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Abstract In many clinical studies, patients may experience the same type of event 
of interest repeatedly over time. However, the assessment of treatment effects is often 
complicated by the rescue medication uses due to ethical reasons. For example, in the 
motivating trial in studying the Immune Thrombocytopenia (ITP), when the interest 
lies in evaluating the treatment benefit of investigational product (IP) on reducing 
patient’s repeated bleeding, rescue medication such as platelet transfusions may be 
allowed to raise platelet counts. Both the intention-to-treat analysis and treating the 
intermediate rescue medication as covariate tend to attenuate the treatment benefit, 
and the estimates can be biased if interpreted as causal. In this paper, we propose a 
general causal framework when intermediate rescue medications are informative. We 
adopt the inverse weighted estimation approach to estimate the treatment effect, where 
weights are constructed to reflect time-dependent medication use probabilities. The 
proposed estimators are shown to be asymptotically normal and are demonstrated to 
perform well in small-sample simulation studies. The application to the ITP studies 
reveals a stronger benefit of using IP in reducing bleeding.
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1 Introduction

In many clinical studies, patients may experience the same type of event of interest 
repeatedly over time, which are referred as recurrent events. Examples of recurrent 
events include bleeding in studies of Immune Thrombocytopenia (ITP), transient 
myocardial ischemia in cardiovascular trials, and fractures in studies of osteoporo-
sis. In practice, the investigator is often interested in the effect of covariates on the 
recurrent event. In order to model the effect, various models and methods have been 
proposed. The most popular types of methods include modeling the gap times between 
events [6], modeling the marginal hazards for individual recurrences [11], or modeling 
the intensity functions of the recurrent event process [1].

In our motivating case study of ITP, patients are randomized to receive investi-
gational product (IP), placebo, or standard care. The interest lies in evaluating the 
treatment benefit of IP in reducing recurrent bleedings among ITP patients. However, 
the assessment of treatment effect is complicated by the use of rescue medications 
such as platelet transfusions. When the platelet counts are low for some subject, the 
rescue medication is likely to be applied with an intention of raising platelet counts 
for ethical reasons. Therefore, the rescue medication serves as an additional time-
dependent treatment, which is affected by some time-dependent confounders such as 
platelet counts and previous bleeding and medication history. The primary goal of 
our proposed methodology is to estimate the causal effect of IP on reducing occur-
rence of recurrent bleeding events after balancing rescue medication use and other 
time-dependent confounders.

The marginal structure model (MSM) [3,7,8,10] is a widely used tool for esti-
mating causal effect of a time-dependent exposure in the presence of time-dependent 
confounders. In contrast to the g-estimation in structural nested models (SNMs), MSM 
adopted the inverse-probability-of-treatment weighted (IPTW) estimators, where each 
observation is assigned a weight that is inversely proportional to the probability of 
treatment given the time-dependent confounders and previous treatment. It avoids 
over-adjustment of confounder by separating confounder control from the structural 
model [4]. MSM with survival outcome has been considered in previous literature 
[3,12], and has been applied to various clinical studies [2,5]. However, MSM for 
recurrent survival outcome has not been developed.

In this paper, we develop a general framework to infer the true treatment effect 
by balancing intermediate time-dependent medication. Our method is based on the 
inverse probability weight estimating equations where the time-dependent probability 
is the probability of receiving the rescue medication given the past event history. Due 
to random occurrence of interventions, we adopt a pooled data analysis to estimate 
this probability. The paper is constructed as follows. In Sect. 2 we give a detailed 
description of our method. The asymptotic results are given in Sect. 3. In Sect. 4, we  
conduct extensive simulation studies to examine the small-sample performance of the 
proposed method. In Sect. 5 we apply our method to our motivating study of ITP. A 
discussion follows in Sect. 6.



2 Method

2.1 Models and Assumptions

Let X denote the baseline covariates including treatment status, which is randomized
and independent of the counterfactual outcomes. Let R(t) denote the medication use
process up to time t . We use dN (t; x, r(t)) to denote the counterfactual outcome of
the event process at [t, t + dt) if patients had baseline information X = x and have
medication use process R(t) = r(t). We assume that the counterfactual outcome
follows a proportional intensity model such that

E [dN {t; x, r(t)}] = exp
[
βx + γφ {r(t)}] d�(t), (1)

where φ(·) is a functional of medication use r(t) and d�(t)/dt is the baseline rate
function. The parameter β, which is our point of interest, denotes the causal effect of X
after balancing medication use. Here we assume a proportional intensity model for the
recurrent event since the occurrence rate is of interest. The conditional independence
of recurrent event and censoring time given the covariates is assumed.

In order to estimate the causal effect β, we impose the following assumptions.

(A1) The outcome of the event process at [t, t + dt), N (t), satisfies dN (t) =∑
x,r(t) I {X = x, R(t) = r(t)}dN {t; x, r(t)}.

(A2) The counterfactual outcome {dN (t; x, r(t)) : x, r(t)} is independent of I (R(s)
= r) given X and W (s−) for any s ≤ t , where R(s) denotes the process ofmed-
ication use and W (s−) denotes the observed history up to time s−, including
event history, medication use history, and other biomarker information.

Condition (A1) is the causal consistency assumption normally assumed in causal infer-
ence. Condition (A2) is equivalent to unobserved confounders assumption in causal
inference; that is, whether subjects receive medication or not at time s is independent
of their potential bleeding at any time after s given all available information up to time
s.

2.2 Inference Procedure

Without loss of generality, we assume φ(r(t)) = C(t), which is the cumulative med-
ication use up to time t . We denote p

{
R(t); X, W (t−)

}
as the conditional probability

of the observed medication use up to time t given all available information up to time
t . It is the product of the conditional probability of medication use at time s given all
available information up to time s, for all s ≤ t , i.e.,

p
{

R(t); X, W (t−)
} =
∏

s≤t

P
{

R(s) = r(s)|X, W (s−)
}
.

Furthermore, we use δNk to denote binary outcome of having bleeding at time tk , and
similarly we use δ�k to denote the jump of the baseline rate at tk . Let f (X) be a
function of X . It follows from the derivation in the appendix that



E
[

f (X)

p(R(t);X,W (t−))
{dN (t) − exp{β X + γ C(t)}d�(t)}

∣
∣∣X = x, R(t) = r(t)

]

= 0. (2)

Therefore, we can construct estimating equations for β, γ , and the jump sizes of �

as

n∑

i=1

∫
⎛

⎝
Xi

Ci (t)
I (t ≤ s)

⎞

⎠ Yi (t)�i (t)
[
dNi (t) − exp{β Xi + γ Ci (t)}d�(t)

]
dt = 0 (3)

for s ∈ [0, τ ], where τ denotes the length of the observation period, Yi (t) is the at risk
process for bleeding outcome for subject i , and

�i (t) = f (Xi )

p
{

Ri (t); Xi , W i (t−)
}

denotes the weight to adjust for medication use. When f (Xi ) = 1, the weight
�i (t) is the inverse of propensity score. The estimation of intervention probability
p(Ri (t); Xi , W i (t−)) may be unstable in real settings, so is the corresponding esti-
mating equation. Therefore, we choose f (X) = p(R(t); X) to obtain the stabilized
weight

�i (t) = p
{

Ri (t); Xi
}

p
{

Ri (t); Xi , W i (t−)
}

to improve stability.
To solve Eq. (3), we first obtain the estimator for baseline hazard function as

d�̂(t) =
∑n

i=1 Yi (t)�i (t)dNi (t)∑n
i=1 Yi (t)�i (t) exp{β Xi + γ Ci (t)} .

After plugging it back into (3), we then obtain the following estimating equation for
(β, γ ) as

n∑

i=1

∫
Yi (t)�i (t)

[(
Xi

Ci (t)

)

−
∑n

j=1(X j , C j (t))TY j (t)� j (t) exp{β X j + γ C j (t)}
∑n

i=1 Y j (t)� j (t) exp{β X j + γ C j (t)}

]

dNi (t) = 0.

Finally, to compute the weight �(t), we need to estimate the propensity scores
p{R(t); X} and p{R(t); X, W (t−)}. To this end, we propose models for R(t). We
assume a transition logistic regression model

log

[
p{R(t) = 1|V (t)}

1 − p{R(t) = 1|V (t)}
]

= αT
1 V (t), (4)



where V (t) ≡ (X, W (t−)) includes the baseline covariates and the event and med-
ication use history up to time t−. To estimate p(R(t); X), we propose a working
model,

log

[
p{R(t) = 1|X}

1 − p{R(t) = 1|X}
]

= αT
2 X,

which may not be correct. We estimate the probabilities by p̂{R(t); V (t)} and
p̂{R(t); X}, and estimate �i (t) by

�̂i (t) = p̂(R(t); X)

p̂
{

R(t); X, W (t−)
} .

We then estimate (β, γ ) by solving the equation

n∑

i=1

∫
Yi (t)�̂i (t)

[(
Xi

Ci (t)

)

−
∑n

j=1(X j , C j (t))TY j (t)�̂ j (t) exp{β X j + γ C j (t)}
∑n

j=1 Y j (t)�̂ j (t) exp{β X j + γ C j (t)}

]

dNi (t) = 0 (5)

using Newton–Raphson algorithm.
As a remark, in many applications such as our motivating example, at each time t ,

there may be very few subjects who receive interventions, i.e., R(t) = 1. Therefore,
estimating the intervention probability may not be stable. In our numerical implemen-
tation, we partition the follow-up time into some finite and non-overlapping intervals
and assume R(t) to be constant within each partition. In this way, the estimation of
α = (α1, α2)

T is numerically more reliable.

3 Asymptotic Properties

Denote the true values of regression parameters θ ≡ (β, γ ), �, and α1 as θ0, �0, and
α01, respectively. We denote the corresponding estimators as θ̂ , �̂, and α̂1. Denote α̂2
as the estimator for α2, and α∗

2 as the limit of α̂2 when n tends to infinity. Let NR(t)
be the counting process associated with the medication use, and Z(t) = (X, C(t))T.
To establish the asymptotic properties of θ̂ , we impose the following conditions.

(C.1) With positive probability, V (t)V (t)T is full rank for some t in the support of
NR(t). The medication use process NR(t) is independent of R(t) and N (t)
given covariates.

(C.2) With positive probability, Z(t)Z(t)T is full rank for some t . The function�′
0(t),

the derivative of �0(t), is bounded from zero in [0, τ ].
(C.3) With probability one, V (t) andC(t) have finite total bounded variation in [0, τ ].
(C.4) The censoring time is independent of R(·) and N (·) given covariates.



All these conditions are standard to ensure the identifiability of the parameters for α,
θ and �(·). Under these conditions, the following theorem holds.

Theorem 1 Assume that model (1) and (4) hold. Under conditions (C.1)–(C.4), θ̂ is
consistent, and

√
n(θ̂ − θ0) converges in distribution to a mean zero normal distrib-

ution with covariance matrix � = A−1E{I (O; θ0, α0)
⊗2}A−1, where O denotes the

observation from a single subject, and A and I (O; θ, α) is defined in the appendix.
By Theorem 1, the covariance matrix of the estimator θ̂ can be consistently estimated

as Â−1 Î (O; θ0, α0)
⊗2 Â−1.

4 Simulation Studies

We considered a simulation study with n independent subjects. For subject i =
1, . . . , n, two independent baseline covariates Xi = (Xi1, Xi2) were simulated where
Xi1 is from Bernoulli (0.5) to represent treatment assignment and Xi2 is from Uni-
form [0, 1]. A time-dependent covariate Ui (t), which represents the value of some
auxiliary marker, was generated in (0, 5] as piecewise constant in each time interval
(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]withUi (t) = −Xi1+ Xi2+bi +εik if t ∈ (k −1, k].
Here bi is a subject-specific standard normal random variable and εik is standard nor-
mal random variable independent of bi .

We generated a censoring time from the discrete uniform distribution [1, 5]. To
imitate the reality that bleeding process may depend on patient’s history, we generate
the bleeding event with intensity function

λi
(
t
∣∣Wi,t−

) = exp
{−Xi1 + 0.5Xi2 − 0.8N i (t−) − 0.8Ri (t−) + 0.5Ui (t)

}
,

where N (t) and R(t) denote the total numbers of bleeding event and medication use
up to time t and Wi,t− = (Xi , Zi (t), N (t−), Ri (t−)

)
. Furthermore, we assume that

the medication use can only happen right after the bleeding event with probability

logit
{

P
(
Ri (t) = 1|Wi,t−, dNi (t) = 1

)} = −2 − 0.5Xi1 + 2Xi2 + N i (t)

−Ri (t−) + 2Ui (t).

This corresponds to the common practice such that the rescue medication may be 
immediately used after the bleeding.

We are interested in the true causal effect for treatment, which is the difference 
on the outcome of bleeding event with and without primary treatment given the same 
medication use during the study. However, in the simulation setting, the intensity 
of bleeding event depends on the previous history of bleeding and medication use. 
Moreover, the medication use depends on the primary treatment. Therefore, the true 
causal treatment effect is not analytical available. We use the Monte-Carlo approach to 
calculate the true value of θ = (β, γ ). Specially, we use the same simulation procedure 
to simulate the events with relatively large sample size (n = 20,000) and estimate the 
causal effects using the proposed method. The Monte-Carlo method gives that the true 
value for θ is (−0.204, −0.145, 0.828).



Table 1 Simulation results

n (P) (N1) (N2)

Bias SE SEE CP Bias SE Bias SE

n = 200

β1 −0.013 0.120 0.120 0.955 −0.098 0.101 0.382 0.123

β2 0.023 0.184 0.190 0.947 0.093 0.165 0.186 0.233

γ 0.004 0.097 0.095 0.943 −0.104 0.099 −1.22 0.163

n = 400

β1 −0.008 0.087 0.085 0.947 −0.101 0.074 0.370 0.088

β2 0.008 0.150 0.134 0.938 0.086 0.114 0.171 0.164

γ −0.003 0.066 0.066 0.951 −0.117 0.067 −1.21 0.116

(P) denotes our method. (N1) and (N2) denote the two naive methods. Bias and SE are the mean bias and
standard error of the parameter estimator, respectively, SEE is the mean of the standard error estimator, and
CP is the coverage probability of the 95 % confidence intervals

For each simulated dataset, we apply our method to estimate the causal effect. The
variance of the estimators is then estimated using the expressions after Theorem 1.
For comparison, we also implement two naive estimating methods:

(N1) we set �̂ik = 1 and use the same estimating equation as in Eq. (5).
(N2) we set �̂ik = 1, and estimate effects using the estimating equation

n∑

i=1

∫

s
Yi (s)

⎡

⎣

⎛

⎝
Xi

Ri (s)
N i (s)

⎞

⎠

−

∑n
j=1

⎛

⎝
Xi

R j (s)
N j (s)

⎞

⎠ Y j (s) exp{β X j + γ R j (s) + ηN j (s)}
∑n

j=1 Y j (s) exp{β X j + γ R j (s) + ηN j (s)}

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

dNi (s) = 0.

The naive method (N1) estimates the intent-to-treat effects for the model
adjusting for medication use. The naive method (N2) estimates the conditional
treatment effect after controlling the event history in the regression. Clearly,
neither of these methods estimate the true underlying causal effect.

Simulation studies are conducted with sample sizes n = 200 and 400. Table 1 gives
the simulation results from 1000 replicates. From the table, the two naive methods
which estimate the intent-to-treat effects are highly biased. The result based on naive
methods does not give valid inference on the causal effect of treatment after balancing
medication use. For our approach, the bias is reasonably small in small samples, and
the empirical variance agrees well with the estimated variance.

When the estimated treatment probability is small, the inverse probability weight
can be large to cause numerical instability. One way to improve the computation is



Table 2 Simulation results of
truncation at different quantiles
(n = 400)

Bias and SE are the bias and
standard error of the parameter
estimator, SEE is the mean of
the standard error estimator, and
CP is the coverage probability of
the 95 % confidence interval

Truncation (%) Bias SE SEE CP

90

β1 −0.035 0.077 0.076 0.925

β2 0.022 0.119 0.116 0.938

γ −0.022 0.058 0.062 0.943

95

β1 −0.030 0.077 0.076 0.932

β2 0.022 0.119 0.117 0.939

γ −0.018 0.059 0.062 0.944

to truncate weights. To evaluate the sensitivity to the truncation of inverse probability 
weight, we use the same simulation dataset but truncate weights at different quantiles 
in the estimation. The result of truncation at 90 and 95 % quantile with n = 400 
is shown in Table 2. With 90 % truncation, the inverse probability weight still gives 
reasonable bias and coverage probabilities.

5 Real Data Analysis

The motivation case study is from an integrated database consisting of three phase 3, 
randomized, placebo-controlled clinical trials and one phase 3b, randomized, standard 
of care (SOC) controlled clinical trial. The trials were conducted in multiple centers 
globally from 2005 to 2009. The primary goal is to evaluate the treatment effect of IP 
on subjects with ITP, which is an autoimmune disorder characterized by low platelet 
counts due to increased platelet destruction and suboptimal platelet production, with 
clinical manifestations ranging from being asymptomatic to having serious gastroin-
testinal or intracranial hemorrhage. The occurrence of bleeding events caused by low 
platelet counts is therefore an important clinical endpoint in evaluating treatment effect 
of IP.

A total of 393 subjects were enrolled in the four trials, where 131 subjects received 
placebo or SOC and 262 subjects received IP. We exclude five subjects from the 
analysis because of missing values of baseline covariates, to obtain a total of 388 
subjects. Table 3 shows the distribution of baseline covariates, including age, sex, 
indicator of whether splenectomy performed prior to enrollment, years since ITP 
diagnosis, and baseline platelet counts for different treatment groups. The IP group 
and placebo/SOC group have similar distribution for baseline covariates. During the 
study, platelet counts were measured weekly with IP administration. Table 4 shows 
the distribution of number of bleeding event and rescue medication use for the two 
treatment groups. Compared to the placebo/SOC group, the IP group has less bleeding 
event and less rescue medication use.

To estimate the probability of medication use, the study period is partitioned into 
intervals of 2 weeks for the first 24 weeks and an interval post 24 weeks. This 
ensures at least 10 medication uses in each interval to avoid sparsity. We fit logistic 
regression



Table 3 Descriptive statistics for the baseline covariates

Covariate IP group Placebo/SOC group

N Mean ± SD N Mean ± SD

Age 262 54.4 ± 17.4 126 53.9 ± 18.5

Years since ITP diagnosis 262 6.1 ± 8.4 126 5.9 ± 6.7

Baseline platelet 262 24.2 ± 13.2 126 21.6 ± 13.7

Covariate IP group Placebo/SOC group

N Percentage N Percentage

Gender

Female 154 58.8 80 63.5

Male 108 41.2 46 36.5

Splenectomy performed prior to enrollment

Yes 52 19.8 26 20.6

No 210 80.2 100 79.4

Table 4 Distribution of number
of bleeding event and
medication use

Event IP group Placebo/SOC group
Mean ± SD Mean ± SD

Bleeding 1.73 ± 2.91 1.96 ± 2.74

Rescue medication 1.10 ± 3.31 1.33 ± 3.34

models on medication use to calculate the weights. The parameter estimates for the
medication use model are shown in Table 5, where average previous medication use(
Ri,k−1

)
and average previous bleeding

(
N i,k−1

)
are calculated as the proportion of

previous partitions that adopted medication use or had bleeding event. Clearly, IP has
significantly negative effect on the occurrence of present medication use, while sex,
splenectomy performance, year since ITP diagnosis, baseline platelet, platelet at each
visit, and previous medication use are strong predictors.

The estimated stabilizedweight �̂∗
i (t) ranges from0 to 98.0.We truncate theweight

�̂∗
i (t) to its 90 % upper quantile (0.9946) and estimate the causal treatment effect.

The results are given in Table 6. The estimated bleeding intensity ratio for patients
receiving IP treatment versus placebo or standard care is exp{−0.723} = 0.485, with
a 95 % confidence interval of (0.282, 0.836). This implies that IP has significant effect
on reducing bleeding occurrence. In comparison, we also estimated the unadjusted
treatment effect where the effect of medication is ignored. The unadjusted bleeding
intensity ratio is exp{−0.654} = 0.520, with 95 % confidence interval (0.338, 0.799).
The ignorance of medication use will underestimate the causal treatment effect for IP.

We also examine if different partitions of study period will affect the results. We
partition the study period into intervals of 3weeks and repeat the estimation procedure.
The parameter estimates for the medication use model are different, but the estimated
causal treatment effect does not changemuch [0.485with 95% interval (0.282, 0.836)].



Table 5 Parameter estimates for the medication use model

Parameter Estimate SE p value

Intercept −2.785 0.313 <0.0001

Age 0.003 0.004 0.435

Sex 0.430 0.153 0.005

IP −0.532 0.155 0.0006

Splenectomy performed prior to enrollment 0.818 0.174 <0.0001

Years since ITP diagnosis −0.055 0.013 <0.0001

Baseline platelet −0.033 0.007 <0.0001

Average previous medication
(
Ri,k−1

)
5.157 0.220 <0.0001

Average previous bleeding
(
Ni,k−1

)
0.232 0.242 0.338

Platelet −0.002 0.001 0.008

Standard care and placebo are pooled together

Table 6 Parameter estimates for causal model

Variable Estimate SE p value

Age 0.006 0.007 0.371

Sex 0.315 0.285 0.270

IP −0.723 0.277 0.009

Splenectomy performed prior to enrollment −0.221 0.432 0.608

Years since ITP diagnosis 0.005 0.027 0.841

Baseline platelet −0.003 0.010 0.750

Past 8-week medication use 0.027 0.014 0.048

Standard care and placebo are pooled together

We estimated the baseline intensity function for recurrent bleeding event. Figure 
1 shows the estimated intensity function for a 54-year-old male in standard care or 
placebo group with baseline platelet count 24, no splenectomy performed, 6 years 
since ITP diagnosis, while receiving no rescue medication in the entire study period.

6 Discussion

We have proposed an inverse probability weighted estimating equations to estimate 
treatment causal effects when there are intermediate medication use during the trial. 
The proposed method works well in small-sample studies and the proposed estimators 
have been shown to be consistent and asymptotically normal. The application to the 
ITP study reveals a significant treatment effect.

The causal model in (1) aims for the treatment effect after balancing the medication 
use trajectory, i.e., what is the treatment effect if patients receive the same medication 
use. This model can be reduced to the model without balancing the medication use. 
Then the causal effect is the average causal effects of the treatment. Other conventional



0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Study Days

C
um

ul
at

iv
e 

In
te

ns
ity

Fig. 1 Estimated intensity function

ways to obtain valid estimates for causal treatment effect with adjusted medication
use include censoring the data at the first rescue medicine use, or incorporating the
rescue medicine use into the endpoint definition. The former introduces informative
censoring at the first rescuemedication use, such that themedication use process needs
to be modeled, while the latter involves more complicated causal effect interpretation.

In our estimation, we partition the follow-up period into a finite number of time
interval and the propensity score is estimated as piecewise constant at each partition.
A more smooth way is to use local smooth estimation, where the propensity score is
estimated locally at time t by pooling observed data around time t and the pooling
is governed using some kernel weights. Since the kernel smoothing methods requires
frequent medication use, which is not the case in our real example, the smoothing
method is not adopted.

The proposed method can be generalized to analyzing multiple types of recurrent
events. Specifically, for estimating Eq. (5) it will be modified to

n∑

i=1

∫
Yi (t)�̂i (t)

[(
Xi

Ci (t)

)

−
∑n

j=1(X j , C j (t))TY j (t)�̂ j (t) exp{βl X j + γlC j (t)}
∑n

j=1 Y j (t)�̂ j (t) exp{βl X j + γlC j (t)}

]

dNil(t) = 0,

where Nil(t) is the event process for the lth type event for subject i and βl are the cor-
responding regression coefficients. This is similar to marginal models for multivariate



survivals. We note that W (t−) can include the event history from all types of events
prior to time t .

7 Derivation of Equation (2)

For discrete case, we have the conditional probability of the observed medication use
given previous information,

p(r(tk); X, W (tk−))=
k∏

j=1

P(R j = r j |X, R0=r0, . . . , R j−1=r j−1, W̃0, . . . , W̃ j−1),

which is the product of the transition probabilities. From condition (A1),

E

[
f (x) {δNk − exp(β X + γ Rk)δ�k(t)}

∏k
j=1 P(R j = r j |X, R0 = r0, . . . , R j−1 = r j−1, W̃0, . . . , W̃ j−1)

∣∣∣X = x, R0 = r0, . . . , Rk = rk

]

= E

(
f (x)

[
δNk(x, r0, . . . , rk) − exp{βx + γ r(t)}δ�k

]

∏k
j=1 P(R j = r j |X, R0 = r0, . . . , R j−1 = r j−1, W̃0, . . . , W̃ j−1)

I (R0 = r0, . . . , Rk = rk)

∣∣∣∣X = x

)

×P(R0 = r0, . . . , Rk = rk |X = x)−1,

where δNk(x, r0, . . . , rk) is the counterfactual outcome. Now, according to condition
(A2), if we denote δFk = δNk(x, r0, . . . , rk) − exp{βx + γ r(t)}δ�k , then we have

E

{
f (x)I (R0 = r0, . . . , Rk = rk)δFk

∏k
j=1 P(R j = r j |X, R0 = r0, . . . , R j−1 = r j−1, W̃0, . . . , W̃ j−1)

∣∣
∣∣∣

X = x

}

= E

[
f (x)I (R0 = r0, . . . , Rk−1 = rk−1)

∏k−1
j=1 P(R j = r j |X, R0 = r0, . . . , R j−1 = r j−1, W̃0, . . . , W̃k−1)

× E

{
I (Rk = rk)δFk

P(Rk = rk |X, R0 = r0, . . . , Rk−1 = rk−1, W̃0, . . . , W̃k−1)∣∣
∣X, R0 = r0, . . . , Rk−1 = rk−1, W̃0, . . . , W̃k−1

} ∣∣∣X = x
]

= E

[
f (x)I (R0 = r0, . . . , Rk−1 = rk−1)

∏k−1
j=1 P(R j = r j |X, R0 = r0, . . . , R j−1 = r j−1, W̃0, . . . , W̃k−1)

×E

{
I (Rk = rk)

W̃0, . . . , W̃k−1)
P(Rk = rk |X, R0 = r0, . . . ,  Rk−1 = rk−1, 



∣∣∣∣X, R0 = r0, . . . , Rk−1 = rk−1, W̃0, . . . , W̃k−1

}

× E
{
δFk

∣∣∣X, R0 = r0, . . . , Rk−1 = rk−1, W̃0, . . . , W̃k−1

} ∣∣∣∣X = x

]

= E

{
f (x)I (R0 = r0, . . . , Rk−1 = rk−1)δFk

∏k−1
j=1 P(R j = r j |X, R0 = r0, . . . , R j−1 = r j−1, W̃0, . . . , W̃k−1)

∣
∣∣∣∣

X = x

}

.

We repeat this derivation from k − 1 to 0 to obtain

E

(
f (x)I (R0 = r0, . . . , Rk = rk)

∏k
j=1 P(R j = r j |X, R0 = r0, . . . , R j−1 = r j−1, W̃0, . . . , W̃ j−1)

× [δNk(x, r0, . . . , rk) − exp{β X + γ r(t)}δ�k
]
∣
∣
∣
∣X = x

)

= f (x)E
( [

δNk(x, r0, . . . , rk) − exp{β X + γ r(t)}δ�k
]∣∣ X = x

)

= f (x)E
[
δNk(x, r0, . . . , rk) − exp{β X + γ r(t)}δ�k

]

= 0.

We conclude that

E

[
f (x) {δNk − exp(β X + γ Rk)δ�k(t)}

∏k
j=1 P(R j = r j |X, R0 = r0, . . . , R j−1 = r j−1, W̃0, . . . , W̃ j−1)

∣∣∣∣X = x, R0 = r0, . . . , Rk = rk

]
= 0.

Consequently, Eq. (2) holds.

8 Proof of Theorem 1

Let Pn denote the empirical measure, P denote the expectation, andGn = √
n(Pn −P)

denote the empirical process. We first derive the asymptotic distribution of �̂. We
define α0 = (α01, α

∗
2)

T. The estimator α̂ ≡ (̂α1, α̂2)
T solves the estimating equations

n∑

i=1

∫
Vi (t)

{

Ri (t) − eαT
1 Vi (t)

1 + eαT
1 Vi (t)

}

dNR(t) = 0

and

n∑

i=1

∫
X

{

Ri (t) − eαT
2 X

1 + eαT
2 X

}

dNR(t) = 0.



It holds from (C.1) that

√
n(̂α − α0) = Gn Sα + op(1),

where Sα ≡ (Sα,1, Sα,2) is the influence function for α̂, with

Sα,1 =
⎛

⎜
⎝E

⎡

⎢
⎣
∫

V (t)V (t)T
eαT

01V (t)

{
1 + eαT

01V (t)
}2 dNR(t)

⎤

⎥
⎦

⎞

⎟
⎠

−1

×
[
∫

V (t)

{

R(t) − eαT
01V (t)

1 + eαT
01V (t)

}

dNR(t)

]

and

Sα,2 =
⎛

⎜
⎝E

⎡

⎢
⎣
∫

X XT eαT
02X

{
1 + eαT

02X
}2 dNR(t)

⎤

⎥
⎦

⎞

⎟
⎠

−1 [∫
X

{

R(t) − eαT
02X

1 + eαT
02X

}

dNR(t)

]

.

By definition, we rewrite the inverted weight �̂(t) = �(t, R, V ; α̂), with

�(t, R, V ;α)

= exp

(∫ t

0

[
R(s)

{
αT
2 X − αT

1 V (s)
}+log

{
1 + eαT

1 V (s)
}

− log
(
1+eαT

2 X
)]

dNR(s)

)
.

Therefore,

√
n {�(t, r, v; α̂) − �(t, r, v;α0)} = ∂�(t, r, v;α0)

∂α
Gn Sα + op(1), (6)

with

∂�(t, r, v;α)

∂α
= �(t, r, v;α)

⎛

⎜⎜⎜
⎜
⎝

∫ t
0 V (s)

{
eαT

1 V (s)

1 + eαT
1 V (s)

− R(s)

}

dNR(s)

∫ t
0 X

{

R(s) − eαT
2 X

1 + eαT
2 X

}

dNR(s)

⎞

⎟⎟⎟
⎟
⎠

,

where op(1) is uniformly in r , v, and t ∈ [0, τ ].
To derive the asymptotic distribution for θ̂ , for convenience, we define

gn(t;α, θ) = P̃n Z̃(t)Ỹ (t)�(t, R̃, Ṽ ;α) exp{θT Z̃(t)}
P̃nỸ (t)�(t, R̃, Ṽ ;α) exp{θT Z̃(t)}



and

g(t;α, θ) = P̃ Z̃(t)Ỹ (t)�(t, R̃, Ṽ ;α) exp{θT Z̃(t)}
P̃Ỹ (t)�(t, R̃, Ṽ ;α) exp{θT Z̃(t)} ,

where P̃n is the empirical expectation with respect to (Ṽ (t), Ỹ (t)). Equation (5) can
be written as

Pn

[∫
Y (t)�(t, R, V ; α̂)

{
Z(t) − gn(t; α̂, θ̂ )

} {
dN (t) − eθ̂TZ(t)d�0(t)

}]
= 0,

Note that the left-hand side converges uniformly in θ in any compact set to

P
[∫

Y (t)�(t, R, V ;α0) {Z(t) − g(t;α0, θ)}
{
dN (t) − eθTZ(t)d�0(t)

}]
,

which has a unique solution at θ0. The consistency of θ̂ thus follows from Theorem
5.9 in [9].

We then obtain

Gn

[∫
Y (t)�(t, R, V ; α̂)

{
Z(t) − gn(t; α̂, θ̂ )

} {
dN (t) − eθ̂TZ(t)d�0(t)

}]

= −√
nP
[∫

Y (t)�(t, R, V ; α̂)
{

Z(t) − gn(t; α̂, θ̂ )
} {

dN (t) − eθ̂TZ(t)d�0(t)
}]

= −∇θP
[∫

Y (t)�(t, R, V ; α̂) {Z(t)−gn(t; α̂, θ)}
{
dN (t)−eθTZ(t)d�0(t)

}]∣∣∣∣
θ=θ∗

×√
n(θ̂ − θ0)

−√
nP
[∫

Y (t)�(t, R, V ; α̂) {Z(t) − gn(t; α̂, θ0)}
{
dN (t) − eθT0 Z(t)d�0(t)

}]
,

(7)

where θ∗ is some value between θ0 and θ̂ . Since

√
ngn(t; α̂, θ0) = √

ng(t;α0, θ0) + G̃n S̃(t) + op(1)

for some random variable S̃(t), we have that the last term of the right-hand side in (7)
is equal to

√
nP
[∫

Y (t)�(t, R, V ; α̂) {Z(t) − g(t;α0, θ0)}
{
dN (t) − eθT0 Z(t)d�0(t)

}]

−G̃n

(∫
S̃(t)E

[
Y (t)�(t)

{
dN (t) − eθT0 Z(t)d�0(t)

}])
+ op(1).

On the other hand,

E
[
Y (t)�(t)

{
dN (t) − eθT0 Z(t)d�0(t)

}]
= 0



following from the property of the causal effect θ0 shown in Sect. 2.1. Thus, we have

√
nP
[∫

Y (t)�(t, R, V ; α̂) {Z(t) − gn(t; α̂, θ0)}
{
dN (t) − eθT0 Z(t)d�0(t)

}]

= √
nP
[∫

Y (t)�(t, R, V ; α̂) {Z(t) − g(t;α0, θ0)}
{
dN (t) − eθT0 Z(t)d�0(t)

}]

+ op(1)

= √
nP
[∫

Y (t)(�(t, R, V ; α̂) − �(t, R, W ;α0)) {Z(t) − g(t;α0, θ0)}

×
{
dN (t) − eθT0 Z(t)d�0(t)

}]
+ op(1)

= P
[∫

Y (t)
∂�(t, R, V ;α0)

∂α
{Z(t) − g(t;α0, θ0)}

{
dN (t) − eθT0 Z(t)d�0(t)

}]

Gn Sα + op(1),

where the last step follows from (6).
Combining all the results, we obtain

Gn

[∫
Y (t)�(t, R, V ; α̂)

{
Z(t) − gn(t; α̂, θ̂ )

} {
dN (t) − eθ̂TZ(t)d�0(t)

}]

= −∇θP
[∫

Y (t)�(t, R, V ; α̂)
{

Z(t) − gn(t; α̂, θ∗)
} {

dN (t) − eθ∗TZ(t)d�0(t)
}]

√
n(θ̂ − θ0)

−P
[∫

Y (t)
∂�(t, R, V ;α0)

∂α
{Z(t) − g(t;α0, θ0)}

{
dN (t) − eθT0 Z(t)d�0(t)

}]

Gn Sα + op(1).

Using condition (C.3), it is easy to verify the Donsker property of the class of the
functions on the left-hand side, which takes the form of

∫
Y (t)�(t, R, V ;α){Z(t) − b(t)}

{
dN (t) − eθTZ(t)d�0(t)

}
,

where b(t) has a finite total variation in [0, τ ], θ is in a neighborhood of θ0, and
�(t, R, V ;α) is Lipschitz continuous in α. Therefore, we conclude

A
√

n(θ̂ − θ0) = Gn I (O; θ0,�0, α0) + op(1),

where

A = P
[∫

Y (t)�(t, R, V ;α0) {Z(t) − g(t;α0, θ0)}⊗2 eθT0 Z(t)d�0(t)
]



and

I (O; θ, α) =
∫

Y (t)�(t, R, V ;α0) {Z(t) − g(t;α0, θ0)}
{
dN (t) − eθTZ(t)d�0(t)

}

+ P̃
[∫

Ỹ (t)
∂�(t, R̃, Ṽ ;α0)

∂α

{
Z̃(t) − g(t;α0, θ0)

}

{
dÑ (t) − eθT0 Z̃(t)d�0(t)

}]
Sα.

By condition (C.2), A is non-singular. Therefore, we conclude that
√

n(θ̂ − θ0)

converges in distribution to a normal random variable with mean zero and covariance
matrix A−1E{I (O; θ0,�0, α0)

⊗2}A−1. Finally, to estimate the asymptotic variance,
we replace P or P̃ by the corresponding empirical averages and all the parameters by
their estimators in A and I (O; θ0,�0, α0) to obtain Â and Î (O; θ̂ , �̂, α̂). Then, a
consistent variance estimator is given by

Â−1

{

n−1
n∑

i=1

Î (Oi ; θ̂ , �̂, α̂)⊗2

}

Â−1.
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