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Abstract
The pharmaceutical industry and regulatory agencies are increasingly interested in

conducting bridging studies in order to bring an approved drug product from the orig-

inal region (eg, United States or European Union) to a new region (eg, Asian-Pacific

countries). In this article, we provide a new methodology for the design and analy-

sis of bridging studies by assuming prior knowledge on how the null and alternative

hypotheses in the original, foreign study are related to the null and alternative hypothe-

ses in the bridging study and setting the type I error for the bridging study according

to the strength of the foreign-study evidence. The new methodology accounts for ran-

domness in the foreign-study evidence and controls the average type I error of the

bridging study over all possibilities of the foreign-study evidence. In addition, the new

methodology increases statistical power, when compared to approaches that do not use

foreign-study evidence, and it allows for the possibility of not conducting the bridging

study when the foreign-study evidence is unfavorable. Finally, we conducted extensive

simulation studies to demonstrate the usefulness of the proposed methodology.
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1 INTRODUCTION

In an effort to expedite the availability of drug products to dif-

ferent populations, regulatory authorities and pharmaceutical

companies are increasingly interested in bringing an approved

drug product from the original region (eg, United States or

European Union) to a new region (eg, Asian-Pacific coun-

tries) by utilizing the original clinical trial data to meet the

regulatory standards and clinical trial practices of the new

region. In 1998, the International Conference on Harmoniza-

tion (ICH) issued a guideline, entitled “Ethnic Factors in the

Acceptability of Foreign Clinical Data” (known as ICH E5),

to provide guidance on regulatory and development strate-

gies that will permit adequate evaluation of the influence

of ethnic factors on efficacy, safety, dosage, and dose reg-

imen, while minimizing duplication of clinical studies and

expeditiously supplying medicines to patients. The guideline

describes the use of “bridging studies” (when necessary) to

extrapolate efficacy and/or safety data from the original, for-

eign region to a new region. A bridging study is defined as a

supplementary study conducted in the new region to provide

pharmacokinetic, pharmacodynamic, and/or clinical data on

efficacy, safety, dosage, and dose regimen to enable extrap-

olation of clinical trial data from the foreign region to the

new region. Although ethnic differences among populations

may cause variability in a medicine’s safety, efficacy, dosage,

or dose regimen, many medicines have comparable pharma-

cokinetic and pharmacodynamic characteristics and clinical

effects across regions (International Conference on Harmo-

nization, 1998). Therefore, one can borrow evidence from

clinical data of the original region and incorporate it into the

design and analysis of the bridging study.
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Several methods have been developed for the design and

analysis of bridging studies; see Chow et al. (2012) for a

review. Specifically, Shao and Chow (2002) proposed a sen-

sitivity index to assess the reproducibility probability, and

Shih (2001) suggested a sequential procedure to test the

consistency between the foreign and bridging studies. To

design a bridging study, Liu et al. (2002) and Hsiao et al.
(2007) proposed Bayesian methods by assuming normal or

mixture-normal priors for the drug effects based on the for-

eign study, such that the posterior distribution for the drug

effect can be derived after combining data from the two

studies. These Bayesian methods require strong distributional

assumptions on both the data and priors. Alternatively, Lan

et al. (2005), Lan and Pinheiro (2012), and Huang et al.
(2012) proposed a weighted statistic that is a weighted sum

of the 𝑍-statistics from the foreign and bridging studies.

The type I error or power for the bridging study is obtained

by conditioning on the evidence from the foreign study and

the prespecified weights. Although the statistics from the

two studies are usually normalized, a weighted sum of the

test statistics is not biologically interpretable. When the two

statistics have opposite directions, the weighted sum may

lead to lower power than using evidence from the bridging

study only.

In this article, we propose a new framework for incor-

porating evidence from the foreign study into the design

and analysis of the bridging study. In order to leverage

the evidence from the foreign study, we assume certain

prior probabilities on the relationship between the null and

alternative hypotheses in the two studies. We use an adaptive

significance level to design the bridging study based on the

strength of the evidence in the foreign study. By accounting

for the randomness of the foreign-study evidence and the

uncertainty of the foreign-study truth, the proposed adaptive

significance level for the bridging study guarantees that the

overall type I error of the bridging study (ie, averaged over

all possible scenarios of the foreign-study evidence) will be

controlled at a prespecified level. In addition, we devise a

grid-search algorithm to determine the optimal choice of the

adaptive significance level that ensures higher power than the

bridging study without using evidence from the foreign study.

2 METHODS

We use subscript 1 to denote the foreign study and subscript

2 to denote the bridging study. For 𝑘 =1 and 2, let Δ𝑘 denote

the parameter of interest that quantifies the difference between

the test and control groups (eg, the difference or the log-ratio

of the response rates) in the 𝑘th study. We wish to test the null

hypothesis

𝐻𝑘0 ∶Δ𝑘 ∉ (𝐿𝑘, 𝑈𝑘)

against the alternative hypothesis

𝐻𝑘𝑎 ∶Δ𝑘 ∈ (𝐿𝑘, 𝑈𝑘),

where 𝐿𝑘 and 𝑈𝑘 are specific margins. The constants 𝐿𝑘 and

𝑈𝑘 are chosen to yield different types of tests: the equivalence

test corresponds to finite 𝐿𝑘 and 𝑈𝑘; superiority test corre-

sponds to𝐿𝑘 = 0 and𝑈𝑘 = ∞; and the noninferiority test cor-

responds to 𝐿𝑘 < 0 and 𝑈𝑘 = ∞.

2.1 Priors for hypotheses

The main reason that one can incorporate evidence from the

foreign study into the design or analysis of the bridging study

for certain drugs is because the drug’s safety, efficacy, dosage,

and dose regimen are similar across regions. Intuitively, if the

null (or alternative) hypothesis holds for the foreign study,

then there is a high likelihood that the null (or correspond-

ingly, alternative) hypothesis holds for the bridging study and

vice versa. Thus, we wish to weigh the strength of the foreign-

study evidence when deciding whether or not to reject 𝐻20.

Specifically, we consider 𝐻10 and 𝐻1𝑎 as random variables

whose distributions depend on whether𝐻20 or𝐻2𝑎 holds, and

we impose the following assumptions a priori:

Assumption 1. There exists some constant 𝑝 ∈ [0.5, 1] such

that

Pr(𝐻10 |𝐻20) = 𝑝.

Assumption 2. There exists some constant 𝑞 ∈ [0, 1] such

that

Pr(𝐻1𝑎 |𝐻2𝑎) = 𝑞.

In the above assumptions, 𝑝 and 𝑞 characterize the rela-

tionship between the two studies. Consider, for example, that

𝑝 = 𝑞 = 90%. In this case, Assumptions 1 and 2 imply that if

the null hypothesis holds for the bridging study, then there is

a 90% chance that the null hypothesis also holds for the for-

eign study and that if the alternative hypothesis holds for the

bridging study, then there is a 90% chance that the alterna-

tive hypothesis also holds for the foreign study. Thus, 𝑝 and 𝑞

reflect how confident we are in borrowing the evidence from

the foreign study that favors the null or alternative hypothesis.

Additionally, 𝑝 and 𝑞 can be understood as implicit weights for

the foreign-study evidence that support the truth in the bridg-

ing study. Note that both 𝑝 and 𝑞 must be prespecified without

looking at the evidence from the foreign study. The choice of 𝑝

and 𝑞, although subjective, can be obtained from knowledge of

the product’s pharmacokinetic and pharmacodynamic proper-

ties and translation of those properties to clinical effectiveness

and safety, or clinical experience with other members of the

drug class in the new region. It is implicitly assumed that the

data from the bridging study are independent of 𝐻10 and 𝐻1𝑎



conditional on 𝐻20 or 𝐻2𝑎. This is a reasonable assumption

in practice.

Remark 1. Since we are using the foreign study evidence to

design and analyze the bridging study, it would seem more

natural to consider Pr(𝐻20 |𝐻10) and Pr(𝐻2𝑎 |𝐻1𝑎) rather

than Pr(𝐻10 |𝐻20) and Pr(𝐻1𝑎 |𝐻2𝑎). By Bayes’ theorem;

however, we can convert Pr(𝐻10 |𝐻20) and Pr(𝐻1𝑎 |𝐻2𝑎) to

Pr(𝐻20 |𝐻10) and Pr(𝐻2𝑎 |𝐻1𝑎) and vice versa. Because we

wish to control the type I error and improve the power for

the bridging study, we are primarily interested in the rejection

probabilities conditional on the null or alternative hypothe-

sis in the bridging study. Specifically, we need to evaluate

Pr(𝐻10 |𝐻20) and Pr(𝐻1𝑎 |𝐻2𝑎) rather than Pr(𝐻20 |𝐻10)
and Pr(𝐻2𝑎 |𝐻1𝑎). Thus, we state Assumptions 1 and 2 in

terms of Pr(𝐻10 |𝐻20) and Pr(𝐻1𝑎 |𝐻2𝑎). If we instead for-

mulate Assumptions 1 and 2 in terms of Pr(𝐻20 |𝐻10) and

Pr(𝐻2𝑎 |𝐻1𝑎), then we will need to specify the prior proba-

bilities for the null and alternative hypotheses of the bridging

study in order to obtain Pr(𝐻10 |𝐻20) and Pr(𝐻1𝑎 |𝐻2𝑎).

Remark 2. There is a close connection between (𝑝, 𝑞) and

the joint prior distribution for (Δ1,Δ2). In Appendix A, we

show this mathematical relationship by assuming a bivariate-

normal prior distribution. The proposed framework is based

on 𝑝 and 𝑞 instead of the joint prior distribution of (Δ1,Δ2)
for two major reasons. First, it is desirable not to specify the

prior distribution function that involves a number of hyper-

parameters. Second, the assumptions on 𝑝 and 𝑞 pertain only

to the hypotheses and thus allow the parameters in the two

studies to be different quantities, for which the joint prior dis-

tribution would be difficult to specify.

2.2 Rejection region incorporating the
foreign-study evidence

Let 𝛼 denote the overall type I error to be controlled in the

bridging study. Our approach is to adjust the type I error for

the bridging study according to the empirical evidence from

the foreign study, such that the overall type I error for the

bridging study remains under 𝛼 after accounting for the ran-

domness of the foreign-study data. Specifically, Assumption 1

implies that when the null hypothesis is likely to hold for the

bridging study, the null hypothesis likely holds for the foreign

study. Thus, the evidence favoring the alternative hypothesis

in the foreign study should also be considered as the evidence

to reject the null hypothesis in the bridging study. By contrast,

Assumption 2 implies that when the alternative hypothesis is

likely to hold in the bridging study, the alternative hypothesis

is also likely to be true for the foreign study. Thus, the evi-

dence against the alternative hypothesis in the foreign study

can also be treated as the evidence against the alternative

hypothesis in the bridging study. In either way, we can use

the evidence from the foreign study to improve the decision

making in the bridging study.

To formalize the above strategy, we introduce addi-

tional notation. For any constant 𝜂 ∈ [0, 0.5), let CI𝑘(𝜂) ≡
(𝐿̂𝑘(𝜂), 𝑈𝑘(𝜂)) denote the (1 − 2𝜂)-confidence interval for Δ𝑘

based on the data in the 𝑘th study when testing for equivalence

or the one-sided confidence interval with level (1 − 𝜂) when

testing for superiority or inferiority. Thus, at significance level

𝜂, we would reject the null hypothesis in the 𝑘th study if this

confidence interval lies within (𝐿𝑘, 𝑈𝑘).
To characterize the strength of the foreign-study evidence,

we prespecify a constant 𝜔 ∈ (0, 1] and construct an 𝜔-level

rejection region for the foreign study, such that the foreign

study favors the alternative hypothesis 𝐻1𝑎 if CI1(𝜔)
⊂ (𝐿1, 𝑈1) and favors the null hypothesis 𝐻10 otherwise. This

𝜔 is the significance level for borrowing the foreign-study evi-

dence and has nothing to do with the significance level actu-

ally used in the foreign study for rejecting 𝐻10. In some sense,

𝜔 represents our level of confidence in whether the foreign

study favors the null or alternative hypothesis. If the evidence

from the foreign study favors the alternative hypothesis, then

we conduct the bridging study and set the adaptive type I error

for the bridging study to

𝛼2 = 𝛼𝛾,

where 𝛾 ≥ 1 is an adjustment factor. If the foreign-study evi-

dence favors the null hypothesis, then, with a prespecified

probability 𝜏, we abandon the bridging study and, with the

remaining (1 − 𝜏) probability, we conduct the bridging study

but set the adaptive type I error to

𝛼2 = 𝛼∕𝛾.

In the above procedure, the null hypothesis in the bridging

study (𝐻20) is rejected if and only if the bridging study is con-

ducted and its null hypothesis is rejected at significance level

𝛼2. Thus, the proposed rejection region for the null hypothesis

in the bridging study is

(𝜔, 𝛾) ≡ {the bridging study is conducted and CI2(𝛼2)

⊂ (𝐿2, 𝑈2)}.

2.3 Choice of 𝜸 to preserve the type I error
for a given 𝝎

The constant 𝜔 describes the strength of the evidence in the

foreign study, and the constant 𝛾 is the adjustment factor based

on the strength of the foreign-study evidence. These two con-

stants cannot be chosen independently; otherwise, the overall

type I error over all possibilities of the foreign-study evidence

(ie, the chance of rejecting the null hypothesis in the bridging



study when the null hypothesis is the truth) may not be appro-

priately controlled. In the following theorem, we provide an

explicit form of 𝛾 as a function of 𝜔, which may be subject to

a prespecified upper bound, such that the type I error, that is,

Pr((𝜔, 𝛾) |𝐻20), is controlled at 𝛼.

Theorem 1. For any 𝜔 ∈ (0, 1], let

𝛾 =

⎧⎪⎪⎨⎪⎪⎩
min

(
𝛾max,

𝑝(1 − 𝜔)
1 − 𝑝(1 − 𝜔)

)
if 0 < 𝜔 ≤ 1 − 1

2𝑝
,

1 if 1 − 1
2𝑝

< 𝜔 ≤ 1,
(1)

where 𝛾max is a prespecified upper bound (larger than 1)
for the type I error adjustment. Then under Assumption 1,
Pr((𝜔, 𝛾) |𝐻20) ≤ 𝛼.

The proof of Theorem 1 is provided in Appendix B.

According to Theorem 1, if𝜔 is chosen to be close to 1, that is,

our constructed evidence from the foreign study always favors

the alternative hypothesis, then since the null hypothesis is

true in the bridging study and thus also likely to hold in the

foreign study, the constructed evidence tends to be of little

use. Therefore, we should abandon the evidence from the for-

eign study by setting 𝛾 = 1. Note that the choice of 𝛾 given

in (1) may not yield the tightest upper bound for the overall

type I error. In fact, the optimal value for 𝛾 may depend on the

discontinuation probability 𝜏. However, a major advantage of

formula (1) that it depends only on 𝜔 and thus is robust to the

subjective choice of 𝜏.

2.4 Optimal choice of 𝝎 to maximize
the power

Theorem 1 implies that the proposed test with a proper adjust-

ment factor 𝛾 always preserves the overall type I error for any

𝜔 ∈ (0, 1]. Therefore, a question naturally arises as to what

value of 𝜔 is optimal in terms of yielding the highest power

when the alternative hypothesis holds in the bridging study.

To answer this question, it is necessary to calculate the power

of the bridging study with the rejection region (𝜔, 𝛾), where

𝛾 is given by expression (1).

Specifically, we let 𝑄𝑘(𝛼0) denote the power function cor-

responding to the type I error 𝛼0 in study 𝑘 (𝑘 = 1, 2). Then

the following theorem holds.

Theorem 2. Under Assumption 2, Pr((𝜔, 𝛾) |𝐻2𝑎) =
𝑄̃2(𝜔), where

𝑄̃2(𝜔) = 𝑞[𝑄2(𝛼𝛾)𝑄1(𝜔) + (1 − 𝜏)𝑄2(𝛼∕𝛾){1 −𝑄1(𝜔)}]

+ (1 − 𝑞)𝜔𝑄2(𝛼𝛾) + (1 − 𝑞)(1 − 𝜏)(1 − 𝜔)𝑄2(𝛼∕𝛾),

with 𝛾 given by expression (1). In addition, the optimal choice
of 𝜔 that maximizes this power function, that is,

𝜔∗ = argmax𝜔∈[0,1]𝑄̃2(𝜔),

satisfies Pr((𝜔∗, 𝛾∗) |𝐻2𝑎) ≥ 𝑄2(𝛼).

The proof of Theorem 2 is also given in Appendix B. This

theorem implies that when the prior assumption on the alter-

native hypothesis holds, the proposed method based on the

optimal choice of 𝜔 always yields higher power than any

method that does not use evidence from the foreign study.

2.5 Testing procedure for the bridging study

In light of Theorems 1 and 2, we propose the following steps

to perform the hypothesis test for the bridging study with a

given sample size:

1. Determine 𝑝, 𝑞, and 𝜏, and calculate the power function

𝑄𝑘(⋅) (𝑘 = 1, 2) based on the design parameters for the

given sample size.

2. Calculate 𝜔∗ by grid search to maximize 𝑄̃2(𝜔) and obtain

the corresponding 𝛾∗.

3. Upon completion of the foreign study, construct the confi-

dence interval associated with 𝜔∗ using the data from the

foreign study, that is, CI1(𝜔∗).
4. If CI1(𝜔∗) is contained in (𝐿1, 𝑈1), conduct the bridging

study and use 𝛼∗2 = 𝛼𝛾∗ as the significance level; other-

wise, with probability 𝜏, abandon the bridging study and,

with probability (1 − 𝜏), conduct the bridging study and

set the significance level to 𝛼∗2 = 𝛼∕𝛾∗.

5. If the bridging study is conducted and CI2(𝛼∗2) lies within

(𝐿2, 𝑈2), reject 𝐻20.

The above testing procedure implies that the minimal sam-

ple size required to achieve power of (1 − 𝛽) is the smallest

sample size such that max𝜔 𝑄̃2(𝜔) is greater than 1 − 𝛽.

3 NUMERICAL STUDIES

To examine the performance of the proposed methods, we

carried out simulation studies in the setting of establishing

superiority for a test drug product over a reference drug, such

that 𝐿𝑘 = 0 and 𝑈𝑘 = ∞ for 𝑘 = 1, 2. In both the foreign

and bridging studies, the null hypotheses pertained to 30%

response rates in both products, and the alternative hypothe-

ses pertained to response rates of 40% and 30% for the test

and reference drugs, respectively. The foreign study had 400

patients on each arm, and the bridging study had 280 patients

on each arm. The bridging study had 80% power without bor-

rowing any evidence from the foreign study.



F I G U R E 1 Type I error and power with varying 𝜔: A, the overall type I error for different values of 𝜔; B, the average significance level in the

bridging study under the null hypothesis as 𝜔 varies; C, the average power for different values of 𝜔, where the less smooth curve is the empirical

power and the smooth curve is the theoretical power given in Theorem 2; and D, the average significance level in the bridging study under the

alternative hypothesis as 𝜔 varies. This figure appears in color in the electronic version of this article, and any mention of color refers to that version

3.1 Type I error and power with varying 𝝎

In the first simulation study, we varied the significance level

used to borrow information from the foreign study (ie, 𝜔)

and set 𝜏 = 0, such that the bridging study is always con-

ducted. In addition, we set 𝛾max = ∞, so there was no restric-

tion on the type I error adjustment in the bridging study.

This simulation was designed to investigate whether the adap-

tive test preserves the overall type I error for any 𝜔 and

whether the optimal choice of 𝜔 guarantees higher than 80%

power.

We set 𝑝 = 𝑞 = 0.9 in Assumptions 1 and 2 and considered

two scenarios. In the first scenario, we generated data for the

bridging study under the null hypothesis. To conform with

Assumption 1, we generated data for the foreign study from

the null and alternative hypotheses with probabilities 0.9

and 0.1, respectively. In the second scenario, we generated

data for the bridging study under the alternative hypothesis.

To conform with Assumption 2, we generated data for the

foreign study from the null and alternative hypotheses with

probabilities 0.1 and 0.9, respectively. In each scenario, we

first simulated data for the foreign study and then followed

the steps in Section 2.5 to generate data for the bridging study.

We constructed the confidence intervals and power functions

using the difference between the estimated response rates

of the two drug groups. Given the data from the bridging

study, we rejected the null hypothesis if the lower bound of

the one-sided confidence interval with level (1 − 𝛼2), where

𝛼2 is given in Section 2.2, was above 0. We simulated 50 000

replicates to estimate the overall type I error and 10 000

replicates to estimate the power.

The simulation results are displayed in Figure 1. Clearly,

the type I error is well preserved, and the power is greater

than 80% for most values of 𝜔. As shown in panel (C), the

optimal 𝜔 is close to 0.1 and yields power as large as 90%.

In addition, panels (B) and (D) show that the adaptive signifi-

cance level used for the bridging study is below 5% if the null

hypothesis holds and can be as high as 30% if the alternative

hypothesis holds. We also observe that when 𝜔 is larger than

0.45, there is no power gain because the evidence from the

foreign study is most likely not incorporated (𝛾 = 1). This is

consistent with the comment made at the end of Section 2.3.

Thus, this simulation study showed that, by leveraging evi-

dence from the foreign study, the proposed method with any

value of 𝜔 maintains the overall type I error and can substan-

tially improve the power when 𝜔 is chosen to be close to 0.1.



F I G U R E 2 Type I error and power with optimal 𝜔∗ under (𝑝, 𝑞) = (0.9, 0.9): A, the overall type I error for different values of 𝜏; b, the average

significance level in the bridging study under the null hypothesis as 𝜏 varies; C, the chance of conducting the bridging study under the null

hypothesis; D, the optimal value for 𝜔 for different values of 𝜏 under the null; E, the average power for different values of 𝜏; F, the average

significance level in the bridging study under the alternative hypothesis as 𝜏 varies; G, the chance of conducting the bridging study under the

alternative hypothesis; H, the optimal value for 𝜔 for different values of 𝜏 under the alternative. This figure appears in color in the electronic version

of this article, and any mention of color refers to that version

3.2 Type I error and power with optimal 𝝎∗

In the second simulation study, we varied the discontinua-

tion probability 𝜏 while fixing the significance level for the

foreign study at the optimal value 𝜔∗. We set (𝑝, 𝑞) to (0.9,

0.9), (0.8, 0.9), or (0.9, 0.8) and set 𝛾max = ∞. This study was

designed to investigate how the values of 𝜏, 𝑝, and 𝑞 affect

the performance of the proposed methods. For each (𝑝, 𝑞), we

simulated the data in the same manner as before except that

we varied 𝜏 from 0 to 0.9. Given the data from the bridging

study, we rejected the null hypothesis if the study was con-

ducted and the lower bound of the one-side confidence inter-

val with level (1 − 𝛼2), where 𝛼2 is given in Section 2.2 with

𝜔 = 𝜔∗, was above 0. We simulated 50 000 replicates for esti-

mating the overall type I error and 10 000 replicates for esti-

mating the power.

The simulation results are displayed in Figures 2-4. Evi-

dently, the type I error is always kept below 0.05 regardless

of the value of 𝜏, and the power is at least 80%. When the

alternative hypothesis holds in the bridging study, under

which the alternative hypothesis is likely to hold in the foreign

study, the probability of conducting the bridging study is at

least 0.85, and the average significance level for the bridging

study is approximately 0.15 to 0.20. As 𝑞 becomes smaller,

the power gain is reduced, and the chance of discontinuation

is increased. We also observe that the optimal value for 𝜔,

the confidence measure of using the foreign study evidence,

is mostly between 0.1 and 0.2 except for the scenarios of

very high chance of discontinuation. The sharp changes

when 𝜏 is larger than 0.6 in Figure 4 (𝑞 = 0.8) are due to the

thresholds for the type I error (below 0.05) and power (above

0.8). In other words, when anticipating that there is a high

chance of not conducting the bridging study and without

strong confidence in borrowing the foreign study to gain

power, we would rather not use the foreign study evidence

at all.



F I G U R E 3 Type I error and power with optimal 𝜔∗ under (𝑝, 𝑞) = (0.8, 0.9): A, the overall type I error for different values of 𝜏; B, the average

significance level in the bridging study under the null hypothesis as 𝜏 varies; C, the chance of conducting the bridging study under the null

hypothesis; D, the optimal value for 𝜔 for different values of 𝜏 under the null; E, the average power for different values of 𝜏; F, the average

significance level in the bridging study under the alternative hypothesis as 𝜏 varies; G, the chance of conducting the bridging study under the

alternative hypothesis; H, the optimal value for 𝜔 for different values of 𝜏 under the alternative. This figure appears in color in the electronic version

of this article, and any mention of color refers to that version

We repeated the above simulation study but restricted the

adjustment factor to be less than 3 (ie, 𝛾max = 3 in Theorem 2)

when computing the optimal type I error for the bridging

study. The results are shown in Figure S2 of the Supporting

Information. Clearly, the proposed method continues to pre-

serve the type I error. With the restriction, the type I error for

the bridging study is always below 0.05 and the power is still

larger than 0.8. There is a power loss of about 2% compared

to the case of no restriction.

We conducted additional simulation studies with other

choices of 𝑝 and 𝑞, and the results are displayed in Figures S3

and S4 of the Supporting Information. When the prior prob-

ability for 𝑝 or 𝑞 is low, there is very small power gain when

𝜏 = 0; when there is a chance of not performing the bridging

study, we hardly use any evidence from the foreign study.

To assess the robustness of the proposed method to mis-

specification of 𝑝 and 𝑞, we set the true values of 𝑝 and 𝑞 to

0.8 and 0.9, respectively, but assumed 𝑝 to be 0.9 or 0.7 or 𝑞 to

be 0.8 when implementing the proposed method. The results

are displayed in Figures S5-S8 of the Supporting Information.

When 𝑝 is misspecified to be too large, the type I error can be

as high as 0.065, but the inflation decreases as 𝜏 increases.

When 𝑝 is misspecified to be too small, the type I error is

deflated, and the power is reduced as compared to using the

correct 𝑝. When 𝑞 is misspecified, the type I error is main-

tained; however, the power gain is not as substantial as using

the correct 𝑞, and the power gain decreases when 𝑝 is also mis-

specified.

3.3 Sample size calculations

To quantify the efficiency gain of the proposed methodol-

ogy, we performed a numerical study to examine the sam-

ple sizes for different choices of (𝑝, 𝑞), as compared to the

sample size without using any information from the foreign



F I G U R E 4 Type I error and power with optimal 𝜔∗ under (𝑝, 𝑞) = (0.9, 0.8): A, the overall type I error for different values of 𝜏; B, the average

significance level in the bridging study under the null hypothesis as 𝜏 varies; C, the chance of conducting the bridging study under the null

hypothesis; D, the optimal value for 𝜔 for different values of 𝜏 under the null; E, the average power for different values of 𝜏; F, the average

significance level in the bridging study under the alternative hypothesis as 𝜏 varies; G, the chance of conducting the bridging study under the

alternative hypothesis; H, the optimal value for 𝜔 for different values of 𝜏 under the alternative. This figure appears in color in the electronic version

of this article, and any mention of color refers to that version

study. We used the same parameter values under the null and

alternative hypotheses as before, and let 𝜏 = 0. We set the

number of patients per arm to 400 for the foreign study and

varied 𝑝 and 𝑞 from 0.6 to 0.9. For each choice of (𝑝, 𝑞), we

used the procedure described in Section 2.5 to determine the

minimal sample size for achieving 80% power. We then con-

ducted simulation with the resulting sample size to evaluate

the power for the proposed testing procedure and compared it

to the power without using the foreign-study evidence. Note

that without using the foreign-study evidence, the required

sample size to achieve the same power is at least 280 patients

per arm.

The results are summarized in Table 1. The proposed

method maintains the empirical power of 80%, and the effi-

ciency gain, in terms of sample sizes, varies substantially with

(𝑝, 𝑞). The gain is small when 𝑝 or 𝑞 is less than 0.8. We can

save the sample size by almost one half when both 𝑝 and 𝑞 are

equal to 0.9.

4 DISCUSSION

In this article, we present a new framework for incorporat-

ing the strength of evidence from a foreign study into the

design and analysis of a bridging study. This framework relies

on some Bayesian priors on the relationship between the

hypotheses of the two studies and focuses on the adaptive type

I error or power of the bridging study. The proposed methods

account for randomness in the evidence of the foreign study

so as to preserve the overall type I error. We develop a simple

procedure to determine the optimal parameter that maximizes

the conditional power for the bridging study.

The choice of 𝑝 and 𝑞 plays an important role in the pro-

posed methodology. A premise for borrowing the foreign

study evidence when conducting a bridging study is that 𝑝 and

𝑞 are high. In practice, the sponsor should work closely with

stakeholders to examine the operating characteristics of the

proposed method over a reasonable range of 𝑝 and 𝑞 and then



T A B L E 1 Sample sizes for different choices of (𝑝, 𝑞) when 𝜏 = 0

Empirical power

𝒑 𝒒

Number of
patients
per arm

Without
foreign
study

Proposed
method

0.6 0.6 276 0.787 0.797

0.7 270 0.779 0.804

0.8 266 0.774 0.802

0.9 260 0.766 0.802

0.7 0.6 268 0.776 0.801

0.7 258 0.763 0.801

0.8 246 0.745 0.797

0.9 234 0.727 0.801

0.8 0.6 260 0.766 0.799

0.7 246 0.745 0.796

0.8 224 0.710 0.798

0.9 202 0.671 0.805

0.9 0.6 252 0.754 0.799

0.7 230 0.720 0.801

0.8 196 0.660 0.796

0.9 156 0.576 0.796

decide on a clinically meaningful value of 𝑝 and 𝑞, such that

there is a modest gain in power.

The proposed methodology can be extended to incorporate

multiple sources of evidence. When there are several foreign

studies, the prior distributions for 𝑝 and 𝑞 are multivariate. The

choice of the type I error on the prior distribution is also mul-

tivariate and becomes more complicated because there may

be some evidence favoring the null hypothesis and other evi-

dence favoring the alternative hypothesis. The search for the

optimal choice will be a grid search on a multidimension set.

Alternatively, one may combine the multiple sources of evi-

dence into a single measure (eg, some prespecified weighted

combination), such that the methodology presented in this

article can be applied directly.

Although this work is focused on incorporating foreign-

study evidence into the design and analysis of a bridging

study, the basic ideas are applicable to other contexts, where

some prior study evidence is used to improve the design and

analysis of a new study, for example, when historical data

are incorporated into the design and analysis of a new clin-

ical trial. By treating the prior study evidence as the “foreign

study” evidence and the new study as the “bridging study,”

the proposed methods can be applied directly.

Note that the proposed methodology allows the endpoints

of the foreign and bridging studies to be different. This is a

very useful feature because the indications for the drug prod-

uct may be different between the new region and the original

region or between the new study and the prior study within the

same region. By contrast, Bayesian methods typically require

the same endpoint for the two studies so as to combine their

likelihood functions.
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APPENDIX A: RELATIONSHIP BETWEEN
(𝒑, 𝒒) AND JOINT PRIOR DISTRIBUTION
OF (𝚫𝟏,𝚫𝟐)

Assume that the prior distribution for (Δ1,Δ2) is the bivari-

ate normal distribution with mean (𝛿1, 𝛿2) and covariance

matrix

Σ =

(
𝜎21 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎22

)
.

Then

𝑝 = Pr(𝐻10 |𝐻20) = Pr{Δ1 ∉ (𝐿1, 𝑈1) |Δ2 ∉ (𝐿2, 𝑈2)}

=
∫(−∞,𝐿1]∪[𝑈1,∞) ∫(−∞,𝐿2]∪[𝑈2,∞)(2𝜋)

−1|Σ|−1∕2 exp{−(𝑥 − 𝛿1, 𝑦 − 𝛿2)Σ−1(𝑥 − 𝛿1, 𝑦 − 𝛿2)T}𝑑𝑦 𝑑𝑥

Φ((𝐿2 − 𝛿2)∕𝜎2) + Φ(−(𝑈2 − 𝛿2)∕𝜎2)
,

and

𝑞 = Pr(𝐻1𝑎 |𝐻2𝑎) = Pr{Δ1 ∈ (𝐿1, 𝑈1) |Δ2 ∈ (𝐿2, 𝑈2)}

=
∫ 𝑈1
𝐿1

∫ 𝑈2
𝐿2

(2𝜋)−1|Σ|−1∕2 exp{−(𝑥 − 𝛿1, 𝑦 − 𝛿2)Σ−1(𝑥 − 𝛿1, 𝑦 − 𝛿2)𝑇 }𝑑𝑦 𝑑𝑥

−Φ((𝐿2 − 𝛿2)∕𝜎2) + Φ((𝑈2 − 𝛿2)∕𝜎2)
.

We provide an example to illustrate the above relation-

ship. Let 𝐿1 = 𝐿2 = −0.75 and 𝑈1 = 𝑈2 = 0.75. Also, let

𝛿1 = 𝛿2 = 0 and 𝜎1 = 𝜎2 = 1. Figure S1 in the Supporting

Information shows how 𝑝 and 𝑞 vary with the correlation coef-

ficient 𝜌. The higher the correlation in the joint prior distribu-

tion is, the larger the values of 𝑝 and 𝑞 are.

APPENDIX B: PROOFS OF THEOREMS
Proof of Theorem 1. Note that

Pr((𝜔, 𝛾) |𝐻20)

= Pr(the bridging study is conducted and CI2(𝛼2)

⊂ (𝐿2, 𝑈2) |𝐻20)

= Pr(CI1(𝜔) ⊂ (𝐿1, 𝑈1),CI2(𝛼𝛾) ⊂ (𝐿2, 𝑈2) |𝐻20)

+ (1 − 𝜏)Pr(CI1(𝜔) ⊊ (𝐿1, 𝑈1),CI2(𝛼∕𝛾)

⊂ (𝐿2, 𝑈2) |𝐻20).

Under Assumption 1, the last expression is equal to

Pr(𝐻10 |𝐻20)Pr(CI1(𝜔) ⊂ (𝐿1, 𝑈1) |𝐻10)

×Pr(CI2(𝛼𝛾) ⊂ (𝐿2, 𝑈2) |𝐻20)

+Pr(𝐻1𝑎 |𝐻20)Pr(CI1(𝜔) ⊂ (𝐿1, 𝑈1) |𝐻1𝑎)

×Pr(CI2(𝛼𝛾) ⊂ (𝐿2, 𝑈2) |𝐻20)

+Pr(𝐻10 |𝐻20)(1 − 𝜏)Pr(CI1(𝜔) ⊊ (𝐿1, 𝑈1)|𝐻10)

×Pr(CI2(𝛼∕𝛾) ⊂ (𝐿2, 𝑈2) |𝐻20)

+Pr(𝐻1𝑎|𝐻20)(1 − 𝜏)Pr(CI1(𝜔) ⊊ (𝐿1, 𝑈1)|𝐻1𝑎)

×Pr(CI2(𝛼∕𝛾) ⊂ (𝐿2, 𝑈2) |𝐻20),

which can be bounded by

𝑝𝜔𝛼𝛾 + (1 − 𝑝)𝛼𝛾Pr(CI1(𝜔) ⊂ (𝐿1, 𝑈1)|𝐻1𝑎)

+ 𝑝(1 − 𝜏)(1 − 𝜔)𝛼∕𝛾

+ (1 − 𝑝)(1 − 𝜏)𝛼∕𝛾Pr
(
CI1(𝜔) ⊊ (𝐿1, 𝑈1)|𝐻1𝑎

)
.

Thus,

Pr((𝜔, 𝛾) |𝐻20)

≤ 𝑝𝜔𝛼𝛾 + 𝑝(1 − 𝜏)(1 −𝜔)𝛼∕𝛾 + (1 − 𝑝)𝛼max(𝛾, (1 − 𝜏)∕𝛾)

≤ 𝑝𝜔𝛼𝛾 + 𝑝(1 − 𝜏)(1 − 𝜔)𝛼∕𝛾 + (1 − 𝑝)𝛼𝛾

≤ 𝛼[{1 − 𝑝 + 𝑝𝜔}𝛾 + 𝑝(1 − 𝜔)(1 − 𝜏)∕𝛾]

≤ 𝛼[{1 − 𝑝 + 𝑝𝜔}𝛾 + 𝑝(1 − 𝜔)∕𝛾]. (A1)

The conclusion of Theorem 1 follows upon verifying that 𝛾

given in Theorem 1 ensures that (A1) is bounded by 𝛼. □

Proof of Theorem 2. Clearly,

Pr((𝜔, 𝛾) |𝐻2𝑎)

= Pr(the bridging study is conducted and CI2(𝛼2)

⊂ (𝐿2, 𝑈2) |𝐻2𝑎)



= Pr(CI1(𝜔) ⊂ (𝐿1, 𝑈1),CI2(𝛼𝛾) ⊂ (𝐿2, 𝑈2) |𝐻2𝑎)

+ (1 − 𝜏)Pr(CI1(𝜔) ⊊ (𝐿1, 𝑈1),CI2(𝛼∕𝛾)

⊂ (𝐿2, 𝑈2) |𝐻2𝑎).

Under Assumption 2,

Pr(the bridging study is conducted and CI2(𝛼2)

⊂ (𝐿2, 𝑈2) |𝐻2𝑎)

= Pr(𝐻1𝑎 |𝐻2𝑎)Pr(CI1(𝜔) ⊂ (𝐿1, 𝑈1)|𝐻1𝑎)

×Pr(CI2(𝛼𝛾) ⊂ (𝐿2, 𝑈2) |𝐻2𝑎)

+Pr(𝐻1𝑎 |𝐻2𝑎)(1 − 𝜏)Pr(CI1(𝜔) ⊊ (𝐿1, 𝑈1) |𝐻1𝑎)

×Pr(CI2(𝛼∕𝛾) ⊂ (𝐿2, 𝑈2) |𝐻2𝑎)

+Pr(𝐻10 |𝐻2𝑎)Pr(CI1(𝜔) ⊂ (𝐿1, 𝑈1) |𝐻10)

×Pr(CI2(𝛼𝛾) ⊂ (𝐿2, 𝑈2) |𝐻2𝑎)

+Pr(𝐻10|𝐻2𝑎)(1 − 𝜏)Pr(CI1(𝜔) ⊊ (𝐿1, 𝑈1) |𝐻10)

×Pr(CI2(𝛼∕𝛾) ⊂ (𝐿2, 𝑈2) |𝐻2𝑎).

It follows from the definition of 𝑄𝑘(𝛼0) that

Pr((𝜔, 𝛾) |𝐻2𝑎)

= 𝑞{𝑄2(𝛼𝛾)Pr(CI1(𝜔) ⊂ (𝐿1, 𝑈1) |𝐻1𝑎)

+ (1 − 𝜏)𝑄2(𝛼∕𝛾)[1 − Pr(CI1(𝜔) ⊂ (𝐿1, 𝑈1) |𝐻1𝑎)]}

+ (1 − 𝑞)𝜔𝑄2(𝛼𝛾) + (1 − 𝑞)(1 − 𝜏)(1 − 𝜔)𝑄2(𝛼∕𝛾)

= 𝑞{𝑄2(𝛼𝛾)𝑄1(𝜔) + (1 − 𝜏)𝑄2(𝛼∕𝛾)[1 −𝑄1(𝜔)]}

+ (1 − 𝑞)𝜔𝑄2(𝛼𝛾) + (1 − 𝑞)(1 − 𝜏)(1 − 𝜔)𝑄2(𝛼∕𝛾).

If 𝜔 = 1, then 𝛾 in Theorem 1 is equal to 1, such that we

do not use the evidence from the foreign study. It follows

that 𝑄̃2(1) = 𝑄2(𝛼). Therefore, the second part of Theorem 2

holds. □


