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Summary

Partly interval-censored (PIC) data arise when some failure times are exactly observed while
others are only known to lie within certain intervals. In this article, we consider efficient
semiparametric estimation of the accelerated failure time (AFT) model with PIC data. We first
generalize the Buckley—James estimator for right-censored data to PIC data. Then, we develop a
one-step estimator by deriving and estimating the efficient score for the regression parameters. We
show that under mild regularity conditions the generalized Buckley—James estimator is consistent
and asymptotically normal and the one-step estimator is consistent and asymptotically normal with
a covariance matrix that attains the semiparametric efficiency bound. We conduct extensive
simulation studies to examine the performance of the proposed estimators in finite samples and
apply our methods to data derived from an AIDS study.
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1. Introduction

Partly interval-censored (PIC) data consist of failure time observations, in which some of the
failure times are exactly observed while others are only known to lie within certain intervals.
Such data arise in clinical and epidemiological research when the occurrence of an
asymptomatic event, such as diabetic nephropathy or HIV infection, is ascertained at clinic
visits. If a subject takes frequent visits, then his or her failure time can be determined with
sufficient accuracy. If the visits are infrequent, then the failure time is known to lie within an
interval that may be too broad to be treated as exact.

Several statistical methods have been suggested to make inference with PIC data.
Specifically, estimation of the survival function for PIC data was studied by Turnbull (1976)
and Huang (1999), among others. Zhao et al. (2008) developed a generalized log-rank test
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6. Supplementary Materials
The Web Appendices, referenced in Section 2, and the R package for the proposed estimators are available with this article at the
Biometrics website on Wiley Online Library.
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for PIC data and established its asymptotic properties. Kim (2003) studied nonparametric
maximum likelihood estimation (NPMLE) for the proportional hazards model.

In this article, we consider the accelerated failure time (AFT) model, which relates the
logarithm of the failure time linearly to the covariates (Kalbfleisch and Prentice, 1980, pp.
32-34). Because of its direct physical interpretation, the AFT model is an appealing
alternative to the proportional hazards model, especially when the response variable does not
pertain to failure time. It may provide a more accurate or more concise summarization of the
data than the proportional hazards model in certain applications (Zeng and Lin, 2007).
However, semiparametric estimation of the AFT model is highly challenging, even in the
case of right-censored data (Prentice, 1978; Buckley and James, 1979; Tsiatis, 1990; Lai and
Ying, 1991; Zeng and Lin, 2007; Lin and Chen, 2013). For PIC data, we first propose an
iterative algorithm similar to that of Buckley and James (1979). We show that the resulting
estimator is consistent and asymptotically normal and its variance can be consistently
estimated by bootstrap. We then propose an efficient estimator for the (vector-valued)
regression parameter by the one-step Newton—Raphson update with the efficient score. We
derive the efficient score and construct the one-step estimator using kernel estimation. The
one-step estimator is shown to be consistent and asymptotically normal, with a limiting
covariance matrix that attains the semiparametric efficiency bound and can be consistently
estimated through bootstrap. We conduct extensive simulation studies to examine the
performance of the Buckley—James and one-step estimators in realistic settings, and we use
our methods to analyze data derived from an AIDS clinical trial.

2. Methods
2.1. Data and Model

Let 7 denote the failure time and X denote a g-vector of covariates. The AFT model
specifies that

logT=X"T B+e,

where Bis a d-vector of unknown regression parameters, and e is an unobserved error
independent of X. The distribution of e is arbitrary such that the model is semiparametric.

Let A indicate, by the values 1 versus 0, whether 7 is observed exactly or not. For A =0,
there is a sequence of examination times 0 < U < U, <... < Uk <00 that gives rise to the
interval (L,R), where L=max{Uy: Ux< T, k=0,..., K}, and R=min{Uy: Ux2 T, k=
1, ..., K+ 1}, with Up=0and Uk =00. We assume that the proportion of A = 1 is not
negligible, and the joint distribution of (U4, ..., Uk) is independent of 7 given X and A = 0.
Note that £ = 0 represents a left-censored observation and /=00 represents a right-censored
observation. For a random sample of 77 subjects, the PIC data consist of

{Ai,AiTi, (1_Ai)Li-, (1—AZ‘)RZ‘,X¢} (iil, oo ,n).
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2.2. Generalized Buckley—James Estimation

If the failure time is observed for every subject, then the classical least-squares estimator for
B s the solution to the estimating equation

n
1=

(x%) {(17)-(x-%)"8) o

1

M

where Y;=log 7; 72%712;3@, and 72%712?:1)(7:. In the presence of censoring,
some values of Y;are not observed. Following the approach of Buckley and James (1979),
we replace the unobserved Y;by the conditional mean given the observed data. The
conditional mean Y4B, ) is given by

AZ'Y;‘—I—(l—Ai) E (YH maX{Uik:uik<Ti}:Li, IniIl{UikZUik > Ti}:Ria X, A;,=0, L;, Rl)
E [E {YVZI (maX{Uik:U¢k<Ti}:Li,min{Uik:Uik > E}ZRZNUM ey UK7X'L} |X,L]
E {PI‘ (maX{UikIUik<Ti}=Li,Hlil’l{Uik:Uik > TZ‘}ZIEZ‘|U17 ey UK, Xi)|Xi}
E [ S B Yl (Us=Li, Ui jon=Ry, Li<T; < R)|Ur,...., Uy, Xi, Ai=0} | X;, Ai=0]

E {Zf:lPr(Uik:LivUi,k+1:Ri7Li<Ti < RithmaUK,XuAi:O)\XmAFO}

=AY+ (1-A¢)x

=A;Yi+(1-A4)x

E {Yil(Li<T; < Ry)|Xi, Ai=0, Ly, Ri} B | Sf I(U=Li, Ui 1=Ry)| Xi, A=0, L, ;]

—AYi4(1-A)x L
Pr(L;<T; < Ri|X;,A;=0,L;, R;)E {Zk:lj(Uik:Li7Ui,k+1:Ri)|Xi7Ai:07LiaRi]

ffﬂ'_" udF(u) .
ZAiYﬂ,ﬁ(l—Afz)F(R;’%)iF(Lﬁ ‘)—i—Xi B,

where Yz ,=Y;~ X' B, Lg;=logL;— X' B, Rg;=logR;— X' B, and Fis the distribution
function of e. The third equality follows from the conditional independence of the failure
time and the examination times. Replacement of Y;in (1) by Y48, F)

n

> (x-X) [{7.6.H)-V6.9)} ~(x:-X) " 8] -0,

=1

where Y (8, F)=n"">"" YVi(B, F). Because Fis unknown, we replace Fby the self-
consistency estimator /3"3 (Turnbull, 1976; Huang, 1999) based on the transformed PIC data
{8;8iYgi (1-D)Lg; (1 -D)Rgj} (/=1, ..., n). The estimator Fgsolves the self-
consistency equation

Fﬁ(t):n_li {AJ(Yﬁ,i < t)+(1-4)

i=1

Fp(Rgi Nt)—Fpg(Lgi Nt) }
Fp(Re)-Fp(Ls) | (2)
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where aA b=min(a b). If all of the failure times are observed, the right-hand side of
equation (2) is simply the empirical distribution function for Y When the failure times are
subject to censoring, the right-hand side is the conditional probability of Yg< tgiven the
observed data under the probability measure induced by Fg The generalized Buckley—James
estimator Bis the root of U (8, B) = 0, where

U, (8, b)=n"'3" (x,-X) {{f/i(b, Fo) -V (b, )} (XﬁY)TB} .

i=1

The function U (8, B) is not continuous in G, so it is difficult to directly solve the estimating
equation. We propose an iterative algorithm. With (89, A0) as the starting value, the
algorithm proceeds as follows:

1. atstep /m, solve the self-consistency equation (2) with 8= /71 to obtain A7) =
ﬁﬁ(m—l);
2. update Bwith the equation &) = L (g1, AmM) where

LAB,F):{%(XFY)@Q}A x {i (x,-X) {YQ(ﬂ,F)—?(ﬁ,F)}}

i=1 i=1

with a®2 = aa'; and
3. set m= m+ 1, and repeat steps (a) and (b) until convergence.

Denote the resulting estimator of (8, F) as (ﬁ /3) where £ = /3'3. In Web Appendix A, we
show that (B, F) is consistent for the true value (By, /) and asymptotically normal under
mild regularity conditions. The covariance matrix for the limiting distribution is difficult to
directly estimate due to the lack of an analytical form. Therefore, we approximate the
asymptotic distribution by bootstrapping the observations {A; A;7;, (1 = A)L;, (L - A)R; X}
(7r=1,...,n). Letﬁ be the generalized Buckley—James estimator of a bootstrap sample. In

Web Appendix B, we show that the conditional distribution of /(3" —3) given the data

converges weakly to the asymptotic distribution of \/ﬁ(/}fﬂo). The empirical distribution of
ﬁ can then be used to approximate the distribution ofﬁ. Confidence intervals for individual
components of By can be constructed by the Wald method (with the variance of ﬁ ) or from
the empirical percentiles of ﬁ

2.3. One-Step Efficient Estimation

We wish to develop an estimator for B that attains the semi-parametric efficiency bound for
PIC data. Let Tﬂ(ﬁ, B, F) be the efficient score for Sunder the AFT model with the observed
datad = {A, AT, (1 - A)L, (1 - A)R,X}. We can construct a semiparametric efficient
estimator through the one-step Newton—Raphson update (Bickel et al., 1993, pp. 40-45) of
the generalized Buckley—James estimator (ﬁ /3)
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where P, is the empirical measure.

According to the semiparametric efficiency theory (Bickel et al., 1993, chap. 3), the efficient
score for Bis the sum of the scores for Band Falong the least favorable direction g that is
orthogonal to the tangent set for ~. After the derivations given in Web Appendix C, we find
that the least favorable direction g satisfies an integral equation. We replace the unknown
quantities in the integral equation by appropriate sample estimators. The resulting function g
satisfies the linear equation A(g(4)T, ... .8&(1,»)")T = ¢, where A = (a;) € R™",

T
e=(el,....eh)",

I(LB<tj < RB,L3<7§[ < BB)
~ ~ 2
{F(R)-F(1p)}

fi( )HP » (1*A)X {f(Rﬁ)A_f(LB)}A I(Lﬁ<2tj < Rp)
F(t5) {E(Ry)~F(Lp)}

)

a;=I(1=j)P (A|Yﬂ0:tj) +E{t)Pax | (1-A)

=P (AX|Yp,=t;)

)

Yg=Y-XTB, Lg=log L - XTB, Rg=log R—XTg and At} is the jump size of Fat 1 Let
fyand f, be the density function of £and its derivative, respectively. The terms R0, 7 (D,

/3(A| Yg =19, and /5(AX| Y = 1) are kernel estimators of %, f(;, EA|Ygy = 9, and EAX| Yg,
= ), defined as

N 1> s—t o
N 1 00 s—t N
f (t):Wg(S*t)K ( b ) dF'(s),

P (Al¥p,=t) = 7 nZAK ( a t)

nanf

and

. Y —t
P (AX|Yg =t XK

( ¥, > nany f (t)Z ( an )
where K(-) is a smooth and symmetric kernel function, and a, and b, are bandwidths. The
conditions for the choices of the kernel function and bandwidths can be found in Web
Appendix D.

Biometrics. Author manuscript; available in PMC 2018 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Gao et al.

Page 6

The efficient score function can be estimated by

’ ~ N s R
PPN [ f) . X {f(R,é)*f(Lg)}+],fg(u)dF(u)-|
(B, F,g)=— |A{ X~ +4(Y3) ¢ +(1-A) x T 7F(L5 .

)
f(Yp) P 5)

A

We replace the efficient score function Tﬁ(ﬁ; ,B ﬁ) in (3) by (B ﬁ,gr) to obtain the one-step
estimator

B=B+{r.i8.7.9)"}  {B(p.F.0)}.

In Web Appendix D, we show that /(83— 8,,) converges in distribution to a mean-zero
normal random vector with a covariance matrix that attains the semiparametric efficiency
bound. We estimate the covariance matrix by bootstrapping the observations and applying
the one-step procedure. The validity of the bootstrap is proved in Web Appendix D. We also
show that if the error e is normally distributed, then the efficient score function is equivalent
to the generalized Buckley—James estimating function. Thus, the generalized Buckley-
James estimator is semiparametric efficient when the error is normally distributed.

3. Simulation Studies

We conducted extensive simulation studies to assess the performance of the proposed
methods. We generated failure times from the AFT model: log 7=-X1 — X5 — &, where Xj
and X; are independent Bernoulli(0.5) and standard normal variables, respectively, and e is
independent of (X7,.X5). We considered four error distributions: standard normal
distribution; standard extreme-value distribution; extreme-value distribution with location
and scale parameters of —0.5 and 1.5, respectively; and logarithm of the gamma distribution
with shape and scale parameters of 1 and 1, respectively. We simulated the time to loss to
follow-up Cfrom Uniform[10, 15]. For each subject, with probability p, we exactly
observed the failure time 7if 7< Cand obtained a right-censored observation at Cif 7> C.
With the remaining probability 1 — p, we generated a sequence of examination times Uy =
Ug-1+Uniform[0.1, 1] (k=1, ..., K) such that Uy < C. We created the interval-censored
observation (L,R) = (U Ups1) If Uy < T< Upeq Tor k=0, ..., K The probability p depends
on the covariates such that p= py — 0.1/.X1 = 1), where g was chosen to yield
approximately 25 and 50% exact observations.

We considered the iterative algorithm convergent if both the norm of the difference for gand
the integrated mean squared difference for Fin two successive steps are less than 107 or the

2
difference of the mean squared errorn 'y {V(8, Fg)~Y (B, Fj5)— <Xi —7> ')
between two successive steps is less than 1072, In all the scenarios we considered, the non-
convergence rate was less than 1%. We estimated the standard error using the Wald method
based on 200 bootstrap data sets.
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Table 1 summarizes the results of the generalized Buckley—James estimation for sample
sizes n= 250 and 500. The bias of the parameter estimator is small and tends to decrease as
nincreases. The standard error estimator accurately reflects the true variation, and the
confidence intervals have proper coverage probabilities.

With the generalized Buckley—James estimator as the initial estimator, we carried out the
one-step efficient estimation, and the results are shown in Table 2. We chose the Gaussian
kernel for convenience. The optimal bandwidths for estimating the density and its derivative
are a,= (4RB)Y5orr 15 and b, = (45)Y7 o V/7(Swanepoel, 1988), where o is the sample
standard deviation of {Y,;: A;=1} (/=1, ..., 7). We replaced o by the minimum of the
sample standard deviation and the interquartile range divided by 1.34, as suggested by
Silverman (1986, p. 48).

The one-step estimator tends to be slightly positively biased, and the bias gets smaller as »
increases. In the case of the normal error distribution, the one-step estimator has slightly
larger standard error than the generalized Buckley—James estimator. This is not surprising
because both estimators are asymptotically efficient when the error distribution is normal
and the one-step estimator involves kernel approximation of the least favorable direction.
For other error distributions, the one-step estimator achieves up to 16% efficiency gain over
the generalized Buckley—James estimator in terms of variance. The efficiency gain in terms
of mean squared error of the estimators is similar. The standard error estimator becomes
more accurate as /7 increases. The confidence intervals have satisfactory coverage
probabilities.

PIC data often arise as an approximation to interval-censored data, where the observations
with short intervals are treated as exactly observed failure times. We examined the
performance of the proposed estimators in this practical setting. We simulated the failure
time 7 and time to loss to follow-up Cin the same manner as before. For each subject, we
generated a sequence of examination times Uy = Uj—1+Uniform[g, 6] (k=1, ..., K) such
that Ux < C. We set (g, b) = (0, 0.1) with probability pand (& 6) = (0.1, 1) with probability 1
— p. We created the interval-censored observation (L,R) = (Uy Ups1) if Uy < T< Upeq Tor k&
=0, ..., K Ifthe interval length R - L is smaller than 0.1, we treated the observation as
exactly observed failure time at the geometric mid-point V'L R. In this case, A= AR ~L <
0.1), and the exact observations are approximations to the true failure times.

We display the results for the proposed estimators with 50% exact observations in Table 3.
The generalized Buckley—James estimator and one-step estimator have reasonably small
bias. The standard error estimators accurately reflect the true variation, and the confidence
intervals have satisfactory coverage probabilities. The one-step estimator achieves up to 13%
efficiency gain for some of the considered error distributions.

A naive approach to analyzing interval-censored data is to approximate all interval-censored
observations by single values and then apply the methodology for potentially right-censored
data. We examined this approach in the second simulation setting by treating each interval-
censored observation as exact failure time at the right end or the mid-point of the interval
and applying the original Buckley—James estimator. As shown in Table 4, both
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approximations yield estimators with smaller standard error than the generalized Buckley-
James and one-step estimators but induce severe bias in the parameter estimation.

4. An AIDS Example

We considered an AIDS Clinical Trial Group (ACTG) study (Goggins and Finkelstein,
2000). In this clinical trial, blood and urine samples were collected at clinical visits to test
for the presence of opportunistic infection cytomegalovirus (CMV), which is also known as
shedding of the virus. The blood and urine samples were originally scheduled to be collected
about every 12 and 4 weeks, respectively. The CMV shedding times in both blood and urine
are interval-censored in that the events are only known to occur between the last negative
and first positive tests.

The data set consists of 204 HIV-infected patients with at least one blood and urine samples
taken during the study. For CMV shedding time in blood, 7 patients have left-censored
observations, 174 patients have right-censored observations, and 23 patients have interval-
censored observations. For CMV shedding time in urine, the corresponding numbers are 49,
88, and 67. The data set also includes the patient’s baseline CD4 cell count as an indicator of
less than versus greater than 75 (cells/ul). It is of interest to determine whether the baseline
CDA4 cell count is predictive of CMV shedding time.

This data set was previously analyzed by Goggins and Finkelstein (2000) using the
proportional hazards model for bivariate interval-censored data. To illustrate the proposed
methods, we generated a PIC version of the data. Specifically, we defined the failure time as
the minimum of the shedding times in blood and in urine. If the shedding times in blood and
in urine are (Lp, Ry and (L, R,], then the failure time is known to lie within (Ly A L, Rp A
R,]. The numbers of left- , interval-, and right-censored observations are 51, 65, and 88,
respectively. The interval lengths for the interval-censored observations range from 1 to 9
months. We treated interval-censored observations with interval lengths less than 2 months
as exact observations at the geometric mid-point of the interval to obtain 46 exact
observations.

We fit the AFT model to the generated PIC data. We estimated the standard error of the
generalized Buckley—James estimator using the Wald method based on 1000 bootstrap data
sets. We used the optimal bandwidths described in the previous section for the one-step
estimation. For comparisons, we also fit the proportion hazards model using the NPMLE
method described in Kim (2003). The results are summarized in Table 5.

The estimates of the regression parameter in the AFT model are negative and thus indicate
that patients with higher CD4 cell counts tend to have longer time to CMV shedding. The
one-step estimator yields a larger estimate of the effect size than the generalized Buckley—
James estimator, with a slightly larger standard error estimate, resulting in a slightly smaller
p-value. Not surprisingly, the estimate of the regression parameter under the proportional
hazards model has an opposite sign.
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1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Gao et al.

Page 9

5. Discussion

It is much more challenging, both computationally and theoretically, to deal with PIC data
under the AFT model than under the proportional hazards model. We developed a
generalization of the Buckley—James estimator and a one-step efficient estimator, both of
which perform well in realistic settings. We tackled the theoretical challenges through
careful use of modern empirical process theory and semiparametric efficiency theory.

A non-negligible proportion of exact observations is a crucial assumption for the proposed
methods. It plays an important role in establishing the asymptotic properties. With this
assumption, there are some subjects with exactly observed failure times, so the estimator for
the survival function of e can be estimated accurately at those points. This leads to the vn
convergence rate, a faster rate than with only interval-censored observations.
Computationally, we let the survival function be a step function with jumps at the exact
failure times. Without exact observations, a natural estimator for the survival function would
be a step function with potential jumps at all interval endpoints, such that the likelihood
becomes non-concave and the estimation becomes unstable.

In practice, certain bootstrap samples may contain too few or no exact observations. We
suggest to delete those samples provided that they account for a small proportion of all
bootstrap samples. An alternative strategy is to perform parametric bootstrap, which requires
modeling of the censoring distribution (Efron and Tibshirani, 1993, pp. 90-92).

We used kernel estimation for density and its derivative in constructing the one-step
estimator. The estimation for this one-dimensional distribution is relatively stable and
accurate. If the density or its derivative is estimated with bias, the resulting function will
depart from the efficient score function. However, the function is still a valid score function,
such that the one-step estimator remains consistent.

For the accelerated failure time model with right-censored data, the rank-based estimator
(Gehan, 1965), which solves the gradient of a weighted probability for the observed rank,
can be easily calculated via the linear programming technique. Lin and Chen (2013)
proposed a one-step efficient estimation procedure using the rank-based estimator as the
initial estimator. For PIC data, due to the existence of interval-censored observations, we
cannot recover the rank structure to obtain rank-based estimating equations.

In most medical studies, the events of interest are asymptomatic such that the failure times
are intrinsically interval-censored. A common practice is to apply the methodology for right-
censored data by treating the time of the first detection or the mid-point of the interval as the
exact failure time. However, this strategy can induce severe bias in the estimation, as shown
in our simulation studies. The PIC methodology as presented in this article provides a better
approximation to interval-censored data by treating only the small intervals as exact
observations.

It is extremely challenging to perform semiparametric regression analysis of interval-
censored data without treating any observations as exact. Although progress has been made
on the semiparametric analysis of interval-censored data under the AFT model (Rabinowitz,

Biometrics. Author manuscript; available in PMC 2018 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Gao et al.

Page 10

Tsiatis, and Aragon, 1995; Murphy, van der Vaart, and Wellner, 1999; Shen, 2000; Betensky,
Rabinowitz, and Tsiatis, 2001; Tian and Cai, 2006), efficient estimation has not been
explored. Our proposed methods require a non-negligible proportion of exact observations,
which is crucial in establishing the asymptotic properties and constructing the computation
algorithm. Therefore, the approach cannot be trivially extended to the interval-censored data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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