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ABSTRACT
Structural equation modeling is commonly used to capture complex structures of relationships among
multiple variables, both latent and observed. We propose a general class of structural equation models
with a semiparametric component for potentially censored survival times. We consider nonparametric
maximum likelihood estimation and devise a combined expectation-maximization and Newton-Raphson
algorithm for its implementation. We establish conditions for model identifiability and prove the consis-
tency, asymptotic normality, and semiparametric efficiency of the estimators. Finally, we demonstrate the
satisfactory performance of the proposed methods through simulation studies and provide an application
to a motivating cancer study that contains a variety of genomic variables. Supplementary materials for this
article are available online.

1. Introduction

Structural equation modeling (SEM) is a very general and
powerful approach to capture complex relationships among
multiple factors, both observed and latent (Bollen 1989). A typi-
cal SEM framework consists of a structural model that connects
latent variables and a measurement model that relates latent
variables to observed variables. SEM is extremely popular in the
social sciences and psychology, where unmeasured quantities
and psychological constructs, such as human intelligence and
creativity, can be related to and investigated through observed
data. The text of Bollen (1989) has been cited more than 20,000
times. Recently, SEM has gained popularity in medical and
public health research (Dahly, Adair, and Bollen 2009; Naliboff
et al. 2012).

Our interest in SEM was motivated by its potential appli-
cation to integrative analysis in genomic studies. Recent
technological advances have made it possible to collect different
types of genomic data, including DNA copy number, SNP geno-
type, DNA methylation level, and expression levels of mRNA,
microRNA, and protein, on a large number of subjects. There
is a growing interest in integrating these genomic platforms
so as to understand their biological relationships and predict
disease progression and death, which are considered potentially
censored survival times (The Cancer Genome Atlas (TCGA);
https://tcga-data.nci.nih.gov/tcga/).

SEM with discrete survival times has been studied by
Rabe-Hesketh, Yang, and Pickles (2001), Rabe-Hesketh, Skro-
ndal, and Pickles (2004), Muthén and Masyn (2005), and
Moustaki and Steele (2005). For continuous survival time,
Larsen (2004, 2005) adopted the proportional hazards model
(Cox 1972) with a single latent variable to capture the associ-
ation between the survival time and other observed variables;
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Asparouhov, Masyn, and Muthén (2006) considered a more
general formulation of the association among the latent and
observed variables. SEM with the Cox proportional haz-
ards model for the survival component has been adopted for
more complex settings, such as multivariate survival times
(Stoolmiller and Snyder 2006) and competing risks (Stoolmiller
and Snyder 2014). A popular software program,Mplus (Muthén
and Muthén 1998–2015), has implemented SEM with survival
data under the proportional hazards model. The estimation
of the nonparametric baseline hazard function is based on
piecewise-constant splines, and no theoretical justification is
available. In fact, the standard error estimator for the baseline
hazard function is incorrect.

In this article, we propose a general SEM framework that
includes a semiparametric component of the measurement
model for potentially censored survival times. Specifically,
we formulate the effects of latent and observed covariates
on survival times through a broad class of semiparametric
transformation models that includes the proportional hazards
model as a special case. The observed covariates may include
manifest variables that depend on latent variables. We study
nonparametric maximum likelihood estimation (NPMLE),
under which the cumulative hazard functions are estimated by
step functions with jumps at observed survival times.

The proposed SEM is reminiscent of joint modeling for sur-
vival and longitudinal data (Henderson, Diggle, and Dobson
2000; Tsiatis and Davidian 2004). With the latter, the observed
longitudinal variables are considered error-prone measure-
ments of some underlying latent variables, but the measure-
ments themselves are not causal determinants of the survival
time. By contrast, our SEM framework allows latent variables
to have direct effects on survival times, as well as indirect effects
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through other manifest variables. In addition, our framework
accommodates much more complex relationships among latent
variables.

A major challenge in our theoretical development is model
identifiability. Even for an SEM with normally distributed
variables, no single set of conditions exists that is both nec-
essary and sufficient for model identifiability. Methods that
deal with special cases of the normal SEM were proposed by
Bollen (1989), Reilly and O’Brien (1996), Vicard (2000), and
Bollen and Davis (2009), among others. Most of the methods
are based on the fact that identifiability can be established
by solving the equations relating the first two model-implied
moments to the sample moments. This approach is not directly
applicable to models with nonparametric components, as
infinite-dimensional parameters cannot be identified through
a finite number of equations. Because the proportional hazards
structure results in a likelihood function that takes the form of
a Laplace transform, however, we are able to develop sufficient
conditions under which the identifiability of a semiparamet-
ric SEM can be established by inspecting simpler parametric
models.

Another theoretical challenge is the invertibility of the infor-
mation operator. For the information operator to be invertible,
we require that the score statistic along any nontrivial submodel
is nonzero. As in the case of model identifiability, general
conditions for the invertibility of the information operator
for semiparametric models do not exist. In the existing work
involving latent variables for survival times (Kosorok, Lee, and
Fine 2004; Zeng and Lin 2010), verifying the invertibility of the
information operator involves inspecting the local behavior of
the score statistic around the zero survival time. This approach
does not make full use of the variability of the score statistic
contributed by the survival times and cannot deal with the
proposed general modeling framework. We show that the
invertibility of the information operator can be verified by
inspecting the parametric components of the SEM under some
mild conditions in the survival model.

The rest of this article is structured as follows. In Section 2,
we formulate the model and describe our approach to establish
model identifiability. In Section 3, we discuss the numeri-
cal implementation of the NPMLE. In Section 4, we present
theoretical results for model identifiability and describe the
asymptotic properties of the estimators. In Section 5, we report
the results from simulation studies. In Section 6, we provide
an application to the TCGA data, which motivated this work.
We make some concluding remarks in Section 7 and relegate
theoretical proofs to the Appendix.

2. Basic Framework

2.1. Model and Likelihood

Let η denote a q-vector of latent variables,Y denote an r-vector
of uncensoredmanifest variables, (T1, . . . ,TK ) denoteK poten-
tially censored survival times, andW and Z denote two vectors
of observed covariates. Without loss of generality, assume that
the support of the covariates includes zero. We specify the con-
ditional distributions of η givenZ,Y givenZ and η, andTk given

W , Z,Y , and η as follows:

η | Z ∼ Fη(· | Z; ν), (1)
Y | (Z, η) ∼ FY (· | Z, η;ψ), (2)
�Tk (t | W ,Z,Y , η)

= Gk
{
�k (t ) eW

Tϑk+ZTβk+YTαk+ηTφk}, k = 1, . . . ,K, (3)

where Fη(· | Z, ν) denotes a q-variate normal distribution func-
tion indexed by a parameter vector ν, FY (· | Z, η;ψ) denotes an
r-variate parametric distribution function indexed by a param-
eter vector ψ, �Tk is the cumulative hazard function of Tk
given (W ,Z,Y , η), Gk is a known increasing function, �k is
an unspecified positive increasing functionwith�k(0) = 0, and
(ϑk,βk,αk,φk) are unknown regression parameters.

Model (1) is the structural model of the latent variables.
Model (2) is the measurement model of Y . We assume that
Y and η are independent of W given Z. Models (1) and (2)
represent the existing SEM framework with Y not restricted to
be normally distributed. Equation (3) includes the proportional
hazards and proportional odds models as special cases with
the choices of Gk(x) = x and Gk(x) = log(1 + x), respectively.
The proportional hazards model has been considered in the
literature.

The survival time Tk is subject to right censoring by Ck. It
is assumed that (C1, . . . ,CK ) are independent of (T1, . . . ,TK )
and η conditional on Y , Z, and W . Define T̃k = min(Tk,Ck)

and �k = I(Tk ≤ Ck), where I(·) is the indicator function.
For a sample of size n, the observed data consist of Oi ≡
(T̃1i, . . . T̃Ki,�1i, . . . ,�Ki,Y i,Zi,W i) (i = 1, . . . , n).

Let θ denote the collection of all Euclidean parameters, and
write A = (�1, . . . , �K ). The likelihood function for θ and A
is proportional to

Ln (θ,A) =
n∏

i=1

∫ K∏
k=1

[
λk(T̃ki)eW

T
i ϑk+ZT

i βk+YT
i αk+ηTφk

×G′
k
{
�k(T̃ki)eW

T
i ϑk+ZT

i βk+YT
i αk+ηTφk}]�ki

× exp
[− Gk

{
�k(T̃ki)eW

T
i ϑk+ZT

i βk+YT
i αk+ηTφk}]

× fY (Y i | Zi, η;ψ) fη(η | Zi; ν) dη, (4)

where f ′(x) = d f (x)/dx for any function f , λk = �′
k, fY = F ′

Y ,
and fη = F ′

η. The NPMLE is defined to be the maximizer of
Ln(θ,A), in which �k is treated as a step function with jumps
at T̃ki with�ki = 1 (i = 1, . . . , n).

2.2. Model Identifiability

We describe our approach to establish model identifiability in
this section anddefer the technical details to Section 4. The iden-
tifiability results can be summarized by two simple rules. Sup-
pose that we have arranged the survival times such that for some
0 ≤ K1 ≤ min(q,K), each of (T1, . . . ,TK1 ) regresses on and
only on one latent variable and a set of covariates that are inde-
pendent of the latent variables. (We allow K1 = 0 if no survival
time satisfies the given conditions, in which case Rule 1 below is
vacuous.)We call an observed variable X an indicator of a latent
variable η if X follows a generalized linear model with η as a
covariate and is independent of all other manifest variables and
survival times conditional on η. We have the following rules:



Figure . The first example of SEM to illustrate the identifiability rules. The SEM con-
sists of one latent variable, one survival time, and three conditionally independent
normal manifest variables.

1. The latent variables attached to (T1, . . . ,TK1 ) can be
treated as observed if each of (T1, . . . ,TK1 ) depends on
at least one observed covariate.

2. If each latent variable has a separate continuous indica-
tor and the distributions of the latent variables and the
indicators are identifiable, then the whole model is iden-
tifiable.

To illustrate the usefulness of the two identifiability rules, we
present two examples.

Example 1. Consider the model depicted in Figure 1. In the
model, Y1, Y2, and Y3 are conditionally independent normal
manifest variables of η, and T is a survival time that follows the
proportional hazards model with covariate η. Assume that the
regression parameter of Y1 on η is fixed to be one, E(η) = 0,
and the regression parameters of η in the models of Y2 and Y3
are nonzero.

The abovemodel is similar to the jointmodel for survival and
longitudinal variables. By Bollen (1989)’s three-indicator rule,
the model of (Y1,Y2,Y3, η) is identifiable. With Y1 serving as
an indicator of η, Rule 2 implies that the remaining parame-
ters are identifiable. Note that Rule 1 is not applicable in this
case because T does not depend on an independent covariate.
In fact, themodel is not identifiable without (Y1,Y2,Y3) because
the scale of the baseline hazard function and the variance of η
cannot be separated.

Example 2. Consider themodel depicted on the left-hand side of
Figure 2. In themodel,Y1,Y2, andY3 are conditionally indepen-
dent normal manifest variables of η2, T1 is a survival time that
follows the proportional hazards model with covariatesW and

η1, and T2 is a survival time that follows the proportional haz-
ards model with covariates η1 and η2. Assume thatW and Z are
nonconstant and linearly independent, the regression parame-
ters for the latent variables in themodels ofT1 andY1 are fixed to
be one, E(η1) = E(η2) = 0, and the regression parameters ofW
in themodel ofT1 and η2 in themodels ofY2 andY3 are nonzero.

First, we use T1 to help identify the latent variable distribu-
tions. By Rule 1, η1 can be treated as observed when identifying
the model. The problem thus reduces to identifying the model
shown on the right-hand side of Figure 2. The model can then
be shown identifiable by the arguments used in Example 1.

3. Computation of the NPMLE

In this section, we use Z to denote bothW and Z with βk (k =
1, . . . ,K) as the corresponding vector of regression parame-
ters. Application of a transformation Gk can be viewed as inclu-
sion of an extra latent variable log sk in the regression equation,
where sk is a random variable with density gk such that Gk(x) =
− log

∫∞
0 e−xt gk(t ) dt . We adopt the expectation-maximization

(EM) algorithm (Dempster, Laird, and Rubin 1977) by treating
the latent variables, including those introduced by the trans-
formations, as missing data. We perform occasional Newton-
Raphson steps to speed up the convergence.

In the combined algorithm, either an EM step or a Newton-
Raphson step is performed at each iteration. To avoid confusion,
we call the latter an outer Newton-Raphson step. For an EM
step, note that the conditional expectation for any function ϕ of
(ηi, si) ≡ (ηi, s1i, . . . , sKi) given the observed data is

E{ϕ(ηi, si) | Oi}

= C−1
∫ ∫

ϕ (η, s)
K∏

k=1

([
�k{T̃ki}skeZT

i βk+YT
i αk+ηTφk

]�ki

× exp
(

−
∫ T̃ki

0
skeZ

T
i βk+YT

i αk+ηTφk d�k (t )
))

× fY (Y i | Zi, η;ψ) fη(η | Zi; ν)g(s) dη ds1 · · · dsK,

where �k{t} is the jump size of the step function �k at t ,
s = (s1, . . . , sK ), g(s) =∏K

k=1 gk(sk), and C equals the above
integral evaluated at ϕ(·, ·) = 1. We use the Gauss-Hermite
quadrature to approximate the integrals. To reduce the number
of abscissas, we adopt an adaptive quadrature approach (Liu

Figure . The second example of SEM to illustrate the identifiability rules. The left panel is an SEM that consists of two latent variables, two observed covariates, two survival
times, and three conditionally independent normal manifest variables. The right panel is an intermediate step in identifying the SEM on the left.



and Pierce 1994). Denote the approximation of the condi-
tional expectation as Ê(·). After taking expectation on the
functions involved, we update (βk,αk,φk) by the one-step
Newton-Raphson algorithm on

n∑
i=1

log

⎡
⎣ Ê

{
ski exp

(
ZT
i βk +Y T

i αk + ηTi φk
)}

∑n
j=1 I(T̃k j ≥ T̃ki)Ê

{
sk j exp

(
ZT

j βk +Y T
j αk + ηTj φk

)}
⎤
⎦
�ki

.

Then, we update the cumulative baseline hazard function by

�̂k{Tki} = �ki∑n
j=1 I(T̃k j ≥ T̃ki)Ê

{
sk j exp

(
ZT

j βk +YT
j αk + ηTj φk

)} ,

where (βk,αk,φk) are evaluated at the current estimates. In
addition, we update the remaining parameters at the maximum
of

n∑
i=1

Ê[log{ fY (Y i | Zi, ηi;ψ) fη(ηi | Zi; ν)}].

If a closed-form solution is not available, then we apply the
one-step Newton-Raphson algorithm to the above expression
instead. The above algorithm can be generalized to the case
where components of Y i that do not appear in the model of
the survival times are missing at random for some subjects. In
this case, we simply drop the corresponding fY terms in the
evaluation of Ê and the complete-data log-likelihood.

For an outer Newton-Raphson step, we apply the one-
step Newton-Raphson algorithm directly to the logarithm of
Ln(θ,A) given in (4) using a similar adaptive quadrature
approximation. At the current estimates, the first derivative of
log Ln(θ,A), that is, the score statistic, is the same as the first
derivative of the expected complete-data log-likelihood. The
Hessian matrix used in the Newton-Raphson algorithm can be
obtained by Louis’s (1982) formula.

To determine whether an EM step or an outer Newton-
Raphson step is to be performed, we keep track of the difference
in the log-likelihood at the previous iteration, either an EM or
an outer Newton-Raphson step, and the difference at the previ-
ous outer Newton-Raphson step. For each iteration, if the log-
likelihood difference at the previous step is too small relative to
that at the previous outer Newton-Raphson step, then an outer
Newton-Raphson step is performed; otherwise, an EM step is
performed. Upon convergence, Louis’s (1982) formula is used to
obtain the informationmatrix for the estimation of the standard
errors.

The reason that we use a combination of the EM and
Newton-Raphson algorithms instead of the Newton-Raphson
algorithm alone is two-fold. First, EM steps are more stable,
which is important, especially in early iterations. Second, in the
estimation of the survival model under the EM algorithm,
the regression parameters can be obtained by maximizing the
partial-likelihood-type function, and the estimators of the base-
line hazard functions take the form of the Breslow estimator.
Unlike the Newton-Raphson algorithm, the EM algorithm does
not involve the inversion of a high-dimensional matrix.

4. Theoretical Properties

4.1. Identifiability Conditions

As discussed in Section 2, we set aside K1 survival
times, T1, . . . ,TK1 , that are used to identify the distribu-
tion of the underlying latent variables. We assume that
span(φ1, . . . ,φK1

) = R
K1 . We can choose the K1 survival

times such that each is associated with a few, preferably only
one, latent variables. (K1 is allowed to be 0, in which case we rely
solely on the manifest variable Y to identity the latent variable
distribution.)Without loss of generality, we assume thatφk = ek
(k = 1, . . . ,K1), where ek is a q-vector with 1 at the kth position
and 0 elsewhere. This assumption can be satisfied by applying
a linear transformation to the latent variables. Effectively, we
fix the scale of the first K1 latent variables, as is common when
establishing model identifiability for SEM. We partition η into
(η1, η2), where η1 ≡ (η11, . . . , η1K1 ) consists of the first K1
components of η.

We consider the following identifiability conditions. For
the “baseline” hazard functions (�1, . . . , �K ), we only require
identifiability on [0, τ ], where τ denotes the study duration.
(C1) If (1,WT,ZT,YT)Tc = 0 almost surely for some vector c

of appropriate dimension, then c = 0. For k = 1, . . . ,K,
λk is continuous and strictly positive on [0, τ ], and
there exists a positive and measurable function gk such
that exp{−Gk(t )} = ∫∞

0 e−tsgk(s) dmk(s), where mk is
the Lebesgue measure or the counting measure at 1.

(C2) For k = 1, . . . ,K1, E(YTαk | Z = 0) = 0, and E(η | Z =
0) = 0. Also, for any vectors c1 and c2 of appropriate
dimensions, E(eYTc1+ηTc2 | Z) is finite almost surely.

(C3) For k = 1, . . . ,K1, ϑk is nonzero, and αk and βk are zero.
(C4) Consider two sets of parameters (ψ, ν) and (ψ̃, ν̃). Let

fY,η1 be the density of (Y , η1) givenZ. Then, fY,η1 (Y , η1 |
Z;ψ, ν) = fY,η1 (Y , η1 | Z; ψ̃, ν̃) for all Z, Y , and η1
implies that ψ = ψ̃ and ν = ν̃.

(C5) Let (Y+, η+
1 ) be the components of (Y , η1) that appear

in the regression of Tk for some k = K1 + 1, . . . ,K, and
let (Y−, η−

1 ) be the remaining components. Let Fη2|Y,η1
be the distribution function of η2 given (Z,Y , η1) with
(Y−, η−

1 ) treated as a parameter vector. Then, η2 is com-
plete sufficient in {Fη2|Y,η1 (· | Z,Y , η1) : Z = z0,Y+ =
y0, η

+
1 = η10} for any fixed z0, y0, and η10.

Remark 1. Condition (C1) pertains to basic requirements on
the covariates, the baseline hazard functions, and the transfor-
mation functions such that the survival model with observed
covariates is identifiable. If mk is a point mass at 1, then Gk is
simply the identity function. Condition (C2) fixes the location
parameters of the latent variables and themanifest variables that
appear in the regression models of the first K1 survival times.
Condition (C3) requires that the first K1 survival times depend
only on their corresponding latent variable and W . The pres-
ence of a covariate besides the latent variable is necessary for
distinguishing the contributions of the baseline hazard func-
tion and the latent variable to the distribution of a survival time
that follows amixture distribution. Condition (C4) requires that
the model with observed (Y , η1) is identifiable. Condition (C5)
requires that η2 is complete sufficient conditional on (Y , η1),



where components of (Y , η1) that do not appear in the regres-
sion of Tk (k = K1 + 1, . . . ,K) are treated as parameters, and
the rest are held fixed. Conditions (C2) and (C3) are vacuous if
K1 = 0, and condition (C5) is vacuous if K1 = K.

We have the following identifiability result.

Theorem 1. Under Conditions (C1)–(C5), the model specified
by (1)–(3) is identifiable.

Remark 2. The condition that αk and βk are zero for
k = 1, . . . ,K1 separates the first K1 survival times from the
remaining observed variables that are associated with the latent
variables. This condition is used to simplify the presentation
of the identifiability conditions. In the proof of Theorem 1, we
consider generalized versions of conditions (C3)–(C5), where
αk and βk are allowed to be nonzero.

Remark 3. Theorem 1 implies that the distribution of the latent
variable underlying a given survival time can be completely
identified if the survival time only regresses on the latent vari-
able and a set of independent covariates. Thus, the survival times
make it easy to identify the model, as only a single survival time
is enough to identify an underlying latent variable. By contrast,
this property does not hold for normal random variables.

Remark 4. The derivation of model identifiability from con-
dition (C5) uses the property of complete sufficient statistics.
The derivation is applicable to general latent variable mod-
els; the general result is given by Lemma 1 in the Appendix.
Lemma 1 allows for the establishment of model identifiability
by inspecting just a part of the model. It includes Reilly and
O’Brien’s (1996) side-by-side rule, which states that the loadings
of an observed variable on any number of latent variables
are identifiable if each of the latent variables is attached to a
separate independent observed variable whose distribution is
identifiable, as a special case.

4.2. Asymptotic Properties

Let d be the dimension of θ, θ0 denote the true value of θ, and
�0k denote the true value of�k (k = 1, . . . ,K). We impose the
following conditions.
(D1) The parameter θ0 lies in the interior of a compact set

� ⊂ R
d , and the function �0k is continuously differen-

tiable with λ0k(t ) ≡ �′
0k(t ) > 0 on [0, τ ] for each k =

1, . . . ,K.
(D2) With probability one, P(T̃ki = τ | W ,Z) > δ0 (k =

1, . . . ,K) for some fixed δ0 > 0.
(D3) Consider any fixedZ and (ψ, ν) ∈ �ψν , where�ψν con-

sists of the (ψ, ν)-component of every θ ∈ �. For any
constant a1 > 0 and δ = 0, 1,

E
{∫

ea1(1+|Y |+|η|) fY (Y | Z, η;ψ)δ fη(η | Z; ν) dη
}
< ∞.

Also, for j = 1, 2, 3, there exists a constant a2 > 0 such
that∣∣∣∣∣∣

∂ j

∂ψ j fY (Y | Z, η;ψ)
fY (Y | Z, η;ψ)

∣∣∣∣∣∣+
∣∣∣∣∣
∂ j

∂ν j
fη(η | Z; ν)

fη(η | Z; ν)

∣∣∣∣∣ ≤ ea2(1+|Y |+|η|).

In addition, for some positive constantsMj and c j, N j ∈
R

r, and ϕ1 ∈ 
∞(Rr),

e
∑q

j=1 −Mj |b j | ≤ e
∑q

j=1(N
T
jYb j+c jb2j )ϕ1(Y )

× fY (Y | Z, η;ψ) fη(η | Z; ν) ≤ e
∑q

j=1 Mj |b j |,

where b = S(η) for some one-to-one linear transforma-
tion S.

(D4) The function Gk is four-times differentiable, Gk(0) = 0,
and K1k(1 + x)−κ1k ≤ G′

k(x) ≤ K2k(1 + x)κ2k for
some positive constants κ1k, κ2k, K1k, and K2k. Also,
Gk(x)/xρk → Mk or Gk(x)/ log(x) → Mk as x → ∞
for some positive constants Mk and ρk. In addi-
tion, exp{−Gk(x)} ≤ μk(1 + x)−κ3k for some μk and
κ3k > κ2k + 1. Furthermore, for some rk,

sup
x≥0

∣∣G′′
k (x)

∣∣+ ∣∣G(3)k (x)
∣∣+ ∣∣G(4)k (x)

∣∣
G′
k(x)(1 + x)rk

< ∞,

whereG′′
k andG

( j)
k denote the second and jth derivatives

of Gk, respectively.
(D5) Let (Z(k),Y (k)) be the components of (Z,Y ) that appear

in the regression of Tk (k = 1, . . . ,K1). For any vectors
h1, h2k, and h3k of appropriate dimensions, if

∂

∂(ψ, ν)
fY,η1 (Y , η1 | Z;ψ, ν)Th1

−
K1∑
k=1

(Z(k)Th2k +Y (k)Th3k)
∂

∂η1k
fY,η1 (Y , η1 | Z;ψ, ν)

is equal to 0 for all Z, Y , and η1, then h1 = 0, h2k = 0,
and h3k = 0 for k = 1, . . . ,K1, where fY,η1 is defined in
condition (C4).

Remark 5. Conditions (D1)–(D4) are similar to the conditions
of Zeng and Lin (2010) for joint modeling of longitudinal and
survival data. Extra conditions are imposed on the transfor-
mations and the distributions of Y and η to accommodate the
presence of unbounded covariateY in the survival model. Con-
dition (D5) is for the invertibility of the information operator. If
αk = 0 and βk = 0 for k = 1, . . . ,K1, then condition (D5) sim-
ply requires that the informationmatrix of themodel for (Y , η1)
is invertible. This is parallel to condition (C4) for identifiability.

Remark 6. The conditions for identifiability and the invertibility
of the information operator (C1)–(C5), and (D5) differ signif-
icantly from the corresponding conditions (C5) and (C7) of
Zeng and Lin (2010). The latter are stated under very general
settings, but they are hard to verify for specific models, espe-
cially under our SEM framework. By contrast, our conditions
are easier to verify and have intuitive interpretations. For the
model in Example 1, condition (D5) simply requires that the
model of (Y1,Y2,Y3, η1) given Z has a nonzero score statistic,
which clearly holds.

Let A0 = (�01, . . . , �0K ) and (θ̂, Â) be the NPMLE
of (θ,A). Also, let V = {v ∈ R

d, |v| ≤ 1} and Q = {h(t ) :
‖h(t )‖V [0,τ ] ≤ 1} with ‖·‖V [0,τ ] being the total variation norm
on [0, τ ]. We consider (θ̂ − θ0, Â − A0) as a random element



in l∞(V × QK ) with

(θ̂ − θ0, Â − A0)(v, h1, . . . , hK )

= (θ̂ − θ0)
Tv +

K∑
k=1

∫ τ

0
hk(s) d(�̂k −�0k)(s).

We have the following results.

Theorem 2. Under conditions (C1)–(C5) and (D1)–(D5),
1. |θ̂ − θ0| +∑K

k=1 supt∈[0,τ ]
∣∣�̂k(t )−�0k(t )

∣∣→a.s. 0;
and

2. n1/2(θ̂ − θ0, Â − A0) →d G in l∞(V × QK ), where G is
a continuous zero-meanGaussian process. Furthermore,
the limiting covariancematrix of n1/2(θ̂ − θ0) attains the
semiparametric efficiency bound.

Remark 7. The proof of Theorem 2 relies on the Donsker prop-
erties of certain classes of functions. It is more challenging to
establish the Donsker results in our setting than in previous set-
tings (e.g., Kosorok, Lee, and Fine 2004; Zeng and Lin 2010)
because the likelihood function of the proposedmodelmay con-
tain the unbounded variableY .

Remark 8. A key step in proving the asymptotic normality of
the NPMLE is to show that the information operator is invert-
ible. The result is given by Lemma 2 in the Appendix, which
states that condition (D5), together with conditions (C1)–(C3),
and (C5), implies that the information operator of the model is
invertible. With this result, we can verify the invertibility of the
information operator of the semiparametric model by inspect-
ing the parametric part of the model that contains the observed
and latent variables. For the frailty models in Kosorok, Lee, and
Fine (2004), verification of the invertibility of the information
operator involves inspection of the local behavior of the score
around T = 0. However, that approach is limited to frailty dis-
tributions that are indexed by a one-dimensional parameter and
is not directly applicable to cases with more complex latent vari-
able distributions such as those in our setting.

5. Simulation Studies

We considered a model with covariates Z = (Z1,Z2)
T, two

latent variables (η1, η2), observed continuous variables

(Y1, . . . ,Y5), observed binary variables (Y6,Y7), and a sur-
vival time T . Their distributions are given by

�T (t | Z,Y6,Y7, η2)
= G

{
�0(t ) exp

(
XT

TβT + φTη2
)}
, XT = (Z1,Z2,Y6,Y7)T,

logit {P(Y6 = 1 | Z, η2)}
= XT

Y6βY6 + φY6η2, XY6 = (1,Z1,Z2)
T,

logit {P(Y7 = 1 | Z,Y6, η2)}
= XT

Y7βY7 + φY7η2, XY7 = (1,Z1,Z2,Y6)T,

Yj | η1 ∼ N
(
βYj + φYjη1, σ

2
Yj

)
, j = 1, 2, 3,

Yj | η2 ∼ N
(
βYj + φYjη2, σ

2
Yj

)
, j = 4, 5,

η2 | η1 ∼ N
(
βηη1, σ

2
η2

)
,

η1 ∼ N
(
0, σ 2

η1

)
.

The parameters φY1 and φY4 are fixed to be one. The model is
depicted in Figure 3.

We set Z1 and Z2 to independent standard normal and
Bernoulli(0.5), respectively, and �0(t ) = t2. We considered
the class of logarithmic transformationsG(x) = r−1 log(1 + rx)
with r = 0 or 1, which correspond to the proportional haz-
ards and proportional odds models, respectively. We generated
the censoring times from exp(c), where c was chosen to yield
approximately 30% censored observations. We set (Y1, . . . ,Y5)
to be missing completely at random for 30% of the subjects. We
set the sample size to 400 and set the number of abscissa points
to 20 for each Gauss-Hermite quadrature. We simulated 5000
datasets for each setting. The results are summarized in Table 1.

The estimators of all parameters are virtually unbiased for
both the proportional hazards and proportional odds models.
The standard error estimators accurately reflect the true vari-
ations, and the coverage probabilities of the confidence inter-
vals are close to the nominal level. Standard error estimators
for the parameters in the survival model are larger under the
proportional odds model than under the proportional hazards
model. As a result, the standard error estimators for the param-
eters associated with η2 are larger. The standard error estimators
for the remaining parameters are very similar between the two
models.

We also evaluated Mplus (Muthén and Muthén 1998–2015)
under the proportional hazards model, and the results are pre-
sented in Table S.1 of the supplementary materials. The results

Figure . Model used in simulation studies. The SEM consists of two latent variables, an observed covariate, seven binary or normal manifest variables, and a survival time
that regresses on the latent variable, some manifest variables, and the observed covariates.



Table . Simulation results for the SEM with two latent variables.

Proportional hazards model Proportional odds model

Dep Ind Param Bias SE SEE CP Param Bias SE SEE CP

T Z1 . . . . . . . . . .
Z2 − . − . . . . − . . . . .
Y6 . . . . . . . . . .
Y7 . − . . . . . . . . .
η2 . . . . . . . . . .

�0(t1) . . . . . . . . . .
�0(t2) . . . . . . . . . .
�0(t3) . . . . . . . . . .

Y1 Int . − . . . . . − . . . .
Var . − . . . . . − . . . .

Y2 Int . . . . . . . . . .
η1 . . . . . . . . . .
Var . − . . . . . − . . . .

Y3 Int . . . . . . . . . .
η1 . . . . . . . . . .
Var . − . . . . . − . . . .

Y4 Int . . . . . . . . . .
Var . − . . . . . − . . . .

Y5 Int . . . . . . . . . .
η2 . . . . . . . . . .
Var . − . . . . . − . . . .

Y6 Int . . . . . . . . . .
Z1 − . − . . . . − . − . . . .
Z2 . . . . . . . . . .
η2 . . . . . . . . . .

Y7 Int . . . . . . . . . .
Z1 . . . . . . . . . .
Z2 . − . . . . . − . . . .
Y6 − . − . . . . − . − . . . .
η2 . . . . . . . . . .

η1 Var . . . . . . . . . .
η2 η1 . . . . . . . . . .

Var . . . . . . . . . .

NOTE: Each row corresponds to the regression parameter of the dependent variable “Dep” on the independent variable “Ind” or some other parameter in the model of
“Dep.” “Int”and “Var” stand for the intercept and error variance, respectively. The parameters�0(t1),�0(t2), and�0(t3) correspond to the cumulative baseline hazard
function values at the 25%, 50%, and 75% quantiles of the survival time. The true value of a parameter is given under “Param.” “Bias” is the empirical bias; “SE” is the
empirical standard error; “SEE” is the empirical mean of the standard error estimator; and “CP” is the empirical coverage probability of the 95% confidence interval.

for the Euclidean parameters are similar to those presented in
Table 1. Mplus provides estimator for the baseline hazard func-
tion instead of the cumulative baseline hazard function. Its stan-
dard error estimator does not reflect the true variation, and the
coverages of the confidence intervals are far below the nominal
level.

6. Real Data Analysis

We analyzed a dataset on patients with serous ovarian cancer
from the TCGA project (The Cancer Genome Atlas Research
Network 2011). Genomic variables include DNA copy num-
ber, SNP genotype, DNA methylation level, and levels of
expression of mRNA, microRNA, total protein, and phospho-
rylated protein. Demographic and clinical variables include
age at diagnosis, race, tumor stage, tumor grade, time to
tumor progression, and time to death. There are a total of
586 patients. The median follow-up time was about 2.5 years,
and roughly 30% of the patients were lost to follow-up before
tumor progression or death. The data are available from
http://gdac.broadinstitute.org/.

We focused on the integrative analysis of clinical outcomes
and expression levels of mRNA, total protein, and phospho-
rylated protein. We considered mRNA expression as a latent
variable that can only be observed with error through three

microarray platforms, namely Agilent 244K Whole Genome
Expression Array, Affymetrix HT-HG-U133A, and Affymetrix
Exon 1.0. We assumed that the effects of a gene on clinical
outcomes are mediated through unobserved protein activity.
The latent protein activity is modified by mRNA expression
and is manifest through the observed protein expression
measurements, which were obtained from the reverse-phase
protein arrays platform. Figure 4 depicts the SEM fit for
each gene. We assumed that the observed variables follow
the distributions described in Section 5, with (Y1,Y2,Y3)
being the three microarray measurements, (Y4,Y5) =
(Total protein expression, Phosphorylated protein expression),
(Y6,Y7) = (Tumor stage, Tumor grade), (Z1,Z2) =
(Age, Race), and T being progression-free survival time.

We dichotomized tumor stage into stage II/III versus stage
IV and tumor grade into grade 2 versus grade 3/4. Race was
dichotomized into white and nonwhite. We allowed mRNA
expression and protein expression data to be missing for some
subjects. We excluded patients with tumor stage I or grade 1,
as those patients may have a disease that is biologically differ-
ent from that of patients with tumors of other stages or grades.
For each gene, we fit the class of transformation models with
G(x) = r−1 log(1 + rx) over a grid of r = (0, 0.1, . . . , 2). We
selected the model with the smallest AIC or, equivalently, the
largest log-likelihood value.

http://gdac.broadinstitute.org/


Figure . Results from the SEM analysis of the gene ACACA. Analysis results are from  patients with ovarian cancer in the TCGA project. The numbers besides an arrow
correspond to the point estimate and standard error estimate (in parentheses) of the regression parameter. The numbers below the latent variables correspond to the point
estimate and standard error estimate (in parentheses) of the error variance.

We present the results for the gene ACACA. The sample size
is 542. About 30% of the subjects do not have protein expression
data, and over 10% of the subjects miss at least one mRNA
expression measurement. The best-fitting model is obtained at
r = 1, which corresponds to the proportional odds model. The
point estimates and standard error estimates of the parameters
associated with the latent variables are shown in Figure 4. The
remaining results are shown in Table S.2 of the Supplementary
Materials. The latent variables have strong positive association
with the measurement platforms. As expected, latent protein
activity and latent mRNA expression are highly correlated.
Latent protein activity is positively associated with progression-
free survival time, with a p-value of 0.100. Specifically, higher
latent protein activity is associated with shorter progression-free
survival time, which agrees with the findings of the literature
(Menendez and Lupu 2007). The association of ACACA with
tumor stage or tumor grade is weak.

The results for the parameters in the nonsurvival models
are similar between r = 0 and 1. The parameters in the sur-
vival model have different interpretations between r = 0 and
1. With r = 0, a unit increase in latent protein activity would
have a multiplicative effect of exp(0.068) on the hazard func-
tion. With r = 1, a unit increase in the latent protein activity
would have a multiplicative effect of exp(−0.192) on the sur-
vival odds. For this dataset, the proportional odds model pro-
videsmuch stronger evidence for the effect of protein activity on
progression-free survival than the proportional hazards model.

For the Cox proportional hazards model, we also present the
results from Mplus in Table S.2. The results from NPMLE and
Mplus are similar for most parameters. There are considerable
differences between the cumulative baseline hazard function
estimates. The standard error estimates for the cumulative
baseline hazard function are not available fromMplus.

For comparisons, we also fit a proportional odds model
without latent variables for progression-free survival on the
covariates and the two protein expression variables, where
the subjects with missing protein expression data were dis-
carded. The p-value of the Wald test for the joint effect of
protein expression is 0.157. With r = 0, the Wald test p-value
is 0.578. Therefore, analyses based on standard models fail to
conclude a strong association between the protein expression
and progression-free survival. The power of the proposed SEM

framework stems from the appropriate handling of missing
data, the dimension reduction of the observed covariates, and
the flexibility of the survival model.

7. Discussion

In this article, we consider semiparametric SEM for potentially
right-censored survival time data. We prove the consistency,
asymptotic normality, and semiparametric efficiency of the
NPMLE.We propose new rules for establishingmodel identifia-
bility and invertibility of the information operator.We construct
an EM algorithm to compute the NPMLE and introduce occa-
sional Newton-Raphson steps to accelerate the convergence.

One contribution of Theorem 1 is that it reduces a semi-
parametric identifiability problem to a parametric one; it shows
that the inclusion of the semiparametric component does not
make the model less identifiable but, in some sense, makes the
model more easily identifiable. With that being said, the result
hinges on correct specification of the model and does not guar-
antee empirical identifiability in a finite sample. Therefore, care
should be taken when fitting a model that is nearly noniden-
tifiable. Another main result of ours is given by Lemma 1. This
lemma is applicable to a wide range of latent variablemodels and
allows one to deduce the identifiability of a model by inspecting
just part of it.

Invertibility of the information operator has received much
less attention in the literature than model identifiability. In
this article, we prove a general result for invertibility of the
information operator. It is evident from the proof that the
invertibility of the information operator can be established
using techniques similar to those used to establish model iden-
tifiability. Specifically, the key to the proof of the identifiability
of themixture Coxmodel is that with the presence of a covariate
that is independent of the latent variable, the contributions to
the likelihood from the latent variable and the baseline hazard
function can be separated by considering different values of the
covariate. (In a normal mixture model, however, we lack such
identifiability results precisely because the random effect and
error term are combined linearly and their distributions cannot
be distinguished.) As a result, if two sets of parameters give rise
to the same marginal survival function, then they must do so
by giving rise to the same random-effect distribution. Based on



the proportional hazards structure, we prove a parallel result
for the invertibility of the information operator: the existence of
a submodel with zero score implies that the random-effect dis-
tribution has zero score along that submodel as well. Therefore,
to ensure the invertibility of the information operator of the
mixture Coxmodel, one only has to ensure that the information
matrix of the random-effect distribution is invertible.

Our work can be extended in several directions. First, one
may be interested in expanding the model by inclusion of
more latent and observed variables. As the number of variables
increases, the number of parameters to be estimated increases
as well. Then, it may be desirable to perform variable selection.
Because a single variable may be associated with multiple
parameters, one may prefer not to treat parameters as the basic
unit of selection, as in traditional lasso methods (Tibshirani
1996). Instead, methods like group lasso (Yuan and Lin 2006)
that penalize parameters associated with a variable as a group
may be considered.

In our model, the distribution of the manifest variable Y is
fully parametric. One can allow a nonparametric transforma-
tion onY . A major challenge arises in extending the asymptotic
results to unbounded nonparametric transformation, as the esti-
mator of the transformation function can be unbounded (Zeng
and Lin 2010).

Finally, it would be of interest to consider interval-censored
data. Interval censoring results in a different likelihood function,
which makes the computation of the NPMLE and the deriva-
tion of its asymptotic properties challenging, even for univariate
survival time data. The asymptotic theory for interval-censored
data is only available in a few simple cases; see Huang and
Wellner (1997) for a review.

Appendix: Technical Details

We present the following conditions, which are clearly implied by
conditions (C3)–(C5):
(C3’) For k = 1, . . . ,K1, ϑk is a nonzero vector.
(C4’) Consider two sets of parameters (αk,βk,ψ, ν)

and (α̃k, β̃k, ψ̃, ν̃) for k = 1, . . . ,K1, and let η̃1 =
(η̃11, . . . , η̃1K1 ), where η̃1k = YT(αk − α̃k)+ ZT(βk −
β̃k)+ η1k. Let fY,η1 be the density of (Y , η1) given Z. Then,
fY,η1 (Y , η1 | Z;ψ, ν) = fY,η1 (Y , η̃1 | Z; ψ̃, ν̃) for all Z, Y ,
and η1 implies that αk = α̃k, βk = β̃k, ψ = ψ̃, and ν = ν̃.

(C5’) For k = K1 + 1, . . . ,K, let (Y (k), η
(k)
1 , η

(k)
2 ) be the compo-

nents of (Y , η1, η2) that appear in the regression of Tk,
and let (Y−(k), η−(k)

1 , η
−(k)
2 ) be the remaining components.

If η(k)2 is nonempty, then (Y−(k), η−(k)
1 ) is nonempty, and

η
(k)
2 is complete sufficient in {F

η
(k)
2 |Y,η1 (· | Z,Y , η1) : Z =

z0,Y (k) = y0, η
(k)
1 = η10} for any fixed z0, y0, and η10, where

F
η
(k)
2 |Y,η1 is the distribution function of η(k)2 given (Z,Y , η1)

with (Y−(k), η−(k)
1 ) treated as a parameter vector.

We prove Theorem 1 under the generalized conditions (C1),
(C2), and (C3’)–(C5’). The proof makes use of two lemmas given
at the end of this Appendix. We first provide an overview of the
proof. For any two sets of parameters (ϑk,αk,βk,φk,�k,ψ, ν) and
(ϑ̃k, α̃k, β̃k, φ̃k, �̃k, ψ̃, ν̃), assume that the likelihood values at the
two sets of parameters are identical almost surely. By definition, the

model is identifiable if the equality of the likelihood values implies
the equality of the two sets of parameters. We derive the equality of
the two sets of parameters in the following steps:

1. By conditions (C1), (C2), and (C3’) and the identifiability of
the mixture Cox model (Kortram et al. 1995), ϑk = ϑ̃k and
�k = �̃k for k = 1, . . . ,K1.

2. With some algebraic manipulation, the likelihood function
can be expressed in the form of the Laplace transform of the
distribution of a function of (Y , η1). The uniqueness of the
Laplace transform, together with condition (C4’), implies
that (αk,βk,ψ, ν) = (α̃k, β̃k, ψ̃, ν̃) for k = 1, . . . ,K1.

3. By the uniqueness of the Laplace transform and the com-
plete sufficiency of η2 imposed by condition (C5’), the
equality of the likelihood functions of (TK1+1, . . . ,TK,Y )
implies the equality of the likelihood functions of
(TK1+1, . . . ,TK,Y , η). By the identifiability of the Cox
model, we conclude that (ϑk,αk,βk,φk) = (ϑ̃k, α̃k, β̃k, φ̃k)

for k = K1 + 1, . . . ,K.

Proof of Theorem 1. The likelihood is given in (4). Here, we con-
sider a single observation and drop the subscript i. Using the argu-
ments in Section 10.1 of Zeng and Lin (2010), we can set each
survival time to be right censored at any time point within [0, τ ]
when establishing identifiability. Consider two sets of parameters
(ϑk,αk,βk,φk,�k,ψ, ν) and (ϑ̃k, α̃k, β̃k, φ̃k, �̃k, ψ̃, ν̃) such that
the likelihood values for an observation with the K survival times
being right censored are equal almost surely, that is,

∫ K∏
k=1

[ ∫
exp

{
−�k (tk) skeW

Tϑk+ZTβk+YTαk+ηTφk
}

×gk (sk) dmk(sk)
]
fY,η
(
Y , η | Z;ψ, ν) dη

=
∫ K∏

k=1

[ ∫
exp

{
−�̃k (tk) skeW

Tϑ̃k+ZTβ̃k+YTα̃k+ηTφ̃k
}

×gk (sk) dmk(sk)
]
fY,η
(
Y , η | Z; ψ̃, ν̃) dη (A.1)

for all t1, . . . , tK ∈ [0, τ ],W , Z, andY , where fY,η is the density of
(Y , η) given Z. If mk is a point mass at one, then sk is fixed at one,
gk = 1, and the integration with respect to mk(sk) can be omitted.
For simplicity of description, assume that mk is the Lebesgue mea-
sure. Note that

∫
sgk (s) ds = − lim

t→0+

d
dt

∫ ∞

0
e−tsgk (s) ds

= − lim
t→0+

d
dt

exp {−Gk (t )} = G′
k (0) < ∞.

Thus, a transformation model can be written as a random-effect
proportional hazards model with known distributions (g1, . . . , gK )
for random effects (s1, . . . , sK ) with finite means.

First, we show that the baseline hazard functions of the first
K1 survival times are identifiable. For each k = 1, . . . ,K1, set tl →
0 for l �= k on both sides of (A.1). On each side of the result-
ing equation, integration with respect to Y results in the likeli-
hood of a mixture Cox model with skeY

Tαk+η1k or skeY
Tα̃k+η1k as

a latent variable. Let E(· | Z) and Ẽ(· | Z) be the expectations
under fY,η(· | Z;ψ, ν) and fY,η(· | Z; ψ̃, ν̃), respectively. Theorem



3 of Kortram et al. (1995) implies that E(skeY
Tαk+η1k | Z = 0)�k =

Ẽ(skeY
Tα̃k+η1k | Z = 0)�̃k on [0, τ ], ϑk = ϑ̃k, and the distribu-

tion of E(skeY
Tαk+η1k | Z = 0)−1skeY

Tαk+η1k under fY,η(· | Z;ψ, ν)
is equal to that of Ẽ(skeY

Tα̃k+η1k | Z = 0)−1skeY
Tα̃k+η1k under fY,η(· |

Z; ψ̃, ν̃). Because E(YTαk + η1k | Z = 0) = Ẽ(YTα̃k + η1k | Z =
0) = 0 by condition (C2), we see that�k = �̃k on [0, τ ].

Second, we show that the likelihood function takes the form of a
Laplace transform and use the uniqueness of the Laplace transform
to prove the identifiability of (αk,βk,ψ, ν) (k = 1, . . . ,K1). Setting
tk → 0 for k = K1 + 1, . . . ,K andW = 0 on both sides of (A.1), we
have

∫ K1∏
k=1

[∫
exp

{
−�k (tk) skeZ

Tβk+YTαk+η1k
}
gk (sk) dsk

]

× fY,η (Y , η | Z;ψ, ν) dη

=
∫ K1∏

k=1

[∫
exp

{
−�k (tk) skeZ

Tβ̃k+YTα̃k+η1k
}
gk (sk) dsk

]

× fY,η(Y , η | Z; ψ̃, ν̃) dη. (A.2)

Let U = (U1, . . . ,UK1 ), Uk = skeη1k , and fU |Y be the density func-
tion of U given Z and Y . By the uniqueness of the Laplace trans-
form, for any continuous functions f and f̃ , any open set S , and
any positive real numbers c and c̃,

∫ ∞

0
e−cst f (t ) dt =

∫ ∞

0
e−c̃st f̃ (t ) dt ∀s ∈ S

implies that f (t ) = (c/c̃) f̃ (ct/c̃) for all t > 0. Therefore, the equal-
ity of (A.2) for all t1, . . . , tK1 , Z, andY implies that

fU |Y
(
U | Z,Y ;ψ, ν) = e

∑K1
k=1 Z

T(βk−β̃k )+YT(αk−α̃k ) fU |Y
(
Ũ | Z,Y ; ψ̃, ν̃)

(A.3)
for all U , Z, and Y , where Ũ = (Ũ1, . . . , ŨK1 ), and Ũk =
eZ

T(βk−β̃k )+YT(αk−α̃k )Uk. Let fη1|Y be the density of η1 given Z and
Y . By the definition ofU ,

fU |Y (U | Z,Y ;ψ, ν)
=
∫
sk>0

fη1|Y
(
logU1 − log s1, . . . , logUK1 − log sK1 | Z,Y ;ψ, ν)

×
K1∏
k=1

U−1
k gk (sk) d(s1, . . . , sK1 )

=
∫
RK1

fη1|Y
(
logU1 − v1, . . . , logUK1 − vK1 | Z,Y ;ψ, ν)

×
K1∏
k=1

U−1
k ḡk (vk) evk d

(
v1, . . . , vK1

)
,

where ḡk(v ) = gk(ev ). Thus, (A.3) implies that

∫
RK1

{
fη1|Y

(
logU1 − v1, . . . , logUK1 − vK1 | Z,Y ;ψ, ν)

− fη1|Y
(
log Ũ1 − v1, . . . , log ŨK1 − vK1 | Z,Y ; ψ̃, ν̃)}

×
K1∏
k=1

ḡk (vk) evk d(v1, . . . , vK1 ) = 0. (A.4)

Consider two arbitrary continuous functions f , g : R → R. Note
that

∫ ∞

−∞
e−st ( f ∗ g

)
(t ) dt =

∫ ∞

−∞
e−st f (t ) dt

∫ ∞

−∞
e−st g (t ) dt

for any s such that the integrals are defined, where ( f ∗ g)(t ) ≡∫∞
−∞ f (t − s)g(s) ds is the convolution of f and g. Therefore,
( f ∗ g)(·) = 0 implies that

∫ ∞

−∞
e−st f (t ) dt

∫ ∞

−∞
e−st g (t ) dt = 0,

which, if g is positive, implies that f (·) = 0 by the uniqueness of
the bilateral Laplace transform (Chareka 2007). Because ḡk(·)e(·)
is positive, (A.4) implies that fη1|Y (η1 | Z,Y ;ψ, ν) = fη1|Y (η̃1 |
Z,Y ; ψ̃, ν̃), where η̃1 is defined in condition (C4’). By condition
(C4’), (αk,βk,ψ, ν) = (α̃k, β̃k, ψ̃, ν̃) for k = 1, . . . ,K1.

It remains to identify the parameters associated with
(TK1+1, . . . ,TK ). By the uniqueness of the Laplace transform,
(A.1) implies that

∫ K∏
k=K1+1

{∫
e−�k(tk )skeW

Tϑk+ZTβk+YTαk+ηTφk gk (sk) dsk
}

× fY,η (Y , η | Z;ψ, ν) dη2

=
∫ K∏

k=K1+1

{∫
e−�̃k(tk )skeW

T ϑ̃k+ZT β̃k+YT α̃k+ηT φ̃k gk (sk) dsk
}

× fY,η (Y , η | Z;ψ, ν) dη2

for all tK1+1, . . . , tK , W , Z, Y , and η1, that is, η1 can be treated
as observed for identifying the remaining parameters. Under con-
dition (C5’), we can use the arguments in the proof of Lemma
1 to show that the integrands in the above equality are equal
at each value of η2. We conclude that (ϑk,αk,βk,φk,�k) =
(ϑ̃k, α̃k, β̃k, φ̃k, �̃k) for k = K1 + 1, . . . ,K. �

We provide an overview for the proof of Theorem 2. The consis-
tency of the NPMLE is proved in the following steps:

1. By conditions (D2)–(D4), the NPMLE exists, that is,
�̂k(τ ) < ∞.

2. By conditions (D3) and (D4), �̂k(τ ) is uniformly bounded.
Helly’s selection theorem then implies that every subse-
quence of �̂k has a further converging subsequence.

3. By the Glivenko-Cantelli properties of the log-likelihood
and related functions given by Lemma S2 in the Supplemen-
tary Materials, the identifiability of the model, and the non-
negativity of the Kullback-Leibler divergence, we conclude
the consistency of the NPMLE.

The asymptotic normality of the NPMLE follows mainly from
the arguments of van der Vaart (1998, pp. 419–424). Donsker prop-
erties of the score and related functions are given by Lemma S2 in
the supplementary materials, and the invertibility of the informa-
tion operator is given by Lemma 2.

Proof of Theorem 2. We use Z to denote bothW and Z with βk (k =
1, . . . ,K) being the corresponding vector of regression parameters.



Let

�
(Oi; θ,A

) =
K∏

k=1

∫ [
eZ

T
i βk+YT

i αk+ηTφkG′
k

{
eZ

T
i βk+YT

i αk+ηTφk�k
(
T̃ki
)}]�ki

× exp
[
−Gk

{
eZ

T
i βk+YT

i αk+ηTφk�k
(
T̃ki
)}]

× fY
(
Y i | Zi, η;ψ

)
fη
(
η | Zi; ν

)
dη,

�̇θ (Oi; θ,A) be the derivative of�(Oi; θ,A)with respect to θ, and
�̇k(Oi; θ,A)[Hk] be the derivative of �(Oi; θ,A) along the path
(�k + εHk).

First, we prove the consistency. By condition (D4),

[
eZ

T
i βk+YT

i αk+ηTφkG′
k

{
eZ

T
i βk+YT

i αk+ηTφk�k
(
T̃ki
)}]�ki

× e
−Gk

{
eZ

T
i βk+YT

i αk+ηTφk�k(T̃ki )
}

≤ eO(1+|Y |+|η|){1 +�k(T̃ki)
}−�ki−κ3k+κ2k+1

.

Thus, condition (D3) implies that

� (Oi; θ,A) ≤
n∏

i=1

F (Oi; θ)
K∏

k=1

{
1 +�k(T̃ki)

}−�ki−κ3k+κ2k+1
,

(A.5)

where F (Oi; θ) is a random variable with |E{logF (Oi; θ)}| < ∞
for any θ. By condition (D2), P(T̃ki = τ ) is positive. Therefore, if
�k(τ ) = ∞, then the right-hand side of (A.5) is zero for large n.
We conclude that �̂k(τ ) < ∞, such that the NPMLE exists.

We then show that lim supn �̂k(τ ) < ∞ almost surely. From
(A.5),

1
n
log Ln

(
θ̂, Â) = 1

n

n∑
i=1

K∑
k=1

�ki log �̂k{T̃ki} + 1
n

n∑
i=1

log�(Oi; θ̂, Â)

≤ 1
n

n∑
i=1

logF (Oi; θ̂)+ 1
n

n∑
i=1

K∑
k=1

�ki log �̂k{T̃ki}

− 1
n

n∑
i=1

K∑
k=1

(�ki + κ3k − κ2k − 1) log
{
1 + �̂k(T̃ki)

}
.

Let Ñ = n−1∑n
i=1(�1iI(T̃1i ≤ ·), . . . , �KiI(T̃Ki ≤ ·)). Clearly,

1
n
log Ln(θ0, Ñ) = − 1

n

n∑
i=1

K∑
k=1

�ki log n + 1
n

n∑
i=1

log�(Oi; θ0, Ñ).

The second term on the right-hand side of the above equation is
Op(1). Thus,

1
n
log Ln

(
θ̂, Â)− 1

n
log Ln

(
θ0, Ñ

)+ Op(1)

≤ 1
n

n∑
i=1

K∑
k=1

�ki log
[
n�̂k{T̃ki}

]

− 1
n

n∑
i=1

K∑
k=1

(�ki + κ3k − κ2k − 1) log
{
1 + �̂k(T̃ki)

}
.

Note that (κ3k − κ2k − 1) is positive by condition (D4). Using
the partitioning argument similar to those of Murphy (1994) and

Parner (1998), we can show that the right-hand side of the above
inequality tends to −∞ if lim supn �̂k(τ ) = ∞. By definition of
(θ̂, Â), the left-hand side of the inequality is bounded below by an
Op(1) term. Therefore, �̂k(τ ) is uniformly bounded.

Given the boundedness of �̂k(τ ), Helly’s selection theorem
implies that, for any subsequence of n, we can always choose a fur-
ther subsequence such that �̂k converges pointwise to somemono-
tone function �∗

k and θ̂ converges to θ∗. The desired consistency
result follows if we can show that �∗

k = �0k and θ∗ = θ0 almost
surely. With an abuse of notation, let {n}1,2,... be the subsequence.
Define

�̃k (t ) = −
n∑
i=1

�kiI
(
T̃ki ≤ t

)⎧⎨⎩
n∑
j=1

�̇k(O j; θ0,A0)
[
I
(
T̃ki ≤ ·)]

�(O j; θ0,A0)

⎫⎬
⎭

−1

.

By Lemma S2 in the Supplementary Materials and the properties of
Donsker (and therefore, Glivenko-Cantelli) classes,

1
n

n∑
j=1

�̇k(O j; θ0,A0)
[
I (s ≤ ·) ]

�(O j; θ0,A0)
→ E

(
�̇k(Oi; θ0,A0)

[
I (s ≤ ·) ]

�(Oi; θ0,A0)

)

uniformly on [0, τ ]. Because the score function along the path
�k = �0k + εI(· ≥ s)with other parameters fixed at their true val-
ues has zero expectation,

−E

{
�̇k(Oi; θ0,A0)

[
I (s ≤ ·) ]

�(Oi; θ0,A0)

}
= dP

(
T̃ki�ki < s

)
/ds

λ0k (s)
.

Algebraicmanipulation yields that the uniform limit of �̃k on [0, τ ]
is�0k. Note that �̂k(t ) is equal to

∫ t

0

∣∣∣n−1∑n
j=1 �̇k(O j; θ0,A0)

[
I (s ≤ ·) ]/�(O j; θ0,A0)

∣∣∣∣∣∣n−1
∑n

j=1 �̇k(O j; θ̂, Â)
[
I (s ≤ ·) ]/�(O j; θ̂, Â)

∣∣∣ d�̃k (s) .

We have shown that the numerator of the integrand in the above
equation converges uniformly. Similarly, we can show that the
denominator of the integrand in the above equation converges uni-
formly to |E{�̇k(Oi; θ∗,A∗)

[
I(s ≤ ·)]/�(Oi; θ∗,A∗)}| and that

the limit is bounded away from 0. Because �̃k converges uni-
formly to �0k, which is differentiable with respect to t , �∗

k is
also differentiable with respect to t . It follows that d�̂k/d�̃k
converges uniformly to λ∗

k/λ0k on [0, τ ], where λ∗
k = (�∗

k )
′. As

n−1 log Ln(θ̂, Â)− n−1 log Ln(θ0, Ã) is nonnegative,

1
n

n∑
i=1

K∑
k=1

�ki log
d�̂k

(
T̃ki
)

d�̃k
(
T̃ki
) + 1

n

n∑
i=1

log
�(Oi; θ̂, Â)
�(Oi; θ0, Ã)

≥ 0.

By the Glivenko-Cantelli properties of the class of functions of
log�(Oi; θ,A) given by Lemma S2 and the uniform convergence
of d�̂k/d�̃k, setting n → ∞ on both sides of the above inequality
yields

E

{
log

∏K
k=1 λ

∗
k (T̃ki)

�ki�(Oi; θ∗,A∗)∏K
k=1 λ0k(T̃ki)�ki�(Oi; θ0,A0)

}
≥ 0.



The left-hand side of the above inequality is the negative Kullback-
Leibler distance of the density indexed by (θ∗,A∗). From the iden-
tifiability of the model implied by Theorem 1, we conclude that
θ∗ = θ0 and�∗

k = �k0. The desired consistency result follows.
To prove the asymptotic normality of the NPMLE, we adopt

the arguments of van der Vaart (1998, pp. 419–424). Let Pn be
the empirical measure determined by n iid observations, and let P
be the true probability measure. Let 
̇θ (θ,A) be the derivative of
log Ln(θ,A) with respect to θ, and let 
̇k(θ,A)[Hk] be the deriva-
tive of log Ln(θ,A) along the path (�k + εHk). For any v ∈ R

d and
W = (h1, . . . , hK )with hk ∈ BV[0, τ ], where BV[0, τ ] is the space
of functions of bounded variation on [0, τ ], we have

Pn

(
vT
̇θ (θ̂, Â)+

K∑
k=1


̇k(θ̂, Â)
[ ∫

hk d�̂k
]) = 0.

In addition,

P
(

vT
̇θ (θ0,A0)+
K∑

k=1


̇k(θ0,A0)
[ ∫

hk d�0k
]) = 0.

Therefore,

√
n
(Pn − P)(vT
̇θ (θ̂, Â)+

K∑
k=1


̇k(θ̂, Â)
[ ∫

hk d�̂k
])

= −√
nP
{(

vT
̇θ (θ̂, Â)+
K∑

k=1


̇k(θ̂, Â)
[ ∫

hk d�̂k
])

−
(

vT
̇θ (θ0,A0)+
K∑

k=1


̇k(θ0,A0)
[ ∫

hk d�0k
])}

.

(A.6)

From the Donsker properties of the classes of functions of 
̇θ and 
̇k
implied by Lemma S2 and the consistency of θ̂ and Â, we conclude
that the left-hand side of (A.6) equals

√
n
(Pn − P)(vT
̇θ (θ0,A0)+

K∑
k=1


̇k(θ0,A0)
[ ∫

hk d�0k
])

+op (1) .

This term converges to a Gaussian process in l∞(V × QK ). By the
Taylor series expansion, the right-hand side of (A.6) is of the form

−√
n

{
B1 [v,W]T (θ̂ − θ0)+

K∑
k=1

∫
B2k [v,W] d(�̂k −�0k)

}

+op
(√

n
∣∣∣θ̂ − θ0

∣∣∣+ √
n

K∑
k=1

∥∥∥�̂k −�0k

∥∥∥
V [0,τ ]

)
,

where B ≡ (B1,B21, . . . ,B2K ) is the information operator and is
linear in R

d × BV[0, τ ]K . By Lemma 2, B is invertible. The rest of
the proof then follows the arguments of van der Vaart (1998, pp.
419–424). Finally, because vTθ̂ is an asymptotically linear estimator
of vTθ0 with the influence function lying in the space spanned by
the score functions, θ̂ is an efficient estimator for θ0. �

Figure A.. SEM considered in Lemma . The SEM consists of two sets of latent vari-
ables and two sets of observed variables that may all be multivariate. The observed
variable X depends only on the latent variable η1 , but the observed variable Y
depends on both sets of latent variables.

The following two lemmas are used in the proofs of Theorem 1
and Theorem 2 and are proved in Section S2 of the Supplementary
Materials.
Lemma A.1. Let Model A be

X | (η1, η2) d= X | η1 ∼ FX |η1
(· | η1

)
,

Y | (η1, η2) ∼ FY |η
(· | η1, η2

)
,

η2 | η1 ∼ Fη2|η1
(· | η1

)
,

η1 ∼ Fη1 ,

where (X,Y ) are observed, and (η1, η2) are latent. Model A is
depicted in FigureA.1. Let fX |η1 = F ′

X |η1 , fY |η = F ′
Y |η, fη2|η1 = F ′

η2|η1 ,
and fη1 = F ′

η1
. Assume that: (a) for any density functions f̃Y |η and

f̃η2|η1 , ∫
fY |η
(
Y | η1, η2

)
fη2|η1

(
η2 | η1

)
dη2

=
∫

f̃Y |η
(
Y | η1, η2

)
f̃η2|η1

(
η2 | η1

)
dη2 ∀Y , η1

implies that ( fY |η, fη2|η1 ) = ( f̃Y |η, f̃η2|η1 ), that is, the model for Y
is identifiable if η1 is observed; (b) FX |η1 and Fη1 are identifiable
based on (X,Y ); and (c) η1 is a complete sufficient statistic in
{Fη1|X (· | X ) : X ∈ X }, where Fη1|X is the conditional distribution
function of η1 given X , and X is the range of X . Then, Model A is
identifiable. A sufficient condition for η1 to be complete sufficient
is that the density of X is of the form

fX |η1
(
X | η1

) ∝
q∏
j=1

exp
{
Xjs j

(
η1
)− a j

(
η1
)}

b j
(
Xj
)
,

whereX = (X1, . . . ,Xq), η1 �→ (s1(η1), . . . , sq(η1)) is one-to-one,
and b j is nonzero on some open set.

Lemma 2. Under conditions (C1), (C2), (C3’), (C5’), and (D5), the
model given by (1)–(3) has an invertible information operator.

Supplementary Materials
The supplementary materials contain proofs of Lemmas 1 and 2, additional
theoretical results, simulation results forMplus, and additional data analysis
results.
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