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In many biomedical studies, it is often of interest to model event count data over the study period. For some 
patients, we may not follow up them for the entire study period owing to informative dropout. The dropout time 
can potentially provide valuable insight on the rate of the events. We propose a joint semiparametric model for 
event count data and informative dropout time that allows for correlation through a Gamma frailty. We develop 
efficient l ikelihood-based estimation and inference procedures. The proposed nonparametric maximum likeli-
hood estimators are shown to be consistent and asymptotically normal. Furthermore, the asymptotic covariances 
of the finite-dimensional parameter estimates attain the semiparametric efficiency bound. Extensive simulation 
studies demonstrate that the proposed methods perform well in practice. We illustrate the proposed meth-
ods through an application to a clinical trial for bleeding and transfusion events in myelodysplastic syndrome. 
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1. Introduction

Recurrent events data refer to a subject experiencing repeated occurrences of the same or related types
of events during the study time. The number of the event count during the time is clearly the interest
in medical and epidemiological researches. Many clinical trials are designed to demonstrate treatment
efficacy or safety based on the frequency of the events over time, defined as the event rate. Although the
exposure period may be different from subject to subject, the frequency of events is usually summarized
as a rate or number per year or per 100 subject years of exposure. Examples include occurrence of serious
infections in clinical trials of AIDS prophylaxis [1], relapses of multiple sclerosis [2], the frequency
of secondary infections during myelosuppressive chemotherapy treatment [3], or the occurrence of red
blood transfusions [4].

The Poisson regression model is straightforward in analyzing this type of data, and it has been illus-
trated in many papers; for instance, see [5–9]. Typically, the event count data are assumed to follow a
Poisson distribution conditional on the follow-up time, and the logarithm of the follow-up time is treated
as a fixed intercept in the Poisson regression model. However, the number of events can potentially impact
the dropout time, and additional information on the informative dropout time can provide more insight
in the estimation and inference of the Poisson rates. It is therefore very important to account for potential
correlation between the event count data and informative dropout time.
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A motivating example involves a phase 2, multicenter, randomized, double-blind, placebo-controlled
clinical trial with low or intermediate-1 risk myelodysplastic syndrome (MDS) patients that have severe
thrombocytopenia (platelet counts < 50 × 109/L). The key study objective is to evaluate the treatment
effect on reduction of both platelet transfusion incidences and bleeding adverse events reported during the
study efficacy follow-up (duration of 26 weeks). Living with abnormal platelet function, severe throm-
bocytopenia patients have an increased risk of bleeding incidence. Platelet transfusion interventions are
often required therapeutically (given to patients who are actively bleeding) and prophylactically (to pre-
vent future bleeding). Therefore, the incidence of platelet transfusion intervention and bleeding event
occurrence are highly correlated. In addition, thrombocytopenia in the MDS population is associated
with shortened survival and an increased risk of evolution to acute myeloid leukemia, part of the natural
progression of MDS. During this period, patients may obtain disease progression and then discontinue
the treatment and dropout of the study in order to receive the MDS disease-modifying treatment. There
were also patients that were informatively censored owing to death or administrative withdrawal due to
other types of adverse events.

Several authors have proposed nonparametric or semiparametric methods to jointly model recurrent
event data and informative follow-up time. In particular, Wang et al. [10] and Huang and Wang [11]
model the association between the intensity of the recurrent event process and the hazard of the fail-
ure time through a common subject-specific latent variable. They propose a ‘borrow-strength estimation
procedure’ by first estimating the value of the latent variable from the recurrent event data and then use
the estimated value in the failure time model. Alternatively, several authors have proposed to use frailty
models to account for the correlation between the recurrent event process and terminal event process
[12–17]. In these papers, the recurrent event times are assumed to be observed before the dropout time.
A comprehensive review of statistical analysis of recurrent event data was provided in [18].

In many applications, we do not observe the event times directly. Instead, only the number of recurrent
events during the follow-up period is available. Such data are often referred to as the panel count data.
For correlated panel count data, Zhang and Jamshidian [19] and Yao et al. [20] proposed Gamma frailty
Poisson models but assumed conditional independent observation processes. Among others, several stud-
ies [21–27] proposed semiparametric regression analysis of panel count data with dependent observation
processes. Essentially all of these existing methods are based on estimating equations, and it is not clear
whether the estimators are asymptotically efficient. Additionally the bootstrap method is often needed
to estimate the standard errors of the parameter estimates. Furthermore, these papers focus on parameter
estimation, and little has been investigated in comparing the event rates of two treatment groups. Sun and
Zhao [28] gave a thorough review of the statistical analysis of panel count data.

In this paper, we develop likelihood-based methods to compare the event rates in the treatment
group and placebo group adjusting for covariates and meanwhile accounting for informative dropout. In
Section 2, we propose a joint model of the event count data and hazard of the dropout time and allow
for correlation by using a Gamma frailty. Unlike most existing joint models (e.g., [21,23,24]), we model
the cumulative mean count at each time instead of assuming a Poisson process for the recurrent data
and modeling the whole intensity function. To achieve more flexibility and robustness, we consider a
stratified Cox model for the informative dropout time, allowing for unspecified (conditional) baseline
hazard in each treatment group. We derive the nonparametric likelihood function of the unknown param-
eters based on the observed data. In addition, we describe several tests for comparing the incidence rates
between the treatment group and the placebo group. In Section 3, we establish the asymptotic proper-
ties of the proposed nonparametric maximum likelihood estimators (NPMLEs). The proposed NPMLEs
are shown to be consistent and asymptotically normal. Furthermore, the asymptotic covariances of the
finite-dimensional parameter estimates attain the semiparametric efficiency bound. Extensive simulation
results are provided in Section 4. We illustrate the proposed methodology through the MDS clinical trial
in Section 5. We conclude the paper with a few brief remarks in Section 6. All technical details of the
proofs of the asymptotic results are relegated to the Appendix.

2. Methods

Suppose that we have n subjects in the data set, among which n0 subjects were allocated to the control
arm and n1 subjects are allocated to the treatment arm. For the ith subject, i = 1,… , n, let Ai denote the
treatment indicator, which takes the value 0 for the control arm and 1 for the treatment arm; Ci is the
administrating censoring time; T̃i is the time to adverse event or death; Ni(t) is the event count by time



point t; and 𝐙i is a d × 1 vector of covariates at baseline. Therefore, the observed data are{
Ai,𝐙i,Xi = Ni(Ti), Ti ≡ T̃i ∧ Ci,Δi = I(T̃i ⩽ Ci)

}
, i = 1,… , n,

where the Ti’s are the observed follow-up times, and Δi are the corresponding censoring indicators.
Denote the end of study by 𝜏. For subject i, we assume that Ni(t), t ∈ [0, 𝜏] follows a Poisson

distribution with

E{Ni(t)|𝜉i,Ai,𝐙i} = 𝜆Ai
𝜉it exp(𝜷T𝐙i), (1)

where 𝜆Ai
is the conditional baseline event rate in group Ai, 𝜉i ∼ Gamma(𝜃−1, 𝜃−1) represents the patient’s

heterogeneity due to other characteristics, and 𝜷 is a set of regression coefficients. The gamma frailties
𝜉i have mean 1 and variance 𝜃 and are mutually independent. It is worth to note that unconditional on 𝜉i,
the rate function satisfies E{Ni(t)∕t|Ai,𝐙i} = 𝜆Ai

exp(𝜷T𝐙i).
While model (1) is a parametric model, we assume a semiparametric model for the informative dropout

time. Specifically, we further assume that T̃i is independent of Ni(t) given 𝜉i and the conditional hazard
function of T̃i is

h(t|𝜉i,Ai,𝐙i) = 𝜉ihAi
(t) exp(𝜻T𝐙i), t ∈ [0, 𝜏], (2)

where 𝜉ihAi
(t) is the conditional baseline hazard function of T̃i given 𝜉i and 𝐙i, and 𝜻 is a set of regression

coefficients. The functions h0(t) and h1(t) are unspecified. Model (2) is referred to as the Cox model with a
shared Gamma frailty [29,30]. This model allows one to model the positive correlation between the event
rate of the Poisson process and the hazard rate of the time to adverse event or death. Additionally, model
(2) is also a stratified model allowing the (conditional) baseline hazards to be different in the control and
treatment groups. Note that we may allow different covariates in models (1) and (2).

Write Ha(t) = ∫ t
0 ha(s)ds, a = 0, 1. From model (2), we can show by using the Bayes rule that condi-

tional on {Ai,𝐙i, Ti,Δi}, the distribution of 𝜉i is Γ(𝜃−1 + Δi, 𝜃
−1 + HAi

(Ti)e𝜻
T𝐙i). Then we can show that

conditional on {Ai,𝐙i, Ti,Δi}, the distribution of Xi is negative binomial with parameters 𝜃−1 + Δi and
success probability

𝜆Ai
Tie

𝜷T𝐙i

𝜃−1 + HAi
(Ti)e𝜻

T𝐙i + 𝜆Ai
Tie𝜷

T𝐙i

.

The conditional mean and variance of Xi given {Ai,𝐙i, Ti,Δi} are given by

(𝜃−1 + Δi)
𝜆Ai

Tie
𝜷T𝐙i

𝜃−1 + HAi
(Ti)e𝜻

T𝐙i

, (3)

and

(𝜃−1 + HAi
(Ti)e𝜻

T𝐙i + 𝜆Ai
Tie

𝜷T𝐙i)(𝜃−1 + Δi)
𝜆Ai

Tie
𝜷T𝐙i

(𝜃−1 + HAi
(Ti)e𝜻

T𝐙i)2
, (4)

respectively. Therefore, by introducing a Gamma frailty, we allow for overdispersion in the recurrent
events data. Furthermore, the Gamma frailty allows for correlation between the recurrent events and the
follow-up time, and consequently, the distribution of Xi depends on the parameters not only in the Poisson
model (1) but also in the survival model (2).

Write 𝝓 = (𝜆0, 𝜆1, 𝜃, 𝜷, 𝜻). Assume that, conditional on A and 𝐙, the censoring time C is independent
of the failure time T̃ and the event count X. Based on the observed data, the likelihood function for the
unknown parameters (𝝓,H0,H1) is

L(𝝓,H0,H1) =
n∏

i=1
∫𝜉i

(𝜆Ai
𝜉iTie

𝜷T𝐙i)Xi exp{−𝜆Ai
𝜉iTie

𝜷T𝐙i}
Xi!

× {hAi
(Ti)𝜉ie

𝜻T𝐙i}Δi exp{−HAi
(Ti)𝜉ie

𝜻T𝐙i}f (𝜉i)d𝜉i,

(5)



where f (⋅) is the Gamma(𝜃−1, 𝜃−1) density given by

f (𝜉) = 𝜃−𝜃
−1

Γ(𝜃−1)
𝜉𝜃

−1−1e−𝜉∕𝜃.

The likelihood (5) is equivalent to

L(𝝓,H0,H1) =
n∏

i=1

TXi

i

Xi!

(
𝜆Ai

e𝜷
T𝐙i

)Xi
{

hAi
(Ti)e𝜻

T𝐙i

}Δi Γ(𝜃−1 + Xi + Δi)
Γ(𝜃−1)

× 𝜃Xi+Δi[
1 + 𝜃{𝜆Ai

Tie𝜷
T𝐙i + HAi

(Ti)e𝜻
T𝐙i}

]𝜃−1+Xi+Δi

.

We propose to estimate Ha(⋅), a = 0, 1 nonparametrically by leaving both functions unspecified. By
using the nonparametric maximum likelihood approach and allowing Ha(⋅), a = 0, 1 to be right con-
tinuous, we obtain the nonparametric likelihood function, still denoted by L(𝝓,H0,H1), for ease of
exposition,

L(𝝓,H0,H1) =
n∏

i=1

TXi

i

Xi!

(
𝜆Ai

e𝜷
T𝐙i

)Xi
(

HAi
{Ti}e𝜻

T𝐙i

)Δi Γ(𝜃−1 + Xi + Δi)
Γ(𝜃−1)

× 𝜃Xi+Δi[
1 + 𝜃{𝜆Ai

Tie𝜷
T𝐙i + HAi

(Ti)e𝜻
T𝐙i}

]𝜃−1+Xi+Δi

,

where Ha{t}, a = 0, 1, is the jump size of Ha(⋅) at t. After some simple algebra, we can show that the
log-likelihood function of (𝝓,H0,H1) is given by

l(𝝓,H0,H1) =c +
n∑

i=1

[
Xi(log 𝜆Ai

+ 𝜷T𝐙i) + Δi[log HAi
{Ti} + 𝜻T𝐙i] +

Xi+Δi−1∑
k=0

log(𝜃−1 + k)

+ (Xi + Δi) log 𝜃 − (𝜃−1 + Xi + Δi) log{1 + 𝜃𝜆Ai
Tie

𝜷T𝐙i + 𝜃HAi
(Ti)e𝜻

T𝐙i}
]
,

where c is a constant. We maximize l(𝝓,H0,H1) and obtain the NPMLEs of (𝝓,H0,H1), denoted by
(𝝓̂n, Ĥ0n, Ĥ1n). The maximization can be accomplished by using an iterative procedure such as the
quasi-Newton algorithm Press et al. [31]. The quasi-Newton algorithm has been successfully applied in
optimization problems with a large number of parameters [32,33] and has been implemented in software
packages such as sas, r, and matlab. Section 3 establishes the consistency and asymptotic normality of
the NPMLEs.

Note that our main interest is to test 𝜆0 = 𝜆1. We consider several different tests: (i) likelihood ratio test;
(ii) Wald test based on 𝜆̂0 − 𝜆̂1; (iii) Wald test based on 𝜆̂0∕𝜆̂1; and (iv) Wald test based on log 𝜆̂0 − log 𝜆̂1.
It can be shown from the asymptotic results in Section 3 that under the null hypothesis, all four test
statistics are asymptotically chi-square with 1 degree of freedom.

Remark 2.1
When the follow-up time is short, we can assume h0(t) = h0 and h1(t) = h1. Furthermore, if we assume
that there are no covariates effects and reparameterize

pa = 𝜆a∕(𝜆a + ha), 𝜈a = 𝜃(𝜆a + ha),

for a = 0, 1, then the likelihood function for the unknown parameters 𝝓 ≡ (p0, 𝜈0, p1, 𝜈1, 𝜃) takes the form

L(𝝓) =
n∏

i=1

(
Xi + Δi

Xi

)
pXi

Ai
(1 − pAi

)Δi
Γ(𝜃−1 + Xi + Δi)
(Xi + Δi)!Γ(𝜃−1)

(𝜈Ai
Ti)Xi+Δi[

1 + 𝜈Ai
Ti

]𝜃−1+Xi+Δi

.



Concerning the inference for the parameters, we can assume that the T’s are fixed and that the data are
generated from the following mechanism: in arm A = 0, conditional on Ti, Xi+Δi follows a negative bino-
mial distribution NB(𝜃−1, 𝜈0Ti∕(1+ 𝜈0Ti)) and conditional on Xi +Δi, Xi follows a binomial distribution,
Binomial(Xi + Δi, p0). This also holds for A = 1.

3. Asymptotic results

In this section, we establish the asymptotic properties of the proposed NPMLEs. In particular, we will
prove the following three theorems.

Theorem 1
Under the conditional independent censoring assumption and conditions (C1)–(C4) in Appendix A, the
unknown parameters (𝝓,H0,H1) are identifiable.

The proof of Theorem 1 is given in Appendix B.

Theorem 2
Under the conditional independent censoring assumption and conditions (C1)–(C4) in Appendix A, with
probability tending to 1,

||𝝓̂n − 𝝓0|| + sup
t∈[0,𝜏a]

|Ĥ0n(t) − H00(t)| + sup
t∈[0,𝜏a]

|Ĥ1n(t) − H01(t)| → 0,

where || ⋅ || is the Euclidean norm.

Remark 3.1
Theorem 2 states the consistency of the NPMLEs. The basic idea for proving Theorem 2 is as follows. We
first show that neither Ĥ0n(𝜏) nor Ĥ1n(𝜏) is allowed to diverge by using the partitioning argument described
in [29]. Once the boundedness of Ĥ0n(𝜏) and Ĥ1n(𝜏) is established, a subsequence of Ĥan, a = 0, 1 can be
found to converge pointwise to a bounded monotone function H∗

a in [0, 𝜏] and the same subsequence of
𝝓̂n to some 𝝓∗. We construct a step function H̄an with jumps at the observed failure times converging to
Ha0. Then, as ln(𝝓̂n, Ĥ0n, Ĥ1n) ⩾ ln(𝝓0, H̄0n, H̄1n), by taking the limit, we prove that the Kullback–Leibler
information between the true density and the density indexed by (𝝓∗,H∗

0 ,H
∗
1 ) is non-positive. Therefore,

the true density must be equal to the density indexed by (𝝓∗,H∗
0 ,H

∗
1 ). Consistency will then follow from

the identifiability result. The details of the proofs are given in Appendix C.

Theorem 3
Under the conditional independent censoring assumption and conditions (C1)–(C4) in Appendix A,

n1∕2(𝝓̂n − 𝝓0, Ĥ0n − H00, Ĥ1n − H01) →d G,

where G is a continuous zero-mean Gaussian process in the metric space l∞(H) and

H ={(𝐡1, h2, h3) ∶ 𝐡1 ∈ R3+2d, h2 and h3 are functions on [0, 𝜏];||h1|| ⩽ 1, |h2|V ⩽ 1, |h3|V ⩽ 1}.

Here |h|V denotes the total variation of h in [0, 𝜏] and l∞(H) is the collection of all bounded functions on
H. Additionally, 𝝓̂n is asymptotically efficient.

Remark 3.2
In the statement of Theorem 3, asymptotically efficient estimators mean that the asymptotic covariances
attain the semiparametric efficiency bound [34, Chapter 3]. Once the consistency of the NPMLEs is
established, the asymptotic distribution of the NPMLEs stated in Theorem 3 can be derived by verifying
the four conditions in Theorem 3.3.1 of [35]. The proof of Theorem 3 is given in Appendix D.

Remark 3.3
Theorem 3 implies that for any (𝐡1, h2, h3) ∈ H,

√
n(𝝓̂n − 𝝓0)T𝐡1 +

√
n ∫ 𝜏

0 h2(t)d(Ĥ0n − H00) +√
n ∫ 𝜏

0 h3(t)d(Ĥ1n − H10) is asymptotically normal with mean zero. To estimate the covariance matrix
of (𝝓̂n, Ĥ0n, Ĥ1n), we view (5) as a parametric likelihood with 𝝓 and the jump sizes of H0 and H1 at the



observed failure times as parameters. Following the arguments in Theorem 2 of [36], we can then esti-
mate the asymptotic covariance matrix of the unknown parameters by inverting the observed information
matrix according to parametric likelihood theory.

Remark 3.4
Using the arguments in [37], we can prove that under the conditional independent censoring assumption
and conditions (C1)–(C4) in Appendix A, the asymptotic null distribution of the likelihood ratio test
statistic for testing 𝜃 = 0 is a 50:50 mixture of 𝜒2

0 and 𝜒2
1 .

4. Simulation studies

We conduct extensive simulation studies to evaluate the finite-sample performance of the MLEs of 𝝓
under the proposed model. We generate data under the proposed joint model and set the true parameters
as (𝜆0, 𝜆1) = (1, 1). We generate the follow-up time from a Weibull distribution with Ha(t) = 0.5tb

and vary b among (0.7, 1.0, 1.3). The variance of the Gamma frailty varies from 0.5 to 1. We generate
100 subjects for each treatment group, that is, n0 = n1 = 100. We use the quasi-Newton algorithm to
maximize the nonparametric maximum likelihood function. The covariance matrix of the NPMLEs is
estimated by inverting the observed Fisher information matrix, that is, the negative second derivatives
of the nonparametric log-likelihood with respect to the finite-dimensional parameters and the jump sizes
of H0(⋅) and H1(⋅) at the observed dropout times. The quasi-Newton algorithm converges quickly and is
robust to the choices of the initial values of the unknown parameters. It takes about 0.01 s to analyze one
simulated data set (including covariance matrix estimation) under the aforementioned simulation setting
on a MacBook Pro with 2.8-GHz Intel Core i7 processors.

Tables I presents the summary statistics of the NPMLEs of the unknown parameters based on 1000
replicates for b = 0.7. Throughout this section, 𝛾 ≡ 𝜃−1. The proposed NPMLEs have small biases, the
estimated standard errors reflect the actual variation of the estimators, and the coverage probabilities of the

Table I. Summary statistics of the NPMLEs with n0 =
n1 = 100 and Ha(t) = 0.5t0.7.

Parameter True Bias SE SEE CP

𝜃 = 0.5
𝛾 2 0.140 0.438 0.426 0.942
𝜆0 1 −0.003 0.120 0.120 0.954
𝜆1 1 −0.007 0.125 0.120 0.930
H0(0.2) 0.162 0.000 0.043 0.044 0.958
H0(0.3) 0.215 0.000 0.051 0.052 0.966
H0(0.4) 0.263 −0.002 0.058 0.059 0.961
H0(0.5) 0.308 −0.002 0.065 0.066 0.950
H1(0.2) 0.162 0.001 0.046 0.044 0.946
H1(0.3) 0.215 0.001 0.056 0.052 0.953
H1(0.4) 0.263 0.000 0.063 0.059 0.950
H1(0.5) 0.308 0.000 0.070 0.066 0.941

𝜃 = 1.0
𝛾 1 0.055 0.172 0.168 0.941
𝜆0 1 −0.012 0.155 0.152 0.934
𝜆1 1 −0.007 0.158 0.153 0.944
H0(0.2) 0.162 −0.001 0.047 0.046 0.950
H0(0.3) 0.215 −0.001 0.059 0.056 0.938
H0(0.4) 0.263 0.000 0.067 0.064 0.941
H0(0.5) 0.308 0.000 0.075 0.072 0.945
H1(0.2) 0.162 0.001 0.048 0.046 0.936
H1(0.3) 0.215 0.001 0.059 0.056 0.948
H1(0.4) 0.263 0.000 0.068 0.064 0.945
H1(0.5) 0.308 0.001 0.075 0.072 0.947

Bias and SE denote the bias and standard deviation of the non-
parametric maximum likelihood estimators (NPMLEs), SEE
is the average of the standard error estimates, and CP is the
coverage probability of 95% confidence interval.



95% confidence intervals are close to the nominal level. Results for the scenarios when b = 1 and b = 1.3
are presented in Tables S1 and S2, and similar results are obtained. We conducted additional simulations
by increasing the sample size from 100 to 200 in each treatment group. The results are summarized in
Tables S3–S5. Biases and standard errors of the NPMLEs, and the coverage probabilities of the 95%
confidence intervals improve as sample size increases. The standard errors decrease by a factor of

√
2

suggesting root-n convergence rate of the NPMLEs.
For comparison, we also consider the parametric method described in Section 2 in which Ha(t), a =

0, 1 are assumed to be constant. Table II presents the results based on 1000 replicates with n0 = n1 =
100 comparing the performance of the NPMLEs and the parametric MLEs. The NPMLEs are robust
to departures from the parametric assumption on the baseline hazards and has little loss of efficiency
compared with the parametric MLEs when the parametric assumption is true (i.e., when b = 1). On
the other hand, the parametric method tends to have biased estimators under model mis-specification
especially for the case of b = 1.3. When b = 0.7, the parametric MLEs of 𝜆0 and 𝜆1 have larger standard
errors than the NPMLEs, whereas the standard error of parametric MLE of 𝛾 is larger when b = 1.3. It
appears that the value of 𝜃 does not impact the relative efficiency much.

In the second set of simulations, we compare the performance of different tests for testing 𝜆0 = 𝜆1
under different scenarios. We also consider a naı̈ve method by fitting a Poisson model to the event count
data directly. Specifically, we fix the true values of (𝜃, h0, h1) at (0.5, 0.2, 0.2) and vary the values of
(𝜆0, 𝜆1), as follows:

(a) 𝜆0 = 0.1, 𝜆1 = 0.1, 0.125, 0.15, 0.175, 0.2;
(b) 𝜆0 = 0.5, 𝜆1 = 0.5, 0.625, 0.75, 0.875, 1.0; and
(c) 𝜆0 = 1, 𝜆1 = 1, 1.25, 1.5, 1.75, 2.

Scenario (a) corresponds to the case with rare event, whereas the event of interest is more common
under the other two scenarios. The censoring time was set at C = 10 yielding an approximate 25%

Table II. Comparison of the NPMLEs and parametric MLEs.

Semiparametric Parametric

Parameter True Bias SE MSE Bias SE MSE RE

𝜃 = 0.5,Ha(t) = 0.5t0.7

𝛾 2 0.140 0.438 0.211 −0.246 0.330 0.169 0.799
𝜆0 1 −0.003 0.120 0.014 0.083 0.135 0.025 1.753
𝜆1 1 −0.007 0.125 0.016 0.081 0.143 0.027 1.731

𝜃 = 0.5,Ha(t) = 0.5t
𝛾 2 0.133 0.456 0.225 0.092 0.413 0.179 0.796
𝜆0 1 −0.006 0.121 0.015 0.001 0.120 0.014 0.983
𝜆1 1 −0.001 0.119 0.014 0.005 0.119 0.014 0.994

𝜃 = 0.5,Ha(t) = 0.5t1.3

𝛾 2 0.126 0.433 0.203 0.621 0.563 0.702 3.459
𝜆0 1 −0.007 0.121 0.015 −0.064 0.112 0.017 1.137
𝜆1 1 −0.009 0.118 0.014 −0.065 0.110 0.016 1.172

𝜃 = 1,Ha(t) = 0.5t0.7

𝛾 1 0.055 0.172 0.032 −0.106 0.138 0.030 0.932
𝜆0 1 −0.012 0.155 0.024 0.116 0.188 0.049 2.002
𝜆1 1 −0.007 0.158 0.025 0.121 0.194 0.052 2.075

𝜃 = 1,Ha(t) = 0.5t
𝛾 1 0.040 0.169 0.030 0.027 0.160 0.026 0.874
𝜆0 1 −0.007 0.153 0.023 0.001 0.152 0.023 0.984
𝜆1 1 0.000 0.157 0.025 0.010 0.155 0.024 0.990

𝜃 = 1,Ha(t) = 0.5t1.3

𝛾 1 0.050 0.157 0.027 0.212 0.184 0.079 2.924
𝜆0 1 −0.009 0.153 0.024 −0.076 0.142 0.026 1.101
𝜆1 1 −0.007 0.153 0.024 −0.075 0.140 0.025 1.077

Bias and SE denote the bias and standard deviation of the estimators, MSE is the mean
squared error of the estimators, and RE is MSE relative efficiency of the proposed non-
parametric maximum likelihood estimators (NPMLEs) compared with the parametric
MLEs.



Table III. Type I error rate and powers of different tests for testing 𝜆0 = 𝜆1 based
on 1000 replicates with n0 = n1 = 100.

𝜆1∕𝜆0 SPLRT SPWD SPWR SPWLR PLRT PWD PWR PWLR

𝜆0 = 0.1
1.00 0.050 0.045 0.215 0.047 0.077 0.074 0.205 0.074
1.25 0.158 0.144 0.332 0.155 0.201 0.2 0.353 0.199
1.50 0.399 0.387 0.658 0.396 0.503 0.498 0.683 0.492
1.75 0.648 0.638 0.846 0.648 0.759 0.756 0.870 0.751
2.00 0.854 0.854 0.950 0.854 0.913 0.911 0.967 0.910

𝜆0 = 0.5
1.00 0.061 0.058 0.141 0.062 0.216 0.214 0.361 0.214
1.25 0.327 0.324 0.430 0.332 0.599 0.600 0.696 0.599
1.50 0.788 0.788 0.837 0.792 0.932 0.932 0.953 0.931
1.75 0.952 0.953 0.968 0.954 0.996 0.996 0.998 0.996
2.00 0.997 0.998 0.999 0.998 0.999 0.999 0.999 0.999

𝜆0 = 1.0
1.00 0.049 0.045 0.048 0.049 0.284 0.283 0.338 0.283
1.25 0.393 0.397 0.308 0.403 0.760 0.760 0.777 0.760
1.50 0.849 0.854 0.749 0.859 0.980 0.980 0.980 0.980
1.75 0.987 0.988 0.961 0.987 1.000 1.000 0.999 1.000
2.00 0.999 0.999 0.995 0.999 1.000 1.000 1.000 1.000

SPLRT refers to the semiparametric likelihood ratio test; SPWD refers to the semiparamet-
ric Wald test based on difference of rates; SPWR refers to the semiparametric Wald test
based on ratio of rates; SPWLR refers to the semiparametric Wald test based on log-ratio
of rates; PLRT refers to the parametric likelihood ratio test; PWD refers to the parametric
Wald test based on difference of rates; PWR refers to the parametric Wald test based on
ratio of rates; and PWLR refers to the parametric Wald test based on log-ratio of rates.

censoring rate. Table III presents the type I error rates and powers of various tests for testing H0 ∶ 𝜆0 = 𝜆1
at significance level of 0.05 based on 1000 replicates with n0 = n1 = 100 under scenarios (a)–(c),
respectively. In particular, we consider four tests—namely, the likelihood ratio test, the Wald test based
on difference of rates, the Wald test based on ratio of rates, and the Wald test based on log-ratio of rates—
under both the proposed semiparametric model and the naı̈ve parametric Poisson model. The naı̈ve tests
lead to inflated type I error rates especially when the rates are large. The Wald test based on the rate ratio
tends to yield inflated type I error rates for rare events and loses power compared with other tests when
the event rate is high. All other three tests perform similarly under the semiparametric model.

Finally, we conducted simulation studies to examine the performance of the likelihood ratio test statis-
tics for testing 𝜃 = 0, that is, whether there is correlation between the two processes. Figure S1 presents
the type I error rates and powers of the likelihood ratio test at significance level of 0.05 based on 1000
replicates with n0 = n1 = 200 at three different values of 𝜆 = 𝜆0 = 𝜆1, 0.1, 0.5, and 1.0. The likelihood
ratio tests have correct control of the type I error rate and have reasonable powers under the alternative
hypotheses.

5. Myelodysplastic syndrome trial

We apply the proposed methodology to the motivating example described in Section 1. The trial was
conducted in multiple countries, and a 2 to 1 randomization ratio (treatment vs. placebo) was adopted.
Furthermore, the randomization stratifications were based on baseline platelet counts (50–25 × 109/L
and below 25 × 109/L) and disease risk status (low and intermediate-1). One hundred fifty patients (100
treatment and 50 placebo) with at least 1 week of exposure are further summarized. Thirty-six treatment
patients (36%) and 24 placebo patients (48%) dropped out early and during the efficacy follow-up phase.
The major reason for this is due to alternative therapy. The median treatment duration is 113 days, and
the total number of bleeding or platelet transfusion events ranges from 0 to 45 per patient. Table IV
presents the frequency and relative frequency of the number of events in the control group and treatment
group. Figure 1 presents the Kaplan–Meier survival curves of the failure time in each group and their
95% confidence bands. It appears that there is little difference between the two survival curves (p-value
of log-rank test = 0.677).



Table IV. Frequencies and relative frequencies of number
of events in the MDS trial.

Control Treatment

Count Frequency Proportion Frequency Proportion

0 13 0.26 49 0.49
1 11 0.22 17 0.17
2 3 0.06 2 0.02
3 4 0.08 7 0.07
5 1 0.02 2 0.02
6 1 0.02 4 0.04
7 2 0.04 3 0.03
9 1 0.02 3 0.03
11 1 0.02 3 0.03
12 2 0.04 2 0.02
>12 11 0.22 8 0.08

MDS, myelodysplastic syndrome.

Figure 1. Kaplan–Meier survival curves of the failure time in each treatment group and their 95% confidence
bands.

The main objective of the MDS trial is to compare the event rates in the treat group and the placebo
group. We now apply the proposed methodology to this data set. For comparison, we also fit a standard
Poisson model to the data directly. Table V presents the parameter estimates and their standard errors.
The variance of the Gamma frailty is estimated as 1.44 with a standard error of 0.186. There is strong
evidence that the event count data and the hazard rate of the dropout time are positively correlated (p-value
< 1.0×10−10). The naı̈ve method, which does not account for such a correlation, leads to underestimated
standard errors of the parameter estimates. Consequently, all four tests described in Section 4 based on
the naı̈ve method for testing H0 ∶ 𝜆0 = 𝜆1 lead to p-values smaller than 0.0001. On the other hand, we
obtain non-significant results at 𝛼 = 0.05 from the likelihood ratio test, the Wald test based on the rate
difference, and the Wald test based on the log-ratio of the rates by using the proposed method, with p-
values 0.074, 0.081, and 0.052, respectively. The Wald test based on the ratio of the rates has a p-value
smaller than 0.0001.

For comparison, we analyzed the MDS trial data using two existing methods, HWZ [21] and YWH
[20]. The HWZ method, implemented in r package spef , accounts for dependent observation processes,
whereas the second one, implemented in r package PCDSpline, assumes conditional independent obser-
vations. In both methods, treatment indicator was included in the models as the only covariate, and Wald
test statistics were for testing the regression coefficient (i.e., log 𝜆0∕𝜆1 = 0). Note that for the method



Table V. Results of MDS trial.

Naı̈ve New

Parameter Estimate SE Estimate SE

𝜃 1.443558 0.186276
𝜆0 0.058131 0.003270 0.057941 0.010688
𝜆1 0.033841 0.001711 0.037557 0.004722

MDS, myelodysplastic syndrome; SE, standard error.

Figure 2. Plot of standardized residuals against follow-up times for the MDS trial.

of HWZ, bootstrapping is used to calculate the standard errors. The method of HWZ yields a p-value
of 0.026 for testing the treatment effect. On the other hand, the method of YWH yields a p-value of
2.2 × 10−10 for testing the treatment effect. Although the truth is unknown here, as is evident from the
simulation studies, ignoring the correlation between the event count data and dropout time can lead to
false positive results, and the Wald statistic based on the ratio of the rates can also lead to false positive
results when the event rates are small, which is exactly the case in this application.

Finally, we use a graphical procedure to check the goodness-of-fit of the proposed model. Specifically,
we plot the standardized residuals against the follow-up times. As there are no additional covariates in
the model, based on equations (3) and (4), the standardized residual for the ith subject is calculated as

𝜖ni = (Xi − 𝜇̂ni)∕
√

v̂ni,

where

𝜇̂i = (𝜃̂−1
n + Δi)

𝜆̂Ain
Ti

𝜃̂−1
n + ĤAin

(Ti)
,

and

v̂ni = (𝜃̂−1
n + ĤAin

(Ti) + 𝜆̂Ain
Ti)(𝜃̂−1

n + Δi)
𝜆̂Ain

Ti

{𝜃̂−1
n + ĤAin

(Ti)}2

are the conditional mean and variance of Xi given {Ai, Ti,Δi}, respectively, evaluated at the NPMLEs.
Figure 2 presents the plot of standardized residuals against the follow-up times for each treatment

group. The majority of the residuals appear to be scattered around zero in both groups except for one
possible outlier in the treatment group, which was from a subject with a very large event count (Xi = 45),
and T̃i was censored at 180 days. After removing this outlier, the proposed model appears to fit the data
reasonably well (Figure 3); however, we do observe smaller variations for the negative residuals, which
were likely due to an excessive number of zero events in both groups. We address this issue with more
detail in Section 6.



Figure 3. Plot of standardized residuals against follow-up times for the MDS trial after removing an outlier in the
treatment group with Xi = 45,Ti = 180 (days), and Δi = 0.

6. Discussion

We have developed a joint semiparametric model for recurrent events data and informative dropout time.
This joint model allows one to model these two types of data simultaneously, and the correlation between
them is modeled through a Gamma frailty. The proposed method allows one to utilize the additional
information in the informative dropout time data to make inference on the event rate. Ignoring such
information can lead to invalid inference and inflated type I error rates when comparing the event rates
from two groups.

We assumed a gamma shared frailty to account for the correlation between the event count data and the
informative dropout time. One advantage of by using the Gamma frailty is that there is a closed form for
the observed data likelihood. The joint Gamma frailty model can be easily generalized to different frailty
distributions such as the log-normal distribution and the positive stable distribution. However, under these
frailty models, the numerical approximations or Monte Carlo approximations are needed to compute the
likelihood functions, and hence maximization of the likelihood function is computationally intensive.
One drawback of using the shared frailty in models (1) and (2) is that it induces positive correlations,
which can be restrictive in practice. Following the idea of [12], we may modify model (2) such that

𝜆(t|𝜉i,Ai,𝐙i) = 𝜉𝛼i hAi
(t) exp(𝜻T𝐙i), t ∈ [0, 𝜏],

where 𝛼 is an unknown shape parameter. With this modeling, both positive and negative correlations
are allowed. However, the likelihood function does not have a closed form except when 𝛼 is fixed at 1;
therefore, it will be computationally more intensive to maximize the likelihood.

In the application, a large portion of the patients had zero events in both the treatment group and the
control group. While the proposed method allows for overdispersion in modeling the event count data, it
does not handle count data that have an excess of zero counts. We describe a graphical procedure to check
the goodness-of-fit of the proposed model through residual plots. It would be desirable to develop formal
model diagnostic procedures to examine the goodness-of-fit of the proposed model and further extend
the proposed model to event count data with an excess of zero counts. Future research is warranted in
this direction.

In model (1), the event rate is proportional to the length of the follow-up time. To improve the flexibility
and robustness of the model, we may consider the following semiparametric proportional rate model,

E[Ni(t)|𝜉i,Ai,𝐙i] = 𝜆Ai
𝜉iG(t) exp(𝜷T𝐙i), (6)

where G(t) is an unknown increasing function in [0, 𝜏]with G(0) = 0 and 𝜆0 is set to be 1 in order to ensure
identifiability of the model. Several authors, including [20, 38–41], proposed spline-based methods to



estimate the unspecified baseline mean function G(⋅) assuming non-informative dropout. Splines provide
a smooth estimate of the unknown functions, but they require selection of knots and splines orders. On
the other hand, such selection is not needed in the nonparametric maximum likelihood approach. It would
be interesting to develop efficient likelihood-based inference procedures for the joint models of (2) and
(6). This is a topic of current research.

Appendix A. Regularity conditions

Besides the conditional independent censoring assumption described in Section 2, we impose the
following regularity conditions needed for proving Theorems 1–1:

(C1) If there exist c0 and 𝐜1 such that 𝐜T
1𝐙 = c0 with probability one, then c0 = 0 and 𝐜1 = 𝟎.

(C2) There exists some positive constant number 𝛿0 such that P(C ⩾ 𝜏|A,𝐙) = P(C = 𝜏|A,𝐙) ⩾ 𝛿0
almost surely, where 𝜏 is a constant denoting the end of the study.

(C3) The true parameter values of 𝜆0, 𝜆1, 𝜃, 𝜷, and 𝜻 belong to a known compact set B0 in (R+)3 × R2d.
(C4) The true baseline cumulative distribution functions H0a, a = 0, 1 belong to the following class:

A0 ={Λ ∶ Λ is a strictly increasing function in [0, 𝜏] and is continuously differentiable

with Λ(0) = 0,Λ′(0) > 0 and Λ(𝜏) < ∞}.

Appendix B. Proof of Theorem 1

Suppose that two sets of parameters, (𝜆0,H0, 𝜆1,H1, 𝜃, 𝜷, 𝜻) and (𝜆̃0, H̃0, 𝜆̃1, H̃1, 𝜃, 𝜷̃, 𝜻̃), give the same
likelihood function for the observed data, that is,(

𝜆Ae𝜷
T𝐙
)X {

hA(T)e𝜻
T𝐙
}Δ Γ(𝜃−1 + X + Δ)

Γ(𝜃−1)
𝜃X+Δ[

1 + 𝜃{𝜆ATe𝜷
T𝐙 + HA(T)e𝜻

T𝐙}
]𝜃−1+X+Δ

=
(
𝜆̃Ae𝜷̃

T𝐙
)X {

h̃A(T)e𝜻̃
T𝐙
}Δ Γ(𝜃−1 + X + Δ)

Γ(𝜃−1)
𝜃X+Δ[

1 + 𝜃{𝜆̃ATe𝜷̃
T𝐙 + H̃A(T)e𝜻̃

T𝐙}
]𝜃−1+X+Δ

.
(B.1)

Equation (B.1) holds also for an event count of X + 1. It follows that

𝜆Ae𝜷
T𝐙 1 + 𝜃(X + Δ)

1 + 𝜃{𝜆ATe𝜷
T𝐙 + HA(T)e𝜻

T𝐙}
= 𝜆̃Ae𝜷̃

T𝐙 1 + 𝜃(X + Δ)
1 + 𝜃{𝜆̃ATe𝜷̃

T𝐙 + H̃A(T)e𝜻̃
T𝐙}

. (B.2)

The preceding equation holds for both Δ = 0 and Δ = 1. Therefore,

1 + 𝜃(X + 1)
1 + 𝜃X

= 1 + 𝜃(X + 1)
1 + 𝜃X

.

Simple algebra yields 𝜃 = 𝜃. Now let T = 0. From Equation (B.2), immediately, we obtain 𝜆Ae𝜷
T𝐙 =

𝜆̃Ae𝜷̃
T𝐙. As this equation holds for any 𝐙 and 𝐙∗ in the support of the covariates, we obtain 𝜷T (𝐙−𝐙∗) =

𝜷̃
T (𝐙 − 𝐙∗). It follows from condition (C1) that 𝜷 = 𝜷̃. Then we obtain 𝜆A = 𝜆̃A for both A = 0 and

A = 1. From equation (B.2), we can show that HA(t)e𝜻
T𝐙 = H̃A(t)e𝜻̃

T𝐙 for any t ∈ [0, 𝜏] and 𝐙 in its
support. Similar techniques and condition (C1) yield 𝜻 = 𝜻̃ and HA(t) = H̃A(t), for any t ∈ [0, 𝜏]. The
identifiability of (𝜆0,H0, 𝜆1,H1, 𝜃,𝜷, 𝜻) is thus established.

Appendix C. Proof of Theorem 2

We introduce some notation that will be used throughout the proof of Theorems 2 and 3. Let 𝐎i denote
the observations for the ith subject consisting of (Ai,Xi, Ti,Δi,𝐙i). Let 𝐏n and 𝐏 be the empirical measure
and the expectation of n i.i.d. observations 𝐎1,… ,𝐎n. That is, for any measurable function g(𝐎),

𝐏n[g(𝐎)] = 1
n

n∑
i=1

g(𝐎i), 𝐏[g(𝐎)] = E[g(𝐎)].



The proof of consistency consists of two major steps. In the first step, we prove that lim supn Ĥan(𝜏), a =
0, 1 has an upper bound with probability one. Therefore, there exists a subsequence of (𝝓̂n, Ĥ0n, Ĥ1n) that
converges to (𝝓∗,H∗

0 ,H
∗
1 ). In the second step, we prove that (𝝓∗,H∗

0 ,H
∗
1 ) = (𝝓0,H00,H10).

Step 1. We will prove the uniform boundedness of Ĥan(𝜏), a = 0, 1 by contradiction. Suppose that
Ĥan(𝜏) → ∞, a = 0, 1 in some sample space Ω with positive probability. For each sample in Ω, by
selecting a subsequence still indexed by n, we assume that 𝝓̂n → 𝝓∗ and Ĥan(𝜏) → ∞, a = 0, 1. The idea
of obtaining a contradiction is as follows: we first construct a step function H̄an with jumps only at the
observed Ti in the ath group such that H̄an is close to the true function Ha0; then because (𝝓̂n, Ĥ0n, Ĥ1n)
maximizes ln(𝝓,H0,H1), it holds that {ln(𝝓̂n, Ĥ0n, Ĥ1n) − ln(𝝓0, H̄0n, H̄1n)}∕n ⩾ 0; finally, we prove that
if Ĥ0n(𝜏) → ∞ and/or Ĥ1n(𝜏) → ∞, the left-hand side of the preceding inequality will eventually be
negative, which yields the contradiction.

Recall that the nonparametric log-likelihood takes the form

ln(𝝓,H0,H1) = n𝐏n[R(𝐎;𝝓,H0,H1) + Δ log HA{T}],

where

R(𝐎;𝝓,H0,H1) =X(log 𝜆A + 𝜷T𝐙) + Δ𝜻T𝐙 +
X+Δ−1∑

k=0

log(𝜃−1 + k)

+ (X + Δ) log 𝜃 − (𝜃−1 + X + Δ) log{1 + 𝜃𝜆ATe𝜷
T𝐙 + 𝜃HA(T)e𝜻

T𝐙}.

By differentiating ln(𝝓,H0,H1) with respect to Ha{Ti} and setting it to zero, we can see that Ĥan{Ti}
satisfies the following equation.

Ĥan{Ti} =
I(Ai = a)Δi

n𝐏n[I(T ⩾ t,A = a)Q(𝐎; 𝝓̂n, Ĥ0n, Ĥ1n)]

||||t=Ti

, (C.1)

where

Q(𝐎; 𝝓̂n, Ĥ0n, Ĥ1n) =
(1 + 𝜃̂nX + 𝜃̂nΔ)e𝜻̂

T

n𝐙

1 + 𝜃̂n𝜆̂Ane𝜷̂
T

n𝐙 + 𝜃̂nĤAn(T)e𝜻̂
T

n𝐙
.

In view of (C.1), we construct another step function H̄an(t) with jumps only at the observed Ti in the
ath group and the jump size satisfies that

H̄an{Ti} =
I(Ai = a)Δi

n𝐏n[I(T ⩾ t,A = a)Q(𝐎;𝝓0,H00,H01)]
||||t=Ti

. (C.2)

We verify that H̄an(t) converges to H0a uniformly in t ∈ [0, 𝜏] with probability one. It can be shown
that the class

Fa = {I(T ⩾ t,A = a)Q(t,𝐎;𝝓,H0,H1) ∶ t ∈ [0, 𝜏], (𝜆0, 𝜆1, 𝜃,𝜷, 𝜻) ∈ B0,Ha ∈ A,Ha(0) = 0}

is a bounded and P-Donsker class, where

A = {g ∶ g is a nondecreasing function in [0, 𝜏], g(𝜏) ⩽ B0}

and B0 is a positive constant based on condition (C5).
As a P-Donsker class is also a Glivenko–Cantelli class, by the Glivenko–Cantelli theorem in [35],

H̄an(t) uniformly converges to

E[I(T ⩽ t,A = a)Δ∕𝜇a(T)],

where 𝜇a(t) = E[I(T ⩾ t,A = a)Q(𝐎;𝝓0,H00,H01)].
By the conditional independent censoring assumption (C1) and with some tedious algebra, we can

prove that

E[I(T ⩽ t,A = a)Δ∕𝜇a(T)] = H0a(t).



As (𝝓̂n, Ĥ0n, Ĥ1n) maximizes ln(𝝓,H0,H1),

0 ⩽ 1
n

ln(𝝓̂n, Ĥ0n, Ĥ1n) −
1
n

ln(𝝓0, H̄0n, H̄1n).

By plugging Ĥan{Ti} of equation (C.1) and H̄an{Ti} of equation (C.2) into ln(𝝓̂n, Ĥ0n, Ĥ1n) and
ln(𝝓0, H̄0n, H̄1n), respectively, we obtain

0 ⩽ 1
n

n∑
i=1

1∑
a=0
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[
− Δi log

{
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n∑
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+ Δi log
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1
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⩽ O(1) − 1
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Δi log
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1
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T
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(C.3)

where g1 is some positive constant. The last inequality above is obtained from conditions (C4) and (C5).
Recall that 𝜃̂n converges to 𝜃∗. If 𝜃∗ = 0, and we can show that the right-hand side of inequality (C.3)

diverges to negative infinity as Ĥ0n(𝜏) → ∞ or Ĥ1n(𝜏) → ∞. We have the contradiction because the
left-hand side is non-negative. Therefore, we assume that 𝜃∗ > 0. It follows that

0 ⩽O(1) − 1
n

n∑
i=1

1∑
a=0

I(Ai = a)
[
Δi log

{
1
n

n∑
j=1

I(Tj ⩾ Ti,Aj = a)

g1 + Ĥan(Tj)

}

+ (g2 + Δi) log
{

g3 + Ĥan(Ti)
} ]

,

(C.4)

for some positive constants g2 and g3.
We will show that if Ĥ0n(𝜏) → ∞ or Ĥ1n(𝜏) → ∞, the right-hand side of (C.4) diverges to −∞. We

mimic the arguments of Murphy [29] to prove the divergence of the right-hand side. Specifically, for both
a = 0 and a = 1, we choose a partition of [0, 𝜏], as follows: with s0 = 𝜏, choose s1 < s0 such that

1
2

E{(g2 + Δi)I(Ti = s0,Ai = a)} > E{ΔiI(Ti ∈ [s1, s0),Ai = a)}.

By conditions (C2) and (C3), such s1 exists. We next define a constant 𝜖 ∈ (0, 1) such that

𝜖

g2(1 − 𝜖)
<

E{I(Ti ∈ [s1, s0),Ai = a)}
E{ΔiI(Ti ∈ [0, 𝜏),Ai = a)}

.

If s1 > 0, we can choose s2 = max(0, s) such that s is the minimum value less than s1 satisfying that

(1 − 𝜖)E{(g2 + Δi)I(Ti ∈ [s1, s0),Ai = a)} ⩾ E{ΔiI(Ti ∈ [s, s1),Ai = a)}.

Clearly, s2 exists under the regularity conditions, and s2 < s1. This process can continue so that we obtain
a sequence 𝜏 = s0 > s1 > s2 > · · · ⩾ 0 such that

1
2

E{(g2 + Δi)I(Ti = s0,Ai = a)} ⩾ E{ΔiI(Ti ∈ [s1, s0),Ai = a)},

(1 − 𝜖)E{(g2 + Δi)I(Ti ∈ [sq, sq−1),Ai = a)} ⩾ E{ΔiI(Ti ∈ [sq+1, sq),Ai = a)}, q ⩾ 1.



Such a sequence cannot be infinite, that is, there exists a finite N such that sN+1 = 0; otherwise, sq → s∗

for some s∗[0, 𝜏). By the definition of sq, it holds that

(1 − 𝜖)E{(g2 + Δi)I(Ti ∈ [sq, sq−1),Ai = a)} = E{ΔiI(TI ∈ [sq+1, sq),Ai = a)}, q ⩾ 1.

By the continuity of true densities, we sum over q = 1, 2,… and obtain

(1 − 𝜖)E{(g2 + Δi)I(Ti ∈ [s∗, 𝜏),Ai = a)} = E{ΔiI(Ti ∈ [s∗, s1),Ai = a)}.

Thus,

g2(1 − 𝜖)E{I(Ti ∈ [s∗, 𝜏),Ai = a)} ⩽ 𝜖E{ΔiI(Ti ∈ [s∗, s1),Ai = a)},

which contradicts with the choice of 𝜖. Therefore, the sequence is finite: 𝜏 = s0 > s1 > · · · > sN+1 = 0.
Therefore, the right-hand side of (C.4) can be bounded from above by

O(1) − 1
n

n∑
i=1

1∑
a=0

I(Ai = a)
[
(g2 + Δi)I(Ti = 𝜏) log{g3 + Ĥan(𝜏)}

+
N∑

q=0

(g2 + Δi)I(Ti ∈ [sq+1, sq)) log{g3 + Ĥan(sq+1)}

+
N∑

q=0

ΔiI(Ti ∈ [sq+1, sq)) log

{
1
n

n∑
j=1

I(Tj ⩾ Ti,Aj = a,Tj ∈ [sq+1, sq))

g1 + Ĥan(sq)

}]

⩽ O(1) − 1
n

n∑
i=1

1∑
a=0

I(Ai = a)
[

1
2
(g2 + Δi)I(Ti = 𝜏) log{g3 + Ĥan(𝜏)}

+
{

1
2
(g2 + Δi)I(Ti = 𝜏) log{g3 + Ĥan(𝜏)} − ΔiI(Ti ∈ [s1, s0)) log{g3 + Ĥan(𝜏)}

}
+

N∑
q=1

{
(g2 + Δi)I(Ti ∈ [sq, sq−1)) log{g3 + Ĥan(sq)}

− ΔiI(Ti ∈ [sq+1, sq)) log{g3 + Ĥan(sq)}
}

+
N∑

q=0

ΔiI(Ti ∈ [sq+1, sq)) log

{
1
n

n∑
j=1

I(Tj ⩾ Ti, Tj ∈ [sq+1, sq))

}]
.

(C.5)

The first term on the right-hand side of (C.5) diverges to −∞ as Ĥ0n(𝜏) → ∞ or Ĥ1n → ∞. The second
term is negative for large n owing to the choice of s1. By the selection of sq, q = 1,… ,N, the third
term cannot diverge to ∞. Finally, the fourth term is bounded because of the Glivenko–Cantelli theorem.
Hence, the right-hand side of (C.5) diverges to −∞. This contradicts the fact that the left-hand side of
(C.5) is non-negative. Therefore, we have shown that, with probability one, Ĥan(𝜏), a = 0, 1 is bounded
for any sample size n.

Thus, by Helly’s selection theorem, we can choose a further subsequence, still indexed by {n}, such
that (𝜆̂0n, Ĥ0n, 𝜆̂1n, Ĥ1n, 𝜃̂n, 𝜷̂n, 𝜻̂n) converges to (𝜆∗0,H

∗
0 , 𝜆

∗
1,H

∗
1 , 𝜃

∗, 𝜷∗, 𝜻∗) with probability one.
Step 2. In this step, we will show that

(𝜆∗0,H
∗
0 , 𝜆

∗
1,H

∗
1 , 𝜃

∗, 𝜷∗, 𝜻∗) = (𝜆00,H00, 𝜆10,H10, 𝜃0, 𝜷0, 𝜻0).

We use Ĥan(t) and H̄an(t) in step 1. By the construction of Ĥan(t) and H̄an(t), we can see that Ĥan(t) is
absolutely continuous with respect to H̄an(t) and

Ĥan(t) = ∫
t

0

Pn[I(T ⩾ y,A = a)Q(y,𝐎;𝝓0,H00,H01)]
Pn[I(T ⩾ y,A = a)Q(y,𝐎; 𝝓̂n, Ĥ0n, Ĥ1n)]

dH̄an(y). (C.6)



By taking limits on both sides of (C.6), we obtain that

H∗
a (t) = ∫

t

0

P[I(T ⩾ y,A = a)Q(y,𝐎;𝝓0,H00,H01)]
P[I(T ⩾ y,A = a)Q(y,𝐎;𝝓∗,H∗

0 ,H
∗
1 )]

dH0a(y).

Therefore, H∗
a (t) is differentiable with respect to H0a(t) so that H∗

a (t) is differentiable with respect to t. It
follows that dĤan(t)∕dH̄an(t) converges to dH∗

a (t)∕dH0a(t) uniformly in t ∈ [0, 𝜏].
Note that

n−1ln(𝜆̂0n, Ĥ0n, 𝜆̂1n, Ĥ1n, 𝜃̂n) − n−1ln(𝜆00, H̄0n, 𝜆01, H̄1n, 𝜃0)

= Pn

[
Δ log

ĤAn{T}
H̄An{T}

]
+ Pn[R(𝐎; 𝜆̂0n, Ĥ0n, 𝜆̂1n, Ĥ1n, 𝜃̂n) − R(𝐎; 𝜆00, H̄0n, 𝜆01, H̄1n, 𝜃0)]

⩾ 0.

(C.7)

As B0 × A is a Donsker class and the functionals R(𝐎;𝝓,H0,H1) are bounded Lipschitz functionals
with respect to B0 ×A, the following class

F2 = {R(𝐎;𝝓,H0,H1) ∶ (𝜆0, 𝜆1, 𝜃, 𝜷, 𝜻) ∈ B0,Ha ∈ A,Ha(0) = 0,Ha(𝜏) ⩽ B0, a = 0, 1}

is P-Donsker and hence a Glivenko–Cantelli class. Therefore, by letting n → ∞ in (C.7), we have

0 ⩽ P

[
log

{
h∗

A(T)
ΔeR(𝐎;𝝓∗,H∗

0 ,H
∗
1 )

hA0(T)ΔeR(𝐎;𝝓0,H00,H01)

}]
,

which is the negative Kullback–Leibler information. Then it follows that, with probability one,

h∗A(T)
ΔeR(𝐎;𝝓∗,H∗

0 ,H
∗
1 ) = hA0(T)ΔeR(𝐎;𝝓0,H00,H01).

Therefore, from the identifiability result proved earlier, we obtain (𝝓∗,H∗
0 ,H

∗
1 ) = (𝝓0,H00,H01). This

completes the proof of Theorem 2. Note that the uniform convergence of Ĥan to Ha0, a = 0, 1 follows
from the fact that Ha0 are continuous functions.

Appendix D. Proof of Theorem 3

We prove Theorem 3 by verifying the four conditions in Theorem 3.3.1 of [35]. For this purpose, we first
define a neighborhood of the true parameters (𝝓0,H0,H1), denoted by

U = {(𝝓,H0,H1) ∶ ||𝝓 − 𝝓0|| + sup
t∈[0,𝜏]

(|H0(t) − H00(t)| + |H1(t) − H01(t)|) < 𝜖0},

for a very small constant 𝜖0. Based on the consistency theorem, (𝝓̂n, Ĥ0n, Ĥ1n) belongs to U with
probability close to 1 when the sample size n is large enough.

For any one-dimensional submodel given as {𝜆0 + 𝜖h1, 𝜆1 + 𝜖h2, 𝜃 + 𝜖h3, 𝜷 + 𝜖𝐡4, 𝜻 + 𝜖𝐡5,H0 +
𝜖 ∫ h6dH0,H1+𝜖 ∫ h7dH1}, (𝝓,H0,H1) ∈ U,𝐇 ≡ (h1, h2, h3, 𝐡4, 𝐡5, h6, h7) ∈ H, we can derive the score
function for a single observation 𝐎

W(𝐎;𝝓,H0,H1)[𝐇] =l𝜆0
(𝝓,H0,H1)h1 + l𝜆1

(𝝓,H0,H1)h2 + l𝜃(𝝓,H0,H1)h3

+ l𝛽(𝝓,H0,H1)T𝐡4 + l𝜁 (𝝓,H0,H1)T𝐡5

+ lH0
(𝝓,H0,H1)

[
∫ h6dH0

]
+ lH1

(𝝓,H0,H1)
[
∫ h7dH1

]
,

(D.1)

where

l𝜆a
(𝐎;𝝓,H0,H1) = I(A = a)

{
X
𝜆a

− (1 + 𝜃X + 𝜃Δ)Te𝜷
T𝐙

1 + 𝜃𝜆aTe𝜷
T𝐙 + 𝜃Ha(T)e𝜻

T𝐙

}
, a = 0, 1,



l𝜃(𝐎;𝝓,H0,H1) = −

(
X+Δ−1∑

k=0

1
𝜃 + 𝜃2k

)
+ log{1 + 𝜃𝜆aTe𝜷

T𝐙 + 𝜃Ha(T)e𝜻
T𝐙}∕𝜃2

+ X + Δ
𝜃

−
(𝜃−1 + X + Δ)(𝜆ATe𝜷

T𝐙 + HA(T)e𝜻
T𝐙)

1 + 𝜃𝜆aTe𝜷
T𝐙 + 𝜃Ha(T)e𝜻

T𝐙
,

l𝛽(𝐎;𝝓,H0,H1) =

{
X −

(1 + 𝜃X + 𝜃Δ)𝜆ATe𝜷
T𝐙

1 + 𝜃𝜆ATe𝜷
T𝐙 + 𝜃HA(T)e𝜻

T𝐙

}
𝐙,

l𝜁 (𝐎;𝝓,H0,H1) =

{
Δ −

(1 + 𝜃X + 𝜃Δ)HA(T)e𝜻
T𝐙

1 + 𝜃𝜆ATe𝜷
T𝐙 + 𝜃HA(T)e𝜻

T𝐙

}
𝐙,

lH0
(𝝓,H0,H1)

[
∫ h6dH0

]
= I(A = 0)

{
Δh6(T) −

(1 + 𝜃X + 𝜃Δ)e𝜻T𝐙

1 + 𝜃𝜆ATe𝜷
T𝐙 + 𝜃HA(T)e𝜻

T𝐙∫
T

0
h6dH0

}
,

and

lH1
(𝝓,H0,H1)

[
∫ h7dH1

]
= I(A = 1)

{
Δh7(T) −

(1 + 𝜃X + 𝜃Δ)e𝜻T𝐙

1 + 𝜃𝜆ATe𝜷
T𝐙 + 𝜃HA(T)e𝜻

T𝐙∫
T

0
h7dH1

}
.

We define
Un(𝝓,H0,H1)[𝐇] = Pn{W(𝐎;𝝓,H0,H1)[𝐇]}

and
U(𝝓,H0,H1)[𝐇] = P{W(𝐎;𝝓,H0,H1)[𝐇]}.

Thus, it is easy to see that both Un(𝝓,H0,H1)[𝐇] and U(𝝓,H0,H1)[𝐇] are maps from U to l∞(H) and√
n{Un(𝝓,H0,H1) − U(𝝓,H0,H1)} is an empirical process in the space l∞(H). It is easy to see that

Un(𝝓̂n, Ĥ0n, Ĥ1n) = 0 and U(𝝓0,H00,H01) = 0.
We shall prove the theorem by verifying the following four properties stated in Theorem 3.3.1 of [35].

(P1)
√

n(Un − U)(𝝓̂n, Ĥ0n, Ĥ1n) −
√

n(Un − U)(𝝓0,H00,H01) = oP(1 +
√

n||𝝓̂n − 𝝓0|| +√
n supt∈[0,𝜏]{|Ĥ0n(t) − H00(t)| + |Ĥ1n(t) − H01(t)|}).

(P2)
√

n(Un − U)(𝝓0,H00,H01) converges to a tight random element 𝝃.
(P3) U(𝝓,H0,H1) is Frechet-differentiable at (𝝓0,H00,H01).
(P4) The derivative of U(𝝓,H0,H1) at (𝝓0,H00,H01), denoted by U′(𝝓0,H00,H01) is continuously

invertible.

To prove property (P1), we make use of Lemma 3.3.5 of [35]. Based on the explicit expression in (D.1),
W(𝐎;𝝓,H0,H1)[𝐇] is continuously differentiable with respect to 𝝓 and

‖‖‖‖dW(𝐎;𝝓,H0,H1)
d𝝓

‖‖‖‖ ⩽ g3 + g4X,

where g3 and g4 are some positive constants. Furthermore,

|W(𝐎;𝝓,H0,H1)[𝐇] − W(𝐎;𝝓, H̃0,H1)[𝐇]| ⩽ (g5 + g6X)
{|H0(T) − H̃0(T)| + ∫

𝜏

0
|H0(t) − H̃0(t)|dt

}
and

|W(𝐎;𝝓,H0,H1)[𝐇] − W(𝐎;𝝓,H0, H̃1)[𝐇]| ⩽ (g5 + g6X)
{|H1(T) − H̃1(T)| + ∫

𝜏

0
|H1(t) − H̃1(t)|dt

}
for some positive constants g5 and g6. Therefore,

sup
𝐇∈H

E

[ {
W(𝐎;𝝓,H0,H1)[𝐇] − W(𝐎;𝝓0,H00,H01)[𝐇]

}2
]



converges to zero if ||𝝓−𝝓0||+ supt∈[0,𝜏]{|H0(t) −H00(t)|+ |H1(t) −H01(t)|} → 0. Additionally, we can
show that the class

F3 = {W(𝐎;𝝓,H0,H1)[𝐇] − W(𝐎;𝝓0,H00,H01)[𝐇] ∶ (𝝓,H0,H1) ∈ U,𝐇 ∈ H}

is P-Donsker. Therefore, according to Lemma 3.3.5 of [35], property (P1) holds.
Property (P2) holds again because of the P-Donsker property of the class

{W(𝐎;𝝓,H0,H1)[𝐇] ∶ 𝐇 ∈ H}.

Furthermore, the limit random elements 𝝃 is a Gaussian process indexed by 𝐇 ∈ H and the covariance
between 𝝃(𝐇1) and 𝝃(𝐇2) is equal to

E

[
W(𝐎;𝝓0,H00,H01)[𝐇1] × W(𝐎;𝝓0,H00,H01)[𝐇2]

]
.

The Frechet differentiability in (P3) can be directly verified by using the smoothness of U(𝝓,H0,H1).
The derivative of U(𝝓,H0,H1) at (𝝓0,H00,H01), denoted by U′(𝝓0,H00,H01), is a map from the space

{(𝝓 − 𝝓0,H0 − H00,H1 − H01) ∶ (𝝓,H0,H1) ∈ U}

to l∞(H).
It remains to show that U′ is continuously invertible at (𝝓0,H00,H01). Following the argument in the

Appendix of [42], it suffices to prove that for any one-dimensional submodel given as {𝜆0 + 𝜖h1, 𝜆1 +
𝜖h2, 𝜃 + 𝜖h3, 𝜷 + 𝜖𝐡4 + 𝜻 + 𝜖𝐡5,H0 + 𝜖 ∫ h6dH0,H1 + 𝜖 ∫ h7dH1},𝐇 ∈ H, the Fisher information along
this submodel is nonsingular. If the Fisher information along this submodel is singular, the score function
along this submodel is zero with probability one. We will show that W(𝐎;𝝓0,H00,H01)[𝐇] = 0 yields
that h1 = h2 = h3 = 0, 𝐡4 = 𝐡5 = 𝟎, and h6 = h7 = 0. We follow the ideas of proving the identifiability
in the proof of Theorem 1. Let 𝐎 = (A = 0,X = 0,T ,Δ,𝐙) and 𝐎̃ = (A = 0,X = 1,T ,Δ,𝐙). We obtain

W(𝐎;𝝓0,H00,H01)[𝐇] − W(𝐎̃;𝝓0,H00,H01)[𝐇]

=

{
1
𝜆0

− 𝜃Te𝜷
T𝐙

1 + 𝜃𝜆0Te𝜷
T𝐙 + 𝜃H0(T)e𝜻

T𝐙

}
h1

+

{
Δ

1 + 𝜃
−

𝜆0Te𝜷
T𝐙 + H0(T)e𝜻

T𝐙

1 + 𝜃𝜆0Te𝜷
T𝐙 + 𝜃H0(T)e𝜻

T𝐙

}
h3

+

{
1 −

𝜃𝜆0Te𝜷
T𝐙

1 + 𝜃𝜆0Te𝜷
T𝐙 + 𝜃H0(T)e𝜻

T𝐙

}
𝐙T𝐡4

−
𝜃H0(T)e𝜻

T𝐙

1 + 𝜃𝜆0Te𝜷
T𝐙 + 𝜃H0(T)e𝜻

T𝐙
𝐙T𝐡5

− 𝜃e𝜻
T𝐙

1 + 𝜃𝜆0Te𝜷
T𝐙 + 𝜃H0(T)e𝜻

T𝐙∫
T

0
h6dH0

= 0.

We then let T = 0 and Δ = 0 and obtain h1

𝜆0
+ 𝐙T𝐡4 = 0. It follows from condition (C1) that h1 = 0 and

𝐡4 = 𝟎. Next we let T = 0 and Δ = 1 and obtain h3 = 0. Therefore, with simple algebra, we obtain

−H0(T)𝐙T𝐡5 − ∫
T

0
h6dH0 = 0.

Again condition (C1) implies that 𝐡5 = 𝟎 and ∫ T
0 h6dH0 = 0. As the second equality holds for any

T ∈ [0, 𝜏], immediately, condition (C5) implies h6(t) = 0 for any t ∈ [0, 𝜏]. Similarly, we can prove that
h2 = 0 and h7(t) = 0 for any t ∈ [0, 𝜏].



We now have verified properties (P1)–(P4); Theorem 3.3.1 of [35] concludes that
√

n(𝝓̂n −𝝓0, Ĥ0n −
H00, Ĥ1n−H01) converges weakly to a tight Gaussian random element −U′−1𝝃 in l∞(H). Moreover, it can
be shown that 𝝓̂n is an asymptotic linear estimator for 𝝓0 and that the corresponding influence functions
are on the space spanned by the score functions. This implies that 𝝓̂n is semiparametrically efficient by
semiparametric efficiency theory.
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