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Abstract
Biomarkers are often organized into networks, in which the strengths of network con-

nections vary across subjects depending on subject-specific covariates (eg, genetic

variants). Variation of network connections, as subject-specific feature variables, has

been found to predict disease clinical outcome. In this work, we develop a two-stage

method to estimate biomarker networks that account for heterogeneity among sub-

jects and evaluate network’s association with disease clinical outcome. In the first

stage, we propose a conditional Gaussian graphical model with mean and precision

matrix depending on covariates to obtain covariate-dependent networks with connec-

tion strengths varying across subjects while assuming homogeneous network struc-

ture. In the second stage, we evaluate clinical utility of network measures (connection

strengths) estimated from the first stage. The second-stage analysis provides the rel-

ative predictive power of between-region network measures on clinical impairment

in the context of regional biomarkers and existing disease risk factors. We assess the

performance of proposed method by extensive simulation studies and application to

a Huntington’s disease (HD) study to investigate the effect of HD causal gene on the

rate of change in motor symptom through affecting brain subcortical and cortical gray

matter atrophy connections. We show that cortical network connections and subcorti-

cal volumes, but not subcortical connections are identified to be predictive of clinical

motor function deterioration. We validate these findings in an independent HD study.

Lastly, highly similar patterns seen in the gray matter connections and a previous white

matter connectivity study suggest a shared biological mechanism for HD and support

the hypothesis that white matter loss is a direct result of neuronal loss as opposed to

the loss of myelin or dysmyelination.
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1 INTRODUCTION

Biomarkers such as brain imaging measures may organize into

networks of connected regions (eg, Alexander-Bloch et al.,
2013). The morphological features of some brain regions

(eg, thickness and volume of gray matter) covary with other

regions (Alexander-Bloch et al., 2013). Such covariation

patterns are referred to as structural covariance networks

that may characterize coordinated patterns in morphology

between anatomically connected regions of interest (ROIs)
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(He et al., 2008). Recent studies have suggested the presence

of substantial heterogeneity of covariance network connec-

tions between individuals and subgroups of individuals. For

example, the strengths of brain cortical region connections

were observed to vary with age (Chen et al., 2011) and

the structural covariation patterns were altered across the

lifespan (Alexander-Bloch et al., 2013). In our motivating

study of Huntington’s disease (HD; Paulsen et al., 2014), the

networks of high-risk group and low-risk group are different

in their edge strengths (Hamming distance is 4.4; details in

Section 4).

The patterns of heterogeneous network connections among

regions have been shown to predict disease phenotypes.

Alexander-Bloch et al. (2013) suggest that behavioral and

cognitive abilities are associated with the between-region

covariation patterns in addition to the variability within the

regions. These findings suggest that network connectivities

between brain regions can be predictive of disease clinical

outcomes beyond the regional imaging measures. Thus, it is

desirable to evaluate the relative clinical utility of network

connections in context of the regional biomarkers and other

existing disease risk factors.

There is no existing method readily available to estimate

heterogeneous gray matter structural covariance networks

and their effects on a disease outcome. First, unlike the

white matter connectivity network that can be obtained by

probabilistic tractography in each individual, gray matter

cortical thickness or subcortical volume of each region is

measured only once from each individual and the current

methods for constructing structural covariance network are

at the population level, by calculating the partial correlation

between brain regions over the population (Alexander-Bloch

et al., 2013). By leveraging between-subject variability

and modeling dependence between network strength and

individual covariates (eg, age, genetic variants), subject-

or subgroup-specific gray matter network connections may

be obtained. Second, there is a lack of methods to estimate

heterogeneous networks in a multidimensional setting. When

the network is assumed to be homogenous across individuals,

Gaussian graphical models (Friedman et al., 2008) have been

extensively used to estimate a high-dimensional network

defined by the inverse covariance matrix (ie, precision

matrix). Fused graphical lasso (FGL; Danaher et al., 2014)

was proposed to jointly estimate graphical models for mul-

tiple distinct classes but assume that the classes are known.

To address between-subject variability, Yin and Li (2011),

Cai et al. (2012), and Chen et al. (2016) proposed to adjust

the mean of variables in the network for covariates but still

assume a constant precision matrix. Cheng et al. (2014)

incorporate covariates directly into an Ising model of the

network but under some modeling assumptions. Third, to the

best of our knowledge, no existing method exploits heteroge-

neous network strength to construct subject-specific networks

and use them as potential intermediate phenotypes on disease

outcomes.

A straightforward method to estimate subject-dependent

network is to stratify the samples into subgroups, estimate

a network by Gaussian graphical model (eg, graphical lasso;

Friedman et al., 2008) for each group separately, and asso-

ciate the edge effects of each group with disease outcomes.

However, it is unknown how the subgroups should be formed.

Furthermore, such a method is inefficient when the number of

subgroups is large and the number of subjects in each group

is small. In our motivating study, subjects were stratified into

high-risk group and low-risk group (Web Figure S1). The

Hamming distance, defined as the sum of the absolute edge-

wise differences between two adjacency matrices, between

the networks of the two groups is 4.4, and the weighted cor-

relation is 0.87. Thus, although the connection weights of

the two networks vary, they manifest correlated edge effects.

These results suggest a more efficient approach to model the

network edge strengths as a function of covariates to provide

subject-dependent networks.

In this paper, we propose a two-stage method to estimate

biomarker networks that account for heterogeneity among

subjects and evaluate network’s association with disease

clinical outcome. In the first stage, we propose a conditional

Gaussian graphical model to capture covariate-specific

networks with connection strengths depending on a subject’s

covariates while assuming homogenous network structure, in

which both the mean and precision matrix of the graphical

model depend on individual covariates. To handle mul-

tidimensional parameter space, regularization is imposed

to introduce model sparsity and stabilize estimation. The

first-stage model will provide subject-specific network mea-

sures (edge connection strengths) between biomarkers. The

identified network can be dense, but not all of the network

connections are associated with clinical impairment that

reduces their clinical utility. Thus, in the second stage, we

use a penalized regression that includes existing disease risk

factors (covariates), regional biomarkers, and between-region

connections to simultaneously examine their clinical utility.

The goal in the second stage is to further evaluate relative

predictive power of network measures on clinical impairment

compared to using regional biomarkers and covariates alone.

Our method makes several contributions. The first-stage

model captures heterogeneity of network connection strength

without assuming that the connections are directly measured

on each individual. Such effects are captured by covariates and

represent some smooth changes over the covariate space and

subgroups of subjects. The second-stage model simultane-

ously considers a large number of biomarkers and connections

as intermediate measures without first taking any transforma-

tion or dimension reduction. Third, since it is unknown which

connections between biomarkers are associated with clinical

impairment (eg, a lower connectivity between certain brain



regions may associate with poor cognition), our method iden-

tifies important network features with additive clinical utility

in the context of existing risk factors.

We conduct extensive simulation studies to examine the

performance of proposed method with varying sample sizes

and number of biomarkers. We then apply the method to

a large, long-term, natural history study of premanifest HD

patients to investigate the effect of HD causal gene on the

motor function deterioration through affecting brain subcorti-

cal and cortical gray matter atrophy networks (Paulsen et al.,
2014). We construct subject-dependent gray matter corti-

cal thinning networks and subcortical volumetric networks

and organize the ROIs into distinct modules. We evaluate

the predictive power of the network connections on motor

impairment in HD patients, and validate findings in an inde-

pendent study (McColgan et al., 2017). Lastly, we com-

pare the identified HD gray matter networks with white mat-

ter connectivity networks to examine whether white matter

loss is a direct result of neuronal loss (caused by the dying

back of axons) or loss of myelin or dysmyelination. Our

results provide new biological evidence supporting the former

hypothesis. We conclude this paper with some remarks and

extensions.

2 METHODOLOGY

Let 𝑿𝑖 denote a 𝑞-dimensional vector of disease risk factor

(eg, covariates including genetic variants, baseline clinical

measures) of the 𝑖th subject. Let 𝑴 𝑖 denote a vector of

𝑝-dimensional biomarkers. Let 𝑌𝑖 denote a clinical outcome

of interest. In our application in Section 4, 𝑿𝑖 includes

Deoxyribonucleic acid (DNA) structural variation at a causal

gene and baseline clinical measures, 𝑴 𝑖 includes cortical

and subcortical brain atrophy volumetric measures at ROIs

available from structural magnetic resonance imaging (MRI),

and 𝑌𝑖 is the rate of change of motor symptoms. The structural

covariation network is defined as the precision matrix of 𝑴 𝑖.

An overview of schematic diagram of our method is shown in

Figure 1. Specifically, the first-stage model estimates subject-

dependent networks of 𝑴 𝑖 given 𝑿𝑖 and connections between

components of 𝑴 𝑖 from a conditional Gaussian graphical

model. The second-stage model identifies which network con-

nections between nodes have incremental effects on clinical

outcomes in addition to 𝑴 𝑖s and 𝑿𝑖. This model also esti-

mates the effect of 𝑿𝑖 on 𝑌𝑖 through connections between 𝑴 𝑖.

2.1 First-stage conditional network model

A conditional Gaussian graphical model for the distribution

of 𝑴 𝑖 given 𝑿𝑖, where both the mean and precision matrix of

𝑴 𝑖 depend on 𝑿𝑖, can be expressed as

𝑃 (𝑴 𝑖|𝑿𝑖) ∝ exp
(
𝜿𝑇𝑖 𝑴 𝑖 −

1
2
𝑴𝑇

𝑖 𝛀𝑖𝑴 𝑖

)
, (1)

where the 𝑗th element of 𝜿𝑖 is 𝜅𝑖𝑗 = 𝜻𝑇𝑗 𝑿𝑖, 𝜻 𝑗 = {𝜁𝑗1,… ,

𝜁𝑗𝑞}𝑇 , and the (𝑗, 𝑘)th element of 𝛀𝑖 is

Ω𝑖(𝑗, 𝑘) =
⎧⎪⎨⎪⎩

1∕𝜎2𝜀𝑗 𝑗 = 𝑘

−𝜔𝑗𝑘(𝑿𝑖) 𝑗 > 𝑘

Ω𝑖(𝑘, 𝑗) 𝑗 < 𝑘

.

In this model, the subject-dependent network connection

between node𝑀𝑗 and𝑀𝑘 is modeled by a linear combination

of𝑿𝑖 as𝜔𝑗𝑘(𝑿𝑖) = 𝜶𝑇
𝑗𝑘
𝑿𝑖, where𝜶𝑗𝑘 = {𝛼𝑗𝑘1,… , 𝛼𝑗𝑘𝑞}𝑇 . In

the conditional Gaussian graphical model (1), we assume that

the network structure is homogeneous in the whole popula-

tion but network connection strengths vary across subjects and

the heterogeneity in connection strengths depends on a vector

of subject-specific covariates 𝑿𝑖. When 𝜿(𝑿𝑖) and Ω(𝑿𝑖) do

not vary over 𝑿𝑖, our model reduces to the regular Gaussian

graphical models (Friedman et al., 2008).

It is computationally intensive to directly maximize the

joint likelihood in (1) that involves the unstructured preci-

sion matrix and it is difficult to calculate the gradients. Note

that the number of parameters in the precision matrix is

𝑝(𝑝 − 1)∕2 ∗ 𝑞. With 𝑴 𝑖 and 𝑿𝑖 even at a moderate scale,

the optimization will be over a high-dimensional parame-

ter space: with 𝑝 = 20 biomarkers and 𝑞 = 10 covariates, the

number of parameters is 2120. To compute the estimates effi-

ciently, instead of maximizing the global likelihood func-

tion 𝑃 (𝑴 𝑖|𝑿𝑖) in Equation (1), we optimize a pseudolike-

lihood formed by the products of all node-wise conditional

likelihoods 𝑃 (𝑀𝑖𝑗|𝑴 𝑖,⧵𝑗 ,𝑿𝑖), where 𝑴 𝑖,⧵𝑗 denotes a vector

of 𝑴 𝑖 without the 𝑗th element. Replacing the global likeli-

hood by pseudolikelihood results in simultaneously perform-

ing neighborhood estimation for all nodes while guarantee-

ing the symmetry of precision matrix, and provides consistent

parameter estimates at the cost of statistical efficiency, but

makes computation feasible in the presence of a large num-

ber of nodes and covariates. The conditional distribution of

𝑀𝑖𝑗 given 𝑴 𝑖,⧵𝑗 and 𝑿𝑖 is a normal distribution with a mean

of E[𝑀𝑖𝑗|𝑴 𝑖,⧵𝑗 ,𝑿𝑖] = 𝜎2𝜀𝑗
(𝜻𝑇𝑗 𝑿𝑖 +

∑
𝑘≠𝑗 𝜔𝑗𝑘(𝑿𝑖)𝑀𝑖𝑘), and

a variance of Var[𝑀𝑖𝑗|𝑴 𝑖,⧵𝑗 ,𝑿𝑖] = 𝜎2𝜀𝑗
. The pseudolikeli-

hood function is then given by:

𝐿𝑛(𝜻 ,𝜶,𝝈2) =
𝑛∏
𝑖=1

𝑝∏
𝑗=1

𝑃 (𝑀𝑖𝑗|𝑴 𝑖,⧵𝑗 ,𝑿𝑖),

𝑃 (𝑀𝑖𝑗|𝑴 𝑖,⧵𝑗 ,𝑿𝑖) =
√

1
2𝜋𝜎2𝜀𝑗

× exp
⎡⎢⎢⎣− 1

2𝜎2𝜀𝑗

{
𝑀𝑖𝑗 − 𝜎2𝜀𝑗

(
𝜻𝑇𝑗 𝑿𝑖 +

∑
𝑘≠𝑗

𝜔𝑗𝑘(𝑿𝑖)𝑀𝑖𝑘

)}2⎤⎥⎥⎦ .



F I G U R E 1 Schematics of the proposed two-stage method

Denote the log-pseudolikelihood function by 𝑙𝑛(𝜻 ,𝜶,𝝈2) =
log𝐿𝑛(𝜻 ,𝜶,𝝈2). We impose regularization to stabilize esti-

mation and perform variable selection. Our aim is to mini-

mize the following penalized negative log-pseudo likelihood

−1
𝑛
𝑙𝑛(𝜻 ,𝜶,𝝈2) + 𝑝(𝜻 ,𝜶), where 𝑝(𝜻 ,𝜶) is a properly cho-

sen penalty function. The most desirable penalty for vari-

able selection is to constrain the number of variables selected

(eg, 𝑙0-penalty), which is equivalent to the best subset selec-

tion. To this end, one may consider a penalty function

𝑝(𝜻 ,𝜶) = 𝜆1(
∑𝑝

𝑗=1 ‖𝜻 𝑗‖0 +∑
𝑗>𝑘 ‖𝜶𝑗𝑘‖0), where ‖𝜻 𝑗‖0 =∑𝑞

𝑠=1 𝐼(𝜁𝑗𝑠 ≠ 0) and ‖𝜶𝑗𝑘‖0 = ∑𝑞

𝑠=1 𝐼(𝛼𝑗𝑘𝑠 ≠ 0). However,

the optimization involving this penalty function is nonde-

terministic polynomial-time hard (NP-hard) due to the non-

convexity and discontinuity of the 𝑙0-norm. A computation-

ally efficient two-step iterative procedure referred to as aug-

mented penalized minimization-L0 (APM-L0) was proposed

to approximate the 𝑙0-penalization as closely as possible (Li

et al., 2018). APM-𝐿0 uses surrogate parameters to augment

the 𝑙0-norm of (𝜻 ,𝜶) and guarantees that the surrogate param-

eters are close enough to (𝜻 ,𝜶). It iteratively solves a penal-

ized regression problem followed by a hard thresholding. In

the first step of APM-𝐿0, we use a lasso penalty and employ

an accelerated generalized gradient algorithm with backtrack-

ing for computation (Simon et al., 2013).

In the second step of APM-𝐿0, hard-thresholding is per-

formed to remove parameters with small magnitudes (Li et al.,
2018). We iteratively update between 𝜻 𝑗 ,𝜶𝑗𝑘, and 𝜎2𝜀𝑗

until

convergence is reached. The tuning parameters are selected



using cross-validation to determine a final subject-dependent

network model. The detailed update functions in the algorithm

are presented in Web Appendix B.

2.2 Second-stage clinical outcome model

In the first-stage model, our main interest is to estimate the

biomarkers network effects (ie, 𝜔𝑗𝑘(𝑿𝑖)), as well as identi-

fying important edges in the network. Thus, the first-stage

method is an unsupervised approach to investigate basic brain

organization through estimating subjects’ network connec-

tions. In the second stage, we evaluate the clinical utility

of the network connections identified in the first stage. We

associate covariates, biomarkers, and the network connections

with clinical impairment.

Under the conditional network model in (1), the hetero-

geneity in network connection across subjects is explained

by the covariates. Mutual information, which quantifies the

amount of information shared by two random variables, is

used as a measure of network strength in many applications

(eg, Song et al., 2012). Under the jointly Gaussian assump-

tion, the mutual information between two biomarkers given

the remaining biomarkers is a transformation of the partial

correlation, because the conditional joint distribution of the

two biomarkers is a bivariate normal distribution. The trans-

formation may alleviate the potential collinearity challenge

between network connections when included in the outcome

model. In addition, partial correlation yields an interpretation

as conditional dependence and provides measures for deter-

mining modular membership in neuroimaging studies (Sec-

tion 4.1, Web Appendix E2).

The second-stage model for disease outcome is:

𝐸(𝑌𝑖|𝑴 𝑖,𝑿𝑖) = 𝛽0 + 𝜷𝑇𝑿𝑖 + 𝜼𝑇𝑴 𝑖 +
𝑝∑

𝑠=1

𝑠−1∑
𝑟=1

𝛾𝑠𝑟𝑊𝑖,𝑠𝑟, (2)

where 𝑊𝑖,𝑠𝑟 is the mutual information defined as 𝑊𝑖,𝑠𝑟 =
−1

2 log(1 − 𝜌2
𝑖,𝑠𝑟

), and 𝜌𝑖,𝑠𝑟 = − Ω𝑖(𝑠,𝑟)√
Ω𝑖(𝑠,𝑠)Ω𝑖(𝑟,𝑟)

= 𝜎𝜀𝑠𝜎𝜀𝑟𝜔𝑠𝑟(𝑿𝑖)
is the partial correlation between 𝑀𝑖,𝑠 and 𝑀𝑖,𝑟 given

𝑴 𝑖,⧵{𝑠,𝑟}. The mutual information represents the strength of

the connection between biomarkers given 𝑿𝑖. If 𝜌𝑖,𝑠𝑟 = 0,

then 𝑊𝑖,𝑠𝑟 = 0, which implies that no connection is present

between 𝑀𝑖,𝑠 and 𝑀𝑖,𝑟. If 𝜌𝑖,𝑠𝑟 is large, then 𝑊𝑖,𝑠𝑟 is large,

which suggests a strong connection between 𝑀𝑖,𝑠 and 𝑀𝑖,𝑟.

In model (2), 𝜂𝑠, 𝜂𝑟, and 𝛾𝑠𝑟 are the effects of 𝑿𝑖 on 𝑌𝑖
through network nodes and their connections, and 𝜷 are the

effects of 𝑿𝑖 directly on 𝑌𝑖 not through nodes and connec-

tions. Our interest is to evaluate the incremental effect of 𝛾𝑠𝑟
relative to 𝜂𝑠 and 𝜂𝑟. In our application, 𝛾𝑠𝑟 are the effects of

causal gene on the clinical outcome through gray matter con-

nection between a pair of ROIs (𝑀𝑖,𝑟,𝑀𝑖,𝑠).

We estimate parameters in the model (2) by minimiz-

ing a penalized least squares under the objective function
1
2𝑛

∑𝑛
𝑖=1{𝑌𝑖 − (𝛽0 + 𝜷𝑇𝑿𝑖 + 𝜼𝑇𝑴 𝑖 +

∑𝑝

𝑠=1
∑𝑠−1

𝑟=1 𝛾𝑠𝑟𝑊𝑖,𝑠𝑟)}2

+ 𝑞(𝜷, 𝜼, 𝜸), where 𝑊𝑖,𝑠𝑟 = −1
2 log(1 − 𝜌2

𝑖,𝑠𝑟
) are estimated

based on the first-stage model, and the penalty function

𝑞(𝜷, 𝜼, 𝜸) = 𝜆2(‖𝜷‖0 + ‖𝜼‖0 + ‖𝜸‖0), with ‖𝜷‖0 = ∑𝑞

𝑠=1
𝐼(𝛽𝑠 ≠ 0), ‖𝜼‖0 = ∑𝑝

𝑗=1 𝐼(𝜂𝑗 ≠ 0), and ‖𝜸‖0 = ∑𝑝

𝑠=1
∑𝑠−1

𝑟=1
𝐼(𝛾𝑠𝑟 ≠ 0). We again use APM-𝐿0 with adaptive lasso penalty

(the initial estimators are obtained from a ridge regression)

on 𝜷, 𝜼, 𝜸 to obtain parameter estimates. In practice, stability

selection (Meinshausen and Bühlmann, 2010) can be further

used to select informative network connections and important

predictors of clinical outcomes. Stability selection combines

subsampling and bootstrap with variable selection to provide

improved performance (eg, reduced false discovery rate).

3 SIMULATION STUDIES

We conducted extensive simulations to evaluate our method.

We varied the number of covariates 𝑞, the number of

biomarker nodes 𝑝, and the sample size 𝑛. Six settings were

considered. The first four settings include 𝑛 = 500 and 1000

with 𝑝 = 𝑞 = 5, 10, 20; and 𝑝 > 𝑞 with (𝑝, 𝑞) = (5, 3), (𝑝, 𝑞) =
(10, 5), (𝑝, 𝑞) = (20, 10). In Setting 5, we considered 𝑝 = 𝑛 =
100 and 𝑞 = 5. In Setting 6, we considered denser precision

matrix and mean matrix with 𝑝 = 18, 𝑞 = 17, including a con-

stant one in 𝑿𝑖 and 𝑛 = 500 and 1000.

In Settings 1 and 2, we simulated covariates 𝑿𝑖 inde-

pendently from a standard normal distribution, where

Setting 1 had homogeneous variance parameters 𝜎2𝜀𝑗
= 0.2

and Setting 2 had heterogeneous variance parameters

(𝜎2𝜀𝑗
= 0.2 or 0.15). Four of 𝜶𝑗𝑘s are nonzeros with mag-

nitudes ranging from −1.5 to 1.5 and the remaining 𝜶𝑗𝑘s

are all zeros. For example, 𝜶12 = {−0.5,−1,−1.5, 0, 0}𝑇 ,

𝜶23 = {−1,−0.5,−1.5, 0, 0}𝑇 , 𝜶34 = {1.5,−0.5,−1, 0, 0}𝑇 ,

and 𝜶45 = {−0.5,−1.5, 1, 0, 0}𝑇 when 𝑝 = 𝑞 = 5 in Setting 1.

Setting 3 included an additional binary covariate and Setting

4 additionally examined scenarios with 𝑝 > 𝑞. For Settings

1-5, we generated clinical outcomes in the second-stage

model from 𝑌𝑖 = 𝑋𝑖1 + 2𝑋𝑖2 +𝑀𝑖1 + 3𝑀𝑖2 +𝑊𝑖,𝑠1𝑟1
+

2𝑊𝑖,𝑠5𝑟5
+ 𝜖𝑖, where 𝑿𝑖, 𝑴 𝑖, and 𝑾 𝑖 were standardized

and 𝜖𝑖 ∼ 𝑁(0, 1). Here, 𝑊𝑖,𝑠1𝑟1
is the mutual information

between 𝑀𝑖1 and 𝑀𝑖2 for 𝑝 = 5, 10, 20, and 𝑊𝑖,𝑠5𝑟5
is the

mutual information between 𝑀𝑖2 and 𝑀𝑖3 for 𝑝 = 5, and

𝑀𝑖1 and 𝑀𝑖6 for 𝑝 = 10, 20. In Setting 6, 18 of 𝜶𝑗𝑘s are

nonzeros and 14 of 𝜻 𝑗s are nonzeros. 𝜶𝑗𝑘s and 𝜻 𝑗s varied by

different covariates. In addition, more network connections

(10 connections) are associated with outcome. The details of

the simulation settings are presented in Web Appendix C.

For each simulated data set, the length of the grid search

vector of the tuning parameters 𝜆1 and 𝜆2 is 10 and 100,



T A B L E 1 Estimation and selection performance of simulations in Setting 1

𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎
SSEa TPb FPc TNd FNe MCCf SSEa TPb FPc TNd FNe MCCf

𝑝 = 5, 𝑞 = 5
First stage 𝜻 0.409 8.97 1.44 14.56 0.03 0.901 0.167 9.00 0.94 15.06 0.00 0.931

𝜶 0.183 11.99 1.75 36.25 0.01 0.928 0.066 12.00 1.35 36.65 0.00 0.945

Second stage 𝜸 0.050 2.00 0.39 7.61 0.00 0.917 0.020 2.00 0.26 7.74 0.00 0.940

𝜷 0.006 2.00 0.22 2.78 0.00 0.916 0.003 2.00 0.32 2.68 0.00 0.907

𝜼 0.021 2.00 0.36 2.64 0.00 0.891 0.007 2.00 0.25 2.75 0.00 0.920

𝑝 = 10, 𝑞 = 10
First stage 𝜻 1.106 8.89 3.10 87.90 0.11 0.872 0.455 9.00 2.03 88.97 0.00 0.925

𝜶 0.604 12.00 3.00 435.00 0.00 0.920 0.234 12.00 2.03 435.97 0.00 0.942

Second stage 𝜸 0.067 2.00 0.43 42.57 0.00 0.922 0.023 2.00 0.36 42.64 0.00 0.936

𝜷 0.012 2.00 1.06 6.94 0.00 0.812 0.004 2.00 0.74 7.26 0.00 0.854

𝜼 0.029 2.00 1.16 6.84 0.00 0.789 0.011 2.00 0.95 7.05 0.00 0.826

𝑝 = 20, 𝑞 = 20
First stage 𝜻 2.369 8.43 2.84 388.16 0.57 0.871 0.969 8.98 3.53 387.47 0.02 0.903

𝜶 1.376 12.00 3.91 3784.09 0.00 0.903 0.622 12.00 3.08 3784.92 0.00 0.933

Second stage 𝜸 0.068 2.00 0.33 187.67 0.00 0.943 0.030 2.00 0.24 187.76 0.00 0.958

𝜷 0.012 2.00 1.85 16.15 0.00 0.765 0.007 2.00 2.04 15.96 0.00 0.756

𝜼 0.031 2.00 1.98 16.02 0.00 0.751 0.013 2.00 2.05 15.95 0.00 0.739

aSSE: average sum of squared error across 100 simulations;
bTP: average number of true positive parameters across 100 simulations;
cFP: average number of false positive parameters across 100 simulations;
dTN: average number of true negative parameters across 100 simulations;
eFN: average number of false negative parameters across 100 simulations;
fMCC: Matthews correlation coefficient.

respectively. Ten-fold cross-validation was applied to choose

the optimal tuning parameters. Simulations were repeated

100 times for each setting. To only retain the informative

connectivities in predicting the disease outcome, we

excluded near constant mutual information measures

(variability<0.005) from the second-stage model.

Tables 1 and 2 and Web Tables S1, S2, S3, and S4 summa-

rize the numeric simulation results in terms of sum of squared

error (SSE), true positive (TP; number of nonnull variables

correctly selected), false positive (FP; number of null vari-

ables incorrectly selected), true negative (TN; number of null

variables correctly not selected), false negative (FN; number

of nonnull variables incorrectly not selected) and Matthews

correlation coefficient (MCC; Matthews, 1975), which is used

as a measure that balances sensitivity and specificity even if

the nonnull variable class and the null variable class are of

very different size.

In all settings, our method yields small SSEs both in the

first and second stages. In Setting 1 from 𝑝 = 5 to 𝑝 = 20
(Table 1), all of the TP parameters in (𝜶𝑗𝑘)𝑗>𝑘 were selected,

while small number of FP parameters were selected, and

almost all of TN parameters were not selected in the first stage.

MCCs of (𝜶𝑗𝑘)𝑗>𝑘 were larger than 0.9. In the second stage,

our method identified all the TP variables in 𝑾 𝑖, 𝑿𝑖, and 𝑴 𝑖,

along with a small number of FP variables and rejected most

of TN variables. MCCs of 𝜸 (connection effects) were larger

than 0.9. Setting 2 is more difficult because 𝜎2𝜀𝑗
varies by node.

The performance in Setting 2 (Table 2) remained to be satis-

factory with slightly more FPs and slightly lower MCC. When

𝑝 = 𝑞 = 20, the average number of FP parameters in (𝜶𝑗𝑘)𝑗>𝑘
was 11.03 when 𝑛 = 500 and it decreased to 3.91 when the

sample size increased to 1000. Our method retained all TP

variables in the second stage and the average number of FP

variables in connections was still small. MCC of 𝜸 was still

beyond 0.85.

The performance in Settings 3-6 was similar. The

results are presented in Web Appendix D. Web Figure S2

(Settings 1-4), Web Figure S3 (Setting 5), and Web Figure S4

(Setting 6) also visualize the number of times (at least once

among 100 simulations) that an edge was identified in the net-

work structure of 𝑴 𝑖 in the first-stage analysis. Our method

correctly identified all TP edges in all settings. In addition, we

compared the estimated network in the first stage to the net-

work estimated by the FGL in Setting 1 with 𝑝 = 𝑞 = 20. The

FGL identified less true edges and selected many more null

edges. The details are in Web Appendix D and Web Table S5.



T A B L E 2 Estimation and selection performance of simulations in setting 2

𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎
SSEa TPb FPc TNd FNe MCCf SSEa TPb FPc TNd FNe MCCf

𝑝 = 5, 𝑞 = 5
First stage 𝜻 0.425 8.98 1.33 14.67 0.02 0.906 0.176 9.00 1.09 14.91 0.00 0.922

𝜶 0.247 11.95 2.00 36.00 0.05 0.921 0.090 12.00 2.54 35.46 0.00 0.904

Second stage 𝜸 0.020 2.00 0.51 7.49 0.00 0.889 0.006 2.00 0.52 7.48 0.00 0.883

𝜷 0.007 2.00 0.39 2.61 0.00 0.892 0.003 2.00 0.42 2.58 0.00 0.884

𝜼 0.041 2.00 0.50 2.50 0.00 0.873 0.016 2.00 0.42 2.58 0.00 0.874

𝑝 = 10, 𝑞 = 10
First stage 𝜻 1.070 8.80 2.71 88.29 0.20 0.879 0.342 8.99 2.15 88.85 0.01 0.919

𝜶 0.691 11.99 2.50 435.5 0.01 0.928 0.243 12.00 1.89 436.11 0.00 0.945

Second stage 𝜸 0.051 2.00 0.86 42.14 0.00 0.854 0.019 2.00 0.82 42.18 0.00 0.861

𝜷 0.013 2.00 1.05 6.95 0.00 0.799 0.004 2.00 0.78 7.22 0.00 0.854

𝜼 0.072 2.00 1.14 6.86 0.00 0.789 0.027 2.00 1.41 6.59 0.00 0.749

𝑝 = 20, 𝑞 = 20
First stage 𝜻 2.605 8.59 3.52 387.48 0.41 0.867 1.000 9.00 2.65 388.35 0.00 0.917

𝜶 1.822 11.99 11.03 3776.97 0.01 0.808 0.836 12.00 3.91 3784.09 0.00 0.902

Second stage 𝜸 0.036 2.00 0.73 187.27 0.00 0.876 0.014 2.00 0.81 187.19 0.00 0.867

𝜷 0.014 2.00 2.02 15.98 0.00 0.758 0.006 2.00 2.17 15.83 0.00 0.726

𝜼 0.041 2.00 2.43 15.57 0.00 0.706 0.017 2.00 2.54 15.46 0.00 0.698

aSSE: average sum of squared error across 100 simulations;
bTP: average number of true positive parameters across 100 simulations;
cFP: average number of false positive parameters across 100 simulations;
dTN: average number of true negative parameters across 100 simulations;
eFN: average number of false negative parameters across 100 simulations;
fMCC: Matthews correlation coefficient.

4 APPLICATIONS TO THE GRAY
MATTER NETWORK OF HD

HD is caused by an expansion of cytosine-adenine-guanine

(CAG) triplet repeats in the huntingtin gene (MacDonald

et al., 1993). Existing studies (Johnson et al., 2015) have

shown that regional brain gray matter and white matter atro-

phy were associated with progression of HD (eg, the rate of

change in patient’s motor symptoms). In addition, McColgan

et al. (2015) found that the degree (number of brain connec-

tions) of brain regions in white matter connectivity network

was highly correlated with motor and cognitive deficits. These

existing works considered brain subcortical volumes and cor-

tical connectivity measures separately. Instead, here, we con-

sider both types of measures on a subject.

We analyzed data collected from the recently completed

PREDICT-HD (Paulsen et al., 2014), a long-term natural

history study of premanifest HD gene-positive subjects. Our

analysis consisted of 499 subjects who carried an expanded

CAG repeats in the premanifest stage without an HD diag-

nosis at the baseline visit. The median follow-up length

was 6.3 years. In our analyses, 𝑴 𝑖 includes baseline brain

atrophy measures obtained from structural MRI. The regional

subcortical volumetric measures and cortical thickness mea-

sures were preprocessed using Freesurfer 5.3 and the details

were described in Paulsen et al. (2014). All volumetric mea-

sures were adjusted for total intracranial volume. Six subcor-

tical ROI gray matter volumes and 18 cortical thickness ROIs

were included in the analyses (see Web Table S6). These ROIs

were selected from a marginal screening (linear regression

with second-stage clinical measure as outcome) based on false

discovery-rate-corrected 𝑝-values.

The covariates 𝑿𝑖 include 15 baseline clinical variables

(details in Web Appendix E1), total gray matter volume, and

total white matter volume. The second-stage model outcome

was the rate of change in total motor score (TMS) estimated

by a linear mixed-effects model with subject-specific random

intercepts and random slopes, treating time since baseline as

the time scale and adjusting for the baseline TMS.

In the first-stage analyses of PREDICT-HD, we estimated

the network structure and connection strength of cortical

thickness and subcortical volumes separately under model

(1). In the second stage, we included covariates, subcortical

volumes, cortical thickness, and the subcortical and cortical



F I G U R E 2 Estimated cortical network (first stage) and effects of cortical connections on the rate of change of the total motor score (second

stage). In the left panel, edge color represents the estimated partial correlation for an average subject (covariates fixed at the sample averages). Color

of nodes represents modular membership. In the right panel, edge color represents the estimated effect size of the cortical connection on the rate of

change of the total motor score. Blue nodes: cortical thickness ROIs that are also selected in the second-stage model. Black nodes: cortical thickness

ROIs themselves are not selected in the second stage model, but their connections are selected

network connections obtained from the first stage to identify

the important predictors of the rate of change in TMS under

model (2). Stability selection (Meinshausen and Bühlmann,

2010) with 100 bootstraps was used to select informative

network connections in the first stage and important predic-

tors in the second stage. For each bootstrap sample, 10-fold

cross-validation was applied to choose the optimal tuning

parameter 𝜆1 in the first stage. The selection rule of the

parameters in (𝜻 𝑗) and (𝜶𝑗𝑘)𝑗>𝑘 was based on the relative

frequency among the 100 times bootstrap. A variable would

be selected if its relative frequency was larger than or equal

to a threshold. To reduce the risk of missing important

connections in the first-stage analysis, the threshold was set

at 0.5 (Meinshausen and Bühlmann, 2010). In the second

stage, we constructed a set of 100 initial regularization

parameters, denoted by Λ2, and performed variable selection

on each 𝜆2 ∈ Λ2. Hard-thresholding was implemented and

the total number of selected variables was set to be 100.

The final model was determined by the stability selection

with a threshold of 0.65. We refitted the models on the full

data including only the identified predictors and network

connections to provide final parameter estimates.

4.1 First-stage analysis results

Among 270 potential parameters in the subcortical network,

150 were selected to be informative (nonzero). For the cortical

network, 908 out of 2754 parameters were nonnull. The aver-

age cortical network identified in the first stage is visualized

in Figure 2 (left panel). In this figure, the strength of the edge

between two ROIs represents the estimated partial correlation

between them for an “average” subject with covariates fixed

at the sample averages. Two strongest connections are the

interhemispheric links between the left and right lateral

occipital regions (contralateral homologous regions) and

between the left superior parietal and right superior frontal

regions. The degrees (defined as the number of links between

a target ROI and other ROIs) of the cortical nodes for an

average subject are visualized in Figure 3. The largest degree

(degree = 17) was seen in the right caudal anterior cingulate

and left bankssts regions, whereas the smallest degree

(degree = 11) appeared in the left pars triangularis and left

fusiform regions.

To understand the network organization of the cortical

ROIs, they were classified into four distinct modules using

the community Louvain algorithm based on the modularity

optimization (Blondel et al., 2008). Our network modularity is

consistent with existing literature and the details are described

in Web Appendix E2. From the first-stage analysis, our condi-

tional Gaussian graphical model reveals that the cortical thick-

ness network is dense but organizes in a modular fashion in

premanifest HD, so that brain regional cortical thinning acts

in a dependent manner. In Web Appendix E3, we present the

identified top covariates that are associated with cortical con-

nections in the first stage.



F I G U R E 3 Degree of cortical nodes selected in the first stage for an average subject. Top row: lateral view of left and right hemispheres.

Bottom row: medial view of left and right hemispheres. Color represents degree

4.2 Second-stage analysis results

Among all covariates 𝑿𝑖, CAP score and white matter total

volumes are identified as informative, while none of the

cognitive or functioning measures is identified given other

variables in the final model. Among subcortical measures,

the volumetric ROIs are important for predicting TMS rate

of change, but not their network connections (only one

connection was identified). In contrast, cortical thickness

network connections, instead of cortical thickness ROI

measures, are identified as important. Caudate, globus

pallidus, and thalamus are selected among six subcortical

volumes, whereas right pars triangularis is the only one

selected among 18 cortical thickness ROIs. The connection

between thalamus and globus pallidus regions is the only

subcortical connection identified, whereas 22 out of 153

cortical connections (Figure 2, right panel) are identified to

be predictive of motor symptom change.

The brain gray matter cortical thickness network identified

in the first stage is dense (126 out of 153 connections were

identified for a population average subject). However, most

of connections do not predict TMS rate of change, which

results in a sparse model in the second stage. The effect

size of each cortical connection is summarized in Web

Table S8.

Five cortical connections mostly predictive of the motor

symptom are the interhemispheric connections (Web Table

S8). Several anatomically long-distance connections are also

identified, for example, the connection between right lin-

gual and right pars triangularis. In addition, most of the

connections with positive effects are the interhemispheric

connections or anatomically long-distance connections. Web

Figure S5 shows the identified paths from a baseline covari-

ate to the clinical motor symptom through brain gray matter

connections and our results were consistent with clinical lit-

erature. The details are in Web Appendix E5.



To assess the incremental predictive power of the selected

ROIs and connections, we randomly selected two-thirds

of subjects as a training set and the remaining one-third

subjects as testing data and compared the R-squared value

of the best performing model reported in the literature

without imaging measures (with covariates TMS, symbol

digit modality test raw score (SDMT), and CAP (a product

of CAG and age measuring disease burden); Long et al.,
2017) with our model including imaging biomarkers and

their connections (ie, TMS, SDMT, CAP, regional sub-

cortical volumetric and cortical thickness 𝑴 𝑖, subcortical

and cortical connections 𝑾 𝑖). We repeated this process

100 times. A ridge-penalty was imposed on cortical con-

nections to minimize overfitting, except for the connections

between right superior frontal and left precuneus regions and

between left superior parietal and left precuneus regions,

which were identified in the previous literature (Chen et al.,
2011). The average variance explained by the imaging

biomarker model with cortical connections was 30.1%, as

compared to 25.7% of the standard nonimaging model.

In Web Appendix E6, we also showed that the imaging

biomarker model improves the net reclassification rate for

predicting conversion to HD diagnosis.

4.3 Validation on TRACK-HD

We sought to validate findings from PREDICT-HD study

on an independent natural history study of HD, TRACK-

HD (Tabrizi et al., 2009), which collected comprehensive

gray matter and white matter structural neuroimaging mea-

sures and clinical assessments of premanifest HD patients.

The cohort in the replication analyses includes 96 premani-

fest HD subjects with CAG repeat expansions. The cohort was

followed up at four time points (year 2008, 2009, 2010, and

2011) and cortical thickness ROIs were obtained from struc-

tural MRI and preprocessed by Freesurfer in a similar fashion

as PREDICT-HD (McColgan et al., 2015, 2017).

We evaluated the predictive performance of 22 cortical

connections identified to be informative in PREDICT on

an independent study, TRACK-HD. First, we recalibrated

strength of the 22 cortical connections identified in PREDICT

on TRACK. Not all the measures used in the first-stage model

of the PREDICT analyses were available for TRACK. Thus,

the subject-specific cortical connections are estimated using

baseline covariates (details in Web Appendix F). Similar

to the PREDICT analyses, we compared the leave-one-out

R-squared value and mean squared error (MSE) of two

linear models predicting TMS at the last visit: a standard

nonimaging model including baseline TMS and CAP score

at the last visit as covariates, and a brain gray matter imaging

biomarker model additionally including the 22 estimated

cortical connections. A ridge penalty was imposed on cortical

connections to minimize overfitting, which is the same as

PREDICT analyses. Leave-one-out R-squared value of the

imaging model was 35.3% compared to the nonimaging model

of 26.7%. Thus, on the independent TRACK-HD study, imag-

ing biomarkers explained 0.32-fold additional variance of the

TMS. In addition, the decrease in the MSE of the imaging

model was 13% (from 0.725 point/year to 0.641 point/year).

The results show that the identified cortical connections

are useful in predicting follow-up TMS in an independent

HD study.

We also compared our method with FGL. The cohort was

first classified into a high-risk and low-risk classes based

on median split of the CAP score. The 22 cortical connec-

tions were recalibrated through FGL with tuning parameters

selected by Akaike information criterion (AIC). The leave-

one-out R-squared value of the imaging biomarker model was

only 28.1% and the MSE was 0.711 point/year, which suggests

that using our method to estimate subject-specific connections

explains more variance in TMS.

4.4 Biological implications and insights

We compared the obtained gray matter networks with the

white matter connectivity networks obtained on the TRACK-

HD (McColgan et al., 2017). Highly similar patterns are

observed between our gray matter connection study and

the white matter connectivity study, which suggest a shared

underlying mechanism of HD. These results address an impor-

tant biological question of whether white matter loss is a direct

result of neuronal loss or loss of myelin or dysmyelination.

The shared patterns support the former hypothesis. The details

are in Web Appendix G.

5 DISCUSSION

In this work, we propose a two-stage method to estimate a

subject-dependent network from conditional Gaussian graph-

ical model and evaluate the incremental effect of the network

measures on a clinical outcome. Our method can simultane-

ously handle biomarkers and the between-subject heterogene-

ity of the biomarker network measures using covariates. Our

analyses results suggest that brain cortical gray matter net-

work connections are predictive of HD motor impairment in

addition to regional atrophy and other HD risk factors.

Several extensions can be considered. Similar to

neighborhood-based methods for graph selection

(Meinshausen and Bühlmann, 2006; Peng et al., 2009),

our method is computationally attractive but cannot guar-

antee precision matrix to be positive-definite. We do not

include such a constraint because our goal is to extract useful

features from the network to predict clinical outcomes instead



of estimating the joint distribution of nodes. To ensure

the positive definiteness of the estimated precision matrix,

one can replace current neighborhood-based method with

global likelihood-based approach along the line of graph-

ical lasso that automatically guarantees positive-definite

(Friedman et al., 2008; Tibshirani et al., 2015) or impose a

positive-definite constraint to our algorithm, but at the cost of

computational complexity. In the subject-dependent network

model (1), we assume that network structure is homogeneous

in the whole population because in our application, sub-

jects were recruited at a similar clinical stage (premanifest

stage). For other applications, to obtain subject-specific

network structure, we can further extend our method to

select network edges based on subject-specific connection

strength.
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