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Abstract

Recurrent events data are commonly encountered in medical studies. In many

applications, only the number of events during the follow‐up period rather than

the recurrent event times is available. Two important challenges arise in such

studies: (a) a substantial portion of subjects may not experience the event, and

(b) we may not observe the event count for the entire study period due to

informative dropout. To address the first challenge, we assume that underlying

population consists of two subpopulations: a subpopulation nonsusceptible to

the event of interest and a subpopulation susceptible to the event of interest. In

the susceptible subpopulation, the event count is assumed to follow a Poisson

distribution given the follow‐up time and the subject‐specific characteristics.

We then introduce a frailty to account for informative dropout. The proposed

semiparametric frailty models consist of three submodels: (a) a logistic

regression model for the probability such that a subject belongs to the

nonsusceptible subpopulation; (b) a nonhomogeneous Poisson process model

with an unspecified baseline rate function; and (c) a Cox model for the

informative dropout time. We develop likelihood‐based estimation and

inference procedures. The maximum likelihood estimators are shown to be

consistent. Additionally, the proposed estimators of the finite‐dimensional

parameters are asymptotically normal and the covariance matrix attains the

semiparametric efficiency bound. Simulation studies demonstrate that the

proposed methodologies perform well in practical situations. We apply the

proposed methods to a clinical trial on patients with myelodysplastic

syndromes.
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1 | INTRODUCTION

Recurrent event data are frequently encountered in
medical studies. Examples of recurrent events include
relapses of multiple sclerosis, admissions to hospitals,
occurrences of red blood transfusions, falls in elderly

patients, migraines, cancer recurrences, and occurrences
of serious infections in clinical trials of acquired
immunodeficiency syndrome prophylaxis. In clinical
trials, it is often of interest to compare the event rate,
defined as the frequency of the events over time, between
the treatment group and the control group.
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Our work is motivated by a phase 2, multicenter,
randomized, double‐blinded clinical trial with low risk or
intermediate myelodysplastic syndromes (MDS) patients
who have severe thrombocytopenia (platelet count
<50 × 109/L). MDS are malignant diseases of bone‐
marrow stem cells due to ineffective hematopoiesis and
dysplastic bone‐marrow morphology (Sloand, 2008). The
disease leads to peripheral‐blood cytopenias and in many

patients, progression to acute myeloid leukemia. Platelet
transfusion interventions are commonly utilized in terms
of bleeding event occurring among these patients. The
main objective of the trial is to evaluate whether the
investigational product reduces the rate of platelet
transfusions and bleeding adverse events reported during
the 26‐week study period.

Several important issues arise from the motivating
example. First, as is shown in Figure 1, an excess portion
of patients have a zero event count (26% and 49% in the
placebo group and the treatment group, respectively).
Particularly there is a spike at zero for the treatment
group. Second, the scatter plot of exposure time vs event
count displayed in Figure 2 suggests that the event rate is
likely not proportional to the exposure time. Moreover,
patients may discontinue the treatment and dropout of
study due to disease progression, death or other types of
adverse events, which are associated with the event of
interest, leading to informative dropout. Finally, in this
trial, only the number of recurrent events during the
follow‐up period rather than the recurrent event times is
available.

When the recurrent event times are observed, there is
a large collection of literature on the analysis of recurrent
event data in the presence of informative follow‐up times.
Cook and Lawless (1997) and Ghosh and Lin (2000; 2002;
2003) proposed marginal models. Alternatively, several
authors proposed to jointly model the recurrent events
and informative follow‐up time through shared frailty or

FIGURE 1 Frequencies of event count data in the placebo
group (upper panel) and the treatment group (lower panel) from
the myelodysplastic syndrome trial

FIGURE 2 Scatter plot of exposure
time vs event count in the placebo group
(upper panel) and the treatment group
(lower panel) from the myelodysplastic
syndrome trial
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random effects models; for example, see Wang et al.
(2001), Huang and Wang (2004), Liu et al. (2004), Ye et al.
(2007), Liu and Huang (2009), Zeng and Lin (2009), Zhao
et al. (2012), and Liu et al. (2016). In particular, Wang
et al. (2001) and Huang and Wang (2004) proposed a
shared frailty model without imposing distributional
assumptions on the frailty. Another attractive feature of
the methods is that the shared frailty is allowed to take
value 0 which corresponds to the nonsusceptible
subpopulation. On the other hand, Liu et al. (2016)
proposed a joint frailty model for zero‐inflated event
count data with informative censoring. The joint model
consists of a logistic model for the probability of cure (i.e.,
the patient will not experience the event of interest), a
proportional rates model for recurrent event among those
“not cured,” and a proportional hazards model for the
terminal event. A shared log‐normal frailty is used to
account for the correlation between the recurrent events
and the terminal event.

All the aforementioned methods assume that the
recurrent event times are available. However, in many
applications including the motivating example, we do not
observe when the recurrent event occurs and instead only
the information on the number of recurrent events
during the follow‐up period is available. None of the
above methods are applicable in such situations. When
only the event count data are available, one can consider
the zero‐inflated Poisson model (Lambert, 1992; Long,
1997; Cameron and Trivedi, 2013) or zero‐inflated
negative binomial models (Long, 1997; Ridout et al.,
2001; Yang et al., 2012) to account for the excess number
of zero event counts.

The above zero‐inflated Poisson or negative binomial
models assume a parametric form of the count data and
that the follow‐up time is not informative. That is, the
follow‐up time is independent of the event process given
the baseline covariates. However, this assumption is
violated in several applications including the motivating
MDS trial; for instance, see Zhang and Jamshidian
(2003), Huang et al. (2006), Sun et al. (2007), He et al.
(2009), Zhao and Tong (2011), Zhao et al. (2013), and
Diao et al. (2017). None of these methods accounts for
excess zeros.

In this paper, we propose a joint semiparametric frailty
model to overcome the limitations of existing methods and
address the important issues arising in many clinical trials:
(a) excess zeros; (b) nonproportionality of the event rate;
(c) informative dropout; and (d) unobserved recurrent
event times. Specifically, the joint model consists of three
components: (a) a logistic regression model for the
probability such that a subject will never experience the
event of interest; (b) a nonhomogeneous Poisson process
for the event data in which the baseline event rate

function is unspecified; and (c) a Cox proportional hazard
model for the dropout time. To account for the informative
dropout, a shared frailty is introduced in the nonhomo-
geneous Poisson model and the Cox model. We develop
likelihood‐based estimation and inference procedures. The
joint model is similar to the one in Liu et al. (2016);
however, it is not trivial to extend the method of Liu et al.
(2016) when the recurrent event times are not available.
First of all, although the nonparametric maximum like-
lihood estimator (NPMLE) of the baseline event rate
function is a step function under both scenarios, the jumps
can only happen at the observed follow‐up times and there
may be no jumps at some observed follow‐up times when
the recurrent event times are not available. Second, the
proof of the asymptotic properties of the estimators is very
much involved and one cannot achieve the usual root‐n
convergence rate for the estimator of the unknown
baseline event rate function.

The rest of this paper is organized as follows. In
Section 2, we introduce the joint semiparametric frailty
models. We derive the nonparametric likelihood function
of the unknown parameters. Additionally, we describe
two algorithms for calculating the NPMLEs. In Section 3,
we establish the asymptotic properties of the proposed
NPMLEs. Simulation results are provided in Section 4.
We apply the proposed methodology to the motivating
MDS clinical trial in Section 5. We conclude the paper
with some discussions in Section 6.

2 | METHODS

2.1 | Semiparametric frailty models

Suppose that there are n subjects. For the ith subject,
i n= 1, …, , let Zi denote a d × 1 vector of covariates at
baseline; Ci is the administrating censoring time;

∼Ti is the
potentially informative dropout time; and N t( )i is the
event count by time point t . Therefore, the observed data
consist of ≡ ≤∼ ∼T T C I T C XO Z{ , = min ( , ), Δ = ( ), =i i i i i i i i i
N T( ) }i i , i= 1,… n, where the Ti’s are the observed follow‐
up times and Δi’s are the corresponding censoring
indicators. Denote by τ the end of study.

To model excess zero counts, we assume that the
underlying population consists of a nonsusceptible
subpopulation and a susceptible subpopulation over the
[0,τ] interval. We postulate a logistic regression model for
the probability such that a subject belongs to the
nonsusceptible subpopulation:

∣
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where Ui is a latent variable indicating whether the ith
subject belongs to the nonsusceptible subpopulation,∼Z Z= (1, )i i , and γ is a vector of regression coefficients
including the intercept.

Second, we assume that subjects in the susceptible
subpopulation are from a (conditional) Poisson distribu-
tion given that U = 0i and a frailty. Specifically, we
assume that

∣
} }{ {

P N t k ξ U

k
ξ G t ξ G t

Z( ( ) = , , = 0)

= 1
!

( ) e exp − ( ) e ,β β

i i i i

i
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where ξi is a subject‐specific random effect (frailty)
representing the subject’s heterogeneity due to other
characteristics, ⋅G ( ) is an unknown increasing function
in τ[0, ] with G (0) = 0, and β is a set of regression
coefficients. Model (2) implies that subjects in the
susceptible subpopulation follow a conditional Poisson
distribution with mean ξ G T( ) eβi i

ZT i. Consequently, N t( )i
is a (conditional) nonhomogeneous Poisson process with
rate function ξ G t( ) eβi

ZT i.
Finally, we assume that

∼Ti is independent of N t( )i
given ξi and

∣∼ ζP T t ξ ξ H tZ Z( > , ) = exp {− ( ) exp ( ) },i i i i
T

i (3)

where H t( ) is a strictly monotone increasing but
otherwise unspecified function, and ζ is a set of
regression coefficients. Model (3) is referred to as the
Cox model with a shared frailty (Murphy, 1994; 1995).

For ease of presentation, we have used the same set of
covariates Zi in models (1) to (3). However, it is
straightforward to extend them to allow for different sets
of covariates, which may or may not contain common
components. The shared frailty ξi in models (2) and (3) is
used to account for informative dropout. The positive
correlation between the event rate and the hazard rate of
the dropout time suggests that patients who experience
more events tend to be at a higher risk of dropout and
vice versa. This is a reasonable assumption which was
validated by several real applications (Zeng et al., 2014;
Yu et al., 2016). A common choice for the distribution of
the frailty is the γ distribution, although other distribu-
tions such as the log‐normal distribution and the positive
stable distribution can also be considered. For the ease of
computation, we assume that ξi’s are i.i.d γ with mean 1
and variance θ. The mean of the γ frailty ξi is fixed to
ensure model identifiability.

The unknown parameters include γ β ζθ G t, , , , ( ),
and H t( ), ∈t τ[0, ]. It is worth to note that there are
two infinite‐dimensional parameters in the joint models,
⋅G ( ) and ⋅H ( ), which present challenges in both

the numerical implementation and the theoretical develop-
ment of the estimators. Write ϕ γ β ζθ= ( , , , ). We assume
that the censoring timeCi is conditionally independent of

∼Ti
given Zi. Based on the observed data, the likelihood
function for the unknown parameters ϕ G H( , , ) is

where ⋅h ( ) is the first derivative of ⋅H ( ), and
∕f ξ θ θ ξ( ) = ( /Γ ( ) ) eθ θ ξ θ− −1 −1 −−1 −1

is the γ θ θ( , )−1 −1 den-
sity. With some algebra, we can show that ϕL G H( , , ) =n
∏ ∑ ϕM G HO{ ( ; , , ) },i

n
j i=1 =1
3
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and

Naturally one would like to maximize the above
likelihood ϕL G H( , , )n to estimate the unknown para-
meters. However, the maximum likelihood does not exist
since for any fixed H t( ), one can always let h t( ) go to
infinity at an observed time point of

∼T . Therefore, we use
the nonparametric maximum likelihood approach as in
Murphy (1994) allowing both G and H to be right
continuous and replacing h t( ) with the jump size of ⋅H ( )
at t . For ease of notation, we also denote the resulting
nonparametric likelihood by ϕL G H( , , )n . It can be
shown that the NPMLE of H is a step function with
jumps only at the observed time points of

∼T . The NPMLE
of ⋅G ( ), however, is not unique since the nonparametric
likelihood depends on G only through its values at the
observed exposure times T i n, = 1, …,i , so we focus on
the maximization of ϕL G H( , , )n over all nondecreasing
step functions with jumps at the Ti’s for G t( ).

Although there is a closed form for the observed‐data
nonparametric likelihood function, it is still challenging
to maximize ϕL G H( , , )n as it involves two infinite‐
dimensional parameters in G and H and a set of finite‐
dimensional parameters ϕ. To address this computational
issue, we describe an EM algorithm in the next section.

2.2 | An EM algorithm

We now describe an EM algorithm for maximizing the
observed‐data likelihood. Recall that we define a binary
latent variable Ui such that U = 1i if Xi belongs to a
subpopulation with a point mass at 0 and U = 0i if Xi
belongs to a subpopulation that follows a conditional
Poisson distribution. The complete‐data likelihood based
on U ξ i nO{ ( , , ), = 1, …, }i i i is

It can be shown that, given the observed data Oi and
current parameter estimates ϕ G H( , , )  , Ui follows a

Bernoulli distribution with success probability
∑ϕ ϕp M G H M G HO O= ( ; , , )/ ( ; , , )i i j j i1 =1
2     if X = 0i

and U = 0i with probability one if X > 0i . Further-
more, it can be shown that givenU O= 0,i i, and the cur-
rent parameter estimates, ∼ (ξ θ G TΓ + Δ , ( ) eβi i i

Z−1 T
i  

)H T θ+ ( ) e +ζ
i

Z −1T
i 

if Xi = 0 and ∼ (ξ θ XΓ +i i
−1

)G T H T θ+Δ , ( ) e + ( ) e +β ζ
i i i

Z Z −1T
i

T
i   if X > 0i . Similarly,

given U = 1i , Oi, and the current parameter estimates,
∼ ( )ξ θ H T θΓ + Δ , ( ) e +ζ

i i i
Z−1 −1T
i 

.
Therefore, given the observed data and current

parameter estimates ϕ G H( , , )  , we can maximize the
conditional log‐likelihood ∑ ϕE L G H{log ( , , )i

n
n i
C

=1 ,

∣ ϕ G HO , , , },i   where ϕL G H( , , )n i
C
, is the complete‐data

likelihood contributed from the ith subject.
Based on the conditional distribution of ξ U( , )i i given

the observed dataOi and current parameter estimates, we
can derive a closed form for the above conditional log‐
likelihood. In particular, it can be written as the sum of
four separate terms: likelihood from a standard logistic
regression, likelihood from a Cox model for the
informative dropout time, likelihood from a nonhomo-
geneous Poisson process for panel count data, and a term
involving the variance parameter θ. These four terms can
be maximized separately in the M‐step of the EM
algorithm. It is a standard practice to update the
estimates of γ ζ, , and ⋅H ( ) in the M‐step. To update
the estimates of β and ⋅G ( ), one can use an optimization
algorithm or the pool adjacent violator algorithm (PAVA)
(Barlow et al., 1972; Robertson et al., 1988).

2.3 | An alternative algorithm

One drawback of the above EM algorithm is that
optimization algorithms or the PAVA are needed to
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estimate ⋅G ( ) in the M‐step. Therefore, two loops of
iterations are involved in the EM algorithm leading to an
expensive computational burden. Alternatively, we con-
sider an optimization algorithm to maximize the
observed‐data likelihood directly. The main challenge is
that both the estimates of ⋅G ( ) and ⋅H ( ) are constrained
to be nondecreasing. To alleviate the constrained
optimization problem, we use the following transforma-
tion (of the parameters): ∑H t α k( ) = exp ( ), = 1,k j

k
j=1

m…, ,H and ∑G s δ k m( ) = exp ( ), = 1, …, ,k j
k

j G=1 where
⋯t t t< < < m1 2 H are the distinct observed dropout

times and ⋯s s s< < < m1 2 G are the distinct observed
exposure times. The new parameters αj and δj are
the jumps of ⋅H ( ) and ⋅G ( ) at tj and sj, respectively.
A similar transformation technique was also used by
Zeng et al. (2006) for the analysis of intercensored data
and more recently by Diao and Yuan (2019) for the
analysis of current status data with a cured fraction. We
then maximize the observed‐data likelihood over
ϕ α α δ δ( , , …, , , …, )m m1 1H G without constraints by using
the Broyden‐Fletcher‐Goldfarb‐Shanno algorithm (BFGS)
algorithm as described in Press et al. (1992). Throughout
the numerical studies, the results are obtained based on
this direct optimization algorithm.

3 | ASYMPTOTIC PROPERTIES

In this section, we establish the asymptotic properties of the
proposed NPMLEs of the unknown parameters ϕ G H( , , ),
denoted by ϕ G H( , , )n n n  . Supporting Information Appendix
A lists the necessary assumptions. In Supporting Informa-
tion Appendix B, we prove that if two sets of parameters

∈ϕ G t H t t τ( , ( ), ( ), [0, ] ) and ∈͠ ∼ ∼ϕ G t H t t τ( , ( ), ( ), [0, ] )
give the same likelihood for the observed data O, then͠ϕ ϕ= ,

∼G t G t( ) = ( ), and ∼H t H t( ) = ( ) for any ∈t τ[0, ].
Therefore, the proposed model is identifiable.

Define

∣ ∣ ∣ ∣
∣ ∣

∣ ∣
∈

ϕ ϕ ϕ ϕd G H G H

G t G t

H t H t

{ ( , , ), ( , , ) } = −

+ sup { ( ) − ( )

+ ( ) − ( ) }
t τ

0 0 0 0

[0, ] 0

0

where ∣ ∣ ⋅∣ ∣ is the Euclidean norm. Here ϕ G H( , , )0 0 0 are
the true parameters values as defined in Supporting
Information Appendix A. We now prove that ϕ G H( , , )n n n 
is consistent.

Theorem 1. Under the conditional independent
censoring assumption and assumptions (C1) to (C4) in
Supporting Information Appendix A, ϕd G H{ ( , , ),n n n 

→ϕ G H( , , ) } 00 0 0 almost surely.
The proof of Theorem 1 involves the proof of the P‐

Glivenko‐Cantelli property for some classes. Specifically,

we will prove the class ≡ ∣ϕ ϕm G H G HO{ ( , , ): ( , , )
∈ × × } is a P‐Glivenko‐Cantelli class, where

∣ ∣ ∣ϕ ϕ ϕm G H p G H p G HO O O( , , ) = log ( , , ) − log ( , , )0 0 0 is
the log‐likelihood ratio and ∣ϕp G HO( , , ) is the
likelihood based on a single observation O as defined in
Supporting Information Appendix B. By Theorem 5.8
in van der Vaart (2002), we can then show that

→ϕ ϕd G H G H{ ( , , ), ( , , ) } 0n n n 0 0 0  almost surely. Detailed
proof is provided in Supporting Information Appendix C.

With the consistency result, we next derive the
convergence rate of ϕ G H( , , )n n n  and the asymptotic
normality property for ϕn .

Theorem 2. Under the conditional independent
censoring assumption and assumptions (C1) to (C4) in
Supporting Information Appendix A, ϕd G H{ ( , , ),n n n 

∕ϕ G H O n( , , ) } = ( ).p0 0 0
−1 3

Theorem 3. Under the conditional independent
censoring assumption and assumptions (C1) to (C4) in
Supporting Information Appendix A, ϕ ϕn ( − )n 0


converges weakly to a d(3 + 2) × 1 normal random
vector with mean zero and a covariance matrix attaining
the semiparametric efficiency bound.

Remark 1. Theorem 2 implies that the NPMLEs have a
slower convergence rate than root‐n. To derive this result,
we verify the conditions of Theorem 3.4.1 in van der
Vaart and Wellner (1996). Theorem 3 further implies that
although ϕ G H( , , )n n n  has a cubic root‐n convergence rate,
ϕn still attains the root‐n convergence rate and is
asymptotically normal. Detailed proof of Theorems 2
and 3 is provided in Supporting Information Appendices
D and E, respectively.

Remark 2. In principle, one can estimate the covariance
matrix of ϕn by a plug‐in method replacing the unknown
parameters with their NPMLEs in the corresponding
analytic form. However, the implementation is very
complicated. Therefore, we use the multiplier bootstrap
method (Kosorok, 2008, chapter 2) to estimate the
covariance matrix of ϕn . The covariance matrix of ϕn is
thus estimated by the empirical sample covariance matrix
of the bootstrap estimates. Alternatively, one can use the
standard bootstrap method (van der Vaart and Wellner,
1996, chapter 3.6). In our experience, the multiplier
bootstrap method is numerically more stable particularly
for small sample sizes.

Remark 3. When the variance of the γ frailty θ is 0, the
distribution is degenerated to a point mass at 1, which
implies that the dropout is not informative. Following the
arguments in Murphy and van der Vaart (1997), we can
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prove that under the conditional independent censoring 
assumption and assumptions (C1) to (C4) in Supporting 
Information Appendix A, the asymptotic null distribution 
of the likelihood ratio test statistic for testing the null 
hypothesis of noninformative dropout is a 50:50 mixture
of a point mass at 0 and χ1

2.

4 | SIMULATION  STUDIES

We conduct simulation studies to examine the finite‐
sample performance of the proposed NPMLEs. We
generate two covariates: Z1 Bernoulli (1∼ ∕2) and 
Z2 ∼ N (0, 0.25). We then generate data based on models
(1) to (3). The true parameters are set to be
γ = (−1, −1, 0.5), β = (0.5, −0.5), ζ = (−0.5, 0.5), θ = 1, 
G (t) = 2t , and H t( ) = (t∕5)3∕2. The censoring time for 
the dropout time is set to be C = 6 for all subjects. Under

this simulation setting, approximately 65% of the subjects
have zero event counts. For each simulation, we consider
sample sizes of 150, 300, and 600. To estimate the
covariance matrix of ϕn , we use the multiplier bootstrap
method with 400 bootstrap samples. To construct
confidence intervals, we first estimate the standard errors
based on the bootstrap samples and then apply the
asymptotic normality results in Theorem 3. Specifically,
the α1 − confidence interval estimate for ϕ is

∕ϕ ϕz SE± ( )n α n2  , where ∕zα 2 is the ∕α1 − 2 quantile of
N (0, 1).

It is worth noting although the proposed model is
identifiable, a data set with a small fraction of zero counts
can cause numerical instability and the algorithm may fail
to converge. This phenomenon, however, is not unique. In
our experience, even for the simple zero‐inflated Poisson
regression model, if the proportion of subjects with zero
event counts is small, algorithms implemented in standard

TABLE 1 Summary statistics for the nonparametric maximum likelihood estimators based on 1000 replicates

n Parameters True Est EmpSD Mean SE CP

150 θ−1 1.0 1.426 0.759 0.831 0.978

β1 0.5 0.535 0.344 0.287 0.919

β2 –0.5 –0.506 0.342 0.297 0.921

γ0 0.5 0.450 0.239 0.227 0.952

γ1 –0.5 –0.457 0.404 0.428 0.958

γ2 0.5 0.485 0.422 0.455 0.977

ζ1 –0.5 –0.478 0.299 0.303 0.956

ζ2 0.5 0.500 0.300 0.305 0.955

300 θ−1 1.0 1.229 0.379 0.463 0.976

β1 0.5 0.529 0.217 0.197 0.929

β2 –0.5 –0.520 0.218 0.199 0.923

γ0 0.5 0.481 0.142 0.150 0.964

γ1 –0.5 –0.509 0.270 0.280 0.961

γ2 0.5 0.492 0.285 0.289 0.953

ζ1 –0.5 –0.480 0.202 0.210 0.962

ζ2 0.5 0.496 0.194 0.212 0.967

600 θ−1 1.0 1.127 0.250 0.312 0.975

β1 0.5 0.515 0.146 0.143 0.946

β2 –0.5 –0.518 0.156 0.142 0.921

γ0 0.5 0.484 0.103 0.105 0.954

γ1 –0.5 –0.488 0.193 0.193 0.948

γ2 0.5 0.490 0.194 0.198 0.954

ζ1 –0.5 –0.492 0.141 0.150 0.967

ζ2 0.5 0.491 0.143 0.151 0.963

Note: Est and EmpSD are the sample means and sample standard deviations of the estimates based on 1000 replicates. Mean SE is the average of the standard
error estimates based on 400 bootstrap samples, and CP is the 95% confidence interval constructed based on the sample standard deviation of the estimates from
400 bootstrap samples and the asymptotic normality results in Theorem 3.
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software packages such as R and SAS can also fail to
converge. Indeed, as one referee pointed out, the zero‐
inflated Poisson regression makes little sense if the
observed percentage of zero counts is low. Under the
above simulation setting, we did not encounter conver-
gence problems in the numerical studies.

Table 1 presents the summary statistics of the NPMLEs
of the finite‐dimensional parameters based on 1000
replicates. For moderately large sample sizes of 300 and
600, the proposed NPMLEs have low biases, the estimated
standard errors obtained from the bootstrap method reflect
the actual variation of the estimators, and the coverage
probabilities of the 95% confidence intervals obtained
based on the bootstrap method and the asymptotic
normality results in Theorem 3 are close to the nominal
level. As sample size increases from 300 to 600, both biases
and coverage probabilities of the 95% confidence interval
improve. The standard errors decrease by a factor of 2
suggesting root‐n convergence rate of ϕn . Under the setting
with a smaller sample size of 150, the NPMLEs for all
parameters with the exception of the variance of the frailty
still perform well. Figure 1 in Supporting Information
Appendix F displays the true and estimated curves of the
baseline rate function G t( ) and the baseline cumulative
hazard function H t( ). The true curves and estimated
curves are very close for sample sizes of 300 and 600
suggesting small biases of the estimators of NPMLEs of
G t( ) and H t( ).

We conduct additional simulation studies to evaluate
how sensitive the proposed method is to the frailty
distribution misspecification. Specifically, we consider
generating the frailty from a log‐normal distribution and
an inverse Gaussian distribution, both with mean 1 and
variance 1. Detailed results are presented in Tables 1 and
2 in Supporting Information Appendix F. While the
estimation of the frailty variance is sensitive to the frailty
distribution misspecification, the NPMLEs of the regres-
sion parameters are reasonably robust. Figures 2 and 3 in
Supporting Information Appendix F show that the
estimators of G t( ) and H t( ) have some biases, particu-
larly at later time points.

5 | APPLICATION TO MDS DATA

We apply the proposed methods to the motivating MDS
trial, which was conducted in multiple countries with a 2
to 1 randomization ratio (treatment vs. placebo). The
randomization was stratified based on baseline platelet
counts (25‐50× 109/L and below 25× 109/L) and disease
risk status (low and intermediate‐1). The final data set
contains 150 patients, among which 100 were in the
treatment group and 50 were in the placebo group. The
exposure time ranges from 16 days to 180 days with a
median of 113 days in the placebo group and ranges from
7 days to 180 days with a median of 116 days in the
treatment group. Thirty‐six treatment patients (36%) and
14 placebo patients (28%) dropped out early during the
efficacy follow‐up phase mainly due to alternative
therapies that are different from both the treatment
and placebo. Log‐rank test shows that there is little
difference in the distribution of the dropout time
between two treatment groups (P= .677). The total
number of bleeding or platelet transfusion events in the
placebo group ranges from 0 to 34 with first quartile,
median, and third quartile of 0.25, 2, and 11.75. In the
treatment group, the event count ranges from 0 to 45
with first quartile, median, and third quartile of 0, 1, and
3.5. Although one patient in the treatment group
experienced the event 45 times, the distribution in the
placebo group has a heavier right tail and a wider
interquartile range.

For comparison, we also analyzed the data using
three existing methods, including the method proposed
in Diao et al. (2017) (DZHI), the parametric zero‐inflated
Poisson regression model (ZP), and the parametric zero‐
inflated negative binomial model (ZNB). In the para-
metric zero‐inflated models, we use the log‐link function
and include the logarithm of the dropout time as an
intercept. We consider the treatment indicator as the
covariate in the model, which takes value 0 for the
placebo group and 1 for the treatment group. Both
groups have substantial portions of patients with zero
event count. We emphasize again that those methods
assuming that the recurrent event times are available
cannot be used here.

Table 2 presents the results from the MDS trial. The
standard errors of the NPMLEs are based on 1000 multiplier
bootstrap samples. The variance of the γ frailty is estimated
at 0.925 with a standard error of 0.141. These results strongly
support the alternative hypothesis of informative dropout
and that the event count data and the hazard rate of the
dropout time are positively correlated (P< 10−10). There is a
significant treatment effect (P= .046) on the probability
whether a patient belongs to the nonsusceptible subpopula-
tion. The odds for a patient in the treatment group belonging

TABLE 2 Results of the myelodysplastic syndrome trial

Parameters Estimate SE Estimate/SE P‐value

θ 0.925 0.141 6.567 <10–10

βtrt –0.279 0.293 –0.950 .342

γ0 –1.289 0.457 –2.818 .005

γtrt 1.059 0.530 1.998 .046

ζtrt –0.079 0.548 –0.143 .886

Note: Standard error estimates are based on 1000 multiplier bootstrap
samples.
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a p q:i i mixture of a point mass at 0 and a negative binomial
distribution with parameters θ + Δi−1 and success prob-
abilities ≡π G T θ( ) e / +β

i i
Z −1T i G T H T( ) e + ( ) e ,β ζ

i i
Z ZT i T i
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∼ ∼
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i

Z ZT i T i and q p= 1 −i i. Therefore,
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To check the goodness‐of‐fit of the proposed model, we
first categorize the severity of adverse effects to four levels:
none (X = 0), mild ( ≤ ≤X1 5), medium ( ≤ ≤X6 10),
and severe (X > 10). We then compare the goodness‐of‐fit
of the proposed method with that of the method of
Diao et al. (2017) and the two parametric zero‐inflated
models by using the following three statistics for each
treatment group: (a) deviance: ∑ n n μ2 log ( / );k k k k=1

4  (b)

Kullback‐Leibler divergence: ∑ μ μ n2 log ( / );k k k k=1
4   and

(c) Pearson’s χ2 statistic: ∑ n μ μ( ( − ) / ).k
m

k k k=0
2  Here nk

and μk are the observed count and expected count for cell
k, respectively. As shown in Table 3, all three goodness‐of‐
fit statistics suggest that the proposed model fits the data
better than the three existing methods. Particularly, the
proposed method fits the data in the treatment group
substantially better than the existing methods since a large
portion of patients have zero events.

6 | DISCUSSION

We have proposed joint semiparametric frailty models
for zero‐inflated event count data in the presence of

FIGURE  3  Estimated baseline mean

function G (t) (upper panel) and
estimated baseline cumulative hazard
function H t( ) (lower panel)

to the nonsusceptible subpopulation is estimated at 2.89 
times (95% confidence interval: 1.02–8.15) the odds for a 
patient in the placebo group. This result is consistent with 
the preliminary analysis of the relative frequencies of the 
patients with zero event count in the two groups. There is no 
significant difference between the two groups for patients 
who follow a conditional Poisson distribution. There is also 
no significant difference (P = .886) between the distributions 
of the dropout time in the two groups, which is consistent 
with the log‐rank test result. Figure 3 displays the estimates 
of G t( )  and H t( ). The estimated curve Gn t( )  does 
not appear to be a straight line, suggesting that the event 
count process is not homogeneous.

Compared to the proposed method, the method of 
Diao et al. (2017) failed to detect the difference between 
the treatment group and the placebo group. On the other 
hand, the parametric zero‐inflated Poisson model does 
not account for informative dropout and yields signifi-
cant treatment effects on both the probability that a 
patient belongs to the nonsusceptible subpopulation and 
the event rate for patients in the Poisson subpopulation 
with P values .01 and .018, respectively. It is known in 
statistical literature that ignoring correlations among data 
can lead to an abundance of false positive results. The 
zero‐inflated negative binomial model appears to yield 
numerically unstable estimates with the intercept and 
coefficient for the treatment effect in the logistic model 
estimated at –10.885 and 8.972.
We next describe procedures to check the goodness‐of‐fit of 
the proposed model. It can be shown that, conditional on

(T ,i Δ Zi i, ), Xi follows a zero‐inflated negative binomial 
distribution. Specifically, the conditional distribution of Xi is
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informative dropout. The joint models allow a positive
probability such that some patients will never experience
the event of interest even after a sufficiently long follow‐
up. Furthermore, the joint models do not require
parametric forms of the baseline event rate function of
the event count data or the baseline cumulative hazard of
the dropout time, and thus gain much flexibility and
robustness. Furthermore, a shared frailty is introduced to
account for the informative dropout. For the ease of
computation complexity, we assume that the frailty
follows a γ distribution. Simulation studies demonstrate
the NPMLEs of the regression parameters are reasonably
robust to the frailty distribution misspecification.

In the logistic regression model (1), we assume
that Ui is independent of the frailty ξi, that is,

∣ ∣P U ξ P UZ Z( = 1 , ) = ( = 1 )i i i i i . Consequently, the in-
dicator Ui whether the ith subject belongs to the
nonsusceptible subpopulation is assumed to be condi-
tionally independent of the dropout time

∼Ti given
covariates Zi. To account for the potential correlation
between Ui and

∼Ti , we may include ξi in the logistic
regression model (1). We may also consider other
survival models for the informative dropout time, for
example, the proportional odds model (Bennett, 1983),
and the short‐term and long‐term hazards/odds rate
models (Diao et al., 2013; Yuan and Diao, 2014). Another
limitation of the proposed method is that we assume the
recurrent events and the informative dropout share the
same frailty. The proposed method may not be applicable
if the within‐subject recurrent event correlation and the
correlation between the recurrent events and dropout are
different. One solution is to use a bivariate frailty to
account both types of correlations. The observed‐data
likelihood, however, does not have a closed form.
Numerical integration or Monte‐Carlo‐based methods
will have to be used to maximize the observed‐data
likelihood and consequently further increase the already
expensive computational burden.

In the real application, we have described several
procedures to check the goodness‐of‐fit of the proposed
model, which are based on deviance, Kullback‐Leibler
divergence and Pearson’s χ2 statistic. These procedures,
however, are somehow ad hoc and can only be used to
compare the fit of different models. It would be desirable
to develop formal goodness‐of‐fit procedures to check the
model assumptions including the functional forms of the
covariates.

We have considered the event count data for one type
of event. In many clinical trials, multiple types of adverse
events may occur during the treatment period and it is of
interest to assess the treatment effects on the multiple
event rates. Additional issue arises in such situation. One
needs to account for both the correlations among the
count data from multiple types of adverse events and the
correlations of these event count data with the informa-
tive dropout time.
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