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ABSTRACT
Xu,Müller,Wahed, and Thall proposed aBayesianmodel to analyze an acute leukemia study involvingmulti-
stage chemotherapy regimes. We discuss two alternative methods, Q-learning and O-learning, to solve the
sameproblem from themachine learningpoint of view. Thenumerical studies show that thesemethods can
be flexible and have advantages in some situations to handle treatment heterogeneity while being robust
to model misspecification.

1. Introduction

There is increasing recognition that optimal therapies should
account for individual heterogeneity and be adaptive over time.
Thus, in recent clinical trials and observational studies, dynamic
treatment regimes (DTR) have drawn significant attention. We
congratulate Xu,Müller,Wahed, and Thall on their contribution
in proposing a novel applicable and competitivemethod for ana-
lyzing the clinical trial for acute leukemia involving multi-stage
chemotherapy regimes. Specifically, there is a sequence of treat-
ments beginning at induction and followed by subsequent sal-
vage therapies which depend on disease stage. The combination
of these therapies affect patient overall survival time, which con-
sists of the sum of the transition times between each involved
disease stage. To evaluate joint effects of induction-salvage ther-
apies on patient survival, Xu et al. (2016) build a Bayesian non-
parametric survival regression model, assuming a Dependent
Dirichlet Process prior with Gaussian Process (DDP-GP) base
for each transition time. The numerical results show that such
a Bayesian paradigm can produce an accurate estimate for the
joint effects of induction-salvage therapies when compared with
IPTW and AIPTW (Zhang et al. 2013). Moreover, the authors
indicate that such a model could be extended to the situation
where the therapy effect is heterogeneous in the population.
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In addition to the Bayesian methods, there are some recently
developed machine learning tools that have achieved success in
estimating individualized DTRs which are somewhat more fre-
quentist in perspective. In this article, we would like to intro-
duce two representatives, Q-learning and O-learning, and illus-
trate how they can be used to solve the same problem addressed
in Xu et al. (2016). A major advantage of these two alternative
approaches is their relaxed assumptions on the joint distribu-
tion of feature variables and clinical outcomes such as survival
time. Specifically, one does not need to model the entire pro-
cess to construct the optimal treatment regimes. ForQ-learning,
conditional expectations are modeled but not the entire pro-
cess. For O-learning, only the treatment decision boundary and
propensity score (when needed) are modeled. These reduc-
tions in modeling requirements can be significant relative to
approaches which requiremodeling of the entire process. In this
article, we investigate the performances of Bayesian DDP-GP
proposed in Xu et al. (2016), Q-learning and O-learning when
certain assumptions fail, including (1) when the treatment effect
is heterogeneous in the population and (2) when the log transi-
tion times are not Gaussian.

The article is organized as follows. In Sections 2 and 3, we
briefly introduce the general ideas of Q-learning andO-learning
and focus on how to modify them for the DTR setup in Xu et al.
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Figure . Redefinition of the Scheme under the proposed Q-learning Framework.
The states in red square boxes (i.e., initialization, resistance and progression) are the
treatment decision-making points that are used to split the two stages. Complete
remission (C) is not considered as a splitting point since no decision action can be
taken. Censoring time could happen at the end of each stage.

(2016). In Section 4, we present simulation studies comparing
the Bayesian DDP-GP model and the proposed methods when
the assumptions hold or fail. In Section 5, we apply the proposed
Q-learning to the multi-stage acute leukemia trial data.We con-
clude with a brief discussions in Section 6.

2. Q-Learning in Finding the Dynamic Treatment
Regimes

Q-learning is a reinforcement learning method that can be used
to estimate the optimal personalized treatment strategy in a
sequence of clinical decisions over time (Murphy 2003). It aims
to estimate a sequence of time-varyingQ functions by taking the
patients’ state and the clinical decision at each stage as inputs.
In the end, Q-learning returns the estimated Q function and
the corresponding optimal treatments for each stage. Next, we
present how to adapt the Q-learning to solve the DTR problems
discussed in Xu et al. (2016) and use their acute Leukemia exam-
ple for illustration.

Using similar notations as in Xu et al. (2016), we let Tk rep-
resent the transition times from the nT possible state transi-
tions and let k be one of the following transitions in the acute
Leukemia example: (0,R), (0,D), (0,C), (C,D), (R,D) , (C,P),
and (P,D). In addition, we use Z1, Z2,1 and Z2,2 to represent the
indicator of the frontline therapy, the salvage with High Dose
Ara-C (HDAC) for those having resistance and the other salvage
for those patients who first achieve a complete remission but suf-
fer progressive disease later. To explain the proposedQ-learning,
we need to clarify the definition of stages and states under our
framework. We define the end of the stage as either the decision
making time point or the failure time point. To be specific, the
first stage starts at the beginning of the study when patients are
randomly assigned to frontline therapy groups and ends when
one of the following events occur: resistance (R), progression
(P), death (D) and missing to follow-up. The reason that we do
not mark complete remission (C) as the start of the second stage
is that no decision action can be taken at this point. Figure 1

illustrates our definition above, where the states in red square
boxes are all the decisionmaking points so that the second stage
begins when either resistance or progression occurs. Further-
more, we allow data censoring to happen at the end of each stage,
that is, before resistance, before progression or before death.

Based on the defined stages in Figure 1, we introduce the
steps of a backward Q-learning strategy in finding the opti-
mal therapy at each stage. For simplicity, we only consider the
two stage setting and similarly one can extend the method for
multiple-stage situations. Starting at the second stage, we assume
that the two state transitions (i.e., (R,D) and (P,D)) are inde-
pendent of each other. In this way, treating the two transition
times T (R,D) and T (P,D) as the response, we can formulate the
optimal therapy estimation problem in Stage 2 as follows:

π̂2,1 = argmax
Z2,1

{
Q̂2R

(H1R,Z2,1)} , for the resistance group,
π̂2,2 = argmax

Z2,2

{
Q̂2P

(H1P,Z2,2)} , for the progression group,

(1)

where the two Q functions (i.e., Q̂2R and Q̂2P) are respectively
for the resistance group and progression group at the beginning
of Stage 2, and allow both of them to have either a parametric
or nonparametric form. The H1R and H1P in (1) denote all
the information at the end of the first stage for the two cor-
responding groups. They may contain the baseline covariates,
initial treatment, observed time to event during the first stage
and all the measurements at the end of the first stage. Based on
π̂2,1 and π̂2,2, we define the estimated value function at Stage
2 as V̂2 = IRD · Q̂2R(H1R, π̂2,1)+ IPDQ̂2P(H1P, π̂2,2), where the
indicator functions, IRD and IPD, indicate whether the patient is
in the resistance or progression state at the beginning of Stage
2. The quantity V̂2 indicates the expected survival time at Stage
2 for a given individual assuming that the optimal treatment is
given at Stage 2.

Once the optimal therapy is estimated for the second stage,
we consider adding the transition time at Stage 1 into the
response and then estimate the corresponding optimal treat-
ment as follows. First, we compute the pseudovalue

T̃ = IDT (0,D) + IRD
(
T (0,R) + V̂2

)
+ IPD

(
T (0,P) + V̂2

)
for each individual, where ID indicates whether the patient has
either failure or no follow-up in the first stage. LetH0 represents
all the information in baseline covariate measurements and let
d1 is the possible decision action for the first clinical stage, which
has the same parameter space asZ1 in this case. The pseudovalue
T̃ replaces the observed values of both T (R,D) and T (P,D) with
the corresponding expected times if the optimal treatment were
applied at the second stage. We then regress T̃ on H0 and d1
to obtain the estimated Stage 1 Q-function Q̂1(H0, d1). Stage 1
optimal treatment is then estimated as

π̂1 = argmax
d1

Q̂1(H0, d1). (2)

We aim to find d1 to maximize (2) and the maximal objective
value is denoted as V̂1. The base learner with the highest V̂1 value
would be desirable. For demonstration, we use linear regression



and exponential survival regression as the two base learners of
Q2R, Q2P and Q1 in the numeric studies below.

The proposed Q-learning method can be quite flexible in
certain situations. Specifically, since Q-learning does not fit the
entire process of the transitions, we do not necessarily need any
distributional assumption to build the model. Furthermore, the
base learners in either (1) or (2) do not have to be linear or para-
metric. Thus,we can chose themodelwhich fits the data the best.
For example, some nonparametric learning tools could end up
with high-prediction accuracy when the variable relationship is
complex. Such tools include random forest, boosting and kernel
methods (Hastie Tibshirani, and Friedman 2011). In addition,
the heterogeneity of the treatment effect can also be detected by
simply including the treatment-covariate interaction terms into
the Q functions at each stage.

3. O-Learning in Finding the Dynamic Treatment
Regimes

Estimating the overall treatment effect in a population is not
always necessary when detecting the optimal treatment at each
stage. Accordingly, another possible approach is one of the O-
learning extensions to dynamic treatment regimes, that is, back-
ward outcome weighted learning (BOWL, Zhao et al. 2015a).
BOWL provides a new paradigm for framing the optimal DTR
identification and formulates it into a weighted classification
problem with the clinical outcome as weights. The estimation
of BOWL proceeds backward to find the optimal treatment rule
at each stage to maximize the cumulative rewards over the sub-
sequent time. To apply BOWL to solve the problem discussed in
Figure 1, we need to modify the steps by introducing the indi-
cator functions used in the Q-learning approach above. Specifi-
cally, we first write the BOWL algorithm for the second stage as

f2R = argmin
f

En

[
T (R,D)φ(Z2,1 f (H1R))

π2,1(Z2,1,H1R)
+ λ2‖ f ‖2

]
,

for the resistance group,

f2P = argmin
f

En

[
T (P,D)φ(Z2,2 f (H1P))

π2,2(Z2,2,H1P)
+ λ2‖ f ‖2

]
,

for the progression group, (3)

where the surrogate loss function φ(t ) = max(1 − t, 0), En
denotes the empirical mean over the sample, π2,1(z,H1) =
Pr(Z2,1 = z|H1), π2,2(z,H1) = Pr(Z2,2 = z|H1), ‖ · ‖2 deno-
tes the square of L2 norm, and λ2 is the tuning parameter that
controls model complexity. After the classifiers f2R and f2P
are obtained, the corresponding estimate of the optimal treat-
ment rule for the second stage, d2, can be calculated through
d̂2(H1) = IRD · I( f2R(H1R) > 0)+ IPD · I( f2P(H1P) > 0).
Based on d̂2, we have the classifier for the first stage as

f1 = argmin
f1

En

[(
ID

T (0,D)

π1(Z1,H0)

+ IRD
I(Z2,1 = d̂2(H1)) · (T (0,R) + T (R,D))

π1(Z1,H0)π2,1(Z2,1,H1)

+IPD
I(Z2,2 = d̂2(H1)) · (T (0,P) + T (P,D))

π1(Z1,H0)π2,2(Z2,2,H1)

)

·φ(Z1 f1(H0))+ λ1‖ f1‖2
]
, (4)

where π1(z,H0) = Pr(Z1 = z|H0), and λ1 is the tuning
parameter controlling model complexity of (4). We obtain
the estimate of the optimal treatment rule d1 for Stage 1 via
d̂1(H0) = I( f1(H0) > 0). Essentially, BOWL aims to assign
the patients having good clinical outcome to the same treatment
they received and to assign the opposite treatment otherwise.
The advantage of the adjusted BOWL is that its estimate is
obtained under a nonparametric framework, so that BOWL can
effectively handle the potentially complex relationships between
sequential treatments and prognostic variables at each stage.

So far, the adjusted BOWL cannot be used directly for
data with censoring. However, one can develop such an exten-
sion by estimating the distribution of censoring times in each
stage as Zhao et al. (2015b) has done in the single stage sce-
nario. In this article, we do not cover such an extension but
only apply BOWL to simulated datasets which do not have
censoring.

4. Simulation Studies

In this section, we compare the DDP-GP Bayesian model in Xu
et al. (2016) with the adjusted Q-learning and O-learning intro-
duced in Sections 2 and 3. Specifically, forQLearning,we choose
two popular base learners for the Q function: linear regression
(Q-learn-1 in Table 1) and exponential survival regression (Q-
learn-2) with the transition times as the response, as described
previously. We include all the interaction terms between treat-
ments and baseline covariates at each stage. To make a fair com-
parison, in addition to the original DDP-GP Bayesian model
(DDP-GP-1), we also implement a modified version which has
these interaction terms in the mean structure (DDP-GP-2). In
the O-learning implementation, we treat both f1, f2R, and f2P
as linear classifiers for simplicity. Also for simplicity, we do not
include censoring in the simulations.

We consider four simulation scenarios arising from Simula-
tion 4 of Xu et al. (2016). First, we add a new variable S and con-
sider both situations where the true model either includes or
exclude interactions between S and the salvage treatment with
HDAC. Second, we discuss the scenarios when the underlying
Gaussian distribution assumption fails for the log survival time
to examine model robustness against distribution misspecifica-
tion. In addition, since the proposed O-learning is not yet capa-
ble of handling censoring, we always let the transition events
happen before censoring for all the patients. In each simula-
tion setting, we generate a single, fixed population set of size
N = 2000 and then sample n = 200 training observations from
this population 50 times. For each such sample, the selected
methods are applied to the generated sample and then used to
predict the optimal treatment for both the sample and the pop-
ulation. The model performance is then evaluated by the esti-
mated value function V̂1 for the combined sample and popula-
tion groups. We now introduce the setting details for the four
simulation cases as follows.



Simulation 1a: Gaussian distribution with no interaction
term. Similar to Simulation 4 in Xu et al. (2016), we first
generate the patients’ baseline blood glucose L and the
new baseline subgroup indicator S as Li ∼ N(100, 102) and
Si ∼ Bernoulli(p = 0.5) for i = 1, . . . ,N. It is clear that neither
of these two variables is time dependent. In the first stage, we
randomly assign patients into one of the induction therapy
groups Z1 ∈ {0, 1}. The transition times of the competing
risks R and C are generated by T (0,R)i ∼ LN(β(0,R)x(0,R)i , σ 2)

and T (0,C)i ∼ LN(β(0,C)x(0,C)i , σ 2) where β(0,R) = (2, 0.02, 0),
β(0,C) = (1.5, 0.03,−0.8), σ = 0.3 and x(0,R)i = x(0,C)i =
(1, Li,Z1

i ). Similarly, for the next three possible transitions
for which k ∈ {(R,D), (C,P), (P,D)}, we generate the transi-
tion time Tk

i ∼ LN(βkxki , σ 2) with coefficients to be β(R,D) =
(−0.5, 0.03, 0.2, 0.5, 0.3, 0, 0), β(C,P) = (1, 0.05, 1,−0.6) and
β(P,D) = (0.8, 0.04, 1.5,−1,−1,−0.5, 0). The corresponding
covariate vectors are x(R,D)i = (1, Li,Z1

i , logT
(0,R)
i ,Z2,1

i , Si, Si ·
Z2,1), x(P,D)i = (1, Li,Z1

i , logT
(0,C)
i , logT (C,P)i ,Z2,2

i , Si · Z2,2
i )

and x(C,P)i = (1, Li,Z1
i , logT

(0,C)
i ). One can tell that in this case,

the new factor Si is not influential on the treatment selection at
all.

Simulation 1b: T distribution with no interaction term. The
only difference between Simulation 1b and Simulation 1a is
that all the error terms of the log survival time in each stage
are changed from being Gaussian distributed to being t dis-
tributedwith degrees of freedom10. For example, under this set-
ting, logT (0,R)i = β(0,R)x(0,R)i + εi where εi ∼ t(d f = 10). All
the underlying coefficients remain the same.

Simulation 2a: Gaussian distribution with interaction terms.
Compared with Simulation 1a, the only change made in
this case is to include the nonzero underlying interaction
coefficients. Specifically, we have the underlying coefficients
as β(0,R) = (2, 0.02, 0), β(0,C) = (1.5, 0.03,−0.8), β(R,D) =
(−0.5, 0.03, 0.2, 0.5, 0.3, 0,−0.5), β(C,P) = (1, 0.05, 1,−0.6)
and β(P,D) = (0.8, 0.04, 1.5,−1,−1,−0.5, 1). Such a setting
introduces a heterogeneous treatment effect caused by the dif-
ferent values of Si in the second stage for both resistance and
progression groups. For example, according to the new β(P,D),
one can tell that the HDAC therapy will only help increase the
survival time of those patients undergoing progressionwhohave
Si = 1 at baseline.

Simulation 2b: T distribution with interaction terms. The dif-
ference between Simulation 2b and Simulation 2a is similar to
that between the first two simulations, that is, all the error terms

for the log survival times are now changed from being Gaussian
distributed to being t distributed with degrees of freedom 10.

The predicted optimal value function, that is, V̂1, for all
the selected models is presented in Table 1 for both the
samples and populations. Higher values indicate better out-
comes from the treatment regimes being estimated. For simu-
lation 1a, the five selected methods perform similarly in terms
of the expected value function while the modified DDP-GP
model has a larger variance compared to the predicted opti-
mal Q functions. When the Gaussian distribution assumption
no longer holds in Simulation 1b, both of the DDP-GP mod-
els and Q-learning with exponential survival regression come
up with lower expected value function. This decrease in perfor-
mance could originate from the improper assumptions on the
transition time distribution. When the true model contains the
treatment–covariate interaction terms—and thus the optimal
treatment varies from patient to patient—neither the original
DDP-GP nor the modified DDP-GP models perform as well
as the remaining three models. The Q-learning with exponen-
tial survival model achieves the highest average value function
in this case. This performance may indicate that minor para-
metric model misspecification may not be a severe problem
for Q-learning. In the last setting, where the Gaussian assump-
tions no longer hold but treatment–covariate interaction terms
are present, the O-learning performs best. Generally speak-
ing, Q-learning and O-learning appear to perform better under
modelmisspecification, whileO-learning appears to be themost
robust tomodelmisspecification but perhapsmore variable than
Q-learning.

5. Application to the Leukemia Trial Regimes

Due to the censoring issue as mentioned early, we only apply Q-
learning illustrated in Section 2 to the Leukemia clinical trial
regimes dataset in Xu et al. (2016). Although BOWL can be
extended to censored data, this is beyond the scope of the cur-
rent article. We choose the exponential survival regression as
the base learner. In contrast to Xu et al. (2016), we let both
H1 and H0 further contain the interaction term between the
baseline age and therapy. As a consequence, we find that both
interactions of (Z2,1, age) and (Z2,2, age) are statistically sig-
nificant under an α = 0.1 significance level when implement-
ing the second stage Q-learning. According to the estimated
coefficients, we find that for patients suffering resistance, the

Table . Simulation Studies: The estimated value function for sample and population (Pop.) including means and the corresponding standard deviations (in parentheses)
over the  replicates. The true model column represents the situation where we plug in the true coefficients and true optimal treatment to calculate the value function;
DDP-GP- and DDP-GP- stand for the situations where the Bayesian DDP-GP model excludes and includes the interaction terms; Q-learn- and Q-learn- denote the cases
when we use Q-learning with linear regression and exponential survival regression as the base learner.

Cs Stat. True Model DDP-GP- DDP-GP- Q-learn- Q-learn- O-learn

a Sample . (.) . (.) . (.) . (.) 7.19 (0.04) . (.)
Pop. . () . (.) . (.) . (.) 7.17 (0.02) . (.)

b Sample . (.) . (.) . (.) 6.98 (0.12) . (.) . (.)
Pop. . () . (.) . (.) 6.99 (0.11) . (.) . (.)

a Sample . (.) . (.) . (.) . (.) 7.57 (0.07) . (.)
Pop. . () . (.) . (.) . (.) 7.55 (0.06) . (.)

b Sample . (.) . (.) . (.) . (.) . (.) 6.87 (0.20)
Pop. . () . (.) . (.) . (.) . (.) 6.73 (0.21)



Table . Application of Q-learning with exponential survival regression to the
Leukemia Trial Regimes: selected coefficient estimates in Stage . Z2 represents Z2,1
for the resistance group and Z2,2 for the progression group.

Group Resistance Progression

Terms Estimate Std Estimate Std
Z2 . . . .
Z2 · age −. . −. .
age −. . −. .

Table . Application of Q-learning with exponential survival regression to the
Leukemia Trial Regimes: selected coefficient estimates in Stage . For the treatment
Z1 , the level ,,, indicate FAI, FAI+ATRA, FAI+GCSF, FAI+ATRA+GCSF respectively
and we choose level FAI as the reference.

Terms Z1 Z1 · age Age

Treatment Level       –
Estimate − . − . − . . . . − .
Std . . . . . . .

HDAC group always has a longer survival time than the non-
HDAC group, which is consistent with the discoveries of Xu
et al. (2016). For the patients suffering progression in the sec-
ond stage, however, Q-learning finds that theHDACwould only
be effective for the young age group (those patients younger
than 22 years old approximately). In the first-stage implemen-
tation, Q-learning draws a similar conclusion as in the sec-
ond stage in that the interaction between the therapy Z1 and
age is statistically significant when controlling for the cytoge-
netic abnormality level. The estimated coefficients show that
FAI+ATRA would be the best therapy in the younger age
group (<54) while FAI+GCSF would be the optimal therapy
for the older age group. This conclusion is slightly different
from the one drawn by only considering treatments main effect
(Figure 8 in Xu et al. (2016)) but seems to be implied by Figure 6
in Xu et al. (2016). The Q-learning value function estimate indi-
cates that it is possible to increase the average survival time by
81 days by assigning the estimated optimal treatment. We dis-
play the coefficient estimates for the treatment factor, age and
their interactions in Table 3 (Stage 1) and Table 2 (Stage 2).

6. Discussion

In summary, the Bayesian DDP-GP model can perform very
well when the distribution assumptions hold and the model
specification is correct according to the numeric examples. In
practice, onemight also need to pay attention to the cases where
some exceptions to themodel assumptions happen, and in these
settings the proposed Q-learning and O-learning methods are
good alternatives. In particular, O-learning focuses on finding
a decision treatment rule to maximize an objective function
which reflects the benefit of using such a rule. According to its
algorithm, O-learning does not calculate the overall treatment
effect directly as is done in the Bayesian DDP-GP model. Q-
learning concentrates on maximizing the cumulative reward by
specifying the relationship between the Q-function and treat-
ment at each stage. On the one hand, both O- and Q- learn-
ing methods can have more flexible model specifications and
do not depend on assumptions regarding the response distri-
bution. On the other hand, since the Bayesian DDP-GP model
aims tomake inference based on the posterior distribution of the
estimate, it can additionally conduct tests of the null hypotheses

of treatment effects and thus control type-I error as long as the
distribution assumptions hold. This makes power analysis and
sample size calculation more straightforward. In contrast, sam-
ple size computations for Q-learning and O-learning are more
complicated and the increased model flexibility may necessitate
larger sample sizes to achieve the same power. Subgroup analy-
sis, which aims to identify subgroups of patients with enhanced
treatment effects, may be viewed as an intermediate method for
assessing treatment effects and facilitating power analysis and
sample size calculations (Yusuf et al., 1991; Brookes et al., 2004;
Rothwell, 2005; Shen and He, 2015; Fan, Song, and Lu 2016).

We would also like to point out some recent literature for
dynamic treatment regimes for survival outcomes. Goldberg
and Kosorok (2012) developed Q-learning for right-censored
data when the censoring is completely independent of both
the failure time and patient covariates. Jiang et al. (2015)
developed optimal dynamic treatment regimes for maximizing
t-year survival probability. Bai et al. (2015) considered optimal
dynamic treatment regimes for survival endpoints using locally-
efficient, doubly-robust estimators from a classification perspec-
tive.While extremely promising, some barriers to general use of
thesemethods in practice remain, warranting the need for ongo-
ing research.
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