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Summary

Partly interval-censored (PIC) data arise when some failure times are exactly observed while 

others are only known to lie within certain intervals. In this article, we consider efficient 

semiparametric estimation of the accelerated failure time (AFT) model with PIC data. We first 

generalize the Buckley–James estimator for right-censored data to PIC data. Then, we develop a 

one-step estimator by deriving and estimating the efficient score for the regression parameters. We 

show that under mild regularity conditions the generalized Buckley–James estimator is consistent 

and asymptotically normal and the one-step estimator is consistent and asymptotically normal with 

a covariance matrix that attains the semiparametric efficiency bound. We conduct extensive 

simulation studies to examine the performance of the proposed estimators in finite samples and 

apply our methods to data derived from an AIDS study.
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1. Introduction

Partly interval-censored (PIC) data consist of failure time observations, in which some of the 

failure times are exactly observed while others are only known to lie within certain intervals. 

Such data arise in clinical and epidemiological research when the occurrence of an 

asymptomatic event, such as diabetic nephropathy or HIV infection, is ascertained at clinic 

visits. If a subject takes frequent visits, then his or her failure time can be determined with 

sufficient accuracy. If the visits are infrequent, then the failure time is known to lie within an 

interval that may be too broad to be treated as exact.

Several statistical methods have been suggested to make inference with PIC data. 

Specifically, estimation of the survival function for PIC data was studied by Turnbull (1976) 

and Huang (1999), among others. Zhao et al. (2008) developed a generalized log-rank test 
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for PIC data and established its asymptotic properties. Kim (2003) studied nonparametric 

maximum likelihood estimation (NPMLE) for the proportional hazards model.

In this article, we consider the accelerated failure time (AFT) model, which relates the 

logarithm of the failure time linearly to the covariates (Kalbfleisch and Prentice, 1980, pp. 

32–34). Because of its direct physical interpretation, the AFT model is an appealing 

alternative to the proportional hazards model, especially when the response variable does not 

pertain to failure time. It may provide a more accurate or more concise summarization of the 

data than the proportional hazards model in certain applications (Zeng and Lin, 2007). 

However, semiparametric estimation of the AFT model is highly challenging, even in the 

case of right-censored data (Prentice, 1978; Buckley and James, 1979; Tsiatis, 1990; Lai and 

Ying, 1991; Zeng and Lin, 2007; Lin and Chen, 2013). For PIC data, we first propose an 

iterative algorithm similar to that of Buckley and James (1979). We show that the resulting 

estimator is consistent and asymptotically normal and its variance can be consistently 

estimated by bootstrap. We then propose an efficient estimator for the (vector-valued) 

regression parameter by the one-step Newton–Raphson update with the efficient score. We 

derive the efficient score and construct the one-step estimator using kernel estimation. The 

one-step estimator is shown to be consistent and asymptotically normal, with a limiting 

covariance matrix that attains the semiparametric efficiency bound and can be consistently 

estimated through bootstrap. We conduct extensive simulation studies to examine the 

performance of the Buckley–James and one-step estimators in realistic settings, and we use 

our methods to analyze data derived from an AIDS clinical trial.

2. Methods

2.1. Data and Model

Let T denote the failure time and X denote a d-vector of covariates. The AFT model 

specifies that

where β is a d-vector of unknown regression parameters, and ε is an unobserved error 

independent of X. The distribution of ε is arbitrary such that the model is semiparametric.

Let Δ indicate, by the values 1 versus 0, whether T is observed exactly or not. For Δ = 0, 

there is a sequence of examination times 0 < U1 < U2 < … < UK < ∞ that gives rise to the 

interval (L,R), where L = max{Uk : Uk ≤ T ; k = 0, … , K}, and R = min{Uk : Uk ≥ T ; k = 

1, … , K + 1}, with U0 = 0 and UK+1 =∞. We assume that the proportion of Δ = 1 is not 

negligible, and the joint distribution of (U1, … , UK) is independent of T given X and Δ = 0. 

Note that L = 0 represents a left-censored observation and R=∞ represents a right-censored 

observation. For a random sample of n subjects, the PIC data consist of

Gao et al. Page 2

Biometrics. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Generalized Buckley–James Estimation

If the failure time is observed for every subject, then the classical least-squares estimator for 

β is the solution to the estimating equation

(1)

where Yi = log Ti, , and . In the presence of censoring, 

some values of Yi are not observed. Following the approach of Buckley and James (1979), 

we replace the unobserved Yi by the conditional mean given the observed data. The 

conditional mean Ŷi(β, F) is given by

where , and F is the distribution 

function of ε. The third equality follows from the conditional independence of the failure 

time and the examination times. Replacement of Yi in (1) by Ŷi(β, F)

where . Because F is unknown, we replace F by the self-

consistency estimator F̂β (Turnbull, 1976; Huang, 1999) based on the transformed PIC data 

{Δi, ΔiYβ,i, (1 − Δi)Lβ,i, (1 − Δi)Rβ,i} (i = 1, … , n). The estimator F̂β solves the self-

consistency equation

(2)
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where a ∧ b = min(a, b). If all of the failure times are observed, the right-hand side of 

equation (2) is simply the empirical distribution function for Yβ. When the failure times are 

subject to censoring, the right-hand side is the conditional probability of Yβ ≤ t given the 

observed data under the probability measure induced by F̂β. The generalized Buckley–James 

estimator β̂ is the root of Un(β, β) = 0, where

The function Un(β, β) is not continuous in β, so it is difficult to directly solve the estimating 

equation. We propose an iterative algorithm. With (β(0), F(0)) as the starting value, the 

algorithm proceeds as follows:

1. at step m, solve the self-consistency equation (2) with β = β(m−1) to obtain F(m) = 

F̂β(m−1);

2. update β with the equation β(m) = Ln(β(m−1), F(m)), where

with a⊗2 = aaT; and

3. set m = m + 1, and repeat steps (a) and (b) until convergence.

Denote the resulting estimator of (β, F) as (β̂, F̂), where F̂ = F̂β̂. In Web Appendix A, we 

show that (β̂, F̂) is consistent for the true value (β0, F0) and asymptotically normal under 

mild regularity conditions. The covariance matrix for the limiting distribution is difficult to 

directly estimate due to the lack of an analytical form. Therefore, we approximate the 

asymptotic distribution by bootstrapping the observations {Δi, ΔiTi, (1 − Δi)Li, (1 − Δi)Ri,Xi} 

(i = 1, … , n). Let β̂* be the generalized Buckley–James estimator of a bootstrap sample. In 

Web Appendix B, we show that the conditional distribution of  given the data 

converges weakly to the asymptotic distribution of . The empirical distribution of 

β*̂ can then be used to approximate the distribution of β̂. Confidence intervals for individual 

components of β0 can be constructed by the Wald method (with the variance of β̂*) or from 

the empirical percentiles of β̂*.

2.3. One-Step Efficient Estimation

We wish to develop an estimator for β that attains the semi-parametric efficiency bound for 

PIC data. Let lβ̃( , β, F) be the efficient score for β under the AFT model with the observed 

data  ≡ {Δ, ΔT, (1 − Δ)L, (1 − Δ)R,X}. We can construct a semiparametric efficient 

estimator through the one-step Newton–Raphson update (Bickel et al., 1993, pp. 40–45) of 

the generalized Buckley–James estimator (β̂, F̂),
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(3)

where ℙn is the empirical measure.

According to the semiparametric efficiency theory (Bickel et al., 1993, chap. 3), the efficient 

score for β is the sum of the scores for β and F along the least favorable direction g that is 

orthogonal to the tangent set for F. After the derivations given in Web Appendix C, we find 

that the least favorable direction g satisfies an integral equation. We replace the unknown 

quantities in the integral equation by appropriate sample estimators. The resulting function g 
satisfies the linear equation A(ĝ(t1)T, … ,ĝ(tm)T)T = c, where A = (ajl) ∈ ℝm×m, 

,

Yβ = Y − XTβ, Lβ = log L − XTβ, Rβ = log R − XTβ, and F̂{tl} is the jump size of F̂ at tl. Let 

f0 and  be the density function of ε and its derivative, respectively. The terms f̂(t), f̂′(t), 

P ̂(Δ|Yβ0 = t), and P̂(ΔX|Yβ0 = t) are kernel estimators of f0, , E(Δ|Yβ0 = t), and E(ΔX|Yβ0 
= t), defined as

and

where K(·) is a smooth and symmetric kernel function, and an and bn are bandwidths. The 

conditions for the choices of the kernel function and bandwidths can be found in Web 

Appendix D.
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The efficient score function can be estimated by

We replace the efficient score function l̃β( ; β̂, F̂) in (3) by l̂(β̂, F̂,ĝ) to obtain the one-step 

estimator

In Web Appendix D, we show that  converges in distribution to a mean-zero 

normal random vector with a covariance matrix that attains the semiparametric efficiency 

bound. We estimate the covariance matrix by bootstrapping the observations and applying 

the one-step procedure. The validity of the bootstrap is proved in Web Appendix D. We also 

show that if the error ε is normally distributed, then the efficient score function is equivalent 

to the generalized Buckley–James estimating function. Thus, the generalized Buckley–

James estimator is semiparametric efficient when the error is normally distributed.

3. Simulation Studies

We conducted extensive simulation studies to assess the performance of the proposed 

methods. We generated failure times from the AFT model: log T = −X1 − X2 − ε, where X1 

and X2 are independent Bernoulli(0.5) and standard normal variables, respectively, and ε is 

independent of (X1,X2). We considered four error distributions: standard normal 

distribution; standard extreme-value distribution; extreme-value distribution with location 

and scale parameters of −0.5 and 1.5, respectively; and logarithm of the gamma distribution 

with shape and scale parameters of 1 and 1, respectively. We simulated the time to loss to 

follow-up C from Uniform[10, 15]. For each subject, with probability p, we exactly 

observed the failure time T if T ≤ C and obtained a right-censored observation at C if T > C. 

With the remaining probability 1 − p, we generated a sequence of examination times Uk = 

Uk−1+Uniform[0.1, 1] (k = 1, … , K) such that UK < C. We created the interval-censored 

observation (L,R) ≡ (Uk,Uk+1) if Uk < T ≤ Uk+1 for k = 0, … , K. The probability p depends 

on the covariates such that p = p0 − 0.1I(X1 = 1), where p0 was chosen to yield 

approximately 25 and 50% exact observations.

We considered the iterative algorithm convergent if both the norm of the difference for β and 

the integrated mean squared difference for F in two successive steps are less than 10−4 or the 

difference of the mean squared error 

between two successive steps is less than 10−2. In all the scenarios we considered, the non-

convergence rate was less than 1%. We estimated the standard error using the Wald method 

based on 200 bootstrap data sets.
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Table 1 summarizes the results of the generalized Buckley–James estimation for sample 

sizes n = 250 and 500. The bias of the parameter estimator is small and tends to decrease as 

n increases. The standard error estimator accurately reflects the true variation, and the 

confidence intervals have proper coverage probabilities.

With the generalized Buckley–James estimator as the initial estimator, we carried out the 

one-step efficient estimation, and the results are shown in Table 2. We chose the Gaussian 

kernel for convenience. The optimal bandwidths for estimating the density and its derivative 

are an = (4/3)1/5σn−1/5 and bn = (4/5)1/7σn−1/7(Swanepoel, 1988), where σ is the sample 

standard deviation of {Yβ̂,i : Δi = 1} (i = 1, … , n). We replaced σ by the minimum of the 

sample standard deviation and the interquartile range divided by 1.34, as suggested by 

Silverman (1986, p. 48).

The one-step estimator tends to be slightly positively biased, and the bias gets smaller as n 
increases. In the case of the normal error distribution, the one-step estimator has slightly 

larger standard error than the generalized Buckley–James estimator. This is not surprising 

because both estimators are asymptotically efficient when the error distribution is normal 

and the one-step estimator involves kernel approximation of the least favorable direction. 

For other error distributions, the one-step estimator achieves up to 16% efficiency gain over 

the generalized Buckley–James estimator in terms of variance. The efficiency gain in terms 

of mean squared error of the estimators is similar. The standard error estimator becomes 

more accurate as n increases. The confidence intervals have satisfactory coverage 

probabilities.

PIC data often arise as an approximation to interval-censored data, where the observations 

with short intervals are treated as exactly observed failure times. We examined the 

performance of the proposed estimators in this practical setting. We simulated the failure 

time T and time to loss to follow-up C in the same manner as before. For each subject, we 

generated a sequence of examination times Uk = Uk−1+Uniform[a, b] (k = 1, … , K) such 

that UK < C. We set (a, b) = (0, 0.1) with probability p and (a, b) = (0.1, 1) with probability 1 

− p. We created the interval-censored observation (L,R) ≡ (Uk,Uk+1) if Uk < T ≤ Uk+1 for k 
= 0, … , K. If the interval length R − L is smaller than 0.1, we treated the observation as 

exactly observed failure time at the geometric mid-point . In this case, Δ = I(R −L < 
0.1), and the exact observations are approximations to the true failure times.

We display the results for the proposed estimators with 50% exact observations in Table 3. 

The generalized Buckley–James estimator and one-step estimator have reasonably small 

bias. The standard error estimators accurately reflect the true variation, and the confidence 

intervals have satisfactory coverage probabilities. The one-step estimator achieves up to 13% 

efficiency gain for some of the considered error distributions.

A naive approach to analyzing interval-censored data is to approximate all interval-censored 

observations by single values and then apply the methodology for potentially right-censored 

data. We examined this approach in the second simulation setting by treating each interval-

censored observation as exact failure time at the right end or the mid-point of the interval 

and applying the original Buckley–James estimator. As shown in Table 4, both 
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approximations yield estimators with smaller standard error than the generalized Buckley–

James and one-step estimators but induce severe bias in the parameter estimation.

4. An AIDS Example

We considered an AIDS Clinical Trial Group (ACTG) study (Goggins and Finkelstein, 

2000). In this clinical trial, blood and urine samples were collected at clinical visits to test 

for the presence of opportunistic infection cytomegalovirus (CMV), which is also known as 

shedding of the virus. The blood and urine samples were originally scheduled to be collected 

about every 12 and 4 weeks, respectively. The CMV shedding times in both blood and urine 

are interval-censored in that the events are only known to occur between the last negative 

and first positive tests.

The data set consists of 204 HIV-infected patients with at least one blood and urine samples 

taken during the study. For CMV shedding time in blood, 7 patients have left-censored 

observations, 174 patients have right-censored observations, and 23 patients have interval-

censored observations. For CMV shedding time in urine, the corresponding numbers are 49, 

88, and 67. The data set also includes the patient’s baseline CD4 cell count as an indicator of 

less than versus greater than 75 (cells/μl). It is of interest to determine whether the baseline 

CD4 cell count is predictive of CMV shedding time.

This data set was previously analyzed by Goggins and Finkelstein (2000) using the 

proportional hazards model for bivariate interval-censored data. To illustrate the proposed 

methods, we generated a PIC version of the data. Specifically, we defined the failure time as 

the minimum of the shedding times in blood and in urine. If the shedding times in blood and 

in urine are (Lb,Rb] and (Lu,Ru], then the failure time is known to lie within (Lb ∧ Lu,Rb ∧ 
Ru]. The numbers of left- , interval-, and right-censored observations are 51, 65, and 88, 

respectively. The interval lengths for the interval-censored observations range from 1 to 9 

months. We treated interval-censored observations with interval lengths less than 2 months 

as exact observations at the geometric mid-point of the interval to obtain 46 exact 

observations.

We fit the AFT model to the generated PIC data. We estimated the standard error of the 

generalized Buckley–James estimator using the Wald method based on 1000 bootstrap data 

sets. We used the optimal bandwidths described in the previous section for the one-step 

estimation. For comparisons, we also fit the proportion hazards model using the NPMLE 

method described in Kim (2003). The results are summarized in Table 5.

The estimates of the regression parameter in the AFT model are negative and thus indicate 

that patients with higher CD4 cell counts tend to have longer time to CMV shedding. The 

one-step estimator yields a larger estimate of the effect size than the generalized Buckley–

James estimator, with a slightly larger standard error estimate, resulting in a slightly smaller 

p-value. Not surprisingly, the estimate of the regression parameter under the proportional 

hazards model has an opposite sign.
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5. Discussion

It is much more challenging, both computationally and theoretically, to deal with PIC data 

under the AFT model than under the proportional hazards model. We developed a 

generalization of the Buckley–James estimator and a one-step efficient estimator, both of 

which perform well in realistic settings. We tackled the theoretical challenges through 

careful use of modern empirical process theory and semiparametric efficiency theory.

A non-negligible proportion of exact observations is a crucial assumption for the proposed 

methods. It plays an important role in establishing the asymptotic properties. With this 

assumption, there are some subjects with exactly observed failure times, so the estimator for 

the survival function of ε can be estimated accurately at those points. This leads to the 

convergence rate, a faster rate than with only interval-censored observations. 

Computationally, we let the survival function be a step function with jumps at the exact 

failure times. Without exact observations, a natural estimator for the survival function would 

be a step function with potential jumps at all interval endpoints, such that the likelihood 

becomes non-concave and the estimation becomes unstable.

In practice, certain bootstrap samples may contain too few or no exact observations. We 

suggest to delete those samples provided that they account for a small proportion of all 

bootstrap samples. An alternative strategy is to perform parametric bootstrap, which requires 

modeling of the censoring distribution (Efron and Tibshirani, 1993, pp. 90–92).

We used kernel estimation for density and its derivative in constructing the one-step 

estimator. The estimation for this one-dimensional distribution is relatively stable and 

accurate. If the density or its derivative is estimated with bias, the resulting function will 

depart from the efficient score function. However, the function is still a valid score function, 

such that the one-step estimator remains consistent.

For the accelerated failure time model with right-censored data, the rank-based estimator 

(Gehan, 1965), which solves the gradient of a weighted probability for the observed rank, 

can be easily calculated via the linear programming technique. Lin and Chen (2013) 

proposed a one-step efficient estimation procedure using the rank-based estimator as the 

initial estimator. For PIC data, due to the existence of interval-censored observations, we 

cannot recover the rank structure to obtain rank-based estimating equations.

In most medical studies, the events of interest are asymptomatic such that the failure times 

are intrinsically interval-censored. A common practice is to apply the methodology for right-

censored data by treating the time of the first detection or the mid-point of the interval as the 

exact failure time. However, this strategy can induce severe bias in the estimation, as shown 

in our simulation studies. The PIC methodology as presented in this article provides a better 

approximation to interval-censored data by treating only the small intervals as exact 

observations.

It is extremely challenging to perform semiparametric regression analysis of interval-

censored data without treating any observations as exact. Although progress has been made 

on the semiparametric analysis of interval-censored data under the AFT model (Rabinowitz, 
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Tsiatis, and Aragon, 1995; Murphy, van der Vaart, and Wellner, 1999; Shen, 2000; Betensky, 

Rabinowitz, and Tsiatis, 2001; Tian and Cai, 2006), efficient estimation has not been 

explored. Our proposed methods require a non-negligible proportion of exact observations, 

which is crucial in establishing the asymptotic properties and constructing the computation 

algorithm. Therefore, the approach cannot be trivially extended to the interval-censored data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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