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a b s t r a c t

Right- or left-skewed continuous biomarker measurements are often confronted in
practice. The extreme values located in the long tail of skewed distributions indicate
abnormal health status, and characterizing the features of a subgroup with abnormally
high(or low) values is important for risk management. Furthermore, a biomarker is
usually subject to measurement error. In the presence of these two challenging issues,
existing methods for analyzing skewed biomarker data are no longer applicable. In
this paper, we propose a semiparametric method based on Gumbel distributions while
accounting for measurement error in a biomarker and adjusting for a monotone age
effect on biomarker levels. We estimate the model parameters using the nonparametric
maximum likelihood approach and implement computation via the EM algorithm.
We establish the asymptotic properties of the proposed estimators and summarize
simulation results to assess the numerical performance of the proposed method. The
method is illustrated through an application to data from a diabetes ancillary study to
the Atherosclerosis Risk in Communities (ARIC) Study.

1. Introduction

Right- or left-skewed continuous biomarker measurements are often confronted in practice. For analyzing such skewed
data, data transformation for approximating to a normal distribution or an application of generalized linear models with a
gamma distribution can be commonly used approaches. However, for the case that data is seriously skewed, and extreme
outliers are of interest, modeling based on skewed distributions has been proposed and studied in multiple fields, such
as climatology, environmental science, biomedicine, and finance. For instance, risk analysis identifying a subgroup at high
risk or analysis of extreme events occurring with small probability, such as trends in annual high or low temperatures
has used extreme value theory.

Fisher and Tippett (1928) first identified the extreme value limit distribution and Gnedenko (1943) provided the
asymptotic proof for the limit distribution of extreme values. The corresponding three types of distributions, Gumbel,
Fréchet and Weibull are unified into a single generalized extreme value (GEV)-form (von Mises, 1936; Gumbel, 1958).
An alternative approach to extreme events is based on exceedances above thresholds leading to the generalized pareto
distribution (Balkema and De Haan, 1974; Pickands, 1975); however, the threshold methods are not covered in this
paper. Huerta and Sansó (2007) modeled extreme values using GEV distributions with parameters varying in time.
A link function based on GEV distributions was introduced for modeling imbalanced binary and ordinary responses

∗ Corresponding author.
E-mail address: nhyun@mcw.edu (N. Hyun).

https://doi.org/10.1016/j.jspi.2019.03.008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/345197216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jspi.2019.03.008&domain=pdf
mailto:nhyun@mcw.edu
https://doi.org/10.1016/j.jspi.2019.03.008


(Wang and Dey, 2010; Roy and Dey, 2014). Ghosh and Mallick (2011) proposed Bayesian hierarchical regression models
for repeatedly measured continuous outcomes, which are marginally generated from a GEV distribution. Using the power-
transformed quantile regression, Wang and Li (2013) developed a new three-stage estimation procedure, estimating
intermediate conditional quantiles and extrapolating the estimates to tails. However, we believe that there has not been
a study involving modeling continuous biomarker data based on Gumbel distributions, which are GEV distributions with
shape parameter 0, while adjusting for a monotone age effect on biomarker values.

Furthermore, most biomarkers suffer from at least some measurement error: every assay has some inherent variability,
so if the assay is run twice on a sample from an individual, the results may not be identical. Additionally, even though
there may be a smooth underlying trend in an individual’s levels of the biomarker, there is likely to be short-term intra-
individual variability, resulting in variation around that underlying trend. Some biases may be more likely in a particular
direction, such as with ‘‘white-coat hypertension’’, whereas others are essentially random. In clinical practice, ad hoc
approaches that are used to take into account biomarker variability include taking two or more measurements over a
period of time.

We propose new regression models for investigating associations between exposures and continuous biomarker while
addressing abnormally high values and measurement error in a biomarker. We consider a monotone increasing biomarker
over time (particularly age) and incorporate a function of time in the model. The proposed method involves a semi-
parametric likelihood approach based on a mixture distribution of a normal and Gumbel distribution. We propose an
efficient estimator for the model parameters based on nonparametric maximum likelihood estimation. In Section 2,
inference procedures using the expectation–maximization algorithm for parameter estimation are presented, and variance
estimation is also proposed. Asymptotic results based on the proposed model are established in Section 3. The detailed
proofs are provided in the Supplementary material. A simulation study and an application to real data are illustrated in
Section 4. Finally, in Section 5 we discuss limitations of our approach and related future research problems.

2. Method

2.1. Model

For subject i, let xi be time-invariant covariates such as demographic characteristics and potential risk factors at
baseline such as health status-related variables, and y∗

i (t) and yi(t) be the true biomarker value and observed biomarker
value at time t , respectively. The observation time, T = t can be fixed or random. Thus, the observed data from n
independent and identically distributed subjects are {yi(ti), ti, xi | i = 1, . . . , n}, which are denoted by {wi | i = 1, . . . , n}
hereafter.

Normal distributions are commonly used for explaining continuous biomarker values; however, extreme values of a
biomarker related to a trait are not well-captured by any symmetric distributions. To study the association between xi
and yi(ti), of which the distribution has a long tail, we consider Gumbel distributions:

P(Y ∗(t) < ξ | t, x) = exp[−γ (t) exp{−µ(ξ − xTβµ−1)}],

where ξ denotes true biomarker value y∗(t) in the support (−∞, ∞); µ > 0 and β are unknown parameters, and γ (t)
is an unknown positive monotone increasing function, that is, true biomarker values are monotone increasing over time.
For instance, when γ (t) is a function of age, it indicates monotone increasing age effect on biomarker values. When a
covariate x value increases by 1 unit with given time t and biomarker value ξ , the cumulative density of a biomarker
value decreases (increases) by factor of exp(β) for β > 0 (β < 0).

Our second model incorporates the measurement error in the observed biomarker. Specifically we adopt the additive
measurement error model (Carroll, 2006; Fuller, 1987; Tsiatis et al., 1995)

yi(t) = y∗

i (t) + ϵi(t), i = 1, . . . , n. (1)

We assume the measurement error ϵi(t) has the normal distribution with mean zero and variance σ 2 for any time t and
is independent of y∗

i (t) and xi. The measurement error variance of σ 2 may be estimated in practice by taking repeated
measurements. As an example, the coefficient of measurement error variation for blood glucose value is reported to be
3.5% (Hadi et al., 2008; Young et al., 2008). Because information about the measurement error variation can be referred
to external data, we consider σ 2 to be known.

Under the above two models, the observed biomarker Y (t) has a mixture distribution of a Gumbel with a normal
distribution for given t and x. Then the observed likelihood function for {yi(ti), ti, xi | i = 1, . . . , n} concerning parameters
(βT , µ, γ (·)) is

n∏
i=1

∫
∞

−∞

exp(−γ (ti)ex
T
i β−µξ )γ (ti)µ exp(xTi β − µξ )

1
σ

φ

(
yi(ti) − ξ

σ

)
dξ, (2)

where φ(·) is the standard normal density function.



2.2. Inference procedure

We maximize (2) to estimate all the parameters, including θ = (µ, βT )T and γ (·). Specifically, we estimate γ as a step
function, which jumps at the observed ti’s. Let t(1) < · · · < t(K ) be ordered observed times of {ti | i = 1, . . . , n} and
γk = γ (t(k)) and t(0) = 0. Then we maximize (2) over θ and γk’s, subject to constraints 0 ≤ γ1 ≤ . . . ≤ γK .

To facilitate the maximization, especially over {γk}, we employ the EM algorithm by treating the not observed true
values ξ as missing data. Then the complete log-likelihood function is

lc(θ ) =

K∑
k=1

n∑
i=1

I(ti = t(k))
(

−γkex
T
i β−µξ

+ log γk + logµ + xTi β

− µξ −
1
2
log σ 2

−
(yi(ti) − ξ )2

2σ 2

)
. (3)

In the M-step at the lth iteration of the EM algorithm, we first maximize the conditional expectation of the complete
log-likelihood function given observed data over γk’s. We then update θ via the Newton–Raphson algorithm. Specifically,
we maximize Q (γ) defined by

Q (γ) =

K∑
k=1

n∑
i=1

I(ti = t(k))E(−γkex
T
i β−µξ

+ log γk | wi, θ
(l)). (4)

Because Q (γ) is a concave function over a convex cone satisfying γ1 ≤ . . . ≤ γK , this maximization can be carried
out using one of the many existing algorithms for convex optimization. To update θ, we apply the following one-step
Newton–Raphson algorithm,

θ(l+1)
= θ(l)

+ E
(
−∂2lc/(∂θ )2

⏐⏐w, θ(l))−1
θ=θ(l)

E
(
∂ lc/∂θ

⏐⏐w, θ(l))
θ=θ(l)

. (5)

The conditional expectations in (5) are calculated in the E-step of the EM algorithm based on the following expression:

E(g(ξ )|wi, θ
(l)) =

I(ti = t(k))
∫

∞

−∞
g(ξ ) exp[−γkex

T
i β−µξ

]e−µξφ
{ yi(ti)−ξ

σ

}
dξ∫

∞

−∞
exp[−γkex

T
i β−µξ

]e−µξφ
{ yi(ti)−ξ

σ

}
dξ

, (6)

where the g(ξ )’s to be calculated are ξ , ξ 2, e−µξ , e−µξ ξ , and e−µξ ξ 2. This integration can be approximated by Gauss–
Hermite quadrature (Davis, 1984), so it can be approximated by

N∑
k=1

(
√
2σwkg

{√
2σ zk + yi(ti)

}
exp

[
−γ (ti)e

xTi β−µ

{√
2σ zk+yi(ti)

}]
e−µ

{√
2σ zk+yi(ti)

})
, (7)

where N is the number of the quadratures and ωk and zk are weights and abscissae for Gauss–Hermite quadrature,
respectively. This loop of the expectation step and the maximization step is repeated until |(θ(l+1), γ (t)(l+1)) − (θ(l), γ (l))|
is smaller than a pre-specified criterion. We denote the final estimators as θ̂ = (µ̂, β̂

T
)T and γ̂ .

2.3. Variance estimation

In the asymptotic results given in the supplemental material, we show that the proposed estimator for the true
parameter θ0 is semiparametrically efficient. Moreover, the efficient score function for θ at θ = θ0 is

l∗θ (θ0, γ0 | w) =

(
µ−1

0 − E(κξ | w) − E(κ | w)R1(t)
E(κ | w){x − R2(t)}

)
, (8)

where κ = 1 − γ0(t) exp(xβ0 − µ0ξ ); γ0 is the true function of t;

R1(t) = E
[
E(κ | w)

{
µ−1

0 − E(κξ | w)
}

| t
]/

E
{
E(κ | w)2 | t

}
,

R2(t) = E
{
xE(κ | w)2 | t

}/
E

{
E(κ | w)2 | t

}
.

The derivation for the efficient score function is detailed in Lemma 2 of the Supplementary material. Therefore, the
asymptotic variance of n1/2θ̂ is the inverse of the information for θ0, that is, I(θ0) = E(l∗⊗2

θ ), where a⊗2
= aaT for any

vector a.
For the asymptotic variance of n1/2θ̂, we estimate I(θ0) by n−1 ∑n

i=1 l̂
∗⊗2
θi , where

l̂∗θ i =

(
µ̂−1

− Ê(κξ | wi) − Ê(κ | wi)R̂1(ti)
Ê(κ | wi)

{
xi − R̂2(ti)

} )
, (9)



and Ê(κ | w), Ê(κξ | w), R̂1(ti) and R̂2(ti) are some consistent estimators for E(κ | w), E(κξ | w), R1(ti), and R2(ti),
respectively. Specifically Ê(κ | w) and Ê(κξ | w) are

Ê(κ | w) = 1 − γ̂ (t) exp(xT β̂)Ê{exp(−µ̂ξ ) | w},

Ê(κξ | w) = Ê(ξ | w) − γ̂ (t) exp(xT β̂)Ê{exp(−µ̂ξ )ξ | w},

and the other two estimators are some type of kernel estimators with bandwidth hn:

R̂1(t) =

∑n
j=1 Khn (tj − t)Ê(κ | wj){µ̂−1

− Ê(κξ | wj)}∑n
j=1 Khn (tj − t)Ê(κ | wj)2

,

R̂2(t) =

∑n
j=1 xjKhn (tj − t)Ê(κ | wj)2∑n
j=1 Khn (tj − t)Ê(κ | wj)2

,

where Khn (x) = h−1
n exp(−x2/hn). In the Supplementary material, we establish the consistency of this variance estimator

assuming that hn → 0 and nhn → ∞ as n → ∞. We choose (n/2)−1/2 for hn.

3. Asymptotic results

In this section, we provide asymptotic results for the proposed estimators under the following conditions. Let θ0 and
γ0 denote the true regression parameter and monotone increasing function, respectively.

(A1) The finite-dimensional parameter space Θ(⊂ Rd) is a compact subset of the domain of θ.
(A2) The covariate x has bounded support with probability 1. If xTβ + α = 0 almost surely (a.s.), then β = 0 and α = 0.
(A3) The support of the observation time, T , is an interval S [T ] = [lT , uT ], with 0 < lT ≤ uT < ∞.
(A4) The monotone increasing function γ0(t) has strictly positive derivative on S [T ].

The assumptions that parameter, covariate, and observation time are bounded are standard. Condition (A2) ensures
the identifiability of θ and γ . These conditions hold naturally in most applications.

For convergence of the estimates to the true parameters, we need to define a topology. Let the bounded regression
parameter space Θ be equipped with the Euclidean topology. Regarding infinite dimensional nonparametric space, let F

be the set of all Borel sub-probability measures on S [T ].

Theorem 1 (Consistency of the MLE). Under conditions (A1)–(A3), θ̂ → θ0 almost surely, and if t ∈ S [T ] is a continuity point
of γ0, γ̂ (t) → γ0(t) almost surely. Moreover, if γ0 is continuous, then supt∈S [T ] | γ̂ (t) − γ0(t) |→ 0 almost surely.

Before discussing the overall convergence rate, we define the distance d on Rd
× F as follows:

d{(θ1, γ1), (θ2, γ2)} = |θ1 − θ2| + ∥γ1 − γ2∥2,PT ,

where |θ1 − θ2| is the Euclidean distance in Rd,

∥γ1 − γ2∥2,PT =

[∫
{γ1(v) − γ2(t)}2dPT

]1/2

,

and PT is the marginal probability measure of the measurement time variable T .
Our next theorem gives the convergence rates of the estimators in terms of this distance.

Theorem 2 (Rate of Convergence). Under Conditions (A1)–(A3),

d{(θ̂, γ̂ ), (θ0, γ0)} = Op(n−1/3).

The overall rate of convergence is dominated by γ̂ . However, it is shown in the next theorem that the convergence
rate of θ̂ can be refined to achieve a rate of n1/2.

Theorem 3 (Asymptotic Normality and Efficiency). Suppose that θ0 is an interior point of Θ and that conditions (A1)–(A4) are
satisfied. Then

n1/2(θ̂ − θ0) = n1/2(Pn − P)
{
I(θ0)−1l∗θ0 (w)

}
+ op(1)

→ N(0, I(θ0)−1) in distribution,

where Pn is the empirical measure of wi, i = 1, . . . , n, that is, Pn{l∗θ0 (w)} = n−1 ∑n
i=1 l

∗

θ0
(wi), P is the probability measure,

that is, P{l∗θ0 (w)} =
∫
l∗θ0 (w)dP, l∗θ0 (w) is the efficient score defined in (8), and I(θ0) is the information.



Since θ̂ is asymptotically linear with efficient influence function, and the model (the likelihood function) is sufficiently
smooth (Hellinger differentiable) with respect to (θ, γ ), it is asymptotically efficient in the sense that any regular estimator
has asymptotic variance matrix no less than that of θ̂.

Theorem 4 (Consistency of Information Estimator). When the bandwidth hn satisfies that hn and log n/(nhn) converge to 0 as
n → ∞, Pn

{
l̂∗⊗2
θi

}
converges to P

{
l∗⊗2
θ0

}
.

The theorems are justified in Section 2 of the Supplementary material.

4. Numerical examples

4.1. Simulations

Simulation studies were conducted to assess the performance of the estimators proposed in Section 2. We consider
two sets of simulations in which the visit times are either discrete or continuous random variables. We compared the
proposed estimator (called by Mixture-model) with the estimator not accounting for measurement error, that is, σ 2

= 0
(called by Gumbel-model). For discrete measurement times, the time point for each subject is distributed as a multinomial
distribution with the even probability on the support of {0.1, 0.2, 0.4, 0.8}, while continuous measurement times are
distributed as a uniform distribution over [0, 1]. We round up continuous measurement times to the closest time points
among 150 fixed and evenly spaced time points (reported times) between 0 and 1 for reducing computation burden. The
error between the true measurement times and rounded reported times ranges −0.003 to 0.003. The model includes two
covariates: one is distributed as a Bernoulli distribution with probability 0.5, and the other is generated from a normal
distribution with mean 0 and variance 0.1. The true values for (µ, β1, β2) are (1, 0.3, 0.3), and γ0(t) is assumed to be
monotone increasing over time. We considered three different monotone increasing functions for γ0(t): 2t1/5, a curve with
sharp increase early and plateau later and the other curve with two change points. The latter two curves are generated
by cubic I-splines (Ramsay, 2008), and the related simulation settings are described in Section 4 of the Supplementary
material.

Consequently, the true biomarker values are generated as follows:

y∗

i (ti) = µ−1
[
xTi β − log

{
− log(pi)/γ0(ti)

}]
, (10)

where ti and pi are from a uniform distribution over [0, 1]. The observed biomarker values, yi’s are obtained by adding
y∗

i and ϵi, where ϵi is independently generated from a normal distribution with mean 0 and variance σ 2
= 0.25 and 1,

which correspond to the ratio of a measurement error variance to a true biomarker variance, 0.17 and 0.63, respectively.
We varied sample sizes from 500 to 2000 and conducted 1000 replicates for each simulation study.

We applied the proposed EM algorithm to simulated data for estimating the parameters. The initial values used for
β and γ (t) in the algorithm were 0’s and observed times, respectively. In the M-step, the spectral projected gradient
method was used for constrained optimization in (4). The convergence criterion for the EM algorithm was set as 10−3,
and the number of nodes, N = 128. This results in very stable integrations through all numerical studies. The results do
not change when we further increase N . We thus recommend N to be 128.

In the simulations, we noticed that the biomarker effect µ was sensitive to the initial values. Therefore, we first
calculated the profile likelihood for µ using the same algorithm except that µ was held at some fixed value; we then
carried out a grid search for finding the maximizer for µ. The variance estimation was based on the formula in Section 2.3.
We applied the Newton–Raphson algorithm for estimating the parameters of the Gumbel-model and employed the
linearization method (Graubard and Fears, 2005) for estimating the asymptotic variance of regression coefficient estimates.
Although data-driven methods for choosing a bandwidth in kernel estimating are more practical, it increases computation
burden substantially, and the sample size dependent bandwidth works well in the simulation study.

The simulation results are similar between the discrete and continuous time points, so we present the results of
simulations for continuous time points for γ0(t) = 2t0.2. Table 1 shows that the regression estimators are asymptotically
unbiased, and the bias and variance decrease when the sample size increases. The variance estimators are nearly unbiased
when the measurement error ratio is less than 0.35, whereas where the measurement error ratio is greater than 0.35, the
variance estimates for β̂ are approximately unbiased, but the variance estimator for µ̂ yields underestimation because σ
and µ are confounded in Gauss–Hermite quadrature form (7). In another transformation of model (2) by letting µξi = zi,
the confounded term µσ is not separated out (the detail is provided in Section 3 of the Supplementary material). We can
prove identifiability of σ theoretically; however, numerically it is difficult to estimate µ directly. High measurement error
ratio does not numerically guarantee the asymptotic normality for µ estimates. When the measurement error is ignored,
the extent of bias in the estimates is larger by 10-fold than the bias of the proposed estimators. When the true curve γ0(t)
is not smooth, µ̂ may be slightly more biased, and the corresponding variance is underestimated; however, estimates for
β have little bias regardless (Table 1 and 2 of the Supplementary material).

We evaluated robustness of Mixed-models to non-normality of the measurement error via a numerical study. We let
the true distribution for the measurement error be exponential-gamma distributions with mean 0 and variance 0.28 (the



Table 1
Simulation results of continuous random time points and γ0(t) = 2t0.2; ESE = empirical standard error; ASE = 
asymptotic standard error; CP = coverage probability.
N Parameter Unit = %

Mixture-model Gumbel-model

Bias ESE ASE CP Bias ESE ASE CP

σ = 0.5, measurement error ratio = 0.17
500 µ = 1.0 0.4 4.6 4.8 96.4 −11.3 3.3 3.1 7.8

β1 = 0.3 0.4 11.2 12.5 97.5 −3.2 10.4 9.8 92.1
β2 = 0.3 −0.0 17.0 19.8 98.2 −3.7 16.1 15.3 93.1

1000 µ = 1.0 −0.1 3.2 3.3 96.3 −11.9 2.4 2.2 0.4
β1 = 0.3 −0.3 7.7 8.5 97.1 −3.8 7.2 7.0 91.1
β2 = 0.3 0.0 12.2 13.4 96.4 −3.4 11.3 11.0 92.6

σ = 1, measurement error ratio = 0.63
1000 µ = 1.0 −4.4 11.0 4.4 70.4 −30.7 1.9 1.9 0.0

β1 = 0.3 −1.4 10.1 10.6 96.2 −9.3 7.8 7.4 74.6
β2 = 0.3 −0.7 15.2 16.8 96.3 −9.0 12.0 11.6 87.0

2000 µ = 1.0 −3.8 10.0 3.1 72.9 −31.0 1.4 1.4 0.0
β1 = 0.3 −1.0 7.7 7.3 93.7 −9.2 5.4 5.3 59.3
β2 = 0.3 −0.9 11.0 11.6 96.0 −9.1 8.2 8.3 79.8

measurement error ratio = 0.28) and with mean 0 and variance 1.16 (the measurement error ratio = 1.25); however,
we assumed it was generated from a normal distribution with the same mean and variance as the true distribution. The
simulation result shows that estimates of the Mixture-models are robust to non-normality of the measurement error
(Table 3 of the Supplementary material).

4.2. Application

We applied our approach to data from an ancillary study to the Atherosclerosis Risk in Communities study. In the
ancillary study, the association of type 2 diabetes incidence with six inflammation biomarkers was investigated in four U.S.
communities. We used fasting blood glucose (FPG) values as a diabetes biomarker and investigated temporal associations
(potential causation) between blood glucose values and factors, such as demographic characteristics, chronic disease status
and lab data while accounting for the skewed distribution of blood glucose values, error in blood glucose-measurement
and monotone increasing age effect on blood glucose levels. We analyzed a subpopulation of 1560 Caucasian females
from Forsyth County, North Carolina, who have complete covariates at the first visit. The ancillary study is longitudinal;
however, we use only the FPG values observed at the second visit excluding subjects having diabetes diagnosed by the
second visit or being on diabetes medication at the second visit (0.3% in the sub-population) because such subjects may
have subsequently taken medication or made dietary changes that could have influenced their blood glucose values.

In the mixture-model, the covariates include body mass index (BMI), current smoking status, hypertension, low density
lipoprotein (LDL) and high-density lipoprotein (HDL), which were measured at visit 1; FPG measurement time is age at the
visit. The average age at visit 1 of the sub-population was 57.3 years with range 45.6–68.0 years. The average time-to-visit
2 is 2.9 years with standard deviation of 0.20 and range 2.5–5.5 years. The average BMI of the sub-population was 25.0
kg/m2 with standard deviation 4.54 kg/m2. The numbers of current smokers and participants with hypertension were
422 (27.1%) and 312 (20.0%), respectively.

The observed biomarker, yi(t), is defined as the FPG value standardized with sample mean 99.6 mg/dl and standard
deviation 11.5 mg/dl so that it has zero mean and variance one. The measurement time is scaled down to (0,1]. The
standardized value and the rescaled observation time better facilitate the estimation process than original value or
log-transformed value. According to Hadi et al. (2008), the coefficient of variance (CV) for measurement error in laboratory
glucose values is 3.5%. We chose σ 2

= 0.32 corresponding to 3.5% CV of measurement error for the standardized FPG value.
For comparison, we applied a Gumbel-model, which ignores the measurement error in FPG values and a linear

regression model. The Gumbel-model includes the same covariates used in the Mixture-model. We have considered linear
models including different age-adjustments, including isotonic regression using the pooled adjacent violation algorithm,
cubic B-splines, categorical dummy age variables divided at quantiles and locations at which the isotonic regression jumps.
Among the linear models we considered, the selected model is the linear model including the same covariates used in
the Mixture-model and additionally categorical dummy age variables dividend at quantiles. The comparison of different
age-adjustments in goodness-of-fit is summarized in Section 5 and Table 4 of the Supplementary material. For a better
fit, we log-transformed the observed FPG values and then standardized those using mean 4.59 and variance 0.01.

The result of the analysis is given in Table 2. It shows that the covariates hypertension and higher BMI have significantly
increased the probability having a higher FPG value at next visit than the observed one. Given fixed FPG value ξ , compared
to normotensive subjects, subjects with hypertension have 1.53 times greater probability of having a higher FPG value at



Table 2
Application to the ARIC Study in Caucasian females from Forsyth County, NC; BG = Blood glucose; 
Hypert. = Hypertension; Smoking = Current Smoking; Est = regression coefficient estimate; ASE = 
asymptotic standard error.
Coefficients Mixture-model Gumbel-model

Est ASE p-value Est. ASE p-value

BG(12.2 mg/dL) 1.148 0.021 <0.0001 0.863 0.037 <0.0001
Hypert. = Yes 0.423 0.061 <0.0001 0.567 0.079 <0.0001
Smoking = Yes 0.013 0.052 0.802 0.072 0.091 0.427
BMI(4.5 kg/m2) 0.106 0.026 <0.0001 0.068 0.036 0.057
LDL(37.7 mg/dL) −0.015 0.019 0.436 0.003 0.054 0.957
HDL(17.5 mg/dL) −0.047 0.026 0.073 −0.009 0.043 0.831

Table 3
Linear model application to the ARIC Study in Caucasian fe-
males from Forsyth County, NC; ASE = asymptotic standard
error.
Coefficients Estimate ASE p-value

Intercept −0.226 0.059 0.0001
Hypertension = Yes 0.222 0.065 0.0007
Current Smoking = Yes −0.028 0.057 0.6280
BMI(4.5 kg/m2) 0.152 0.027 <0.0001
LDL(37.7 mg/dL) −0.014 0.027 0.6012
HDL(17.5 mg/dL) −0.090 0.028 0.0013
50.9 < Age ≤ 55 0.152 0.078 0.0530
55 < Age ≤ 59 0.182 0.079 0.0220
59 < Age ≤ 63.7 0.286 0.081 0.0004
63.7 < Age ≤ 68 0.316 0.080 0.0001

next visit than ξ . For each 4.5 kg/m2 increase in BMI, the probability of having a higher FPG value at next visit than ξ

increases by factor 1.12.
Comparatively, the analysis of the Gumbel-model yields different results in effect size and significance in BMI (the

p-value is on the borderline). The result of the linear regression analysis in Table 3 is not directly comparable with the
Mixture- and Gumbel-models. However, it is agreed that the both factors of hypertension and high BMI are significantly
associated with increasing FPG values. In addition, age effect on FPG values is seemingly monotone increasing.

To investigate the goodness-of-fit of the applications, we generated predicted glucose values using formula (10)
based on the parameter estimation, covariates, cumulative density probability p’s randomly generated from a uniform
distribution between 0 and 1, and generated measurement error from a normal distribution with mean 0 and variance
0.09. Using the predicted values, we suggest two methods for model diagnosis. First, Quantile–Quantile (QQ) plots are
generated to compare the distribution of observed glucose values with the distribution of predicted means (the right
column of Fig. 1). Second, we calculated the residuals by subtracting the predicted means from the observed glucose
values (the left column of Fig. 1). The residuals and QQ-plots are very comparable between the Mixture- and Gumbel-
models although the QQ-plot of the Mixture-model shows slightly better fit to the data than the Gumbel-model. In
contrast, the QQ-plot of the linear regression model shows notable distinction between the distributions of observed
and predicted values. The three residual plots are randomly scattered around zero. For sensitivity analysis, we applied
different measurement error variance values ranging from 0.01 to 0.36, and the analysis results are robust in significance
and effect size for binary covariates.

We predicted FPG values at the third visit using the linear, Gumbel- and Mixture-models based on the first and second
visits and compared the predicted values with the FPG values observed at the third visit from 1,399 subjects, who have no
diabetes diagnosed by the third visit or not being on diabetes medication at the third visit. The correlation between FPG
values at the second and third visits is 0.52. Positive and negative residuals of Fig. 2 mean lower and higher prediction
than observed values. The Mixture-model has slightly better accuracy than the Gumbel-model for the observations in
the middle of range. The linear model more accurately predicts observations near mean 0, whereas the Gumbel-/Mixture
model has more accuracy than the linear model for the observations in the high range. The Mixture-/Gumbel-model yields
more accurate prediction in the right tail than the lower tail.

5. Discussion

We proposed efficient semiparametric likelihood-based regression models for continuous and skewed biomarker data.
Observed biomarker values were analyzed separately as true value and measurement error. An additive model was used
to account for biomarker values subject to measurement error by assuming that measurement error follows a Gaussian
process with zero-mean and finite variance and is independent of the true biomarker values. We adopted Gumbel



Fig. 1. Goodness-of-fit of the linear, Gumbel-/Mixture-models: left are residuals plots, and right are Quantile–Quantile plots.

Fig. 2. Prediction for FPG values at the third visit using the linear and Gumbel-/Mixture-models based on the first and second visits.



distributions to construct a stochastic model for the time-varying true biomarker values and restricted the stochastic
model to be monotone increasing over time. Then we constructed the marginal observed likelihood for the observed
biomarker values using a mixture of a Gumbel with a normal distribution.

The proposed estimator results in asymptotically unbiased estimations and provides asymptotic normality of the
regression coefficient estimates when the measurement error ratio is moderate or small. The interpretation of the models
is not as straightforward as linear regression models; however the flexibility of the mixture distributions enables the
model to better fit to data skewed with a long tail. Gumbel-/Mixture-models yield more accurately prediction in the right
end than the lower end. We did not present an application of ordered statistics or extreme events, but the proposed
models are also applicable to such extreme values.

The methods proposed in this paper can be generalized to repeated observations using pseudo-likelihood ignoring
dependence between biomarker values within the same subject. We built a non-parametric estimation for γ (t) as we do
not need to specify the number of knots and locations for splines; however, we can relax the monotonicity of the function
of time by using splines for modeling non-monotone stochastic trends in biomarker levels. Furthermore, we can consider
other regression models, such as linear transformation models or additive models.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2019.03.008.
Supplementary Material available in the attached file include the proofs of the model identifiability and Theorems 1–4

in Section 3, and simulation results and additional explanations referred in the main context.
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