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Leveraging Phylogenetics to Understand HIV Transmission
and Partner Notification Networks
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Background: Partner notification is an important component of
public health test and treat interventions. To enhance this essential
function, we assessed the potential for molecular methods to
supplement routine partner notification and corroborate
HIV networks.

Methods: All persons diagnosed with HIV infection in Wake
County, NC, during 2012–2013 and their disclosed sexual partners
were included in a sexual network. A data set containing HIV-1 pol
sequences collected in NC during 1997–2014 from 15,246 persons
was matched to HIV-positive persons in the network and used to
identify putative transmission clusters. Both networks
were compared.

Results: The partner notification network comprised 280 index cases
and 383 sexual partners and high-risk social contacts (n = 131 HIV-
positive). Of the 411 HIV-positive persons in the partner notification
network, 181 (44%) did not match to a HIV sequence, 61 (15%) had
sequences but were not identified in a transmission cluster, and 169
(41%) were identified in a transmission cluster. More than half (59%)
of transmission clusters bridged sexual network partnerships that were
not recognized in the partner notification; most of these clusters were
dominated by men who have sex with men.

Conclusions: Partner notification and HIV sequence analysis
provide complementary representations of the existent partnerships
underlying the HIV transmission network. The partner notification
network components were bridged by transmission clusters, partic-
ularly among components dominated by men who have sex with
men. Supplementing the partner notification network with phyloge-
netic data highlighted avenues for intervention.
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INTRODUCTION
Across the Southern United States, including North

Carolina (NC), the HIV epidemic has persisted in large
connected sexual networks, particularly among men who have
sex with men (MSM).1–5 The South is the epicenter of the US
epidemic, accounting for a disproportionate number of HIV
infections.1 HIV incidence continues to rise among black and
Hispanic/Latino MSM,6 despite widespread prevention efforts.
Entry into a sexual network composed largely of black MSM
increases the likelihood of contracting HIV,3 highlighting the
importance of enumerating sexual networks. An improved
understanding of sexual networks will aid in the development
of enhanced interventions to reach black and Hispanic/Latino
MSM. Time-intensive efforts to reach members of densely
connected sexual networks often result in analysis of incom-
plete networks, due in part to anonymous partners, persons
who cannot be located, and interview refusal.7

Phylogenetic analysis of HIV sequences is an excellent
adjunct to enumerating networks and allows for tracking of
local transmission patterns. HIV phylogenies based on
sequence similarity and inference of common ancestors can
identify putative transmission clusters.8,9 Although these
methods are increasingly used to understand HIV
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transmission dynamics within subpopulations,10–12 use of 
sequence data to complement sexual networks as understood 
by contacts elicited during partner notification services 
(PNSs) is understudied.13 Sequence data have potential to 
add structure to the sexual network through genetic linkage of 
network components that erroneously appear disjointed due 
to inability to locate network members.14–16 In San Diego, for 
example, HIV genetic clusters combined with PNS data from 
recently infected MSM increased membership in putative 
transmission networks.15 In an investigation of 
spatiotemporally-clustered acute HIV infections (AHIs) in 
NC, phylogenetics revealed multiple transmission chains 
rather than a single outbreak.17 Such analyses demonstrate 
that sequence data can enhance our knowledge of sexual 
networks. Analysis of phylogenetic transmission cluster 
growth can also point to groups in which HIV transmission 
continues to occur,18 signaling the need for immediate 
intervention.19,20

We investigated the sexual network constructed from 
PNS data in Wake County, NC, and compared this with HIV 
transmission clusters using pol sequences routinely collected 
statewide. Our objective was to assess the overlap between 
networks derived through PNS and sequence analysis to 
identify areas where interventions could be intensified.

METHODS

Study Setting and Design
Wake County is a metropolitan county in central NC 

that accounts for approximately 10% of statewide annual new 
HIV diagnoses.21 In 2012, Wake County had a population of 
approximately 963,000 persons, including .2800 persons 
living with HIV and an incidence of 16.3 cases per 
100,000 person-years.

We conducted a cross-sectional analysis of Wake 
County residents aged 18 years and older who were newly 
diagnosed with HIV-1 during 2012–2013 and their social and 
sexual contacts reported during routine PNS. These data were 
compared with 15,246 HIV genetic sequences collected 
among HIV cases in NC 1997-2014. The University of North 
Carolina Biomedical Institutional Review Board approved 
the study.

Study Population
Disease intervention specialists (DISs), employed by 

NC Department of Health and Human Services (DHHS) or 
Wake County DHHS, attempt to interview all newly diag-
nosed persons (referred to as index cases) and collect 
information about their partners for tracing and testing. In 
NC, high-risk social contacts are elicited at the discretion of 
each DIS when perceived to increase case finding without 
overly burdening investigations.22,23 Using standardized data 
abstraction, we collected demographics, HIV testing history, 
and HIV-related laboratory results for index cases, and sexual 
and social contact data.

Acute HIV infection was identified through the NC 
Screening and Tracing Active Transmission (STAT)

Program,24 and defined by a positive HIV RNA test and 
negative or indeterminate HIV antibody, or a positive HIV 
antibody within 30 days of confirmed negative testing. Cases 
who did not meet the AHI definition but were reported to 
STAT with a positive antibody test with seronegative 
documentation and/or symptoms compatible with AHI within 
3 months of first positive HIV test were classified as recent 
HIV infection. For persons diagnosed with AHI or recent HIV 
infection, DIS interviews focus on partnerships within 2 or 6 
months before diagnosis, respectively.

Sexual Network Construction
We constructed the sexual network using name-based 

partnership data collected during PNS interviews with index 
cases. All network members were deidentified after network 
construction to preserve patient confidentiality. A sociosexual 
network comprises discrete components (at least 2 people 
directly or indirectly connected) and singletons (isolated 
persons if no partners are disclosed or located). The network 
was created using the igraph25 package in R.26

HIV-1 Sequences and Transmission
Cluster Identification

HIV-1 pol sequences (full-length protease and partial 
reverse transcriptase) were extracted from genotypes per-
formed by LabCorp, the largest reference laboratory in NC, 
and sampled between 1997 and mid-2014 from patients 
accessing clinical care. Demographic variables available 
included birth date, sex, and sampling site. Geographic 
location of sampling site was categorized by NC-DHHS 
HIV Field Service Region [see Figure, Supplemental Digital 
Content 1, http://links.lww.com/QAI/B150].

Index and HIV-positive partners were probabilistically 
matched to the statewide sequence data set by birth date, sex, 
and laboratory test dates. We considered nonmatching 
sequences as background references for cluster construction. 
All analyses used the earliest sequence per individual. The 
final data set included 15,246 sequences. A random subset of 
100 sequences is available in GenBank, accession 
numbers KY579388-KY579812.

Sequences were aligned using MUSCLE27 and edited 
manually in BioEdit,28 with a final sequence alignment length 
of 1497 bases. Maximum-likelihood phylogenies were con-
structed in FastTree29 with the generalized time-reversible 
model.30 Statistical support of clades was assessed with local 
support values using the Shimodaira–Hasegawa-like test (SH-
test).31 Putative transmission clusters were identified using 
ClusterPicker v1.332 and defined as clades with (1) high 
branch support ($0.90 SH-test), (2) maximum pairwise 
genetic distance ,3.5% between all sequences, and (3) 
inclusion of a sequence from at least one index or 
partner case.

Putative clusters were confirmed with the Bayesian 
Markov Chain Monte Carlo (MCMC) approach in BEAST 
v1.8.2.33 Analyses were conducted using the SRD06 nucle-
otide substitution model, a lognormal relaxed molecular clock 
model, and the Bayesian Skyline model as coalescent tree

http://links.lww.com/QAI/B150


TABLE 1. Index Cases Diagnosed During 2012–2013 in Wake
County, NC, and Their Partners in the Sociosexual Network
(N = 663)

Index (n = 280) Partner (n = 383)

n (%) n (%)

Sex

Male 232 (83) 327 (85)

Female 44 (16) 53 (14)

Transgender (M to F) 4 (1) 3 (1)

Race/ethnicity

Non-Hispanic white 69 (25) 120 (31)

Non-Hispanic black 183 (65) 238 (62)

Hispanic or Latino 23 (8) 12 (3)

Other 5 (2) 8 (2)

Unknown 0 5 (1)

Age at index case’s
HIV diagnosis (yr)*

#19 5 (2) 28 (7)

20–29 107 (38) 178 (46)

30–39 54 (19) 87 (23)

40–49 67 (24) 49 (13)

$50 47 (17) 26 (7)

Unknown 0 15 (4)

Median (IQR) 34 (25–45) 28 (23–37)

HIV status

Positive, with HIV sequence 148 (53) 82 (21)

Positive, no HIV sequence 132 (47) 49 (13)

Negative — 148 (39)

Unknown — 104 (27)

Year of HIV diagnosis n = 131

,2006 — 31 (24)

2006–2010 — 59 (45)

2011 — 16 (12)

2012 131 (47) 11 (8)

2013 149 (53) 9 (7)

2014 — 5 (4)

HIV stage at diagnosis

Acute/recent 23 (8) —

Chronic, non-AIDS 182 (65) —

Chronic, AIDS 75 (27) —

CD4 count closest
to diagnosis (cells/mm3)

n = 235

,200 74 (31) —

$200 161 (69) —

Viral load (log copies/mL)† n = 147; n = 60

#3 8 (5) 29 (48)

.3–5 78 (53) 10 (17)

.5–5.7 44 (30) 1 (2)

.5.7 17 (12) 20 (33)

Median (IQR) 4.9 (4.3–5.3) 3.3 (2.9–7.7)

No. of sexual and social
partners reported‡

n = 225

0 15 (7) —

1 78 (35) —

2 42 (19) —

3–5 61 (27) —

$6 29 (13) —

*Among partners, for earliest record associated with an index case.
†Within 3 months of diagnosis for index patients and within 12 months before index

case diagnosis for partners.
‡Among those reached for interview; includes located and anonymous partners.

prior. The MCMC chain was run for 50–100 million 
generations, sampling every 10,000 generations. Conver-
gence of the estimates was considered satisfactory when the 
effective sample size calculated in Tracer v1.6.034 was .200 
in all parameters; 10% of generations were discarded as burn-
in. The maximum clade credibility tree was summarized 
using TreeAnnotator v1.8.2,33 keeping the median height 
over the posterior distribution of trees. Clades with posterior 
probability $0.95 were considered highly supported and 
analyzed further.

Statistical Analyses
We compared membership in transmission clusters and 

sexual network components. Clusters involving $2 cases 
(index or partners) were characterized by demographic 
features and compared with case location within and across 
network components. Time of most recent common ancestor 
and cluster age were estimated based on timing of branching 
in the phylogeny.

RESULTS

Study Population
In total, 280 persons newly diagnosed with HIV were 

reported in Wake County from 2012–2013; 83% (n = 232) 
were male, 65% (n = 183) were black, and 40% (n = 112) 
were aged 30 years and younger. Many (27%, n = 75) were 
concurrently diagnosed with AIDS and 4% (n = 11) were 
diagnosed during AHI. Among 235 index cases with CD4 
count data, the median first CD4 count was 338 cells/mm3 

[interquartile range (IQR) 130–525 cells/mm3]; 31% had 
CD4 count ,200 cells/mm3. Among 147 cases with viral 
load results within 3 months of diagnosis, the median was 
4.9 log copies per milliliter (IQR 4.3–5.3 log copies/mL)
(Table 1).

Partner Notification Network
Disease intervention specialists interviewed 225/280 

index cases (80%), who reported 854 sex partners and 34 
social contacts (average 4 contacts per person; number of 
sex partners ranged 0–50). Approximately half (50%; 446/ 
888) of contacts (414 sexual and 32 social contacts) had 
enough locating information for DIS to begin investigation. 
The 446 partnerships investigated (Table 2) resulted in 383 
unique nonindex case partners (Table 1): 36 were index 
cases themselves, 19 were named by $2 index cases, and 3 
were index cases who were also named as partners more 
than once. Although 48/383 (13%) partners were not located 
during investigation, we included them in the network. Of 
383 partners, 39% were HIV-negative, 34% (n = 131) were 
HIV-positive, and 27% HIV status was unknown. Most 
HIV-positive nonindex partners (81%; 106/131) were diag-
nosed before 2012. Thirty-six percent (138/383) of partners 
resided outside Wake County, including 22 (6%) residing 
out of state and 6 (2%) with unknown location of residence.



TABLE 2. Partnerships Reported by Index Cases With Located
Members of the Sociosexual Network (N = 446)

Sociosexual Network Partnerships
(N = 446)*

n (%)

Partnership type

Sexual 414 (93)

Social only 32 (7)

Pair sex

Male—male 355 (80)

Male—transgender 5 (1)

Male—female 85 (19)

Female—female 1 (0.2)

Index case

Index—index 42 (9)

Index—partner 404 (91)

HIV serostatus

Positive—positive (concordant) 181 (41)

Positive—negative (discordant) 159 (36)

Positive—unknown 106 (24)

Pair race

Black—black 261 (59)

White—white 98 (22)

Hispanic/Latino—Hispanic/Latino 8 (2)

Black—white 40 (9)

White—Hispanic/Latino 17 (4)

Black—Hispanic/Latino 7 (2)

Other 15 (3)

*104 singletons in the network are not represented in this table.

The PNS network included 663 persons (Table 1), with 
280 index cases and 383 partners. Most network members were 
black (63% vs. 29% white and 5% Hispanic/Latino), MSM or 
men who have sex with transgender women (MST) (61%), and 
young (median age 30 years, IQR 24–42). Persons of color were 
more likely to be HIV-positive (74% Latino and 66% black) 
compared with white persons (53%). MSM index cases were 
more  likely to have  partners who could not  be  located than men  
only reporting female partners (37% vs. 29%).

Overall, 176/280 index cases were connected to at least 
one other person in the network. The remaining 104 single-
tons represented 37% of index cases; 55 (53%) reported zero 
partners and 49 provided information for 1–50 partners, 
though none could be located. The sexual network was 
sparsely connected, comprising 104 singletons and 137 
network components ($2 persons). Component sizes ranged 
from 2–65 persons; the 3 largest included 20, 26, and 65 
people (Fig. 1A). Most (62%, n = 85) components only 
included MSM and MST.

We assessed characteristics of the 446 partnerships 
(93% sexual and 7% social), which included 559 persons 
across 137 network components (excluding 104 singletons)
(Table 2). Most partnerships involved either MSM or MST 
(81%), were among people of the same race (82%), and 
included at least one black person (71%). Nearly 25% (n = 
106) of partnerships were between an index case and

a person with unknown HIV status. Among 340 partner-
ships where HIV status was documented for both people, 
53% involved 2 HIV-infected persons (n = 181). Most 
(80%) of the 131 HIV-infected partners received their 
diagnoses before the index cases (median 2.5 years, IQR 1 
month-5.5 years).

Transmission Clusters
Over half of HIV-positive cases (56%; 230/411) 

matched to a pol sequence, including 53% (148/280) index 
cases and 63% (82/131) HIV-positive partners. Cases who 
had sequences were similar to those without sequences with 
respect to sex and age. Among index cases, whites were more 
likely than persons of color to have sequences (64% vs. 49%, 
P = 0.04), as well as those diagnosed in 2012 compared with 
2013 (63% vs. 44%, P = 0.002).

We identified 116 clusters involving $1 person from 
the network, with a total of 800 persons including 103 index 
cases (70% those with sequences), 66 partners (80% those 
with sequences), and 631 background sequences (Fig. 2). In 
the initial maximum-likelihood analysis, 117 clusters were 
identified but 2 sequences failed to cluster in the confirmatory 
BEAST analyses. The 116 confirmed clusters had median size 
of 2 members (range 2–36 persons); only 3 clusters were non-
B subtypes (A1, CRF02_AG, CRF06_cpx).

Among 230 index cases (n = 148) and partners (n = 82) 
with sequences, we evaluated associations with cluster 
membership. Cluster members were more likely to be male 
(77% vs. 52% female, P = 0.006), men reporting male 
contacts (83% vs. 67% heterosexual and 57% no partners 
reported, P , 0.001), black (80% vs. 69% white and 33%
Latino, P = 0.001), and younger (mean age 35 vs. 38 years, P 
= 0.04), compared with cases with sequences who were not in 
a cluster. Cluster members had more connections in the 
network than did cases with sequences who did not cluster 
(2 vs. 1 mean partners, P = 0.001).

Most clusters included only one index case or partner 
from the network; 34 (29%) including $2 index cases  were  
denoted “Wake” clusters for further analysis (Table 3 
shows Wake clusters with $5 total cluster members). 
Wake clusters included 287 persons (56 index cases, 31 
partners, and 200 background sequences) (Fig. 2); 2 (6%) 
comprised only 2 partners with no index cases. All Wake 
clusters were subtype B and most were male-dominated; 7 
(21%) included $50% women. More than half (59%; n = 
20) of Wake clusters only included persons sampled from 
the same 11-county geographic region (Fig. 2). Most (74%; 
61/82) clusters with only 1 person from PNS were clusters 
with $50% members sampled in the same region, including 
22 clusters with 100% members sampled in the 
same region.

Wake cluster maximum genetic distance was 1.67%
(IQR: 1.04%–2.93%) statewide and 0.95% (IQR: 0.32%–
1.28%) when restricted to network members (Table 3). 
Median estimated cluster age before the index case diagnosis 
was 8.5 years (IQR: 5.1–12.9 years) with median most recent 
common ancestor estimated to occur in 2005 (range 
2000–2007).



FIGURE 1. Legend: Sexual network showing phylogenetic cluster membership and sex (A), and selected sexual network components
showing cluster members and genetic distance statewide (B). A, sexual and social network compiled from contract tracing depicting HIV
status and phylogenetic transmission cluster, Wake County, NC, during 2012–2013. Graph shows sex (node shape), cluster membership
with respect to gene sequence availability and cluster membership of other persons represented in this sexual network (node color), and
partnerships disclosed by index cases (lines connecting nodes). The graph is split into quadrants by number of persons in each component:
(a) singletons (n = 104 persons), (b) dyads (n = 75 components), (c) components Size 3 (n = 22), 4 (n = 10), or 5 (n = 12), and (d)
components Size 6 or larger (n = 18 components comprising 243 persons). B, selected phylogenetic transmission clusters (F, I, and J) show
sexual network components spanned and additional cluster members statewide who were not part of the Wake County–based sexual
network. Graph shows sex (node shape), appearance in sexual network or only transmission cluster (diagonal cross in node shape),
transmission cluster status (node color), and connections between nodes. Having a named partner tie (ie, connection in the sociosexual
network) is represented by a solid line and being #1.5% pairwise genetic distance in the transmission cluster is represented by a dashed
line. Component orientation matches (A).



Partner Notification Network and
Transmission Cluster Overlap

The PNS network included 663 persons: 280 index
cases and 383 contacts who formed 104 singletons plus 559
persons in 446 partnerships (Fig. 1A). Among 230 network
members with sequences, including 45 singletons, 169/230
(73%) were in 1 of 116 statewide transmission clusters that
included at least 1 network member. The 169 persons
spanned 82 network components and 23 singletons; the
remaining 61 persons who were not in a cluster spanned 36
network components and 22 singletons. Among the 23
singletons in a cluster (51% singletons with sequences), 8
(35%) did not name any partners and the remainder
disclosed at least 1 partner, though none could be located.
The median cluster size among singletons was 4 persons
(range 2–23).

Among 446 partnerships, 70 (16%) included 2 HIV-
positive persons with sequences; of these, 83% (58/70)
were sexual connections. All male–female pairs were in the
same cluster, whereas only 34% of male–male pairs were in
the same transmission cluster (x2 P , 0.001). Of the 383
contacts, 27 (7%) were only identified as social contacts of
an index case; 11 had a sequence, of which 9 were in
a statewide cluster with no one else from the PNS network
and 2 were in a Wake cluster; one clustered with another
PNS social contact (statewide cluster size 2) and the other
clustered with the index case who disclosed the contact as
a social connection (pairwise genetic distance 1.3%, state-
wide cluster size 14).

Eighty-seven persons were in 34 Wake clusters (defined
as $2 persons from PNS network), which included 2–6
network members and spanned 56 PNS network components
plus 12 singletons. Overall, 41% (14/34) Wake clusters
covered only 1 network component; 1 included 3 network
members and the rest included 2. The Wake clusters that
covered only 1 component were more likely to include $50%
women [36% (5/14) vs. 10% (2/20) spanning
multiple components].

Among 19 Wake clusters with $5 persons statewide
(Table 3), 6 (32%) covered only 1 component, where all
network persons in the cluster were also linked by named
partner ties. The remaining 13 spanned multiple components,
where the phylogenetic relationships bridged located partner-
ships: 7 (37%) spanned 2 components, 5 (26%) spanned 3,
and 1 (5%) spanned 4 components. For example, the 3
network members in Cluster J spanned 2 components and 1
singleton (Fig. 1A, quadrants Fig. 1A, C, D), although there

FIGURE 2. Phylogenetic tree of HIV pol gene sequences showing 
transmission clusters. Maximum-likelihood tree constructed for 
display purposes using sequences (n = 800) identified in confirmed 
phylogenetic transmission clusters among 15,246 HIV-1–positive 
persons sampled in North Carolina during 1997–2014. Confirmed 
clusters had posterior probability .0.98 in the Bayesian analysis

and include at least 1 index or partner case identified during 
partner notification of new HIV diagnoses in Wake County, 
2012–2013. Index cases (new diagnoses in 2012–2013) are 
indicated by red circles and partner cases are indicated with 
blue circles at the tips of the tree. Clusters in gray boxes 
involve $2 cases from the partner notification network. Clus-
ters with letters (A–S) are the Wake clusters that meet these 
criteria and also include $5 persons statewide. Branch sup-
port, using the Shimodaira–Hasegawa-like test values, is 
included for the Wake clusters.



demonstrating that molecular data can detect unobserved
links in the sexual network. Furthermore, despite not having
any partners identified in the network, over half of single-
tons with sequences were in a statewide cluster. For each set
of disconnected network components or singletons in the
same transmission cluster, at least one connection is not
represented in the PNS network. Some of the disagreement
may be explained by differing collection periods because
sequence sampling time for the clusters was not limited by
period. Many index cases were likely infected for years; so,
partners reported at diagnosis may not reflect the network at
the time of infection. In addition, some persons in the
network were only social contacts; so, their inclusion
increased PNS network component size and may have
increased the effect of bridging by the transmission clusters
if they were in a different cluster than the index case.
However, they represented only 2 of 87 network members in
a Wake cluster.

Partner notification is limited by missing data due to
persons not being diagnosed or located and partnerships not
being disclosed or not occurring during the DIS interview
period. Stigma and discrimination faced by MSM contribute to
interview bias and may reduce willingness to disclose partners
to health authorities. Previous HIV sexual network studies in
NC found that a high proportion of partners cannot be
located3,35 and MSM tend to have more undisclosed partners,36

causing components to appear disjointed and impacting PNS
network completeness. However, this completeness is precisely

TABLE 3. Transmission Clusters That Included 5 or More Persons Statewide and at Least Two Members of the Wake County–
Based Sexual Network of Adults Diagnosed With HIV During 2012–2013 and Their Contacts (n = 235)

Statewide Wake Network

Cluster
ID

Cluster
Size

Max Genetic
Distance (%)

Sampling Year
[Median (IQR)]

Estimated
Cluster Age

(yr)

Most Recent
Common
Ancestor

#Male:
#Female

#Of
Network
Persons

#Index:
#

Partner
Max Genetic
Distance (%)

#Components
Spanned*

A 5 0.95 2013 (2013–2013) 4.7 2009 4:1 2 1:1 0.00 1

B 5 1.65 2012 (2012–2013) 7.6 2005 5:0 2 2:0 1.02 2

C 5 2.58 2011 (2009–2012) 11.7 2002 4:0† 3 1:2 2.58 2

D 6 2.05 2012 (2008–2014) 8.1 2006 6:0 2 1:1 0.96 2

E 6 0.95 2012 (2010–2013) 6.5 2007 6:0 3 2:1 0.68 1

F 6 1.56 2012 (2012–2012) 5.5 2007 6:0 6 3:3 1.56 3

G 7 2.92 2010 (2005–2012) 18.5 1993 1:6 2 2:0 1.40 1

H 8 2.94 2007 (2003–2012) 18.6 1995 8:0 2 2:0 0.61 1

I 8 1.56 2013 (2012–2014) 7.6 2006 8:0 4 3:1 1.15 2

J 12 3.42 2011 (2009–2012) 12.2 2001 11:1 3 2:1 1.24 3

K 14 3.33 2007 (2007–2010) 18.3 1995 6:7† 2 1:1 1.27 1

L 14 3.22 2011 (2008–2013) 18.3 1995 14:0 2 1:1 0.07 1

M 15 3.59 2010 (2008–2011) 14.7 1999 15:0 2 1:1 0.94 2

N 16 2.33 2009 (2008–2013) 12.5 2001 16:0 2 2:0 0.47 2

O 16 2.11 2010 (2009–2012) 8.8 2004 15:1 3 1:2 1.24 3

P 20 3.26 2010 (2008–2012) 13.8 2000 20:0 3 3:0 3.22 3

Q 23 3.24 2008 (2007–2011) 17.3 1997 10:13 2 2:0 0.07 2

R 23 2.95 2012 (2012–2013) 12.0 2002 23:0 5 4:1 1.83 4

S 36 3.26 2012 (2011–2013) 12.4 2002 34:2 4 4:0 2.54 3

*Includes number of network singletons and components that included at least one person from the Wake County sexual network.
†Sex unknown for one person in this cluster.

were 12 people in the cluster statewide (Fig. 1B). The 
maximum genetic distance between any pair of network 
members in Cluster J was 1.24%, despite each of the 3 
network members being in different components (Table 3, 
Cluster J). Of 13 clusters with $5 members statewide (Table 
3) that spanned multiple components, 9 (69%) included 
only men.

There was no significant difference by sampling year, 
cluster age, or statewide genetic distance between Wake 
clusters that covered single or spanned multiple components. 
However, the mean genetic distance among persons in the 
Wake cluster was significantly smaller when the cluster 
covered only 1 component (0.66% vs. 1.23%, P = 0.03).

DISCUSSION

This study sought to explore the benefits of combining 
molecular data with sociosexual network data obtained during 
routine PNSs from persons newly diagnosed with HIV in 
a single large county in NC. The study drew on a statewide 
data set of over 15,000 HIV-1 sequences from persons 
sampled between 1997 and mid-2014. We overlaid the 
genetic data and sociosexual network constructed from 
partner notification records to obtain a more comprehensive 
picture of the epidemic and identify gaps in PNS, particularly 
among male-dominated sexual network components.

More than half of local transmission clusters bridged 
sexual network components that seemed disconnected,



MSM,36,45,52 agree with previous studies in the
United States.

Although there is no accepted genetic distance criteria
to define transmission clusters,8 traditional cut-offs of ,1.5%
genetic distance difference allow for a focus on only recent
transmissions. We used a higher cluster threshold within the
range of multiple other studies8 to permit the characterization
of transmission dynamics over longer periods in the region.
Our focus is not on source attribution or using the sequences
to confirm transmissions between known partners, but to
identify ongoing, local transmission networks using available
sequence and routinely collected PNS data. In addition, most
sequences were from chronically infected persons; so, genetic
distances between connected persons are expected to be larger
due to greater time since infection and we did not want to
restrict our analysis to recent partnerships.

Both HIV phylogenetic and PNS data portray networks
differently and care must be taken not to misinterpret results.
Although the combination of these data provide new insights
into network structure, potential ethical and privacy concerns
must be considered. HIV genetic clustering does not imply
direct person-to-person transmission or direction of trans-
mission48; thus, these data should not be used for identifica-
tion of first-degree partnerships or confirming transmission
from one person to another.

The HIV sequence analysis recognized ongoing trans-
mission chains among high-risk persons, notably MSM,
which was not detected through routine partner notification.
Persons who experience the most stigma and those at highest
risk, MSM or not, such as those who engage in transactional
sex or have anonymous partnerships, are more difficult to
reach and may therefore be absent from the PNS network.
Molecular approaches provide clues to gaps in PNS and
direction for case finding and partner elicitation efforts.54 By
adding HIV sequences to the PNS network, we were able to
successfully identify localized areas where infected persons
were missing from the network, demonstrating the value of
integrating molecular data into routine partner tracing
and testing.
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