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Abstract
It is an important and yet challenging task to identify true signals from many adverse

events that may be reported during the course of a clinical trial. One unique feature

of drug safety data from clinical trials, unlike data from post-marketing spontaneous

reporting, is that many types of adverse events are reported by only very few patients

leading to rare events. Due to the limited study size, the 𝑝-values of testing whether the

rate is higher in the treatment group across all types of adverse events are in general

not uniformly distributed under the null hypothesis that there is no difference between

the treatment group and the placebo group. A consequence is that typically fewer

than 100𝛼 percent of the hypotheses are rejected under the null at the nominal sig-

nificance level of 𝛼. The other challenge is multiplicity control. Adverse events from

the same body system may be correlated. There may also be correlations between

adverse events from different body systems. To tackle these challenging issues,

we develop Monte-Carlo-based methods for the signal identification from patient-

reported adverse events in clinical trials. The proposed methodologies account for the

rare events and arbitrary correlation structures among adverse events within and/or

between body systems. Extensive simulation studies demonstrate that the proposed

method can accurately control the family-wise error rate and is more powerful than

existing methods under many practical situations. Application to two real examples

is provided.
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1 INTRODUCTION

Assuring the safety of human drug products has been a key

component of the mission of the Food and Drug Adminis-

tration (FDA). Drug safety is typically studied and evaluated

in clinical trials. Across the clinical development program,

it is a continuous effort and mandatory to collect safety data

including patient-reported adverse events (AEs). For example,

serious cardiac AEs are closely monitored for investigative

diabetes drugs (Food and Drug Administration, 2008); or seri-

ous vaccine related AEs are monitored throughout the study

for vaccines (Mehrotra and Heyse, 2004a). Patient-reported

AEs are often grouped into different body systems (BSs) or

system organ classes (SOCs). Examples of common SOCs

include cardiac disorders, gastrointestinal disorders, infec-

tions and infestations, nervous systems, renal and urinary,

and respiratory systems, etc. The detailed SOC listing is

maintained by Medical Dictionary for Regulatory Activities
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(MedDRA, 2018). An important task in drug safety analysis

is to identify true AEs from many possible AEs that may be

reported (Jiang and Snapinn, 2016; Wang et al., 2018).

To detect drug safety signals, two types of data arise in

practice: data from spontaneous reporting (SR) and data from

clinical trials. In spontaneous reporting, health professionals

or patients report suspected harm from a medicine to their

local or national drug administration. Such data are often

stored in some databases. For example, the Vaccine Adverse

Event Reporting System (VAERS), which is co-sponsored by

the FDA and the Centers for Disease Control and Preven-

tion (CDC), collects AEs that occur after the administration

of US licensed vaccines. The FDA Adverse Event Reporting

System (FAERS) is a database that contains AE reports, med-

ication error reports and product quality complaints resulting

in AEs that were submitted to FDA. Data from such databases

include many different drugs and many different types of AEs

across different SOCs. Various methods have been developed

for safety signal detection (or detection of drug-AE pairs)

using data from SR; for example, proportional reporting ratios

(Evans et al., 2001), reporting odds ratios (Rothman et al.,

2004), the likelihood ratio tests (Huang et al., 2014, 2011,

2013, 2017; Nam et al., 2017; Zhao et al., 2018), and Bayesian

methods (Bate et al., 1998; DuMouchel, 1999; DuMouchel

and Pregibon, 2001; Norén et al., 2006; Hu et al., 2015).

On the other hand, in clinical trials, patients are typically

randomly allocated to a treatment group and a placebo (con-

trol) group. During the course of the clinical trials, adverse

events will be reported to the investigators. The interest is to

know whether the risk of an AE is higher in the treatment

group than the placebo group. Classical statistical tests such

as Fisher’s exact test, Pearson’s chi-square test, and chi-square

test for comparison of event rates can be used to perform

hypothesis testing for each possible AE (Miettinen and Nur-

minen, 1985). More recently, Bayesian hierarchical mixture

models and their variations have been developed for detect-

ing safety signals in clinical trials (Berry and Berry, 2004;

Xia et al., 2011, DuMouchel, 2012; Price et al., 2014; Odani

et al., 2017).

An important issue in drug safety signal detection is mul-

tiplicity. Failing to adjust for multiple testing can yield an

abundance of false positive results. The Bonferroni correc-

tion can control the family-wise error rate (FWER); however

this procedure assumes that all AE terms are mutually inde-

pendent and therefore can be overly conservative. Benjamini

and Hochberg (1995) introduced the concept of false discov-

ery rate (FDR) and the so-called BH procedure to control

FDR based on sequential Bonferroni-type adjustment. Sev-

eral variations of FDR have been proposed in literature, see

for example, pFDR (Storey, 2002) and DFDR (Mehrotra and

Heyse, 2004b; Mehrotra and Adewale, 2012). FDR-based

methods for drug safety signal detection have been discussed

in Ahmed et al. (2010, 2012). Huang et al. (2011) proposed

likelihood ratio test methods to handle the multiplicity issue

using gate keep procedures and Monte Carlo simulations.

Chen et al. (2015) compared the performance of various meth-

ods for SR data and clinical trial data through simulation

studies.

Essentially none of the above procedures accounts for pos-

sible correlations among the risks of AEs within the same

SOC or across different SOCs. To account for such corre-

lations, one can incorporate correlations by using random

effects without specifying the correlation structure; however,

inference of the unknown parameters under the random effects

model involves high-dimensional integrals and the computa-

tion is intensive especially when the total number of AE terms

is large. An alternative approach is the permutation resam-

pling approach by shuffling the treatment assignments. How-

ever, the permutation approach is computationally demand-

ing since repeated analysis over the permuted data sets is

needed. The computation can be infeasible when the num-

ber of hypotheses is large and the analysis of each data set

is time-consuming. Furthermore, the permutation approach

requires complete exchangeability under the null hypothesis,

which may not be satisfied in practice.

Furthermore, unlike data from SR, in clinical trials for

many AE terms only very few patients experience the events,

leading to rare events. As is shown in the Web Appendix A,

due to the limited study size, the 𝑝-values of testing whether

the rate is higher in the treatment group across all AE terms are

in general not uniformly distributed between 0 and 1 under the

null hypothesis. Particularly, with rare events, the distribution

of the 𝑝-values under the null hypothesis is highly left skewed.

Consequently, fewer than 100𝛼 percent of the hypotheses are

rejected under the null at the nominal significance level of

𝛼 and methods using large sample approximations may not

perform well.

Recently, in the context of genome-wise associate stud-

ies (GWAS), Diao and Vidyashankar (2013) and Diao et al.

(2014) developed Monte-Carlo-based procedures to account

for multiplicity in the identification of genes that impact a

certain phenotype. These procedures allow arbitrary corre-

lations among the single nucleotide polymorphisms (SNPs)

across the whole genome and are shown to be substantially

more powerful than other existing methods. Unlike in GWAS

where there are high-dimensional covariates (i.e., SNPs), in

the drug safety analysis, we have high-dimensional outcomes

from different types of AEs while there is only one covari-

ate involved (i.e., the treatment indicator). In this paper, we

develop Monte-Carlo-based procedures for the detection of

drug safety signals which can account for both rare events and

multiplicity.

The rest of the paper is organized as follows. In Section 2,

we describe the Monte-Carlo procedure for signal detection.

Extensive simulation studies examining the finite-sample per-

formance of the proposed method are conducted in Section



3. Applications to two real examples are provided in Section

4. We conclude the paper with some discussions and future

research in Section 5.

2 METHODS

Suppose that there are 𝐵 BSs, with 𝑘𝑏 AE terms for BS 𝑏.

The 𝑗th type within BS 𝑏 is labeled as 𝐴𝑏𝑗 , 𝑏 = 1,… , 𝐵 and

𝑗 = 1,… , 𝑘𝑏. Suppose that there are 𝑛 independent subjects,

𝑛0 of which are in the control group and the remaining 𝑛1 =
𝑛 − 𝑛0 subjects are in the treatment group. For 𝑖 = 1,… , 𝑛,

we define 𝑋𝑖 as the treatment indicator taking value 0 for the

control group and 1 for the treatment group, and 𝑌𝑖𝑏𝑗 = 1 (𝑏 =
1,… , 𝐵; 𝑗 = 1,… , 𝑘𝑏) if subject 𝑖 experiences the 𝑗th type

AE in the 𝑏th BS and 0 otherwise. We assume that the time at

risk for all patients are the same although this assumption can

be relaxed; some discussions are provided in Section 5.

Our objective is to detect the AEs that have higher rates

in the treatment group than in the placebo group. Multiple

comparisons arise as there are 𝑀 =
∑𝐵

𝑏=1 𝑘𝑏 AE terms and

the occurrences of certain AE terms may be correlated. Stan-

dard methods may lead to inflated type I error rates without

appropriate multiple comparison adjustment. On the other

hand, Bonferroni correction is known to be conservative in

the presence of correlations.

We consider the following logistic regression model for

each AE:

log
𝑃 (𝑌𝑖𝑏𝑗 = 1|𝑋𝑖)
𝑃 (𝑌𝑖𝑏𝑗 = 0|𝑋𝑖)

= 𝛼𝑏𝑗 + 𝛽𝑏𝑗𝑋𝑖, 𝑖 = 1,… , 𝑛;

𝑏 = 1,… , 𝐵; 𝑗 = 1,… , 𝑘𝑏.

To test the null hypothesis of 𝛽𝑏𝑗 = 0, we can use the stan-

dard likelihood ratio test, the Wald test, or the score test.

All three test statistics have the same asymptotic distribution.

Additionally, we can show that, under the null hypothesis, the

likelihood ratio test statistic can be represented in the form

𝑈2
𝑏𝑗
∕𝑉𝑏𝑗 + 𝑜𝑝(1), where 𝑈𝑏𝑗 =

∑𝑛
𝑖=1 𝑈𝑖𝑏𝑗 , 𝑉𝑏𝑗 =

∑𝑛
𝑖=1 𝑈

2
𝑖𝑏𝑗

,

𝑈𝑖𝑏𝑗 = (𝑌𝑖𝑏𝑗 − 𝜋𝑏𝑗)(𝑋𝑖 − �̄�), and �̄� = 𝑛−1
∑𝑛

𝑖=1 𝑋𝑖. Here

𝜋𝑏𝑗 is the AE rate under the null hypothesis and can be esti-

mated by 𝜋𝑏𝑗 =
∑𝑛

𝑖=1 𝑌𝑖𝑏𝑗∕𝑛. Write 𝑊𝑏𝑗 = 𝑈𝑏𝑗∕
√

𝑉𝑏𝑗 . For

fixed 𝑏 and 𝑗, 𝑊𝑏𝑗 converges to a standard normal distribu-

tion under the null hypothesis. Furthermore, the correlation

between 𝑊𝑏𝑗 and 𝑊𝑏′𝑗′ can be consistently estimated by∑𝑛
𝑖=1 𝑈𝑖𝑏𝑗𝑈𝑖𝑏′𝑗′∕

√
𝑉𝑏𝑗𝑉𝑏′𝑗′ , where 𝑈𝑖𝑏𝑗 = (𝑌𝑖𝑏𝑗 − 𝜋𝑖𝑏𝑗)(𝑋𝑖 −

�̄�) and 𝑉𝑏𝑗 =
∑𝑛

𝑖=1 𝑈
2
𝑖𝑏𝑗

. It is worth to note that the above for-

mulation allows us to account for correlations among AEs not

only from the same BS but also from different BSs.

When the number of AE terms is small, we can estimate

the correlations of the test statistics and then draw samples

from the joint null distribution of the test statistics. However,

in most applications, 𝑀 is large and possibly greater than

sample size 𝑛. In this case, we can adopt the multiplier boot-

strap procedure using the Rademacher sequence as described

in Diao et al. (2014).

We now consider a sequence of i.i.d. random variables

𝐆 ≡ (𝐺1,… , 𝐺𝑛) independent of the data with 𝐸(𝐺1) = 0 and

Var(𝐺1) = 1. It can be shown that under the null hypothesis,

given the observed data, 𝑊𝑏𝑗(𝐆) ≡
∑𝑛

𝑖=1 𝑈𝑖𝑏𝑗𝐺𝑖∕
√

𝑉𝑏𝑗 →
𝑁 (0, 1) . Furthermore, conditional on the observed data,

Cov{𝑊𝑏𝑗(𝐆),𝑊𝑏′𝑗′ (𝐆)} =
∑𝑛

𝑖=1 𝑈𝑖𝑏𝑗𝑈𝑖𝑏′𝑗′∕
√

𝑉𝑏𝑗𝑉𝑏′𝑗′ .

Therefore, given the observed data, the conditional joint

distribution of {𝑊𝑏𝑗(𝐆) ∶ 𝑏 = 1,… , 𝐵; 𝑗 = 1,… , 𝑘𝑏}
can be used to approximate the joint null distribu-

tion of {𝑊𝑏𝑗 ∶ 𝑏 = 1,… , 𝐵; 𝑗 = 1,… , 𝑘𝑏}, where

𝑊𝑏𝑗 =
∑𝑛

𝑖=1 𝑈𝑖𝑏𝑗∕
√

𝑉𝑏𝑗 .

While it is challenging to derive the analytic form of the

joint distribution of the test statistics, based on the above

results, one can generate a large number of realizations

from the joint (conditional) distribution of {𝑊𝑏𝑗(𝐆) ∶ 𝑏 =
1,… , 𝐵; 𝑗 = 1,… , 𝑘𝑏} by generating a large number of ran-

dom sequences of (𝐺1,… , 𝐺𝑛). The subsequent inference is

based on these realizations.

Several choices of the distribution of 𝐺𝑖 are available; for

example, Diao et al. (2004) and Lin (2005) considered the

standard normal distribution. Empirical studies by Diao et al.

(2014) suggested that the choice of Rademacher sequence, in

which 𝑃 (𝐺𝑖 = 1) = 𝑃 (𝐺𝑖 = −1) = 1∕2, performs well espe-

cially when 𝑀 ≫ 𝑛. Furthermore, for a multiplier process

𝑛−1∕2
∑𝑛

𝑖=1 𝑍𝑖𝐺𝑖, where 𝑍𝑖’s are i.i.d. random variables and

𝑍𝑖 and 𝐺𝑖 are independent, a Rademacher sequence preserves

variance and other even moments and hence can lead to more

accurate higher order approximations. More discussions on

the properties of the Rademacher sequence can be found in

Koltchinskii (2006) and Tao (2009).

We describe the multiplier bootstrap procedure using the

Rademacher sequence to control for the FWER as follows:

1. For 𝑙 = 1,… , 𝐿, generate i.i.d. Rademacher random vari-

ables {𝐺(𝑙)
1 ,… , 𝐺

(𝑙)
𝑛 }, which are independent of the data.

2. Calculate 𝑈
(𝑙)
𝑏𝑗

=
∑𝑛

𝑖=1 𝑈𝑖𝑏𝑗𝐺
(𝑙)
𝑖

and 𝑊
(𝑙)
𝑏𝑗

= 𝑈
(𝑙)
𝑏𝑗
∕
√

𝑉𝑏𝑗 .

Define 𝐖(𝑙) = (𝑊 (𝑙)
11 ,… ,𝑊

(𝑙)
𝐵𝑘𝐵

).
3. For a given FWER 𝛼, compute the 1−𝛼 sample quantile of

{||𝐖(𝑙)||∞, 𝑙 = 1,… , 𝐿}, where ||𝐖(𝑙)||∞ = sup{𝑊 (𝑙)
𝑏𝑗

∶
𝑏 = 1,… , 𝐵; 𝑗 = 1,… , 𝑘𝑏}. Reject the null hypothesis if||𝐖||∞ exceeds this threshold, where 𝐖 = {𝑊𝑏𝑗 ∶ 𝑏 =
1,… , 𝐵; 𝑗 = 1,… , 𝑘𝑏}.

In step 3, we can also calculate (an estimate of) the

multiple testing adjusted 𝑝-value given as the proportion of

{||𝐖(𝑙)||∞ ∶ 𝑙 = 1,… , 𝐿} that are greater than or equal to||𝐖||∞. The standard error of the 𝑝-value estimate is bounded



from above by
√

𝑝(1 − 𝑝)∕𝐿 ≤ 1∕(2
√

𝐿), where 𝑝 is the true

(adjusted) 𝑝-value. Therefore, we can choose the value of 𝐿 to

control the standard error of the 𝑝-value estimate at a specified

level.

Remark 1. The proposed multiplier bootstrap procedure

accounts for arbitrary correlations among the test statistics at

AEs within the same BS or across different BSs.

Remark 2. Since the proposed multiplier bootstrap pro-

cedure is simulation-based, its performance does not rely on

the large sample approximations which require relatively large

sample sizes and event rates away from 0 and 1. Therefore this

procedure is applicable in the presence of rare events as shown

in the numerical studies.

3 SIMULATION STUDIES

We conduct extensive simulation studies to examine the per-

formance of the proposed procedure to control FWER. We

consider two simulation settings mimicking the two real

examples in Section 4: one from a vaccine trial (Example One)

and the other from an anti-depression trial (Example Two).

In the first simulation setting, there are eight BSs. The corre-

sponding numbers of AEs are 5, 7, 1, 1, 3, 11, 9, and 3. In

the second simulation setting, there are twenty-one BSs, with

1, 9, 1, 7, 1, 10, 43, 27, 2, 28, 13, 15, 4, 24, 47, 41, 10, 18,

19, 25, and 6 AE terms in BSs 1-21, respectively. We use the

observed proportion of event data for each AE in the com-

bined data to generate data for the control group. In Example
One, the observed proportion of event ranges from 0.008 to

0.490 with a median of 0.019 and a third quartile of 0.087. In

Example Two, the observed proportion of event ranges from

0.002 to 0.214 with a median of 0.002 and a third quartile of

0.006. In particular, for 206 AE terms, the event rate is less

than or equal to 0.002.

To generate correlated binary data, we first

generate a multivariate normal vector 𝐙 ≡

(𝑍11,… , 𝑍1𝑘1 ,… , 𝑍𝐵1,… , 𝑍𝐵𝑘𝐵
) ∼ 𝑁(𝟎,𝚺), where 𝚺

is a variance-covariance matrix. All the diagonal elements of

𝚺 are equal to one. We then determine 𝐘 by

𝑌𝑏𝑗 =

{
1, if 𝑍𝑏𝑗 ≤ Φ−1(𝑝𝑏𝑗)
0, otherwise

,

where 𝑝𝑏𝑗 is the event rate for the 𝑗th AE in the 𝑏th BS, Φ(⋅)
is the cumulative distribution function of 𝑁(0, 1) and Φ−1(⋅)
is its inverse function.

We consider different values for the variance-covariance

matrix 𝚺. Specifically, we assume that 𝚺 depends on two

parameters: the correlation coefficient among AEs from the

same BS and the correlation coefficient among AEs across

different BSs. Specifically, we let

Cov(𝑍𝑏𝑗,𝑍𝑏′𝑘) =

{
𝜌, 𝑏 = 𝑏′, 𝑗 ≠ 𝑘

𝑟, 𝑏 ≠ 𝑏′
.

We consider seven different pairs of (𝜌, 𝑟):
(0, 0), (0.3, 0), (0.6, 0), (0.9, 0), (0.3, 0.15), (0.6, 0.3), and

(0.9, 0.45). For the first scenario, all AEs are mutually inde-

pendent. For scenarios 2–4, there are within-BS correlations

whereas AEs from different BSs are independent. For scenar-

ios 5–7, all AEs are correlated; however, AEs from the same

BS have higher correlations than AEs from different BSs.

We consider sample sizes of 50 and 100 in each treatment

group. All results are based on 1,000 replicates with 10,000

Rademacher sequences for each replicate.

We examine the performance of the proposed multiplier

bootstrap method using Rademacher sequences for control-

ling the FWER. For comparison, we also consider the Bon-

ferroni correction procedure and the permutation procedure

using the Fisher’s exact test and score-type test described in

Section 2. For Bonferroni correction procedures, we first cal-

culate the un-adjusted 𝑝-values and then compare them with

𝛼∕𝑀 , where 𝛼 is the nominal significance level and 𝑀 is the

previously-defined total number of AE terms across all BSs.

The permutation tests are based on 10,000 permuted samples.

All tests are one-sided testing whether the event rate is higher

in the treatment group than in the control group. We reject the

null hypothesis if at least one AE is detected.

Table 1 presents the type I error rates at the significance

level of 0.05 for simulation settings based on Example One
and Example Two. In all cases, both the proposed method and

the permutation methods have accurate control of the FWER,

whereas the Bonferroni correction yields conservative results,

especially with the Fisher’s exact test. As expected, the Bon-

ferroni correction is more conservative when the number of

AE terms is large. We also compare the computation complex-

ity of the proposed method with the permutation methods. On

average, the proposed test is about 5 times faster than the per-

mutation method using the score-type test and 6 times faster

than the permutation method using the Fisher’s exact test. One

would see even more computational advantage of the pro-

posed method over the permutation methods when analyzing

each permuted data set involves iterative procedures.

For the alternative hypothesis, we increase the event rate

by 0.1 for the first and twenty first AEs in the treatment group.

The event rates at these two AE terms for settings based on

Example One are 0.402 and 0.087 in the control group. The

corresponding relative risks at these two AE terms are 1.248

and 2.148. For settings based on Example Two, both event

rates at these two AE terms are 0.002 in the control group lead-

ing to relative risks of 47.8. Table 2 presents the powers at the

significance level of 0.05. Table 3 presents the corresponding



TABLE 1 Type I error rates for detecting at least one AE at the nominal significance level of 0.05 based on 1,000 replicates.

𝑛 𝜌 𝑟 Bonf. (Fisher) Bonf. (Score) Perm. (Fisher) Perm. (Score) Proposed
Simulation settings mimicking Example One

100 0 0 0.006 0.017 0.058 0.055 0.060

0.3 0 0.002 0.017 0.048 0.047 0.050

0.6 0 0.004 0.014 0.045 0.047 0.045

0.9 0 0.004 0.012 0.042 0.039 0.043

0.3 0.15 0.004 0.015 0.05 0.048 0.050

0.6 0.3 < 0.001 0.008 0.044 0.048 0.046

0.9 0.45 0.001 0.008 0.026 0.028 0.030

200 0 0 0.003 0.019 0.051 0.056 0.051

0.3 0 0.007 0.019 0.040 0.047 0.042

0.6 0 0.004 0.021 0.047 0.047 0.045

0.9 0 0.006 0.013 0.037 0.037 0.036

0.3 0.15 0.011 0.020 0.049 0.052 0.052

0.6 0.3 0.009 0.021 0.053 0.056 0.054

0.9 0.45 0.005 0.016 0.052 0.058 0.053

Simulation settings mimicking Example Two
100 0 0 < 0.001 0.003 0.049 0.044 0.056

0.3 0 < 0.001 0.001 0.042 0.042 0.052

0.6 0 < 0.001 0.001 0.054 0.055 0.066

0.9 0 < 0.001 0.001 0.049 0.049 0.049

0.3 0.15 0.001 0.001 0.041 0.046 0.047

0.6 0.3 < 0.001 < 0.001 0.042 0.048 0.056

0.9 0.45 < 0.001 < 0.001 0.048 0.047 0.049

200 0 0 0.001 0.002 0.054 0.062 0.062

0.3 0 0.001 0.003 0.044 0.052 0.046

0.6 0 0.002 0.004 0.053 0.061 0.059

0.9 0 < 0.001 0.002 0.044 0.050 0.044

0.3 0.15 < 0.001 0.002 0.043 0.050 0.046

0.6 0.3 < 0.001 0.002 0.045 0.055 0.054

0.9 0.45 0.001 0.002 0.031 0.039 0.036

sensitivities for the tests. Here sensitivity is defined as the pro-

portion of correct decisions for the two true signals. For the

permutation methods and the proposed method, sensitivity is∑𝑁
𝑗=1{𝐼(𝑝𝑗,1 < 0.05) + 𝐼(𝑝𝑗,21 < 0.05)}∕(2𝑁), where 𝑝𝑗,𝑘 is

the estimated adjusted 𝑝-value for the 𝑘th AE from the 𝑗th

replicate, respectively, and 𝑁 is the total number of replicates.

For the methods using the Bonferroni correction, sensitiv-

ity is
∑𝑁

𝑗=1{𝐼(𝑝𝑗,1 < 0.05∕𝑀) + 𝐼(𝑝𝑗,21 < 0.05∕𝑀)}∕(2𝑁),
where 𝑝𝑗,𝑘 is the un-adjusted 𝑝-value for the 𝑘th AE from the

𝑗th replicate. As expected, the Bonferroni correction methods

perform very poorly with very low powers and sensitivities

especially when the number of AEs is large. For settings mim-

icking Example One, the performance of the proposed test and

the permutation tests are comparable; however, the proposed

multiplier method is much more powerful than its permutation

counterparts under the simulation setting mimicking Exam-
ple Two with sample size 𝑛 = 100, in which there are a large

number of AEs with rare events. These results suggest that the

permutation tests may lose power compared to the proposed

method when there are rare events and sample size is small.

The powers/sensitivities appear to be low under some simu-

lation settings due to either small sample sizes or small effect

sizes. As the sample size or effect size increases, we achieve

better powers/sensitivities.

For every method under consideration, we also calculated

the specificity, which is defined as the proportion of correct

decisions for the 𝑀 − 2 AEs such that the null hypothesis is

true. For the permutation methods and the proposed method,

specificity is defined as
∑𝑁

𝑗=1
∑

1≤𝑘≤𝑀,𝑘≠1,𝑘≠21 𝐼(𝑝𝑗,𝑘 ≥

0.05)∕{(𝑀 − 2)𝑁)}; for the methods using the

Bonferroni correction, specificity is defined as∑𝑁
𝑗=1

∑
1≤𝑘≤𝑀,𝑘≠1,𝑘≠21 𝐼(𝑝𝑗,𝑘 ≥ 0.05∕𝑀)∕{(𝑀 − 2)𝑁)}. In

all simulation settings, the specificities for every method are

greater than 0.999 suggesting low false positive rates.

We conduct additional simulation studies under different

settings of the correlation structure of the AE terms. The

results are presented in Web Appendix B. The conclusions

from the new simulations remain the same.

4 APPLICATION

We apply the proposed method to two real clinical trials. In

both examples, we generated 100,000 Rademacher sequences



TABLE 2 Powers for detecting at least one AE at the nominal significance level of 0.05 based on 1,000 replicates.

𝑛 𝜌 𝑟 Bonf. (Fisher) Bonf. (Score) Perm. (Fisher) Perm. (Score) Proposed
Simulation settings mimicking Example One

100 0 0 0.034 0.091 0.200 0.201 0.211

0.3 0 0.036 0.094 0.189 0.178 0.190

0.6 0 0.032 0.072 0.183 0.190 0.190

0.9 0 0.035 0.076 0.183 0.181 0.190

0.3 0.15 0.029 0.077 0.186 0.188 0.193

0.6 0.3 0.029 0.070 0.177 0.179 0.180

0.9 0.45 0.028 0.072 0.161 0.147 0.152

200 0 0 0.161 0.229 0.384 0.378 0.379

0.3 0 0.159 0.221 0.372 0.363 0.358

0.6 0 0.140 0.217 0.372 0.359 0.361

0.9 0 0.151 0.198 0.344 0.340 0.337

0.3 0.15 0.147 0.219 0.374 0.366 0.364

0.6 0.3 0.151 0.215 0.364 0.353 0.350

0.9 0.45 0.159 0.221 0.360 0.354 0.356

Simulation settings mimicking Example Two
100 0 0 0.009 0.055 0.450 0.465 0.577

0.3 0 0.006 0.043 0.459 0.477 0.592

0.6 0 0.007 0.047 0.458 0.480 0.592

0.9 0 0.006 0.048 0.500 0.541 0.633

0.3 0.15 0.006 0.054 0.457 0.484 0.589

0.6 0.3 0.009 0.049 0.458 0.486 0.575

0.9 0.45 0.007 0.041 0.503 0.561 0.614

200 0 0 0.327 0.631 0.947 0.981 0.973

0.3 0 0.320 0.608 0.946 0.978 0.972

0.6 0 0.322 0.613 0.958 0.978 0.972

0.9 0 0.353 0.615 0.966 0.984 0.980

0.3 0.15 0.330 0.597 0.948 0.975 0.967

0.6 0.3 0.326 0.593 0.940 0.964 0.958

0.9 0.45 0.310 0.576 0.953 0.970 0.970

for the proposed method and 100,000 permuted samples for

the permutation methods.

4.1 Example one: safety analysis for a
vaccine trial
We first illustrate the proposed method using the safety data

collected from a vaccine trial. The data were published by

Mehrotra and Heyse (2004a). The trial randomized healthy

toddlers aged 12–18 months into a quadrivalent vaccine

containing measles, mumps, rubella, and varicella (MMRV)

administrated on day 0, or a tri-valent vaccine containing

measles, mumps and rubella (MMR) administrated on day

0 followed by varicella (V) on day 42. The primary safety

comparison was between the combination vaccine MMRV

and the separate administration of varicella (control group),

i.e., adverse experiences observed in the MMRV group during

days 0–42 and that observed following the varicella vaccina-

tion (days 42–84). A total of 280 subjects were included in

the data set (148 in the MMRV group, and 132 in the control

group). Overall, there were 40 different AE terms involving 8

BSs.

Figures 3(a) and 3(b) in Web Appendix C present the

heat maps of Spearman’s correlation matrices of the raw

outcome data and the proposed test statistics across the 40

AEs, respectively. It appears that the proposed method can

capture the correlations across all AEs well. By using the pro-

posed method, the adjusted 𝑝-value is 0.834 at the AE with

the smallest 𝑝-value. Similar results were obtained from the

permutation methods. The adjusted 𝑝-values are 0.855 and

0.767, respectively, corresponding to the permutation meth-

ods with the Fisher’s exact test and the score-type test. Figure

3(c) in Web Appendix C displays the adjusted 𝑝-values and

no significant signals were detected using either of the three

methods.

4.2 Example two: safety analysis for an
anti-depression trial
We now apply the proposed method to an anti-depression clin-

ical trial for substance-p antagonist aprepitant (Keller et al.,

2006). In this trial, 468 patients aged 18 years or older with a

documented diagnosis of major depression disorder were ran-

domized in approximately equal ratios to receive aprepitant



TABLE 3 Sensitivity based on 1,000 replicates.

𝑛 𝜌 𝑟 Bonf. (Fisher) Bonf. (Score) Perm. (Fisher) Perm. (Score) Proposed
Simulation settings mimicking Example One

100 0 0 0.014 0.038 0.080 0.080 0.084

0.3 0 0.017 0.040 0.081 0.076 0.082

0.6 0 0.014 0.031 0.079 0.082 0.082

0.9 0 0.016 0.034 0.084 0.083 0.086

0.3 0.15 0.012 0.033 0.080 0.080 0.083

0.6 0.3 0.014 0.034 0.081 0.080 0.083

0.9 0.45 0.014 0.036 0.084 0.077 0.080

200 0 0 0.082 0.114 0.194 0.188 0.192

0.3 0 0.078 0.109 0.194 0.185 0.184

0.6 0 0.069 0.103 0.188 0.181 0.182

0.9 0 0.074 0.098 0.178 0.173 0.172

0.3 0.15 0.073 0.110 0.198 0.190 0.190

0.6 0.3 0.076 0.110 0.193 0.187 0.185

0.9 0.45 0.080 0.113 0.198 0.194 0.194

Simulation settings mimicking Example Two
100 0 0 0.004 0.026 0.242 0.256 0.330

0.3 0 0.003 0.021 0.249 0.264 0.340

0.6 0 0.004 0.023 0.248 0.264 0.351

0.9 0 0.003 0.024 0.272 0.306 0.376

0.3 0.15 0.002 0.026 0.254 0.270 0.347

0.6 0.3 0.004 0.024 0.259 0.278 0.347

0.9 0.45 0.004 0.020 0.294 0.337 0.384

200 0 0 0.179 0.390 0.776 0.844 0.827

0.3 0 0.175 0.372 0.766 0.839 0.819

0.6 0 0.178 0.374 0.774 0.829 0.814

0.9 0 0.194 0.382 0.784 0.840 0.828

0.3 0.15 0.182 0.370 0.775 0.839 0.826

0.6 0.3 0.187 0.376 0.778 0.830 0.816

0.9 0.45 0.178 0.372 0.807 0.844 0.838

160 mg, paroxetine HCl 20 mg, or placebo for a period of 8

weeks. Adverse experiences that occurred during this treat-

ment period were included in the primary safety analysis for

the comparisons. In the data set, 220 patients were in the test

treatment group and 248 patients were in the control group.

Of the 468 patients in the study, 364 patients reported at least

one AEs. A total of 351 different AE teams were reported in

21 BSs. In this data set, for many AE terms, the number of

observed events is very small. In the placebo arm, no patients

experienced any event for 133 AE terms and only one event

was observed for 146 AE terms; in the treatment arm, there

were no observed events for 114 AE terms and there was only

one observed event for 145 AE terms.

Figures 5(a) and 5(b) in Web Appendix C present the

heat maps of Spearman’s correlation matrices of the raw

outcome data and the proposed test statistics across the 351

AEs, respectively. It appears that most AEs are independent.

The proposed method was able to capture those AE pairs

with noticeable correlations. All three methods detected the

same signals at at AE #42 Dry mouth and AE #59 Nausea.

The adjusted 𝑝-values were 0.017, 0.015, 0.013 for AE #42,

and 0.031, 0.020, 0.020 for AE #59, corresponding to the

proposed method, the permutation methods with the Fisher’s

exact test and the score-type test, respectively. Figure 5(c)

in Web Appendix C displays the adjusted 𝑝-values. On the

other hand, no tests using the Bonferroni correction detect

any signals.

5 DISCUSSION

This paper proposes an efficient method for drug safety signal

detection from correlated AEs in clinical trials. The advan-

tages of the proposed multiplier bootstrap method for con-

trolling the FWER are twofold. First, the proposed method

allows for arbitrary correlation structures of the test statis-

tics within the same BS and across different BSs. Second, the

proposed method is simulation-based and thus less sensitive

to rare events than methods relying on large sample theories.

Additionally, compared to the permutation method, the pro-

posed method is computationally more efficient and appears to

have superior power to detect the true signals with rare events

and small samples based on empirical studies.

We have considered binary outcomes whether a sub-

ject experiences an AE from a certain BS. An underlying

assumption is that all patients have the same exposure time.



Furthermore, patients with multiple occurrences of an AE are

treated the same as patients who experience the AE only once.

In many studies, patients may have different exposure times to

the treatment and they may experience an AE multiple times.

Failing to account for varying exposure times or utilize all the

available information may result in loss of statistical power

for detecting AE signals. As a future topic, we will consider

several regression models including the Poisson model, the

negative binomial model, and zero-inflated models and then

apply the proposed Monte-Carlo method for multiple testing

adjustment.

It is possible that the adverse reaction to a drug is impacted

by some factors such as age, gender, ethnicity, etc. To account

for the confounding effects of these factors, one may include

them as covariates in a regression model. Following Diao

et al. (2014), we can derive the efficient influence function

for the parameter of interest, i.e., the treatment effect and

then apply the proposed multiplier bootstrap method using

Rademacher sequences. Since iterative procedures are needed

to analyze each permuted data set, the permutation method

can be computationally very intensive. On the other hand, the

proposed multiplier bootstrap method only involves the anal-

ysis once for each AE and therefore is computationally much

more efficient than the permutation method.

Recently, Segal et al. (2018) proposed an asymptotic

approximation and a resampling algorithm for quickly esti-

mating small permutation 𝑝-values in two-sample tests. The

authors showed that their proposed algorithm is more compu-

tationally efficient than standard alternatives, particularly for

extremely small 𝑝-values. In our application, due to the nature

of rare events and small to moderate large sample sizes, in

general the 𝑝-values are not small. It would be interesting to

apply this method to our setting in a future research project.

The proposed method is developed for drug safety data

from clinical trials in which the individual-level data are avail-

able and there are two treatment groups. In some clinical

trials, there are more than two treatment groups or multiple

dose levels. The proposed method can be extended to incor-

porate such scenarios. Suppose that there are 𝐾 + 1 treatment

groups including the control group. The variable 𝑋𝑖 takes

value 0 for the control group and value 𝑘 for the 𝑘th treat-

ment or dose level, 𝑘 = 1,… , 𝐾 . We consider the following

logistic regression model for each AE with the control group

as the reference level:

log
𝑃 (𝑌𝑖𝑏𝑗 = 1|𝑋𝑖)
𝑃 (𝑌𝑖𝑏𝑗 = 0|𝑋𝑖)

= 𝛼𝑏𝑗 +
𝐾∑

𝑘=1
𝛽𝑏𝑗𝑘𝐼(𝑋𝑖 = 𝑘),

𝑖 = 1,… , 𝑛; 𝑏 = 1,… , 𝐵; 𝑗 = 1,… , 𝑘𝑏,

where 𝐼(⋅) is the indicator function. We are interested in test-

ing the null hypotheses 𝛽𝑏𝑗1 = ⋯ = 𝛽𝑏𝑗𝐾 = 0 for all 𝑏 =
1,… , 𝐵 and 𝑗 = 1,… , 𝑘𝑏. The efficient score for 𝛽𝑏𝑗𝑘 for the

𝑖th subject is then 𝑈𝑖𝑏𝑗𝑘 = (𝑌𝑖𝑏𝑗 − 𝜋𝑏𝑗){𝐼(𝑋𝑖 = 𝑘) − 𝑛𝑘∕𝑛},

where 𝜋𝑏𝑗 is the AE rate under the null hypothesis, and 𝑛𝑘 =∑𝑛
𝑖=1 𝐼(𝑋𝑖 = 𝑘) is the number of patients in the 𝑘th treatment

group. Write 𝐔𝑖𝑏𝑗 = (𝑈𝑖𝑏𝑗1,… , 𝑈𝑖𝑏𝑗𝐾 )𝑇 , 𝐔𝑏𝑗 =
∑𝑛

𝑖=1𝐔𝑖𝑏𝑗 ,

𝐕𝑏𝑗 =
∑𝑛

𝑖=1𝐔𝑖𝑏𝑗𝐔𝑇
𝑖𝑏𝑗

, and 𝑊𝑏𝑗 = 𝐔𝑇
𝑏𝑗
𝐕−1

𝑏𝑗
𝐔𝑏𝑗 . For fixed 𝑏 and

𝑗, 𝑊𝑏𝑗 converges to a chi-square distribution with degrees of

freedom 𝐾 under the null hypothesis. Replacing the unknown

parameter 𝜋𝑏𝑗 with its estimator under the null hypothesis 𝜋𝑏𝑗 ,

we obtain 𝑈𝑖𝑏𝑗𝑘, �̃�𝑖𝑏𝑗 , �̃�𝑏𝑗 , �̃�𝑏𝑗 , and 𝑊𝑏𝑗 . Following Section

2, under the null hypothesis, given the observed data, 𝑊𝑏𝑗 ≡

{
∑𝑛

𝑖=1 �̃�𝑖𝑏𝑗𝐺𝑖}𝑇 �̃�−1
𝑏𝑗
{
∑𝑛

𝑖=1 �̃�𝑖𝑏𝑗𝐺𝑖} also converges to a chi-

square distribution with degrees of freedom 𝐾 for a sequences

of Rademacher random variables 𝐺𝑖, 𝑖 = 1,… , 𝑛. Further-

more, it can be shown that {𝑊𝑏𝑗, 𝑏 = 1,… , 𝐵; 𝑗 = 1,… , 𝑘𝑏}
and {𝑊𝑏𝑗, 𝑏 = 1,… , 𝐵; 𝑗 = 1,… , 𝑘𝑏} (given the observed

data) have the same limiting joint distribution. The same mul-

tiplier bootstrap procedure described in Section 2 then can be

used to control for the FWER.
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