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Abstract
Marginal structural models for time-fixed treatments fit using inverse-probability

weighted estimating equations are increasingly popular. Nonetheless, the resulting

effect estimates are subject to finite-sample bias when data are sparse, as is typical for

large-sample procedures. Here we propose a semi-Bayes estimation approach which

penalizes or shrinks the estimated model parameters to improve finite-sample perfor-

mance. This approach uses simple symmetric data-augmentation priors. Limited sim-

ulation experiments indicate that the proposed approach reduces finite-sample bias

and improves confidence-interval coverage when the true values lie within the central

“hill” of the prior distribution. We illustrate the approach with data from a nonexper-

imental study of HIV treatments.
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1 INTRODUCTION

Hernán et al. described a marginal structural Cox proportional hazards model (Cox MSM) for semiparametric survival regression

with time-varying treatments (Hernán, Brumback & Robins, 2001). Effects of time-fixed treatments can also be estimated using

MSM (Richardson, Kinlaw, MacLehose & Cole, 2015; Sato & Matsuyama, 2003). Conceptually, if we could observe the entire

population under each treatment we would know the parameter value. In reality, we only observe a subset of the population, and

this subset is restricted such that each patient is observed under only one treatment. Therefore, conditions are required to identify

the population effect of a treatment beyond standard regularity conditions (Casella & Berger, 2002, p. 516). Identification is the

ability to compute the parameter value that generated the data if the entire (factual but not counterfactual) population were
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observed. One set of sufficient identification conditions for inverse probability (IP)-weighted fitting of MSMs is: no interference

(Hudgens & Halloran, 2008), treatment-version irrelevance (VanderWeele, 2009), no bias due to measurement error (Edwards,

Cole & Westreich, 2015), conditional exchangeability (Hernán & Robins, 2006), positivity (Westreich & Cole, 2010), and correct

model specification (Platt, Brookhart, Cole, Westreich & Schisterman, 2013). Correct specification is needed for the models used

to construct the IP weights, as well as for the structural model used to relate the treatment with the outcome of interest.

In comparative effectiveness research, there is a desire to estimate long-term all-cause and cause-specific survival for a broad

set of treatments. When the structural model used for this purpose is of moderate or high dimension relative to the amount

of information available, penalized estimation (also known as shrinkage, ridge regression, and partial, empirical, hierarchical,

or semi-Bayes estimation; Cox, 1975; Efron & Morris, 1971, 1972, 1973; Good, 1987, 1992; Good & Gaskins, 1971; Morris,

1983) can reduce mean-squared error and thereby improve the accuracy of reported effect estimates from epidemiologic data

(Efron & Morris, 1973; Greenland, 1993, 1997; Morris, 1983). The Cox proportional hazards model (Cox, 1972) is widely used

in comparative effectiveness research, notwithstanding the notable finite-sample bias present in the standard partial-likelihood

estimator (Johnson, Tolley, Bryson & Goldman, 1982). The IP-weighted estimator for the parameters of a Cox MSM inherits

finite-sample bias from the Cox model, and this bias may be exacerbated by the use of IP weighting (Westreich, Cole, Schisterman

& Platt, 2012). Specifically, both ordinary and IP-weighted partial-likelihood fitting of Cox models are subject to finite-sample

bias when the number of events per treatment group is not much larger than the number of model covariates. The present paper

concentrates on specification of the structural model in the setting of a time-fixed treatment.

In Section 2, we review the Cox MSM and describe a semi-Bayes extension to the model to penalize the resulting estimates

in proportion to their distance from a prior mean (usually zero, resulting in shrinkage of the estimates). In Section 3, we present

a simulation experiment. In Section 4, we describe our motivating example using data from an ongoing NIH-funded multisite

clinical cohort study of HIV-seropositive US adults (Kitahata et al., 2008). We discuss implications of the proposed approach

in Section 5.

2 METHODS

2.1 Notation
The observed data consist of 𝑛 individual records {𝑍,𝑋, 𝑌 ,Δ}𝑖, where 𝑖 = 1,… , 𝑛 indexes patients. We suppress the patient

index 𝑖 below where possible to ease exposition. Uppercase letters represent random variables and lowercase letters represent

possible realizations. The vector 𝑍 contains the multiple fixed covariates (at study entry). The vector 𝑋𝑗 contains the 𝑗 = 1,… , 𝐽

fixed (at study entry) treatments; we assume each treatment in 𝑋 has been centered and scaled so that 0 is a meaningful value

and 1 is a meaningful unit difference in values. The observed survival time is 𝑌 = min(𝑇 , 𝐶), where 𝑇 is the time from study

entry to the event of interest and 𝐶 is the time from study entry to right-censoring due to administrative end of study or loss to

follow-up. If 𝑌 = 𝑇 then the event indicator Δ = 1, else Δ = 0. We assume independent censoring given measured covariates,

or formally 𝑓{𝑇 |𝑍,𝑋} = 𝑓{𝑇 |𝑍,𝑋,𝐶}, where 𝑓 (⋅|⋅) is the conditional density function. We also assume that measurement

error is negligible (Hernán & Cole, 2009) and independent between individual processes, including negligible interference

(Hudgens & Halloran, 2008).

2.2 Cox MSM
A possible treatment is denoted by 𝑥. The potential survival time indexed by this possible treatment is 𝑇 𝑥. A particular potential

survival time 𝑇 𝑥 is factual and thus may be observed if 𝑋 = 𝑥, and there is only one version of treatment and no measure-

ment error. When there are multiple versions of treatment (i.e., differences in treatments within a given recognized level of

treatment), we must either refine the treatment definition to account for this multiplicity, or assume that treatment version is

irrelevant (potential outcomes are independent of version; Cole & Frangakis, 2009; VanderWeele, 2009). A marginal structural

Cox proportional hazards regression model is then

ℎ𝑇𝑥 (𝑡) = ℎ0 (𝑡) exp {𝑥𝜷} , (1)

where ℎ0(𝑡) is the reference hazard function for 𝑥 = 0, 𝜷 = (𝛽1,… , 𝛽𝐽 ), and exp(𝛽𝑗) is the causal hazard ratio for a unit change in

treatment component 𝑥𝑗 . The contribution to the weighted partial-likelihood corresponding to participant 𝑖 failing at time 𝑦𝑖 is

𝐿𝑖 (𝜷) =

{
𝑅𝑖

(
𝑦𝑖

)
exp

[
𝑋𝑖𝜷

]
∕

𝑛∑
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(
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(
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exp
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where 𝑅𝑖(𝑦) is an indicator of being in the risk set at time 𝑦 and �̂�𝑖(𝑦) is the estimated stabilized IP weight. We denote by �̂� the

estimator obtained by maximizing
∏𝑛

𝑖=1 𝐿𝑖(𝜷).
The IP weight is typically the product of treatment and censoring weights, specifically 𝑤(𝑡) = 𝑤𝑋𝑤𝐶 (𝑡). In general, the IP

weight is a product of component weights, with one component weight for each conditional exchangeability assumption. The

treatment (exposure) weight is

𝑤𝑖
𝑋 =

𝑓
(
𝑋𝑖

)
𝑓
(
𝑋𝑖|𝑍𝑖

) .
The denominator of this weight corresponds to each participant's probability of receiving their treatment, given the covariates.

The censoring weight is

𝑤𝑖
𝐶 (𝑡) =

∏𝑡

𝑘=0
𝑓
{
𝐶𝑖 (𝑘) = 0|�̄�𝑖 (𝑘 − 1) = 0, 𝑋

}
∕𝑓

{
𝐶𝑖 (𝑘) = 0|�̄�𝑗 (𝑘 − 1) = 0, 𝑋𝑖, 𝑍𝑖

}
,

where �̄�(𝑘) = {𝐶(0), 𝐶(1),… , 𝐶(𝑘)}. The denominator of this weight corresponds to each participant's probability of remain-

ing uncensored up to time 𝑡, given the covariates.

Weighting the observed data by these IP weights simulates observing a pseudopopulation in which treatment and censoring

are unrelated to the measured covariates 𝑍. Consistency of the estimator �̂� for treatment effects on the log-hazard follows from a

conditional exchangeability assumption, namely the assumption of weak sequential ignorability (no uncontrolled confounding).

Specifically, we assume that treatment is mean-independent of each potential outcome given covariates, 𝐸(𝑋|𝑍) = 𝐸(𝑋|𝑍, 𝑇 𝑥).
An analogous exchangeability assumption must hold for censoring. We also assume correct specification of the models used to

estimate the IP weights and correct specification of the hazard model (1).

The standard asymptotic variance estimator for the partial likelihood is not used because �̂� is a weighted M-estimator (Ste-

fanski & Boos, 2002; Tsiatis, 2006), not a maximum likelihood estimator (MLE). Thus, we instead use the standard asymptotic

robust (sandwich) variance estimator, which is conservative in this setting (Hernán et al., 2001).

2.3 Semi-Bayes Cox MSM
Semi-Bayes (partial-Bayes) methods place prior distributions only on select parameters (Cox, 1975; Greenland, 1992), and can

therefore be seen as a Bayes/non-Bayes synthesis (Efron & Morris, 1971, 1972; Good, 1987, 1992; Greenland, 2010). Semi-

Bayes methods may be motivated as shrinkage estimators that employ log prior densities as penalties to improve frequency

properties of point estimators (such as mean-squared error). These penalties can also improve confidence-interval coverage when

the true values of the penalized parameters are in the region of high prior density. We explore these claims below. Unpenalized

parameters are those for which prior information is not used, presumably because it is either so weak as to be ignorable, or too

difficult or controversial to formulate as a prior distribution.

The fitting method we will employ subtracts a penalty from the IP-weighted log partial likelihood that will shrink the resulting

semi-Bayes estimates �̂�sb away from the weighted partial-likelihood estimates �̂� and toward a prior value 𝒎 = (𝑚1,… , 𝑚𝐽 ). A

common penalty is the quadratic penalty, a sum of squared standardized differences between the individual components of 𝜷

and 𝒎. The resulting penalized log partial likelihood is

log{𝐿(𝜷)} − (𝜷 −𝒎)′𝐼𝑝(𝜷 −𝒎)∕2,

where 𝐼𝑝 is the penalty-information matrix, here assumed diagonal with diagonal elements 1∕𝑣𝑗 , and 𝑣𝑗 is the prior variance

for treatment 𝑗. This penalty is equivalent to a log density from a multivariate-normal prior with mean vector 𝒎 and covariance

matrix 𝐼−1
𝑝

, and corresponds to using independent lognormal priors for the hazard ratios exp(𝛽𝑗). We maximize this penalized IP-

weighted log partial likelihood to obtain the semi-Bayes estimate �̂�sb, and again use the standard asymptotic robust (sandwich)

variance estimator.

We also used log-𝐹 (𝑑, 𝑑) prior densities (Greenland, 2007a), which are symmetric and heavier tailed than the normal,

lighter tailed than 𝑡 priors, and which approach normality as 𝑑 increases (Greenland & Mansournia, 2015). These priors

have density identical to the standard logistic distribution, with density proportional to exp(𝜷𝑑2 )∕{1 + exp(𝜷)}𝑑 and hence

penalty
𝜷𝑑

2 − 𝑑log{1 + exp(𝜷)}; for 𝑑 = 2 this prior is identical to the standard logistic distribution, with density proportional to

exp(𝜷)∕{1 + exp(𝜷)}2. These densities are members of the generalized conjugate family for log-linear models, thus simplifying

computation as described below, and correspond to using independent F priors on the hazard ratios exp(𝛽𝑗).



2.4 Fitting methods
We use data augmentation to implement the penalization (Greenland, 2003, 2007a, 2007b), which corresponds to fitting the

stratified Cox model

ℎ𝑇𝑥 (𝑡) = ℎ0𝑗𝑘 (𝑡) exp {𝑥𝜷} , 𝑗 = 0, 1, 2,… , 𝐽 , 𝑘 = 0, 1,

where 𝑗 = 𝑘 = 0 indicates the actual data hazard function and treatment vector, and 𝑗 > 0, 𝑘 = 0, 1 indexes the augmenting

pseudodata encoding the prior information about 𝜷 (prior data). The observed data comprise a stratum indexed here as 𝑘 =
0, 𝑗 = 0; the augmentation data comprise 𝐽 pairs of strata indexed by 𝑗 > 0, each containing two records indexed by 𝑘 = 0, 1.

The pseudodata 𝑥𝑗 are set to values which generate a likelihood contribution proportional to the desired prior density for 𝜷.

The “prior data” that generate a normal density for 𝛽𝑗 with mean 𝑚𝑗 and variance 𝑣𝑗 consist of four records. These four

records are constructed as two matched-pairs (Greenland, 2003; Greenland & Christensen, 2001; Sullivan & Greenland, 2013).

All four records have time 𝑌 = 1. The first pair has one record with a treated outcome event and one record with an untreated

censoring event. The second pair has one record with an untreated outcome event and one record with a treated censoring event.

To impose normal priors we employ a scaling factor 𝑠𝑗 =
√

𝐴∕(2∕𝑣𝑗), where 𝐴 = 400 is the prior-data event count and 𝑣𝑗 is

the prior variance for 𝛽𝑗 . This prior event count 𝐴 is set arbitrarily large to improve the normal approximation of the data prior

(Sullivan & Greenland, 2013). The count 𝐴 is used as a frequency weight for the prior record, while the IP weights are set to 1

for all four prior-data records. The prior records also include a rescaled treatment indicator 𝑋𝑗 = 1∕𝑠𝑗 , while all other treatment

indicators and covariates are set to 0. (While beyond the scope of this paper, if some prior means 𝑚𝑗 are nonzero, the prior

records must also include an offset variable 𝑓𝑗 = −𝑚𝑗∕𝑠𝑗 , which is set to 0 in the actual-data records.)

Each set of four records representing a prior data set for 𝛽𝑗 are entered in the weighted Cox model as two distinct strata, one

for each pair. The correctness of the prior data can thus be checked by running a Cox regression on these four weighted records

alone with 𝑋𝑗 entered as the only covariate in the model; the resulting estimate of 𝛽𝑗 should equal 𝑚𝑗 with standard error 𝑣
1∕2
𝑗

.

The prior data that generate a log-𝐹 (𝑑, 𝑑) density for 𝛽𝑗 are as described above with two alterations (Greenland, 2007a;

Sullivan & Greenland 2013). First, we set 𝐴 = 𝑑∕2. Second, no scaling is required (i.e., 𝑠𝑗 = 1). The prior data for a hazard

ratio thus again consist of four records (in two matched-pairs) with frequency weight 𝑑∕2, which combined represent 𝑑 events

and 2𝑑 observations, with treatment indicator 𝑋𝑗 = 1, all other treatment indicators and covariates set to 0. (Again, while beyond

the scope of this paper, if there are nonzero 𝑚𝑗 , an offset variable is added that is 𝑓𝑗 = −𝑚𝑗 in the prior records and 0 in the actual

records.) The correctness of these prior data can again be checked by running a Cox regression on the four weighted records

alone; the resulting estimate of 𝛽𝑗 should equal 𝑚𝑗 with reported standard error of
√
4∕𝑑. Further details on data augmentation for

Bayesian and penalized estimation can be found in references (Bedrick, Christensen & Johnson, 1996; Cole, Chu & Greenland,

2014; Cole, Chu, Greenland, Hamra & Richardson, 2012; Disacciati, Orsini & Greenland, 2015; Greenland, 2003, 2007a, 2007b,

2009a, 2009b; Sullivan & Greenland, 2013).

When using perfectly tied event times (as given in the prior augmentation data) in a Cox model with Breslow's method for

ties, the robust variance option in SAS and R employ an adjustment that yields a variance contribution from the prior data that

is 1/2 the desired prior variance. Therefore, one must undo this adjustment, which we accomplished using prior data with 1/2

the pair-weights dictated by the above theory to double the variance. Thus, the frequency weights become 𝐴∕2 for the normal

prior records and 𝑑∕4 for the log-F prior records. Table A1 presents these “prior data” for the log-F(2,2) application discussed

in Section 4.

3 SIMULATIONS

3.1 Experimental design
We explored select finite-sample properties of our approach in a setting similar to our example (see Section 4), simulating a

cohort of size 10,000 with 200 events with fixed treatment and confounders, and 5000 iterations of the simulation.

We used a binary confounder 𝑍 with probability 1/2 for 𝑍 = 1. The probability of receiving the reference treatment had a

marginal probability of 1/5, dependent on 𝑍. If not treated with the referent, one of nine possible alternative treatments had

equal probability, each with marginal probability 4∕45 ≈ 0.09. The potential outcome under the reference treatment was an

exponential random variable 𝑇 denoting time from treatment assignment to death, with rate parameter dependent on 𝑍. We

calculated the potential outcomes under each of the possible alternative treatments by multiplying the reference potential time

by the set: 0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, and 5, corresponding to alternative treatments 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively.



We right-censored the combined data at the second percentile of the distribution of 𝑇 , such that we have 2% events overall.

This scenario represents moderate confounding as the binary confounder 𝑍 increased the hazard of the outcome 2.72 = exp(1)
times and also increased the probability of any nonreferent treatment 2.72 = exp(1) times, but did not influence which of the

non-referent treatments were chosen.

We fit three different Cox models for the treatment: unweighted, without the covariate 𝑍 (i.e., unadjusted); an IP-weighted

Cox model with 𝑍 (i.e., a standard marginal structural model); and a penalized and IP-weighted Cox model with 𝑍. While a

standard Z-adjusted Cox model could be used in this setting to obtained unbiased covariate-conditional hazard ratios, our intent

here is to estimate the covariate-marginal hazard ratios (as in classical direct standardization of rates). The time-fixed IP-weights

were estimated using a polytomous logistic regression model, with the 10-level treatment variable as the outcome and the sole

covariate 𝑍; these weights were stabilized by the marginal distribution of the treatments as shown in Section 2.2.

We append prior data to the simulation data to implement penalization as described in Section 2, with the priors for each

treatment coefficient centered on zero (m = 0). The first set of priors for the 𝛽𝑗 were normal with 95% of prior probability for

each exp(𝛽𝑗) between either 1/500 and 500, 1/40 and 40, 1/16 and 16, 1/8 and 8, 1/5 and 5, 1/4 and 4, or 1/2 and 2 (corresponding

to variances of 10, 3.54, 2, 1.13, 0.67, 0.50, and 0.125). The second set of priors were log -𝐹 (𝑑, 𝑑) with 95% of prior probability

for each exp(𝛽𝑗) between either 1/648 and 648, 1/39 and 39, 1/15.4 and 15.4, 1/7.15 and 7.15, 1/5 and 5, 1/4 and 4, or 1/2 and 2

(corresponding to 𝑑 = 1, 2, 3, 5, 7, 9, and 33.1).

We calculated percent bias as the ratio of the geometric mean of the 5000 estimated hazard ratios (the antilog of the simulated

mean of 𝛽𝑗) divided by the true hazard ratio 𝑅𝑗 = exp(𝛽𝑗(𝑡𝑟𝑢𝑒)), minus 1 times 100. We calculated the “average” standard error of

coefficient estimates as the square root of the average of the 5000 robust variance estimates, and the Monte Carlo standard error

as the standard deviation of the 5000 estimated log hazard ratios. We calculated the root mean squared error, where the mean-

squared error was defined as the squared bias plus the squared MC standard error. We calculated the 95% confidence-interval

coverage as the percent of the 5000 Wald-type confidence intervals (using the robust variance) that included the true value; when

94.0% coverage is observed this leads to a 95% confidence interval for our simulation coverage of 94.0 ± 1.96(6.0 × 94.0
5000 )

1∕2 =
93.3, 94.7. Finally, we calculated the geometric mean length of the 95% confidence intervals.

3.2 Experimental results
Results of simulations for percent bias are provided in Table 1. The unadjusted estimates are biased as expected due to con-

founding. The weighted estimates are decreasingly biased as the effect of the treatment compared to the referent becomes more

harmful. This is as expected because when the effect of treatment becomes more harmful, we increase the number of events

and thereby reduce finite-sample bias. The sensitivity of the weighted results to finite-sample bias is seen most clearly for the

most protective treatment where the true hazard ratio is 0.2, while finite-sample bias does not appear to notably affect the more

harmful treatments (e.g., true hazard ratios of 2, 3, 4, and 5).

As expected, the finite-sample bias exaggerates protective effects away from the null (here, downwards) because such finite-

sample bias skews the partial likelihood toward infinity. Note that this finite-sample bias (due to the small number of events) is

a separate issue from the large-sample confounding bias. Bias is similar for the normal and log-F penalized IP-weighted Cox

model estimates, especially when the prior variance was 2/3 or less. The penalized IP-weighted Cox model estimators exhibit

little bias when penalization is weak, but show increasing bias toward the null (the prior center) as the penalization becomes

stronger, which is especially apparent for the most harmful treatments when finite-sample bias is negligible.

Results of simulations for percent 95% confidence interval coverage are provided in Table 2. Confidence-interval coverage

for the unpenalized IP-weighted estimator is 91% or less for true hazard ratios of 0.2 and 0.25, but 94% or more for true hazard

ratios of 0.33 or larger, where finite-sample bias becomes unapparent. Both normal and log-F penalized IP-weighted estimators

exhibit adequate coverage when penalization is weak, but poor coverage when the penalization becomes strong (i.e., when the

prior variance is 1/2 or less), especially for the most protective treatments (those furthest from the center of the prior). The

normal priors undercover when there is substantial finite-sample bias (i.e., true hazard ratio of 1/3 or smaller).

Results of simulations for the Monte Carlo standard error and confidence-interval precision are provided in Tables 3 and 4,

respectively. The standard error decreases and hence precision increases both as a function of stronger penalization and as the

true hazard ratio becomes larger. While the Monte Carlo standard errors are similar for analogous normal and log-F priors, the

heavier tails of the log-F priors result in wider confidence intervals and somewhat better coverage (Table 2).

Results for root mean squared error are shown in Figure 1. Both panels show increasing mean-squared error as the treatments

become more protective for both unadjusted and the unpenalized IP-weighted estimators. The IP-weighted estimators have

notably higher mean-squared error for the most protective treatments. The strongest prior examined (i.e., prior variance of

0.125) exhibits a low root mean squared error until the true hazard ratio was 1/2 or lower, thereafter this prior performs worse



T A B L E 1 Percent bias in hazard ratioa from 5000 simulations of 10,000 participants with 200 eventsb

True hazard ratio (expected number of events)
0.2 (2.3) 0.25 (2.8) 0.33 (3.8) 0.5 (5.7) 1 (11.2) 2 (22.5) 3 (33.4) 4 (44.3) 5 (54.8)

Model

Crude –66 –46 –15 13 22 27 28 29 29

Weighted –73 –57 –33 –10 –3 1 1 2 2

Normal priors

Intervals Variance

1/500, 500 10.0 –19 –16 –12 –7 –3 <1 1 2 2

1/40, 40 3.54 –6 –7 –7 –5 –3 <1 <1 1 1

1/16, 16 2.00 4 <1 –2 –3 –3 –1 <1 1 <1

1/8, 8 1.13 18 11 4 –1 –4 –2 –2 –1 –1

1/5, 5 0.67 35 23 12 2 –5 –4 –4 –3 –3

1/4, 4 0.50 46 31 17 5 –6 –6 –6 –5 –5

1/2, 2 0.125 118 84 51 19 –12 –21 –23 –22 –22

Log-F(d,d) priors

Intervals Variance d
1/648, 648 9.87 1 –15 –13 –10 –6 –3 <1 <1 1 1

1/39, 39 3.29 2 –3 –4 –5 –4 –3 –1 <1 1 1

1/15.4, 15.4 1.87 3 7 3 <1 –2 –4 –1 –1 <1 <1

1/7.15, 7.15 0.98 5 22 14 7 1 –4 –3 –2 –1 –2

1/5, 5 0.66 7 34 23 13 3 –5 –4 –4 –3 –3

1/4, 4 0.50 9 45 31 18 5 –5 –6 –6 –5 –5

1/2, 2 0.125 33.1 118 85 52 20 –10 –20 –21 –21 –20

a100 × exp(average coefficient estimate)/(True hazard ratio), minus 100.
b20% of participants exposed to the reference treatment (19.4 expected events), 9% to each of these nine comparator treatments.

than the weaker priors examined. We chose the log-F(2,2) as the primary prior for the application because it exhibited relatively

small bias in the range of hazard ratios we expect to see, and had slightly better interval coverage than the analogous (variance

3.54) normal prior, albeit at the expense of slightly increased width.

4 APPLICATION

4.1 Description of study and data
We compare 1-year all-cause mortality for 21 initial antiretroviral therapy treatments (Hammer et al., 2006; Thompson et al.,

2012) each prescribed to at least 50 patients in the CFAR (Centers for AIDS Research) Network for Integrated Clinical Systems

(CNICS) cohort between January 1998 and October 2013. Investigators may request data from the CNICS study by submitting a

proposal at https://www.uab.edu/cnics/submit-proposal. We combine the remaining less common treatment plans into an “other”

category, so that 𝐽 = 22 in this example. We estimate hazard ratios comparing mortality under each treatment with mortality

under a reference treatment consisting of efavirenz, emtricitabine, and tenofovir, which was the most prevalent treatment during

the study period.

The study entry coincides with initiation of HIV treatment, which is the time origin for the present pseudoexperiment (i.e.,

observational study). Eligible patients have no reported history of prior antiretroviral therapy use. While changes in HIV treat-

ment plan may occur over follow-up, here we concentrate on the observational intent-to-treat estimator that ignores changes in

treatment (see Cole, Hernán, Margolick, Cohen & Robins, 2005, p. 476).

The outcome of central interest is all-cause mortality, which obviates issues of competing risks (Lau, Cole & Gange, 2009).

We have no right-censoring due to dropout because all patients, regardless of clinic follow-up status, were followed for all-cause

mortality using the US Social Security Death Index.

https://www.uab.edu/cnics/submit-proposal


T A B L E 2 Percent coverage of true hazard ratios by Wald-type 95% confidence intervals from 5000 simulations of 10,000 participants with 200

eventsa

True hazard ratio (expected number of events)
0.2 (2.3) 0.25 (2.8) 0.33 (3.8) 0.5 (5.7) 1 (11.2) 2 (22.5) 3 (33.4) 4 (44.3) 5 (54.8)

Model

Unadjusted 82 86 90 91 90 88 88 87 87

Weighted 86 91 94 97 95 95 95 95 95

Normal priors

Intervals Variance

1/500, 500 10.0 86 91 94 96 95 95 95 95 95

1/40, 40 3.54 86 90 93 96 95 95 95 95 95

1/16, 16 2.00 86 90 93 96 95 95 95 95 95

1/8, 8 1.13 88 90 92 95 95 96 95 95 95

1/5, 5 0.67 90 90 92 95 95 96 95 95 95

1/4, 4 0.50 87 90 93 95 95 96 95 95 95

1/2, 2 0.125 0 13 64 94 94 85 80 77 75

Log-F(d,d) priors

Intervals Variance d
1/648, 648 9.87 1 96 97 96 97 95 96 95 95 95

1/39, 39 3.29 2 96 96 96 97 95 96 95 95 95

1/15.4, 15.4 1.87 3 95 96 96 97 96 96 95 95 95

1/7.15, 7.15 0.98 5 93 94 95 97 96 96 95 96 96

1/5, 5 0.66 7 91 93 95 97 96 96 96 96 96

1/4, 4 0.50 9 88 91 94 97 96 96 96 96 96

1/2, 2 0.125 33.1 7 32 69 94 96 88 85 84 83

a20% of participants exposed to the reference treatment (19.4 expected events), 9% to each of these nine comparator treatments.

In this example the treatment, type of initial HIV therapy, 𝑋 is fixed at a constant value at therapy initiation. Consequently,

confounders 𝑍 are also fixed at their value at HIV therapy initiation. The measured covariates are age, sex, race/ethnicity, CD4

count (cells/mm3), HIV-1 viral load (copies/ml), history of injection drug use, history of male sex with men, history of one

or more AIDS diagnoses, and HBV/HCV coinfection, all measured prior to therapy initiation. The stabilized IP weights were

estimated using maximum likelihood multinomial logistic regression of treatment regimen on the measured covariates (potential

confounders) as the regressors. For each record, the resulting fitted treatment probability for the record enters the denominator

of the weight, while the observed proportion in the treatment group of the record (which is the fitted marginal probability of

treatment with no covariate adjustment) enters the numerator (Cole & Hernán, 2008; Hernán et al., 2001). Continuous covariates

were modeled using restricted quadratic splines with four knots placed at the covariate's 5, 35, 65, and 95 percentiles (Howe

et al., 2011).

4.2 Augmentation data
With the reference treatment consisting of efavirenz, emtricitabine and tenofovir, we assumed for every other treatment inde-

pendent priors with log-F(2,2) priors for each 𝛽𝑗 , which implies 95% prior probability that the hazard ratio is between 1/39 and

39 and is thus only very weakly informative. In terms of information content under the Cox model, it corresponds to previously

observing one exposed and one unexposed event in matched-pairs randomized to each treatment plan. Penalization using other

priors examined in the simulation altered results as expected based on the simulations (data not shown).

4.3 Example results
Table 5 provides the characteristics of the 10,064 patients. Table 6 provides the distributions of the patients and deaths and

antiretroviral therapy treatment regimens. Common treatments (with more than 5% of patients) included EFV-FTC-TDF (i.e.,



T A B L E 3 Monte Carlo standard error for the log hazard ratio from 5000 simulations of 10,000 participants with 200 eventsa

True hazard ratio (expected number of events)
0.2 (2.3) 0.25 (2.8) 0.33 (3.8) 0.5 (5.7) 1 (11.2) 2 (22.5) 3 (33.4) 4 (44.3) 5 (54.8)

Model

Unadjusted 3.86 3.12 2.06 0.88 0.41 0.33 0.30 0.29 0.27

Weighted 3.85 3.12 2.06 0.88 0.42 0.34 0.31 0.30 0.29

Normal priors

Intervals Variance

1/500, 500 10.0 0.91 0.84 0.72 0.55 0.41 0.33 0.31 0.29 0.29

1/40, 40 3.54 0.71 0.68 0.62 0.51 0.40 0.32 0.30 0.29 0.28

1/16, 16 2.00 0.60 0.58 0.55 0.48 0.39 0.31 0.29 0.28 0.27

1/8, 8 1.13 0.49 0.49 0.48 0.44 0.37 0.30 0.27 0.26 0.25

1/5, 5 0.67 0.40 0.41 0.41 0.39 0.34 0.28 0.26 0.25 0.24

1/4, 4 0.50 0.35 0.36 0.37 0.36 0.33 0.27 0.25 0.23 0.23

1/2, 2 0.125 0.16 0.17 0.19 0.20 0.22 0.21 0.19 0.18 0.17

Log-F(d,d) priors

Intervals Variance d
1/648, 648 9.87 1 0.87 0.80 0.69 0.53 0.40 0.33 0.30 0.29 0.28

1/39, 39 3.29 2 0.70 0.67 0.60 0.49 0.39 0.32 0.29 0.28 0.27

1/15.4, 15.4 1.87 3 0.61 0.59 0.55 0.47 0.38 0.31 0.29 0.27 0.27

1/7.15, 7.15 0.98 5 0.50 0.49 0.47 0.42 0.36 0.30 0.27 0.26 0.25

1/5, 5 0.66 7 0.43 0.43 0.42 0.39 0.34 0.28 0.26 0.25 0.24

1/4, 4 0.50 9 0.38 0.38 0.38 0.36 0.32 0.27 0.25 0.24 0.23

1/2, 2 0.125 33.1 0.17 0.18 0.19 0.21 0.22 0.21 0.20 0.19 0.18

a20% of participants exposed to the reference treatment (19.4 expected events), 9% to each of these nine comparator treatments.

the reference treatment), as well as FTC-TDF-ATV/r, FTC-TDF-DRV/r, and EFV-3TC-ZDV. Notably, 12% of patients were

given one of a large number of infrequently used (i.e., less than 50 patients) other treatments.

Table 7 provides the unadjusted, unpenalized IP-weighted, and penalized IP-weighted Cox hazard ratios and 95% confidence

intervals for 1-year mortality. For the penalized IP-weighted results, compared to the reference treatment many of the 21 other

treatments exhibited elevated hazard ratios for 1-year mortality. Ten regimens exhibited a hazard ratio larger than 1.5, two of

which had 95% confidence intervals that excluded the null value of 1 (i.e., other regimen and 3TC-LPV/r-TDF). As expected,

penalized estimates were closer to the null with notably tighter confidence intervals. In particular, we obtain a penalized estimate

for the treatment ATV/r-3TC-TDF, whereas standard approaches failed to provide an estimate.

5 DISCUSSION

Both ordinary (Johnson et al., 1982) and IP-weighted (Westreich et al., 2012) partial-likelihood fitting of Cox models are subject

to finite-sample bias when the number of events per treatment group is not much larger than the number of model covariates. To

reduce this problem, we have presented a semi-Bayes approach to penalize the estimated coefficients in the marginal structural

hazard model, paralleling methods for ordinary Cox models (Greenland & Christensen, 2001; Verweij & Van Houwelingen,

1994). The proposed approach was examined in a limited simulation study, and in an example where there were multiple versions

of initial treatment.

The log-F(2,2) prior used here is a standard logistic distribution, which corresponds to adding one record with each outcome

to a discrete-outcome data set. It thus can be viewed as a generalization of Laplace's law of succession (Laplace, 1814, p. 19;

Greenland & Mansournia, 2015) to coefficient estimation (Greenland & Mansournia, 2015). There are other approaches to

stabilize estimates from Cox models, including Firth's bias adjustment, which corresponds to use of the Jeffreys invariant prior

for penalization (Firth, 1993), and which is implemented in several software packages (Coveney, 2015; Heinze, & Ploner, 2002)

including SAS, Stata, and Statistica. The Firth adjustment reduces to the log-F(1,1) prior when only indicators in orthogonal



T A B L E 4 Geometric confidence interval length for the log hazard ratio from 5000 simulations of 10,000 participants with 200 eventsa,b

True Hazard Ratio (expected number of events)
0.2 (2.3) 0.25 (2.8) 0.33 (3.8) 0.5 (5.7) 1 (11.2) 2 (22.5) 3 (33.4) 4 (44.3) 5 (54.8)

Model

Unadjusted 14.96 13.26 10.80 7.50 4.61 3.47 3.31 2.97 2.88

Weighted 15.37 12.63 11.12 7.74 4.80 3.63 3.29 3.12 3.03

Normal priors

Intervals Variance

1/500, 500 10.0 14.92 12.84 10.31 7.35 4.70 3.57 3.24 3.08 2.98

1/40, 40 3.54 10.85 9.99 8.67 6.73 4.54 3.48 3.16 3.00 2.90

1/16, 16 2.00 8.58 8.21 7.48 6.18 4.38 3.38 3.07 2.91 2.82

1/8, 8 1.13 6.56 6.48 6.18 5.46 4.13 3.24 2.94 2.79 2.70

1/5, 5 0.67 5.08 5.12 5.06 4.73 3.84 3.07 2.79 2.64 2.56

1/4, 4 0.50 4.38 4.45 4.46 4.30 3.64 2.96 2.69 2.55 2.46

1/2, 2 0.125 2.41 2.46 2.52 2.60 2.61 2.40 2.23 2.11 2.04

Log-F(d,d) priors

Intervals Variance d
1/648, 648 9.87 1 24.77 17.16 11.28 7.24 4.63 3.55 3.23 3.06 2.97

1/39, 39 3.29 2 16.31 12.74 9.46 6.67 4.48 3.48 3.17 3.01 2.92

1/15.4, 15.4 1.87 3 12.71 10.53 8.32 6.22 4.34 3.41 3.11 2.95 2.86

1/7.15, 7.15 0.98 5 9.15 8.08 6.86 5.52 4.09 3.28 3.00 2.86 2.77

1/5, 5 0.66 7 7.31 6.69 5.93 5.00 3.88 3.18 2.91 2.77 2.69

1/4, 4 0.50 9 6.19 5.79 5.27 4.60 3.71 3.08 2.84 2.70 2.62

1/2, 2 0.125 33.1 2.85 2.83 2.81 2.77 2.66 2.49 2.37 2.28 2.21

a20% of participants exposed to the reference treatment (19.4 expected events), 9% to each of these nine comparator treatments.
bGeometric length is the antilog of the mean length of 5000 log hazard ratio confidence intervals.

designs are being penalized but otherwise has no straightforward Bayesian interpretation in terms of contextual prior information,

and in fact depends on the data through the observed information matrix (Greenland & Mansournia, 2015).

Under standard first-order asymptotics, the penalized estimators are (such as the MLE) normal, unbiased, and equivalent to

the standard (unpenalized) estimator, but this equivalence breaks down at higher orders and hence in finite samples. For example,

to second order the MLE is biased away from the null (often severely) while the posterior mode using a Firth penalty (Jeffreys

prior) is unbiased (Firth, 1993). In finite samples, as the prior precision 1∕𝑣 or the prior sample size 𝑑 grows, the penalized

estimators become increasingly biased toward the prior mean 𝑚.

The extent of penalization varies with the prior, and the substantive impact on estimates of the prior should be explored before

inferences are used to set policy or guidelines (Greenland & Mansournia, 2015). In particular, in finite samples where uncertainty

about 𝛽𝑗 is high, one should choose relatively small values for the penalty tuning parameters (i.e., 1∕𝑣 for the quadratic/normal

penalty or 𝑑 for the log-F penalty). For example, the simulations presented here suggest that independent null-centered log-

F(2,2) priors perform well (with respect to minimizing mean-squared error) when treatment effects are in the neighborhood of

a hazard ratio of 0.2 to 5, which is typical of much epidemiologic research.

There are two basic approaches to selecting the penalty tuning parameter. The empirical-Bayes approach estimates the param-

eter from the data (e.g., using marginal maximum likelihood or cross-validation), which requires accounting for this estimation

step in subsequent computation of interval estimates and tests. We do not explore this approach, which can be computationally

involved (Carlin & Louis, 2010). The second, simpler approach is classical Bayes, in which the parameter is specified on a priori

grounds. This can be done by examining the prior probability intervals for the penalized regression coefficients, as implied by

various choices for the parameter, then choosing a parameter value that leads to intervals which agree well with results inferred

from information outside the current study (Greenland, 1992, 1993, 2003, 2007a, 2007b).

In practice, there is an impression that both of these approaches tend to lead to excessive shrinkage relative to what might be

desired based on more careful considerations of possible costs of false negatives and false positives. This concern has led to a

“conservative” variation on Bayes, which sets the tuning parameter just large enough to render recognizably extreme coefficient

values as highly improbable, without leading to a highly informative concentration of prior probability near the null. For example,



F I G U R E 1 Root mean squared error by true hazard ratio, 5000 simulations of 10,000 participants with 200 events

Note: Left panel displays normal priors, right panel log-F priors.

T A B L E 5 Characteristics of 10,064 HIV-seropositive CNICS patients initiating ART, 1998–2013

Characteristics Number Percentage
Female 1743 17%

Age (years)a 39 32; 46

Hispanic ethnicity 1249 12%

African–American race 3769 38%

Injection drug user, current or past use 1414 14%

Men who have sex with men 6276 62%

CD4 cell count (cells/ml3)a 263 106; 417

HIV-1 viral load (copies/ml)a 41,853 5834; 145,754

History of one or more AIDS diagnoses 2283 23%

HCV coinfection 1211 12%

HBV coinfection 607 6%

Note: ART, antiretroviral therapy.
aMedian, quartiles.

in detailed epidemiologic comparative effectiveness research, hazard ratios for study treatments are typically expected to fall

in a range of roughly 1/5 to 5 and are rarely found far outside that range, because truly large effects tend to be detected and

confirmed well before such sophisticated analyses are initiated. Assuming the outcome is a rare disease, this observation could

be incorporated into the penalty by setting 𝑣 = 1∕2 or 𝑑 = 9 for the penalty on a coefficient 𝜷 in a Cox model, both of which

lead to (1∕4, 4) as a 95% prior probability interval for the approximate hazard ratio exp(𝜷). When large effects are considered

reasonable possibilities, one could reduce 𝑑 further, for example, 𝑑 = 3 and 𝑑 = 1 correspond approximately to 95% prior

probability for exp(𝛽) in (1∕16, 16) and (1∕40, 40), respectively.

Here, we penalized the parameters in the structural (potential outcome) model. We could have instead or also penalized the

parameters in the models used to construct the IP weights. In our example, however, we did not expect the weight models to

require such stabilization because the smallest treatment group consisted of 50 people, and there were relatively few parameters

in the weight models. Others have explored Bayesian methods for marginal structural modeling that involve priors for the param-

eters of the weight models (Saarela, Stephens, Moodie & Klein, 2015). While these and other partially Bayesian approaches can

improve the frequency properties (calibration) of estimators, fully Bayesian inference is infeasible in typical sparse-data settings

due to the breakdown of classical finite-dimensional asymptotic properties of the likelihood (Robins, Hernán & Wasserman,

2015).



T A B L E 6 Distribution of 10,064 HIV-seropositive CNICS patients and deaths by initial ART regimens, 1998–2013

Patients Deaths, 1 year
ART regimen Number Percentage Number Percentage
ABC 3TC ATV/r 154 2 8 4

ABC EFV 3TC 149 1 5 2

ABC EFV 3TC ZDV 108 1 6 3

ABC 3TC LRV/r 59 1 6 3

ABC 3TC LPV/r ZDV 65 1 3 1

ABC 3TC ZDV 271 3 7 3

ATV/r FTC TDF 1391 14 23 11

ATV/r 3TC TDF 53 1 0 0

DRV/r FTC TDF 680 7 12 6

EFV FTC TDF 3313 33 33 16

EFV 3TC d4T 165 2 7 3

EFV 3TC TDF 182 2 5 3

EFV 3TC ZDV 654 7 11 5

FTC FPV/r TDF 88 1 3 1

FTC LPV/r TDF 295 3 10 5

FTC NVP TDF 65 1 1 1

FTC RAL TDF 397 4 4 2

FTC RPV TDF 256 3 1 1

3TC LPV/r TDF 133 1 10 5

3TC LPV/r ZDV 258 3 5 2

3TC NVP ZDV 112 1 2 1

Other 1216 12 39 19

Total 10,066 100 196 100

Note: ART, antiretroviral therapy.

For time-fixed treatments, marginal structural Cox models provide consistent estimates of causal effects of treatment under the

equally strict conditions required by standard Cox proportional hazards models. Cox MSM analyses estimate marginal treatment

effects, which compare hazards averaged (standardized) over the sample covariate distribution, while ordinary Cox models

estimate covariate-conditional treatment effects. These estimates can differ even in the absence of confounding because the

hazard ratio is not collapsible (Greenland, 1996). As described here, penalization does not alter the target parameter. Therefore,

the identification conditions are unaltered by the use of a penalized estimator. Moreover, the penalized estimator remains a

consistent estimator of the parameter of interest, as long as the prior information is not a function of sample size. In finite-

samples when estimates are shrunk toward the null (i.e., 𝑚 = 0), accompanying confidence intervals will likewise be shifted

toward the null and tests based on the confidence limit closest to the null value will be somewhat conservative.

When treatment is time-varying, Cox MSMs maintain consistency under feedback between time-varying treatments and time-

varying confounders, while standard time-dependent Cox models do not (Hernán et al., 2001). Future work is needed to assess

penalization of a Cox MSM in the setting of time-varying treatments, though theory suggests similar benefits would be found.

Our example is a nonrandomized study analyzed to parallel an experiment in which the initial HIV treatment is randomized and

then assigned treatment is analyzed using an intention-to-treat approach, ignoring subsequent regimen nonadherence. Because

patients were not randomized to an HIV treatment, we accounted for confounding by measured factors through IP weighting

(Hernán et al., 2001; Robins, 1999; Robins, Hernán & Brumback, 2000; Westreich et al., 2012). Nonetheless, uncontrolled

confounding may explain some or all of the results.

Measurement errors for select patient characteristics (e.g., age, sex), assigned treatment, and mortality are likely negligible.

The impact of measurement errors for other controlled factors (e.g., injection drug use) is unknown, but would be negligible if

either the errors are small or if there is relatively modest confounding by these factors (Greenland & Robins, 1985). Selection

bias would be negligible because few patients were excluded at entry and no patients were lost to follow-up. The generalizability

of our results is uncertain, although recent work suggests that the CNICS cohort may be largely representative of the US HIV



T A B L E 7 Hazard ratios for 1-year all-cause mortality by initial ART regimen, 1998–2013

ART regimen
Crude hazard
ratios 95% CI

IP-weighteda

Hazard ratios 95% CI

Penalizedb

IP-weighteda

Hazard ratios 95% CI
EFV FTC TDF 1 – 1 – 1 –

FTC RPV TDF 0.38 0.05, 2.81 0.31 0.04, 2.57 0.38 0.08, 1.89

FTC RAL TDF 1.07 0.38, 3.03 0.71 0.22, 2.32 0.71 0.24, 2.11

DRV/r FTC TDF 1.66 0.85, 3.22 1.31 0.63, 2.72 1.27 0.62, 2.57

ABC EFV 3TC ZDV 4.09 1.69, 9.88 1.61 0.61, 4.26 1.50 0.58, 3.86

ATV/r FTC TDF 1.66 0.97, 2.83 1.07 0.61, 1.89 1.04 0.61, 1.78

EFV 3TC ZDV 1.46 0.73, 2.90 0.66 0.30, 1.45 0.65 0.31, 1.37

3TC NVP ZDV 1.99 0.48, 8.30 1.07 0.22, 5.27 1.03 0.24, 4.43

ATV/r 3TC TDF NA NA NA NA 0.39 0.05, 2.83

ABC EFV 3TC 2.70 1.05, 6.94 1.83 0.59, 5.64 1.72 0.57, 5.15

FTC LPV/r TDF 3.20 1.57, 6.54 2.32 1.01, 5.35 2.22 0.98, 5.02

ABC 3TC ZDV 2.23 0.98, 5.05 1.54 0.62, 3.82 1.48 0.61, 3.55

ABC ATV/r 3TC 4.49 2.06, 9.76 1.57 0.63, 3.92 1.49 0.61, 3.60

3TC LPV/r ZDV 1.70 0.66, 4.36 1.77 0.59, 5.29 1.68 0.58, 4.91

EFV 3TC TDF 2.84 1.10, 7.29 1.52 0.55, 4.25 1.44 0.54, 3.89

ABC 3TC LPV/r ZDV 3.64 1.11, 11.9 0.89 0.23, 3.47 0.88 0.27, 2.94

Other 2.95 1.85, 4.71 1.84 1.13, 3.00 1.78 1.12, 2.82

3TC LPV/r TDF 6.92 3.38, 14.2 3.50 1.25, 9.82 3.24 1.15, 9.15

FTC NVP TDF 1.47 0.20, 10.8 2.21 0.31, 15.8 1.93 0.28, 13.3

ABC 3TC LRV/r 8.47 3.52, 20.4 2.53 0.78, 8.28 2.26 0.70, 7.30

EFV 3TC d4T 3.87 1.70, 8.81 2.05 0.80, 5.27 1.93 0.76, 4.87

FTC FPV/r TDF 2.77 0.85, 9.06 2.40 0.67, 8.62 2.18 0.61, 7.83

Note: ART, antiretroviral therapy; CI, confidence interval.
aInverse-probability weights for characteristics shown in Table 1, with continuous variables fit using restricted quadratic splines.
bPenalized with log-F(2,2) data augmented prior hazard ratios of 1 with 95% prior mass between 1/39 and 39.

epidemic (Lesko et al., 2016). These caveats would however apply to any standard method as well as all of the analyses we

conducted. Within that scope, it appears to us that the results obtained from weakly informative priors are preferable to the usual

unpenalized results when we combine frequentist accuracy considerations with background information that the effects under

study are probably quite limited.
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APPENDIX

T A B L E A 1 Log-F(2,2) prior augmentation data example

Record
identifier Regimen

Prior hazard
ratio, 𝒉𝒓 Time IP-weight

Frequency
weight, 𝑨a Strata

Regimen
1 …

Regimen
𝒌 …

Regimen
22

Event
indicator

Offset,
𝒇

1 1 1.0 1 1 0.5 1 1 … 0 … 0 1 0
b

2 1 1.0 1 1 0.5 1 0 … 0 … 0 0 0

3 1 1.0 1 1 0.5 2 0 … 0 … 0 1 0

4 1 1.0 1 1 0.5 2 1 … 0 … 0 0 0
b

… … … … … … … … … … … … … …
85 22 1.0 1 1 0.5 43 0 … 0 … 1 1 0

b

86 22 1.0 1 1 0.5 43 0 … 0 … 0 0 0

87 22 1.0 1 1 0.5 44 0 … 0 … 0 1 0

88 22 1.0 1 1 0.5 44 0 … 0 … 1 0 0
b

aNoninteger frequency weight is 𝐴 = (𝑑∕4), correcting for the robust variance in SAS or R (see text).
bOffset is 𝑓 = −log(ℎ𝑟).
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