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SUMMARY

Interval-censored multivariate failure time data arise when there are multiple types of failure 
or there is clustering of study subjects and each failure time is known only to lie in a certain 
interval. We investigate the effects of possibly time-dependent covariates on multivariate failure 
times by considering a broad class of semiparametric transformation models with random effects, 
and we study nonparametric maximum likelihood estimation under general interval-censoring 
schemes. We show that the proposed estimators for the finite-dimensional parameters are consis-
tent and asymptotically normal, with a limiting covariance matrix that attains the semiparametric 
efficiency bound and can be consistently estimated through profile likelihood. In addition, we 
develop an EM algorithm that converges stably for arbitrary datasets. Finally, we assess the per-
formance of the proposed methods in extensive simulation studies and illustrate their application 
using data derived from the Atherosclerosis Risk in Communities Study.

Some key words: Current-status data; EM algorithm; Multivariate failure time data; Nonparametric likelihood; Profile 
likelihood; Proportional hazards; Proportional odds; Random effects.

1. INTRODUCTION

Multivariate failure time data arise when each study subject may experience multiple events 
or when study subjects are sampled in clusters such that the failure times are potentially cor-
related (Kalbfleisch & Prentice, 2002, Ch. 10). The failure times are interval-censored if the 
events or failures can only be determined through periodic examination. In the special case of 
one examination per subject, the observations are called current-status data (Huang, 1996). An 
example of interval-censored multiple-event data is an HIV/AIDS study where laboratory tests 
were performed periodically on each patient to detect the presence of cytomegalovirus in the 
blood and urine (Goggins & Finkelstein, 2000). An example of interval-censored clustered data 
is a study of pandemic H1N1 influenza where blood samples of family members were collected 
at different time-points to determine whether there is infection with the influenza virus (Kor et al., 
2013). Such data allow characterization of the dependence of related events and evaluation of 
the effects of covariates on the multivariate outcome. The fact that failure times are never exactly 
observed, together with their dependence, makes the analysis theoretically and computationally 
challenging.



Several methods for regression analysis of interval-censored multiple-event data have been
proposed. Specifically, Goggins & Finkelstein (2000), Kim & Xue (2002), Chen et al. (2007),
Tong et al. (2008) and Chen et al. (2013) constructed estimating equations for marginal models
by assuming that all subjects are examined at a common set of time-points. Chen et al. (2009)
and Chen et al. (2014) considered a frailty proportional hazards model for current-status data
and interval-censored data, respectively. The former assumed a piecewise-constant baseline haz-
ard function, while the latter assumed a common set of examination times for all subjects. All
the aforementioned work avoids the difficult task of nonparametric estimation by parameter-
izing the failure time distribution or estimating the survival probabilities at fixed time-points.
Wang et al. (2008) studied sieve estimation of a copula proportional hazards model for bivariate
current-status data with univariate examination time, which was parameterized by a propor-
tional hazards model. Wen & Chen (2013) established asymptotic theory for the nonparametric
maximum likelihood estimation of a gamma-frailty proportional hazards model for bivariate
interval-censored data and constructed a self-consistency equation, which involves an artifi-
cial tuning constant and may have multiple solutions. Wang et al. (2015) developed an EM
algorithm for spline-based sieve estimation of the same model, but for bivariate current-status
data.

The literature on interval-censored clustered data is relatively limited. Cook & Tolusso (2009)
and Kor et al. (2013) constructed estimating functions for a copula proportional hazards model
with a piecewise-constant baseline hazard function for current-status and interval-censored data,
respectively. Chang et al. (2007) established a profile likelihood theory for a gamma-frailty
proportional hazards model with current-status family data, and Wen & Chen (2011) developed
a self-consistency algorithm similar to that in Wen & Chen (2013).

In this paper, we provide efficient estimation methods for a broad class of semiparametric
transformation models with random effects for general interval-censored multivariate failure
time data. Our work advances the study of multivariate interval-censored data in several direc-
tions. First, we deal with the most general form of interval censoring, allowing each subject to
have an arbitrary sequence of examination times, and we do not model the examination times.
Second, our models accommodate time-dependent covariates and include both proportional and
non-proportional hazards structures. Third, our models allow multiple random effects and treat
multiple events and clustered data in a unified framework. Fourth, we estimate the failure time
distribution in a completely nonparametric manner and avoid any tuning parameters, which are
required by sieve methods. Fifth, we establish a rigorous asymptotic theory for the nonparametric
maximum likelihood estimators under mild conditions. Finally, we devise an EM algorithm that
involves only low-dimensional parameters in each iteration and performs well in a wide variety
of situations.

The present paper also substantially extends our recent work on univariate interval-censored
data (Zeng et al., 2016). We expand our previous numerical algorithm to handle unobserved
random effects and multiple baseline hazard functions. We address new theoretical challenges
generated by the presence of random effects, especially in proving the Donsker property of
relevant functions in the form of integration over random effects. In addition, the asymptotic
theory of Zeng et al. (2016) hinges on the assumption that a subset of study subjects is examined
at the study endpoint; here we remove that restrictive assumption and formulate new arguments
to prove the consistency of the estimators. Finally, we show that the covariance matrix for the
finite-dimensional parameters can be estimated consistently by the inverse empirical covariance
matrix of the individual contributions to the gradient of the profile loglikelihood function. This
estimator is always positive semidefinite and is numerically more stable than the Hessian matrix
used by Zeng et al. (2016) and others.



2. DATA, MODEL AND LIKELIHOOD

We consider a general framework for modelling multivariate failure time data that encompasses
both multiple events and clustered data. Suppose that there are n independent clusters with Ji
subjects in the ith cluster and that each subject can potentially experience K types of events. It
is assumed that Ji is small relative to n. For i = 1, . . . , n, j = 1, . . . , Ji and k = 1, . . . , K , let
Tijk denote the kth failure time for the jth subject of the ith cluster, and let Xijk(·) denote the
corresponding p-vector of possibly time-dependent covariates. We specify that the cumulative
hazard function of Tijk takes the form

�ijk(t) = Gk

[∫ t

0
exp{βTXijk(s) + bT

i Zijk(s)} d�k(s)

]
, (1)

where Zijk contains 1 and covariates that may be part of Xijk , bi is a di-vector of random effects
from the multivariate normal distribution with mean zero and covariance matrix �i(γ ) indexed
by unknown parameters γ , β is a set of unknown regression parameters, �k(·) is an arbitrary
increasing function with �k(0) = 0, and Gk(x) is a specific transformation function. It is assumed
that Tijk (j = 1, . . . , Ji; k = 1, . . . , K) are independent conditional on bi. By letting Xijk and Zijk
depend on k , model (1) allows the regression parameters and random effects to be different
among the K types of events; see Lin (1994). In addition, the dependence of Zijk on j allows
for subject-specific random effects. Often �i(γ ) does not depend on i, and then γ consists of
the upper diagonal elements of the common covariance matrix �. An example in which �i(γ )

depends on i is given in the Supplementary Material.
A variety of transformations can be generated through the log-Laplace transform

Gk(x) = − log
∫ ∞

0
exp(−xt)fk(t) dt, (2)

where fk(t) is a density function with support on [0, ∞). The choice of the gamma density
with mean 1 and variance rk for fk(t) yields the class of logarithmic transformations Gk(x) =
r−1

k log(1 + rkx) with rk > 0 (Chen et al., 2002), which includes the proportional odds model,
rk = 1, and can be extended to include the proportional hazards model by letting rk = 0.

Suppose that Tijk is monitored at a sequence of positive time-points Uijk1 < · · · < Uijk ,Mijk .
We assume that {Uijkl : l = 1, . . . , Mijk ; j = 1, . . . , Ji; k = 1, . . . , K} are independent of
{Tijk : j = 1, . . . , Ji; k = 1, . . . , K} and bi conditional on {Xijk(·) : j = 1, . . . , Ji; k = 1, . . . , K}.
Let (Lijk , Rijk ] be the shortest time interval that brackets Tijk , i.e., Lijk = max{Uijkl : Uijkl <

Tijk , l = 0, . . . , Mijk} and Rijk = min{Uijkl : Uijkl � Tijk , l = 1, . . . , Mijk + 1}, where Uijk0 = 0
and Uijk ,Mijk+1 = ∞. Then the likelihood concerning the parameters θ = (βT, γ T)T and A =
(�1, . . . , �K ) is

Ln(θ , A) =
n∏

i=1

∫ Ji∏
j=1

K∏
k=1

{
exp

(
−Gk

[∫ Lijk

0
exp{βTXijk(s) + bT

i Zijk(s)} d�k(s)

])

− exp
(

−Gk

[∫ Rijk

0
exp{βTXijk(s) + bT

i Zijk(s)} d�k(s)

])}

× (2π)−di/2|�i(γ )|−1/2 exp
{
−bT

i �i(γ )−1bi

2

}
dbi, (3)

in which exp(−Gk [
∫ Rijk

0 exp{βTXijk(s) + bT
i Zijk(s)} d�k(s)]) = 0 if Rijk = ∞.



3. NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION

We adopt the nonparametric maximum likelihood estimation approach. For each k = 1, . . . , K ,
let 0 = tk0 < tk1 < · · · < tkmk < ∞ be the ordered sequence of all Lijk and Rijk with Rijk < ∞.
The estimator for �k is a step function which jumps only at those time-points with respective
jump sizes of λk0 = 0, λk1, . . . , λkmk . We introduce a latent variable ξijk with density fk(t) as
given in (2). Then (3) can be written as

Ln(θ , A) =
n∏

i=1

∫ Ji∏
j=1

K∏
k=1

∫ ⎡
⎣exp

⎧⎨
⎩−ξijk

∑
tkq�Lijk

exp(βTXijkq + bT
i Zijkq)λkq

⎫⎬
⎭

−I (Rijk < ∞) exp

⎧⎨
⎩−ξijk

∑
tkq�Rijk

exp(βTXijkq + bT
i Zijkq)λkq

⎫⎬
⎭

⎤
⎦ fk(ξijk) dξijk

× (2π)−di/2|�i(γ )|−1/2 exp
{
−bT

i �i(γ )−1bi

2

}
dbi, (4)

where Xijkq = Xijk(tkq) and Zijkq = Zijk(tkq).
To make the maximization of the likelihood more tractable, we introduce independent Poisson

random variables Wijkq (q = 1, . . . , mk) with means λkqξijk exp(βTXijkq + bT
i Zijkq). Let Aijk =∑

tkq�Lijk
Wijkq and Bijk = I (Rijk < ∞)

∑
Lijk<tkq�Rijk

Wijkq. Because the joint probability of

Aijk = 0 and Bijk > 0 given ξijk and bi is exp{−ξijk
∑

tkq�Lijk
exp(βTXijkq + bT

i Zijkq)λkq}−I (Rijk <

∞) exp{−ξijk
∑

tkq�Rijk
exp(βTXijkq + bT

i Zijkq)λkq}, the likelihood arising from the observations
(Aijk = 0, Bijk > 0 : i = 1, . . . , n; j = 1, . . . , Ji; k = 1, . . . , K) is the same as (4). Therefore, we
develop an EM algorithm to maximize (4) by treating Wijkq (tkq � R∗

ijk), ξijk and bi as complete
data, where R∗

ijk = Lijk I (Rijk = ∞) + Rijk I (Rijk < ∞).

Remark 1. Conditional on ξijk and bi, the failure time Tijk follows a proportional hazards
model. Let Nijk(t) be a Poisson process with value 0 at t = 0 and intensity function the same as
the hazard function of Tijk . Clearly, Tijk is the first time Nijk(t) jumps from 0 to 1, such that Tijk
falling in the interval (Lijk , Rijk ] is equivalent to Nijk(t) taking no jump before Lijk but at least one
jump in (Lijk , Rijk ]. Thus, Aijk and Bijk are indeed the counts of Nijk(t) before Lijk and between
Lijk and Rijk , respectively.

The complete-data loglikelihood is

n∑
i=1

⎧⎨
⎩

Ji∑
j=1

K∑
k=1

⎛
⎝ mk∑

q=1

I (tkq � R∗
ijk)

[
Wijkq log

{
λkqξijk exp(βTXijkq + bT

i Zijkq)
}

− λkqξijk exp(βTXijkq + bT
i Zijkq) − log(Wijkq!)

]
+ log fk(ξijk)

⎞
⎠

− di

2
log(2π) − 1

2
log |�i(γ )| − bT

i �i(γ )−1bi

2

⎫⎬
⎭. (5)



 

In the M-step, we solve the following equation for β using the one-step Newton–Raphson method:

n∑
i=1

Ji∑
j=1

K∑
k=1

mk∑
q=1

I (tkq � R∗
ijk)Ê(Wijkq)

×
⎡
⎣Xijkq −

∑n
i′=1

∑Ji′
j′=1 I (tkq � R∗

i′j′k)Xi′j′kqÊ{ξi′j′k exp(βTXi′j′kq + bT
i′Zi′j′kq)}∑n

i′=1
∑Ji′

j′=1 I (tkq � R∗
i′j′k)Ê{ξi′j′k exp(βTXi′j′kq + bT

i′Zi′j′kq)}

⎤
⎦= 0,

where Ê(·) denotes the conditional expectation given the observed data. We then calculate

λkq =
∑n

i=1
∑Ji

j=1 I (tkq � R∗
ijk)Ê(Wijkq)∑n

i=1
∑Ji

j=1 I (tkq � R∗
ijk)Ê{ξijk exp(βTXijkq + bT

i Zijkq)}

for q = 1, . . . , mk and k = 1, . . . , K , and maximize −log |�i(γ )| − Ê{bT
i �

−1
i (γ )bi} to estimate

γ . If the �i are the same and nonparametric, then the latter becomes � = n−1 ∑n
i=1 Ê(b⊗2

i ),
where a⊗2 = aaT.

In the E-step, we evaluate the conditional expectations involved in the M-step. We use the
fact that the joint density of ξijk (j = 1, . . . , Ji; k = 1, . . . , K) and bi given the observed data is
proportional to

Ji∏
j=1

K∏
k=1

⎡
⎣exp

⎧⎨
⎩−ξijk

∑
tkq�Lijk

exp(βTXijkq + bT
i Zijkq)λkq

⎫⎬
⎭

−I (Rijk < ∞) exp

⎧⎨
⎩−ξijk

∑
tkq�Rijk

exp(βTXijkq + bT
i Zijkq)λkq

⎫⎬
⎭

⎤
⎦

× fk(ξijk)(2π)−di/2|�i(γ )|−1/2 exp
{
−bT

i �i(γ )−1bi

2

}
.

In addition, the conditional mean of Wijkq for tkq � R∗
ijk given ξijk (j = 1, . . . , Ji; k = 1, . . . , K),

bi and the observed data is

I (Lijk < tkq � Rijk < ∞)
λkqξijk exp(βTXijkq + bT

i Zijkq)

1 − exp
{− ∑

Lijk<tkq′�Rijk
λkq′ξijk exp(βTXijkq′ + bT

i Zijkq′)
}.

We use Gaussian quadrature to approximate integrals over ξijk and bi.
Starting with β = 0, λkq = 1/mk and �i as the identity matrix, we iterate between the E-step

and the M-step until convergence to obtain the nonparametric maximum likelihood estimators β̂,
γ̂ and �̂k (k = 1, . . . , K). The high-dimensional parameters λkq are calculated explicitly in the
M-step. We show in the Supplementary Material that each iteration of the algorithm guarantees
an increase in the likelihood. Due to the presence of random effects, the conditional expectations
in this EM algorithm are more tedious to evaluate than those in Zeng et al. (2016).



4. ASYMPTOTIC PROPERTIES

Let θ̂ = (β̂T, γ̂ T)T and Â = (�̂1, . . . , �̂K ). We establish the asymptotic properties of (θ̂ , Â)

under the following regularity conditions, wherein we omit the subscript i when referring to a
random variable for a cluster and use the notation Qjk(t, b; β, �k) = exp(−Gk [

∫ t
0 exp{βTXjk(s)+

bTZjk(s)} d�k(s)]) and φ(b; �) = (2π)−d/2|�|−1/2 exp(−bT�−1b/2).

Condition 1. The true value of θ , denoted by θ0 = (βT
0 , γ T

0 )T, lies in the interior of a known
compact set � = {(βT, γ T)T : β ∈ B, γ ∈ C}, where B is a compact set in R

p and C is a compact
set in the domain of γ such that �(γ ) is a positive-definite matrix with eigenvalues bounded
away from zero and ∞. The true value of �k , denoted by �0k , is continuously differentiable
with positive derivatives in [0, τk ], which is the union of the supports of Ujkl (l = 1, . . . , Mjk ; j =
1, . . . , J ).

Condition 2. With probability one, Xjk(·) has bounded total variation in [0, τk ]. If there exists
a deterministic function a1(t) and a constant vector a2 such that a1(t) + aT

2Xjk(t) = 0 with
probability 1, then a1(t) = 0 for t ∈ [0, τk ] and a2 = 0.

Condition 3. With probability one, Zjk(·) has bounded total variation in [0, τk ].
Condition 4. The cluster size J is bounded by a positive constant and is independent of

{Tjk : j = 1, . . . , J ; k = 1, . . . , K}, {Ujkl : l = 1, . . . , Mjk ; j = 1, . . . , J ; k = 1, . . . , K} and b
conditional on (Xjk , Zjk) (j = 1, . . . , J ; k = 1, . . . , K).

Condition 5. For any j = 1, . . . , J and k = 1, . . . , K , the number of examination times Mjk
is positive with E(Mjk) < ∞. The conditional densities of (Ujkl , Ujk ,l+1) given (J , Mjk , Xjk),
denoted by gjkl(u, v) (l = 0, . . . , Mjk), have continuous second-order partial derivatives with
respect to u and v when v − u � η for some positive constant η, and are continuously differen-
tiable functionals with respect to Xjk and Zjk . In addition, pr{min0�l<Mjk (Ujk ,l+1 − Ujkl) � η |
J , Mjk , Xjk} = 1.

Condition 6. The transformation function Gk is twice continuously differentiable on [0, ∞)

with Gk(0) = 0, G′
k(x) > 0 and Gk(∞) = ∞ for k = 1, . . . , K , where G′

k(x) = dGk(x)/dx. In
addition, G′

k(x) exp{−Gk(x)} is uniformly bounded in x � 0 and there exists a positive constant
rk0 such that exp{−Gk(x)} = O(x−1/rk0) as x → ∞.

Condition 7. For a pair of parameters (θ1, A1) and (θ2, A2), if

∫ ⎧⎨
⎩

j∏
j′=1

k∏
k ′=1

Qj′k ′(tj′k ′ , b; β1, �1k ′)

⎫⎬
⎭ φ{b; �(γ1)} db

=
∫ ⎧⎨

⎩
j∏

j′=1

k∏
k ′=1

Qj′k ′(tj′k ′ , b; β2, �2k ′)

⎫⎬
⎭ φ{b; �(γ2)} db

with probability 1 for any j ∈ {1, . . . , J }, k ∈ {1, . . . , K} and tj′k ′ ∈ [0, τk ′ ] with j′ ∈ {1, . . . , j} and
k ′ ∈ {1, . . . , k}, then β1 = β2, γ1 = γ2 and �1k(t) = �2k(t) for t ∈ [0, τk ] and k ∈ {1, . . . , K}.



Condition 8. If there exists a vector v and functions ajk(t; b) (j = 1, . . . , J ; k = 1, . . . , K)

such that

∫ ⎧⎨
⎩

j∏
j′=1

k∏
k ′=1

Qj′k ′(tj′k ′ , b; β0, �0k ′)

⎫⎬
⎭

⎧⎨
⎩

j∑
j′=1

k∑
k ′=1

aj′k ′(tj′k ′ , b) + vTφ′
γ (b; �0)

φ(b; �0)

⎫⎬
⎭ φ(b; �0) db = 0

with probability one for any j ∈ {1, . . . , J }, k ∈ {1, . . . , K} and tj′k ′ ∈ [0, τk ′ ] with j′ ∈ {1, . . . , j}
and k ′ ∈ {1, . . . , k}, where �0 = �(γ0) and φ′

γ is the derivative of φ{b; �(γ )}) with respect to
γ , then v = 0 and ajk(t, b) = 0 for j = 1, . . . , J , t ∈ [0, τk ] and k ∈ {1, . . . , K}.

Remark 2. Conditions 1–4 are standard conditions for multivariate failure time regression.
Condition 5 requires that two adjacent examination times be separated by at least η; otherwise,
the data may contain exact observations, which need a different treatment. This condition also
requires smoothness of the joint density of the examination times. Unlike Zeng et al. (2016), we
do not require a subset of study subjects to be examined at the end of the study. Condition 6
holds for both the logarithmic family Gr(x) = r−1 log(1 + rx) (r � 0) and the Box–Cox family
Gρ(x) = ρ−1{(1 + x)ρ − 1} (ρ � 0), where Gr(x) = x if r = 0 and Gρ(x) = log(1 + x) if
ρ = 0. Condition 7 pertains to parameter identifiability, and Condition 8 says that the Fisher
information along any submodel at the true parameter values should be nonsingular. If Xjk and
Zjk are time-independent and Gk(x) = x, then the equations in Conditions 7 and 8 become

∫ ⎧⎨
⎩

j∏
j′=1

k∏
k ′=1

exp(β̃T
1 [1, X T

j′k ′ ]T + bTZj′k ′)

⎫⎬
⎭ φ{b; �(γ1)} db

=
∫ ⎧⎨

⎩
j∏

j′=1

k∏
k ′=1

exp(β̃T
2 [1, X T

j′k ′ ]T + bTZj′k ′)

⎫⎬
⎭ φ{b; �(γ2)} db,

∫ ⎧⎨
⎩

j∏
j′=1

k∏
k ′=1

exp(βT
0Xj′k ′ + bTZj′k ′)

⎫⎬
⎭

×
⎧⎨
⎩

j∑
j′=1

k∑
k ′=1

vT
1[1, X T

j′k ′ ]T + vT
2φ

′
γ (b; �0)

φ(b; �0)

⎫⎬
⎭ φ(b; �0) db = 0,

respectively. It can be shown that the above equations hold if Zjk is linearly independent; that is,
any symmetric matrix C satisfying ZT

jkCZjk = 0 with probability one must be a zero matrix.

We state the strong consistency and weak convergence of the nonparametric maximum
likelihood estimators in Theorems 1 and 2, respectively.

THEOREM 1. Under Conditions 1–7, ‖θ̂ −θ0‖+∑K
k=1 supt∈[0,τk ] |�̂k(t)−�0k(t)| → 0 almost

surely, where ‖ · ‖ is the Euclidean norm.

THEOREM 2. Under Conditions 1–8, n1/2(θ̂ − θ0) converges in distribution to a zero-mean
multivariate normal vector whose covariance matrix attains the semiparametric efficiency bound.

Remark 3. The proofs of the theorems are given in the Appendix. In the proof of Theorem 1, a
major challenge is to show uniform boundedness of �̂k without assuming that there is a positive



probability of Rjk = τk . To address this challenge, we first obtain a sequence of �̂k that converges
for any interior compact sets of [0, τk). We then show that the limit of the sequence is the true
parameter value by deriving the covering number for the loglikelihood function. In the proof of
Theorem 2, we use the bounded inverse theorem to establish the convergence rates of the �̂k in
terms of n and the Euclidean distance of the other parameter estimators, and we show that the
rates obtained are sufficient for the asymptotic normality and efficiency of the estimators.

Let pln(θ) = maxA log Ln(θ , A), which is obtained by using the above EM algorithm but
updating only (�1, . . . , �K ) in the M-step. One may estimate the covariance matrix of θ̂ by
the negative inverse of the Hessian matrix of pln(θ) at θ̂ , which is determined by the numerical
differences of second order and a perturbation constant of the order of n−1/2 (Murphy & van
der Vaart, 2000; Zeng et al., 2016). The estimated matrix may be negative definite, especially in
small samples. We propose to estimate the covariance matrix of θ̂ by (nV̂n)

−1 with

V̂n = n−1
n∑

i=1

[{
∂

∂θ
li(θ , Âθ )

∣∣∣∣
θ=θ̂

}⊗2
]

,

where Âθ = arg maxA log Ln(θ , A) for θ ∈ � and li(θ , A) is the loglikelihood function for the
ith cluster. Thus, we estimate the information matrix for θ0 by the empirical covariance matrix
of the gradient of li(θ , Âθ ). We approximate this gradient by a first-order numerical difference,
which is quicker to calculate than its second-order counterpart. The resulting covariance matrix
estimator is guaranteed to be positive semidefinite and turns out to be more robust with respect
to choice of the perturbation constant than the estimator based on the second-order numerical
difference. The consistency of this covariance estimator is stated in the following theorem.

THEOREM 3. Under Conditions 1–8, V̂ −1
n is a consistent estimator for the limiting covariance

matrix of n1/2(θ̂ − θ0).

5. SIMULATION STUDIES

To evaluate the performance of the proposed methods, we conducted two series of simulation
studies. The first series pertained to clustered data, the cluster sizes being 1, 2 and 3 with probabil-
ities 0·2, 0·7 and 0·1, respectively. We considered model (1) with K = 1 and �(t) = log(1+0·5t).
We generated two independent cluster-level covariates, the first being Ber(0·5) and the second
Un(0, 1). We set the corresponding regression parameters β1 and β2 to 0·5 and −0·5, respectively.
We adopted the class of logarithmic transformations indexed by parameter r and obtained the
random effect b from N (0, σ 2) where σ 2 = 0·5. We generated five potential examination times
for each subject, with the first being Un(0, 1) and the gap between any two successive examina-
tion times being 0·1 + Un(0, 1). We assumed that the study ended at time 5, beyond which no
examinations occurred. We simulated 10 000 replicates.

Table 1 summarizes the results on the estimation of β = (β1, β2)
T and σ 2 for various values

of n and r, and Fig. 1 displays the corresponding results for the estimation of �(t). The biases
for all parameter estimators are small and decrease as n increases. The variance estimator for β̂

is accurate, and the variance of σ̂ 2 tends to be overestimated. The confidence intervals for both β

and σ 2 have proper coverage probabilities. Additional studies revealed that the variance estimator
for σ̂ 2 and the confidence intervals for σ 2 become more accurate as σ 2 increases.

The second series of studies was concerned with multiple events. We considered model (1)
with K = 2, J = 1, �1(t) = log(1 + 0·5t) and �2(t) = 0·5t. We focused on the logarithmic



Table 1. Parameter estimation results for simulation studies with clustered data
n = 100 n = 200 n = 400

r Bias SE SEE CP Bias SE SEE CP Bias SE SEE CP

0 β1 = 0·5 0·014 0·263 0·258 94 0·005 0·182 0·180 95 0·002 0·127 0·126 95
β2 = −0·5 −0·008 0·404 0·399 95 −0·005 0·278 0·277 95 −0·003 0·194 0·194 95
σ 2 = 0·5 −0·024 0·369 0·384 96 −0·009 0·244 0·259 97 −0·001 0·166 0·177 97

0·5 β1 = 0·5 0·014 0·302 0·299 95 0·004 0·210 0·208 95 0·002 0·147 0·146 95
β2 = −0·5 −0·010 0·483 0·479 95 −0·007 0·333 0·331 95 −0·004 0·233 0·232 95
σ 2 = 0·5 −0·027 0·457 0·486 96 −0·010 0·309 0·330 96 0·001 0·214 0·228 96

1 β1 = 0·5 0·015 0·341 0·341 95 0·004 0·237 0·235 95 0·002 0·166 0·165 95
β2 = −0·5 −0·012 0·558 0·552 95 −0·008 0·382 0·381 95 −0·005 0·268 0·266 95
σ 2 = 0·5 −0·036 0·558 0·607 95 −0·018 0·380 0·412 95 −0·001 0·265 0·286 95

SE, empirical standard error; SEE, mean standard error estimator; CP, empirical coverage percentage of 95% con-
fidence interval. For σ 2, Bias and SEE are based on the median instead of the mean, and the confidence interval is
based on the log transformation. Each entry is based on 10 000 replicates.
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Fig. 1. Estimation of �(t) for clustered data: the solid and dashed curves show the true values and averaged estimates,
respectively, where each estimate is based on 10 000 replicates.



families indexed by r1 and r2. For each subject, we generated covariates and random effects from
the same distributions as in the first series of studies. We set the regression parameters for the
first event, (β11, β12), to (0·5, −0·5) and those of the second event, (β21, β22), to (0·4, 0·2). We
generated examination times for each subject in the same manner as in the first series of studies.
The results for the second series of studies are presented in the Supplementary Material. The
basic conclusions are the same as those from the first series.

The variance estimation was based on the first-order numerical differentiation with a pertur-
bation constant of 5n−1/2. The results are quite stable for perturbation constants between n−1/2

and 10n−1/2. We also evaluated variance estimation based on the second-order numerical differ-
entiation and found that the resulting variance estimates may be negative when n is small and the
perturbation constant is far away from 5n−1/2. The two variance estimation methods produced
similar estimates in most cases. We recommend using 5n−1/2 for both the first-order and the
second-order numerical differences.

6. AN EXAMPLE

The Atherosclerosis Risk in Communities Study recruited a cohort of 14 751 Caucasian and
African-American individuals from four U.S. communities: Forsyth County, North Carolina;
Jackson, Mississippi; suburbs of Minneapolis, Minnesota; and Washington County, Mary-
land (The ARIC Investigators, 1989). The participants underwent a baseline examination in
1987–1989, three follow-up examinations at approximately three-year intervals, and a further
examination in 2011–2013. One important objective of the study was to investigate risk factors
for diabetes and hypertension. The definition of diabetes was a fasting glucose level of 126 mg/dL
or above, a nonfasting glucose level of 200 mg/dL or above, self-reported physician diagnosis of
diabetes, or use of diabetic medication. The definition of hypertension was systolic blood pressure
of 140 mmHg or higher, diastolic blood pressure of 90 mmHg or higher, or use of antihypertensive
medication. Both events were determined at the examination times and thus interval-censored.

We related the incidence of diabetes and hypertension to race, gender, communities and five
baseline risk factors: age, body mass index, glucose level, systolic blood pressure and diastolic
blood pressure. We excluded 5890 individuals with prevalent diabetes or hypertension and 124
individuals with unknown status at baseline.After removing another two individuals with missing
values of baseline risk factors, we were left with a total of 8735 individuals. We fitted model (1)
with K = 2, J = 1 and b ∼ N (0, σ 2).

The loglikelihood is maximized at r1 = 2·1 and r2 = 1·3, which is the combination that
would be selected by the Akaike information criterion. The loglikelihood values are −12 492·67,
−12 412·67 and −12 403·46 at (r1, r2) = (0, 0), (1, 1) and (2·1, 1·3), respectively.

Table 2 shows regression analysis results for the aforementioned three combinations of r1
and r2. The p-values are similar. The results indicate that African-Americans are more likely
to develop diabetes and hypertension than Caucasians; baseline body mass index is positively
associated with the risk of both diabetes and hypertension; and baseline glucose level is positively
associated with the risk of diabetes but not hypertension. Not surprisingly, baseline systolic and
diastolic blood pressures are positively associated with the risk of hypertension. Because n is
large, some of the p-values are extremely small.

The regression parameters have different interpretations under different transformation models.
Under the proportional odds model, the regression parameters pertain to the log hazard ratios
at baseline, and the hazard ratios decrease over time. Therefore, estimates of the regression
parameters tend to have larger magnitudes under the proportional odds model than under the



Table 2. Regression analysis results for the Atherosclerosis Risk in Communities Study
Diabetes Hypertension

(r1, r2) Risk factor Estimate Std error p-value Estimate Std error p-value

(0, 0) Jackson −0·188 0·194 0·332 −0·251 0·139 0·070
Minneapolis suburbs −0·436 0·085 <10−4 −0·129 0·054 0·018
Washington County 0·131 0·081 0·106 0·094 0·055 0·087
Age −0·015 0·006 0·011 0·016 0·004 <10−4

Male −0·082 0·060 0·172 −0·268 0·041 <10−4

Caucasian −0·563 0·192 0·003 −0·569 0·138 <10−4

Body mass index (kg/m2) 0·088 0·006 <10−4 0·021 0·004 <10−4

Derived glucose value (mg/dl) 0·108 0·003 <10−4 0·0003 0·002 0·914
Systolic blood pressure (mmHg) 0·006 0·003 0·070 0·072 0·003 <10−4

Diastolic blood pressure (mmHg) 0·005 0·005 0·271 0·014 0·003 <10−4

(1, 1) Jackson −0·189 0·240 0·432 −0·311 0·163 0·056
Minneapolis suburbs −0·526 0·101 <10−4 −0·164 0·070 0·019
Washington County 0·149 0·097 0·123 0·113 0·072 0·114
Age −0·016 0·007 0·025 0·022 0·005 <10−4

Male −0·099 0·072 0·170 −0·303 0·053 <10−4

Caucasian −0·722 0·237 0·002 −0·773 0·163 <10−4

Body mass index (kg/m2) 0·108 0·008 <10−4 0·030 0·006 <10−4

Derived glucose value (mg/dl) 0·130 0·004 <10−4 −0·0004 0·003 0·906
Systolic blood pressure (mmHg) 0·008 0·004 0·053 0·093 0·003 <10−4

Diastolic blood pressure (mmHg) 0·005 0·006 0·351 0·020 0·004 <10−4

(2·1, 1·3) Jackson −0·201 0·277 0·467 −0·337 0·166 0·043
Minneapolis suburbs −0·607 0·116 <10−4 −0·174 0·075 0·021
Washington County 0·161 0·112 0·150 0·119 0·077 0·126
Age −0·016 0·008 0·044 0·024 0·005 <10−4

Male −0·114 0·084 0·178 −0·312 0·057 <10−4

Caucasian −0·875 0·271 0·001 −0·844 0·168 <10−4

Body mass index (kg/m2) 0·127 0·010 <10−4 0·033 0·006 <10−4

Derived glucose value (mg/dl) 0·150 0·005 <10−4 −0·0006 0·003 0·864
Systolic blood pressure (mmHg) 0·010 0·005 0·036 0·101 0·004 <10−4

Diastolic blood pressure (mmHg) 0·004 0·007 0·496 0·022 0·004 <10−4

proportional hazards model. The variance component σ 2 was estimated at 0·591, 0·646 and
0·758 under the proportional hazards, proportional odds and selected models, respectively, and
the corresponding standard error estimates were 0·057, 0·087 and 0·111. Thus, there is strong
evidence for dependence of diabetes and hypertension.

Figure 2 shows the prediction of development of diabetes and hypertension for a Caucasian
female and anAfrican-American female with all other risk factors equal. The risk of both diseases
is considerably higher for the African-American individual than the Caucasian individual. The
three models yield appreciably different estimates of disease-free probabilities.

7. REMARKS

The proposed EM algorithm, which is used for both parameter estimation and variance esti-
mation, performs remarkably well in practical settings, as demonstrated by the simulation studies
and real-data example. We have not encountered nonconvergence with any simulated or empirical
datasets. The computing time depends on the number of subjects, the number of distinct interval
endpoints and the number of covariates, as well as on the convergence criterion. For the results
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Fig. 2. Estimation of disease-free probabilities for an African-American female and a Caucasian female residing in
Forsyth County, North Carolina, of age 53 years, with a body mass index of 30 kg/m2, glucose level of 97 mg/dl, systolic
blood pressure of 125 mmHg and diastolic blood pressure of 70 mmHg: (a) diabetes; (b) hypertension. In each panel the
upper solid, dashed and dotted curves represent the Caucasian individual under the proportional hazards, proportional
odds and selected models, respectively; the lower solid, dashed and dotted curves pertain to the African-American

individual under the proportional hazards, proportional odds and selected models, respectively.

presented in this paper, the convergence criterion was that the maximal relative change in the
parameter estimates at two successive iterations should be less than 0·0005. With this criterion,
it took less than half a second to analyse one simulated dataset with n = 200. It took about
10 hours to analyse the Atherosclerosis Risk in Communities Study data, which involves 8765
subjects with 10 covariates and 2240 or 2303 distinct interval endpoints for diabetes or hyper-
tension, respectively; the computing time was shortened to about one hour when the distinct
values were reduced to 133 for diabetes and 138 for hypertension by rounding the examination
times to the nearest month. The software implementing the proposed methods is available at
http://dlin.web.unc.edu/software.

We have assumed that the support of the examination times for the kth type of event is
an interval [0, τk ]. We can relax this assumption to let the support consist of intervals or a
finite number of discrete time-points. The asymptotic results continue to hold, although the
consistency for �̂k in Theorem 1 should be stated to hold in the support of the examina-
tion times. In the proofs, the integration over [0, τk ] should be changed to integration over the
support.

The framework presented in this paper can be extended to other types of multivariate data.
In particular, model (1) can be extended to panel count data (Zhang, 2002) by treating � as
the intensity function of a counting process rather than the hazard function of a failure time. In
addition, model (1) can be combined with a generalized linear mixed model that shares the random
effects to jointly model longitudinal and survival data (Henderson et al., 2000; Zeng & Lin, 2007).
There are new theoretical and computational challenges in estimating such multivariate models
with interval-censored data.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes three lemmas as well as three
figures and six tables presenting additional simulation results.

APPENDIX

Proofs of the asymptotic results

In this appendix we prove Theorems 1–3. The proofs make use of three lemmas, which are stated and
proved in the Supplementary Material. It is convenient to use empirical process notation: Pn denotes the
empirical measure for n independent clusters, P is the true probability measure, and Gn = n1/2(Pn − P) is
the empirical process. Let L(θ , A) be the likelihood for a single cluster, such that the loglikelihood is

l(θ , A) = log
∫ {

J∏
j=1

K∏
k=1

Djk(Ujk , b; β, �k)

}
φ(b; �) db

where Djk(Ujk , b; β, �k) = ∑Mjk
l=0 �jkl{Qjk(Ujkl , b; β, �k) − Qjk(Ujk ,l+1, b; β, �k)}, Ujk = (Ujk1,

. . . , Ujk ,Mjk ) and �jkl = I (Ujkl � Tjk < Ujk ,l+1).

Proof of Theorem 1. We first show that lim supn �̂k(τk − ε) < ∞ with probability 1 for any ε > 0 and
k ∈ {1, . . . , K}. Write

m(θ , A) = log
{

L(θ , A) + L(θ0, A0)

2

}
,

where A0 = (�01, . . . , �0K). Since (θ̂ , Â) maximizes the likelihood,

Pnl(θ̂ , Â) � Pnl(θ0, A0) = Pnm(θ0, A0).

We show in Lemma 1 that M = {m(θ , A) : θ ∈ �, A ∈ L} is a Glivenko–Cantelli class, where L is the
set of K-dimensional nondecreasing functions (�1, . . . , �K) with �k(0) = 0. Hence, (Pn − P)m(θ0, A0)

converges to zero almost surely. With probability one,

lim inf
n

Pnl(θ̂ , Â) � lim inf
n

Pnm(θ0, A0) = Pm(θ0, A0) = O(1).



Let M̃ = sup1�k�K supt∈[0,τk ]{supXjk ,β |βTXjk(t)|+ supZjk
|Zjk(t)|}, which is finite under Conditions 1–3. For

any ε > 0,

lim inf
n

Pnl(θ̂ , Â)

� lim sup
n

Pn

{
log

(∫ J∏
j=1

K∏
k=1

{
exp

(
−Gk

[∫ UjkMjk

0
exp{β̂TXjk(s) + bTZjk(s)} d�̂k(s)

])}�jkMjk

× φ{b; �(γ̂ )} db

)}

� lim sup
n

Pn

[
log

{∫ J∏
j=1

K∏
k=1

(
exp

[−Gk

{
exp(−M̃ − M̃‖b‖)�̂k(UjkMjk )

}])�jkMjk

× φ{b; �(γ̂ )} db

}]

� lim sup
n

Pn

[
log

{∫
‖b‖�1

J∏
j=1

K∏
k=1

(
exp

[−Gk

{
exp(−2M̃ )�̂k(UjkMjk )

}])�jkMjk
φ{b; �(γ̂ )} db

}]

+ lim sup
n

Pn

(
log

[∫
‖b‖>1

φ{b; �(γ̂ )} db

])

� − lim sup
n

Pn

[
J∑

j=1

K∑
k=1

�jkMjk Gk

{
exp(−2M̃ )�̂k(UjkMjk )

}]

� − lim sup
n

Pn

[
J∑

j=1

K∑
k=1

�jkMjk I (UjkMjk � τk − ε)Gk

{
exp(−2M̃ )�̂k(τk − ε)

}]
.

Thus,

lim sup
n

Pn

[
J∑

j=1

K∑
k=1

�jkMjk I (UjkMjk � τk − ε)Gk

{
exp(−2M̃ )�̂k(τk − ε)

}] = O(1)

for any ε > 0. Since

Pn

{
J∑

j=1

�jkMjk I (UjkMjk � τk − ε)

}
→ E

{
J∑

j=1

�jkMjk I (UjkMjk � τk − ε)

}
,

which is positive under Condition 5, lim supn Gk{exp(−2M̃ )�̂k(τk −ε)} < ∞. If lim supn �̂k(τk −ε) = ∞,
then Gk{exp(−2M̃ )�̂k(τk −ε)} = ∞ under Condition 6. This is a contradiction. Therefore lim supn �̂k(τk −
ε) < ∞ with probability 1 for any ε > 0 and any k ∈ {1, . . . , K}.

For any k = 1, . . . , K , consider an increasing sequence {τks} (s = 1, 2, . . . ) such that lims→∞ τks = τk .
For any given subsequence of �̂k , Helly’s selection theorem, together with the fact that �̂k(τks) < ∞,
allows us at stage s to choose from the subsequence selected at stage s − 1 a further subsequence which
converges weakly on [0, τks]. We form a final subsequence, still denoted by {�̂k}, whose sth element is
the sth element of the sequence selected at stage s. It is clear that �̂k converges weakly to some function,
say �∗

k , in any compact subset of [0, τk). Since the Lebesgue measure for the point τk is zero, �̂k → �∗
k

for t ∈ [0, τk ] almost everywhere; that is, the Lebesgue measure of the set {t ∈ [0, τk ] : �̂k(t) does not



converge to �∗
k(t)} is zero. Since β̂ and γ̂ are bounded, by choosing a further subsequence, which we still

denote by (�̂1, . . . , �̂K , β̂, γ̂ ), we can assume that �̂k converges to �∗
k almost everywhere and that (β̂, γ̂ )

converges to some constant (β∗, γ ∗).
Write θ∗ = (β∗, γ ∗) and A∗ = (�∗

1, . . . , �∗
K). We wish to show that (θ∗, A∗) = (θ0, A0). By the

concavity of the log function,

Pnm(θ̂ , Â) � 1

2

{
Pn log L(θ̂ , Â) + Pn log L(θ0, A0)

}
� Pnm(θ0, A0).

Thus (Pn − P)m(θ̂ , Â) + Pm(θ̂ , Â) � (Pn − P)m(θ0, A0) + Pm(θ0, A0). Since m(θ̂ , Â) ∈ M, (Pn −
P)m(θ̂ , Â) → 0 almost surely. Also, since | ∏J

j=1

∏K
k=1 Djk(Ujk , b; β, �k)| < 1 for any β ∈ B and A ∈ L

with probability 1, we see that with respect to the probability measure for Ujk (j = 1, . . . , J ; k = 1, . . . , K),

J∏
j=1

K∏
k=1

Djk(Ujk , b; β̂, �̂k) −
J∏

j=1

K∏
k=1

Djk(Ujk , b; β∗, �∗
k) → 0.

By the dominated convergence theorem,

∣∣Pm(θ̂ , Â) − Pm(θ∗, A∗)
∣∣

�
∣∣Pm(θ̂ , Â) − Pm(β̂, γ ∗, �̂)

∣∣ + ∣∣Pm(β̂, γ ∗, �̂) − Pm(θ∗, A∗)
∣∣

= O(1)‖γ̂ − γ ∗‖ + P log

∫ {∏J
j=1

∏K
k=1 Djk(Ujk , b; β̂, �̂k)

}
φ{b; �(γ ∗)} db + L(θ0, A0)∫ {∏J

j=1

∏K
k=1 Djk(Ujk , b; β∗, �∗

k)
}
φ{b; �(γ ∗)} db + L(θ0, A0)

.

Hence |Pm(θ̂ , Â) − Pm(θ∗, A∗)| → 0 almost surely, such that

P log
L(θ∗, A∗) + L(θ0, A0)

2
� Pl(θ0, A0).

By the properties of the Kullback–Leibler information, L(θ0, A0) = L(θ∗, A∗) with probability 1. So

∫ {
J∏

j=1

K∏
k=1

Djk(Ujk , b; β∗, �∗
k)

}
φ{b; �(γ ∗)} db =

∫ {
J∏

j=1

K∏
k=1

Djk(Ujk , b; β0, �0k)

}
φ{b; �(γ0)} db

with probability 1. For any j ∈ {1, . . . , J }, k ∈ {1, . . . , K} and ljk ∈ {0, . . . , Mjk}, we set �jkl = 1 in the
above equation for l = ljk , . . . , Mjk and take the sum of the resulting equations to obtain

∫
Qjk(Ujkljk , b; β∗, �∗

k)

⎧⎨
⎩

J∏
j′=1,j′ |=j

K∏
k ′=1,k ′ |=k

Dj′k ′(Uj′k ′ , b; β∗, �∗
k ′)

⎫⎬
⎭ φ{b; �(γ ∗)} db

=
∫

Qjk(Ujkljk , b; β0, �0k)

⎧⎨
⎩

J∏
j′=1,j′ |=j

K∏
k ′=1,k ′ |=k

Dj′k ′(Uj′k ′ , b; β0, �0k ′)

⎫⎬
⎭ φ{b; �(γ0)} db.



This equality holds for arbitrary ljk . Therefore, for any tjk ∈ [0, τk ],

∫
Qjk(tjk , b; β∗, �∗

k)

⎧⎨
⎩

J∏
j′=1,j′ |=j

K∏
k ′=1,k ′ |=k

Dj′k ′(Uj′k ′ , b; β∗, �∗
k ′)

⎫⎬
⎭ φ{b; �(γ ∗)} db

=
∫

Qjk(tjk , b; β0, �0k)

⎧⎨
⎩

J∏
j′=1,j′ |=j

K∏
k ′=1,k ′ |=k

Dj′k ′(Uj′k ′ , b; β0, �0k ′)

⎫⎬
⎭ φ{b; �(γ0)} db.

For some fixed j ∈ {1, . . . , J } and k ∈ {1, . . . , K}, we repeat this process for (j′, k ′) ∈ Cjk = {1, . . . , j} ×
{1, . . . , k} to obtain

∫ ⎡
⎣

⎧⎨
⎩

j∏
j′=1

k∏
k ′=1

Qj′k ′(tj′k ′ , b; β∗, �∗
k ′)

⎫⎬
⎭

⎧⎨
⎩

∏
(j′ ,k ′)/∈Cjk

Dj′k ′(Uj′k ′ , b; β∗, �∗
k ′)

⎫⎬
⎭

⎤
⎦φ{b; �(γ ∗)} db

=
∫ ⎡

⎣
⎧⎨
⎩

j∏
j′=1

k∏
k ′=1

Qj′k ′(tj′k ′ , b; β0, �0k ′)

⎫⎬
⎭

⎧⎨
⎩

∏
(j′ ,k ′)/∈Cjk

Dj′k ′(Uj′k ′ , b; β0, �0k ′)

⎫⎬
⎭

⎤
⎦φ{b; �(γ0)} db.

Setting �j′k ′l = 1 in the above equation for (j′, k ′) /∈ Cjk and l = 0, . . . , Mj′k ′ and then taking the sum of
the resulting equations gives

∫ ⎧⎨
⎩

j∏
j′=1

k∏
k ′=1

Qj′k ′(tj′k ′ , b; β∗, �∗
k ′)

⎫⎬
⎭ φ{b; �(γ ∗)} db =

∫ ⎧⎨
⎩

j∏
j′=1

k∏
k ′=1

Qj′k ′(tj′k ′ , b; β0, �0k ′)

⎫⎬
⎭ φ{b; �(γ0)} db.

By Condition 7, β∗ = β0, γ ∗ = γ0 and �∗
k(t) = �0k(t) for k ∈ {1, . . . , K} and t ∈ [0, τk ]. Since �0k(t) is

continuous, ‖θ̂ − θ0‖ + ∑K
k=1 supt∈[0,τk ] |�̂k(t) − �0k(t)| → 0 almost surely. �

Proof of Theorem 2. Let Hjkl(t; θ , A) denote

∫
Bjk(t, Ujkl , Ujk ,l+1, b; β, �k)

{∏J
j′=1,j′ |=j

∏K
k ′=1,k ′ |=k Dj′k ′(Uj′k ′ , b; β, �k ′)

}
φ{b; �(γ )} db∫ {∏J

j′=1

∏K
k ′=1 Dj′k ′(Uj′k ′ , b; β, �k ′)

}
φ{b; �(γ )} db

,

where

Bjk(t, u, v, b; β, �k) = exp{βTXjk(t) + bTZjk(t)}

×
(

Qjk(v, b; β, �k)G
′
k

[∫ v

0
exp{βTXjk(s) + bTZjk(s)} d�k(s)

]
I (v � t)

− Qjk(u, b; β, �k)G
′
k

[∫ u

0
exp{βTXjk(s) + bTZjk(s)} d�k(s)

]
I (u � t)

)
.

For a single cluster, the score function for θ is

lθ (θ , A) =
[

lβ(θ , A)

lγ (θ , A)

]
,



where

lβ(θ , A) =
J∑

j=1

K∑
k=0

Mjk∑
l=0

�jkl

∫ τk

0
Hjkl(t; θ , A)Xjk(t) d�k(t),

lγ (θ , A) =
∫ {∏J

j=1

∏K
k=1 Djk(Ujk , b; β, �k)

}
φ′

γ {b; �(γ )} db∫ {∏J
j=1

∏K
k=1 Djk(Ujk , b; β, �k)

}
φ{b; �(γ )} db

.

To obtain the score operator for A, we consider a one-dimensional submodel Aε(h) where h = (h1, . . . , hK)T

is a vector of functions in L2[0, τk ]. Specifically, the submodel specifies that d�k ,ε,hk = (1 + εhk)d�k . The
score function for A along this submodel is

lA(θ , A)(h) =
J∑

j=1

K∑
k=1

Mjk∑
l=0

�jkl

∫ τk

0
Hjkl(t; θ , A)hk(t) d�k(t).

Clearly,

Gn{lθ (θ̂ , Â)} = −n1/2
[
P{lθ (θ̂ , Â)} − P{lθ (θ0, A0)}

]
,

Gn{lA(θ̂ , Â)}(h) = −n1/2
[
P{lA(θ̂ , Â)(h)} − P{lA(θ0, A0)(h)}].

We apply Taylor series expansion at (θ0, A0) to the right-hand sides of the above two equations. In light of
Lemma 3, the second-order terms are bounded by

n1/2E

([
O(1)

J∑
j=1

K∑
k=1

Mjk∑
l=0

{
�̂k(Ujkl) − �0k(Ujkl)

}2
]

+ O(1)‖β̂ − β0‖2 + O(1)‖γ̂ − γ0‖2

)

= n1/2
{
Op(n

−2/3) + Op

(‖β̂ − β0‖2 + ‖γ̂ − γ0‖2
)}

= Op

(
n1/2‖β̂ − β0‖2 + n1/2‖γ̂ − γ0‖2 + n−1/6

)
.

Therefore

Gn{lθ (θ̂ , Â)} = −n1/2
[
P{lθθ (θ̂ − θ0) + lθA(Â − A0)}

]
+ Op

(
n1/2‖β̂ − β0‖2 + n1/2‖γ̂ − γ0‖2 + n−1/6

)
,

Gn{lA(θ̂ , Â)(h)} = −n1/2
[
P{lAθ (h)(θ̂ − θ0) + lAA(h, Â − A0)}

]
+ Op

(
n1/2‖β̂ − β0‖2 + n1/2‖γ̂ − γ0‖2 + n−1/6

)
,

where lθθ is the second derivative of l(θ , A) with respect to θ , lθA(h) is the derivative of lθ along the
submodel dAε,h, lAθ (h) is the derivative of lA(h) with respect to θ , and lAA(h, Â − A0) is the derivative of
lA(h) along the submodel dA0 + ε d(Â − A0). All the derivatives are evaluated at (θ0, A0).

Let h∗ denote the least favourable direction such that

l∗AlA(h∗) = l∗Alθ , (A1)

where l∗A is the adjoint operator of lA. Note that h∗ is a {p + d(d + 1)/2}-dimensional vector of functions
in H = L2[0, τ1] × · · · × L2[0, τK ]. We will show later that h∗ exists and has bounded variation. It then



follows that

E{lAA(h∗, Â − A0)} = −E{lA(h∗)lA(Â − A0)} = −
∫

l∗AlA(h∗) d(Â − A0)

= −
∫

l∗Alθ d(Â − A0) = E{lθA(Â − A0)},

so that

Gn{lθ (θ̂ , Â) − lA(θ̂ , Â)(h∗)} = n1/2E
[{lθ − lA(h∗)}⊗2

]
(θ̂ − θ0)

+ Op

(
n1/2‖β̂ − β0‖2 + n1/2‖γ̂ − γ0‖2 + n−1/6

)
.

In addition, if we can show that lθ (θ̂ , Â) − lA(θ̂ , Â)(h∗) belongs to a Donsker class and that the matrix
E[{lθ − lA(h∗)}⊗2] is invertible, then n1/2(θ̂ − θ0) = Op(1) and

n1/2(θ̂ − θ0) = (E[{lθ − lA(h∗)}⊗2])−1
Gn{lθ − lA(h∗)} + op(1).

The influence function for θ̂ is the efficient influence function, such that n1/2(θ̂ − θ0) converges weakly to
a zero-mean normal random vector whose covariance matrix attains the semiparametric efficiency bound.

It remains to show the existence of h∗, the Donsker property of lθ (θ̂ , Â) − lA(θ̂ , Â)(h∗), and the non-
singularity of the matrix E[{lθ − lA(h∗)}⊗2]. To show that there exists a solution h∗ to (A1), we equip H
with an inner product defined by

〈h(1), h(2)〉 =
K∑

k=1

∫ τk

0
h(1)

k (t)h(2)

k (t) d�0k(t).

For any h(1), h(2) ∈ H,

P
{
lA(h(1))lA(h(2))

} =
K∑

k=1

∫ τk

0
�k(h

(1))(t)h(2)

k (t) d�0k(t),

where

�k(h)(t) =
K∑

k ′=1

∫ τk′

0

J∑
j=1

E

⎡
⎣

⎧⎨
⎩

Mjk∑
l=0

�jklHjkl(s; θ0, A0)

⎫⎬
⎭

×
⎧⎨
⎩

J∑
j′=1

Mj′k′∑
l=0

�j′k ′lHj′k ′l(t; θ0, A0)

⎫⎬
⎭

⎤
⎦ hk ′(s) d�0k ′(s).

We define a seminorm ‖h‖� = 〈�(h), h〉1/2 on the space H. If ‖h‖� = 0 for some h ∈ H, then 0 =
〈�(h), h〉 = P{lA(h)2}. Therefore, with probability 1, lA(h) = 0, i.e.,

∫ J∑
j=1

K∑
k=1

⎡
⎣

⎧⎨
⎩

J∏
j′=1,j′ |=j

K∏
k ′=1,k ′ |=k

Dj′k ′(Uj′k ′ , b; β0, �0k ′)

⎫⎬
⎭

×
Mjk∑
l=0

�jkl

∫ τk

0
Bjk(t, Ujkl , Ujk ,l+1, b; β0, �0k)hk(t) d�0k(t)

⎤
⎦ φ(b; �0) db = 0.



By the arguments in the proof of Lemma 3, hk(t) = 0 for any k = 1, . . . , K and t ∈ [0, τk ]. So ‖ · ‖� is a
norm in H. Clearly, ‖h‖� � c‖h‖ for some constant c. By the bounded inverse theorem in Banach space,
‖h‖� � c′‖h‖ for some constant c′. By the Lax–Milgram theorem (Zeidler, 1995), there exists a solution
to (A1). Differentiation of this integral equation with respect to t yields

g1k(t)h
∗
k(t) +

K∑
k ′=1

{∫ τk′

t
g2k ′(s, t)h∗

k ′(s) ds +
∫ t

0
g3k ′(s, t)h∗

k ′(s) ds

}
= g4k(t),

where g1k(t) > 0 and the gjk (j = 1, 2, 3, 4) are continuously differentiable functions. Thus, h∗
k(·) is

continuously differentiable in [0, τk ] for k ∈ {1, . . . , K}. By the arguments in the proof of Lemma 2,
lθ (θ̂ , Â) − lA(θ̂ , Â)(h∗) belongs to a Donsker class and converges in L2(P)-norm to lθ − lA(h∗).

Finally, we verify that E[{lθ − lA(h∗)}⊗2] is invertible. If the matrix is singular, then there exist vectors
v = (v1, v2) with v1 ∈ R

p and v2 ∈ R
d(d+1)/2 such that vTE[{lθ − lA(h∗)}⊗2]v = 0. It follows that, with

probability 1, the score function along the submodel {θ0 + εv, Aε(vTh∗)} is zero. That is,

∫ J∑
j=1

K∑
k=1

⎧⎨
⎩

J∏
j′=1,j′ |=j

K∏
k ′=1,k ′ |=k

Dj′k ′(Uj′k ′ , b; β0, �0k ′)

⎫⎬
⎭

Mjk∑
l=0

�jkl

∫ τk

0
Bjk(t, Ujkl , Ujk ,l+1, b; β0, �0k)

× {vT
1 Xjk(t) − vTh∗(t)} d�0k(t)φ(b; �0) db −

∫ {
J∏

j=1

K∏
k=1

Djk(Ujk , b; β0, �0k)

}
vT

2φ
′
γ (b; �0) db = 0

with probability 1. For any j ∈ {1, . . . , J }, k ∈ {1, . . . , K} and lj′k ′ ∈ {0, . . . , Mj′k ′ } (j′ = 1, . . . , j; k ′ =
1, . . . , k), we evaluate the above equation at all possible values of �j′k ′l with (j′, k ′) ∈ Cjk = {1, . . . , j} ×
{1, . . . , k} and l = lj′k ′ , . . . , Mj′k ′ and take the sum of the resulting equations. We then consider all possible
values of �j′k ′l with (j′, k ′) /∈ Cjk and l = 0, . . . , Mj′k ′ and take the sum of the resulting equations. This
yields

∫ ⎧⎨
⎩

j∏
j′=1

k∏
k ′=1

Qj′k ′(Uj′k ′lj′k′ , b; β0, �0k ′)

⎫⎬
⎭

×
j∑

j′=1

k∑
k ′=1

G′
k

[∫ Uj′k′lj′k′

0
exp{βT

0 Xj′k ′(t) + bTZj′k ′(t)} d�0k ′(t)

]

×
∫ Uj′k′lj′k′

0
exp{βT

0 Xj′k ′(t) + bTZj′k ′(t)}{vT
1 Xj′k ′(t) − vTh∗

k ′(t)} d�0k ′(t)φ(b; �0) db

−
∫ ⎧⎨

⎩
j∏

j′=1

k∏
k ′=1

Qj′k ′(Uj′k ′lj′k′ , b; β0, �0k ′)

⎫⎬
⎭ vT

2φ
′
γ (b; �0) db = 0.

This equality holds for any Uj′k ′lj′k′ . Hence, for any tj′k ′ ∈ [0, τk ′ ] (j′ = 1, . . . , j; k ′ = 1, . . . , k),

∫ ⎧⎨
⎩

j∏
j′=1

k∏
k ′=1

Qj′k ′(tj′k ′ , b; β0, �0k ′)

⎫⎬
⎭

⎛
⎝ j∑

j′=1

k∑
k ′=1

G′
k

[∫ tj′k′

0
exp{βT

0 Xj′k ′(t) + bTZj′k ′(t)} d�0k ′(t)

]

×
∫ tj′k′

0
exp{βT

0 Xj′k ′(t) + bTZj′k ′(t)}{vT
1 Xj′k ′(t) − vTh∗

k ′(t)} d�0k ′(t) − vT
2φ

′
γ (b; �0)

φ(b; �0)

⎞
⎠

× φ(b; �0) db = 0.



By Condition 8, v2 = 0 and

G′
k

[∫ t

0
exp{βT

0 Xjk(s) + bTZjk(s)} d�0k(s)

]

×
[∫ t

0
exp{βT

0 Xjk(s) + bTZjk(s)}{vT
1 Xjk(s) − vTh∗

k(s)} d�0k(s)

]
= 0

for any j ∈ {1, . . . , J }, k ∈ {1, . . . , K} and t ∈ [0, τk ]. The term G′
k [

∫ t
0 exp{βT

0 Xjk(s) + bTZjk(s)} d�0k(s)] is
bounded away from zero. Therefore

∫ t

0
exp{βT

0 Xjk(s) + bTZjk(s)}{vT
1 Xjk(s) − vTh∗

k(s)} d�0k(s) = 0.

Differentiating both sides with respect to t gives vT
1 Xjk(s) − vTh∗

k(s) = 0. By Condition 2, v1 = 0. Hence,
the matrix E[{lθ − lA(h∗)}⊗2] is invertible. �

Proof of Theorem 3. By the chain rule,

V̂n = Pn

[{
∂

∂θ
l(θ , Âθ )

∣∣∣∣
θ=θ̂

}⊗2
]

= Pn

⎡
⎣{

lθ (θ , Âθ )

∣∣∣
θ=θ̂

+ lA(θ , Âθ )

(
∂Âθ

∂θ

)∣∣∣∣∣
θ=θ̂

}⊗2
⎤
⎦

= Pn

[{
lθ (θ̂ , Â) + lA(θ̂ , Â)(Ȧθ̂ )

}⊗2
]
,

where Ȧθ̂ = ∂Âθ /∂θ |θ=θ̂ . We first prove that the function Ȧθ̂ has bounded total variation, such that
lA(θ̂ , Â)(Ȧθ̂ ) belongs to a Donsker class by Lemma 2. By the definition of Âθ , PnlA(θ , Âθ )(h) = 0 for
any θ ∈ � and h ∈ H. Differentiation with respect to θ at θ = θ̂ yields

PnlAA(θ̂ , Â)(Ȧθ̂ , h) = −PnlAθ (θ̂ , Â)(h)

for any h ∈ H. We consider the linear operator PnlAA(θ̂ , Â) which maps u ∈ H to l∞(H) by the
definition of PnlAA(θ̂ , Â)(u, h). According to Theorem 1, ‖PnlAA(θ̂ , Â) − PlAA(θ0, A0)‖ → 0 in prob-
ability. Since PlAA(θ0, A0) has been shown to be invertible in the proof of Theorem 2, we conclude that
PnlAA(θ̂ , Â) is invertible when n is large enough. Hence, there exists a unique solution in H which solves
PnlAA(θ̂ , Â)(u, h) = −PnlAθ (θ̂ , Â)(h). Therefore Ȧθ̂ is the solution and has bounded total variation.

By the arguments for showing the existence of the least favourable direction h∗ in the proof of Theorem 2,
−PlAA(θ0, A0)(Ȧθ̂ − h∗, Ȧθ̂ − h∗) � c‖Ȧθ̂ − h∗‖2

L2(P) for some positive constant c, so PnlAA(θ̂ , Â)(Ȧθ̂ −
h∗, Ȧθ̂ − h∗) � c‖Ȧθ̂ − h∗‖2

L2(P). Since

PnlAA(θ̂ , Â)(Ȧθ̂ , Ȧθ̂ − h∗) = −PnlθA(θ̂ , Â)(Ȧθ̂ − h∗)

= op(1)‖Ȧθ̂ − h∗‖L2(P) + PlθA(θ0, A0)(Ȧθ̂ − h∗)

and

PnlAA(θ̂ , Â)(h∗, Ȧθ̂ − h∗) = op(1)‖Ȧθ̂ − h∗‖L2(P) + PlAA(θ0, A0)(h
∗, Ȧθ̂ − h∗)

= op(1)‖Ȧθ̂ − h∗‖L2(P) + PlθA(θ0, A0)(Ȧθ̂ − h∗),

we obtain op(1)‖Ȧθ̂ − h∗‖L2(P) � c‖Ȧθ̂ − h∗‖2
L2(P). Consequently, ‖Ȧθ̂ − h∗‖L2(P) = op(1).



By the consistency of (θ̂ , Â) and the Donsker property of lA(θ̂ , Â)(Ȧ ̂
θ ),

V̂n = P

[{
lθ (θ̂ , Â) + lA(θ̂ , Â)(Ȧθ̂ )

}⊗2
]

+ op(1)

= P

[{
lθ (θ0, A0) + lA(θ0, A0)(Ȧθ̂ )

}⊗2
]

+ op(1)

= P

[{
lθ (θ0, A0) + lA(θ0, A0)(h

∗)
}⊗2

]
+ op(1),

where the last equality follows from the convergence of Ȧθ̂ to h∗. Hence, the theorem follows from the fact
that P[{lθ (θ0, A0) + lA(θ0, A0)(h∗)}⊗2] is the efficient information for θ0, which is the inverse covariance
matrix of n1/2(θ̂ − θ0) by Theorem 2. �
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