
be a maximum of 3000 cd m−2 and the efficiency was 6.7 cd A−1.

of applications including high-k dielectrics, photoresist,
ferroelectric materials and nanocrystal quantum dots
[10–12]. In this process, the liquid precursor is converted
into a very fine mist which is then carried by nitrogen to
the deposition chamber where submicron droplets coalesce
at room temperature into the substrate covering its surface
with a uniform film of viscous liquid which is then solidified
using low-temperature thermal curing. Details of the process
are discussed elsewhere (e.g. [11]). Mist deposition offers
advantages over other physical liquid deposition methods
in that it allows selective deposition [13] and patterning of
deposited materials, eliminating the need for post-deposition
lithography and etches. At the same time it does not differ from
other solution processing methods, from neither the point of
view of thermal, budget required nor type of solvents used.

In this experiment, mist deposition is for the first time
employed in the formation of thin organic semiconductor films
in the fabrication of blue light emitting diodes. The kinetics
of the film deposition process is investigated and feasibility of
OLED formation using mist deposition of solution-processed
organic semiconductors is explored.

1. Introduction

Recently, organic semiconductor thin film devices, including 
organic light emitting diodes (OLEDs) [1–3] and organic 
thin film transistors (OTFTs) [4, 5], have been extensively 
studied for potential applications in display technology. 
Several reports have introduced working OLEDs and OTFTs 
fabricated from solution-processed organic thin films (e.g.
[6, 7]). The performance of these devices has improved over 
the years to be comparable to organic semiconductor devices 
fabricated by vacuum processing technologies.

Several techniques including spin coating and dip casting 
have been reported for the deposition of organic semiconductor 
thin films from liquid precursors [8, 9]. However, these 
methods may not be able to provide adequate control of 
film thickness, surface morphology and patternability for 
efficient devices for the manufacture of large displays. These 
limitations warrant the continued exploration of alternate 
technologies in the deposition of thin films for applications 
in organic displays. Mist deposition is one such technique 
that has been demonstrated with good results in a number
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Figure 1. Schematic of the mist deposition system used in this
study.

2. Experimental details

The principle of mist deposition is to convert the liquid source
material into a fine mist of submicrometer size droplets, which
is then carried in a pressurized stream of N2 gas into the
deposition chamber (figure 1) where the droplets are allowed to
coalesce into the substrate at room temperature at atmospheric
pressure. This process forms a uniform film of liquid on the
substrate, which is then thermally treated to burn off the solvent
and leave a thin film of solid on the surface.

In order to control the deposition rate beyond gravitational
interactions, which in the case of submicrometer-sized droplets
are very weak, an electric field is created between the grounded
field screen and a wafer (figure 1). After deposition, the
film is thermally cured at the temperature of 100–300 ◦C in
ambient air or in the controlled ambient of either O2 or N2 at
the atmospheric pressure.

The polymeric material used in this study is a hole
transport agent with potential uses in organic light emitting
devices and solar cells. It is a proprietary hole transport
agent (AG I) provided by Agiltron, Inc. Three different
concentrations of AG I in a toluene solvent were studied:
0.1% (w/v), 0.5% (w/v) and 1% (w/v). The deposited films
were subjected to a hot-plate anneal in ambient air at 100 ◦C for
2 min to drive off the excess solvent. The OLEDs processed in
this experiment were ITO/AG I/PFO/Al structures in which
an active layer comprising 1% wt AG I was mist deposited
and a poly(9, 9-dioctylfluorene) (PFO) layer spin coated. In
the working diodes, the thickness of AG I was estimated to be
200 nm and the PFO thickness was estimated to be between
80 and 100 nm. Al contacts were then vacuum evaporated
through a shadow mask to define a 12 mm2 electrode area.

The films were deposited on two different substrates:
Si and ITO- coated glass. The substrates were prepared as
follows prior to deposition. Si substrates were subjected to
a standard RCA1 (6:1.5:1 DI H2O:H2O2:NH4OH) clean [14]
for 10 min at 80 ◦C followed by etch off in a 1:100 HF:DI
H2O solution unless otherwise noted. The ITO-coated glass
substrates were subjected to a solvent clean in acetone followed
by IPA rinse. The remaining organics were burned off by a
lamp clean at 300 ◦C for 1 min [15]. Any other treatments
that were performed will be described accordingly. Deposited
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Figure 2. Thickness versus precursor concentration of a polymeric
film (AG I) on Si substrates.
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Figure 3. Thickness versus deposition potential of a polymeric film
(AG I) on Si substrates.

films were characterized by AFM analysis and spectroscopic
ellipsometry after thermal curing as described earlier. The
OLEDs formed were measured using a computer-controlled
source meter equipped with a calibrated silicon photodetector.

3. Results and discussions

The deposition kinetics of the AG I films deposited on Si
substrates was studied first. Figure 2 shows the dependence
of material concentration on the thickness. Films in this case
were deposited at 4 kV for 600 s starting with precursors
of three different concentrations. It is seen from figure 2
that thickness increases linearly with concentration, which is
expected. The thickness for the 0.1% concentration precursor
is 97.5 nm and that for the 1% concentration solution is 482 nm.
The difference in the film thickness is explained by the change
in viscosity of the solution with material concentration. Kim
and Marshall showed that the droplet size of a liquid increases
with the viscosity of the solution [16]:

D ∼ (η/ρσ)0.45,

where D is the mean droplet diameter, η is the viscosity of the
liquid, ρ is the density of the liquid and σ is the surface tension.
As the material concentration increases, the diameter of the
mist droplets also increases thereby depositing a larger volume
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Figure 4. Thickness versus deposition time of a polymeric film
(AG I) on Si substrates.
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Figure 5. RMS roughness versus deposition time of a polymeric
film (AG I) on Si substrates.

of a liquid film on the substrate which when thermally annealed
leaves more material on the surface. This relationship was

(a) (b)

(c)

Figure 6. AFM images of a polymeric film (AG I) on Si substrates for three deposition: (a) 30 s, (b) 240 s, and (c) 300 s.

confirmed by Chang et al [17] in the case of mist deposition
of HfSiO4 precursors.

The thickness versus the substrate potential relationship
for 3 min depositions is shown in figure 3. As seen, the
increase in thickness with the mist deposition time is linear.
The flattening of the growth rate between the 4 kV and 6 kV
substrates is possibly due to nonlinearity in the film formation.
This might be due to the growth of secondary and tertiary layers
before the first layers are completely formed. As the potential
increases, there is no growth in thickness but the deposited
material is used to fill the voids created by the early growth of
the secondary layers. This phenomenon is discussed further
in the subsequent sections.

Figure 4 shows the increase in film thickness with the
deposition time. All films were deposited with a precursor
concentration of 1% w/v in toluene, at a substrate potential
of 4 kV. It is seen from figure 4 that the thickness increases
almost linearly with the deposition time. This is typical of
most materials deposited by mist deposition. It is to be noted
that the initiation time for the film growth is very short in this
case, and there is a complete film with a thickness of about
26 nm in the first 30 s of deposition.

The RMS roughness data in figure 5 indicate that as the
deposition time increases the roughness increases and then
decreases abruptly, again indicating the possible formation
of secondary film layers before the formation of complete
initial layers. The roughness after a 30 s deposition is
8.2 nm which then decreases to 4.5 nm after 60 s of deposition,
thereby confirming the formation of an initial film layer.
The roughness then increases to about 47.1 nm for a 240 s
deposition after which it decreases to 7.5 nm after 300 s. This
is believed to mark the growth of a complete film layer. It is
also important to note that the difference in thickness between
the complete formation of the first layer and the second layer
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Figure 7. Luminance and current density versus applied bias of a
mist-deposited OLED.

is significantly larger compared to the thickness of the initial
layer. This shows that there is a layer-by-layer growth mode on
the Si substrate immediately prior to the formation of the initial
polymer layer. The growth of the secondary layer proceeds
with island formation with the growth of multiple layers before
the islands coalesce to form a complete layer.

Atomic force microscope images of the deposited films at
60, 240 and 300 s are shown in figures 6(a)–(c), respectively.
These images clearly show the distinct stages in the growth
of the AG I layer with the growth of secondary layers before
the initial layer is complete. The spikes seen on these images
are large enough to be considered as the growing film. It is
postulated that the additional material deposited during the
longer deposition times is used in filling the voids created
by the earlier layers and does not contribute to a significant
increase in film thickness.

In the last part of this experiment, the ITO/AG I/PFO/Al
OLEDs in which an active layer comprised mist deposited
1% wt AG I were processed. The measured luminance and
current density versus voltage characteristics of the fabricated
OLEDs are shown in figure 7. It is seen from this figure
that the diode has a maximum luminance of 3000 cd m−2 at
10 V, and the turn-on voltage is 2.3 V. Figure 8 shows the
electroluminescence efficiency versus current density. The
efficiency reaches a maximum of 6.7 cd A−1 at a current density
of 150 mA cm−2. A survey of the current literature on OLEDs
reveals that although the luminance and current density of our
devices are comparable to those reported in the literature, the
luminescence efficiency is still low which is possibly due to
the low hole injection in the AG I layer [18, 19]. It is believed
that with further studies, the electroluminescence efficiency
of OLEDs formed by mist deposition can be significantly
improved.

4. Summary

An attempt to deposit organic semiconductor materials by mist
deposition for OLED applications was made in this study.
The results obtained indicate that mist deposition is capable
of forming very thin, mechanically coherent films of organic
semiconductors based on which OLEDs are formed. Film
formation and morphology are dependent on the substrate, and
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Figure 8. Luminance efficiency versus current density of a
mist-deposited OLED.

surface preparation prior to deposition may also be needed to
further improve film properties. Working OLEDs fabricated
by mist deposition were also demonstrated in this study for
the first time. Mist deposition shows very good promise in
the deposition of thin films for organic photonics. Further
studies to optimize the deposition process and hence improve
the performance of the LED devices are necessary.
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