
Pattern mixture models for clinical validation of biomarkers in 
the presence of missing data

Fei Gaoa, Jun Dongb, Donglin Zenga, Alan Rongc, and Joseph G. Ibrahima,*

aDepartment of Biostatistics, University of North Carolina at Chapel Hill, CB7420, Chapel Hill, 
U.S.A

bAmgen Inc., One Amgen Center Drive, Thousand Oaks, U.S.A

cAstellas Pharma Inc., Northbrook, U.S.A

Abstract

Targeted therapies for cancers are sometimes only effective in a subset of patients with a particular 

biomarker status. In clinical development, the biomarker status is typically determined by an 

investigational-use-only/laboratory-developed test. A market ready test (MRT) is developed later 

to meet regulatory requirements and for future commercial use. In the USA, the clinical validation 

of MRT showing efficacy and safety profile of the targeted therapy in the biomarker subgroups 

determined by MRT is needed for pre-market approval. One of the major challenges in carrying 

out clinical validation is that the biomarker status per MRT is often missing for many subjects. In 

this paper, we treat biomarker status as a missing covariate and develop a novel pattern mixture 

model in the setting of a proportional hazards model for the time-to-event outcome variable. We 

specify a multinomial regression model for the missing biomarker statuses, and develop an 

expectation–maximization algorithm by the Method of Weights (Ibrahim, Journal of the American 
Statistical Association, 1990) to estimate the parameters in the regression model. We use Louis’ 

formula (Louis, Journal of the Royal Statistical Society. Series B, 1982) to obtain standard errors 

estimates. We examine the performance of our method in extensive simulation studies and apply 

our method to a clinical trial in metastatic colorectal cancer.
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1. Introduction

Targeted therapies for cancers are sometimes only effective in a subset of patients, restricted 

by one or more biomarkers. One such example is the anti-EGFr monoclonal antibodies for 

metastatic colorectal cancer (mCRC) patients. The targeted therapy Vectibix is currently 

indicated for mCRC in the wild-type KRAS population in many countries as combination 
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with chemotherapy or monotherapy, while the mutant KRAS population does not benefit 

from Vectibix. To identify this subpopulation, an in vitro diagnostic (IVD) assay needs to be 

developed as a companion to the targeted therapy. This is also required by the Food and 

Drug Administration guidance [1] to get approval for the therapy for intended use in the 

biomarker subpopulation and co-approval of the IVD assay defining that subpopulation.

Ideally, the IVD assay is developed concurrently with the therapy [2]. However, in the 

clinical development of the targeted therapy, the biomarker status is usually determined by 

an investigational-use-only/laboratory-developed test (IUO/LDT). The efficacy and safety 

profile of the targeted therapy is established within the biomarker subgroups based on the 

biomarker results per LDT. A market ready test (MRT) is developed later to meet regulatory 

requirements and for future commercial use. It is also called the companion diagnostics 

(CDx) when it is paired with the targeted therapy. The pre-market approval by the Food and 

Drug Administration for the CDx requires that the CDx show clinical accuracy and clinical 

validation. Clinical accuracy is to determine the agreement between the results of LDT and 

MRT. Clinical validation is to show the efficacy and safety profile of the targeted therapy in 

the biomarker subgroups based on the biomarker result per MRT.

One challenge to perform clinical validation is the relatively lower ascertainment rate for 

biomarker status per MRT. This is due to the lesser quantity and quality of retesting samples 

for MRT. For example, some patients may have an insufficient amount of tissue available, 

the remaining tissue lacks the requisite quality to obtain a valid MRT result, or consent for 

MRT could not be obtained for some patients. This leads to notable missing values for 

biomarker results per MRT and presents challenges to evaluate clinical validation. While the 

primary analysis for clinical validation is based on subjects with valid biomarker results, 

sensitivity analysis accounting for subjects with missing biomarker results is desired. Denne 

et al. [3] developed a closed-form approach, as well as approaches based on multiple 

imputation and bootstrapping, to address this problem for survival endpoints. The closed-

form approach requires strong assumptions on the efficacy of subjects, which are difficult to 

assess.

In this paper, we alternatively make the assumption that subjects with different joint 

biomarker statuses per LDT and MRT have different effective patterns of efficacy, thus 

leading to a pattern mixture model. This assumption is reasonable because the two test 

statuses, which measure the biomarker status in somewhat different ways, jointly identify 

the biomarker status of each subject. Missing biomarker statuses in the pattern mixture 

model can then be viewed as a special case of missing covariates in the proportional hazards 

model. We adopt the expectation–maximization (EM) algorithm by the method of weights 

[4] to deal with the missing covariates, and estimate the treatment effects for patients with 

different joint biomarker statuses. The test-specific measurements commonly used in 

practice, such as the test-specific survival probability, test-specific restricted mean survival 

time, and the test-specific hazard ratio, especially for MRT, are then estimated. The rest of 

the paper is organized as follows. In Section 2, we describe a motivating clinical trial for this 

research. In Section 3, we describe the model assumptions and inference procedure. In 

Section 4, we conduct extensive simulation studies to examine the performance of the 
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estimators. In Section 5, we apply our method to the motivating example. A discussion 

follows in Section 6.

2. Motivating example

The PRIME study is a multicenter, randomized, open-label, phase III trial for patients with 

no prior chemotherapy for mCRC comparing panitumumab with infusional fluorouracil, 

leucovorin, and oxaliplatin (FOLFOX) versus FOLFOX alone [5]. The primary endpoint 

was progression-free survival; while overall survival was a key secondary endpoint. Results 

were prospectively analyzed on an intent-to-treat basis by tumor KRAS status per LDT—an 

IUO version of the therascreenⓇ KRAS RGQ PCR kit [6], which is an IVD test intended for 

the detection of seven somatic mutations in the KRAS exon 2 codons 12 and 13 and 

providing a qualitative assessment of mutation status. The final result of this kit was a binary 

indication for the detection of wild-type or at least one of the seven somatic mutations in the 

sample. KRAS results per LDT were available for 1096 (93%) of the 1183 subjects 

randomly assigned.

Subsequently, subjects with a valid KRAS status previously obtained using the LDT were 

evaluated for retesting with the MRT (therascreenⓇ KRAS RGQ PCR kit). The remaining 

DNA extract from pretreatment tumor tissue for LDT and other sources of samples were 

used, in order to maximize the ascertainment rate of MRT while the DNA used for the MRT 

are comparable with those for the LDT. KRAS results per MRT were available for 1014 

(86%) of the 1183 subjects randomly assigned.

For each test (LDT or MRT), the KRAS mutation status is wild-type if no mutation is 

detected in all seven somatic mutations, mutant if one or more mutations detected in the 

seven somatic mutations, and missing if one or more mutation reactions are invalid but no 

mutation is detected in the other somatic mutations. Although the MRT KRAS 
ascertainment rate is reasonably high enough (86%) to perform clinical validation analysis, 

it is desirable to study the clinical treatment effect with over 90% of KRAS ‘ascertainment 

rate’ [3], or even 100%.

3. Pattern mixture model and inference

In this section, we describe a general framework of pattern mixture model and the inference 

procedure. Let Tk ∈ {0, 1} (k = 1, …, K) denote the statuses of K biomarker tests. Let A ∈ 
{0, 1} denote the treatment indicator, and X denote a d-dimensional vector of other baseline 

variables. We are interested in a survival outcome T∼, which is assumed to be from the 

proportional hazards model, with hazard rate

λ(t | A, X, T1 = t1, …, TK = tK, λ, η) = λ(t)exp η(t1, …, tK)TZ ,

where Z = (1, A, X) and η(t1, … , tK) is a (d + 2)-dimensional vector of parameters. The first 

element of (0, …, 0) is set to be zero to ensure identifiability. Here, we formulate a pattern 

mixture model, where subjects with different joint statuses of (T1, … , TK) are assumed to 

have shared baseline hazard function but different regression coefficients. The survival time 
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T̃ is right-censored by a random variable C, which is independent with the survival time T∼

given the covariates (A, X) and tests (T1, … , TK). We denote Y = min (T∼, C) and 

Δ  = I(T∼ ≤ C).

Assume that the tests (T1, … , TK) are from a multinomial logistic model with

pt1, …, tK
(X; θ) ≡ P(T1 = t1, …, TK = tK | X, θ) =

exp θ(t1, …, tK)TX
∼

∑t1, …, tK
exp θ(t1, …, tK)TX

∼ ,

where X
∼ =  (1, X) and θ(t1, … , tK) is a (d + 1)-dimensional vector of parameters with θ(0, 

…, 0) = 0 to ensure identifiability. We assume that the test statuses T1, … , TK are missing at 

random and further define the missing indicators R1, … , RK, where Rk = 1 if we observe Tk 

and Rk = 0 otherwise for k = 1, … , K. Denote ψ = (λ, η, θ). For a random sample of n 
subjects, we observe

Yi, Δi, Ri1Ti1, …, RiKTiK, Ai, Xi; i = 1, …, n .

The observed-data log-likelihood concerning ψ is

∑
i = 1

n
∑

t1, …, tK
∏

k = 1

K
RikI(Tik = tk) + (1 − Rik) Δilogλ(Yi) + Δiη(t1, …, tK)TZi − Λ(Yi)exp η(t1, …, tK)TZi

+ θ(t1, …, tK)TX
∼

i − log ∑
t1′ , …tK′

exp θ(t1′ , …, tK′ )TX
∼

i .

To conduct the nonparametric maximum estimation [7] for the cumulative hazard function 

Λ, we assume that the estimator for Λ is a step function with non-negative jumps at the 

observed survival times. Therefore, the resulting objective function is not exactly the 

likelihood function but rather an approximation. To maximize the objective function, we 

adopt the EM algorithm by the method of weights [4], where the conditional expectation in 

the E-step is formed as a weighted version of objective function for the complete data based 

on possible combinations of the missing covariates given the observed data. Note that the 

objective function for the complete data is

l(ψ) = ∑
i = 1

n
li(Ti1, …, TiK :ψ),

where
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li(t1, …, tK; ψ) = ΔilogΛ{Yi} + Δiη(t1, …, tK)TZi − Λ(Yi)exp η(t1, …, tK)TZi + θ(t1, …, tK)TX
∼

i

− log ∑
t1′ , …tK′

exp θ(t1′ , …, tK′ )TX
∼

i ,

and Λ{Yi} is the jump size of Λ at Yi. The conditional expectation given the current 

estimate(m) can be written as

Q(ψ |ψ (m)) = ∑
i = 1

n
∑

t1, …, tK

wi(t1, …, tK; ψ (m))li(t1, …, tK; ψ), (1)

where the weight wi(t1, … , tK; ψ(m)) is the conditional probability of (Ti1 = t1, … , TiK = 

tK) given the observed test statuses (Ri1Ti1, …, RiKTiK) and the parameters ψ(m), which can 

be written as

wi(t1, …, tK; ψ(m)) =
Mi(t1, …, tK; ψ(m))∏k = 1

K RikI(Tik = tk) + (1 + Rik)

∑t1′ , …, tK′
Mi(t1′ , …, tK′ ; ψ(m))∏k = 1

K RikI(Tik = tK′ ) + (1 − Rik)
,

with

Mi(t1, …, tK; ψ(m)) = Λ(m) Yi e
η(m)(t1, …, tK)TZi

Δi

exp −Λ(m) Yi e
η(m)(t1, …, tK)TZi pt1, …, tK

Xi; θ(m) .

In the M-step, we maximize the resulting Q(ψ ψ(m)) with respect to ψ to obtain ψ(m+1). 

Note that Q(ψ|ψ(m)) can be factored into a weighted proportional hazards model log-

likelihood and a weighted multinomial logistic regression model log-likelihood. Thus, the 

maximizers ((m+1), Λ(m+1)) and θ(m+1) can be obtained independently. Specifically,(m+1) is 

obtained through solving the weighted version of partial score equation
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U(η) = ∑
i = 1

n
Δi ∑

t1, …, tK

wi t1, …, tK; ψ(m) Zi

−
∑ j:Y j ≥ Yi

∑t1′ , …, tK′
w j t1′ , …, tK′ ; ψ(m) e

η(m)(t1′ , …, tK′ )
TZ j

Z j

∑ j:Y j ≥ Yi
∑t1′ , …, tK′

w j t1′ , …, tK′ ; ψ(m) e
η(m)(t1′ , …, tK′ )

TZ j
,

and Λ(m+1) is the corresponding weighted version of Nelson–Aalen estimator

Λ(m + 1)(t) = ∑
i = 1

n ΔiI(Yi ≤ t)

∑ j:Y j ≥ Yi
∑t1, …, tK

w j(t  1 , …, tK; ψ(m))e
η(m)(t 1, …, tK)

 T Z j

.

We iterate between the E-step and the M-step till the algorithm converges, and denote the 

resulting estimator ψ = (λ , η, θ). We obtain the variance estimator using Louis’ formula [8] 

for the EM algorithm [9] by inverting the information matrix

I(ψ) = −
∂2Q(ψ ψ)

∂ψ ∂ψT
ψ = ψ

− ∑
i = 1

n
∑

t1, …, tK

wi(t1, …, tK; ψ)
∂li(t1, …, tK; ψ)

∂ψ
ψ = ψ

⊗ 2

+ ∑
i = 1

n ∂Q(ψ |ψ)
∂ψ |

ψ = ψ

⊗ 2
,

where a⊗2 = aaT.

We then estimate the test-specific survival functions for subjects in different treatment 

groups. The marginal survival probability for subject with A = a in subgroup with Tk = tk 

can be written as
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P(T∼ ≥ t | A = a, Tk = tk) =
P(T∼ ≥ t, Tk = tk | A = a)

P(Tk = tk | A = a)

=
∑X P(T∼ ≥ t, Tk = tk | A = a, X)P(X | A = a)

∑X P(Tk = tk | A = a, X)P(X | A = a)

=
∑X ∑t1′ , …, tk′

I(tk′ = tk)P T∼ ≥ t, T1 = t1′ , …, TK = tK′ | A = a, X

∑X ∑t1′ , …, tK′
I(tk′ = tk)P T1 = t1′ , …, TK = tK′ | A = a, X

=

∑X ∑t1′ , …, tK′
I(tk′ = tk)exp −Λ(t)e

η(t1′ , …, tK′ )T(1, a, X)
pt1′ , …, tK′

X; θ

∑X ∑t1′ , …, tK′
I(tk′ = tk)pt1′ , …, tK′

X; θ
,

which can be consistently estimated by

P(T∼ ≥ t | A = a, Tk = tk) =

ℙn ∑t1′ , …, tK′
I(tk′ = tk, A = a)pt1′ , …, tK′

X; θ exp −Λ(t)e
η(t1′ , …, tK′ )TZ

ℙn ∑t1′ , …, tK′
I(tk′ = tk, A = a)pt1′ , …, tK′

X; θ
,

where the empirical measure ℙn is taken over all the subject. This can be viewed as the 

summary of the estimated survival probability for subjects with A = a weighted by their 

probability of having test status Tk = tk.

To characterize the test-specific treatment effect, we use the difference in the restricted mean 

survival time for different treatment groups. For some t∗ > 0, the restricted mean survival 

time for subject with A = a in subgroup with Tk = tk is ∫0
t∗P(T∼ ≥ t | A = a, Tk = tk)dt, which 

can be consistently estimated by

ℙn ∑t1′ , …, tK′
I(tk′ = tk, A = a)pt1′ , …, tK′

X; θ ∑ j = 1
m (s j + 1 ∧ t∗ − s j ∧ t∗)exp −Λ(s j)e

η(t1′ , …, tK′ )TZ

ℙn ∑t1′ , …, tK′
I(tk′ = tk, A = a)pt1′ , …, tK′

X; θ
,

where s1, … , sm are jump times for Λ. The treatment effect can then be charactered by the 

difference of the estimated restricted mean survival time for the two treatment groups. The 

standard error can be estimated using Delta’s method based on the estimated information 

matrix of the parameters.
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Another important statistic for treatment effect is the test-specific hazard ratio. Given the 

assumptions of the pattern mixture model, the marginal proportional hazards assumption 

does not hold for each test Tk (k = 1, … , K) because the test-specific hazard ratio is time-

varying. However, in practice, test-specific hazard ratios are desired in order to illustrate the 

average test-specific treatment effect. To meet this need, we propose an estimator for the 

approximated test-specific hazard ratio. Specifically, to estimate the approximated hazard 

ratio of(treatment A for subjects with test Tk = tk, we simulate N subjects from the control 

arm survival curve P(T∼ ≥ t | A = 0, Tk = tk) and N subjects from the treatment arm survival 

curve P(T∼ ≥ t | A = 1, Tk = tk). Here N is a larger number such that the distribution of failure 

time in the 2N samples approximates the survival curves well. A traditional proportional 

hazards model is then fitted using the simulated data from 2N subjects, and the resulting 

hazard ratio estimate for treatment A serves as the approximated hazard ratio estimate for 

the original study.

4. Simulation studies

We conducted simulation studies to examine performance of the proposed method in finite 

samples. We simulated treatment A ∼ Bin(1, 0.5) and two baseline covariates X1 ∼ Bin(1, 

0.5), X2 ∼ Uniform(0, 1), independently. We considered two biomarker tests and a survival 

outcome, which were simulated as described in Section 3, with parameters λ(t) ≡ 1 for t ∈ 
[0, 2],

θ(0, 0) θ(0, 1) θ(1, 0) θ(1, 1) =
0 0.5 0 0
0 0.5 0.5 0
0 0.5 0 0.5

,

and

η(0, 0) η(0, 1) η(1, 0) η(1, 1) =

0 0 0.5 0.5
0.5 0.5 −0.5 −0.5
0.5 0.5 0 0.5
0.5 0 0.5 0

.

The censoring time C ∼ Uniform(0, 2), giving approximately 30% censored observations. 

We simulated R1 ∼ Bin(1, p1) and R2 ∼ R1×Bin(1, p2), such that if T1 (LDT) is missing then 

T2(MRT) is missing. This is typically the case in practice because the available samples are 

prioritized for LDT. The parameters p1 and p2 were subject specific and linearly associated 

with the baseline covariates (X1, X2) to give approximately 10% and 20% missingness for 

T1 and T2.

We considered random samples of 250, 500, and 1000 subjects. For each sample size, we 

examined 10,000 replicates, and the results are shown in Table I. The proposed point 

estimator is slightly biased when the sample size is small, but the bias decreases as the 

sample size increases. The standard error estimates correctly reflect the true variation when 

the sample size increases, and the coverage probability is satisfactory.
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We then examined the robustness of the proposed estimator when the model is misspecified. 

Specifically, we simulated the covariates, two test statuses, and the censoring time in the 

same manner as before. We simulated the survival time from a non-proportional hazards 

model

λ(t |T1 = k, T2 = l, A, X) = λkl(t)exp(ηkl
T Z),

where λkl(t) = (k + 1)t + lt2 for t ∈ [0, 2] and ηkl takes the same values as in the previous 

setting. Table II shows the results from 10,000 replicates with sample sizes 250, 500, and 

1000. The biases for the parameters in the logistic model are small because the logistic 

model is correctly specified. The estimated intercepts in the survival model are biased 

because that the hazard functions are misspecified. However, the estimated effects of 

covariates have acceptable bias with satisfactory coverage probability of 95% confidence 

intervals.

5. The PRIME trial

We randomly selected 946 (80.0%) subjects from the 1183 subjects in the PRIME trial for 

demonstration purposes, because of data sharing requirements. None of the 346 subjects 

with KRAS mutant per LDT is KRAS wild-type per MRT, possibly because of the expected 

higher sensitivity for detecting mutations by the MRT than the LDT. Among the 478 

subjects with KRAS wild-type per LDT and non-missing MRT result, 460 (96.2%) subjects 

have KRAS wild-type per MRT. Among all the 946 subjects, 65 (6.9%) subjects have 

missing KRAS statuses per LDT, and 122 (12.9%) subjects have missing KRAS statuses per 

MRT. Because KRAS was retested by MRT only for samples with a valid KRAS status per 

LDT, MRT status is missing if LDT status is missing. The missing test status is generally 

due to insufficient quality or quantity of banked tumor tissue samples. Therefore, the 

assumption of missing at random may be considered reasonable.

The subjects were randomized to receive either panitumumab plus FOLFOX or FOLFOX 

alone. Other baseline covariates include region (central and eastern Europe, western Europe, 

others), primary tumor diagnosis (colon, rectal), prior surgery (yes, no), prior radiotherapy 

(yes, no), months since primary diagnosis, histological differentiation (well differentiated, 

moderately differentiated, poorly differentiated, undifferentiated/unknown), and histological 

subtype (mucinous, appendiceal/other, no subtype, unknown). For some subjects, months 

since primary diagnosis (1.1%), histological differentiation (0.2%), or histological subtype 

(0.3%) are missing. For demonstration purpose, we focus on the secondary endpoint overall 

survival.

5.1. Proportional hazards model using complete cases

One naive approach to assess the test-specific treatment effect is to fit separate proportional 

hazards models for subjects with different statuses per LDT and per MRT using the 

complete cases. Specifically, the analysis is based on 881 subjects with valid KRAS results 

per LDT, and 824 subjects per MRT. It is worth noting that using the complete cases may 

induce bias because the subjects with non-missing test statuses may not be a random sample 
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of the study population. We consider three models, where the survival outcome is assumed 

to be from the proportional hazards model with covariates:

A. treatment only;

B. treatment and other baseline covariates with non-missing values (region, 

diagnosis type, prior surgery, and prior radiotherapy);

C. treatment and all the other baseline covariates. Because there is missingness for 

months since primary diagnosis, histological differentiation, and histological 

subtype, the result is based on subjects with complete covariates.

The estimated hazard ratios, confidence intervals, and p-values for the test-specific hazard 

ratio using the complete cases are shown in Table III. The results favor panitumumab plus 

the FOLFOX arm in wild-type subjects, either defined by LDT or MRT, with nominal p-

value greater than 0.05 in all three models. The results favor the FOLFOX alone arm in 

mutant subjects, either defined by LDT or MRT, with nominal p-value less than 0.05 in the 

model adjusting for all the baseline covariates. Compared with the MRT, the p-values from 

LDT status is smaller, which correspond to the fact that the two tests almost agree and that 

there are more subjects with non-missing LDT status.

We also perform the quantitative interaction (q-int) test [10] for each model, to test if the 

treatment effects are equal in subgroups of subjects defined by KRAS status per each test. 

The q-int test is based on the statistic of weighted residual sum of squares, which is chi-

square distributed under the null hypothesis. Under proportional hazards models adjusting 

for baseline covariates (covariate set B, C), the q-int tests have nominal p-values less than 

0.05 for both LDT and MRT. There is a notable difference in treatment effects for subjects 

with different KRAS statuses, either defined by LDT or MRT.

5.2. Pattern mixture model

We then model the overall survival using the proposed pattern mixture model. Because we 

did not observe the combination of KRAS mutant per LDT and KRAS wild-type per MRT, 

we consider a modified version of pattern mixture model with three possible patterns. We 

consider three pattern mixture models with covariate sets A, B, or C, as defined in Section 

5.1. The estimated hazard ratios for panitumumab plus FOLFOX in subjects with different 

combinations of test statuses under pattern mixture models are shown in Table IV. The 

confidence intervals for hazard ratios are estimated using both Louis’ formula and the 

bootstrap method [11], which is also a commonly used method in variance estimation. In all 

the models we considered, the treatments perform differently for subjects with different test 

statuses: panitumumab plus FOLFOX works better for subjects with test status (LDT, MRT) 

= (wild-type, wild-type), while FOLFOX alone is better for subjects with test statuses (LDT, 

MRT) = (mutant, mutant). For subjects with test statuses (LDT, MRT) = (wild-type, mutant), 

the estimated hazard ratios have wide confidence intervals, because of the small number of 

subjects in this category. Compared with the bootstrap confidence interval, the confidence 

intervals formulated using Louis’ formula are narrower and thus give more precision.

We plot the estimated survival curves for different treatment groups under model with 

covariate set C in Figure 1. Specifically, we plot different subgroups of subjects with 
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different statuses per LRT or MRT separately, where the dotted curves indicate the bootstrap 

95% confidence interval. We estimated the difference in test-specific restricted mean 

survival time for different treatment groups, and the results are shown in Table V. The 

treatment differences in the restricted mean survival time are positive in wild-type by LDT 

and MRT, and are negative in mutant by LDT and MRT, indicating that panitumumab plus 

FOLFOX is beneficial for the wild-type subjects, and FOLFOX alone is preferred for the 

mutant subjects.

We assess the proportional hazards assumption for the pattern mixture model through the 

proportional hazards tests based on Schoenfeld residuals [12]. Prior to the proportional 

hazards tests, we impute the missing test statuses by the statuses with the largest estimated 

probability pkl(X). The global tests for proportional hazards assumption have p-values 0.290, 

0.255, and 0.656 for pattern mixture models with covariate set A, B, and C, respectively, 

indicating that the proportional hazards assumptions for the pattern mixture models are 

adequate.

6. Discussion

In this paper, we consider a pattern mixture model to perform clinical validation of MRT 

when the ascertainment rate for biomarker status per MRT is relatively low. Even though the 

most common scenario is to handle two tests (MRT and LDT), we establish a general 

framework accommodating arbitrary number of tests. We use the EM algorithm to address 

the issue of missing data. We illustrate the method in a clinical study, compared with the 

proportional hazards model based on complete cases and bootstrapping with imputation. The 

results are similar in terms of the point estimates and p-values.

Compared with the bootstrapping with imputation method developed by Denne et al. [3], 

where subjects with non-missing LDT statuses are included, our method utilize the 

information from all the subjects in the clinical study. The missing LDT statuses are also 

regarded as missing values, and are taken into account in the EM algorithm. This avoids the 

potential issues when the subjects with non-missing LDT statuses are not representative of 

the whole study population. The inclusion of those subjects gives unbiased results when the 

LDT statuses is missing at random, and it gives statistically more efficient results.

The pattern mixture proportional hazards assumption may not be valid in practice. However, 

we showed in the simulation studies that even when the model is misspecified, the estimated 

treatment effects are close to the true values, and the confidence intervals for the treatment 

effects have coverage probabilities close to the nominal values. The proposed method thus 

gives valid approximation for the treatment effects.

In addition to the test-specific hazard ratios, we obtain the hazard ratios for subjects with 

combinations of test statuses using our method. The combination of test statuses intuitively 

gives more accurate characteristics on the biomarker status, and may also be preferable in 

identifying the population for the targeted therapies.
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Figure 1. 
Estimated survival curves of different treatment groups for subjects with different test 

statuses. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table IV

Hazard ratio estimates for combined tests from the pattern mixture model.

(LDT, MRT) = (wild-type, wild-type)

HR 95% CI p-value

Covariate set Louis Bootstrap

A 0.875 (0.714, 1.072) (0.710, 1.073) 0.199

B 0.870 (0.710, 1.065) (0.706, 1.073) 0.178

C 0.869 (0.704, 1.072) (0.699, 1.083) 0.189

(LDT, MRT) = (wild-type, mutant)

HR 95% CI p-value

Covariate set Louis Bootstrap

A 0.971 (0.344, 2.742) (0.248, 3.744) 0.956

B 1.399 (0.365, 5.366) (0.120, 56.25) 0.624

C 2.620 (0.478, 14.364) (0.003, 204) 0.267

(LDT, MRT) = (mutant, mutant)

HR 95% CI p-value

Covariate set Louis Bootstrap

A 1.160 (0.923, 1.459) (0.920, 1.429) 0.203

B 1.246 (0.987, 1.573) (0.989, 1.604) 0.064

C 1.370 (1.078, 1.741) (1.080, 1.776) 0.010

Note: HR and 95% CI denote the estimate and 95% confidence interval for HR for panitumumab plus FOLFOX compared with FOLFOX alone by 
combined tests, respectively. LDT, laboratory-developed test; MRT, market ready test; HR, hazard ratio.
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