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ABSTRACT
Health sciences research often involves both right- and interval-censored events because the occurrence of
a symptomatic disease can only be observed up to the end of follow-up, while the occurrence of an asymp-
tomatic disease can only be detected through periodic examinations. We formulate the effects of poten-
tially time-dependent covariates on the joint distribution of multiple right- and interval-censored events
through semiparametric proportional hazards models with random effects that capture the dependence
bothwithin and between the two types of events. We consider nonparametricmaximum likelihood estima-
tion and develop a simple and stable EM algorithm for computation. We show that the resulting estimators
are consistent and the parametric components are asymptotically normal and efficient with a covariance
matrix that can be consistently estimated by profile likelihood or nonparametric bootstrap. In addition, we
leverage the joint modelling to provide dynamic prediction of disease incidence based on the evolving
event history. Furthermore, we assess the performance of the proposed methods through extensive simu-
lation studies. Finally, we provide an application to a major epidemiological cohort study. Supplementary
materials for this article are available online.

1. Introduction

Many clinical and epidemiological studies are concerned with
multiple types of diseases, which may be symptomatic or
asymptomatic. Time to the development of a symptomatic dis-
ease is right-censored if the disease does not occur during the
follow-up, whereas time to the development of an asymptomatic
disease is typically interval-censored because the disease occur-
rence can only be monitored periodically using biomarkers. In
the Atherosclerosis Risk in Communities (ARIC) study (The
ARIC Investigators 1989), for instance, subjects were followed
for up to 27 years for symptomatic cardiovascular diseases,
such as myocardial infarction (MI) and stroke, through reviews
of hospital records; they were also examined over five clinic
visits, with the first four at approximately 3-year intervals, for
occurrences of asymptomatic diseases, such as diabetes and
hypertension.

There is a large body of literature on the joint analysis of
correlated right-censored events (Kalbfleisch and Prentice
2002, chap. 10; Hougaard 2012), as well as a growing body
of literature on correlated interval-censored events (Goggins
and Finkelstein 2000; Kim and Xue 2002; Wen and Chen
2013; Chen et al. 2014; Zeng, Gao, and Lin 2017). In addition,
there is a considerable amount of literature on competing risks
and semi-competing risks (Fine and Gray 1999; Fine, Jiang,
and Chappell 2001; Kalbfleisch and Prentice 2002, chap. 8).
However, the existing literature has treated right-censored and
interval-censored events separately. Joint modeling of the two
kinds of data would allow investigators to evaluate the effects of
covariates on both kinds of events and to predict the occurrence
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of a symptomatic disease given the history of asymptomatic
diseases.

In this article, we relate potentially time-dependent covari-
ates to the joint distribution of multiple types of right- and
interval-censored event times through semiparametric pro-
portional hazards models with random effects. Specifically,
we assume a shared random effect for the interval-censored
events, which affects the right-censored events with unknown
coefficients. We assume an additional shared random effect for
the right-censored events to capture their own dependence.
The proposed models allow semi-competing risks and are
reminiscent of selection models for joint modeling of survival
and longitudinal data (Hogan and Laird 1997).

We estimate the model parameters through nonparametric
maximum likelihood estimation, under which the baseline
hazard functions are completely nonparametric. We develop a
simple EM algorithm that converges stably for arbitrary sample
sizes, even with time-dependent covariates. We show that the
resulting estimators are consistent and the parametric compo-
nents are asymptotically normal and asymptotically efficient.
We also show that the covariance matrix of the parametric com-
ponents can be estimated consistently with profile likelihood or
nonparametric bootstrap. We pay special attention to the esti-
mation of the conditional distribution function given the event
history, which can be used to predict disease occurrence
dynamically. Finally, we assess the performance of the proposed
numerical and inferential procedures through extensive simu-
lation studies and provide a substantive application to the ARIC
data on diabetes, hypertension, stroke, MI, and death.
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2. Methods

2.1. Data, Models, and Likelihood

Suppose that there are K1 types of asymptomatic events occur-
ring at times T1, . . . ,TK1 and K2 types of symptomatic events
occurring at timesTK1+1, . . . ,TK , whereK = K1 + K2. LetXk(·)
be a p-vector of possibly time-dependent external covariates for
the event time Tk. For k = 1, . . . ,K1, the hazard function of Tk
conditional on covariate Xk and random effect b1 is given by

λk(t;Xk, b1) = eβ
TXk(t )+b1λk(t ), (1)

where β is a set of unknown regression parameters, λk(·) is
an arbitrary baseline hazard function, and b1 is a latent nor-
mal random variable with mean zero and variance σ 2

1 . For
k = K1 + 1, . . . ,K, the hazard function of Tk conditional on
covariates Xk and random effects b1 and b2 is given by

λk(t;Xk, b1, b2) = eβ
TXk(t )+γkb1+b2λk(t ), (2)

where λk(·) is an arbitrary baseline hazard function,
γ ≡ (γK1+1, . . . , γK )

T is a set of unknown coefficients, and
b2 is a latent normal random variable with mean zero and
variance σ 2

2 . Write � = (σ 2
1 , σ

2
2 ). By letting Xk depend on k,

models (1) and (2) allow the regression parameters to be differ-
ent among the K events by appropriate definitions of dummy
variables; see Lin (1994).

We implicitly assume thatK1 andK2 are greater than one; oth-
erwise, some of the parameters need to be fixed to ensure iden-
tifiability. For example, if K1 = K2 = 1, we require σ 2

2 = 0 and
γ1 = 1; if K1 > 1 and K2 = 1, we require σ 2

2 = 0; and if K1 = 1
andK2 > 1, we require one of the γk’s to be 1. In the last scenario,
we may set different γk to 1 and choose the model that yields the
largest value of the likelihood function.

Remark 1. The random effects b1 and b2 characterize the under-
lying health conditions for the asymptomatic and symptomatic
events, respectively. The random effect for the asymptomatic
events affects the kth symptomatic event through the unknown
coefficient γk. For example, in the ARIC study, b1 represents the
common pathways for diabetes and hypertension, such as obe-
sity, inflammation, oxidative stress, and insulin resistance, which
also serve as potential risk factors for MI, stroke, and death. The
random effect b2 represents the underlying propensity for major
cardiovascular diseases and death.

Suppose that the asymptomatic event time Tk
(k = 1, . . . ,K1) is monitored at a sequence of positive time
points Uk1 < · · · < Uk,Mk and is known to lie in the interval
(Lk,Rk], where Lk = max{Ukl : Ukl < Tk, l = 0, . . . ,Mk}, and
Rk = min{Ukl : Ukl ≥ Tk, l = 1, . . . ,Mk + 1}, with Uk0 = 0
and Uk,Mk+1 = ∞. Let Ck denote the censoring time on the
symptomatic event time Tk (k = K1 + 1, . . . ,K) such that we
observe Yk = min(Tk,Ck) and �k = I(Tk ≤ Ck), where I(·) is
the indicator function. For a random sample of n subjects, the
data consist of {Oi : i = 1, . . . , n}, where

Oi = {Lik,Rik,X ik(·) : k = 1, . . . ,K1} ∪
× {Yik,�ik,X ik(·) : k = K1 + 1, . . . ,K}.

We assume that {Uikl : k = 1, . . . ,K1; l = 1, . . . ,Mik}
and {Cik : k = K1 + 1, . . . ,K} are independent of {Tik :
k = 1, . . . ,K} and bi ≡ (bi1, bi2) conditional on {X ik(·) :
k = 1, . . . ,K}. Then, the likelihood concerning the parameters
θ ≡ (β, γ,�) andA ≡ (�1, . . . , �K ) is

n∏
i=1

∫
bi

K1∏
k=1

[
exp

{
−
∫ Lik

0
eβ

TX ik(s)+bi1d�k(s)
}

− exp
{
−
∫ Rik

0
eβ

TX ik(s)+bi1d�k(s)
}]

×
K∏

k=K1+1

[{
eβ

TX ik(Yik )+γkbi1+bi2λk(Yik)
}�ik

× exp
{
−
∫ Yik

0
eβ

TX ik(s)+γkbi1+bi2d�k(s)
}]
ψ(bi;�)dbi,

where ψ(bi;�) = ∏2
j=1 φ(bi j; σ 2

j ), φ(bi j; σ 2
j ) = (2πσ 2

j )
−1/2

exp{−b2i j/(2σ 2
j )}, �k(t ) = ∫ t

0 λk(s)ds, and exp{− ∫ ∞
0

eβ
TX ik(s)+bi1d�k(s)} = 0.
In some studies, one of the symptomatic events is terminal

(e.g., death), such that we have a semi-competing risks set-up
(Fine, Jiang, and Chappell 2001), where the occurrence of the
terminal event precludes the development of the other events
but not vice versa. Without loss of generality, suppose that
the Kth event is terminal. Then the monitoring times for Tk
(k ≤ K1) consist of the Ukl ’s that are smaller than TK , and the
censoring time for Tk (k = K1 + 1, . . . ,K − 1) is min(Ck,TK ).
Conditional on (b1, b2), the event times T1, . . . ,TK−1 are mutu-
ally independent and are independent of the monitoring times
and censoring times. Thus, for any set Sk that may depend
on the monitoring times and censoring times, the joint prob-
ability of T1 ∈ S1, . . . ,TK−1 ∈ SK−1 conditional on (b1, b2) is
equal to

∏K−1
k=1 P(Tk ∈ Sk|b1, b2) with Sk as a deterministic set.

Therefore, the likelihood remains the same as before.

2.2. Estimation Procedure

We adopt the nonparametric maximum likelihood estima-
tion approach. For k = 1, . . . ,K1, let 0 = tk0 < tk1 < tk2 <
· · · < tk,mk < ∞ be the ordered sequence of all Lik and Rik
with Rik < ∞. For k = K1 + 1, . . . ,K, let 0 = tk0 < tk1 <
tk2 < · · · < tk,mk < ∞ be the ordered sequence of all Yik with
�ik = 1. The estimator for�k (k = 1, . . . ,K) is a step function
that jumps only at tk1, . . . , tk,mk with respective jump sizes
λk ≡ (λk1, . . . , λk,mk ). We maximize the objective function

Ln(θ,A) =
n∏
i=1

∫
bi

{ K1∏
k=1

g(1)ik (bi1;β,λk)

}

×
⎧⎨⎩

K∏
k=K1+1

g(2)ik (bi;β,λk)

⎫⎬⎭ψ(bi;�)dbi,



over θ and λ1, . . . ,λK , where

g(1)ik (bi1;β,λk) = exp

(
−

∑
tkl≤Lik

eβ
TX ikl+bi1λkl

)

− I(Rik < ∞) exp

(
−

∑
tkl≤Rik

eβ
TX ikl+bi1λkl

)
,

g(2)ik (bi;β,λk) =
[
�k{Yik}eβTX ik(Yik )+γkbi1+bi2

]�ik

× exp

(
−

∑
tkl≤Yik

eβ
TX ikl+γkbi1+bi2λkl

)
,

X ikl = X ik(tkl ) for k = 1, . . . ,K and l = 1, . . . ,mk, and�k{Yik}
is the jump size of�k atYik.

Direct maximization of the objective function is difficult
due to the lack of analytical expressions for λ1, . . . ,λK . We
introduce latent Poisson random variables to form a like-
lihood equivalent to the objective function such that the
maximum likelihood estimators can be easily obtained via a
simple EM algorithm. For k = 1, . . . ,K1, we denote R∗

ik = I
(Rik = ∞)Lik + I(Rik < ∞)Rik and introduce independent
Poisson random variables Wikl (l = 1, . . . ,mk, tkl ≤ R∗

ik) with
means λkl exp(βTX ikl + bi1). Conditional on bi1, the likelihood
function of {Wikl; l = 1, . . . ,mk, tkl ≤ R∗

ik} is
mk∏

l=1,tkl≤R∗
ik

{
1

Wikl !

(
λkleβ

TX ikl+bi1
)Wikl

exp
(
−λkleβTX ikl+bi1

)}
.

Let Aik = ∑
tkl≤Lik Wikl and Bik = I(Rik < ∞)

∑
Lik<tkl≤Rik

Wikl .
The observed-data likelihood for Aik = 0 and Bik > 0 given bi1
is equal to

exp

(
−

∑
tkl≤Lik

eβ
TX ikl+bi1λkl

)

−I(Rik < ∞) exp

(
−

∑
tkl≤Rik

eβ
TX ikl+bi1λkl

)
,

which is the same as g(1)ik (bi1;β,λk). Therefore, the objec-
tive function Ln(θ,A) can be viewed as the observed-data

likelihood for {Aik = 0,Bik > 0 : i = 1, . . . , n; k = 1, . . . ,
K1} ∪ {Yik,�ik : i = 1, . . . , n; k = K1 + 1, . . . ,K} with
(Wikl, bi) (i = 1, . . . , n; k = 1, . . . ,K1; l = 1, . . . ,mk, tkl ≤
R∗
ik) as latent variables. In view of the foregoing results, we

propose an EM algorithm treatingWikl and bi as missing data.
In the M-step, we maximize the conditional expectation of

the complete-data log-likelihood given the observed data so as
to update the parameters. In particular, the conditional expec-
tation of the complete-data log-likelihood is

n∑
i=1

Ê

( K1∑
k=1

[ mk∑
l=1

I(tkl ≤ R∗
ik)

{
Wikl

(
log λkl + βTX ikl + bi1

)
− λkl exp(βTX ikl + bi1)

} ]
+

K∑
k=K1+1

[
�ik

{
log�k{Yik} + βTX ik(Yik)+ γkbi1 + bi2

}
−

∑
tkl≤Yik

λkl exp
(
βTX ikl + γkbi1 + bi2

) ])
, (3)

where Ê(·) denotes the conditional expectation given the
observed data Õi (i = 1, . . . , n), with Õi = {Aik = 0,
Bik > 0,X ik(·) : k = 1, . . . ,K1} ∪ {Yik,�ik,X ik(·) : k = K1 +
1, . . . ,K}. To update the parameters, we first differentiate (3)
with respect to λkl (k = 1, . . . ,K; l = 1, . . . ,mk) to obtain the
updating formulas for λk:

λkl =
∑n

i=1 I(tkl ≤ R∗
ik)Ê (Wikl )∑n

i=1 I(tkl ≤ R∗
ik)Ê

{
exp

(
βTX ikl + bi1

)} (4)

for k = 1, . . . ,K1 and l = 1, . . . ,mk and

λkl =
∑n

i=1�ikI(Yik = tkl )∑n
i=1 I(Yik ≥ tkl )Ê

{
exp

(
βTX ikl + γkbi1 + bi2

)} (5)

for k = K1 + 1, . . . ,K and l = 1, . . . ,mk. We then update β by
solving the equation

n∑
i=1

{ K1∑
k=1

mk∑
l=1

Ê (Wikl ) I(tkl ≤ R∗
ik)

[
X ikl −

∑n
j=1 X jkl I(tkl ≤ R∗

jk)Ê
{
exp

(
βTX jkl + b j1

)}∑n
j=1 I(tkl ≤ R∗

jk)Ê
{
exp

(
βTX jkl + b j1

)} ]

+
K∑

k=K1+1

�ik

(
X ik(Yik)−

∑n
j=1 I(Yjk ≥ Yik)X jk(Yik)Ê

[
exp

{
βTX jk(Yik)+ γkb j1 + b j2)

}]∑n
j=1 I(Yjk ≥ Yik)Ê

[
exp

{
βTX jk(Yik)+ γkb j1 + b j2

}] )⎫⎬⎭ = 0

and update γk by solving the equation

n∑
i=1

�ik

(
Ê (bi1)−

∑n
j=1 I(Yjk ≥ Yik)Ê

[
b j1 exp

{
βTX jk(Yik)+ γkb j1 + b j2)

}]∑n
j=1 I(Yjk ≥ Yik)Ê

[
exp

{
βTX jk(Yik)+ γkb j1 + b j2

}] )
= 0.



The two equations are obtained by differentiating (3) with
respect to βk or γk and replacing λkl by the right hand side of (4)
or (5). Finally, we updateσ 2

j byσ 2
j = ∑n

i=1 Ê(b
2
i j)/n for j = 1, 2.

In the E-step, we evaluate the conditional expectation of
Wikl (k = 1, . . . ,K1; l = 1, . . . ,mk, tkl ≤ R∗

ik) and the other
terms of bi given the observed data Õi for i = 1, . . . , n.
Specifically, the conditional expectation ofWikl (k = 1, . . . ,K1;
l = 1, . . . ,mk, tkl ≤ R∗

ik) given Õi and bi is

I(Lik < tkl ≤ Rik < ∞)
λkl exp

(
βTX ikl + bi1

)
1 − exp

(
−∑

Lik<tkl′≤Rik
λkl ′eβ

TX ikl′ +bi1
) .

Note that the density of bi given Õi is proportional to
{∏K1

k=1 g
(1)
ik (bi1;β,λk)} × {∏K

k=K1+1 g
(2)
ik (bi;β,λk)}ψ(bi;�).

We evaluate the conditional expectation of Wikl and the other
terms through numerical integration over bi with Gauss–
Hermite quadratures.

We iterate between the E-step and M-step until conver-
gence. In the M-step, the high-dimensional nuisance parame-
ters λkl (k = 1, . . . ,K; l = 1, . . . ,mk) are calculated explicitly,
such that inversion of high-dimensional matrices is avoided.We
denote the final estimators for θ and A as θ̂ ≡ (̂β, γ̂, �̂) and
Â ≡ (�̂1, . . . , �̂K ).

2.3. Asymptotic Theory

We establish the asymptotic properties of (̂θ, Â) under the
following regularity conditions.

Condition 1. The true value of θ, denoted by θ0 ≡ (β0, γ0,�0),
belongs to the interior of a known compact set
 ≡ B × G × S ,
where B ⊂ R

p, G ⊂ R
K2 , and S ⊂ (0,∞)× (0,∞).

Condition 2. For k = 1, . . . ,K, the true value�k0(·) of�k(·) is
strictly increasing and continuously differentiable in [0, τk] with
�k0(0) = 0.

Condition 3. For k = 1, . . . ,K1, the monitoring times have
finite support Uk with the least upper bound τk. The num-
ber of potential monitoring times Mk is positive with
E(Mk) < ∞. There exists a positive constant η such that
Pr{min1≤k≤K1,0≤m<Mk (Uk,m+1 − Ukm) ≥ η|Mk,Xk} = 1. In
addition, there exists a probability measure μk in Uk such that
the bivariate distribution function of (Ukm,Uk,m+1) conditional
on (Mk,Xk) is dominated by μk × μk and its Radon–Nikodym
derivative, denoted by f̃km(u, v;Mk,Xk), can be expanded to a
positive and twice-continuously differentiable function in the
set {(u, v ) : 0 ≤ u ≤ τk, 0 ≤ v ≤ τk, v − u ≥ η}.
Condition 4. For k = K1 + 1, . . . ,K, let τk denote the study
duration time andUk = [0, τk]. There exists a positive constant δ
such that Pr(Ck ≥ τk|Xk) = Pr(Ck = τk|Xk) ≥ δ almost surely.

Condition 5. With probability 1, Xk(·) has bounded total vari-
ation in Uk. If there exists a constant vector a1 and a deter-
ministic function a2k(t ) such that aT1Xk(t )+ a2k(t ) = 0 for any
t ∈ Uk and any k ∈ {1, . . . ,K} with probability 1, then a1 = 0
and a2k(t ) = 0 for any t ∈ Uk and any k ∈ {1, . . . ,K}.
Remark 2. Conditions 1, 2, and 5 are standard conditions for fail-
ure time regression with time-dependent covariates. Condition

3 pertains to the joint distribution of monitoring times of the
asymptomatic events. It requires that two adjacent monitoring
times are separated by at least η; otherwise, the datamay contain
exact observations, which require a different theoretical treat-
ment. The dominating measure μk is chosen as the Lebesgue
measure if the monitoring times are continuous random vari-
ables and as the counting measure if monitorings occur only at
a finite number of time points. The number of potential mon-
itoring times Mk can be fixed or random, is possibly different
among study subjects and event types, and is allowed to depend
on covariates. Condition 4 implies that there is a positive prob-
ability for the kth symptomatic event to be observed in the time
interval [0, τk].

We state the strong consistency of (̂θ, Â) and the weak con-
vergence of θ̂ in two theorems.

Theorem 1. Under Conditions 1−5, ‖̂θ − θ0‖ →a.s. 0, and
‖�̂k −�k0‖l∞(Uk ) →a.s. 0, where ‖ · ‖l∞(Uk ) denotes the supre-
mum norm on Uk for k = 1, . . . ,K.

Theorem 2. Under Conditions 1−5, n1/2 (̂θ − θ0) converges
weakly to a (p+ K2 + 2)-dimensional zero-mean normal ran-
dom vector with a covariance matrix that attains the semipara-
metric efficiency bound.

The proofs of all theorems are provided in the Section S.1 of
the supplementary materials.

We propose two approaches to estimate the covariance
matrix of θ̂. The first approach makes use of the profile likeli-
hood (Murphy and Van der Vaart 2000). Specifically, we define
the profile log-likelihood function

pln(θ) = max
A∈C1×···×CK

log Ln(θ,A),

where Ck is the set of step functions with nonnegative jumps at
tkl (k = 1, . . . ,K; l = 1, . . . ,mk). We estimate the covariance
matrix of θ̂ by the inverse of

n∑
i=1

⎛⎜⎜⎜⎜⎜⎝
pli (̂θ + hne1)− pli (̂θ)

hn
...

pli (̂θ + hnep+K2+2)− pli (̂θ)
hn

⎞⎟⎟⎟⎟⎟⎠

⊗2

,

where pli is the ith subject’s contribution to pln, e j is the jth
canonical vector in R

p+K2+2, a⊗2 = aaT, and hn is a constant of
order n−1/2. To evaluate the profile likelihood, we use the EM
algorithm of Section 2.2 but only update �1, . . . , �K in the
M-step.

Alternatively, we approximate the asymptotic distribution
of θ̂ by bootstrapping the observations. In particular, we draw
a simple random sample of size n with replacement from the
observed data {Oi : i = 1, . . . , n}. Let θ̂

∗
be the estimator of

θ in the bootstrap sample. The empirical distribution of θ̂
∗

can be used to approximate the distribution of θ̂. Confidence
intervals for θ0 can be constructed by the Wald method (with
the variance of θ̂

∗
) or from the empirical percentiles of θ̂

∗
.



The following theorem states the asymptotic properties of θ̂
∗
,

thereby validating the bootstrap procedure.

Theorem 3. Under Conditions 1−5, the conditional distribution
of n1/2 (̂θ

∗ − θ̂) given the data converges weakly to the asymp-
totic distribution of n1/2 (̂θ − θ0).

2.4. Dynamic Prediction

Given the fitted joint model, we can predict future events
by updating the event history. For a subject with covari-
ates X , let O(t ) denote the event history at time t > 0,
which includes the interval-censored observations of the
asymptomatic events {Lk(t ),Rk(t ) : k = 1, . . . ,K1}, and
the right-censored observations of the symptomatic events
{Yk(t ),�k(t ) : k = K1 + 1, . . . ,K}.

If no event history is available, the density of the random
effect b can be estimated by ψ(b; �̂). We estimate the survival
function of Tk, denoted by P(Tk ≥ t|X ), by∫

b
sk(t;X, b)ψ(b; �̂)db,

where

sk(t;X, b)

=

⎧⎪⎨⎪⎩
exp

{
− ∫ t

0 e
β̂
T
Xk(u)+b1d�̂k(u)

}
k = 1, . . . ,K1

exp
{
− ∫ t

0 e
β̂
T
Xk(u)+γ̂kb1+b2d�̂k(u)

}
k = K1 + 1, . . . ,K

,

and the integral is evaluated by numerical integration with
Gauss–Hermite quadratures. Here, the function sk(t;X, b) can
be interpreted as the conditional survival probability of Tk at
time t given b and X .

In the semi-competing risks set-up, where one of the symp-
tomatic events is terminal, it is more meaningful to use the
cumulative incidence function to predict the event time of
interest. Without loss of generality, we assume the Kth event is
terminal. The cumulative incidence function of the kth event
(k = 1, . . . ,K − 1) is given by

P(Tk ≤ t,Tk ≤ TK |X )
=

∫
b
{P(Tk ≤ t ≤ TK |X, b)+ P(Tk ≤ TK < t|X, b)}ψ(b;�)db

=
∫
b

{
P(Tk ≤ t|TK ≥ t,X, b)P(TK ≥ t|X, b)

+
∫ t

0
P(Tk ≤ u|TK = u,X, b)dP(TK ≤ u|X, b)

}
ψ(b;�)db,

which can be estimated by∫
b

[
{1 − sk(t;X, b)} sK (t;X, b)

+
∫ t

0
{1 − sk(u;X, b)} sK (u;X, b)eβ̂

T
XK (u)+γ̂Kb1+b2d�̂K (u)

]
×ψ(b; �̂)db.

Here, the function sk(t;X, b) can be interpreted as the condi-
tional survival probability of Tk at time t given TK ≥ t , b, and X .

At time t0 > 0, we update the posterior density of b given the
event history O(t0) so as to perform dynamic prediction. Note

that the posterior density of b is proportional to

J(b; t0,X ) ≡
K1∏
k=1

{sk(Lk(t0);X, b)− sk(Rk(t0);X, b)}

×
K∏

k=K1+1

(
sk(Yk(t0);X, b)

×
[
�̂k{Yk(t0)}eβ̂

T
Xk{Yk(t0)}+γ̂kb1+b2

]�k(t0)
)
ψ(b; �̂).

If the subject has not developed the kth event or the terminal
event by time t0, that is, Yk(t0) = YK (t0) = t0 and �k(t0) =
�K (t0) = 0, we estimate the conditional cumulative incidence
function of the kth event, P(Tk ≤ t,Tk ≤ TK |O(t0),X ), by∫

b

J(b; t0,X )
sk(t0;X, b)sK (t0;X, b)

∫
b′ J(b′; t0,X )db′

×
[

{sk(t0;X, b)− sk(t;X, b)} sK (t;X, b)

+
∫ t

t0
{sk(t0;X, b)− sk(u;X, b)}

× sK (u;X, b)eβ̂
T
XK (u)+γ̂Kb1+b2d�̂K (u)

]
db.

In practice, it is desirable to identify subjects who are at
increased risk as the event history is accumulating. In the same
vein as the risk score under the standard proportional hazards
model, we use the risk score β̂

T
Xk(t0)+ γ̂k̂b1(t0)+ b̂2(t0) to

dynamically predict the kth event (k = K1 + 1, . . . ,K), where
b̂(t0) ≡ (̂b1(t0), b̂2(t0)) is a suitable estimator of b given the
event history O(t0). The estimator b̂(t0) can be the posterior
mean or mode of b or an imputed value from the posterior
distribution. For example, the risk score using the posterior
mean is given by

β̂
T
Xk(t0)+

∫
b(γ̂kb1 + b2)J(b; t0,X )db∫

b J(b; t0,X )db
.

The risk score quantifies the subject-specific risk and can be
very useful to both individual patients and clinicians when
making decisions about lifestyle modifications and preventive
medical treatments.

3. Simulation Studies

We conducted simulation studies to assess the performance of
the proposed methods. We considered one time-independent
covariate X1 ∼ Unif(0, 1) and one time-dependent covari-
ate X2(t ) = I(t ≤ V )B1 + I(t > V )B2, where B1 and B2 are
independent Bernoulli(0.5), V ∼ Unif(0, τ ), and τ = 4. We
considered two asymptomatic events and two symptomatic
events. We set Xk = ek ⊗ (X1,X2)

T, where ek is the kth canon-
ical vector in R

4, and ⊗ denotes the Kronecker product. We set
β = (0.5, 0.4, 0.5,−0.2,−0.5, 0.5,−0.5, 0.5)T, �1(t ) = 0.5t ,
�k(t ) = log{1 + t/(k − 1)} for k = 2, 3, 4, γ3 = γ4 = 0.25,
and σ 2

1 = σ 2
2 = 1. Both symptomatic events were censored

by C ∼ Unif(2τ/3, τ ), such that the censoring rates are 33%
and 39%, respectively. The series of monitoring times were
generated sequentially, with Um = Um−1 + 0.1 + Unif (0, 0.5)



Table . Summary statistics for the simulation studies without a terminal event.

n = 100 n = 200

Profile Bootstrap Profile Bootstrap

Bias SE SEE CP SEE CP Bias SE SEE CP SEE CP

β11 . . . . . . . . . . . .
β12 . . . . . . . . . . . .
β21 . . . . . . . . . . . .
β22 −. . . . . . −. . . . . .
β31 −. . . . . . −. . . . . .
β32 −. . . . . . . . . . . .
β41 −. . . . . . . . . . . .
β42 . . . . . . −. . . . . .
γ3 −. . . . . . −. . . . . .
γ4 −. . . . . . −. . . . . .
σ 2
1 . . . . . . . . . . . .
σ 2
2 −. . . . . . −. . . . . .

NOTE: SE and SEE denote, respectively, the empirical standard error and mean standard error estimator. CP stands for the empirical coverage probability of the %
confidence interval based on theWaldmethod for the profile-likelihood approach and the % symmetric confidence interval for the bootstrap approach. For γ3 , γ4 , σ

2
1 ,

and σ 2
2 , bias and SEE are based on the median instead of the mean, and SE is based on the mean absolute deviation. For σ 2

1 and σ 2
2 , the confidence intervals are based

on the log transformation.

for m ≥ 1 and U0 = 0. The last monitoring time is the largest
Um that is smaller thanC. We set n = 100 or 200 and simulated
2000 replicates. For each dataset, we applied the proposed EM
algorithm by setting the initial value of β to 0, the initial values
of γk and σ 2

k to 1 and the initial value of λkl to 1/mk. We used 20
quadrature points for integration with respect to each random
effect and set the convergence threshold to 10−3. For variance
estimation, we set hn = 5n−1/2 for profile likelihood and used
100 bootstrap samples.

Table 1 summarizes the simulation results. The biases for all
parameter estimators are small, especially for n = 200. Both the
profile-likelihood and bootstrap variance estimators for β̂ are
accurate, especially for n = 200. Both variance estimators for
γ̂ tend to overestimate the true variabilities, but the coverage
probabilities of the confidence intervals get closer to the nom-
inal level as sample size increases. The profile-likelihood vari-
ance estimators for σ̂ 2

1 and σ̂ 2
2 overestimate the true variabilities,

while the bootstrap variance estimators for σ̂ 2
1 and σ̂ 2

2 accurately
reflect the true variabilities. Figure S.1(a) of the Supplemental
Materials shows the estimation of the baseline survival functions
with sample size n = 200. The estimators are virtually unbiased.

We considered a second setup with an additional
terminal event. We set Xk = ek ⊗ (X1,X2)

T, where ek
is the kth canonical vector in R

5. In addition, we set
β = (0.5, 0.4, 0.5,−0.2,−0.5, 0.5,−0.5, 0.5, 0.3,−0.2)T,
�5(t ) = log(1 + t/4), and γ5 = 0.25. The terminal event was
also censored by C. The censoring rates for the right-censored
events are 51%, 58%, and 43%, respectively. The results are
shown inTable S.1 and Figure S.1(b) of the supplementalmateri-
als. The conclusions are similar to the case of no terminal event.

We assessed the performance of dynamic prediction based
on the conditional cumulative incidence function in the setting
with a terminal event. Suppose that at the first monitoring
time t0 = 1, event 2 has occurred but events 1, 3, and 4 have
not. Figure 1 shows the estimation of the baseline cumulative
incidence functions (pertaining to X = 0) for events 3 and 4
given the event history at time t0 = 1. The estimators slightly
underestimate the true values at the right tail, but the biases get
smaller as n increases.

To investigate the performance of the proposed dynamic
prediction methods under misspecified models, we conducted
another set of simulation studies where the event times were
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Figure . Estimation of the baseline cumulative incidence function conditional on the event history. The solid black curve, dotted blue curve, and dashed red curve pertain,
respectively, to the true value and the mean estimates from the proposed method with n = 100 and n = 200.



Table . Estimation results for the regression parameters of the asymptomatic events in the ARIC study.

Diabetes Hypertension

Covariate Estimate Std error p-value Estimate Std error p-value

Forsyth County, white −. . . −. . <.
Jackson, black −. . . −. . .
Minneapolis, white −. . <. −. . <.
Washington County, white −. . . −. . <.
Age −. . . . . <.
Male −. . . −. . <.
BMI . . <. . . <.
Glucose . . <. . . .
Systolic blood pressure . . . . . <.
Smoker . . <. . . <.

NOTE: The blacks in Forsyth County form the reference group for the cohort×race variables.

generated from the proportional odds, instead of the propor-
tional hazards,models with random effects. As shown in Section
S.2 of the supplemental materials, the dynamic prediction is
still quite accurate.

4. ARIC Study

ARIC is a perspective epidemiological cohort study conducted
in four U.S. communities: Forsyth County, NC; Jackson, MS;
Minneapolis, MN; and Washington County, MD. A total of
15792 participants received a baseline examination between
1987 and 1989 and four subsequent examinations in 1990–1992,
1993–1995, 1996–1998, and 2011–2013. At each examination,
medical data were collected, such that interval-censored obser-
vations for diabetes and hypertension were obtained. The
participants were also followed for cardiovascular diseases
through reviews of hospital records, such that potentially right-
censored observations on MI, stroke, and death were collected.

We related the disease incidence to race, sex, and five baseline
risk factors: age, body mass index (BMI), glucose level, systolic
blood pressure, and smoking status. Since the Jackson cohort is
composed of black subjects only, and neither Minneapolis nor
Washington County cohorts contain black subjects, we included
the cohort×race indicators as predictors. We excluded subjects
with prevalent cases at baseline or missing covariate values
to obtain a total of 8728 subjects. During the study, 17.3%,
46.8%, 8.3%, and 5.1% of the subjects developed diabetes,
hypertension, MI, and stroke, respectively, while 28.7% died.

We jointly modeled the asymptomatic and symptomatic
events in the ARIC study with equations (1) and (2). For vari-
ance estimation, we used the profile likelihood approach with

hn = 5n−1/2. Tables 2 and 3 show the estimation results for the
regression parameters. Several characteristics and baseline risk
factors are found to be predictive of the events. Older subjects
have higher risks of hypertension, MI, stroke, and death than
younger subjects. Males have lower risk of hypertension but
higher risks of MI, stroke, and death than females. Smokers
have significantly higher risks for all events than non-smokers.
In addition, higher baseline BMI increases the risks of diabetes,
hypertension, and MI; higher baseline glucose level increases
the risks of diabetes, stroke, and death; and higher baseline value
of systolic blood pressure increases the risks of all considered
events.

The estimation results for the remaining parametric compo-
nents are shown in Table S.2 of the supplemental materials. The
variance components σ 2

1 and σ 2
2 are significantly larger than

zero, indicating strong correlation among the asymptomatic
events and among the symptomatic events. The parameters
γMI, γStroke, and γDeath are also significantly larger than zero,
reflecting the strong positive dependence of the symptomatic
events on the asymptomatic events. The Akaike information
criterion (AIC) for the proposed model is 108852.8. For com-
parisons, we also fit a model with one random effect shared by
all events. The corresponding AIC is 109000.6, and the p-value
for the likelihood ratio test is less than 0.0001, indicating that
the proposed model provides a much better fit to the data than
the model with one shared random effect.

To evaluate the performance of the proposed prediction
methods, we randomly divided the study cohort into training
and testing sets with equal numbers of subjects.We analyzed the
training set to obtain parameter estimates, based on which we
calculated the risk scores for subjects in the testing set, where the

Table . Estimation results for the regression parameters of the symptomatic events in the ARIC study.

MI Stroke Death

Covariate Estimate Std error p-value Estimate Std error p-value Estimate Std error p-value

Forsyth County, white . . . . . . −. . .
Jackson, black −. . . . . . . . .
Minneapolis, white −. . . . . . −. . .
Washington County, white . . . . . . −. . .
Age . . <. . . <. . . <.
Male . . <. . . . . . <.
BMI . . . −. . . . . .
Glucose . . . . . . . . .
Systolic blood pressure . . . . . <. . . .
Smoker . . <. . . <. . . <.

NOTE: See the Note to Table .



Figure . Boxplots of the estimates of the C-index at each examination in the ARIC study. The red boxes pertain to the univariate model of Fine and Gray () for MI and
stroke and the standard proportional hazards model for death. The blue boxes pertain to the proposed joint model.

posterior means of the random effects were used. Specifically, at
examinations 2, 3, and 4, we calculated the risk scores of MI or
stroke for subjects who have not developed the disease.We eval-
uated the performance of the prediction using C-index (Uno
et al. 2011) and compared it with that of the risk scores based on
the standardmodels. In particular, forMI and stroke, we consid-
ered the univariate model of Fine and Gray (1999) with death as
a competing risk; for death, we considered the standard propor-
tional hazardsmodel. The values of the C-index based on twenty
randomly divided training/test tests are shown in Figure 2. The
proposed risk score performs better than the risk score of the
standard model at all examinations for all symptomatic events.

Figure 3 shows the estimated conditional cumulative inci-
dence functions of MI and stroke for two smokers and two
non-smokers who have different event histories at year 3 but
with the same values of other risk factors. The risks of MI and
stroke are considerably higher for the smokers than the non-
smokers with the same event history. The estimated conditional
probabilities for the subjects who have developed both diabetes
and hypertension are higher than those who have not developed
diabetes or hypertension.

Figures S.2(a) and S.2(b) in the supplementary materials
illustrate the estimation of the conditional cumulative incidence
functions of stroke given different event histories. We estimated

the cumulative incidence functions at time zero when only
baseline covariates are available and then updated them at two
examinations at year 3 and year 6 using the event histories. The
development of diabetes, hypertension, and MI substantially
increases the incidence of stroke, whereas the history of no
diabetes, hypertension, or MI over the first six years entails
lower incidence of stroke. For comparison, we show in Figures
S.2(c) in the supplementary materials the estimated cumulative
incidence function of stroke under the univariate model of Fine
and Gray (1999), which does not condition on the event history
and thus reflects the population average. This estimate lies
between the two previous conditional estimates, as expected.

5. Discussion

In this article, we formulated the joint distribution of multiple
right- and interval-censored events with proportional hazards
models with random effects. We characterized the correlation
structure of the asymptomatic and symptomatic events through
two independent random effects and used unknown coefficients
to capture the effects of the asymptomatic events on the symp-
tomatic events. To our knowledge, no such modeling approach
has been previously adopted.
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Figure . Estimation of the conditional cumulative incidence functions of MI and stroke for a -year-old white female residing in Forsyth County, NC, with BMI  kg/m2 ,
glucose  mg/dL, and systolic blood pressure  mmHg. The solid curves pertain to smokers, while the dashed curves pertain to non-smokers. The black curves pertain
to subjects who have not developed diabetes or hypertension by year . The red curves pertain to subjects who have developed both diabetes and hypertension by year .



We studied efficient nonparametric maximum likelihood
estimation of the proposed joint model and established the
asymptotic properties of the estimators through innovative use
of modern empirical process theory. We showed the Glivenko–
Cantelli and Donsker properties for the classes of functions
of interest by carefully evaluating their bracketing numbers.
The estimators of the cumulative baseline hazard functions
for the symptomatic and asymptomatic events converge at
different (n1/2 and n1/3) rates, such that separate treatments
were required in the proofs.

The proposed EM algorithm performedwell in both the sim-
ulation studies and the real example. There was no occurrence
of nonconvergence in any of the simulated or real dataset. It
took 2.5 or 12minutes to analyze a simulated dataset withK = 5
events and sample sizes n = 100 or 200, respectively. It took ten
days to analyze the ARIC data, which involves 8728 subjects
with 10 covariates and 2232, 2291, 701, 431, and 2130 distinct
jump times for diabetes, hypertension, MI, stroke, and death,
respectively.We can alleviate the computational burden for such
large studies by grouping or subsampling the examination times
so as to reduce the number of distinct time points. In particular,
the computing timewas shortened to two days when the distinct
values were reduced to 154, 162, 276, 229, and 311 by rounding
the examination times to the nearest months in the ARIC data.

We proposed nonparametric bootstrap for variance esti-
mation as an alternative to the conventional profile-likelihood
approach. We established the validity of the bootstrap proce-
dure and showed through simulation studies that bootstrap
yields more accurate estimators of the variabilities for the
variance components. To our knowledge, bootstrap with
interval-censored data has not been rigorously studied. In large
studies, bootstrap may be overly time-consuming. It would
be worthwhile to develop other versions of bootstrap, such as
subsampling bootstrap, to reduce computational burden.

In models (1) and (2), we distinguish asymptomatic from
symptomatic events when modeling the correlation structures
because it is of particular interest to study the effects of asymp-
tomatic diseases, which are typically interval-censored, on
symptomatic diseases, which are typically right-censored, and to
use the former to predict the latter.We show in Section S.3 of the
SupplementaryMaterials that our framework can bemodified to
allow any of the K event times to be interval- or right-censored.

ARIC is one of many epidemiological cohort studies with
multiple symptomatic and asymptomatic events. Such events
are also available in electronic health records. Indeed, other
types of outcomes, such as longitudinal repeated measures and
recurrent events, may also be available. The proposed joint
model can be extended to accommodate additional multivariate
outcomes and improve dynamic prediction.
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important contributions.
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