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Background.  Human immunodeficiency virus type 1 (HIV-1) phylodynamics can be used to monitor epidemic trends and help 
target prevention through identification and characterization of transmission clusters.

Methods.  We analyzed HIV-1 pol sequences sampled in North Carolina from 1997 to 2014. Putative clusters were identified 
using maximum-likelihood trees and dated using Bayesian Markov Chain Monte Carlo inference. Active clusters were defined as 
clusters including internal nodes from 2009 to 2014. Effective reproductive numbers (Re) were estimated using birth-death models 
for large clusters that expanded ≥2-fold from 2009 to 2014.

Results.  Of 14 921 persons, 7508 (50%) sequences were identified in 2264 clusters. Only 288 (13%) clusters were active from 
2009 to 2014; 37 were large (10–36 members). Compared to smaller clusters, large clusters were increasingly populated by men and 
younger persons; however, nearly 60% included ≥1 women. Clusters with ≥3 members demonstrated assortative mixing by sex, age, 
and sample region. Of 15 large clusters with ≥2-fold expansion, nearly all had Re approximately 1 by 2014.

Conclusions.  Phylodynamics revealed transmission cluster expansion in this densely sampled region and allowed estimates 
of Re to monitor active clusters, showing the propensity for steady, onward propagation. Associations with clustering and cluster 
characteristics vary by cluster size. Harnessing sequence-derived epidemiologic parameters within routine surveillance could allow 
refined monitoring of local subepidemics.
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Successful human immunodeficiency virus type 1 (HIV-1) trans-
mission prevention requires targeted approaches tailored to indi-
vidual epidemics. Molecular epidemiology is increasingly used to 
reconstruct HIV-1 transmission clusters from viral sequences [1], 
providing insights into subepidemics overlapping in geography, 
time, and contact networks. HIV-1 phylodynamic analyses com-
bine viral sequence similarity, molecular clock modeling, and 
population dynamic inference to reconstruct viral transmission 
over time [2]. These analyses allow the estimation of transmis-
sion parameters among subgroups [3, 4], timing of regional viral 
introduction [5], and spread [6]. HIV-1 phylodynamics have 
also been used to identify links between subepidemics [7] and 
estimate epidemic growth parameters [8, 9], which can inform 

public health planning and assessment of interventions [10]. 
While HIV-1 transmission clusters have been described in mul-
tiple cohorts in the United States (US) [11–13], few studies have 
incorporated phylodynamics [14–16].

Phylodynamic analyses may be particularly informative in 
regions such as the southern US, where HIV-1 incidence has 
failed to substantially decline with traditional control measures. 
Southern states are now an epicenter of the US epidemic [17], 
with higher HIV-1 diagnosis rates and prevalence compared to 
other regions. Despite widespread antiretroviral therapy (ART) 
and advances in prevention, ongoing transmission continues 
from the prevalent pool of diagnosed and undiagnosed persons 
living with HIV-1 [18]. As in other southern states, HIV-1 in-
cidence in North Carolina (NC) has not appreciably declined 
since 2008 [19]; approximately 1400 new HIV-1 diagnoses are 
reported annually [20]. While our prior studies revealed mul-
tiple large clusters composed primarily of men who have sex 
with men (MSM) [11, 21], sizeable local heterosexual transmis-
sion was also identified [21]. Further investigation into HIV-1 
clustering dynamics, focusing on growing clusters, is needed to 
determine optimal approaches for public health response.
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We investigated the HIV-1 subtype B transmission dynamics 
in NC to characterize ongoing transmission networks. We 
aimed to differentiate between historical and “active” clusters 
with recent expansion in cluster size, and to estimate temporal 
parameters and effective reproductive numbers (Re) of active 
clusters. Delineating demographic and geographic subgroups 
with high rates of clustering and likely future transmission may 
inform the design, allocation, and monitoring of combination 
prevention approaches, such as increased testing and imme-
diate ART [22], allowing for efficient deployment of finite pre-
vention resources.

METHODS

Study Population

We analyzed full-length protease (PR, 297 bp) and partial re-
verse transcriptase (RT, 1200  bp) HIV-1 sequences generated 
by the Laboratory Corporation of America (LabCorp), the 
largest commercial laboratory in NC. Sequences were col-
lected from 1997 to mid-2014 from persons accessing clinical 
care in NC; the majority of the assays were HIV-1 GenoSure. 
We included samples from patients with a valid date of birth 
and aged ≥18 years at the time of sample acquisition. For per-
sons with multiple sequences, only the first available sequence 
was included. Demographic variables collected included sex 
and geographic location of sampling sites; diagnosis dates 
and ART exposure information were not available. Clinic 
locations were grouped into 1 of the 7 regions used by the 
NC Department of Public Health to direct HIV-1/STD Field 
Services (Supplementary Figure 1). This study was approved by 
the University of North Carolina Institutional Review Board.

HIV-1 Sequences and Putative Cluster Identification

Sequences were aligned using MUSCLE [23] and manually ed-
ited to strip gapped positions. The final sequence length was 
1497 bases. Drug resistance mutations (DRMs) were identified 
using the Stanford HIV-1 Web Service (Sierra version 1.1) to 
query the Stanford HIV-1db Program [24]. Major DRMs were 
selected using the 2009 standardized surveillance list from the 
World Health Organization [25]. Non-B subtype sequences 
were identified using the Stanford HIV-1db Program and con-
firmed by the Context-Based Modeling for Expeditious Typing 
[26] tool as previously described [14].

A maximum-likelihood (ML) phylogenetic tree was
constructed in FastTree version 2.1.4 [27] under the general 
time-reversible model of nucleotide substitution. Statistical 
support for clades was assessed with local support values 
(Shimodaira-Hasegawa–like test). Putative transmission 
clusters were identified using the automated tool ClusterPicker 
version 1.3 [28]. We defined clusters as clades with high branch 
support (probability ≥0.90 by Shimodaira-Hasegawa–like test) 
and a maximum pairwise genetic distance <3.5% difference be-
tween all sequences.

Time-Scaled Clusters

Subtype B sequences identified in putative clusters in the ML tree 
were further analyzed using Bayesian Markov Chain Monte Carlo 
(MCMC) inference in Bayesian Evolutionary Analysis Sampling
Trees (BEAST) version 1.8.2 software [29]. Non-B subtypes were
evaluated in a separate analysis [14]. Sequences belonging to pu-
tative clusters were pooled in batches of <200 sequences to de-
crease computational time. Care was taken not to divide clusters
between files. Analyses were conducted using the SRD06 nucle-
otide substitution model, a log-normal relaxed molecular clock
model, and the Bayesian skyline model as coalescent tree prior.
The MCMC chains were run for 50–100 million generations
with 1–5 runs performed for each file. The BEAST log and tree
files from multiple runs were combined in LogCombiner ver-
sion 1.8.2 [29]; 10% of the generations were discarded as burn-in. 
Convergence of the estimates was considered satisfactory when
the effective sample size was >200, as calculated in Tracer ver-
sion 1.6 [30]. Maximum clade credibility trees (MCCTs) were
summarized using TreeAnnotator version 1.8.2 [29], keeping the
median height over the posterior distribution of trees. Clades with 
posterior probability ≥0.90 were considered highly supported.

The time of the most recent common ancestor (tMRCA) of 
the transmission clusters was estimated as the difference in the 
sampling date of the most recent sequence in the tree from the 
median height of the basal node of the cluster identified in the 
MCCTs. The MCCTs were further assessed for recent subclusters 
within each cluster. Clusters sized ≥3 members were considered 
“active” if the cluster included a recent subcluster, defined as in-
ternal nodes with estimated dating in the most recent 5-year sam-
pling period (2009 to mid-2014), and posterior probability ≥0.90. 
Dyads were considered “active” if the median tMRCA was ≥2009.

Identification of Clusters With High Rates of New Sequences, 2009–2014

We examined all clusters that included samples collected 2009–
2014. For each year of sampling, a proportional detection rate 
(PDR) was calculated for each cluster during a given year, j. 
We defined this as the cumulative number of clusters members 
sampled up to and including year j divided by the cumulative 
number of cases up to and during the last sampling year (i) per 
observation time between years j and i:

Proportional Detection Rate (PDR) =

∑j

0
Cluster Members�∑i

0
Cluster Members

j − i

For example, a cluster with samples from 2008 to 2012: one 
sample each in 2008, 2010, 2011, and then 4 in 2012, would have 
a PDR = 1 in 2010 (2/1 * 1/2), 1.5 in 2011 (3/2 * 1/1) and 2.3 in 
2012 (7/3 * 1/1). For active clusters ≥3 members in 2009 (base-
line), we considered a PDR of ≥2 (ie, 2-fold increase in size in 
1 year) to signify a significant change, which could bring atten-
tion to public health authorities for investigation. We evaluated 
clusters exhibiting a PDR ≥2 for any year from 2009 to 2014 for 
clusters reaching size ≥10 persons by 2014.
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Estimation of Effective Reproductive Numbers

We estimated the Re for selected individual large clusters 
(≥10 members) using the birth–death skyline serial (BDSKY) 
model in BEAST version 2.4.2 [31]. We selected large clusters 
because BEAST runs become less accurate with smaller 
clusters sizes and shorter sampling intervals. The BDSKY 
model infers changes in Re over time, thus estimating the 
average number of new infections caused by an infected 
person at a specified time during the outbreaks. The Re is cal-
culated as the median ratio of the birth and death rates and 
was estimated for individual clusters over 3 equidistant time 
dimensions. The 95% highest probability density intervals for 
Re were defined as the smallest intervals containing 95% of the 
posterior probability of the Re estimate [9]. We used a general 
time-reversible substitution model with a gamma-distributed 
rate variation and proportion of invariant sites and an un-
correlated log-normal relaxed molecular clock model. The 
BDSKY model priors were set for Re (LogNorm[0;0.5]), the 
rate of becoming noninfectious (LogNorm[1.3;1]), sampling 
rate (Beta[10;10]), and a fixed substitution rate of 3  ×  10-3 
nucleotide substitutions per site per year [32]. We estimated 
our sampling fraction as approximately 50% based on state 
surveillance reports that 28  101 HIV-1 cases are currently 
alive and residing in the state among 42 889 cases reported 
in NC from 1983 to 2013 [33]. Convergence was considered 
satisfactory when effective sample size was >200 for relevant 
parameters.

Statistical Analyses

We assessed cluster characteristics by cluster size. Dynamics 
of male-dominated (defined as >50% male members) clusters 
were compared to large clusters composed of ≥50% female 
members. All descriptive analyses were conducted using Stata 
version 13.0 software (StataCorp). We calculated assortativity 
coefficients for sex, age, and sampling region among persons 
sampled during 2009–2014 identified in active clusters using 
the igraph package in R.

RESULTS

Study Population

A total of 15  246 individuals aged ≥18  years at the time 
of initial sample collection provided 24  972 HIV-1 pol 
sequences. Of these persons, 14  921 (97.9%) had subtype 
B sequences (n  =  24  511 sequences) and were included in 
further analyses. Most persons (n = 9973 [67%]) had only 1 
available sequence. Among persons with subtype B samples, 
10  550 (70.7%) were male and 4173 (28.3%) were female 
(Table 1). The median year of the first available sequences 
was 2008 (interquartile range [IQR], 2005–2011) and the 
median age of sampled persons at the time of the first avail-
able sequence was 40 (IQR, 32–48) years. Most sequences 
(n = 10 143 [68.0%]) were sent from clinics in the Raleigh 
or Charlotte regions, the most populous regions in the state 
(Supplementary Figure 1).

Table 1.  Comparison of Characteristics of Human Immunodeficiency Virus Type 1–Infected Individuals and Their First Available Subtype B pol Sequences 
Sampled in North Carolina From 1997 to 2014, by Cluster Inclusion and Cluster Size

Characteristic 

Total (N = 14 921)
Not in Cluster 

(n = 7413)

In Cluster (n = 7508)

2 Members 
(n = 2452)

3–9 Members 
(n = 3994)

10–36 Members 
(n = 1062)

No. (%) No. (%) No. (%) No. (%) No. (%)

Sex (n = 14 732)

  Male 10 550 (71.7) 5169 (71.0) 1651 (68.0) 2882 (72.8) 848 (80.6)

  Female 4173 (28.3) 2115 (29.0) 776 (32.0) 1078 (27.2) 204 (19.4)

Age, y 

  ≥35 10 107 (67.7) 5670 (76.5) 1706 (69.6) 2304 (57.7) 427 (40.2)

  <35 4814 (32.3) 1743 (23.5) 746 (30.4) 1690 (42.3) 635 (59.8)

Sample year 

  2009–2014 6874 (46.1) 3000 (40.5) 1066 (43.5) 2120 (53.1) 688 (64.8)

  2003–2008 5993 (40.2) 3077 (41.5) 1046 (42.7) 1528 (38.3) 342 (32.2)

  1997–2002 2054 (13.8) 1336 (18.0) 340 (13.9) 346 (8.7) 32 (3.0)

Region of sampling 

1 – Asheville/Western 727 (4.9) 385 (5.2) 145 (5.9) 172 (4.3) 25 (2.4)

2 – Charlotte 3776 (25.3) 1856 (25.0) 634 (25.9) 1052 (26.3) 234 (22.0)

3 – Winston-Salem  1069 (7.2) 612 (8.3) 163 (6.7) 258 (6.5) 36 (3.4)

4 – Raleigh  6367 (42.7) 3054 (41.2) 1013 (41.3) 1724 (43.2) 576 (54.2)

5 – Fayetteville 1174 (7.9) 547 (7.4) 196 (8.0) 324 (8.1) 107 (10.1)

6 – Greenville 1066 (7.1) 585 (7.9) 158 (6.4) 296 (7.4) 27 (2.5)

7 – Wilmington 742 (5.0) 374 (5.1) 143 (5.8) 168 (4.2) 57 (5.4)

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz176#supplementary-data


Characteristics of Transmission Clusters

From the initial ML tree, 2283 putative transmission clusters 
were identified among the 14 921 subtype B sequences from 
unique individuals. These clusters included 7560 (50.7%) 
individuals. Only 52 (0.7%) sequences identified in the pu-
tative ML clusters were not in clusters with posterior proba-
bility >0.9 (n = 29 clusters) in the BEAST analysis. Nine of the 
ML clusters (34 persons) were broken down into 10 smaller 
clusters in the BEAST analysis (24 persons) with high pos-
terior probability support; the remaining 10 persons were 
considered not clustered. Another 20 BEAST clusters had 
low posterior probability support (all 2–3 members) and 
were excluded (42 persons). The final BEAST trees included 
7508 (50.3%) sequences in 2264 clusters with posterior prob-
ability >0.9. We identified 1227 dyads (54.2%), 963 clusters 
of 3–9 persons (42.5%), and 74 (3.2%), large clusters (≥10 
members); median cluster size was 2 (IQR, 2–4) members 
(Supplementary Table 1).

Characteristics of nonclustered persons differed substan-
tially from characteristics of those identified in BEAST clusters  
(Table 1). A similar proportion of nonclustered persons and per-
sons in dyads were male (71.0% vs 68.0%), compared to 80.6% 
of persons in large clusters. A large proportion of those not in 
clusters (76.5%) were ≥35 years of age at the time of sequencing, 
while the proportion of those <35 years of age increased with 
cluster size. Nonclustered individuals also tended to have earlier 
sequence sampling years than those in clusters.

Phylodynamics and Detection of Active Clusters

The vast majority of clusters of all sizes had estimated tMRCA 
dated prior to 2010; just 5.7% of dyads and 1.1% of clusters of 
3–9 members had estimated tMRCA dates between 2010 and 
2014. All large clusters had a tMRCA estimated before 2010. 
Of the 74 large clusters (≥10 members), 58 (78.4%) were male-
dominated (>50% male members) and 16 (21.6%) were com-
posed of ≥50% female members (Figure 1). Male-dominated 
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Figure 1.  Distribution of large clusters (≥10 members; n = 74 clusters) among 2264 subtype B clusters identified among 14 921 persons with HIV-1 pol sequences sampled, 1997–
2014. Each cluster is a horizontal line on the y-axis. The x-axis indicates the number of samples (only the first per person) by sampling year. The cross (+) indicates the time of the 
most recent common ancestor (tMRCA) of the cluster, as estimated in BEAST version 1.8. Color gradient indicates the percentage of samples in each cluster per year from women.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz176#supplementary-data


and ≥50% female clusters had similar median cluster sizes (13 
[IQR, 11–17] vs 13 [IQR, 10–15] members). Male-dominated 
clusters had more recent introduction (median year of tMRCA: 
1999 [IQR, 1995–2002] vs 1996 [IQR, 1993–1997]) and shorter 
time spans (15  years [IQR, 12–19] vs 18  years [IQR, 16–19] 
compared to clusters ≥50% female.

We assessed recent subclusters within each cluster defined as 
a highly supported internal node dated between 2009 and 2014, 
the most recent sampling period. The median year of the most 
recent internal node among clusters was 2003.5 (IQR, 1984.6–
2007.3). In total, 12.7% clusters (288/2264) had recent nodes 
from 2009 to 2014. Of the 10 largest clusters (≥20 members), 8 
(80%) had recent subclusters, indicating relatively recent cluster 
expansion. Clusters with a recent internal node were defined as 
active clusters.

Cluster Composition and Assortativity of Active Clusters 2009–2014

Of 2264 clusters, 1639 (72%) contained at least 1 sequence 
sampled between 2009 and 2014. However, more than two-
thirds (n  =  1351 [68%]) of these clusters were more likely to 
be historical, containing no internal nodes after 2008. Cluster 
characteristics associated with these active and historical 
clusters were evaluated. As expected, active clusters compared 

to historical clusters are larger (63% vs 47% have 3–9 members 
and 12.9% vs 2.7% have ≥10 members), contain more younger 
persons (37% vs 14% are composed of >50% persons under 
30 years), and are majority male (73% vs 58%) (Supplementary 
Table 2).

We assessed the sex and age distributions of the 288 active 
clusters and evaluated rates of detection of additional new 
sequences in the 2009–2014 sampling period. Cluster compo-
sition differed substantially by cluster size among the 288 ac-
tive clusters (Tables 2 and 3). More than half of dyads (52.9%) 
contained at least 1 woman, while larger clusters were dominated 
by men. Overall, 51% of clusters (147/288) contained only men. 
However, nearly half of clusters (49%) involved women. Among 
the 1306 persons in these 288 active clusters, the assortativity 
coefficient r was 0.37 for sex, 0.43 for age, and 0.47 for sam-
pling region, indicating assortative mixing of these characteris-
tics (r = 1 indicates perfect assortativity). However, assortativity 
differed by cluster size, where dyads were nonassortative by sex 
(r = –0.08) (Table 2).

Large Clusters With High PDR, 2009–2014

Among all active clusters (n = 288), there were 110 (38.2%) that 
more than doubled in size in 1 year from 2009 to 2014 (PDR ≥2/

Table 2.  Characteristics of 288 “Active” Clusters That Involve Recent Internal Nodes (2009–2014), by Cluster Size

Cluster Characteristic

Cluster Size

2 Members (n = 70) 3–9 Members (n = 181) 10–36 Members (n = 37)

Sex

≥50% female 37 (52.9) 36 (19.9) 5 (13.5)

>50% male 33 (47.1) 145 (80.1) 32 (86.5)

Female members

  0 33 (47.1) 99 (54.7) 15 (40.5)

  ≥1 37 (52.9) 82 (45.3) 22 (59.50)

Male members

  0 5 (7.1) 3 (1.7) 0 (0)

  ≥1 65 (92.9) 178 (98.3) 37 (100)

Age <30 y (>50%)

  Yes 13 (18.6) 72 (39.8) 21 (56.8)

  No 57 (81.4) 109 (60.2) 16 (43.2)

Cluster detection, 2009–2014

  New 70 (100) 86 (47.5) 3 (8.1)

  Expanding 0 (0) 95 (52.5) 34 (92)

Cluster size in 2009, median (IQR) 0 (0) 1 (0–1) 4 (2–5)

Sequences 2009–2014, median (IQR) 2 (2–2) 4 (3–5) 11 (9–13)

Rate cluster size increasea … … 2 (1.5–2.5) 3.5 (1.5–7)

tMRCA, median year (IQR) 2010 (2010–2011) 2002 (1999–2006) 2001 (1998–2003)

Cluster time span, y, median (IQR) 2.1 (1.3–2.9) 10.8 (7.6–13.8) 13.1 (11.3–15.6)

Assortativity coefficient

  Sex –0.08 0.36 0.37

  Age 0.72 0.46 0.37

Region of sampling 0.65 0.44 0.48

Data are presented as No. (%) unless otherwise indicated.

Abbreviations: IQR, interquartile range; tMRCA, time of the most recent common ancestor.
aRate increase during 2009–2014 for expanding clusters. Calculated as number of new sequences detected in clusters 2009–2014 / size baseline cluster (in 2009).
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year). Of these, 27 of 110 (24.6%) were dyads, 68 of 110 (62.8%) 
contained 3–9 members, and 15 of 110 (13.6%) contained 10–36 
members by 2014. For active clusters, the median PDR was 1.25 
(IQR, 0.83–1.6) per year compared to historical clusters where 
the median was lower at 0.75 (IQR, 0.4–1.3) per year.

Of the 15 clusters with high PDR, and size ≥10 members by 
2014, all were male dominated (Figure 2A). Large, high PDR 
clusters averaged 1.5 members (range, 0–5) at baseline (2009) 
and the mean maximum PDR per cluster was 2.7 per year. All 
of these clusters originated before 2007 and most were homog-
enous by sampling region (Figure 2B). Re estimates for these 
clusters rarely fell below 1 and generally remained stable around 
1 with occasional fluctuations (Supplementary Figure 3). The 
median Re was around 1 for most clusters for the most recent 
time interval (Figure 2A), which spanned an average of 3 years 
(from 2011 to 2014). One large cluster (Cluster ID 1076) had an 
increasing Re over the 3 time intervals, with the latest interval 
estimated at 1.66 (95% highest probability density, 1.03–2.50) 
(Figure 3A). Conversely, another cluster (Cluster ID 618) had 
a decreased Re (Figure 3B). The mean sampling proportion 
estimated by the birth–death model was 0.47 on average across 
the clusters; this is consistent with our estimated sampling of 
50% based on NC surveillance reports.

Large Clusters With Low PDR, 2009–2014

For further comparison of the birth–death model, we estimated 
the Re over time for the 5 largest clusters (n  ≥  20 members) 
with low PDR from 2009–2014. For all of these clusters, the Re 
declined in the third estimation time frame (Supplementary 
Figure 4).

DISCUSSION

We used a large statewide repository of HIV-1 sequence 
data with sampling extending over 15  years to identify on-
going HIV-1 transmission networks defined by phylogenetic 
clustering. We found a high degree of clustering indicating 
significant local onward transmission. Applying time-scaled 

analyses, we provide a framework to identify clusters that are 
active and estimate basic epidemiologic parameters from these 
clusters, which could be used for epidemic monitoring. Most 
large clusters examined may continue to propagate at a steady 
pace. Future work to incorporate such large-scale sequence and 
phylodynamic analyses with traditional HIV-1 surveillance (ie, 
partner notification networks, risk behaviors) may help mon-
itor the effect of interventions and direct allocation of public 
health resources.

We employed molecular clock analyses to estimate origins 
and time spans for individual clusters, revealing that the 
HIV-1 transmission dynamics of male-dominated clusters 
differed compared to clusters including at least half women. 
Overrepresentation of women in dyads and men in clusters 
likely reflects that local transmission is dominated by MSM. 
Male-dominated clusters originated more recently and tended 
to have shorter time spans. Furthermore, our prior analyses 
among clinic cohort participants failed to reveal any large 
clusters dominated by persons who inject drugs [11, 21]. Thus, 
we expect that the vast majority of clusters including women 
involve heterosexual transmission. Dynamics of heterosexual vs 
MSM transmission have been shown to differ substantially and 
similarly to our observations in other settings. In the United 
Kingdom, smaller clusters and slower transmission dynamics 
were found among heterosexual individuals compared to MSM 
[4]. However, our study reveals larger heterosexual clusters 
compared to those in European cohorts, likely reflecting mixed 
transmission dynamics in the US Southeast.

While characteristics associated with cluster membership, 
such as male sex and younger age, parallel incidence trends in 
the region [20], phylodynamic data offer important insights 
into local transmission dynamics not ascertainable through 
traditional surveillance. Phylodynamic trends lend informa-
tion on the degree of localized transmission within the region, 
giving estimates on cluster origins and time spans. Although 
most large clusters analyzed in this study originated over a 
decade before the end of the study period, a large proportion 

Table 3.  Characteristics of Persons With First Sample in 2009–2014 Who Are Members of Active Clusters

Characteristic

Cluster Size

2 Members (n = 140) 3–9 Members (n = 737) 10–36 Members (n = 429)

No. (%) No. (%) No. (%)

Sex (n = 1300)

  Male 98 (70.5) 590 (80.4) 370 (86.7)

  Female 41 (29.5) 144 (19.6) 57 (13.4)

Age, y

  <35 62 (44.3) 443 (60.1) 301 (70.2)

>35 78 (55.7) 294 (39.9) 128 (29.8)

Region of sampling 

2 – Charlotte 39 (27.9) 196 (26.6) 102 (23.8)

4 – Raleigh  54 (38.6) 302 (40.9) 231 (53.9)

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz176#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz176#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz176#supplementary-data


had increased in size since 2009. Much of this growth was 
observed among young men. However, more than half of 
these clusters also include women. Ongoing heterosexual 

transmission in these clusters may be fueled by men who 
have sex with men and women [34], although no behavioral 
data were available in our study. Nonetheless, this finding 
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Figure 2.  Distribution of clusters with high proportional detection rate (PDR) (≥2-fold increase in cluster size) between 2009 and 2014 and size ≥10 members by 2014 
(n = 15 clusters). The y-axis indicates cluster identification number. A, Number of samples per year. Color gradient indicates PDR. The effective reproductive number (Re) and 
95% credibility intervals estimated in the most recent time span (~2011–2014) is indicated for each cluster. B, Number of samples per year, by North Carolina (NC) region of 
sampling and sex.



emphasizes the importance of continued prevention efforts to 
help identify high-risk women.

We estimated the reproductive numbers of clusters based 
on HIV-1 sequence data, showing that many large clusters 
are propagating at a steady pace as of 2014. An Re around 1 
implies no significant epidemic expansion—or decline. This 
is consistent with a growing number of prevalent cases. The 
stability of the epidemic size model, applies to the number of 
infected persons not on ART (largely undiagnosed) because in 

the model, persons are considered “removed” after sampling. 
A study in Botswana [8] similarly estimated Re though among 
subtype C clusters (≥5 members; median Re ranged from 0.72 
to 1.77), suggesting that Re trends could be used to prioritize 
clusters for targeted interventions. The trend in Re over time 
may be most useful in monitoring the effect of existing pre-
vention efforts or interventions on cluster growth. Of note, 
estimated Re scores rely on both the potential for clusters to 
produce new infections and the likelihood that these infections 
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are detected and sequenced. Thus, clusters with poor sampling 
rates may show downwardly biased Re values.

A strength of this study is the likely large sampling den-
sity compared to prior phylogenetic studies conducted in the 
US, which minimizes sampling bias that can affect clustering 
interpretations [34]. Nonetheless, our observations could 
be influenced by differential sampling, particularly among 
subpopulations or within geographic regions. We defined ac-
tive clusters as those with a highly supported subcluster in the 
most recent 5-year sampling period. Thus, incomplete sam-
pling could underestimate the number of active clusters. Other 
factors associated with clustering, such as more recent sampling 
year and younger age, could be due to these groups being more 
likely to have a sequence. Other analytical approaches, such as 
source attribution methods, are less susceptible to sampling bias 
[35], and more work needs to be done to compare results with 
phylogenetic clustering.

Integration of epidemiological information would allow es-
timation of HIV-1 transmission sources and improved iden-
tification of potential intervention targets based on molecular 
analyses. We found positive—but not perfect—assortativity 
by sex, age, and region among large clusters; thus, many in-
clude exchange across these subgroups, which can inform how 
cluster-directed interventions are planned. Our analyses are 
limited by lack of information on diagnosis dates, infection du-
ration prior to sequencing, ART exposure, RNA viral loads, and 
risk behaviors. We were also only able to include viral sequences 
processed by a single reference laboratory in NC.

The Centers for Disease Control and Prevention have ex-
panded its program to evaluate HIV-1 molecular clusters na-
tionwide based on sequences reported through surveillance in 
many state health departments [36]. While HIV-1 phylogenetics 
have historically focused on retrospective datasets, these 
analyses can help plan and assess interventions [10, 37]. Such 
interventions include intense allocation of immediate ART, 
preexposure prophylaxis, and increased testing toward active 
clusters. By assessing sources of transmission among recently 
infected MSM in the Netherlands, one study found that the 
majority of recent infections could have been prevented with a 
combination approach informed by phylogenetic analyses [22].

We are currently developing an automated sequence analysis 
tool integrated with surveillance data to assess HIV-1 genetic 
clustering in NC to provide near real-time, actionable insight 
into HIV-1 transmission dynamics for the development of 
public health interventions. Reducing HIV-1 incidence requires 
earlier diagnosis, effective care linkage, and retention in care 
to achieve longstanding viral suppression. Allocating intense 
interventions toward clusters with high potential for further on-
ward transmission demonstrated by increasing Re could more 
effectively reduce HIV-1 incidence than traditional methods. 
Application of phylodynamic methods within the surveillance 
system will inform the timely development and monitoring of 

public health interventions and HIV-1 transmission trends in 
NC with methods translatable to other settings.
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