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ABSTRACT

Fuhui Fang: Numerical Advances for Fluid-Structure Interaction in
Entangled Polymer Solutions with Applications to Active Microbead

Rheology
(Under the direction of M. Gregory Forest and Boyce E. Griffith)

Active microbead rheology is an important counterpart to passive microbead rheology. Both

techniques have proven essential for exploring the viscoelastic properties of soft materials that yield

at extremely low stress and strain thresholds. Many soft materials, especially arising in biology,

are furthermore only available in small volumes that are not amenable to classical rheometers. In

passive microbead rheology, thermal fluctuations of microbeads reveal the linear, equilibrium viscous

and elastic moduli of the material across the frequency range that can be resolved by the microscope.

In active microbead rheology, viscoelastic fluids can be driven out of equilibrium by controlled forces

applied to magnetic microbeads, and the materials then exhibit a range of responses: the so-called

linear response regime, where responses are proportional to the magnetic force at sufficiently low

levels, and then a transition to a variety of nonlinear responses that are unique to different types

of viscoelastic fluids. Understanding this rheological phenomenon is important in the study of

dynamics of many biological systems involving flexible structures, such as ciliary transport of mucus

in the human lung. Despite ongoing developments in modeling such systems, there is still a lack of

accurate and efficient numerical methods and software packages that can describe such nonlinear

phenomena quantitatively. Modeling viscoelastic fluids usually requires high spatial resolution and

time-consuming simulations, and the interactions between fluids and flexible structures introduce

additional numerical and computational challenges.

The main goal of this dissertation is to develop and analyze robust numerical methods for

viscoelastic fluid-structure interaction (FSI) with applications to active microbead rheology, and in

particular, the transition of a linear to nonlinear response exhibited by a specific class of viscoelastic

fluids, entangled polymer solutions. We employ the immersed boundary (IB) method to model

fluid-structure interaction and use the open-source software IBAMR to implement the simulations.
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The simulations are guided and validated by experimental data. Motivated by numerical issues we

encountered in the microbead simulations, we propose and implement a novel implicit solver for

the constrained IB formulation provided by IBAMR, and we investigate its accuracy and efficiency

with extensive numerical tests. Lastly, we develop adaptive mesh refinement (AMR) capabilities for

solving the Stokes problem to enable more efficient simulations of high-resolution FSI problems at

low Reynolds numbers.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Newtonian fluid models that assume that the fluid viscosity only depends on temperature and

pressure are the simplest mathematical descriptions for the behavior of fluids. Typical Newtonian

fluids include water, gasoline, and alcohol. However, non-Newtonian fluids are also ubiquitous in

everyday life and biological applications. Many solutions of polymers, emulsions, and suspensions

are non-Newtonian fluids, as are many commonly found substances such as blood and paint [2].

In contrast to Newtonian fluids, the viscosity of non-Newtonian fluids depends on the velocity

gradient, e.g., shear rate in shear-dominated flows or elongation rate in extensional flows, or on the

deformation history of the fluid [3]. Understanding the complex rheological behaviors exhibited by

complex fluids is essential to the study of biological fluids and systems, and brings mathematical,

modeling, and computational challenges [4], as the constitutive equations for the extra stress

introduce additional nonlinear terms when coupled to the Navier-Stokes equations. In reality,

biological fluids often are surrounded by and interact with dynamic flexible microstructures. For

example, red blood cells are the predominant blood cells with flexibility attributable to the cell

membrane. In human lungs, inhaled viruses, bacteria, and other particles can be trapped in the

mucus layer and cleared by ciliary transport that propels the mucus layer toward the larynx to be

swallowed [5, 6]. Mathematically, we could model the complex biological flows such as blood and

mucus as viscoelastic fluids, and the micrometer-scale particles such as cells, bacteria, and cilia

can be described by some flexible structures. Such biological problems are in essence the study of

viscoelastic fluid-structure interaction (FSI).

Microbead rheology is the study of the rheological behavior of the fluid deformed by the micron-

sized spheres immersed in it [7]. In contrast to passive microbead rheology, where the bead undergoes

stochastic, and typically sub-diffusive, motion due to thermal fluctuations, in active microbead (AM)

rheology, the motion of the microbeads is induced by external forces, which is usually created using
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an optical trap or an magnetic field [8]. Previous experiments and studies [8, 9] observe that driven

magnetic microbeads immersed in entangled polymer solutions (EPS) transition from a linear Stokes

regime to exhibit a nonlinear response above a certain threshold in the applied magnetic force, and

the surrounding fluid is driven out of equilibrium. Numerically modeling the bead dynamics and

this stress-induced nonlinear behavior is important in understanding the mechanics of biological

systems at microscale and nanoscale, as flow transport of, and locomotion within, biological fluids

by active structures (cells, bacteria, cilia) are governed by active microbead rheology.

Despite extensive ongoing work in the past decades to understand the dynamics of active

structures in complex fluids, there remains a lack of accurate and efficient numerical methods

and software packages for modeling such systems. Modeling complex fluids usually requires high

spatial resolution and time-consuming simulations, which introduces additional numerical and

computational difficulties. The IBAMR software provides a powerful modeling technology for

fluid-structure interaction [10], and it is the main tool we use in this thesis. However, functionalities

related to complex fluids are relatively new and still under development. Moreover, to date, there is

no validated computational model of the fully coupled system capable of quantitatively capturing

the nonlinear phenomenon in active microbead rheology. Thus, we are motivated to take this

opportunity and develop accurate numerical methods for FSI problems, guided and validated by

applications and experimental data from biology and engineering. In particular, we aim to develop

robust numerical methods that can accurately resolve the flow as well as the viscous and polymeric

contribution to the stress tensor, and capture the nonlinear responses in complex fluids induced by

driven magnetic microbeads. The numerical advances will also be incorporated into IBAMR.

1.2 Outline of the Dissertation

The remainder of this dissertation is organized as follows.

In Chapter 2, we discuss the nonlinear response of entangled polymer solutions in active

magnetic microbead rheology in detail. We begin with a complete description of the mathematical

models of fluid mechanics and relevant derivations. In particular, we discuss the Rolie-Poly

constitutive equations for viscoelastic fluids and the immersed boundary (IB) method for fluid-

structure interaction, with verification tests for the numerical implementation. Next, we present the

results for the active microbead simulations, and compare with the benchmark experimental data

and computational results.
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In Chapter 3, we discuss the preconditioning techniques for the constrained formulation of the

IB method. Motivated by the numerical instability issues we encountered in the active microbead

simulations, we introduce a new preconditioner based on the least squares commutator (LSC), and

present results from numerical experiments.

Finally, in Chapter 4, we discuss the adaptive mesh refinement (AMR) strategy for the Stokes

problem, which is currently unavailable in IBAMR. We introduce a scheme based on the lowest-

order Raviart-Thomas space (RT0), which we anticipate may potentially accelerate large-scale

high-resolution viscoelastic FSI simulations. This is followed by validation against analytic solutions

and error analysis with extensive numerical experiments.
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CHAPTER 2

Active Microbead Rheology

As discussed in Chapter 1, entangled polymer solutions, such as λ-DNA solutions, can be driven

substantially out of equilibrium by active magnetic beads and can exhibit a superlinear response

characterized by a terminal velocity that scales nonlinearly with the applied force magnitude.

Aspects of such systems have been studied previously using one-way coupled mathematical models

that decouple the flow from the polymeric stress, but we are interested in numerical modeling of

this nonlinear phenomenon quantitatively using a fully-coupled hydrodynamic approach. Biological

fluids are complicated in nature, and interpreting rheological properties theoretically remains a

hard question. It is also a challenging mathematical modeling problem, with additional difficulties

brought by fluid-structure interaction. The generalized Stokes-Einstein relation (GSER) is the

fundamental theory for interpreting many rheological properties of Newtonian-fluids in modern

microrheology, and it could be generalized to non-Newtonian fluids [9]. However, in the regime of

active microrheology, some key assumptions of the GSER could fail, which breaks the agreement

between microscopic and macroscopic measurements. Consequently, there is a great need for novel

microrheological techniques capable of capturing and explaining the nonlinear rheological properties,

and this is a relatively recent area of study.

2.1 Mathematical Models of Fluid Mechanics

In this section, we introduce basic concepts and common constitutive equations for fluid dynamics

and numerical models for fluid-structure interaction, from both macroscopic and microscopic

perspectives. We focus on the continuum approach where the fluid is assumed to be a continuous

material. We omit some detailed derivations, and we refer the interested reader to discussions in

prior work [4, 8, 11, 12, 13].

2.1.1 Eulerian and Lagrangian Descriptions

We use Eulerian variables to describe the fluid motion and Lagrangian variables for the structure

immersed in the fluid, as shown in Fig. 2.1. In the Eulerian frame, the fluid variables are defined
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on a fixed Cartesian coordinate system. For a fixed physical domain Ω, let x = (x, y, z) be the

physical coordinates of a fixed spatial position, then the fluid velocity at position x at time t

is u(x, t) = (u(x, t), v(x, t), w(x, t)) and the pressure is p(x, t). On the other hand, we use the

Lagrangian frame to describe the immersed structure in terms of material coordinates that move

with the structure. Let s = (q, r, s) ∈ U label a material point, then χ(s, t) ∈ Ω is the physical

position of this point at time t.

Figure 2.1: Illustration of Eulerian and Lagrangian descriptions: on a Cartesian domain Ω with
coordinates x = (x, y, z), χ(s, t) is the physical position of a Lagrangian point s = (q, r, s) on the
immersed structure (blue ellipse) with domain U .

2.1.2 Conservation of Mass

The continuity equation reflects conservation of mass, which states a body of continuous matter

has a constant mass m in a fixed volume V . Given the fluid density ρ, the mass can be written by a

volume integral m =
∫
V ρ dx. Then we can develop the continuity equation by setting the net influx

of mass in the control volume equal to the rate of change of mass. Given the fluid velocity u and

pressure p, the equation can be written as

d

dt

∫
V
ρ dx = −

∫
∂V

(ρu) · n dA, (2.1)

where n is the unit outward-pointing normal vector to the surface. We can convert this equation to

a volume integral using the divergence theorem,

∫
V

∂ρ

∂t
+∇ · (ρu) dx = 0. (2.2)
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In the regime of continuum mechanics, where the flow variables are assumed to be continuous in

space and time (continuum assumption), we can derive the pointwise relation:

∂ρ

∂t
+∇ · (ρu) = 0 (2.3)

If the fluid is incompressible with a uniform mass density ρ0, then Eq.(2.3) directly implies

∇ · u = 0. (2.4)

2.1.3 Conservation of Momentum

The principle of conservation of momentum requires that the total momentum of a closed system

to be constant. The momentum is defined as the product of mass and velocity, and we can write

the rate of change in momentum of a fluid particle with volume V as

∫
V
ρ
Du

Dt
dx, (2.5)

where Du
Dt = ∂u

∂t + u · ∇u is the material derivative, a frame invariant derivative that measures

the change per unit time. For a quantity f = f(x, t) = f(χ(s, t), t) for a particle P of which the

position at time t is χ(s, t), the material derivative of f is

Df

Dt
= ∂f(x, t)

∂t
+ ∂f(x, t)

∂xi

∂xi(χ, t)
∂t

= ∂tf + f,i∂txi. (2.6)

By Newton’s second law of motion, the quantity in Eq. (2.5) is equal to the net force acting on

that volume. There are two types of forces: (1) external forces, such as gravity, buoyancy, and

electromagnetic forces, can be expressed as a volumetric force density f ; (2) internal forces are

surface forces that measure the pressure and viscous drag that fluid particles exert on each other,

denoted as traction (or Cauchy stress vector) t. Then the balance principle for linear momentum is

expressed as ∫
V
ρ
Du

Dt
dx =

∫
V
f dx+

∫
∂V
t dA. (2.7)
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2.1.4 Stress and Strain in a Newtonian Fluid

By Cauchy’s stress theorem, the traction vector t on a surface is determined by the Cauchy

stress tensor σ and the outward-pointing unit normal vector n to the surface through

t = σ · n, (2.8)

and we can apply the divergence theorem to Eq. (2.7) to obtain

∫
V
ρ
Du

Dt
dx =

∫
V
f dx+

∫
∂V
σ · n dA (2.9)

=
∫
V
f +∇ · σ dx. (2.10)

The equivalent pointwise relation is

ρ
Du

Dt
= f +∇ · σ. (2.11)

Note that the components of the Cauchy stress tensor σij are called the coordinate stresses, where

the first index i represents the direction of the stress and the second index j represents the normal

vector component nj . The diagonal elements σii are normal stresses, or hydrostatic stresses, which

are related to volume change. The pressure, defined as the normal force per unit area, can be written

in terms of the Cauchy stress tensor as p = 1
3(σ11 +σ22 +σ33). The pressure force is therefore −pIn,

where I is the identity tensor. The tangential elements of the stress tensor σij , i 6= j, are shear

stresses or deviatoric stresses τ which are related to shape change, with σij = σji. Given τ = σ+pI,

we can re-write the stress tensor using the hydrostatic and deviatoric stress components:

σ = −pI + τ . (2.12)

Note that internal forces generated from local deformation must depend on velocity differences, and

we could use the rate-of-strain tensor D to characterize the deformation based on the symmetric

part of the velocity gradient. D describes the rate of stretching and shearing,

D = 1
2(∇u+∇uT ). (2.13)
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As an analogue to Hooke’s law for solids, the linear stress-deformation relation defines the deviatoric

stress to be linear in the rate of strain,

τ = 2µD + (ξ − 2µ
3 )I∇ · u, (2.14)

where µ is the dynamic viscosity of the fluid, and ξ is the second viscosity. A fluid satisfying the

constitutive relation in Eq. (2.14) is called a Newtonian fluid.

The Navier-Stokes equations are summarized as

ρt +∇ · (ρu) = 0,

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p−∇ ·

[
2µD(u) +

(
ξ − 2µ

3

)
I∇ · u

]
= f .

(2.15)

If the fluid is incompressible and the dynamic viscosity µ remains constant, then Eq. (2.15) can

be reduced to

Inertia︷ ︸︸ ︷
ρ

(
∂u

∂t︸︷︷︸
Variation

+ u · ∇u︸ ︷︷ ︸
Convection

)
+ ∇p︸︷︷︸

Internal source

− µ∆u︸ ︷︷ ︸
Diffusion

= f︸︷︷︸
External source

in Ω,

∇ · u = 0,

(2.16)

and we can use the kinematic viscosity ν = µ
ρ to characterize the fluid.

2.1.5 Reynolds Number

In order to characterize the flow and predict flow patterns, we often use dimensionless quantities

to describe the flow. Given the characteristic length scale L (e.g., the radius of the immersed

sphere, the width of the channel), velocity scale U (e.g., the mean velocity of the flow), and the

fluid density ρ, we can non-dimensionalize the flow variables via: x∗ = x/L, u∗ = u/U, t∗ =

t/T, p∗ = p/(ρU2), f∗ = fL/(µU2). We choose the characteristic time scale to be T = L
U , so that

the differential operators are obtained from the chain rule as

∂

∂t∗
= L

U

∂

∂t
,∇∗ = L∇ (2.17)
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Then the incompressible Navier-Stokes equations Eq. (2.16) in the rescaled variables become

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = −∇∗p∗ + µ

ρLU
∇∗2u∗ + f∗, (2.18)

∇∗ · u∗ = 0. (2.19)

The Reynolds number is Re = ρLU
µ . Dropping the asterisks to simplify the notation, the dimensionless

incompressible Navier-Stokes equations are

∂u

∂t
+ u · ∇u = −∇p+ 1

Re∇
2u+ f , (2.20)

∇ · u = 0. (2.21)

The Reynolds number can be interpreted as the ratio of inertial forces to viscous forces. At low

Reynolds numbers, the flow is dominated by viscous forces and is in the laminar regime where fluid

particles move slowly following smooth paths in parallel layers. For large Reynolds numbers, the

viscous forces are negligible, and the flow show turbulent behavior with large fluctuations in the

flow velocity and pressure.

In this dissertation, we focus on modeling flows at very small Reynolds numbers (Re ∼ 10−6).

Flows in this regime are called Stokes flows or creeping flows, and the idealized model with zero

Reynolds number is the Stokes equations

−∇p+ µ∇2u+ f = 0, (2.22)

∇ · u = 0. (2.23)

2.1.6 Microscopic Polymer Models

Macroscopic physical properties of polymer solutions, such as viscosity and elasticity, are

properties that can be seen with the naked eye, and they arise from microscopic entanglement of

polymer chains [14]. In this section, we briefly discuss the microscopic scale models for describing

the polymers and understanding the properties of viscoelastic fluids. We refer the interested readers

to [15]. Dynamics of the polymer chains are usually described by tube theory [16], where a polymer

chain is confined in a virtual tube to account for the uncrossability of surrounding chains. One
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Figure 2.2: Illustration of the bead-spring polymer model with Ne + 1 beads connected by Ne

springs in a polymer chain. When Ne = 1, it is the dumbbell model.

popular model to represent chainlike molecules is called the bead-spring model, where a polymer

consists of Ne + 1 beads connected by Ne massless springs, as shown in Fig. 2.2. If the springs are

Hookean springs, then the bead-spring chain is also called a Rouse chain. A major advantage of the

bead-spring model is that it allows for orientability and stretchability. A simplified version of this

model is the dumbbell model, where there are only two beads and one spring in a chain.

2.1.7 Non-Newtonian Fluids

A fluid that does not follow Eq. (2.13) is called a non-Newtonian fluid. We use the generalized

Newtonian fluid constitutive equation to describe the fluid:

σ = −pI + 2ηD, (2.24)

where the viscosity η is a function of the shear rate γ̇:

η = η(γ̇), γ̇ =
√

2(D:D) =
√

2
∑
i,j

DijDji, (2.25)

where : is the double dot product. In a simple shear flow, the shear rate is simplified as the absolute

value of the rate of shear strain:

γ̇ =
∣∣∣∣∂u∂y

∣∣∣∣ . (2.26)

In the case when η ≡ µ constant and shear-independent, Eq. (2.24) corresponds to the incompressible

Newtonian fluid. When the viscosity decreases under shear strain, or ∂η/∂γ̇ < 0, the fluid exhibits

shear-thinning behavior with decreasing resistance to shear. Similarly, shear thickening occurs when

∂η/∂γ̇ > 0.

Among different types of non-Newtonian fluids, we are mostly interested in viscoelastic fluids.

As the name suggests, a viscoelastic fluid exhibits both elastic and viscous responses to deformations
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— it may behave like an elastic solid under some conditions, but resemble a viscous liquid under other

conditions. For a simple shear deformation characterized by its gradient γ, the elastic response

follows Hooke’s law:

σ = Gγ, (2.27)

where G is the shear modulus that measures the elasticity of the material. The viscous response can

be described in the same way as in the Newtonian fluid by the linear stress-deformation relation in

Eqs. (2.13) and (2.14)

σ = ηγ̇. (2.28)

One model that combines the viscoelastic elements is the linear Maxwell fluid model,

σ + λ
∂σ

∂t
= ηγ̇, (2.29)

where λ = η
G is the Maxwell relaxation time. However, this equation is not frame-invariant, as ∂σ

∂t is

not frame-invariant. This can be shown by taking the time derivative of the stress tensor σ in a

moving frame with a constant velocity u0,

∂

∂t
σij(x+ u0t, t) = ∂σij

∂t
+ u0 · ∇σij , (2.30)

and this derivative is different from the time derivative in a stationary lab frame by a term u0 ·∇σij .

To fix this issue, one solution is to use the upper-convected or the lower-convected derivatives of a

tensor, which are similar to the material derivative:

Upper-convected derivative: O
σ = ∂σ

∂t
+ u · ∇σ − (∇u)T · σ − σ · ∇u, (2.31)

Lower-convected derivative: 4
σ = ∂σ

∂t
+ u · ∇σ + σ · (∇u)T +∇u · σ. (2.32)

As a generalization to the linear Maxwell model Eq. (2.29), two frame-invariant constitutive equations
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for the polymer stress τp using the upper- and the lower-convected derivatives are

Upper-convected Maxwell (UCM): τp + λ
O
τ p = ηpγ̇, (2.33)

Lower-convected Maxwell (LCM): τp + λ
4
τ p = ηpγ̇, (2.34)

where ηp is the polymer contribution to the total viscosity η = ηs + ηp. While the LCM model is

seldomly used because of its inability to accurately describe the behavior of the continua, the UCM

model is widely used and has extended to many more complete models of polymeric fluids.

Note that τp represents the polymer contribution to the total stress, and often a Newtonian

stress with a solvent viscosity ηs is added to the total stress so that the Cauchy stress for the

viscoelastic fluid takes the form,

σ = −pI + ηsγ̇ + τp, (2.35)

where τ = ηsγ̇ + τp is called the total deviatoric stress. One popular constitutive model based on

the UCM model is the Oldroyd-B moodel,

τ + λ
O
τ = η(γ̇ + λr

O
γ̇), (2.36)

where the retardation time λr = λ(ηs/η) characterizes the retarded fluid motion. Note that as a

general case of the Newontian and Maxwell fluid, it could be reduced to a Newtonian fluid when

λ = 0 and λr = 0. When λr = 0, it reduces to a Maxwell fluid. In fact, the steady-state solution of

the velocity field for an Oldroyd-B fluid is exactly the same as in the case of Newtonian fluids, and

the non-Newtonian parameters only make an effect on the transient dynamics [17]. A drawback

of the Oldroyd-B model is that allows a continuous stretching of polymers in the flow and an

unbounded Hookean stress. An improved model is the Giesekus model, which is formed by adding a

term proportional to τp · τp to the UCM model, so that the model is nonlinear in stresses,

τp + λ
O
τ p + α

λ

ηp
τp · τp = ηpγ̇, (2.37)

where α < 1
2 is a dimensionless parameter. In our simulations, we mainly apply the Rolie-Poly

model, which is a newer model. An advantage of the Rolie-Poly model is that it is based on a
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more comprehensive full chain model of polymer molecules including the processes of reptation,

convective and reptation-driven constraint release, chain stretch, and contour length fluctuations

[18, 19]. The Rolie-Poly model takes the form,

τp + λ
O
τ p = ηpγ̇ −

2
3λ(τp:∇u)

(
I + (1 + ε) λ

ηp
τp

)
, (2.38)

where ε is a dimensionless parameter that controls the rate at which the polymeric viscosity ηp and

the relaxation time λ change with the polymeric stress τp. In our numerical calculations, we use the

time evolution of τp [20],

dτp
dt

= (∇u)T · τp + τp · (∇u)︸ ︷︷ ︸
Deformation due to flow

− τp − I
τd︸ ︷︷ ︸

Reptation

− 2
τR

(
1−

√
3

tr(τp)

)[
τp︸ ︷︷ ︸

Chain retraction

+ β

(
tr(τp)

3

)δ
(τp − I)

]
︸ ︷︷ ︸
Convective constraint release

,

(2.39)

where β ∈ [0, 1] captures the effects of convective constraint release, and the exponent δ is a negative

power determined by fitting to the full theory in [21]. Each chain has two characteristic relaxation

times: τd, the linear relaxation time governed by reptation, measures the relaxation of orientation

and corresponds to the relaxation time λ in the UCM, while τR is the tube Rouse time that measures

relaxation of chain stretch. Both τd and τR depend on the Rouse relaxation time τe and the number

of entanglement segments Z in a chain through

τd = 3Z3τe, τR = Z2τe, (2.40)

with

τe = N2
e ξb

2

3π2kBT
, (2.41)

where Ne is the number of monomers, and b is the segment length in an entanglement segment. ξ is

the monomer friction coefficient (in units of mass/time) of the bead against the solvent. T is the

temperature, and kB is the Boltzman constant. Holding all other parameters constant, increasing

τe by increasing b or Ne is equivalent to going from a chain composed by many springs and beads in

the bead-spring model to just one dumbbell.

Eq. (2.39) is also called the single-mode Rolie-Poly equation. One may also extend this to the
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multi-mode equation, with each stress mode τi satisfying Eq. (2.39) and contributing to the total

polymer stress τp in units of the shear modulus Gi:

τp =
n∑
i=1

Giτi. (2.42)

A multi-mode Rolie-Poly model can provide a more accurate description of a particular complex

fluid because it describes different stretch of different parts in a polymer chain, but it requires

additional parameter fitting. In this work, we adopt the single-mode model, which is usually an

effective and sufficient alternative [18].

2.1.8 The Conformation Tensor

In our numerical calculations, we solve for the conformation tensor C = 〈RR〉 instead of the

polymer stress tensor τp because of its desirable linear algebra properties [22]. R is the end-to-

end vector of a polymer chain in the dumbbell model, so this dyadic tensor is required to be

positive-semidefinite to remain physical. The relationship between C and τp is

τp = ηp
λ

(C − I) = G(C − I). (2.43)

Note that when the system is in equilibrium, C = I, which indicates no deformation occurs. The

evolution of the conformation tensor can be written as [23]

DC

Dt
= (∇u)T ·C +C · ∇u+ g(C), (2.44)

where DC
Dt = ∂C

∂t + u · ∇C denotes the material derivative of C, and g(C) is defined uniquely for

each constitutive equation as follows

g(C) =



− 1
λ(C − I), Oldroyd-B

− 1
λ(C − I + α(C − I)2), Giesekus

− 1
τd

(C − I)− 2(1−
√

3/trC)
τR

(C + β( trC3 )δ(C − I), Rolie-Poly

. (2.45)
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2.1.9 Immersed Boundary Method

In previous sections, we discuss the governing equations for fluid dynamics, including the

incompressible Navier-Stokes equations and viscoelastic constitutive models. For fluid-structure

interaction, we use the well-known immersed boundary (IB) framework [24]. The IB method uses

an Eulerian description of the fluid and a Lagrangian description of the immersed structure. The

immersed structure is described by boundary points (IB markers), and we can use a “hollow shell” or

a volumetric mesh representation. The Eulerian and Lagrangian variables are coupled via interaction

equations involving the Dirac delta function. For a viscoelastic fluid, the governing equations for

the IB approach include

ρ

(
∂u

∂t
(x, t) + u(x, t) · ∇u(x, t)

)
= ∇ · σ + f(x, t), (2.46)

∇ · u(x, t) = 0, (2.47)

f(x, t) =
∫
U
F (s, t)δ(x− χ(s, t))ds, (2.48)

∂χ

∂t
(s, t) =

∫
Ω
u(x, t)δ(x− χ(s, t))dx, (2.49)

σ = −pI + ηs
(
∇u+∇uT

)
+ τp, (2.50)

where Eqs. (2.46) and (2.47) are the incompressible Navier-Stokes equations, which reduce to the

standard Navier-Stokes equation in Eq. (2.16) if there is no polymer contribution τp to the stress.

f(x, t) is the volumetric force density applied by the structure to the fluid, and F (s, t) is the

Lagrangian force density acting on the structure. Eq. (2.48) spreads the Lagrangian force to nearby

fluid particles. Eq. (2.49) interpolates the fluid velocity to the structure and ensures that the

immersed structure moves at the velocity of surrounding fluid particles. The Lagrangian force F

can be determined to impose, either exactly or approximately, rigidity constraints.

In the two interaction equations Eq. (2.48) and (2.49), δ(x) denotes the three-dimensional delta

function. In the numerical scheme, we use regularized delta functions δh(x) that are nonsingular for
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each h but approaches δ(x) as h→ 0, with the properties

∑
x∈Ω

δh(x− χ)h3 = 1 for all χ, (2.51)

∑
x∈Ω

(x− χ)δh(x− χ)h3 = 0 for all χ, (2.52)

where h denotes the Cartesian grid spacing. The three-dimensional regularized delta function is

defined as the tensor product of one-dimensional regularized delta kernel φ(r) with support r,

δh(x) = 1
h3φ

(
x

h

)
φ

(
y

h

)
φ

(
z

h

)
. (2.53)

While there are many choices for φ(r), here we present the widely used standard four-point kernel

[24],

φ(r) =



1
8(3− 2|r|+

√
1 + 4|r|−4r2), if 0 ≤ r < 1,

1
8(5− 2|r|+

√
−7 + 12|r|−4r2), if 1 ≤ r < 2,

0, if 2 ≤ r.

(2.54)

2.1.10 Implementation

The IBAMR software package is an adaptive and distributed-memory parallel implementation

of the immersed boundary framework based on C++ [10]. IBAMR is built on SAMRAI [25] for

adaptive mesh refinement infrastructure, PETSc [26] for linear solvers, libMesh [27] for finite element

library, and hypre [28] for high performance preconditioners featuring parallel multigrid methods.

In addition to the original IB method, IBAMR also supports solvers for IB based methods such

as the immersed boundary-finite element method (IBFE) [29] and the immersed interface method

(IIM) [30]. In this dissertation, we assume the structures are rigid bodies and use the CIB method

(an IB method which implements the motion of rigid bodies using the constraint formulation) [31]

to model fluid-structure interaction. Details of this method will be discussed in Sec. 3. The solvers

for the viscoelastic fluids are integrated with IBAMR.

2.2 Verification of the Rolie-Poly Model

Before we perform numerical simulations for the microbead dynamics, we first use verification

examples in two spatial dimensions with comparisons to benchmark computational studies to
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ρ(g/mm3) ηs(Pa · s) τd(s) τR(s) G(Pa) ηp(Pa · s) β δ

1.0× 10−3 41.348 0.05623 0.1 72800 4093.544 0 −0.5

Table 2.1: Model parameters for simulating DOW1568 flow through a contraction-expansion slit
geometry and a cross-slot geometry.

investigate the accuracy of our implemented Rolie-Poly model. While there are not many existing

numerical tests for the Rolie-Poly model, we consider two representative flow configurations in

two dimensions: a contraction-expansion slit and a cross-slot. The geometries are modeled as

immersed rigid structures, and they should not move or be deformed. [1] presents experimental

data and numerical simulations for a monodisperse polystyrene DOW1568, and [32] also provides

numerical results for both tests. Note that the authors of [1] fit a multi-mode Rolie-Poly model

to the experimental data, while in contrast, [32] uses the dominant mode in a single-mode model.

We set up our experiments for a single-mode Rolie-Poly model with parameters from [32]. The

Reynolds number for both tests is on the order of 10−6.

2.2.1 Flow through a Contraction-Expansion Slit

As shown in Fig. 2.3, we are interested in simulating flow through a pipe sudden contraction

with a length of 20 mm and a width of D = 10 mm. The contraction is generated by two rectangular

blocks adhering to the physical domain with a slit depth of 1.4 mm and a width of 1.5 mm. The

blocks are modeled using one-dimensional Lagrangian elements, where the Lagrangian nodes are

placed at a distance of twice the Cartesian grid spacing to avoid fluid leak. The contraction ratio is

about 7.14 : 1. This flow geometry creates shear flows near the walls and extensional flows along

the centerline from the inlet to the outlet [1].

We impose a parabolic normal velocity profile with maximum velocity 0.78 mm/s at the inlet

(in the x-direction) and zero tangential velocity (in the y-direction),

u = 0.78
(

1− 4(y − 0.5D)2

D2

)
, v = 0, (2.55)

and we set homogeneous Neumann boundary conditions at the outlet. The conformation tensor is

set to be the identity tensor at the inlet and the outlet. No-slip conditions are employed at the solid

walls. The model parameters and corresponding units are summarized in Table. 2.1.

We measure the following four quantities along the centerline,
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(a) Velocity magnitude and vector with Cartesian grid spacing ∆x = 0.0625

(b) Pressure magnitude with Cartesian grid spacing ∆x = 0.0625

(c) Velocity magnitude and vector with Cartesian grid spacing ∆x = 0.015625

Figure 2.3: Two-dimensional flow through a contraction-expansion slit geometry with visualization
of the steady-state velocity and pressure fields. The first two panels correspond to the coarsest mesh
spacing, and the last panel corresponds to the finest mesh spacing.
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1. Velocity in the x-direction,

2. First normal stress of the polymer stress τxx,

3. First normal stress difference of the polymer stress N1 = τxx − τyy,

4. Principal stress difference PSD =
√

(τxx − τyy)2 + 4τ2
xy. This is used to quantify the flow

induced birefringe which has a linear relationship with PSD by the stress-optical law [33].

Note that to simplify the notations, we drop the subscript “p” in the polymer stress tensor τp. First,

we conduct a grid convergence study to examine the spatial convergence of the simulations. With

three different uniform mesh spacings ∆x = {0.0625, 0.03125, 0.015625} mm, we adjust the number

of the CIB marker points to make sure the distance between two adjacent markers is twice the

Cartesian grid spacing ∆x, and perform the simulation with all other numerical parameters fixed.

The results are presented in the left column of Fig. 2.4, with the x-axis showing the signed distance

to the center of the geometry. As the grid is refined, the computed solutions are clearly converging.

The panels in the right column show the comparison of our simulations (blue curves) with numerical

results from [32] (red curves). In general, our numerical results are in good agreement with data

published in the literature, as shown by the same data profile in all three panels. In particular,

the velocity plot shows great consistency with the literature. We also visualize the steady-state

velocity and pressure fields of the coarsest grid spacing (first two panels), along with the finest grid

velocity field in the last panel of Fig. 2.3. In the first panel, we observe a very smooth velocity field.

Our numerical method is capable of accurately capturing the large velocities near the slit without

deforming the walls. Note that there is a small amount of fluid leak at the interface of the blocks and

the physical boundary because the mesh is not fine enough, and the fluid leak is eliminated as we

use finer meshes, as shown in the last panel in this figure. The second panel shows the pressure field

with an overall pressure drop of ∆p = 3.2× 105 Pa = 3.2 bar, which is consistent with the numerical

results in [1]. In Fig. 2.5, we visualize the results for PSD. In addition to the two-dimensional

simulation data, the PSD curves are also compared with three-dimensional simulated results (yellow

curve) and experimental data (purple curve) from [1] in panel (b). In panel (c), the upper half

shows the PSD contours from our simulation with contour intervals of 5 kPa, and the lower half

is generated from the experimental data (figure reprinted with permission from [1]). Looking at
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panel (a), we notice that the first peak of our simulation almost overlaps with the three-dimensional

simulation results. However, in general, both our method and the numerical method from the

literature, tend to overpredict the stress near the slit. Possible causes for this discrepancy include:

(1) our simulations are in two-dimensional while the experiments are in three-dimensional; (2) we

use the single-mode Rolie-Poly model parameters proposed in [32], and the results should be more

accurate if we use the full multi-mode model; (3) the experiment uses a geometry with rounded

corners, while we use the sharp corners as in [32].

2.2.2 Flow through a Cross-Slot

The next example is the flow through a cross-slot geometry, which consists of four curved walls.

Fig. 2.6 provides a schematic view of the cross-slot geometry with length L = 10 mm in an L× L

computational domain. The curved walls are represented by black dots with radius 0.75 mm and

the width of inlets/outlets is D = 1.5 mm. In this simulation, we use thick walls with two layers of

marker points to ensure no fluid leak at the wall. It is possible to make the walls thicker by adding

more layers towards the four corners while keeping the inner width of the channel fixed. However,

preliminary simulations suggest that we do not benefit much from the additional layers.

We define the center of the flow configuration as the stagnation point, and the line from the

center of an inlet to the center of an outlet as the centerline. Parabolic flow profiles with maximum

velocity magnitude u = 3.135 mm/s are imposed at the two inlets on the left and right boundary in

opposite directions, with zero tangential velocities:

uleft = 3.135
(

1− 4(y − 0.5L)2

D2

)
, (2.56)

uright = −3.135
(

1− 4(y − 0.5L)2

D2

)
, (2.57)

v = 0. (2.58)

At the outlets, homogeneous traction-free boundary conditions are imposed in the y-direction and

the tangential velocity is set to zero. No-slip conditions are imposed at (inner) solid walls. Neumann

boundary conditions are imposed for the conformation tensor. The flow field is shown as the black

arrows. The velocity magnitude is also plotted. With this cross-slot geometry, extensional flows

are created in the central region near the stagnation point, and simple shear flows are near the
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Figure 2.4: Results for the contraction-expansion slit geometry: velocity, first normal stress τxx, and
first normal stress difference N1 along the centerline. The grid spacing for the IBAMR simulation
used in the right column is ∆x = 0.03125.
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Figure 2.5: Principal stress difference (PSD) of the contraction-expansion slit geometry. The grid
spacing for the IBAMR simulation used in panels (b) and (c) is ∆x = 0.03125. Panel (c) compares
slit flow PSD contours from our simulation (upper) and experimental results (lower, reprinted with
permission from [1]). The contour interval for our simulation is 5 kPa.

22



Figure 2.6: A schematic view of the cross-slot geometry with curved walls consisting of two layers of
Lagrangian marker points (black dots). The Cartesian grid spacing is ∆x = 0.025. With a parabolic
velocity profile imposed at each inlet (left and right walls) in opposite directions, the steady-state
flow field is indicated as black arrows with velocity magnitude shown in color. The computational
domain and the geometry are extended by IB target points (white dots) for improved numerical
stability.

walls. The velocity field is basically symmetric around the stagnation point. We use the same model

parameters provided in Table. 2.1.

A key issue for this problem is that the current CIB solver does not converge if exactly constrained

IB points extend to the outlet. We apply two techniques to fix this issue:

1. A combination of CIB and IB methods: we extend the physical domain by 2.5 grid spacings

in each direction, and fill this small gap between the CIB walls and the new boundary with

IB points. Those IB points, shown as white dots in Figs. 2.6 and 2.7, are tethered by very

stiff linear springs (spring constant ∼ 5× 106) to their initial positions in order to impose zero

flow condition to stop the flow from leaking. Numerically, the extension part is solved using

the original IB method instead of CIB.

2. Moving least squares (MLS): we replace the standard kernels for the regularized delta function

with one-sided MLS reconstructions. With one-sided MLS, we spread and interpolate from
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(a) Visualization of the x-component of the velocity field.

(b) Visualization of the y-component of the velocity field.

Figure 2.7: Visualization of the x- and y-components of the velocity field of flow through the
cross-slot geometry with ∆x = 0.025.
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either outside or inside the geometry. Details of MLS and related verification tests are

presented in the appendix.

In Fig. 2.8, the first panel shows PSD along the centerline for simulations on three different uniform

grid spacings. Note that we expect zero polymer stress near the inlet and the outlet. Despite this

discrepancy, our computed solutions are converging. The second panel illustrates the comparison

with experimental data (yellow squares), two-dimensional numerical simulations (red curve), and

three-dimensional simulations (purple stars). Our simulated results are in good agreement with

literature results. However, our method tends to under-predict the peak values of the stress near

the stagnation point, in addition to the nonzero stress values at inlets and outlets. While the three-

dimensional numerical test shows zero PSD at both inlet and outlet, the data for the experiment

is missing, and the two-dimensional simulation tends to generate nonzero PSD at outlet as well.

This suggests that the issue might be related to the spatial dimensions, and it might be fixed if we

perform the simulation in three spatial dimensions. We are currently in the process of improving

our numerical scheme in order to gain greater consistency.

2.3 Active Microbead Simulations

As we briefly discussed at the beginning of this chapter, a transition phenomenon from a linear

to nonlinear response in entangled polymer solutions is shown by experiments and numerical models:

with a constant external magnetic force FM applied, the microbead initially experiences a high

viscosity quasi-steady plateau in the linear Stokes regime; if the force is larger than a threshold,

then the microbead starts accelerating with a decrease in apparent viscosity, and eventually it will

converge to a terminal steady state with the equilibrium velocity larger than the Stokes response

speed. This terminal velocity is found to scale nonlinearly with the force magnitude. We are

interested in numerically modeling the transient dynamics and the quasi-steady behavior with

IBAMR. Specifically, we consider a single magnetic bead immersed in a λ-DNA solution. The authors

of [8] propose a simplified numerical scheme based on the Rolie-Poly model without considering

hydrodynamic interactions; this study provides qualitative insights into the nonlinear response.

However, to the best of our knowledge, no computational modeling for the fully coupled system has

been developed. We use the UNC Linux-based computing cluster to perform all the simulations.
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(a) Grid convergence study.
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Figure 2.8: PSD along the centerline for flow through the cross-slot geometry. The grid spacing
used for the IBAMR simulation in the second panel is ∆x = 0.025.
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Figure 2.9: A schematic view of the microbead and the computational domain with periodic
boundary conditions. A surface mesh with vertices shown as yellow dots is used to represent the
microbead. The side length of the cubic domain is 8 times the microbead radius.

R (µm) FM (pN) ρ (g/µm3) ηs (Pa·s) τe (s) Z G (Pa) β δ

0.5 1 ∼ 12 1.3× 10−12 0.005 0.00013 20 0.86 1 -0.5

Table 2.2: Model parameters for simulating microbead rheology in a λ-DNA solution.

2.3.1 Problem Setup

As shown in Fig. 2.9, we use a triangular surface mesh to describe the microbead. The yellow

dots represent the vertices of the triangular mesh, which correspond to Lagrangian markers. The

current adaptive mesh refinement (AMR) implementation in IBAMR does not work for the Stokes

problem, and due to the limits of computation, we need to restrict the computational domain to be

a cube with a side length of 8 times the microbead radius and discretize the domain with a uniform

mesh. However, our numerical scheme is able to model the immersed structure passing across

the boundary, so we could use periodic boundary conditions to minimize the wall effects on the

microbead dynamics and mimic an infinite domain. We are currently in the process of developing a

feasible AMR implementation for Stokes and will discuss this further in Chapter 4. The parameters

of the Rolie-Poly model are set to describe λ-DNA solution. Table. 2.2 summarizes the parameters

we use for most of our simulations unless otherwise stated. The zero-shear rate viscosity of the

polymeric fluid ηp is 2.68 Pa·s, approximately 536 times the solvent viscosity ηs.

27



2.3.2 Numerical Results

Effects of the force FM First, we track the bead displacements over time with different external

force magnitudes and visualize the results in Fig. 2.10. As discussed in [8], at early stages, the bead

dynamics quickly converge to an equilibrium stage where the velocity U0 follows Stokes law,

(a) Bead displacements over time (b) Zoom-in of early responses for t < 6s

Figure 2.10: Bead trajectories over time. The applied force magnitudes are FM =
{1.6, 2.4, 5.7, 6, 8, 10, 28} pN. At early time points, the bead dynamics are in a Stokesian regime
where the quasi-steady state velocity U0 scales linearly with FM . If FM is below the force threshold
FT (the blue and red curves), this is the asymptotic steady state. If FM > FT (the remaining five
curves), the bead suddenly starts accelerating and eventually reaches a steady state with a terminal
velocity U∞ that is nonlinear in FM .

FD = 6πηeffRU0, (2.59)

where FD is the Stokes drag, and FD = FM in magnitude at equilibrium. Note that in this simulation,

we focus on the velocity in the normal direction, as the tangential velocities are zero. The polymer

stress contributes to the effective viscosity ηeff through

ηeff = ηs + 2
3ηp. (2.60)

This suggests that, with the same model parameters, U0 scales linearly with the magnetic force

magnitude FM , which is the canonical linear Stokes response. Prior experiments show that there

exists a force threshold FT such that:

• If FM < FT , U0 is the asymptotic steady state. For example, the blue curve and the red
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curve in Fig. 2.10, which correspond to FM = 1.6 pN and FM = 2.4 pN respectively, have

approximately constant slopes after the acceleration from the initial stationary state.

• If FM > FT , the system is driven out of equilibrium, whereby the bead suddenly starts

accelerating and eventually converges to a new steady state. For example, the two red arrows

point to the acceleration of bead dynamics when FM = 5.7 pN (yellow curve) and FM = 6 pN

(purple curve) which illustrate the bead takeoff events. The velocity then quickly converges

to U∞, as shown by the constant slope of these two curves after the acceleration point. For

larger forces, it is harder to identify the acceleration stage as the early stages are much shorter

in time, but in panel (b), we focus on the short times and observe the change in the slope of

the FM = 8 pN (green) and FM = 10 pN (blue) curves. The transient dynamics indicate the

nonlinear response of the λ-DNA solution.

To further study the relationship of the terminal velocity U∞ and the force FM and to quantify the

force threshold FT , we perform additional experiments with different values of FM and summarize

the results in Table 2.3. If FM < 5.5 pN, U∞ is considered to scale linearly with FM . Note that

although the ratio of U∞ to FM has doubled for FM = 5 pN compared to FM = 1.6 pN, yet if we

look at FM = 5 pN and FM = 5.5 pN, the ratio increases by a factor of 4.3 when FM is increased by

only 0.5 pN. Therefore FT is found to be approximately 5.5 pN. This is also visualized in Fig. 2.11

where we plot U∞ against FM for FM up to 10 pN. If FM < 5.5 pN, U∞ is very small, and those

dots could be connected by a straight line approximately. Beyond 5.5 pN, U∞ is much larger and

the corresponding dots cannot be connected by a straight line, indicating the nonlinear relationship

between U∞ and FM .

Note that our results are qualitatively consistent with the experiments in [8], while the experi-

mental data shows a different threshold FT ∼ 2 pN. There are several potential explanations for

the differences: (1) some parameters, such as the solvent viscosity ηs, are not explicitly specified for

the experiments, and those parameters could be different from the ones we use in our numerical

tests; (2) a periodic computational domain is similar to a large nonperiodic domain but not exactly

the same.

In Fig. 2.12, we visualize the apparent viscosity ηapp over time, where ηapp is inferred from the
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FM (pN) U∞ (µm/s) U∞/FM
1.6 0.0351 0.0219
2.4 0.0557 0.0232
3 0.0743 0.0247
3.5 0.0933 0.0267
4 0.1180 0.0295
4.5 0.1532 0.034
5 0.2229 0.0446
5.5 1.0631 0.1933
6 3.4039 0.5673
8 5.8173 0.7272
10 12.4644 1.2464
28 62.7501 2.2411

Table 2.3: Summary of the magnetic force FM and the steady-state velocity U∞. For FM < 5.5 pN,
U∞ scales linearly with FM . When FM is large, U∞ is not proportional to FM , which indicates a
superlinear response of the fluid material.

Figure 2.11: Sampling of terminal velocity U∞ against the applied force FM . There is approximately
a linear relationship between U∞ and FM for small FM . When FM ≥ 5.5 pN, bead takeoff phenomena
occur and U∞ does not scale linearly with FM .
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Figure 2.12: Apparent viscosity over time for different applied forces.

Stokes drag law,

ηapp = FM
6πRU . (2.61)

Note that the apparent viscosity is constant and equal to ηs for Newtonian fluids. In the first

two panels, with FM = 1.6 pN and 2.4 pN, the apparent viscosity quickly transitions from 0 and

converges to a constant value near 5 Pa·s. This suggests that the bead dynamics are in the linear

Stokes regime with small force values applied. The third panel shows the apparent viscosity for

FM = 5.7 pN, where the nonlinear response is observed. Beyond the initial regime, the bead

acceleration phase corresponds to the relatively slow drop in the apparent viscosity. When the

bead dynamics converge to the terminal steady state, the apparent viscosity becomes constant.

As FM = 5.7 pN is very close to FT , this is the “Goldilocks” phenomenon, where we observe the

interesting transient behavior. The last panel shows results for FM = 28 pN, which is much larger

than the threshold FT , so the initial Stokes regime and the acceleration phase are shorter than the

FM = 5.7 pN case, and the bead quickly moves through the viscosity overshoot phase and converges

to the terminal steady state. Also, notice that the steady-state apparent viscosity decreases with

larger forces, because the apparent viscosity for viscoelastic fluids depends on the shear rate. The

changes in the apparent viscosity curve reflect a shear-thinning response.
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Figure 2.13: Log-log plot of displacements versus time as a function of the number of entanglements
Z for FM = 6 pN with other parameters fixed. With different values of Z, the trajectories overlap in
short times. When Z = 3, no bead takeoff event is observed. As we increase Z, the bead dynamics
exhibit a nonlinear response.

Effects of the number of entanglements Z Next, we study the effect of the number of

entanglement segments in a chain Z on the bead dynamics. We perform experiments with different

values of Z and apply a constant force of FM = 6 pN. Other numerical parameters are fixed for each

run. In Fig. 2.13, we visualize the bead displacements against time for each Z using logarithmic

scales for both axes. Notably, all of the four curves overlap at short times, which indicates that

the bead dynamics experience the same initial Stokes regime even with different Z. The Z = 3

curve (blue) is approximately linear, suggesting that the bead takeoff event is absent at smaller

values of Z. At larger values of Z, we observe nonlinear dynamics beyond t = 10 ms. Looking at

the terminal steady state for different values of Z, we find that the curves have approximately the

same slope but different intercepts, which indicates that the terminal velocity also depends on Z.

Effects of the Rouse relaxation time τe We are also interested in the steady-state behavior

of chain stretching as a function of the force FM , the number of entanglements Z, and the Rouse

relaxation time τe. Chain stretching is computed from the trace of the conformation tensor tr(C)/3,

and it should be 1 for chain configurations close to equilibrium. We study chain stretching for

a combination of parameters FM = {1, 2, 5, 10, 30} pN, Z = {3, 24} , and τe = {1, 2, 3, 4} ms. In
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Figure 2.14: Loglog plot of chain stretch tr(C)/3 as a function of the force FM , the number of
entanglements Z, and the Rouse relaxation time τe.

Fig. 2.14, we visualize tr(C)/3 curves against the force FM on logarithmic scales, and curves with

the same color correspond to the same τe. Solid lines represent Z = 3 while dashed lines represent

Z = 24. All curves are monotonically increasing, which indicates that chain stretching increases

with increasing force. Looking at pairs in the same color, we observe that with a constant force,

increasing Z results in an increase in chain stretching dynamics. With Z fixed, chain stretching also

increases with τe, and therefore increasing τe could trigger a greater nonlinear response. Moreover,

we notice that when Z = 3, chain stretching increases more significantly with τe compared to the

increase at Z = 24. For example, the gap between the blue solid line and the red solid line is much

larger than the gap between the blue and the red dashed lines. The red, green, and pink dashed

lines are almost overlapping for Z = 24, which indicates small effects of τe on chain stretching

behavior. As explained in [8], at smaller values of Z, chains cannot relax into their equilibrium

configuration within time scales compared to those of the applied deformation, so the relaxation of

individual entanglement segments dominates the relaxation dynamics. On the other hand, at large

values of Z, the entangled network of chains dominates the relaxation dynamics.

2.3.3 One-way Coupling

The authors of [8] proposed a numerical model using the Rolie-Poly constitutive equation to

simulate active microbead dynamics with a flow decoupling approximation. Specifically, hydrody-
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namic interactions are not considered in this scheme. Numerical results show that this method

is effective in qualitatively explaining the nonlinear phenomenon. Here, we modify our numerical

scheme to compute solutions with this one-way coupling method and compare with the results in

[8]. We assume that the bead translational velocity generates an instantaneous quasi-steady Stokes

velocity field, and the spherical velocity components can be written in a closed-form as


ur

uθ

uφ

 =


U(t)

2
R
r cos(θ)(3− (Rr )2)

−U(t)
2

R
r

sin(θ)
2 (3 + (Rr )2)

0

 , (2.62)

where U(t) is the x-component of the bead translational velocity at time t, and the coordinates

(r, θ, φ) are defined as

r =
√
x2 + y2 + z2, θ = arccos

(
x

r

)
, φ = arccos

(
y√

y2 + z2

)
.

Note that we assume the flow to be axisymmetric, so uφ = 0. The corresponding velocity field in

Cartesian coordinates can be expressed as

u =


u

v

w

 =


cos(θ) − sin(θ)

cos(φ) sin(θ) cos(φ) cos(θ)

sin(φ) sin(θ) sin(φ) cos(θ)


ur
uθ

 . (2.63)

At each time step, instead of solving the Stokes equation, we analytically prescribe the velocity

field and impose Dirichlet boundary conditions using Eq. (2.63). As a result, this is equivalent to

performing the simulations on an infinite domain, and therefore we do not need to worry about

wall effects and boundary conditions. Currently, we use the explicit time-stepping scheme for rigid

body dynamics and update the bead translational velocity from time tk = k∆t to tk+1 = (k + 1)∆t

following the steps below:

1. Prescribe the Stokes velocity field uk using Eq. (2.63) given the x-component of the bead

velocity Uk.

2. Compute drag force on the bead F kD = 6πRηsUn +
∫
∂V

3∑
i=1

τki1 dA, where the first component
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FM ( pN) UIBAMR (µm/s) Ubenchmark (µm/s) Relative error
2 41.65 42.31 1.55%
6 125.85 124.86 0.79%
10 211.13 211.49 0.17%

Table 2.4: Comparisons of transient velocities with the code in literature for the reduced-order
model without hydrodynamic interactions when the bead is subject to a magnetic force FM .

is the Stokes drag, and the second component is the polymeric contribution computed from

the polymer stress τ kp on the bead surface with the subscript “p” dropped in the formula.

3. Compute the bead acceleration ak = FM−Fk
D

m , where the bead mass m = 4π
3 ρR

3 in a buoyant

case.

4. Update the bead velocity Uk+1 = Uk + ∆t · ak.

Note that the bead mass is small as the bead size is on the micrometer scale, and therefore the

bead acceleration is very large compared to velocity. As a result, we have to use a very small time

step size, and it will require a very long simulation to reach the steady state. This is the major

drawback of the explicit time-stepping method, and currently we do not have a good solution to fix

it. However, this motivates us to develop an effective implicit solver where a larger time step size

could be used, and details will be discussed in Chapter 3. On the other hand, it is still useful to

compare the velocities in the transient dynamics. In Table 2.4, we compare our simulated velocities

after running the experiments for thousands of time steps with numerical results generated from

the code in [8] at the same simulation time, with the magnetic force FM = {2, 6, 10} pN. The

relative error UIBAMR−Ubenchmark
Ubenchmark

is less than 2%, which serves as an additional verification check of

our numerical method.
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CHAPTER 3

Implicit Solver for the Constrained IB Formulation

The CIB method [31], a constraint-based IB method, has been used to model the interactions

between fluids and moving or stationary rigid bodies. To impose constraints on the motion of the

immersed body, traditional IB methods usually use a penalty formulation where each of the IB

markers is tethered to its target position through a stiff spring [34, 35, 36], whereby an “approximate”

Lagrange multiplier force is used to approximately impose the prescribed motion. Consequently, the

penalty method relaxes the constraint and, in addition, may impose a time step size restriction. In

contrast, the CIB method uses an exact Lagrange multiplier force to ensure that the markers move

according to a prescribed velocity field, and it applies a Schur complement based preconditioner for

solving the corresponding saddle point system. This method is demonstrated to be very efficient in

solving the system while maintaining the rigid structure, and it is suitable to our problems at low

Reynolds numbers, so we choose this method as our solver for the microbead simulations in Sec. 2.3.

However, one of the major drawbacks is that the solver performance relies on some problem-specific

parameters. As a result, we are motivated to develop a new preconditioner for the system to avoid

the parameter re-tuning and dense linear algebra. The solver itself is an implicit method and is

therefore numerically stable. In this chapter, we will discuss the mathematical formulations for

the CIB method and the current version of the preconditioner. Then we will introduce our novel

preconditioner and present test results from numerical experiments.

3.1 Linear System and Current Preconditioner

To simplify the notations, we first introduce the discrete formulation of the immersed boundary

method described in Sec. 2.1.9. For a d−dimensional flow, we need to solve a linear system in the
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following form at each time step


A G S

−D 0 0

J 0 0




u

p

F

 =


g

h = 0

W

 , (3.1)

where A = ρ
∆tI −

µ
hdLh with Lh as the discrete vector-Laplacian operator. The first row of the

matrix,
[
A G S

]
, corresponds to the momentum equation in Eq. (2.46), where g denotes all the

additional forcing terms and S is the force spreading operator in Eq. (2.48). G and D are the discrete

gradient operator and the discrete divergence operator, respectively; note that G = −DT . −Du = 0

corresponds to the incompressibility equation in Eq. (2.47). J is the velocity interpolation operator,

and Ju = W enforces the condition that the structure moves at the prescribed velocity W . Note

that S and J are adjoint with respect to the weighted inner product J = S∗ = hdS. We could

adjust the matrix to be symmetric, which would require rescaling the right-hand side vector W .

3.1.1 Current Preconditioner

Assume a d-dimensional problem is defined on a domain that is discretized using a Nd Cartesian

grid, and we have a single structure described by Nb IB markers, then the matrix in the linear

system in Eq. (3.1) has a size of ((d+ 1)N2 + dNb)× ((d+ 1)N2 + dNb). Clearly, it is not practical

to solve large linear systems like this directly, and we need an efficient and robust preconditioner.

With the current scheme, the following steps are taken to construct the preconditioner.

1. The unconstrained fluid sub-problem:

First, we use GMRES with a projection based preconditioner described in [37, 38] to solve the

unconstrained fluid equation for pressure and velocity,

 A G

−D 0


ũ
p̃

 =

g
h

 . (3.2)

2. Imposing the no-slip condition:

The temporary velocity ũ and pressure p̃ solved in Eq. (3.2) do not satisfy the rigidity
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constraint. The slip velocity is computed as

∆V = W − J ũ, (3.3)

and we solve the Schur complement system to enforce the no-slip condition at IB markers,

MF = ∆V , (3.4)

where the Schur complement mobility matrix M = JL−1S is of size dNb × dNb and it

maps the Lagrangian force to the interpolated velocity at IB markers. It is numerically

impractical to compute the inverse of the Stokes operator for divergence-free flow L−1 =

A−1 − A−1G(DA−1G)−1DA−1, and the existence of L−1 in between J and S makes M a

dense matrix. As a result, the mobility matrixM is usually approximated using the Rotene-

Prager-Yamakawa (RPY) tensor or fitted empirically. Detailed formulations are omitted in

this dissertation, and we refer interested readers to [31].

The conditioning of the mobility matrix plays an important role in the conditioning of the

overall system in Eq. (3.1), and it depends on the relative ratio between the fluid grid spacing

∆x and the Lagrangian marker spacing ∆s. If the Lagrangian markers are too far from each

other compared to ∆x, there will be fluid leak; however, if the markers are too close, it will

lead to a rank-deficientM. In addition, some other factors will also make an impact on the

exact spacing, including the choice of the kernel function, dimensionality, whether we use a

surface mesh or a filled geometry for the immersed structure, etc. Therefore, tuning the exact

spacing is problem-specific.

3. The corrected fluid sub-problem:

For the optional last step, we correct the right-hand side vector, and solve the modified system:

 A G

−D 0


u
p

 =

g + SF − αvol−11TF

h

 , (3.5)

where α = 1 if A has a null-space, otherwise α = 0. 1 is a vector of ones, and vol is the

volume of the domain. The main goal for this step is to enforce momentum conservation for
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the steady Stokes flow on a fully periodic domain.

3.1.2 Linear Solver

We use Krylov subspace methods to solve the linear system Eq. (3.1) as well as the subsystems

required for the preconditioner. The GMRES algorithm [39] is a robust solver for these problems. It

uses the Arnoldi process to generate L2 orthogonal basis vectors and solves a least squares problem

to modify the approximations [40]. We also use the FGMRES method which allows for changes

in the preconditioning at each iteration [41] to enable more efficient preconditioners and enhance

robustness.

3.2 LSC Based Preconditioner

As discussed previously, the conditioning of the mobility matrix relies on the physical parameters

specific to each problem, and bad choices will lead to the ill-conditioning of the linear system

and poor performance of the solver. Motivated by this, we propose a new preconditioner for the

linear system that is more general with comparable performance. In this section, we describe the

derivation of a novel block preconditioner based on the Least Squares Commutator (LSC) and

present numerical results.

3.2.1 Block Preconditioner

For a saddle point system in the form

Cx =

C BT

B 0


u
p

 =

f
g

 , (3.6)

with a nonsingular (0,0) block C and a full rank (rectangular) matrix B, and the corresponding

block preconditioner based on the Schur complement is defined as

P =

C 0

0 Sc

 , Sc = BC−1BT . (3.7)

Then the preconditioned system P−1C has only three distinct eigenvalues, and the Krylov solver

(MINRES for symmetric C or GMRES for nonsymmetric C) will converge within three iterations

[42]. Now the two key building blocks for the preconditioner are how to compute C−1 and S−1
c

efficiently. We already have some techniques to treat C−1 block of our problem, and will discuss
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later. The difficulty is how to approximate the inverse of the Schur complement Sc efficiently, as

the existence of the inverse operator C−1 between two rectangular operators B and BT makes Sc a

dense operator [43].

3.2.2 Least Squares Commutator

The Least Squares Commutator preconditioner (LSC), proposed in [43], is a preconditioning

strategy for solving saddle point systems. Using the notation of the saddle point system in Eq. (3.6),

we can replace the inverse operator C−1 by an approximation operator C−1
p at the end of the

expression, and Sc is approximated by Ŝc,

Sc u Ŝc = BBTC−1
p . (3.8)

In the case of equality S = Ŝc, we are looking for a Cp such that

BTCp = CBT . (3.9)

This relation is derived by manipulating BC−1BT = BBTC−1
p with linear algebra techniques:

BC−1BT = BBTC−1
p ⇒ B(C−1BT = BTC−1

p )

⇒ C−1BT = BTC−1
p ⇒ BT = CBTC−1

p ⇒ BTCp = CBT .

(3.10)

However, since Eq.(3.9) is an overdetermined system, we are unable to solve this algebraic problem

exactly. Instead, we approximate C−1
p by minimizing the Frobenius norm of Sc − Ŝc with the least

squares method, i.e. min‖BTCp − CBT ‖F , and the solution is given by

Cp = (BBT )−1BCBT , (3.11)

and the corresponding Schur complement preconditioner can be written as

Ŝc
−1 = (BBT )−1BCBT (BBT )−1. (3.12)

In addition to a nonsignular C and a full rank B, we require C to be symmetric positive-definite

(SPD) in order to apply this LSC based preconditioner. Now the only part that requires special
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Matrix block size
C00 dN2 × dN2

C01 dN2 × (N2 + dNb)
C10 (N2 + dNb)× dN2

C11 (N2 + dNb)× (N2 + dNb)

Table 3.1: The size of each block in the reformulated linear system in Eq. (3.14) for the immersed
boundary formulation.

techniques is the inverse of the product of the two adjoint operators (BBT ). This is a challenging

problem in general, and it often relies on the special structures of the matrix B. For example, for

the incompressible Navier-Stokes problem, B is the divergence operator, and BBT is simply the

discrete Laplace operator. As a result, (BBT )x = y is just the Poisson problem which could be

solved efficiently using our existing numerical methods. We will discuss options to handle this issue

for our immersed boundary formulation in the next section.

3.2.3 Applying to Immersed Boundary Formulation

In this section, we discuss how to apply the preconditioning techniques described previously to

our linear system in Eq. (3.1). As stated in Sec. (3.2.2), we require the (0,0) block to be SPD, and

the (1,0) and (0,1) blocks are the transpose of each other and of full rank. Intuitively, we want

to make the matrix block for the fluid sub-problem (the matrix in Eq. (3.2)) as our (0,0) block.

However, this formulation does not satisfy the requirements as the matrix is indefinite. So we

reformulate the blocks as

C =


A G S

−D 0 0

J 0 0

 (3.13)

=

C00 C01

C10 C11

 , (3.14)

and it can be verified that the requirements on the blocks are met. For a problem in d−dimensional,

given the number of fluid grid points in each direction N and the number of IB markers Nb, the

size of each block is summarized in Table 3.1. Fast algorithms for A−1 are already available in

IBAMR, such as the multigrid method, and therefore in this dissertation, we focus on the the Schur
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complement preconditioner

Ŝc
−1 =M−1C10C00C01M−1 (3.15)

=

DG DS

JG JS


−1 −D

J

A [G S
] DG DS

JG JS


−1

, (3.16)

withM = C10C01. (3.17)

Note that M must be distinguished from the Schur complement mobility matrix discussed in

Sec 3.1.1. However, the newM matrix plays a similar role by relating degrees of freedom on the

Lagrangian marker points to each other. With simplified notations, the preconditioner can be

written as

P−1 =

C−1
00 0

0 M−1C10C00C01M−1

 . (3.18)

We explore different methods for computingM−1b, including incomplete LU decomposition and

block preconditioner M̂−1 that solves some blocks of M̂−1M = I exactly. Currently, the best

solution is to use a Krylov solver with a multigrid preconditioner, and we are continuously working

on improving the preconditioner ofM by utilizing its special structure. The numerical scheme for

applying the preconditioner of the linear system Eq. (3.1) to the right-hand side vector


g

h

W

 is as

follows:

1. Solve C00u = g with one multigrid V-cycle.

2. (a) Construct a preconditioner forM with one multigrid V-cycle and solveM

 p̃
F̃

 =

 h
W


with GMRES (loose tolerance of 10−3).

(b) Apply the operators C01, C00, and C10 to

 p̃
F̃

 in order.

(c) Repeat the process in Step. (2a) and apply the operator to the resulting vector from

Step. (2b) to get

 p
F

.
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Figure 3.1: The computational domain and the immersed structure for testing the LSC based
preconditioner in two-dimensional. The structure is a disk with radius R and it is described by IB
markers (blue dots) put at a distance ∆s = 1.5∆x.

3.2.4 MATLAB Prototype

We have implemented the routine as a MATLAB prototype with full details to test the effective-

ness of the new preconditioner. As a test problem, we model an elastic structure as a disk with

radius R = 0.3 located at the center of a unit square. We place the IB markers at a distance of 1.5

Cartesian grid spacings, as shown in Fig. 3.1. The Lagrangian force is described as a stretching

force F = κ∂X
2

∂s2 , where the constant κ characterizes the stiffness of the elastic material. The

standard four-point kernel in Eq.(2.54) is used to construct the force-spreading operator and the

velocity-interpolation operator.

Exact solve First, we verify the effectiveness of the block preconditioner discussed theoretically

in Sec. 3.2.1. With three different Eulerian mesh spacings (N = 32, 48, 64), we put IB markers

such that the relative ratio of IB marker spacings to fluid grid spacings is fixed at 1.5. We use

GMRES to solve the linear system in Eq. (3.1) and summarize the number of iterations required

to reduce the residual by a factor of 10−10 in Table. 3.2. As a baseline test (shown as Test 0), we

solve the system without any preconditioner, and the required number of iterations grows in O(N).

Clearly, the GMRES solver without a preconditioner is converging very slowly. Then for Test 1,

we construct the Schur complement based block preconditioner in Eq. (3.7) with exact solve for
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the two diagonal blocks. The solver converges in three iterations which is independent of the grid

spacing, in accordance with the theorem from [42]. Next, for Test 2, we replace S−1
c by Ŝ−1

c defined

in Eq. (3.16) and compute inverse ofM directly. With this preconditioner, the required number

of iterations is approximately O(logN). The amount of work required at each iteration is O(N),

so the time complexity for this solver is O(N logN). Although in practice we need to avoid direct

matrix inversion, this test demonstrates the strong performance of the LSC based preconditioner

given an effective solver forM−1.

Number of Eulerian mesh points (N) 32 48 64
Number of IB markers (Nb) 40 60 80
Test 0: no preconditioner 496 724 983
Test 1: exact solve for P−1 3 3 3
Test 2: approximated P−1 9 11 11

Table 3.2: Number of iterations by GMRES for solving the linear system in Eq. (3.1) under grid
refinement with no preconditioner, exact solve for P−1, and approximated P−1 with exact solve for
M−1.

Approximated solve forM−1 We adopt the routine described in Sec. 3.2.3 for solvingMx = b

approximately, and apply it to the LSC preconditioner in Eq. (3.16). We refer to the solver for the

linear system in Eq. (3.1) as the outer GMRES solver, while the solver for Mx = b is the inner

solver. The numbers of iterations required by the inner GMRES solver and the outer GMRES solver

are summarized in Table 3.3. Note that the performance of the outer solver is comparable to the

solver performance with exact solve for M−1 shown as Test 2 in Table 3.2. Test 2 benchmarks

the optimal performance we could possibly achieve, therefore indicating a loose approximation of

M−1 will suffice. Although the number of iterations is not exactly O(logN), the outer solver is

still considered to be scalable because the required number of iterations increases by approximately

a constant number as we refine the mesh. Similarly, the inner solver is also scalable. Since in

practice we solve the system with a matrix-free method and we need to dynamically construct the

preconditioner instead of storing it, the goal is to reduce the total number of multigrid V-cycles

performed at each time step. We also experiment with different numbers of V-cycles for both C00

block andM, but we observe no improvement to the number of iterations required by the outer

GMRES solver, compared with using just one V-cycle for both parts.
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N 16 32 64
Outer solver 7 10 15
Inner solver 12 15 20

Table 3.3: Number of iterations required by the outer GMRES solver for the linear system in
Eq. (3.1) and the inner GMRES solver forMx = b.

Time-independent Stokes A more important question is whether we could apply this new

preconditioner to time-independent Stokes flow, as for now we do not have an efficient implicit

solver for it. The linear system now becomes

Cindependent =


− µ
hdLh G S

−D 0 0

J 0 0

 (3.19)

=

C00 C01

C10 C11

 . (3.20)

The discrete Laplacian matrix Lh is indefinite, so we need to modify the (0,0) block in order to apply

the block preconditioner. A good feature of the new C00 is that it is symmetric positive-definite on

the null space of C10, thus we can use the augmented Lagrangian formulation [44] that is equivalent

to Eq. (3.19): C00 + γC01C10 C01

−C10 C11




u
p


F

 =



g
h

+ γC01W

−W

 , (3.21)

where γ is a positive scalar. The routine for solving Mx = b remains the same as in the time-

dependent case. The key question is how to compute the inverse of C00aug = C00 + γC01C10 efficiently,

as C00aug is a dense matrix without the special structure like the Laplacian. We test different γ

values coupled with different numbers of multigrid V-cycles to compute C−1
00aug. Table 3.4 shows the

number of iterations required by the outer GMRES solver to solve Eq. (3.21) with exact solve for

M−1 on a grid with N = 32. We find γ = 0.005 to be optimal. Also, we notice that there is no

significant improvement on the number of iterations beyond four multigrid V-cycles. We further

demonstrate this by applying different numbers of V-cycles under grid refinement, as shown in

Table 3.5.

45



Number of V-cycles/γ 1 0.1 0.01 0.005 0.001
1 191 65 43 42 44
2 116 41 34 33 36
3 86 34 30 31 33
4 72 31 29 30 32
5 62 27 28 30 32

Table 3.4: Number of iterations by the outer GMRES solver for solving the linear system in Eq. (3.21)
with different numbers of V-cycles and γ values on a 32× 32 mesh.

N/number of V-cycles 1 2 3 4 5
16 33 27 24 23 23
32 42 33 31 30 30
64 63 49 44 41 41

Table 3.5: Number of iterations by the outer GMRES solver for solving the linear system in Eq. (3.21)
with different numbers of V-cycles under grid refinement, with γ = 0.005.

We also try replacing C−1
00aug by C−1

00 in the preconditioner to avoid the issue addressed previously,

and C−1
00 can be handled easily with existing tools in the IBAMR software. Table 3.6 summarizes

the number of iterations required by the outer solver. Compared to the performance in Table 3.5,

this scheme requires many more iterations. However, the solver still appears to be scalable, and we

have a simpler (0,0) block in the preconditioner to solve. This trade-off between the outer solver

performance and the inner solver performance needs to be evaluated in terms of the total number of

V-cycles.

Filled geometry Instead of using a spherical shell, we can also use a filled volumetric geometry.

In the two-dimensional case, we could use a triangular mesh over the disk uniformly to describe the

structure, as shown in Fig. 3.2. Note that in general it is not possible to set the precise marker

distances, but we need to control the minimum distance between two markers and make sure the edge

lengths are approximately equal. The C00 block and the corresponding block in the preconditioner

remains unchanged, but the sizes of C01 and C10 are larger in this case. We perform numerical

experiments with different grid spacing ratios and summarize the required numbers of iterations

N 16 32 64
Outer solver 50 64 84

Table 3.6: Number of iterations required by the outer GMRES solver for the augmented linear
system (Eq. 3.21) using C−1

00 as the (0,0) block in the preconditioner .
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Figure 3.2: A two-dimensional disk filled by triangular mesh with IB markers placed at vertices.

Solver N = 16 N = 32 N = 64

∆s = 1.5∆x Outer 9 15
Inner 60 310 1000+

∆s = 2∆x Outer 10 12 15
Inner 14 63 174

∆s = 2.5∆x Outer 10 12 17
Inner 9 17 32

Table 3.7: Number of iterations required by the outer GMRES solver for the linear system in
Eq. (3.1) and the inner GMRES solver forMx = b using a filled geometry.

by the outer solver and the inner solver in Table 3.7 under grid refinement. Test results show that

the method still works and scales if Lagrangian points are separated far enough, at a distance of at

least 2.5∆x.

3.2.5 Penalty Formulation and PETSc Implementation

We are working on an efficient parallel implementation of the algorithm and integrating it with

the IBAMR software package, so that we could utilize the high performance solvers and tools built

in IBAMR and its dependent libraries. We start with the penalty formulation of the immersed

boundary method to simplify the linear algebra. Note that the major drawback of the penalty

method is the time step size restriction for explicit time-stepping scheme, but the penalty method

itself has no accuracy issues. Here, we employ the implicit time-stepping scheme, so using the

penalty formulation could be a good place to start without loss of generality. For the IB method,

the implicit time-stepping scheme computes the fluid variables and updates the force and position
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of the Lagrangian markers at time level n+ 1 as follows,

ρ

∆t(u
n+1 − un) = −∇hpn+1 + µ∆hu

n+1 + SnF n+1, (3.22)

∇h · un+1 = 0, (3.23)

F n+1 = κ(X0 −Xn+1), (3.24)

Xn+1 = Xn + ∆t(Sn)∗un+1, (3.25)

where we use the spring model to construct the body force F with spring constant κ and the

equilibrium position X0. We can use Eqs. (3.24) and (3.25) to eliminate F n+1 in Eq. (3.22) and

then formulate a system with Eulerian unknowns only:

ρ

dt
(un+1 − un) = −∇hpn+1 + µ∆hu

n+1 + κSn(X0 −Xn −∆t(Sn)∗un+1), (3.26)

∇ · un+1 = 0, (3.27)

or in matrix form,  ρ
∆t − µLh + κ∆tSS∗ G

−D 0


u
p

 =

g̃
0

 . (3.28)

We drop the superscripts in Eq. (3.28) to simplify the notations, and the right-hand side vector

contains the terms from the time level n: g̃ = ( ρ
∆t + µ∆h)un + κSn(X0 −Xn). The structure

of the linear system in Eq. (3.28) is algebraically equivalent to the block structure in Eq. (3.14)

with a symmetric positive-definite (0,0) block along with full rank (0,1) and (1,0) blocks which

are transpose of each other. Recall that we define the “M” matrix required for the LSC based

preconditioner as the product of the C10 block and the C01 block, and in this formulation,M = −DG,

which is simply the Poisson problem that we can handle easily with fast algorithms available in the

IBAMR package such as the matrix-free multigrid method. The hardest part for this formulation is

to find a scalable preconditioner for C00 = ρ
∆t − µLh + κ∆tSS∗ that is spectrally equivalent to C−1

00

with robust performance, especially for large κ or small ρ.

We have built an initial version of the solver based on the IBAMR framework, and we utilize

the data structures from the SAMRAI library as well as the linear solvers built in PETSc. Here

we present results from applications of this code. Similar to the MATLAB test problems, we test
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κ / N 64 128 256 512
10 2 2 2 3
100 3 3 5 6
1000 6 7 10 14
10000 14 22 50 117

Table 3.8: Number of iterations required by the outer FGMRES solver to solve Eq. (3.28) with
exact solvers for C−1

00 andM−1.

the code with an ellipse with width 0.25 and height 0.3 on a unit square with periodic boundary

conditions discretized using a uniform N ×N Cartesian grid. The fluid density ρ = 1.0 and viscosity

µ = 0.01. The time step size is fixed at 10−4.

Exact solvers for C−1
00 and M−1 First, we solve C−1

00 andM−1 in the preconditioner Eq. (3.18)

exactly by using a direct solver as the preconditioner and then solve the linear system in Eq. (3.28)

with FGMRES. Table 3.8 summarizes the number of iterations required by the outer solver to reach

a relative tolerance of 10−6. The solver converges in a fixed number of iterations for κ ≤ 10; for

κ up to 1000, the number of iterations increases by approximately a constant number under grid

refinement, so we still consider the solver to be scalable.

Ideally, we want to make κ ∼ 1
∆t so that the structure is stiff enough to make IB points move

less than 0.1∆x in relative positions to avoid deformations. In our case, when κ = 104, the number

of iterations required is doubled as we refine the mesh by a factor of 2, so the solver does not scale

any more. An area for improvement is to make the solver work for κ ≥ 1
∆ .

Inexact solvers for C−1
00 and M−1 Next, we approximate C−1

00 and M−1 with the multigrid

method and relax the relative tolerance for the inner solvers to 10−2. The Poisson solver for C−1
00

usually converges 3 iterations. Prior publications [45] show that multgrid is spectrally equivalent

to C−1
00 for this problem. On the other hand, we solve forM−1 with FGMRES and the multigrid

preconditioner in the PETSc library. In Table. 3.9, we show the number of iterations required by

the inner FGMRES solver for solving C−1
00 and the outer solver for the linear system Eq. (3.28). The

inner solver converges in 1 to 2 iterations under grid refinement for different κ values, suggesting that

the multigrid solver is scalable for this sub-problem. Also, note that the performance of the outer

FGMRES solver is comparable to the solver with exact solvers for C−1
00 andM−1 shown in Table 3.8.
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κ solver N = 64 N = 128 N = 256 N = 512

10 outer 3 3 3 3
inner 1 1 1 1

100 outer 3 3 6 7
inner 1 ∼ 2 1 ∼ 2 1 1

1000 outer 6 7 11 16
inner 1 ∼ 2 1 ∼ 2 1 1

10000 outer 15 23 50 119
inner 1 ∼ 2 1 ∼ 2 1 1

Table 3.9: Number of iterations required by the FGMRES solvers with inexact solvers for C−1
00 and

M−1 with relative tolerance 10−2.

Solver N = 64 N = 128 N = 256
Outer 3 3 3
Inner 1 1 1

Table 3.10: Number of iterations required by the FGMRES solvers for the microbead model with
inexact solvers for C−1

00 andM−1 with relative tolerance 10−2.

This suggests that approximations to C−1
00 andM−1 with a loose tolerance will suffice. Again, the

solver is scalable with κ up to 1000. The time complexity is O(N logN) approximately, which is

consistent with the results from the MATLAB prototype for the full formulation in Eq. (3.13).

Applications to the microbead simulation We also test the solver with parameters from

the microbead model: fluid density ρ = 1.3 × 103 kg/m3 and viscosity µs = 5.0 × 10−3 Pa·s.

The exact solution for the fluid velocity is on the scale of 1.0× 10−8 m/s. The stiffness constant

κ = 1
∆t = 1.0× 104. The outer FGMRES solver converges within 3 iterations, suggesting that we

could potentially use this solver instead of CIB for the microbead simulations. See Table 3.10 for

details.

Limitations and future work The implicit solver is a powerful solver for many applications

where an explicit solver does not work. For example, the microbead simulation requires a very small

time step size, and the numerical experiments generally cannot be run long enough to reach the

steady state for reasons of running time and memory. For the implicit solver, we usually dynamically

choose a time step size ∆t that satisfies the convective CFL condition and is typically larger than a
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fixed time step size for the explicit solver,

‖u‖∞∆t ≤ C∆x, (3.29)

where C is the convective CFL number [46]. However, one issue with the implicit solver is that for

problems that can be solved by an explicit solver (e.g., flow-past-a-cylinder), the implicit solver is

usually slower in terms of the elapsed time, despite the fact that the implicit solver can take fewer

iterations with a larger time step size. Currently, we are actively exploring solutions to reduce the

running time of the implicit solver. In addition, the current version of our solver works with κ ≤ 0.1
∆t ,

and we aim to improve the scheme so that it can solve problems with a larger κ ∼ 1
∆t .
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CHAPTER 4

Stokes AMR

Adaptive mesh refinement (AMR) is a method for dynamically placing high spatial resolution

only near key features where such precision is required [47]. Using a uniform grid over the entire

domain generates a solution with a uniform accuracy that is usually not needed for practical

applications, and the computational cost and required storage can exhibit quadratic growth for

two-dimensional problems and cubic growth in three dimensions. We wish to use IBAMR’s locally

refined staggered-grid (marker-and-cell or MAC) fluid solver, but the discretization implemented in

the software breaks down for the time-independent Stokes equations. However, the MAC scheme is

equivalent to a discontinuous Galerkin scheme with a particular choice of numerical flux [48], and

the finite element strategy for AMR (i.e., hanging nodes) works for this problem already. Hence,

one way to solve it for finite differences is to describe coarsening and refinement in the same way we

handle hanging nodes with quad and hex meshes with finite elements.

4.1 Existing Methods

The MAC scheme, first proposed in [49], is a discretization technique for modeling incompressible

fluid flow using a so-called staggered grid. In particular, the computational domain is discretized into

cells with velocities defined on cell sides and pressure defined at cell centers. The main advantage of

this method is that it prevents the “checkerboard instability” in the velocity field and the pressure

field that can occur with cell-centered discretizations. Another advantage is that we can achieve

second-order accuracy using a stencil composed of just four neighbors of a cell in two spatial

dimensions.

[51] proposes a locally-refined scheme based on quadtree. It uses a virtual stencil consisting of

“real” nodes with true degrees of freedom (DOFs) or boundary values and ghost cells to define control

volumes at the coarse-fine interface and boundaries. Local mass and momentum conservation is

ensured by matching the fluxes at the sides of the coarse control volumes to the sum of the fluxes at

the sides of the two fine control volumes.
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[52] introduces a mimetic reformulation scheme of finite element methods using the natural

divergence operator with pressure approximations by the piecewise constant space (Q0) and velocity

approximations by the the lowest-order Raviart-Thomas space (RT0). The natural (primary)

divergence operator is the coordinate-invariant definition of the analytic divergence, and it can be

extended to RT0. For a finite element partition Th, the natural divergence operator of uh ∈ RT0 is

defined as

DIV(uh)|κ= 1
µ(κ)

∑
f∈Fh(κ)

σfFf ,∀κ ∈ Th, (4.1)

where σf is the unit normal vector and Fh(κ) is the set of oriented faces of κ with

uh =
∑
f∈Fh

Ffuf ,∀uh ∈ RT0. (4.2)

The authors demonstrated first-order accuracy using RT0 elements in the reformulated finite element

methods on non-affine quadrilateral grids.

Similar to Eq. (4.1), one can construct the primary operators for the gradient operator and the

curl operator, and the derived operators from the duality relation from the primary operators. [53]

discusses the mimetic finite difference method based on the derived operators which can preserve or

mimic the mathematical properties and physical laws of the underlying PDE problem. In future

work, we plan to consider incorporating the mimetic scheme into our method.

[48] demonstrates that the MAC scheme is algebraically equivalent to the discontinuous Galerkin

scheme (DG) using the lowest order Raviart-Thomas space with slight modifications based on the

Legendre polynomials. As a result, the analysis on the DG scheme can be applied to the MAC

scheme, and therefore it can generalize the MAC scheme to higher order and irregular meshes. Our

numerical scheme is inspired by this equivalence.

[54] introduces an adaptive finite difference scheme where the hanging nodes on the coarse-

fine interface are used to ensure mass and momentum conservation. In particular, volume flux

is conserved through making the velocity on a coarse cell face equivalent to the average of the

velocities of the two fine cells, for a refinement ratio of 2. Also, this method employs stress-based

interpolation, in which the product of the viscosity and the velocity gradient is conserved at the

coarse-fine interface.
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Figure 4.1: Definition of the lowest order Raviart Thomas element (RT0), figure from:
https://en.wikipedia.org/wiki/File:Raviart_thomas_labelled.png.

4.2 RT0 Based Finite Difference Scheme

Specifically, we are solving some equation on a coarse grid and finer grids that are overlaid on

these regions of the coarse grid tagged for refinement. We need to set up ghost nodes on the fine

level, where we do not solve the equation at these nodes but we need these DOFs in our numerical

stencil to solve at “real” nodes. We use a two-way coupling method by defining the source DOFs

only on the fine level and then prolonging it to the coarse level, and by generating ghost values for

the unknowns on the fine level from the variables on the coarse level. Hence the key question is how

to define the ghost values for prolongation and restriction. The method we adopt here is to use the

lowest order Raviart Thomas space (RT0). As shown in Fig. 4.1, RT0 elements are defined as:

fn(r) =



ln
2A+

n
(r − p+), if r ∈ T+

− ln
2A−

n
(r − p−), if r ∈ T−

0, otherwise

. (4.3)

For two-dimensional problems, staggered DOFs are defined to be piecewise linear in one direction,

and piecewise constant in the other direction. Details will be discussed in the next two sections.
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Figure 4.2: A schematic view of solving Poisson’s equation with DOFs defined on x-edges. Here a
corner refinement region (shaded in blue) is considered. DOFs on the coarse level are labeled as red
triangles. DOFs that we are solving for on the fine level are marked as closed circles, while ghost
nodes are represented by open circles.

4.3 Poisson’s Equation

To illustrate the idea, we solve the two-dimensional Poisson equation with DOFs defined on

x-edge centers and we use two levels of overlapping grids:

∆u = f. (4.4)

The physical domain is taken to be a unit square and is discretized using a N ×N Cartesian grid

with mesh widths ∆x = ∆y = h = 1
N (assuming N is even). Dirichlet boundary conditions are

imposed in the x-direction, and periodic boundary conditions in the y-direction. Using the standard

five-point finite difference scheme, Eq. (4.4) is discretized as

−4ui,j + ui+1,j + ui−1,j + ui,j−1 + ui,j+1
h2 = fi,j , (4.5)

where ui,j is the unknown at (ih, (j + 1
2)h). We consider four refinement cases that should cover

most of the refinement scenarios:

• Refining the left (or right) half of the domain.

• Refining the top (or bottom) half of the domain.
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• Refining a rectangular region of the domain at the boundaries (e.g., lower left corner covering
1
4 of the domain).

• Refining an L-shaped region which is the opposite of the corner case.

Take the corner case as an example. As shown in Fig. 4.2, we refine the region in the lower left corner

which is shaded in blue. u and f are defined at the centers of the x-edges (edges perpendicular

to the x-axis), therefore they are piecewise linear in the x-direction and piecewise constant in the

y-direction. The DOFs on the coarse level are labeled as triangles, while the DOFs on the fine level

are shown as circles. The open circles represent the ghost nodes. To simplify the notation, we use

letters A . . . S to denote the locations, and ui and f i represent the unknown and the right hand side

variable at location i respectively. Based on the definition of RT0, we compute the ghost values as

uL = uA, uM = 1
2(uA + uB), uN = uB, (4.6)

uO = uP = 1
2(uD + uE). (4.7)

The way we assign uM , uO, and uP corresponds to the rule that the variable is piecewise linear in

the x-direction, while for uL and uN we follow that the variable is constant on the same x-edge

inside the same cell (constant in the y-direction). Note that we need to adjust for the boundary

condition. For example, in the edge case where Fig. 4.2 is the entire domain, the stencil for point I,

J, K will need uQ, uR, and uS , respectively. An alternate version of Fig. 4.2 with only true DOFs

is shown in Fig. 4.3 by removing ghost nodes for a non-periodic domain. On the other hand, we

transfer information from the fine level to the coarse level by defining fC and fD as

fC = 1
2(fF + f I), fD = 1

2(fH + fK). (4.8)

With the definitions above, we are able to set up a linear system in the form of Au = f , where A is

a block matrix taking the form

Acoarse 0

B Afine


ucoarse
ufine

 =

fcoarse
ffine

 . (4.9)
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Figure 4.3: An alternate view of Fig. 4.2 (solving Poisson’s equation), with true DOFs only.

The matrix B is a sparse matrix representing the coarse-fine coupling such as Eqs. (4.6) and (4.7).

Note that we could form the matrix A explicitly and solve directly if the matrix size is small.

Alternatively, and more efficiently, we could use the matrix-free implementation and solve the system

in a more efficient way using iterative solvers. After solving the linear system, we prolong the DOFs

to the coarse level from the fine level, in the overlapping region. For example, in Fig. 4.2,

uC = 1
2(uF + uI), uD = 1

2(uH + uK), (4.10)

while the values uA and uB are computed from the coarse level only. For the first refinement case,

the matrix A can be reformulated as a symmetric positive-definite matrix by incorporating these

constraints and statically eliminating the “redundant” DOFs. However, for the other refinement

cases, we lose symmetry in the situation when for example, in Fig. 4.2, the node B depends on

K, but K is independent of B for a non-periodic domain. Obtaining symmetric positive-definite

discretizations is a future goal, as it is important to have a SPD viscous operator for time-independent

Stokes.

To validate our numerical scheme and investigate the order of convergence, we use the following
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exact solution to test our method:

uexact = sin(πx) cos(2πx), (4.11)

fexact = −5π2 sin(πx) cos(2πy). (4.12)

We summarize the error in L1, L2, and L∞ norms for each refinement case in Table. 4.1, where

‖em·h‖p= ‖um·h − uexact‖p represents the corresponding norm with grid spacing m · h on the coarse

level, with h = 1
128 . Note that um·h is only evaluated on the coarse grid — it represents the solution

on the coarse level if the region is not refined, and it is prolonged from the fine level using Eq. (4.10)

in the overlapping region. The rate of convergence is also shown in the table, and we observe

second-order accuracy for all cases in all three error norms. Fig. 4.4 visualizes the pointwise error

for h = 1
32 . Note that as we expect, the largest errors occur at the coarse-fine interface. For the

L-shaped refinement case, we also observe large errors near the periodic boundary where we obtain

ghost values from the the other side of the boundary on the coarse level. This example generates

promising results, and we could generalize it by incorporating DOFs defined on the y-edges and

solving problems in higher dimensions with more refinement levels.

4.4 Stokes Equation

Given that our method works well for the Poisson problem, we then consider the two-dimensional

Stokes equation: 
µ∇2u−∇p = f

−∇ · u = 0
, (4.13)

with µ = 1 for simplicity. We use a staggered-grid finite difference scheme to discretize the equations.

The physical domain is taken to be the periodic unit square and is discretized using a N × N

Cartesian grid with mesh widths ∆x = ∆y = h = 1
N (assuming N is even for simplicity). The

centers of the Cartesian grid cells are located at xi,j = ((i− 1
2)h, (j − 1

2)h), where i, j = 1, . . . , N .

The pressure pi,j = p(xi,j) is defined at cell centers. The x-component of the fluid velocity is defined

at the centers of the x-edges of the grid cells, ui+
1
2 ,j = u(xi+

1
2 ,j). Similarly, the y-component of

the fluid velocity is defined at the centers of the y-edges of the grid cells, vi,j+
1
2 = v(xi,j+

1
2 ). The

force components f = (f1, f2) are likewise defined at the centers of the x- and y-edges of the grid
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Refinement case Error term L1 L2 L∞

Left
‖e4h‖ 5.79×10−4 7.21×10−3 1.66×10−3

‖e2h‖ 1.42×10−4 1.81×10−4 4.64×10−4

‖eh‖ 3.53×10−5 4.52×10−5 1.22×10−4

log2(‖e4h‖/‖e2h‖) 2.02 1.99 1.84
log2(‖e2h‖/‖eh‖) 2.01 2.00 1.92

Top
‖e4h‖ 9.64×10−4 1.24×10−3 3.47×10−3

‖e2h‖ 2.36×10−4 3.11×10−4 9.12×10−4

‖eh‖ 5.80×10−5 7.80×10−5 2.34×10−4

log2(‖e4h‖/‖e2h‖) 2.03 2 1.93
log2(‖e2h‖/‖eh‖) 2.02 2.00 1.96

Corner
‖e4h‖ 7.95×10−4 1.01×10−3 3.26×10−3

‖e2h‖ 1.93×10−4 2.50×10−4 8.73×10−4

‖eh‖ 4.77×10−5 6.22×10−5 2.27×10−4

log2(‖e4h‖/‖e2h‖) 2.04 2.00 1.90
log2(‖e2h‖/‖eh‖) 2.02 2.01 1.94

L-shape
‖e4h‖ 7.28×10−4 9.71×10−4 3.25×10−3

‖e2h‖ 1.80×10−4 2.45×10−4 8.76×10−4

‖eh‖ 4.47×10−5 6.51×10−5 2.28×10−4

log2(‖e4h‖/‖e2h‖) 2.02 1.99 1.89
log2(‖e2h‖/‖eh‖) 2.00 1.99 1.94

Table 4.1: Error analysis for solving Poisson’s equation on overlapping grids with four refinement
cases.

cells, respectively. As an example, Fig. 4.5 illustrates the staggered grid layout. The velocity DOFs,

defined at side centers, are marked as circles with u in red and v in black. The pressure DOFs are

shown as blue squares at cell centers.

Using the standard five-point finite difference stencil, we can write the discretized form of the

equations as

4ui+
1
2 ,j − ui−

1
2 ,j − ui+

3
2 ,j − ui+

1
2 ,j−1 − ui+

1
2 ,j+1

h2 + pi+1,j − pi,j

h
= f

i+ 1
2 ,j

1

4vi,j+
1
2 − vi−1,j+ 1

2 − vi+1,j+ 1
2 − vi,j−

1
2 − vi,j+

3
2

h2 + pi,j+1 − pi,j

h
= f

i,j+ 1
2

2

ui+
1
2 ,j − ui−

1
2 ,j

h
+ vi,j+

1
2 − vi,j−

1
2

h
= 0

(4.14)

Note that stencils involving boundary nodes need to be adjusted accordingly.

Again, we consider the four refinement cases listed in Sec. 4.3 with two overlapping grids. Here,

we just discuss the case with an L-shaped refinement region which should cover all scenarios for ghost

values computations. On the finer level where an L-shaped domain is refined, we divide the domain
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(a) Left case (b) Top case

(c) Corner case (d) L-shaped case

Figure 4.4: Error plots for solving Poisson’s equation on overlapping grids covering a unit square with grid
spacing h = 1

32 . Four refinement cases are considered.

into two parts: a square on the top ([0, 0] × [0.5, 0.5]) and a rectangular domain on the bottom

([0, 0.5]× [1, 1]), as shown in Fig. 4.6. The top domain is discretized using a N ×N Cartesian grid

with grid spacing h
2 , and the bottom domain is discretized using 2N ×N grid. We use the standard

five-point stencil in Eq. (4.14) for interior nodes, and adjust the stencil for periodicity and the

top-bottom interface. The representation of u is defined to be piecewise linear in the x-direction and

piecewise constant in the y-direction; the representation of v is piecewise constant in the x-direction

and piecewise linear in the y-direction; the representation of p is cell-wise constant. Specifically, we

handle the ghost values for u in the same as we handle the DOFs for the two-dimensional Poisson

problem in Fig. 4.2 using Eqs. (4.6) and (4.7). We treat the ghost values for v likewise. For example,

assume Fig. 4.7 shows a small part of the domain far from the boundary, the triangles represent
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(i− 1)h (i+ 1)h

(j − 1)h

(j + 1)h vi,j+
1
2

vi,j−
1
2

ui+
1
2 ,jui−

1
2 ,j

pi,j pi+1,jpi−1,j

pi,j−1

pi,j+1

Figure 4.5: A schematic view of the staggered grid layout for solving the two-dimensional Stokes
problem, with velocity DOFs defined on edges and pressure DOFs defined at cell centers.

the DOFs on the coarse level, while closed circles and open circles correspond to the DOFs that we

solve for and ghost nodes on the fine level respectively. We can define the ghost values as

vL = vM = 1
2(vA + vB), (4.15)

vN = vC , vO = 1
2(vC + vE), vP = vE , (4.16)

while the right hand side vector f2 at locations B and C is prolonged from the fine level,

fB2 = 1
2(fF2 + fG2 ), fD2 = 1

2(fJ2 + fK2 ). (4.17)

Since the representation of the pressure is taken to be constant over the entire cell, the ghost node

value is the same as the pressure in the corresponding coarse cell. Take Fig. 4.8 as an example,

where we use the same legends as before. We need the pressure at ghost nodes C, D, E, and F,

pC = pD = pA, (4.18)

pE = pF = pB. (4.19)
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Figure 4.6: Illustration of the L-shaped refinement region, where we divide the fine level into a
square (shaded in red) and a rectangular region (shaded in blue). DOFs on the coarse level are
shown as triangles, and DOFs on the fine level are shown as circles. u, v, and p are labeled in
orange, green, and black, respectively. Here we show the true DOFs only.

B C
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F G
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J K

L M

N

O

P

Figure 4.7: Illustration of the v-component of the velocity field for the Stokes problem. In the left
panel, DOFs on the coarse level are labeled as triangles. For a corner refinement region (shaded in
blue), true DOFs on the fine level are marked as closed circles, while ghost nodes are represented by
open circles. The right panel shows the true DOFs only.

62



A

B

C D

E

F

G

H I

J K

Figure 4.8: Illustration of the pressure DOFs for the Stokes problem. DOFs on the coarse level are
labeled as triangles. For a corner refinement region (shaded in blue), true DOFs on the fine level
are marked as closed circles, while ghost nodes are represented by open circles. The right panel
shows true DOFs.

And the coarse-grid values on the coarse-fine interface, such as pG, are post-processed as

pG = 1
4(pH + pI + pJ + pK). (4.20)

Note that with this scheme, we are not refining the pressure DOFs. However, accurate locally

conservative velocity approximations are favored over pressure field computations, as the velocity

field is usually more important than the pressure [52]. In a future study, we plan to focus on the

refinement scheme for the pressure field.

We need to handle the stencil carefully for the nodes near the coarse-fine interface or the periodic

boundaries. For example, in the L-shaped refinement region shown in Fig. 4.6, v (green dots) on

the red horizontal line y = 0.5 is only solved once; in other words, those DOFs either belongs to the

top mesh or the bottom mesh and will be used as ghost values for stencils of nodes on the other
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mesh. The discrete problem can be written in the matrix form,



Acoarse BT
coarse

Bcoarse 0̃

 0 0

0

Atop BT
top

Btop 0

 0

0 0

Abottom BT
bottom

Bbottom 0








ucoarse

vcoarse

pcoarse


utop

vtop

ptop


ubottom

vbottom

pbottom





=




fcoarse,1

fcoarse,2

0̃


ftop,1

ftop,2

0


fbottom,1

fbottom,2

0





. (4.21)

Note that we remove the null space for pressure by adding 1
h to the last element to the (1,1) block for

the coarse level (resulting in 0̃ instead of a zero matrix), and add 1
hp

N,N to the corresponding right

hand side vector element. Recall that after solving the linear system, we also need to post-process

the solutions u, v, and p on the coarse level in the overlapping regions as the average of the

corresponding find-grid solutions.

4.4.1 Implementation

Currently, we are using a MATLAB prototype to perform computational experiments and

validate our numerical scheme. An improved implementation based on the library PETSc library is

under development. We will incorporate the solver into the IBAMR software package and provide

more test results in the future.

4.4.2 Numerical Results

An analytical solution in 2D is given by:

[u, v] = [sin(4πx) cos(4πy),− cos(4πx) sin(4πy)], (4.22)

p = π cos(4πx) cos(4πy), (4.23)

f = [28π2 sin(4πx) cos(4πy),−36π2 cos(4πx) sin(4πy)]. (4.24)
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L1 L2 L∞

u

‖e4h‖ 2.52×10−3 3.82×10−3 1.27×10−2

‖e2h‖ 6.58×10−4 9.74×10−4 3.22×10−3

‖eh‖ 1.70×10−4 2.48×10−4 8.79×10−4

log2(‖e4h‖/‖e2h‖) 1.94 1.97 1.99
log2(‖e2h‖/‖eh‖) 1.95 1.97 1.87

v

‖e4h‖ 2.53×10−3 3.83×10−3 1.28×10−2

‖e2h‖ 6.57×10−4 9.74×10−4 3.22×10−3

‖eh‖ 1.69×10−4 2.48×10−4 8.80E-04
log2(‖e4h‖/‖e2h‖) 1.95 1.97 1.99
log2(‖e2h‖/‖eh‖) 1.96 1.97 1.87

p

‖e4h‖ 4.43×10−2 6.39×10−2 2.82×10−1

‖e2h‖ 1.23×10−2 1.83×10−2 8.58×10−2

‖eh‖ 3.25×10−3 4.96×10−3 2.36×10−2

log2(‖e4h‖/‖e2h‖) 1.85 1.80 1.72
log2(‖e2h‖/‖eh‖) 1.92 1.89 1.86

Table 4.2: Error analysis for the incompressible Stokes problem with an L-shaped region refinement.

We perform a grid convergence study and solve the Stokes problem on three uniform grids with grid

spacings 1
32 ,

1
64 ,

1
128 on the coarse level respectively. The error norms and the rates of convergence

are summarized in Table. 4.2 with h = 1
128 . We observe approximately second-order convergence for

both velocity and pressure. Note that similar to the Poisson’s equation discussed previously, the

order of accuracy is only being measured from the post-processed solution on the coarse grid. The

pointwise errors on the coarse grid are plotted in Fig. 4.9. As we expect, the error is the largest at

the coarse-fine interface, and it decays rapidly away from the interface. Since we are more interested

in the velocity field, we compare our results to the error norms for solving the Stokes equation on

a single level uniform grid with mesh width h, as shown in Fig. 4.10. Note that the solution is

converging in second-order on the single level grid, which is the best rate of convergence we could

possibly achieve by using an L-shaped refinement region. In addition, with the same mesh width

on the coarse level, the error norms of our refinement method are about half of the error norms of

solving on just one level.
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(a) u-component of the velocity field (b) v-component of the velocity field

(c) Pressure field p

Figure 4.9: Error plots of the velocity field and the pressure field for solving the incompressible
Stokes problem with an L-shaped refinement region.
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Figure 4.10: Error norms of the velocity field for solving the incompressible Stokes problem with a
single level uniform grid versus two levels with an L-shaped refinement region.
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APPENDIX A

Moving Least Squares

As an alternative to the standard delta function kernels, the moving least squares (MLS)

interpolation method can be employed when we spread the force from Lagrangian markers on the

immersed structure to Eulerian nodes of the Cartesian grid or interpolate the fluid velocity to the

Lagrangian mesh. MLS, first proposed in [55], reconstructs a continuous function by weighted least

squares approximations given function values at sample points around the target point within the

support of the kernel function.

A.1 One-sided MLS Method

For a material point at position χ on the background Cartesian grid, we first find the corre-

sponding Cartesian grid cell and determine the interpolation stencil based on the chosen kernel

function. For a stencil with m interpolation points, we use the standard kernel function to compute

the regular IB weights for each dimension and store in a d×m matrix D where Dk,i corresponds to

the weight for the ith interpolation point in dimension k. For example, Eq. (2.54) gives the weights

for the standard four-point kernel. Next, we compute the tensor product of the one-dimensional

kernel functions as T where

Ti1,i2 = D1,i1D2,i2 , i1, i2 = 1 . . .m, for d = 2, (A.1)

Ti1,i2,i3 = D1,i1D2,i2D3,i3 , i1, i2, i3 = 1 . . .m, for d = 3. (A.2)

Here we only discuss the two-dimensional case to simplify the notations, and it could be generalized

to the three-dimensional case easily. To set up the least squares problem, we define p as the vector

of basis functions p = [1;χ] and G as the Gram matrix where

Gj,k =
m∑

i1,i2=1
Ti1,i2xi1,jxi2,k, with j, k = 1, 2, (A.3)

where xi1,j is the j-th element of the vector xi1 consisting of 1 and the position of i1-th interpolation

point in the stencil, similar to p. xi2,k is defined likewise. Then we solve for the Lagrange multiplier

L in the equation

GL = p. (A.4)
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The modified MLS weights ψ are therefore defined as

ψi1,i2 = Ti1,i2(L1 + L2xi1,2 + L3xi2,3), (A.5)

which replace the standard kernel function in Eq. (2.53) for spreading and interpolation.

Note that by one-sided MLS, we set up a mask function taking on values in [0, 1] to determine

where to interpolate, and compute the function value at all Cartesian nodes. When we compute the

regular IB weights in Eq. (A.1), we also multiply the tensor product by the corresponding mask

function value. For example, a simple discrete mask function has the value 1 at locations where

we want perform MLS and the value 0 everywhere else. When the mask data is set to be 1 for all

Cartesian nodes, it is equivalent to the regular IB kernel without MLS.

A.2 Numerical Tests

We use numerical examples in two spatial dimensions proposed in [30] to verify and investigate

the accuracy of the MLS method. In particular, we are interested in the pressure-driven flow inside

a channel.

A.2.1 Grid-aligned Channel

The first example considers a grid-aligned horizontal channel, as shown in Fig. A.1. On a square

domain with side length L, a horizontal channel of length L and width H is set up in the middle

of the domain, so that the lower wall is at y0 = 1
2(L−H). The Lagrangian nodes for the channel

walls, shown as black dots, are placed at a distance of twice the background grid spacing. Consider

a flow subject to constant pressure at the inlet and outlet, we can use the plane Poiseuille equation

to model the flow,
u(y) = p0

2µ(y − y0)
(

1− y − y0
H

)
,

v = 0,
dp

dx
= −p0,

(A.6)

with a constant pressure gradient p0 in the x-direction throughout the channel. The parameters we

use are summarized in Table A.1.

The mask function value is set to be 1 outside the channel and 0 inside the channel. The normal

and tangential velocity components are prescribed at the inlet and outlet, while no-slip conditions
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(a) Velocity field (b) Pressure field

Figure A.1: Visualization of the steady-state flow in a horizontal channel with channel walls
represented by black dots. We use one-sided MLS to spread and interpolate from outside the channel.
The Cartesian grid spacing used in this simulation is ∆x = 2−7.

L H ρ µ p0
3.0 1.0 1.0 0.5 2

3

Table A.1: Model parameters used for simulating plane Poiseuille flow in a horizontal channel.

are imposed along the solid walls. The steady-state velocity field and pressure field are visualized in

Fig. A.1, and both fields are smooth. Given the exact solution in Eq. (A.6), we are able to compute

the error analytically. In particular, we are interested in the velocity profile perpendicular to the

wall in the middle part of the channel, the velocity gradient along the lower wall, and the pressure

along the centerline. Fig. A.2 visualizes the pointwise absolute error under grid refinement. Note

that large errors occur near the inlet/outlet and at the walls. Fig. A.3 shows the errors of these

three quantities in L1, L2, and L∞ norms. First-order convergence of the velocity and the pressure

is observed for all three error norms. The order of accuracy in the L1 and L2 norms of the velocity

gradient is smaller than first-order, while it is not convergent in L∞ norm.

In Table A.2, we show that the error norms of the pressure field solved using one-sided MLS are

less than half of the error norms from the regular delta kernel functions. We are getting very close

error values for the velocity and the velocity gradient with the two methods.

Next, we use the same channel configuration and simulate a viscoelastic fluid. The exact

analytical solutions of the steady-state velocity and conformation tensor C solution of Poiseuille
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Figure A.2: Pointwise error of velocity, velocity gradient, and pressure for plane Poiseuille flow in a
horizontal channel.

Quantity Method L1 L2 L∞

Velocity MLS 9.9292× 10−4 0.0113 0.0025
regular 9.3369× 10−4 0.0106 0.0028

Velocity gradient MLS 0.0215 0.0252 0.1169
regular 0.0209 0.0260 0.1400

Pressure MLS 0.0286 0.0332 0.0530
regular 0.0615 0.0790 0.1282

Table A.2: Comparisons of error norms for plane Poiseuille flow in a horizontal channel using regular
IB kernel and one-sided MLS reconstruction when ∆x = 2−7.
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Figure A.3: Log-log plots of the error norms of velocity, velocity gradient, and pressure for plane
Poiseuille flow in a horizontal channel, with y = ∆x reference line.
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flow of the Oldroyd-B fluid are given by

u = p0
2(ηs + ηp)

(y − y0)
(

1− (y − y0)
H

)
,

v = 0,

Cxx = 1 + 2
(
λ

p0
2(µs + µp)

(
1− 2(y − y0)

H

))2

,

Cyy = 1,

Cxy = λ
p0

2(µs + µp)

(
1− 2(y − y0)

H

)
,

(A.7)

where the solvent viscosity ηs = 0.5, polymer viscosity ηp = 0.5, and the relaxation time λ = 0.1 s.

Dirichlet boundary conditions are set up for the conformation tensor. In Fig. A.4, we visualize the

L1 and L2 error norms of the velocity and the components of the conformation tensor C across the

entire domain. We observe approximately first-order convergence.

A.2.2 Inclined Channel

Next, we are interested in simulating the plane Poiseuille flow in a channel inclined at θ = 22.5

degrees. We adjust the position of the IB markers so that the Euclidean distance between two

nearby points are still twice the Cartesian grid width. This example is more challenging as the

channel is not aligned with the background grids. Fig. A.5 provides a schematic view of the flow

configuration, where the imposed velocity profile is also rotated so that the fluid is flowing along

the channel with a constant pressure gradient. Assume the width of the inlet (vertical distance) is

D, the velocity profile is given by

u = cos(θ)p0D

µ( L
cos(θ) +D tan(θ))

(−x sin(θ) + (y − y0) cos(θ))(1− (−x sin(θ) + (y − y0) cos(θ))), (A.8)

v = sin(θ)p0D

µ( L
cos(θ) +D tan(θ))

(−x sin(θ) + (y − y0) cos(θ))(1− (−x sin(θ) + (y − y0) cos(θ))). (A.9)

No-slip conditions are imposed at solid walls. The left panel in Fig. A.5 shows the velocity magnitude
√
u2 + v2, and the right panel shows the pressure distribution. Both the velocity field and the

pressure field are smooth without fluid leak. In Fig. A.6, we show the grid convergence study for

the velocity field. Same as the horizontal case, we observe first-order convergence.
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Figure A.4: Log-log plots of the error norms of velocity and conformation tensor components for
Oldroyd-B flow in a horizontal channel, with y = ∆x reference line.

(a) Velocity magnitude
√
u2 + v2 (b) Pressure p

Figure A.5: Visualization of the steady-state flow in a channel inclined at 22.5 degrees with channel
walls represented by black dots. We use one-sided MLS to spread and interpolate from outside the
channel. The Cartesian grid spacing used in this simulation is ∆x = 2−7.
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Figure A.6: Log-log plots of the error norms of the velocity field for viscous flow in an inclined
channel, with y = ∆x reference line.
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