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Abstract

Targeted therapies for cancers are sometimes only effective in a subset of patients with a particular
biomarker status. In clinical development, the biomarker status is typically determined by an
investigational-use-only/laboratory-developed test. A market ready test (MRT) is developed later
to meet regulatory requirements and for future commercial use. In the USA, the clinical validation
of MRT showing efficacy and safety profile of the targeted therapy in the biomarker subgroups
determined by MRT is needed for pre-market approval. One of the major challenges in carrying
out clinical validation is that the biomarker status per MRT is often missing for many subjects. In
this paper, we treat biomarker status as a missing covariate and develop a novel pattern mixture
model in the setting of a proportional hazards model for the time-to-event outcome variable. We
specify a multinomial regression model for the missing biomarker statuses, and develop an
expectation—maximization algorithm by the Method of Weights (Ibrahim, Journal of the American
Statistical Association, 1990) to estimate the parameters in the regression model. We use Louis’
formula (Louis, Journal of the Royal Statistical Society. Series B, 1982) to obtain standard errors
estimates. We examine the performance of our method in extensive simulation studies and apply
our method to a clinical trial in metastatic colorectal cancer.
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1. Introduction

Targeted therapies for cancers are sometimes only effective in a subset of patients, restricted
by one or more biomarkers. One such example is the anti-EGFr monoclonal antibodies for
metastatic colorectal cancer (MCRC) patients. The targeted therapy Vectibix is currently
indicated for mCRC in the wild-type KRAS population in many countries as combination
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with chemotherapy or monotherapy, while the mutant KRAS population does not benefit
from Vectibix. To identify this subpopulation, an /n vitro diagnostic (I\VVD) assay needs to be
developed as a companion to the targeted therapy. This is also required by the Food and
Drug Administration guidance [1] to get approval for the therapy for intended use in the
biomarker subpopulation and co-approval of the IVD assay defining that subpopulation.

Ideally, the IVD assay is developed concurrently with the therapy [2]. However, in the
clinical development of the targeted therapy, the biomarker status is usually determined by
an investigational-use-only/laboratory-developed test (IUO/LDT). The efficacy and safety
profile of the targeted therapy is established within the biomarker subgroups based on the
biomarker results per LDT. A market ready test (MRT) is developed later to meet regulatory
requirements and for future commercial use. It is also called the companion diagnostics
(CDx) when it is paired with the targeted therapy. The pre-market approval by the Food and
Drug Administration for the CDx requires that the CDx show clinical accuracy and clinical
validation. Clinical accuracy is to determine the agreement between the results of LDT and
MRT. Clinical validation is to show the efficacy and safety profile of the targeted therapy in
the biomarker subgroups based on the biomarker result per MRT.

One challenge to perform clinical validation is the relatively lower ascertainment rate for
biomarker status per MRT. This is due to the lesser quantity and quality of retesting samples
for MRT. For example, some patients may have an insufficient amount of tissue available,
the remaining tissue lacks the requisite quality to obtain a valid MRT result, or consent for
MRT could not be obtained for some patients. This leads to notable missing values for
biomarker results per MRT and presents challenges to evaluate clinical validation. While the
primary analysis for clinical validation is based on subjects with valid biomarker results,
sensitivity analysis accounting for subjects with missing biomarker results is desired. Denne
et al. [3] developed a closed-form approach, as well as approaches based on multiple
imputation and bootstrapping, to address this problem for survival endpoints. The closed-
form approach requires strong assumptions on the efficacy of subjects, which are difficult to
assess.

In this paper, we alternatively make the assumption that subjects with different joint
biomarker statuses per LDT and MRT have different effective patterns of efficacy, thus
leading to a pattern mixture model. This assumption is reasonable because the two test
statuses, which measure the biomarker status in somewhat different ways, jointly identify
the biomarker status of each subject. Missing biomarker statuses in the pattern mixture
model can then be viewed as a special case of missing covariates in the proportional hazards
model. We adopt the expectation—maximization (EM) algorithm by the method of weights
[4] to deal with the missing covariates, and estimate the treatment effects for patients with
different joint biomarker statuses. The test-specific measurements commonly used in
practice, such as the test-specific survival probability, test-specific restricted mean survival
time, and the test-specific hazard ratio, especially for MRT, are then estimated. The rest of
the paper is organized as follows. In Section 2, we describe a motivating clinical trial for this
research. In Section 3, we describe the model assumptions and inference procedure. In
Section 4, we conduct extensive simulation studies to examine the performance of the
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estimators. In Section 5, we apply our method to the motivating example. A discussion
follows in Section 6.

2. Motivating example

The PRIME study is a multicenter, randomized, open-label, phase 111 trial for patients with
no prior chemotherapy for mCRC comparing panitumumab with infusional fluorouracil,
leucovorin, and oxaliplatin (FOLFOX) versus FOLFOX alone [5]. The primary endpoint
was progression-free survival; while overall survival was a key secondary endpoint. Results
were prospectively analyzed on an intent-to-treat basis by tumor KRAS status per LDT—an
IUO version of the therascreen® KRAS RGQ PCR kit [6], which is an IVD test intended for
the detection of seven somatic mutations in the KRASexon 2 codons 12 and 13 and
providing a qualitative assessment of mutation status. The final result of this kit was a binary
indication for the detection of wild-type or at least one of the seven somatic mutations in the
sample. KRAS results per LDT were available for 1096 (93%) of the 1183 subjects
randomly assigned.

Subsequently, subjects with a valid KRAS status previously obtained using the LDT were
evaluated for retesting with the MRT (therascreen® KRASRGQ PCR kit). The remaining
DNA extract from pretreatment tumor tissue for LDT and other sources of samples were
used, in order to maximize the ascertainment rate of MRT while the DNA used for the MRT
are comparable with those for the LDT. KRAS results per MRT were available for 1014
(86%) of the 1183 subjects randomly assigned.

For each test (LDT or MRT), the KRAS mutation status is wild-type if no mutation is
detected in all seven somatic mutations, mutant if one or more mutations detected in the
seven somatic mutations, and missing if one or more mutation reactions are invalid but no
mutation is detected in the other somatic mutations. Although the MRT KRAS
ascertainment rate is reasonably high enough (86%) to perform clinical validation analysis,
it is desirable to study the clinical treatment effect with over 90% of KRAS ‘ascertainment
rate’ [3], or even 100%.

3. Pattern mixture model and inference

In this section, we describe a general framework of pattern mixture model and the inference
procedure. Let 7, € {0, 1} (k=1, ..., K) denote the statuses of K biomarker tests. Let A €
{0, 1} denote the treatment indicator, and X denote a g-dimensional vector of other baseline
variables. We are interested in a survival outcome 7', which is assumed to be from the
proportional hazards model, with hazard rate

T
MOAX.T =1 T =t dan) =/1(z)exp{n(z1,...,zK) z},

where Z = (1, A, X) and (&, ... , tx) is a (d+ 2)-dimensional vector of parameters. The first
element of (0, ..., 0) is set to be zero to ensure identifiability. Here, we formulate a pattern
mixture model, where subjects with different joint statuses of (73, ... , Tk) are assumed to
have shared baseline hazard function but different regression coefficients. The survival time
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7 is right-censored by a random variable C, which is independent with the survival time 7
given the covariates (A, X) and tests (73, ... , 7x). We denote ¥ = min (T, C) and
A =IKT <0).

Assume that the tests (73, ... , Tk) are from a multinomial logistic model with

exp{H(ll, ...,tK)T)?}

Pp g KO=PT =1, Tp=1,1X.0)= T
TR Ztyn_,tKexp{o(tl,...,zK) X}
where X = (1,X) and a4, ..., ty) is a (d+ 1)-dimensional vector of parameters with &0,
..., 0) = 0 to ensure identifiability. We assume that the test statuses 73, ..., Tk are missing at

random and further define the missing indicators Ry, ... , Rk, where R, = 1 if we observe 7
and Ry = 0 otherwise for k=1, ... , K. Denote y = (A, 7, 6). For a random sample of n
subjects, we observe

[V By R T, R T A X i = 1, m)

1 K

The observed-data log-likelihood concerning y is

K

kl:Il [Ryl(Ty =1+ (1= Ry

n
T T
Al.log/I(Yl.) + Al.n(tl, e tK) Zi - A(Yl.)exp[n(tl, e tK) Zi]

i= ltl,...,tK

T~ , , Ty
+0G,. .. 1) X ~log| Y exp{ﬂ(ll,...,tK) Xi}
o

To conduct the nonparametric maximum estimation [7] for the cumulative hazard function
A, we assume that the estimator for A is a step function with non-negative jumps at the
observed survival times. Therefore, the resulting objective function is not exactly the
likelihood function but rather an approximation. To maximize the objective function, we
adopt the EM algorithm by the method of weights [4], where the conditional expectation in
the E-step is formed as a weighted version of objective function for the complete data based
on possible combinations of the missing covariates given the observed data. Note that the
objective function for the complete data is

n
Iy) = Z (T ;s oo Tieiw),
i=1

where
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X,

T T
li(tl,...,tK;y/)=Ai10gA{Yl.}+Al.11(tl,...,tK) Zl.—/\(Yl.)exp n(tl,...,tK) Zi +0(t1,...,tK) ;

— log Z exp{e(t’l,...,t’K)Tfi},
t’l,...t’K

and A{ Y} is the jump size of A at Y} The conditional expectation given the current
estimate(" can be written as

n
Qwly™) =Y Y Wity ti sy i), ()
i=1t,, ..t
'K

where the weight w{t, ... , t; ¥A™) is the conditional probability of (7 = 4, ..., Tjx=
1) given the observed test statuses (R T, ..., Rix Tix) and the parameters 44, which can
be written as

Mty oty ‘/’(m))HkK= BRI Ty = 1)+ 1+ Ry

Wt ety ™) = CON B L :
Zt’l, ...,t’K[Mi(fi’ et ™I 2[Ryt Ty = o+ _Rik)}]
with
B et Z, & B et Z,
Ml.(t1 st ;y/(m)) A(m) Yi e ! exp —A(m) Yi e ! ptl"“’[K
(X.;H(m)).
1

In the M-step, we maximize the resulting Q(y (™) with respect to y to obtain y{"*1),
Note that Q(w]¥A") can be factored into a weighted proportional hazards model log-
likelihood and a weighted multinomial logistic regression model log-likelihood. Thus, the
maximizers (™1 A(71)) and &71) can be obtained independently. Specifically,(™1) is
obtained through solving the weighted version of partial score equation
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n
vp= Y A Y wi(tl,...,tK;y/(m)) z,
i1 Ty

m
. . (m)) n
Zi:szYiZt/l,..‘,t’KWj(tl ---- Iy )e

Zj:Y‘>Y.Zt’

j= i 1

et

and A(™1) js the corresponding weighted version of Nelson-Aalen estimator

AI(Y,<1)

n
A(m+ 1)(t) — z

i=1 n(m)(tl,...,rK) T

. (M)
Zj:szYiZtl,.‘.,tij(tl """ gy e Z;

We iterate between the E-step and the M-step till the algorithm converges, and denote the
resulting estimator i = (4, ,8). We obtain the variance estimator using Louis’ formula [8]
for the EM algorithm [9] by inverting the information matrix

_ Powlw n o1ty tew ®2
1) = ———— =Y X et g
oy oy o~ i=1ty,..0 v =
v =y 1 K
n ~
. |aQ<w|w)| ]®2
S =y

where 892 = aa'.

We then estimate the test-specific survival functions for subjects in different treatment
groups. The marginal survival probability for subject with A = gin subgroup with 7= #
can be written as
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PT >1,T

k=lk|A=a)
K== TP

PT>tlA=aT =3

k=%

B ZXP(? >1,T, =1 1A=aX)PXIA =a)

ZXP(Tk =1, 1A=a, HPXIA = a)

ZXZt’l,...,t;{I(t}cz P{T 20Ty =1} T = 1A = a.X]

ZXZt’l,,..,t’K[(t}c= WP{T =1 T =t 1A= a.X|

T

N}, - t) (1,a,X) ~

, , I, =t,)exp{—A(t)e 2% , (X0

ZXZtl,...,tK k 'k tl"“”K( )

B . Ll =t)p, . (X50) ’

ZXZzl,...,zK k™ 'k tl""’tK
which can be consistently estimated by
~ T
N o Az
IPn Zt,l’ ...,t’KI(lk = tk,A = a)pt,l’ _..’I,K(X;O)exp —A(t)e

P(T >tl1A =a,Tk=tk) =

where the empirical measure P, is taken over all the subject. This can be viewed as the
summary of the estimated survival probability for subjects with A = aweighted by their
probability of having test status 7= fx

To characterize the test-specific treatment effect, we use the difference in the restricted mean
survival time for different treatment groups. For some #* >0, the restricted mean survival

* ~
time for subject with A = ain subgroup with 74 = fis /t P(T 2 t1A = a, T = 1,)dt, Which
0

can be consistently estimated by

i T
R DU | (AP % v/
;o _ . m * * _ 1 K
P zl,le,Kmk_tk,A —a)pt,l,m’t,K(X,O) ij 1654 g AT =5 ATexpl=AGs De
[P’{ . LIt =t A=ap, X;él
n Ztl,...,tK k™ 'k ’1""”1(( )
where s, ... , S, are jump times for A. The treatment effect can then be charactered by the

difference of the estimated restricted mean survival time for the two treatment groups. The
standard error can be estimated using Delta’s method based on the estimated information
matrix of the parameters.
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Another important statistic for treatment effect is the test-specific hazard ratio. Given the
assumptions of the pattern mixture model, the marginal proportional hazards assumption
does not hold for each test 74 (k=1, ... , K) because the test-specific hazard ratio is time-
varying. However, in practice, test-specific hazard ratios are desired in order to illustrate the
average test-specific treatment effect. To meet this need, we propose an estimator for the
approximated test-specific hazard ratio. Specifically, to estimate the approximated hazard
ratio oftreatment A for subjects with test 7 = #, we simulate /Vsubjects from the control
arm survival curve A(T > t1A = 0, T, = 1) and Nsubjects from the treatment arm survival

curve AT > tlA =1, T, = t,). Here Nis a larger number such that the distribution of failure

time in the 2/Vsamples approximates the survival curves well. A traditional proportional
hazards model is then fitted using the simulated data from 2//subjects, and the resulting
hazard ratio estimate for treatment A serves as the approximated hazard ratio estimate for
the original study.

4. Simulation studies

We conducted simulation studies to examine performance of the proposed method in finite
samples. We simulated treatment A ~ Bin(1, 0.5) and two baseline covariates X ~ Bin(1,
0.5), X, ~ Uniform(0, 1), independently. We considered two biomarker tests and a survival
outcome, which were simulated as described in Section 3, with parameters A(§) = 1 for 1€
[0, 2],

0050 0
6(0,0)0(0,1)0(1,0)0(1, )| =0 0.5 0.5 0 |,
005 0 05

and

0 0 05 05
0.5 0.5 -0.5 -0.5
0505 0 05|
05 0 05 0

17(0,0) (0, 1) (1, 0) n(1, )| =

The censoring time C ~ Uniform(0, 2), giving approximately 30% censored observations.
We simulated Ry ~ Bin(1, py) and R ~ RyxBin(1, p), such that if 7; (LDT) is missing then
7>(MRT) is missing. This is typically the case in practice because the available samples are
prioritized for LDT. The parameters p; and p, were subject specific and linearly associated
with the baseline covariates (X1, X>) to give approximately 10% and 20% missingness for
71 and 7.

We considered random samples of 250, 500, and 1000 subjects. For each sample size, we
examined 10,000 replicates, and the results are shown in Table I. The proposed point
estimator is slightly biased when the sample size is small, but the bias decreases as the
sample size increases. The standard error estimates correctly reflect the true variation when
the sample size increases, and the coverage probability is satisfactory.
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We then examined the robustness of the proposed estimator when the model is misspecified.
Specifically, we simulated the covariates, two test statuses, and the censoring time in the
same manner as before. We simulated the survival time from a non-proportional hazards
model

T
AT =k Ty =LA,X) = 4 (Dexp( Z),

where Ax(D = (k+ 1)t+ /2 for t€ [0, 2] and 7, takes the same values as in the previous
setting. Table I1 shows the results from 10,000 replicates with sample sizes 250, 500, and
1000. The biases for the parameters in the logistic model are small because the logistic
model is correctly specified. The estimated intercepts in the survival model are biased
because that the hazard functions are misspecified. However, the estimated effects of
covariates have acceptable bias with satisfactory coverage probability of 95% confidence
intervals.

5. The PRIME trial

We randomly selected 946 (80.0%) subjects from the 1183 subjects in the PRIME trial for
demonstration purposes, because of data sharing requirements. None of the 346 subjects
with KRAS mutant per LDT is KRAS wild-type per MRT, possibly because of the expected
higher sensitivity for detecting mutations by the MRT than the LDT. Among the 478
subjects with KRAS wild-type per LDT and non-missing MRT result, 460 (96.2%) subjects
have KRASwild-type per MRT. Among all the 946 subjects, 65 (6.9%) subjects have
missing KRAS statuses per LDT, and 122 (12.9%) subjects have missing KRAS statuses per
MRT. Because KRASwas retested by MRT only for samples with a valid KRAS status per
LDT, MRT status is missing if LDT status is missing. The missing test status is generally
due to insufficient quality or quantity of banked tumor tissue samples. Therefore, the
assumption of missing at random may be considered reasonable.

The subjects were randomized to receive either panitumumab plus FOLFOX or FOLFOX
alone. Other baseline covariates include region (central and eastern Europe, western Europe,
others), primary tumor diagnosis (colon, rectal), prior surgery (yes, no), prior radiotherapy
(yes, no), months since primary diagnosis, histological differentiation (well differentiated,
moderately differentiated, poorly differentiated, undifferentiated/unknown), and histological
subtype (mucinous, appendiceal/other, no subtype, unknown). For some subjects, months
since primary diagnosis (1.1%), histological differentiation (0.2%), or histological subtype
(0.3%) are missing. For demonstration purpose, we focus on the secondary endpoint overall
survival.

5.1. Proportional hazards model using complete cases

One naive approach to assess the test-specific treatment effect is to fit separate proportional
hazards models for subjects with different statuses per LDT and per MRT using the
complete cases. Specifically, the analysis is based on 881 subjects with valid KRAS results
per LDT, and 824 subjects per MRT. It is worth noting that using the complete cases may
induce bias because the subjects with non-missing test statuses may not be a random sample
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of the study population. We consider three models, where the survival outcome is assumed
to be from the proportional hazards model with covariates:

A. treatment only;

B. treatment and other baseline covariates with non-missing values (region,
diagnosis type, prior surgery, and prior radiotherapy);

C. treatment and all the other baseline covariates. Because there is missingness for
months since primary diagnosis, histological differentiation, and histological
subtype, the result is based on subjects with complete covariates.

The estimated hazard ratios, confidence intervals, and p-values for the test-specific hazard
ratio using the complete cases are shown in Table I11. The results favor panitumumab plus
the FOLFOX arm in wild-type subjects, either defined by LDT or MRT, with nominal p-
value greater than 0.05 in all three models. The results favor the FOLFOX alone arm in
mutant subjects, either defined by LDT or MRT, with nominal p-value less than 0.05 in the
model adjusting for all the baseline covariates. Compared with the MRT, the p-values from
LDT status is smaller, which correspond to the fact that the two tests almost agree and that
there are more subjects with non-missing LDT status.

We also perform the quantitative interaction (g-int) test [10] for each model, to test if the
treatment effects are equal in subgroups of subjects defined by KRAS status per each test.
The g-int test is based on the statistic of weighted residual sum of squares, which is chi-
square distributed under the null hypothesis. Under proportional hazards models adjusting
for baseline covariates (covariate set B, C), the g-int tests have nominal p-values less than
0.05 for both LDT and MRT. There is a notable difference in treatment effects for subjects
with different KRAS statuses, either defined by LDT or MRT.

5.2. Pattern mixture model

We then model the overall survival using the proposed pattern mixture model. Because we
did not observe the combination of KRAS mutant per LDT and KRAS wild-type per MRT,
we consider a modified version of pattern mixture model with three possible patterns. We
consider three pattern mixture models with covariate sets A, B, or C, as defined in Section
5.1. The estimated hazard ratios for panitumumab plus FOLFOX in subjects with different
combinations of test statuses under pattern mixture models are shown in Table V. The
confidence intervals for hazard ratios are estimated using both Louis’ formula and the
bootstrap method [11], which is also a commonly used method in variance estimation. In all
the models we considered, the treatments perform differently for subjects with different test
statuses: panitumumab plus FOLFOX works better for subjects with test status (LD T, MRT)
= (wild-type, wild-type), while FOLFOX alone is better for subjects with test statuses (LDT,
MRT) = (mutant, mutant). For subjects with test statuses (LDT, MRT) = (wild-type, mutant),
the estimated hazard ratios have wide confidence intervals, because of the small number of
subjects in this category. Compared with the bootstrap confidence interval, the confidence
intervals formulated using Louis’ formula are narrower and thus give more precision.

We plot the estimated survival curves for different treatment groups under model with
covariate set C in Figure 1. Specifically, we plot different subgroups of subjects with
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different statuses per LRT or MRT separately, where the dotted curves indicate the bootstrap
95% confidence interval. We estimated the difference in test-specific restricted mean
survival time for different treatment groups, and the results are shown in Table V. The
treatment differences in the restricted mean survival time are positive in wild-type by LDT
and MRT, and are negative in mutant by LDT and MRT, indicating that panitumumab plus
FOLFOX is beneficial for the wild-type subjects, and FOLFOX alone is preferred for the
mutant subjects.

We assess the proportional hazards assumption for the pattern mixture model through the
proportional hazards tests based on Schoenfeld residuals [12]. Prior to the proportional
hazards tests, we impute the missing test statuses by the statuses with the largest estimated
probability p, (X). The global tests for proportional hazards assumption have p-values 0.290,

0.255, and 0.656 for pattern mixture models with covariate set A, B, and C, respectively,
indicating that the proportional hazards assumptions for the pattern mixture models are
adequate.

6. Discussion

In this paper, we consider a pattern mixture model to perform clinical validation of MRT
when the ascertainment rate for biomarker status per MRT is relatively low. Even though the
most common scenario is to handle two tests (MRT and LDT), we establish a general
framework accommodating arbitrary number of tests. We use the EM algorithm to address
the issue of missing data. We illustrate the method in a clinical study, compared with the
proportional hazards model based on complete cases and bootstrapping with imputation. The
results are similar in terms of the point estimates and p-values.

Compared with the bootstrapping with imputation method developed by Denne ef a. [3],
where subjects with non-missing LDT statuses are included, our method utilize the
information from all the subjects in the clinical study. The missing LDT statuses are also
regarded as missing values, and are taken into account in the EM algorithm. This avoids the
potential issues when the subjects with non-missing LDT statuses are not representative of
the whole study population. The inclusion of those subjects gives unbiased results when the
LDT statuses is missing at random, and it gives statistically more efficient results.

The pattern mixture proportional hazards assumption may not be valid in practice. However,
we showed in the simulation studies that even when the model is misspecified, the estimated
treatment effects are close to the true values, and the confidence intervals for the treatment
effects have coverage probabilities close to the nominal values. The proposed method thus
gives valid approximation for the treatment effects.

In addition to the test-specific hazard ratios, we obtain the hazard ratios for subjects with
combinations of test statuses using our method. The combination of test statuses intuitively
gives more accurate characteristics on the biomarker status, and may also be preferable in
identifying the population for the targeted therapies.
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Figure 1.

Estimated survival curves of different treatment groups for subjects with different test
statuses. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table IV

Hazard ratio estimates for combined tests from the pattern mixture model.

(LDT, MRT) = (wild-type, wild-type)

HR 95% ClI p-value
Covariateset  Louis Bootstrap
A 0.875 (0.714,1.072)  (0.710,1.073)  0.199
B 0.870  (0.710,1.065)  (0.706,1.073)  0.178
c 0.869  (0.704,1.072)  (0.699,1.083)  0.189

(LDT, MRT) = (wild-type, mutant)

HR 95% ClI p-value

Covariate set  Louis Bootstrap

0971 (0.344,2.742)  (0.248,3.744)  0.956
1.399  (0.365,5.366) (0.120,56.25)  0.624
2620 (0.478,14.364)  (0.003,204)  0.267

(LDT, MRT) = (mutant, mutant)
HR 95% ClI pvalue

Covariate set Louis Bootstrap

1160  (0.923,1.459) (0.920,1.429) 0.203
B 1.246  (0.987,1573) (0.989,1.604)  0.064
1370 (1.078,1.741)  (1.080,1.776)  0.010

Note: HR and 95% CI denote the estimate and 95% confidence interval for HR for panitumumab plus FOLFOX compared with FOLFOX alone by
combined tests, respectively. LDT, laboratory-developed test; MRT, market ready test; HR, hazard ratio.
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