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1. Introduction

We are very grateful for all of the discussants and their com-
mentswhich have been constructive and idea-provoking.We are
pleased that our work has been recognized as an important con-
tribution to statistical methodology in personalized medicine
research, and we are grateful for the opportunity to respond
briefly to the comments of the discussants. We recognize that
there are numerous important insights and questions raised
by the discussants, and we regret that we are unable to ade-
quately address each and everyone one of them. However, we
have endeavored in what follows to highlight and providemean-
ingful responses to most of the main points raised. In Section 2,
we respond to each of the discussion comments separately, and
then we provide a few concluding thoughts in Section 3.

2. Response to Discussant Comments

Our responses to each of the discussant comments are ordered
alphabetically by lead author.

Comments from Drs. Cai and Tian. Drs. Cai and Tian suggest
a nonparametric approach to estimate the value associated with
a given dose rule f (X ), wherein they first estimate the condi-
tional mean of R given A = f (X ) and f (X ) through a bivari-
ate kernel-smoothed regression estimator then search for the
optimal f (X )maximizing this conditional mean. Alternatively,
in our approach, we directly estimate the value function using
V̂φ( f ), which was defined as

n−1
n∑

i=1

Ri

2φp(Ai|Xi)
min

{
φ−1|Ai − f (Xi)|, 1

}
so entailed only one level of approximation. Comparatively, Cai
and Tian’s method should provide a more accurate approxi-
mation to the value function due to a finer approximation at
each subgroup level, where the subgroup is defined by treatment
assignment and rule assignment; however, using bivariate ker-
nel smoothing potentially increases the variability compared to
a single kernel approximation. Numerically, when the dose rule
of interest is quite far from the dose assignment, the denomina-
tor of μ̂a in their method is likely to be close to zero, leading to
potentially unstable computation in the value estimation.

The two-stage regression method, as suggested by Drs. Cai
and Tian, provides a straightforward way to estimate the IDR
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value function. However, such a method requires (1) that the
user has a strong belief in the given regression model to truly
explain the relationship between (A,X ) and R, and (2) that
the solution to the optimal treatment based on this regression
model is computationally feasible. As indicated in our article,
and in the numerical studies presented therein, because of (2), a
quadratic function is often assumed for the regression model.
Note that by Taylor expansion, LASSOM2 is very close to the
true nonlinear model in Scenario 2, and hence performs well.
However, a misspecified model, such as LASSOM1, leads to the
inferior performance in Scenario 2. On the other hand, it is not
uncommon for one to wish to tailor the dose based on high-
dimensional training data such as genomic data. The following
example, given in Table 1, shows that LASSOM2 is less resilient
in high-dimension than O-learning. Specifically, under a simi-
lar setting to Scenario 2 but with a higher dimension (d = 100),
a modified O-learning method (using weighted reinforcement
learning trees (Zhu, Zeng, and Kosorok 2015)) performs better
than LASSOM2.

Drs. Cai and Tian also presented an interesting idea to learn
an ordered scoring system when the dose has K fixed levels, a
discrete approximation to the continuous case. They first esti-
mated a continuous score function Ŝ(X ) via minimizing some
surrogate L2-loss function; then obtained a discrete dose rule
by searching for cut-off points of Ŝ(X ) which maximizes the
empirical value function as much as possible. We note that this
two-stage estimation approach can be reformulated into a single
maximization problem:

max
K∑

k=1

n∑
i=1

RiI(Ai = ak)I(ck−1 < f (Xi) ≤ ck)

subject to c0 = −∞ < c1 < c2 < · · · < cK−1 < cK = ∞, which
is equivalent to

max
K∑

k=1

n∑
i=1

Ri {I(Ai = ak)− I(Ai = ak−1)} I( f (Xi) > ck−1)

subject to c1 < c2 < · · · < cK−1. It is easy to show that this opti-
mization is equivalent to

max
K∑

k=1

n∑
i=1

RiI(Zik( f (Xi)− ck) > 0) subject to c0

= −∞ < c1 < c2 < · · · < cK−1 < cK = ∞,
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Table . Average value from  replicates for Scenario  with dimension d = 100.

n LASSOM2 O-learning

 . (.) 3.08 (0.17)
 . (.) 4.81 (0.20)

where Zik = {I(Ai = ak)− I(Ai = ak−1)} .Hence, we may con-
sider this optimization as a weighted classification problemwith
linear constraints. The latter restricts certain parameters to a
cone. Thus, when using the hinge-loss as a surrogate loss, we
can show that the dual problem remains a quadratic program-
ming problemwith linear constraints, which can be solved read-
ily using existing software packages.

Comments from Drs. Fan and Yuan. Drs. Fan and Yuan
suggest using a more smooth kernel approximation for the
empirical value function rather than the triangle kernel we use
in our article (which is a little different than the Mexican hat
kernel). Their small simulation study indicates potential gains in
terms of the value estimation.We certainlywelcome this effort to
further improve the value approximation; however, we caution
that a price may need to be paid for computation when using a
smoother kernel approximation. For example, using H4(z), the
optimization problem with a linear dose rule becomes equiv-
alent to optimizing a truncated polynomial of the sixth order.
Thus, we will no longer enjoy the flexibility of the DC algorithm
and quadratic programming implementation at each iteration of
the algorithm as we were able to do in our article.

Regardless of which kernel function is used in the value
approximation, one challenging persistent issue is the choice of
the bandwidths. As indicated in our article, there is no gold stan-
dard for choosing the bandwidth empirically. What was sug-
gested in our articlewas to choose a bandwidth forwhich further
reduction of the bandwidthwas unlikely to lead to a higher value
empirically. The rationale behind this was that a smaller band-
width should lead to amore accurate optimal treatment rule due
to less bias in the approximation to the value function. It would
be interesting to further explore the challenging issues of finding
data-adaptive bandwidths and how the choice of the bandwidth
depends on different choices of kernels.

Comments from Drs. Luedtke and van der Laan. Drs. Luedtke
and van der Laan present a number of interesting results, only
a few of which can we address here. To begin with, they show
that faster convergence rates, even nearly n−1, can be obtained
using the plug-in method, that is, the optimal dose rule is first
estimated using Q-learning and then this result is plugged into
the value estimator (this approach is also sometimes called the
“indirect” approach). Smoothness assumptions were required to
obtain these results, including differentiability of the Q-learning
functions and the value functions as well as a certain concavity
property of the value function. As also discussed, one advan-
tage of our proposed method is its robustness against possi-
ble model misspecification of the Q-learning model, but at the
price of a potentially slower convergence rate. These compar-
isons between our method and the plug-in method are illumi-
nated in the simulation studies presented in our article.

Robustness and efficiency are ever-present conflicting trade-
offs in statistical learning. Cross-validation has been suggested
as a way of resolving this conflict for the super learner developed
by Drs. Luedtke and van der Laan. However, as discussed in our

article, this cross-validation approach may not be applicable in
the continuous dose finding setting, because the probability of
observing A = f (X ) for a given dose rule f is zero. Thus, some
caution needs to be taken when using the super-learner method
in this context, but this approach is certainly worth investigating
further. One alternative technique which could also be explored
is an analogue to the one-step Newton–Raphson method in
semiparametric inference: one could start with our method to
obtain an initial dose rule, which is expected tomaintain robust-
ness to model misspecification and would thus be consistent
(but with a slow convergence rate); one could then apply the Q-
learning method via a one-step Newton–Raphson iteration to
solve the score equation from the Q-learning model. Under cer-
tain smoothness conditions, we expect that the latter could lead
to a faster convergence rate, since, in the semiparametric con-
text, this approach can result in an n−1/2 convergence rate for
parameter estimation even if the initial estimator has a conver-
gence rate only slightly faster rate than n−1/4.

Comments from Dr. Moodie. Dr. Moodie presents very inter-
esting and insightful thoughts on how practical treatment allo-
cations in observational studies, such as dosage levels in the
Warfarin study,might carry useful information onoptimal treat-
ment strategies. Her simulations and analyses reveal a surprising
finding that G-estimation without using outcome information
can sometimes lead to nearly optimal treatment strategies.

It is well known that treatment allocations in observational
studies are not random and, most likely, clinicians and doc-
tors prescribe the treatments which they think are “most ben-
eficial” to patients. However, such “most beneficial” treatments
may or may not actually be the most beneficial. First, treatment
prescription correctness is limited by the knowledge or experi-
ence of clinicians and doctors; for example, what is perceived
as the best could be based on a limited list of drugs or doses
which they have used in the past, or a limited number of patients
they have seen recently, or an incomplete understanding of the
underlying drug–disease mechanisms. Indeed, in Dr. Moodie’s
simulation studies, for the scenarios where the proportion of the
patients actually treated optimally is not high, naive estimation
of optimal treatment strategies by ignoring outcome informa-
tion can lead to very biased results. Second, in observational
studies, it is impossible to know what other significant factors
influence which drugs patients actually take. They can be based
on patient preference, cost of insurance claims, or even the influ-
ence of other patients or social media. Therefore, perception of
the “most beneficial” treatment actually received in practice can
be misleading.

On the other hand, in situations where the mechanism of
treating diseases is largely understood, such as seems to be the
case with the Warfarin study, one can believe that the actual
treatment allocation is close to optimal. Such a belief can be
incorporated into the analysis of estimating optimal treatment
regimes, including in our dose finding method. A conceptual
solution to this could be the following: we first start from the
standard propensity score approach to control the observational
nature of treatments and then apply either G-estimation or O-
learning to learn the optimal treatment rule, say f̂ (X ). We then
refine the treatment propensity scores through some regulariza-
tion so that the updated treatment propensity score is high if the
actual treatment allocation is close to f̂ (X ).



For example, suppose that we fit a logistic regression model
to estimate the propensity of binary A given feature variables X .
We can then consider the following regularized estimation:

n∑
i=1

{
Aiβ

TXi − log(1 + eβ
TXi )

}
+ λ

n∑
i=1

(βTXi − f̂ (Xi))
2.

Note that the second term in the above forces the updated
propensity score estimates to be not far from the preliminary
estimate of the optimal treatment strategy when λ is large. In
other words, if we have a strong belief that the actual treatment
allocation is close to optimal, we can use a large λ to incorpo-
rate this belief to refine the estimation of the propensity scores,
which reduces the bias of the final optimal treatment estima-
tion. Alternatively, instead of the two-step approach, we may
consider directly including this belief in the value optimization.
For example, we could replace the objective function (where we
assume for this discussion thatAi is dichotomous) inO-learning
by

n∑
i=1

RiI(Ai f (Xi) < 0)/π̂i + λ

n∑
i=1

I(Ai f (Xi) ≥ 0),

where π̂i is the estimated propensity score, and the second term
forces the derived rule to be close to the actual treatment rule.

Finally, we appreciate the comment that we should be aware
of the dangers of trying to evaluate or compare competingmeth-
ods using observed treatment as a proxy for optimal treatment.
The ideal way to do this would be through conducting a future,
large-scale, and confirmatory study, while simultaneously seek-
ing to understand the true underlying biological mechanisms.

Comments from Dr. Ogburn. Dr. Ogburn’s discussion
addresses practically important issues of generalizability
and surrogate outcomes in the context of dynamic treatment
regimes. She provides a complete review of recent work using S-
admissibility in causal DAGs for evaluating generalizability and
makes several useful suggestions for extending the definition of
consistent surrogates to more complicated settings, including
to continuous treatment dosing. Regarding this generalizability,
we agree that when we really want to generalize the derived
optimal treatment rule from population 1 to population 2,
sampling selection should be independent of the potential
outcomes in the two populations, and treatment assignments in
the final group should be defined using all the effect modifiers.
This can be achieved by including P(S = 1|X,W ) as part of the
effect modifier, even though there may not exist such an effect
modification involving the sample selection score.

Note that the covariate density discrepancy between the
training (1) and target (2) population is also called the “data
shift.” The data drift problem can be alleviated by incorporating
sampling weights (estimated fromnonparametricmethods such
as kernel mean matching, (Gretton et al. 2013)) when building
the model using the training data. The idea is that the weighted
covariate density of the training datawillmimic that of the target
population. An important problem pointed out by Dr. Ogburn,
which is relevant to this, is to identify a set of covariates that
suffice to generalize the optimal treatment effects, which can be
the ones predicting sample selection, treatments, and potential

outcomes. Certain penalization methods could be used for this
purpose.

For continuous dose selection, we believe that a consistent
surrogate should be able to preserve ranking of the true out-
come. In other words, E[G|A = a,X] > E[G|A = a′,X] if and
only if E[R|A = a,X] > E[R|A = a′,X]. Equivalently, there is
a monotonic relationship between E[R|A = a,X] and E[G|A =
a,X] for each group with the same covariate value X . For the
Warfarin example, since the target is to have the INR remain
within the range of 2–3, some transformed INR value may be
used as a surrogate to maintain the above monotonic relation-
ship. For example, we could define G to be the distance of the
INR from the interval [2, 3].

Comments from Dr. Qian. The idea Dr. Qian proposes of
using truncated L2-loss instead of L1-loss is interesting. It cer-
tainly leads to an advantage in computation due to its greater
differentiability. As illustrated in each iteration of the DC algo-
rithm in her comment, the L2-loss there essentially leads to
an update of the parameters which is similar in spirit to ridge
regression, whereas theL1-losswe use corresponds to aweighted
least-absolute deviation estimator. Thus, we expect that the
usual comparisons between ridge regression and LAD estima-
tion could potentially be applicable here, and thus each method
may have different trade-offs in terms of robustness and statisti-
cal efficiency.

The doubly robust loss proposed by Dr. Qian is an interest-
ing and useful extension of our approach to the situation, where
p(a|X ) must be learned from observational data. Dr. Qian has
also outlined a nice framework for using doubly robust loss to
learn the optimal dose rule. Themain purpose of using the dou-
bly robust loss is to ensure no bias in the value function; how-
ever, based on our experience, the trade-off is that the addi-
tional estimation of p(a|X ) and Q(X,A), especially when both
are misspecified, which is a possibility in practice, may result in
large variability of the value estimator. Therefore, an interesting
question is whether the doubly robust loss could be modified to
reduce themean squared error of the value estimator, taking into
account both bias and variance.

Dr. Qian has also brought our attention to the practical sit-
uation, where dose assignments are sequential, either depend-
ing on the patient’s on-going response or responses from pre-
vious patients. In this case, we could still potentially use our
method provided we allowed p(a|X ) to depend on each sub-
ject as well as on timing of the administration of dose a,
where X could include the patient’s ongoing response and pre-
vious patient responses in the study. However, modeling p(a|X )
may be potentially difficult due to the dynamic nature of X
for newly enrolled patients. Some additional model assump-
tions may also be needed; for example, we could assume that
p(a|X ) only depends on the responses in a given time period
in the past or on some summary quantities of previous patient
outcomes.

Comments fromDr. Rosenblum. We agree that when the opti-
mal rule is not unique for some subgroup of patients, one should
always apply the dose with the least toxicity or side effects. Fur-
thermore, when the clinical benefit of the derived treatment rule
is less than a clinically meaningful threshold, the least toxic dose
(usually the zero dose) should be used. Dr. Rosenblum also sug-
gests to penalize the constant term in a linear dose rule so as



to favor the zero dose when there is no obvious clinical benefit.
He also suggests to incorporate costs due to side effects, adverse
events, and/or wasted healthcare resources as part of the out-
come. Both ideas are interesting approaches to reducing impact
of the nonuniqueness of the optimal rule. Alternatively, we could
consider the following modification to our method: we first
apply the dose regression model to estimate the dose–outcome
relationship by including feature variables as effect modifiers;
we then obtain the estimated optimal dose benefit relative to
the zero dose, which we denote by δ̂(X ). Note that δ̂(X ) may
be allowed to sometimes differ from the truth, but we require
δ̂(X ) to be close to zero when the truth is actually zero (this can
be achieved, e.g., by fitting a sparse linear model). Finally, we
apply the proposed method but replace the penalty ‖ f (X )‖ by
‖ f (X )/δ̂(X )‖. It can be easily shown that this inverse benefit-
weighted penalty leads to the same optimal dose rule as before
whenever δ̂(X ) is strictly different from zero; however, when
δ̂(X ) = 0, this new penalty forces f (X ) = 0, resulting in a zero
dose for the subgroups who do not benefit from any nonzero
dose level.

Inference for the assessment of the value and estimated rules
has been a challenging and open problem in optimal treatment
regime estimation, and more broadly, in machine learning-
based methods. The main challenges include the complexity of
treatment rules (which typically involve nonparametric estima-
tion) and the boundary proximity problem. The latter particu-
larly refers to the situation where some treatments are not dis-
tinguishable for a subgroup of patients. For binary treatments,
it has been shown that standard inference approaches, includ-
ing resampling, may not yield appropriate inference in this con-
text. A number of attempts have recently been proposed to
address this inference challenge, including penalized methods
(Song et al. 2015) , m out of n resampling (Chakraborty, Laber,
and Zhao 2013), adaptive but very conservative methods (Laber
et al. 2014), and more recently data splitting in Luedtke and
Van Der Laan (2016). However, it is unclear how these methods
work in practical situations with low signal-to-noise ratio and
high-dimensional feature variables. One thought is to consider
treatment equivalence classes wherein subjects for whom the
treatments are indistinguishable are grouped together and then
this structure is used in formulating the inference. Interestingly,
since treatment misallocation near the boundary does not really
contribute to the overall expected value, empirical evidence sug-
gests that incorrect inference due to this boundary issuemay not
affect the inference of the value function significantly.

In our proposed dose finding approach, the objective func-
tion is nonconvex so it is possible that a local minimum is
attained at the end of the DC algorithm. In addition to using
different initial values, including a one-size-fit-all estimate and
the estimated rule from standard Q-learning, we can also con-
sider evaluating the estimated rule compared to one based on
dichotomizing treatment at a given dose level. The latter could
also be computed using the O-learning method in Zhao et al.
(2012) which is guaranteed to achieve the optimum due to con-
vex optimization. When the value obtained from the personal-
ized dose rule based on our proposed approach is larger than
a sufficient number of the dichotomized rules, we would have
increased confidence that a global optimum is achieved.

The article by Kennedy et al. (2016) proposes an interesting
idea to estimate nonparametric dose effects based on the con-
struction of doubly robust pseudo-outcomes.We believe a simi-
lar doubly robust procedure could be developed for the person-
alized dose finding setting by replacing their objective function
with the value function we propose in our article. Furthermore,
we acknowledge that doubly robust estimation has been well
developed for G-estimation procedures by Robins (2004) and
Moodie, Richardson, and Stephens (2007). More recently, our
group has proposed a doubly robust O-learning method to infer
optimal dynamic treatment regimes in multi-stage treatment
settings, where the idea is to use the history of those patients
who received nonoptimal treatments in future stages as auxiliary
information so data can be augmented to include their informa-
tion, instead of only using patients who are treated optimally in
future stages as done inZhao et al. (2015).Wenote, however, that
although doubly robust estimation leads to unbiased estimation
of optimal treatment strategies in a broader range of models, it
may not necessarily lead to improved value estimation in terms
of value gain and reduced variability. Thus, robust procedures
focusing on value estimation would be a welcomed addition to
personalized medicine research.

3. Conclusion

We once again express appreciation for the opportunity to par-
ticipate in this discussion. Clearly, many important questions
regarding personalized medicine methodology remain. In fact,
overall, more questions were raised in this discussion than
answered. Nevertheless, it is clear that as a discipline we now
have the technical capacity to perform important, meaning-
ful, and reproducible research which can advance personalized
medicine and successfully find individualized treatment rules.
Nevertheless, there remain many open questions and many
opportunities for improvement. The challenges that remain
include solving interesting and practically important problems
in optimal estimation, computational efficiency, model robust-
ness, valid statistical inference, causal inference, and in other
areas. Taken together, the recent progress and interconnected
research activity in personalized medicine study design and
analysis is converging to become a new subdiscipline in statistics
which is stimulating developments in theory andpractice andon
the interface with other disciplines. We look forward to watch-
ing this process continue to unfold and especially look forward
to the accompanying improvements in human health.
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