
IDENTIFICATION OF FUNCTIONAL DOMAINS IN NON-CODING RNA

Daniel Sprague

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department

of Pharmacology in the School of Medicine.

Chapel Hill
2020

Approved by:

Joseph Mauro Calabrese

Lee Graves

Daniel Dominguez

Jeremy Purvis

Daniel Schrider

c©2020
Daniel Sprague

ALL RIGHTS RESERVED

ii

ABSTRACT

Daniel Sprague: Identification of functional domains in non-coding RNA
(Under the direction of Joseph Mauro Calabrese)

Long non-coding RNAs (lncRNAs) are known to be important regulators of gene expression

and other cellular functions. However, only a very small proportion of lncRNAs have been exten-

sively studied. The remainder exist largely as annotations in a database with no known function,

if any. A primary challenge to understanding how lncRNAs function is the poorly understood

sequence-to-function relationship relative to protein coding genes. Within lncRNA transcripts,

boundaries of functional sequence are not explicitly defined by exon-intron boundaries, and the

code by which lncRNAs derive function is not nearly as explicit as in a protein coding reading

frame. To address these challenges, we have developed a probabilistic framework, hmmSEEKR,

for identifying where within a non-coding RNA functional regions may be located based off of

enrichment of short motifs, or k-mers.

We used hmmSEEKR to identify functional sequence domains in several lncRNAs that silence

gene expression through recruitment of Polycomb, using XIST as a model transcript. These

predicted sequence domains share no detectable linear sequence alignment with XIST ; however,

they share high k-mer based similarity with known functional domains in XIST and precisely

coincided with the location of RNA binding protein (RBP) interactions known to be important

for Polycomb mediated silencing. Furthermore, we were able to extend our analysis to the entire

transcriptome and identify many XIST -like sequence domains throughout the transcriptome that

interact with Polycomb-associated RBPs. We have packaged these algorithms into python-based

software and have included an in-depth walk-through of the code and tutorial of how to analyze

sequences using hmmSEEKR.

iii

ACKNOWLEDGEMENTS

This work wouldn’t have been possible without all the fantastic people who helped me through

the end. I would like to thank my advisor, Mauro Calabrese, for always pushing me to improve

as well as for the opportunity to work on some very exciting science. I would also like to thank

all the friends and family who made this work possible.

iv

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF ABBREVIATIONS AND SYMBOLS . xi

1 INTRODUCTION . 1

1 Long non-coding RNAs . 1

1.1 Functional annotation . 3

1.2 Polycomb-lncRNA mediated gene regulation 4

2 Xist as a model lncRNA . 5

3 k-mer based sequence comparison . 5

3.1 SEEKR Algorithm . 6

4 Hidden Markov Models . 7

4.1 Gene finding and other applications . 8

4.2 Model structure . 9

4.3 Inference and Algorithms . 10

4.4 Forward and Backward Algorithms . 12

4.5 Viterbi Algorithm . 14

4.6 Baum-Welch Algorithm . 16

REFERENCES . 18

2 XIST AND RSX . 24

1 Introduction . 24

2 Results . 25

2.1 Xist and Rsx share no local alignments . 25

v

2.2 Tandem repeats domains in Xist and Rsx share k-mer content 27

2.3 Tandem repeat sequence properties . 31

2.4 Enrichment of HNRNPK tandem repeat motifs in Xist and Rsx 33

2.5 Conservation of Xist and Rsx Repeats . 35

2.6 Multiple protein-binding motifs are enriched to extreme levels in Xist and Rsx

repeat domains . 37

3 Discussion . 40

4 Methods . 45

4.1 Long read sequencing of Rsx . 45

4.2 Nanopore sequencing and Rsx splice structure determination 45

4.3 Defining tandem repeat domains of Xist/ Rsx 46

4.4 k-mer correlations . 47

4.5 Motif enrichment algorithm . 47

4.6 De novo motif analysis . 47

4.7 Consecutive k-mer analysis . 48

4.8 Detecting HNRNPK-binding motif matches 48

4.9 RNA Immunoprecipitation . 48

REFERENCES . 50

3 hmmSEEKR . 55

1 Introduction . 55

2 Results . 57

2.1 Model Structure . 57

2.2 Viterbi Parsing and Scoring . 59

2.3 Xist Associated RBPs . 61

2.4 Detection of Rsx Domains . 63

2.5 Sequence based prediction of RBP binding in KCNQ1OT1 65

2.6 Transcriptome-wide RBP Prediction . 69

3 Discussion . 72

4 Methods . 73

vi

4.1 Parameter Estimation . 73

4.2 Pseudo-code and algorithms . 76

4.3 Python implementation . 86

4.4 Viterbi Parsing . 90

4.5 bw.py - Transition parameter optimization 92

4.6 Xist Enriched Proteins . 94

4.7 Rsx HMM Analysis . 95

4.8 KCNQ1OT1 Analysis . 95

4.9 Transcriptome Search . 96

REFERENCES . 99

4 SEEKR k-MERS . 103

1 Introduction . 103

2 Results and k -mer counting methods . 104

2.1 k-mer counts are log-normally distributed . 104

2.2 k-mer counting methodologies . 105

3 Discussion . 114

4 Methods . 114

4.1 k-mer count distributions . 114

4.2 SEEKR Data Sources . 114

REFERENCES . 115

5 CONCLUSION . 116

REFERENCES . 119

vii

LIST OF FIGURES

1.1 Much of Xist is poorly conserved across species. 2

1.2 SEEKR Algorithm . 7

1.3 Conditional dependencies in a hidden markov model. 9

1.4 Forward-backward smoothed probability . 14

2.1 Xist and Rsx dot plots . 26

2.2 Domain based sequence similarity . 29

2.3 Motif analysis of Xist and Rsx . 32

2.4 Sequence and motif content in tandem repeats . 34

2.5 Rsx repeat domains are conserved between koala and opossum. 36

2.6 Protein-binding motif enrichment in repeats of Xist and Rsx, and similarity model. . . . 39

3.1 Shuffling k-mers abrogates tandem repeat without changing motif content 56

3.2 Graphical model of hmmSEEKR . 59

3.3 HNRNPK enrichment in human XIST and mouse Xist. 61

3.4 XIST tandem repeat enriched proteins . 62

3.5 HMM analysis of Rsx . 64

3.6 KCNQ1OT1 dot plot alignment . 65

3.7 KCNQ1OT1 RBM15, HNRNPK, and MATR3 eCLIP tracks 66

3.8 Analysis of HMM and eCLIP data in KCNQ1OT1 . 68

3.9 hmmSEEKR extracts sub-sequences with high correlation to query 69

3.10 hmmSEEKR outperforms random shuffle . 70

3.11 Transcriptome-wide prediction of RBP binding regions 71

4.1 k-mers are log-normally distributed within sequences . 104

4.2 Kirk et al. k-mer counting z-score scatter plots . 106

4.3 Sprague et al. k-mer counting z-score scatter plots . 107

4.4 Row-wise minimum addition to z-score scatter plots . 109

4.5 Column-wise minimum addition to z-score scatter plots 111

viii

4.6 Pseudo-count to raw k-mer counts . 112

4.7 Length normalized pseudocount z-score scatter plots . 113

ix

LIST OF TABLES

3.1 Conditional dependencies in a DNA sequence . 58

3.2 mSEEKR.py output file . 61

3.3 Most enriched RBPs for each tandem repeat domain in XIST. 63

3.4 Rsx-Xist Precision and Recall . 65

3.5 KL-Divergence best fit parameters . 76

3.6 Individual programs within the hmmSEEKR package. 86

3.7 Parameters for kmers.py . 87

3.8 train.py parameters . 88

3.9 mSEEKR.py parameters . 90

3.10 bw.py parameters . 92

3.11 Rsx F1-score best parameters . 95

4.1 Kirk et al. k-mer counting . 106

4.2 Sprague et al. k-mer counting . 107

4.3 Row-wise minimum addition to z-score . 108

4.4 Column-wise minimum addition to z-scores . 110

4.5 A hypothetical SEEKR z-score matrix. 110

4.6 Column transformed SEEKR matrix from Table 4.5 . 110

4.7 Pseudocount to raw k-mer counts z-score scatter plots 111

4.8 Length normalized pseudocount to k-mer frequencies . 111

x

LIST OF ABBREVIATIONS AND SYMBOLS

∈ in

7→ maps to

∑
X sum the values over all items in the set X

“+” query state in hmmSEEKR

“-” null state in hmmSEEKR

bp Basepair

BLAST Basic local alignment search tool

eCLIP Enhanced cross-linking immunoprecipitation

HMM Hidden Markov Model

HMMER Profile HMM tool for sequence alignment

hmmSEEKR . . Hidden Markov Model based Sequence Evaluation through k-mer representa-

tion

KL-Divergence Kullback-Leibler Divergence

KR(1-4) Koala Rsx Repeats 1,2,3,4

lncRNA Long non-coding RNA

P (X,Y) Joint probability distribution

P (X|Y) Conditional probability distribution

MX(A-E) Mouse Xist Repeats A,B,C,E

HX(A-E) Human XIST Repeats A,B,D,E

mRNA Messenger RNA

OR(1-4) Opossum Rsx Repeats 1,2,3,4

xi

PRC Polycomb Repressive Complex

PWM Position weight matrix

RBP RNA Binding Protein

RNA-IP RNA immunoprecipitation

RNA-seq RNA sequencing

SAF Simple annotation format

SEEKR Sequence evaluation through k-mer representation

XCI X chromosome inactivation

Xi Inactive X

XIST Human X inactivation specific transcript

Xist Mouse X inactivation specific transcript

xii

CHAPTER 1: INTRODUCTION

1 Long non-coding RNAs

Protein coding genes have dominated the study of genetics for decades. The rules by which

they function are well understood and we can often predict the function of an unknown gene

based off of its sequence alone [1]. This is due to the well understood rules of protein coding

reading frames and the principles of conservation in evolutionay biology [2–4]. The paradigm

of the central dogma, DNA →RNA→Protein, was upended, however, with the discovery of the

human non-coding XIST RNA and its essential function in the process of X chromosome inac-

tivation (XCI) in all eutherians [5, 6]. This discovery led to RNA being thought of as not just a

messenger, but also as a functional end product in the cell [5–11].

The advent of RNA sequencing has led to an explosion of annotated RNA transcripts that

have no corresponding protein products in multiple mammalian species [12–14]. Even with nu-

merous advances in genetics and genomics, these RNAs have proven particularly challenging to

understand. The functions of non-coding RNAs range from gene expression regulation through

RNA interference, to chromatin remodeling, and extensive association with human disease [7–11].

Long non-coding RNAs (lncRNAs) are defined as non-coding RNA transcripts longer than

200 base pairs (bp) [12]. lncRNAs have emerged as a major mechanism of gene regulation in

eutherians [14–16], however they have been annotated in eukaryotic organisms as far back as S.

cerevisiae [17]. Despite their ubiquitous presence, lncRNAs have evaded generalized understand-

ing due to their variety and poor conservation across species [18]. That is, while proteins can

have many different functions within the cell, those functions are encoded through a specific and

predictable code, whereas few discernible patterns and poor conservation in lncRNAs occlude any

obvious sequence-to-function relationship.

Of the lncRNAs that have been studied and have known function within the cell, there of-

ten is considerable work left to fully understand the mechanism of action of these transcripts,

despite many years worth of work. A particular challenge with lncRNAs is that they are often

1

Mouse

16
14
12
10
8
6
4
2

100

Rat

16
14
12
10
8
6
4
2

0 10

M
arm

oset

22
4
6
8
10
12
14
16
18

00 1010

H
um

an

10

10

Vole

0

16
14
12

8
6
4
2

10

55

1010

1515

2020

00 1010

Pig

0 10

5

10

15

20

25

D
og00 1010

22
4
6
8
10
12
14
16
18

Cow

00 1010

55

1010

1515

2020

2525

18
16
14
12
10
8
6
4
2
0 10

Rab
bit

Human Human

Human

Human

Human

HumanHuman

Human

Human

Figure 1.1: Human Xist aligned against Xist from other mammals using dotmatcher with win-
dow size = 20 and threshold = 50. Human Xist is along the x-axis and the indicated species
is along the y-axis. Repeat D-like regions tend to be the largest domains of similarity between
human and non-murid Xists.

poorly conserved related to protein coding genes (Figure 1.1), if they are conserved at all [18–20].

Furthermore, conventional alignment tools such as BLAST or nhmmer fail to detect meaningful

relationships between two transcripts with similar function [21, 22].

lncRNAs have proven difficult to study experimentally, as well. lncRNAs rarely function in

isolation, and are not known to be catalytic, but rather function through the concerted action

2

of the lncRNA transcript, RNA binding proteins, and other biological molecules such as DNA

or other proteins [9, 23–26]. Rather than being a single functional unit in a larger sequence of

molecular operations within the cell, such as kinases in a signalling cascade, lncRNAs serve as

hubs wherein complex molecular processes take place in tandem with each other [23, 24, 27, 28].

1.1 Functional annotation

Long non-coding RNAs biochemically are very similar to mRNAs, in fact there is very little

other than the presence of a reading frame that differentiates a messenger RNA from a lncRNA

[29]. lncRNAs are thus genes for which the final functional product is an RNA transcript [30].

Given that RNA molecules are known to chemically bind to numerous biological molecules, in-

cluding protein, DNA, and RNA itself [23–25], it perhaps comes as little surprise that lncRNAs

are capable of widely varied function within the cell.

lncRNAs have generally been grouped into several sub-categories based on broadly defined

features of their loci. The primary groups that have been annotated are intergenic lncRNAs (lin-

cRNAs), which are found between annotated protein coding genes, anti-sense lncRNAs, whose

loci are located on the anti-sense strand relative to a known protein coding gene, and intronic

lncRNAs, which are encapsulated within the intron of a protein coding gene [7]. The vague and

non-specific nature of these definitions underlines how little is known about lncRNAs in gen-

eral. In comparison, sequence information alone it is possible to annotate protein coding genes

down to their exact roles within the cell, not-with-standing larger classifications into cliques and

communities within larger functional networks [31].

What is relatively well known is that lncRNAs are often involved in genetic regulation [7, 21,

24, 25]. Since the discovery of the lncRNA XIST and its role in XCI, and the further identifica-

tion of additional lncRNAs in years following the introduction of next generation sequencing, it

has become clear that a common functional role of lncRNAs is the regulation of gene expression

in human and other mammalian genomes. While RNA-seq has allowed for the rapid discovery

of genes that produce RNA transcripts as their final product, the elucidation of the function for

these newly annotated transcripts has proven far more challenging [7, 21].

3

Guilt by association

Assigning functional roles to lncRNAs, if there is any function to be assigned, has proven to

be a daunting task. One of the first techniques used is the so-called guilt by association method

[7, 32]. Rather than trying to identify the specific function of a lncRNA, trends from gene expres-

sion data are used to attempt to identify features such as specificity of cell type expression [33–

35]. A more advanced approach uses informatics techniques to identify protein coding genes and

biological pathways that are co-regulated with specific lncRNAs, with the underlying assump-

tion that if a lncRNA is co-regulated with a specific pathway, it is likely to have a functional role

within that pathway [36].

This methodology is useful for identifying transcripts that may be useful for further targeted

experimental studies, but guilt by association is an inherently correlative method that does pro-

vide real insights into the lncRNAs of interest. Despite this shortcoming, several functional lncR-

NAs have been identified and characterized this way [37, 38].

1.2 Polycomb-lncRNA mediated gene regulation

The connection between RNA and chromatin has long been known. Early chromatin purifi-

cation experiments revealed twice as much RNA as DNA [39]. Further studies have shown that

several lncRNAs, such as Xist, Airn, Kcnq1ot1, and others associate with chromatin and modu-

late the deposition or removal of regulatory markers on chromatin [19, 24, 40].

One feature shared by all these transcripts is the formation of RNA-protein complexes [24],

often involving numerous RNA binding proteins at several different regions within the lncRNA

transcript [22, 28, 41, 42]. Xist, Kcnq1ot1, and Airn all silence large genomic regions of chro-

matin through recruitment of Polycomb repressive complexes (PRC), causing deposition of si-

lencing chromatin modification over many megabases of DNA [24]. These lncRNAs act in cis –

meaning they only act on the their chromosomes of origin, however a few trans acting lncRNAs

have since been discovered [25, 43]. The specificity of the lncRNA-PRC interaction required for

cis silencing is intriguing, because PRCs are generally non-specific binders of RNAs [44, 45], how-

ever PRCs are recruited to very specific regions of Xist ’s transcript following Xist expression. [42,

46, 47].

The two Polycomb complexes, PRC1 and PRC2, have been shown to compact chromatin and

4

repress active transcription [24, 48, 49]. PRC1 and PRC2 function in tandem with one another

[24, 49], and are recruited to Xist in a specific manner through interactions with RBPs [42, 50].

The PRCs then spread across large regions of chromatin through alterations initiated by the

expression of these lncRNAs, leading to megabase-scale silencing of chromatin [24].

2 Xist as a model lncRNA

The mouse Xist lncRNA is one of the most well characterized lncRNAs due to its essential

role in XCI and because it is one of the few transcripts that is completely conserved in all euthe-

rians [5, 6, 21, 22]. XCI is the process by which mammalian females transcriptionally silence a

single X chromosome as a means of gene dosage compensation. Proper expression of Xist is re-

quired for initiation of XCI, and Xist is required for silencing virtually all genes on the inactive-X

[5, 6, 51]. While X-inactivation is complex, involving many additional factors beyond Xist, and

mechanistic details are still an area of active research, Xist provides a well-studied example of

lncRNA activity.

Throughout this dissertation, we used human XIST as a guide to understand less studied

lncRNAs, specifically the known functional analogs Rsx, Airn, and KCNQ1OT1. Despite most

studies of Xist occurring in a mouse model, the availability of eCLIP experiments for 100+ RBPs

makes human XIST a more viable case study. The ideas presented in this dissertation can be

generalized to essentially any lncRNA; however, given how nascent the lncRNA field is and how

little is known – XIST represents one of the few well studied lncRNAs in the eutherian genome.

3 k-mer based sequence comparison

Traditional pairwise alignment has been a mainstay of bioinformatics for decades [52]. Orig-

inally for detection of homologous sequences, pairwise alignment is now crucial for next genera-

tion sequencing experiments [53, 54]. A fundamental issue with pairwise alignment is its complex-

ity. To obtain the best alignment between N sequences of length L, LN calculations have to be

made. To compare just 5 sequences of 100bp each, 1010 calculations would have to be made! For

this reason, expedients have long been sought. Alignment-free methods of sequence comparison

are one such simplification and have existed almost as long as sequence alignment has [55, 56].

A particularly common form of alignment-free analysis involves k-mer frequency comparisons

[55]. A k-mer is defined as a sub-sequence of length k within a larger sequence. k-mer based

5

methods have been used for a variety of purposes, but most commonly for examining speciation

in metagenomic samples and the evolutionary distance between two species [57–60]. For DNA,

as the value of k is increased, the number of possible permutations of the four nucleotides in-

creases exponentially (4k). Therefore, the amount of shared overlap of k-mers is a function of

their evolutionary distance from each other. Closely related species may show significant over-

lap for k ∈ (14, 26), whereas distantly related species may have the same amount of overlap for

signficantly smaller values of k ∈ (8, 12) [57, 59, 60].

These methods are based on the frequencies of k-mers within a larger sequence, not on direct

alignment between two sequences. Therefore statistics can quickly be calculated that quantify

the degree of similarity between two sets of k-mers. Other methods, such as rapid detection of

longest common sub-string [61], have also been developed. However, as described above these

methods have been traditionally applied to evolutionary relations, and not as a functional model

of sequence content.

Our lab has recently developed a k-mer based method for assessing functionality in long non-

coding RNAs [21]. In the following section the motivation and algorithm for using k-mers to

predict functionality in long non-coding RNAs is described.

3.1 SEEKR Algorithm

While the sequence relationship between functionally analogous lncRNAs is undetectable with

traditional alignment techniques, their sequences are not random [5, 21, 22, 28, 42, 46, 47]. We

hypothesized that lncRNAs with shared functions must contain some sequence similarity that

confers shared function, even if conventional alignment algorithms do not detect the similarity.

Many of the known and well studied lncRNAs function through the recruitment of RNA binding

proteins, or RBPs. These proteins are highly conserved and recognize short, 4-6bp motifs on

an RNA strand. lncRNAs are further differentiated from protein coding genes in that they do

have reading frames – such that we expect that motifs for RNA binding proteins may be located

anywhere in a sequence and still recruit that protein. These observations of lncRNA functionality

led us to develop a k-mer based bag-of-words model for the sequence-to-function relationship in

lncRNAs.

Our lab developed an algorithm for comparing k-mer content between lncRNAs, named

6

Figure 1.2: (A) LncRNAs of related function (names in black) may harbor similar sequence
similarity in the form of motif content (colored bars) even if they lack linear homology. (B) In
SEEKR, the abundance of all kmers of length k are counted by tiling across each lncRNA in a
user-defined group in one nucleotide increments. [21].

SEEKR (SEquence Evaluation from k-mer Representation). Within the algorithm, each k-mer

in a sequence is counted through a 1bp sliding window. k-mer counts for each lncRNA are then

normalized by lncRNA length and standardized across a reference set (e.g. the transcriptome) to

derive a matrix of standardized k-mer frequencies. The degree of similarity between two lncRNA

transcripts can then be calculated using the pearson correlation coefficient [21].

4 Hidden Markov Models

A hidden markov model (HMM) is a generative probabilistic model for stochastic sequential

processes [2, 62]. For some observable process, or sequence, X = {x1, x2, . . . , xn}, we assume

there is an underlying, or latent, random process Y = {y1, y2, . . . , yn} that is controlling the be-

havior of X. A generative probabilistic model such as an HMM calculates the joint probability

distribution P (X,Y), rather than the more commonly seen classifier, or discriminative model,

that models the conditional probability distribution P (Y |X). Modeling the joint distribution

P (X,Y) allows an HMM to not only calculate the probability of any given sequence, but allows

for generation of stochastic realizations of the model, i.e. an HMM can generate stochastic se-

quences that behave similarly to the data the model was trained on. HMMs therefore reflect

a simplified, hypothesized process by which the data may be reasonably generated. Compara-

7

tively, most discriminative classifiers simply attempt to map a data point xi to some class label

yj , xi 7→ yj [63].

To allow for tractable calculation of probabilities, an HMM relies on the Markov assumption,

which states that the current observation is conditionally independent of all other observations,

except for the observation immediately prior. This assumption is formally defined in Equation 1.1

[62].

P (xt|xt−1, xt−2, . . . , x1) = P (xt|xt−1) (1.1)

This assumption appears simplistic, but it is often sufficient for many modeling tasks that

would be impossible without simplifying assumptions. HMMs have been used in many fields,

from weather prediction to text prediction, such as a common search engine query e.g.:

P (park|dog,nearest,the,where’s) > P (office|dog,nearest,the,where’s)

Could be accurately modeled with the markov assumption:

P (park|dog) > P (office|dog)

A markov based model would be able to reliably suggest the word park instead of office be-

cause the word office would almost never follow the word dog, regardless of the remainder of the

sentence. This assumption has proven to be wildly useful in the field of bioinformatics, especially

with probabilistic modeling of DNA sequences. Mammalian chromosomes can be hundrends of

millions of basepairs long, but in reality the relationships between nucleotides exist on much

shorter scales. Often a nucleotide can be accurately predicted from preceeding sequence using

only the previous 5-6 nucleotides [2].

4.1 Gene finding and other applications

HMMs have been used for many purposes, from sequence alignment [4] to modeling the tim-

ing of switches in fluorescence from FRET experiments [64]. An early application of HMMs to

biological data was gene finding in the 1990s [2]. During this period the Human Genome Project

was well underway, and only a fraction of protein coding genes were known. Huge regions of the

human genome were being sequenced but massively parallel RNA sequencing technology did not

8

exist at the time, so it was unknown how many undiscovered genes were in the human genome.

Therefore, computational models were developed to predict regions within the genome that con-

tained reading frames[2, 65, 66].

The majority of the methods developed utilized HMMs at their core [2, 65, 66]. The reason

for this was relatively straightforward. Protein coding genes are composed of distinct functional

domains, and each of these functional domains contains unique nucleotide distributions [2, 65, 66].

Therefore, given a general model of protein coding gene’s structure:

Promoter→5’ UTR→Exon→Intron→ · · · → 3’ UTR

Using the nomenclature defined in 1.4.1, this sequence above would be the sequence of hidden

states Y . The actual DNA sequence that we observe, X, is controlled by the presence of these

functional domains, and an HMM calculates the joint probability of the parse of the sequence

Y and the sequence X, or P (X,Y). A parse is here is defined as taking a string of symbols, e.g.

nucleotides in a sequence, and identifying which portions of that string correspond to a set of

predefined functional states. The idea is that some parses of X will be more likely than others,

and that the model can be used to identify the most likely parse, Y ∗, of the data.

yt-1 yt yt+1

xt-1 xt xt+1

Figure 1.3: Conditional dependencies in a hidden markov model.

4.2 Model structure

The HMM is constructed with the Markov assumption placed on the sequence of hidden

states Y , so that for a sequence of length L the probability of the current hidden state yt is de-

pendent only on the previous hidden state yt−1. Further, yt does not depend on the observed

sequence X.

P (yt, X1:t, Y1:t) = P (yt|yt−1) (1.2)

9

And the probability of each observation xt ∈ X is conditionally independent of everything

except the emitting state at time t, yt, and is not dependent on any other observation.

P (xt, X1:t−1, Y1:t) = P (xt|yt) (1.3)

These conditional independence assumptions can be represented in the graphical form illus-

trated in Figure 1.3.

From here the joint probability for an HMM can be derived [62]. This explicitly allows the

calculation of the probability for all possible sequences of observations and all possible sequences

of hidden states.

P (X,Y) = P (y1)p(x1|y1)
L∏
t=2

P (yt|yt−1)P (xt|yt) (1.4)

This joint probability distribution allows us to work with the three most common tasks that

HMMs are used for: evaluation, decoding, and learning.

4.3 Inference and Algorithms

There are three primary questions that an HMM is used to answer.

1. Evaluation: What is the probability of being in a given state, at a particular point in time?

A related quantity is the total probability of the observed sequence, i.e. P (X). This value

is crucial to convert the joint distribution to conditional distributions, especially with re-

spect to Baye’s Theorem and the calculation of maximum likelihood estimates for parame-

ters.

2. Decoding: What is the most likely parse of the sequence?

3. Learning: What are the most likely set of parameters, given the observed data?

Combinatorial Explosion

To answer the above questions through complete enumeration over all possible combinations

of observed sequences and the corresponding possible sequences of hidden states, KL combina-

tions would have to explored [62], where L is the length of the sequence and K is the number

of hidden states. For an average gene of L = 1000bp and 5 hidden states, 51000 ≈ 10698, total

10

calculations would have to be made. This is clearly intractable, even for far shorter sequences.

Fortunately algorithms have been developed that make these calculations linear with respect to

the length of the sequence [62].

Observation Likelihood

A key quantity when working with HMMs is the total likelihood of the observed sequence

P (X). Specifically, we want to know the probability of the observed sequence over all possible

parses φi ∈ Φ. Here Φ refers to the set of all possible parses, and φi refers to an individual parse

selected from Φ.

P (X) =
∑
φi∈Φ

P (X,φi) (1.5)

To make it more clear what this quantity is, an example is provided. Let X = ATC, an arbi-

trary DNA sequence, and let the set of hidden states be two labels, {0, 1}. The set of all possible

parses Φ is then a set of 23 elements, and represents all possibles ways that each observation in

X can be labeled:

Φ = {{000}, {001}, {010}, {011}, {100}, {101}, {110}, {111}}

A randomly chosen parse i from this set, φi ∈ Φ could be

φi = {010}

Using equation 1.4, there is a joint probability of observing X = ATC and Y = φi = 010.

P (X = ATC, Y = 010)

Given that X is fixed, there are still 7 other joint probabilities for each of the remaining possi-

ble parses

P (X = ATC, Y = 000)

...

11

P (X = ATC, Y = 111)

The law of total probability (Eq. 1.6) states that, for two random variables A and B with a

joint distribution P (A,B) the marginal distribution P (A) can be calculated by summing over all

possible values of B [67].

P (A) =
∑
B

P (A,B) (1.6)

Within the context of our HMM, the probability of our observation X = ATC can be cal-

culated over all possible parses. To do this, we apply equation 1.6 and sum each of the joint

probabilities above to get the probability that X = ATC, yielding equation 1.5.

This quantity is important for several reasons, particularly in learning problems such as pa-

rameter estimation, but as described above is impossible to calculate through a brute force ap-

proach, as the size of the set Φ combinatorally explodes.

Fortunately, there exists an algorithm which can efficiently calculate P (X) with a computa-

tional complexity of LK2, compared to the KL complexity described above [62].

4.4 Forward and Backward Algorithms

Forward Algorithm

The forward algorithm recursively calculates the total probability of the sequence X starting

from the first observation. This calculation is made feasible by using the conditional indepen-

dence relationships demonstrated in Figure 1.3 and the joint probability distribution in equation

1.4.

Initialization

αi(t) = p(x1|yi)p(yi) (1.7)

Induction

2 ≤ t ≤ L

αi(t) = p(xt|yi)
∑
j

p(yi|yj)αj(t− 1) (1.8)

12

Termination

P (X) =
∑
i

αi(t = L) (1.9)

Here i and j represent any single hidden state (in a programming environment, it repre-

sents the current hidden state under consideration in a for loop through the list of all hidden

states). αi(t) reads as the probability of the sequence X ending at state i at time t. The final

term, summed over all hidden states, represents the total probability of the observed sequence X

[62].

Backward Algorithm

The backwards probability β is the probability of seeing the observations from time t + 1 to

the end, given that we are in state i at time t (βi(t)) [62].

Initialization

βi(t = L) = 1 (1.10)

Induction

T − 1 ≤ t ≤ 1

βi(t− 1) = p(xt−1|yi)
∑
j

p(yi|yj)βj(t) (1.11)

Termination

P (X) =
∑
i

βi(t = 1) =
∑
i

αi(t = L) (1.12)

The forward and backward algorithms can be combined to calculate the probability of being

in any hidden state i at any position within the sequence, i.e. P (Yt = i|x1:L). The reason both

equations are used is that it allows for information prior to the observation as well as information

posterior to observation to be considered.

13

p(yt=?)

yt-1=i

yt-1=j

.

xt-1 xt xt+1

yt+1=i

yt+1=j

α(t) β(t)

Figure 1.4: Information from the entire sequence x1:T is incorporated through the forward and
backward probabilities. The formal definition of this probability is defined in equation 1.13

p(yt = i|x1:L) =
αi(t)βi(t)∑
j αj(t)βj(t)

(1.13)

Figure 1.4 illustrates how information from the entire sequence is incorporated through the

forward probability, α, and the backward probability, β, to get a smoothed probability for yt = i.

4.5 Viterbi Algorithm

Perhaps one of the most useful tasks for an HMM is that of decoding, or identifying the most

likely parse of the sequence, φmax. That is, φmax yields the highest joint probability P (X,Y =

φmax) [62].

Mathematically, the Viterbi algorithm is very similar to the forward algorithm. Rather than

taking the sum at each step in the recursion, instead the state transition that maximizes the

probability at time t is stored in a list, and then a back-trace is calculated yielding the path of

maximizing hidden states.

14

Initialization

Calculate the probability for each state at time t = 1, µi(t = 1), and initialize a list with each

state, Vi(t = 1)

µi(t = 1) = max
i
p(x1|yi)p(yi) (1.14)

Vi(t = 1) = i

Induction

Calculate the probability of being in each state i at time t, after transitioning from state j

at time t − 1, then save the largest probability µi(t) for each state. µi(t) reads as the largest

probability for the sequence X to end in state i at time t following a transition from state j at

time t− 1 [62].

µi(t) = max
j

[p(xt|yi)p(yi|yj)Vj(t− 1)] (1.15)

Then, for each state i, save the state transition j → i that maximized µi(t).

Vi(t) = argmax
j

[p(xt|yi)p(yi|yj)Vj(t− 1)]

Termination

The probability of the most likely end state is then

P ∗(t = L) = max
i
µi(t = L) (1.16)

And the back-trace for the Viterbi most likely path is initialized at the last observation t = L:

V ∗(t = L) = argmax
i

P ∗(t = L)

At time t = L − 1, we then retrieve V ∗(t = L − 1), which is the state that transitioned to the

known maximizing state at the end of the sequence V ∗(t = L). This recursion is then repeated to

the beginning of the sequence.

V ∗(t− 1) = argmax
i

µi(t) (1.17)

15

Once the list created from equation 1.17 has been inverted, as it is a back-trace, the path

V ∗ = φmax, which is the parse φ ∈ Φ that maximizes the joint probability of the HMM [62].

4.6 Baum-Welch Algorithm

A final common task for HMMs is to learn the set of parameters that maximize the likelihood

of the model, i.e. what set of parameters θ, maximizes the probability of the observed sequence

P (X|θ). The Baum-Welch algorithm does this through an expectation-maximization (EM) algo-

rithm that estimates a new set of parameters, θ∗, by iterating through the forward and backward

algorithms, and then calculation of the new likelihood P (X|θ∗) using the updated parameter

values. This algorithm is guaranteed to converge to a local maximum – not necessarily a global

maximum, meaning that better estimates for the parameters may exist. Furthermore, it is possi-

ble for the Baum-Welch algorithm to overfit the data, i.e. P (X|θMLE) > P (X|θtrue).

Initiation

Any value, including randomized values, can be initially assigned to the parameter values in

θ = {A,E, π}, however if a priori knowledge exists then that may speed convergence to the MLE.

The Baum-Welch algorithm utilizes the forward and backward algorithm, and being described

above, will be compressed here.

Forward and Backward Probabilities

1. Calculate the forward probabilities, αi(t), for each state for each observation, representing

the probability of seeing the observations x1:t and ending in state i at time t.

2. Calculate the backward probabilities, βi(t), for each state for each observation, representing

the probability of the observations xt+1:T given starting state i at time t.

3.
∑

i αi(T) =
∑

i βi(1) = P (X|θ)

Update

1. Calculate the probability of being state i at time t, through Bayes theorem:

γi(t) =
P (yt = i,X|θ)

P (X|θ)
=

αi(t)βi(t)∑
j αj(t)βj(t)

2. Calculate the probability of transitioning from state i at time t to state j at time t+ 1

16

εij(t) = P (yt = i, yt+1 = j|X, θ) =
P (yt = i, yt+1 = j,X|θ)

P (X|θ)
=
αi(t)Aijβj(t+ 1)Ej(xt+1)∑

j αj(t)βj(t)

3. Calculate the expected number of transitions from state i to state j relative to the expected

occurrence of i over the length of X, and update the transition matrix A accordingly.

A∗ij =

∑T−1
t=1 εij(t)∑T
t=1 γi(t)

4. Calculate the expected number of occurrences of each observation category in the emission

distribution (in the use-case in this dissertation, all k-mers), “v” (an observation in X) in state i,

relative to the total occurrence of state i.

E∗i (v) =

∑T
t=1 1xt=vγi(t)∑T

t=1 γi(t)

Where 1xt=v is an indicator that equals 1 if xt = v, and 0 otherwise.

17

REFERENCES

[1] J. C. Whisstock and A. M. Lesk, Prediction of protein function from protein sequence and
structure, 2003.

[2] C. Burge and S. Karlin, “Prediction of complete gene structures in human genomic DNA,”
Journal of Molecular Biology, 1997, issn: 00222836.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment
search tool,” Journal of Molecular Biology, 1990, issn: 00222836.

[4] T. J. Wheeler and S. R. Eddy, “Nhmmer: DNA homology search with profile HMMs,” Bioin-
formatics, 2013, issn: 14602059.

[5] C. J. Brown, “The human XIST gene: analysis of a 17 kb inactive X-specific RNA that
contains conserved repeats and is highly localized within the nucleus.,” Cell (Cambridge),
vol. 71, no. 3, pp. 527–542, 1992 10, issn: 0092-8674.

[6] N. Brockdorff, “The product of the mouse Xist gene is a 15 kb inactive X-specific transcript
containing no conserved ORF and located in the nucleus.,” Cell (Cambridge), vol. 71, no. 3,
pp. 515–526, 1992 10, issn: 0092-8674.

[7] J. L. Rinn and H. Y. Chang, “Genome Regulation by Long Noncoding RNAs,” Annual Re-
view of Biochemistry, 2012, issn: 0066-4154.

[8] Y. Lee, C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. R̊admark, S. Kim,
and V. N. Kim, “The nuclear RNase III Drosha initiates microRNA processing,” Nature,
2003, issn: 00280836.

[9] F. Yang, F. Yi, X. Han, Q. Du, and Z. Liang, “MALAT-1 interacts with hnRNP C in cell
cycle regulation,” FEBS Letters, 2013, issn: 00145793.

[10] V. Tripathi, J. D. Ellis, Z. Shen, D. Y. Song, Q. Pan, A. T. Watt, S. M. Freier, C. F. Ben-
nett, A. Sharma, P. A. Bubulya, B. J. Blencowe, S. G. Prasanth, and K. V. Prasanth, “The
nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR
splicing factor phosphorylation,” Molecular Cell, 2010, issn: 10972765.

[11] B. J. Raphael, R. H. Hruban, A. J. Aguirre, et al., “Integrated Genomic Characterization of
Pancreatic Ductal Adenocarcinoma,” Cancer Cell, 2017, issn: 18783686.

[12] T. Derrien, R. Johnson, G. Bussotti, A. Tanzer, S. Djebali, H. Tilgner, G. Guernec, D. Mar-
tin, A. Merkel, D. G. Knowles, J. Lagarde, L. Veeravalli, X. Ruan, Y. Ruan, T. Lassmann, P.
Carninci, J. B. Brown, L. Lipovich, J. M. Gonzalez, M. Thomas, C. A. Davis, R. Shiekhat-
tar, T. R. Gingeras, T. J. Hubbard, C. Notredame, J. Harrow, and R. Guigó, “The GEN-
CODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolu-
tion, and expression,” Genome Research, 2012, issn: 10889051.

[13] C. C. Hon, J. A. Ramilowski, J. Harshbarger, N. Bertin, O. J. Rackham, J. Gough, E. Denisenko,
S. Schmeier, T. M. Poulsen, J. Severin, M. Lizio, H. Kawaji, T. Kasukawa, M. Itoh, A. M.
Burroughs, S. Noma, S. Djebali, T. Alam, Y. A. Medvedeva, A. C. Testa, L. Lipovich, C. W.
Yip, I. Abugessaisa, M. Mendez, A. Hasegawa, D. Tang, T. Lassmann, P. Heutink, M. Babina,
C. A. Wells, S. Kojima, Y. Nakamura, H. Suzuki, C. O. Daub, M. J. De Hoon, E. Arner, Y.

18

Hayashizaki, P. Carninci, and A. R. Forrest, “An atlas of human long non-coding RNAs with
accurate 5 ends,” Nature, 2017, issn: 14764687.

[14] G. K. Bogu, P. Vizán, L. W. Stanton, M. Beato, L. Di Croce, and M. A. Marti-Renom,
“Chromatin and RNA Maps Reveal Regulatory Long Noncoding RNAs in Mouse,” Molec-
ular and Cellular Biology, 2016, issn: 0270-7306.

[15] I. Sarropoulos, R. Marin, M. Cardoso-Moreira, and H. Kaessmann, “Developmental dynam-
ics of lncRNAs across mammalian organs and species,” Nature, 2019, issn: 14764687.

[16] M. Sauvageau, L. A. Goff, S. Lodato, B. Bonev, A. F. Groff, C. Gerhardinger, D. B. Sanchez-
Gomez, E. Hacisuleyman, E. Li, M. Spence, S. C. Liapis, W. Mallard, M. Morse, M. R.
Swerdel, M. F. D’Ecclessis, J. C. Moore, V. Lai, G. Gong, G. D. Yancopoulos, D. Frendewey,
M. Kellis, R. P. Hart, D. M. Valenzuela, P. Arlotta, and J. L. Rinn, “Multiple knockout
mouse models reveal lincRNAs are required for life and brain development,” eLife, 2013,
issn: 2050084X.

[17] R. O. Niederer, E. P. Hass, and D. C. Zappulla, “Long noncoding RNAs in the yeast S. Cere-
visiae,” in Advances in Experimental Medicine and Biology, 2017.

[18] P. Johnsson, L. Lipovich, D. Grandér, and K. V. Morris, Evolutionary conservation of long
non-coding RNAs; Sequence, structure, function, 2014.

[19] F. Sleutels, R. Zwart, and D. P. Barlow, “The non-coding Air RNA is required for silencing
autosomal imprinted genes,” Nature, 2002, issn: 00280836.

[20] K. C. Pang, M. C. Frith, and J. S. Mattick, Rapid evolution of noncoding RNAs: Lack of
conservation does not mean lack of function, 2006.

[21] J. M. Kirk, S. O. Kim, K. Inoue, M. J. Smola, D. M. Lee, M. D. Schertzer, J. S. Wooten,
A. R. Baker, D. Sprague, D. W. Collins, C. R. Horning, S. Wang, Q. Chen, K. M. Weeks,
P. J. Mucha, and J. M. Calabrese, “Functional classification of long non-coding RNAs by
k-mer content,” Nature Genetics, 2018, issn: 15461718.

[22] D. Sprague, S. A. Waters, J. M. Kirk, J. R. Wang, P. B. Samollow, P. D. Waters, and J. M.
Calabrese, “Nonlinear sequence similarity between the Xist and Rsx long noncoding RNAs
suggests shared functions of tandem repeat domains,” RNA, 2019, issn: 14699001.

[23] C. Chu, Q. C. Zhang, S. T. Da Rocha, R. A. Flynn, M. Bharadwaj, J. M. Calabrese, T.
Magnuson, E. Heard, and H. Y. Chang, “Systematic discovery of Xist RNA binding pro-
teins,” Cell, 2015, issn: 10974172.

[24] M. D. Schertzer, K. C. Braceros, J. Starmer, R. E. Cherney, D. M. Lee, G. Salazar, M. Jus-
tice, S. R. Bischoff, D. O. Cowley, P. Ariel, M. J. Zylka, J. M. Dowen, T. Magnuson, and
J. M. Calabrese, “lncRNA-Induced Spread of Polycomb Controlled by Genome Architecture,
RNA Abundance, and CpG Island DNA,” Molecular Cell, 2019, issn: 10974164.

[25] E. Hacisuleyman, C. J. Shukla, C. L. Weiner, and J. L. Rinn, “Function and evolution of
local repeats in the Firre locus,” Nature Communications, 2016, issn: 20411723.

[26] K. C. Wang, Y. W. Yang, B. Liu, A. Sanyal, R. Corces-Zimmerman, Y. Chen, B. R. Lajoie,
A. Protacio, R. A. Flynn, R. A. Gupta, J. Wysocka, M. Lei, J. Dekker, J. A. Helms, and

19

H. Y. Chang, “A long noncoding RNA maintains active chromatin to coordinate homeotic
gene expression,” Nature, 2011, issn: 00280836.

[27] B. Moindrot, A. Cerase, H. Coker, O. Masui, A. Grijzenhout, G. Pintacuda, L. Schermelleh,
T. B. Nesterova, and N. Brockdorff, “A Pooled shRNA Screen Identifies Rbm15, Spen, and
Wtap as Factors Required for Xist RNA-Mediated Silencing,” Cell Reports, 2015, issn:
22111247.

[28] N. Brockdorff, “Local tandem repeat expansion in Xist RNA as a model for the functionali-
sation of ncRNA,” Non-coding RNA, 2018, issn: 2311553X.

[29] P. P. Amaral, M. E. Dinger, T. R. Mercer, and J. S. Mattick, The eukaryotic genome as an
RNA machine, 2008.

[30] C. P. Ponting, P. L. Oliver, and W. Reik, Evolution and Functions of Long Noncoding RNAs,
2009.

[31] Y. Loewenstein, D. Raimondo, O. C. Redfern, J. Watson, D. Frishman, M. Linial, C. Orengo,
J. Thornton, and A. Tramontano, Protein function annotation by homology-based inference.
2009.

[32] M. Guttman, I. Amit, M. Garber, C. French, M. F. Lin, D. Feldser, M. Huarte, O. Zuk,
B. W. Carey, J. P. Cassady, M. N. Cabili, R. Jaenisch, T. S. Mikkelsen, T. Jacks, N. Haco-
hen, B. E. Bernstein, M. Kellis, A. Regev, J. L. Rinn, and E. S. Lander, “Chromatin signa-
ture reveals over a thousand highly conserved large non-coding RNAs in mammals,” Nature,
2009, issn: 00280836.

[33] T. R. Mercer, M. E. Dinger, S. M. Sunkin, M. F. Mehler, and J. S. Mattick, “Specific expres-
sion of long noncoding RNAs in the mouse brain,” Proceedings of the National Academy of
Sciences of the United States of America, 2008, issn: 00278424.

[34] U. Perron, P. Provero, and I. Molineris, “In silico prediction of lncRNA function using tissue
specific and evolutionary conserved expression,” BMC Bioinformatics, 2017, issn: 14712105.

[35] S. Lefever, J. Anckaert, P. J. Volders, M. Luypaert, J. Vandesompele, and P. Mestdagh,
“decodeRNA- predicting non-coding RNA functions using guilt-by-association,” Database :
the journal of biological databases and curation, 2017, issn: 17580463.

[36] D. Thiel, N. D. Conrad, E. Ntini, R. X. Peschutter, H. Siebert, and A. Marsico, “Identifying
lncRNA-mediated regulatory modules via ChIA-PET network analysis,” BMC Bioinformat-
ics, 2019, issn: 14712105.

[37] R. A. Gupta, N. Shah, K. C. Wang, J. Kim, H. M. Horlings, D. J. Wong, M. C. Tsai, T.
Hung, P. Argani, J. L. Rinn, Y. Wang, P. Brzoska, B. Kong, R. Li, R. B. West, M. J. Van
De Vijver, S. Sukumar, and H. Y. Chang, “Long non-coding RNA HOTAIR reprograms
chromatin state to promote cancer metastasis,” Nature, 2010, issn: 00280836.

[38] K. M. Broadbent, D. Park, A. R. Wolf, D. Van Tyne, J. S. Sims, U. Ribacke, S. Volkman,
M. Duraisingh, D. Wirth, P. C. Sabeti, and J. L. Rinn, “A global transcriptional analysis
of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs,”
Genome Biology, 2011, issn: 14747596.

20

[39] I. J. Paul and J. D. Duerksen, “Chromatin-associated RNA content of heterochromatin and
euchromatin,” Molecular and Cellular Biochemistry, 1975, issn: 03008177.

[40] R. R. Pandey, T. Mondal, F. Mohammad, S. Enroth, L. Redrup, J. Komorowski, T. Nagano,
D. Mancini-DiNardo, and C. Kanduri, “Kcnq1ot1 Antisense Noncoding RNA Mediates
Lineage-Specific Transcriptional Silencing through Chromatin-Level Regulation,” Molecu-
lar Cell, 2008, issn: 10972765.

[41] T. B. Nesterova, S. Y. Slobodyanyuk, E. A. Elisaphenko, A. I. Shevchenko, C. Johnston,
M. E. Pavlova, I. B. Rogozin, N. N. Kolesnikov, N. Brockdorff, and S. M. Zakian, Character-
ization of the genomic Xist locus in rodents reveals conservation of overall gene structure and
tandem repeats but rapid evolution of unique sequence, 2001.

[42] G. Pintacuda, G. Wei, C. Roustan, B. A. Kirmizitas, N. Solcan, A. Cerase, A. Castello, S.
Mohammed, B. Moindrot, T. B. Nesterova, and N. Brockdorff, “hnRNPK Recruits PCGF3/5-
PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing,”
Molecular Cell, 2017, issn: 10974164.

[43] S. Somarowthu, M. Legiewicz, I. Chillón, M. Marcia, F. Liu, and A. M. Pyle, “HOTAIR
Forms an Intricate and Modular Secondary Structure,” Molecular Cell, 2015, issn: 10974164.

[44] C. Davidovich, X. Wang, C. Cifuentes-Rojas, K. J. Goodrich, A. R. Gooding, J. T. Lee, and
T. R. Cech, “Toward a consensus on the binding specificity and promiscuity of PRC2 for
RNA,” Molecular Cell, 2015, issn: 10974164.

[45] C. Cifuentes-Rojas, A. J. Hernandez, K. Sarma, and J. T. Lee, “Regulatory Interactions
between RNA and Polycomb Repressive Complex 2,” Molecular Cell, 2014, issn: 10974164.

[46] X. Wang, K. J. Goodrich, A. R. Gooding, H. Naeem, S. Archer, R. D. Paucek, D. T. Youmans,
T. R. Cech, and C. Davidovich, “Targeting of Polycomb Repressive Complex 2 to RNA by
Short Repeats of Consecutive Guanines,” Molecular Cell, 2017, issn: 10974164.

[47] J. Zhao, B. K. Sun, J. A. Erwin, J. J. Song, and J. T. Lee, “Polycomb proteins targeted by a
short repeat RNA to the mouse X chromosome,” Science, 2008, issn: 00368075.

[48] J. A. Simon and R. E. Kingston, Mechanisms of Polycomb gene silencing: Knowns and un-
knowns, 2009.

[49] M. Leeb, D. Pasini, M. Novatchkova, M. Jaritz, K. Helin, and A. Wutz, “Polycomb com-
plexes act redundantly to repress genomic repeats and genes,” Genes and Development, 2010,
issn: 08909369.

[50] M. Almeida, G. Pintacuda, O. Masui, Y. Koseki, M. Gdula, A. Cerase, D. Brown, A. Mould,
C. Innocent, M. Nakayama, L. Schermelleh, T. B. Nesterova, H. Koseki, and N. Brockdorff,
“PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation,” Science,
2017, issn: 10959203.

[51] Y. Hoki, N. Kimura, M. Kanbayashi, Y. Amakawa, T. Ohhata, H. Sasaki, and T. Sado, “A
proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation
in mouse,” Development, 2009, issn: 09501991.

21

[52] T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,” Jour-
nal of Molecular Biology, 1981, issn: 00222836.

[53] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson,
and T. R. Gingeras, “STAR: Ultrafast universal RNA-seq aligner,” Bioinformatics, 2013,
issn: 13674803.

[54] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome,” Genome Biology, 2009, issn:
14747596.

[55] B. Haubold, “Alignment-free phylogenetics and population genetics,” Briefings in Bioinfor-
matics, 2014, issn: 14774054.

[56] S. Vinga and J. Almeida, “Alignment-free sequence comparison - A review,” Bioinformatics,
2003, issn: 13674803.

[57] G. E. Sims and S. H. Kim, “Whole-genome phylogeny of Escherichia coli/Shigella group by
feature frequency profiles (FFPs),” Proceedings of the National Academy of Sciences of the
United States of America, 2011, issn: 00278424.

[58] K. Yang and L. Zhang, “Performance comparison between k -tuple distance and four model-
based distances in phylogenetic tree reconstruction,” Nucleic Acids Research, 2008, issn:
03051048.

[59] H. Yi and L. Jin, “Co-phylog: An assembly-free phylogenomic approach for closely related
organisms,” Nucleic Acids Research, 2013, issn: 03051048.

[60] J. Qi, B. Wang, and B. I. Hao, “Whole Proteome Prokaryote Phylogeny Without Sequence
Alignment: A K-String Composition Approach,” Journal of Molecular Evolution, 2004, issn:
00222844.

[61] I. Ulitsky, D. Burstein, T. Tuller, and B. Chor, “The average common substring approach to
phylogenomic reconstruction,” in Journal of Computational Biology, 2006.

[62] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition,” Proceedings of the IEEE, 1989, issn: 15582256.

[63] A. Y. Ng and M. I. Jordan, “On discriminative vs. Generative classifiers: A comparison of
logistic regression and naive bayes,” in Advances in Neural Information Processing Systems,
2002, isbn: 0262042088.

[64] I. Sgouralis and S. Pressé, An Introduction to Infinite HMMs for Single-Molecule Data Anal-
ysis, 2017.

[65] L. Pachter, M. Alexandersson, and S. Cawley, “Applications of generalized pair Hidden
Markov models to alignment and gene finding problems,” Journal of Computational Biology,
2002, issn: 10665277.

[66] J. Henderson, “Finding genes in DNA with a Hidden Markov Model,” Journal of Computa-
tional Biology, 1997, issn: 10665277.

22

[67] B. C. Brookes and A. N. Kolmogorov, “Foundations of the Theory of Probability,” The
Mathematical Gazette, 1951, issn: 00255572.

23

CHAPTER 2: XIST AND RSX

1 Introduction

The sex chromosomes of therian (eutherian and metatherian) mammals evolved from a pair

of identical autosomes after the split of therian and monotreme mammals from their most recent

common ancestor. Since that divergence, the Y chromosome has lost the large majority of its

protein coding genes, creating a gene dosage imbalance between XY males and XX females. Part

of the system that compensates this imbalance is a process known as X-chromosome Inactivation

(XCI). Initiated early during female development, XCI results in the transcriptional silencing of

one X chromosome in each somatic cell in female mammals. In eutherians, XCI is mediated by a

long non-coding RNA (lncRNA) called Xist [1–4].

The silencing function of Xist is thought to be mediated by the concerted action of several

domains of tandemly repeated sequence that are interspersed throughout its length. These re-

peat domains harbor binding sites for distinct subsets of proteins that, through incompletely

understood mechanisms, help Xist achieve different aspects of its function. “Repeat A” binds

proteins called SPEN and RBM15, and is required for the stabilization of spliced Xist RNA, and

for Xist to silence actively transcribed regions of the X chromosome [5–12]. “Repeat B”, and at

least a portion of “Repeat C”, bind HNRNPK to recruit the Polycomb Repressive Complex 1

(PRC1) to the inactive X chromosome [13, 14]. “Repeat E” binds many proteins, including CIZ1,

and is required for the stable association of Xist with X-linked chromatin and for the sustained

recruitment of Polycomb Repressive Complex 2 (PRC2) to the inactive X [15–17].

Intriguingly, metatherians (marsupials) may have convergently evolved their own lncRNA,

Rsx, to mediate XCI in XX females [18]. Rsx shares no linear sequence similarity with Xist and

is located in a different syntenic block on the marsupial X. Nevertheless, Rsx shares a number of

surprising similarities with Xist. Both Xist and Rsx are expressed exclusively from the inactive

X in females and are retained in the nucleus, forming what has been described as a “cloud-like”

structure around their chromosome of synthesis. Moreover, both lncRNAs are spliced yet unusu-

24

ally long in their final processed form, and their expression correlates with the accumulation of

histone modifications deposited by the Polycomb Repressive Complexes (PRCs) on the inactive X

[18].

Studies performed over the last three decades indicate that Xist is required for normal XCI in

eutherians [1–4]. Given the similarities between Rsx and Xist, it has been proposed that the mar-

supial Rsx is the functional analogue of Xist [18]. While this hypothesis has yet to be directly

tested, expression of an Rsx transgene on a mouse autosome does, to a certain extent, induce

local gene silencing, supporting the notion that Rsx harbors Xist-like function [18].

Despite their lack of linear sequence similarity, Xist and Rsx both harbor long, internal do-

mains of tandemly repeated sequence [18, 19]. We recently discovered that evolutionarily unre-

lated lncRNAs that encode similar functions often harbor non-linear sequence similarity in the

form of k-mer content, where a k-mer is defined as all possible combinations of a nucleotide sub-

string of a given length k [20]. Below, we describe our use of k-mer based methods to investigate

the possibility that the repeat domains in Xist and Rsx harbor non-linear sequence similarity

that might be suggestive of shared function.

2 Results

2.1 Xist and Rsx share no local alignments

Xist and Rsx are both notable for their domains of highly repetitive sequence, which can

be identified by aligning each lncRNA to itself and visualizing the alignment data as a dot plot

([21]). In mouse Xist, the four major repetitive regions are referred to as Repeats A, B, C, and

E (Figure 1A; [22]). Repeats A, B, and E are conserved in eutherian mammals, whereas Repeat

C appears to be specific to murid rodents (Figure 1C;[23, 24]). In human Xist, the four major

repetitive regions are referred to as Repeats A, B, D, and E (Figure 1B; [25]). Relative to mouse,

human Repeat B is comprised of two shorter Repeat B-like regions that appear to have been

disrupted by insertion (Figure 1B; [23, 24]). Human Repeat D is comprised of eight core repeats

flanked by several additional repeats that exhibit partial similarity to its core (Figure 1B; [23–

25]). While Repeat D is absent in murid rodents (Figure 1C), Repeat D-like sequence appears in

many other mammals ([23, 24]).

In contrast to Xist, which is mostly comprised of non-repetitive sequence, nearly all of the

25

Figure 2.1: Dot plots comparing mouse and human Xist and Rsx to themselves and to each
other. The location of repeat domains in all three lncRNA-to-self plots are marked with red bars
and names/numbers.

sequence in Rsx can be assigned to one of four repetitive domains (Figure 1D; [19]). Here, we

refer to the repetitive domains in Rsx as Repeats 1 through 4. It has been suggested that Rsx

Repeat 1 is functionally analogous to Xist Repeat A, because both repeats are the first to occur

in each lncRNA, and because both repeats contain GC-rich elements [18, 19]. Beyond this obser-

vation, little is known about the repetitive regions in Rsx and how they might relate to those in

Xist. Hypothesizing that the repeat domains in Xist and Rsx recruit similar subsets of proteins,

we expected that dot plots comparing the sequence of Xist to the sequence of Rsx would reveal

regions of sequence similarity. However, this was not the case (Figure 1E, F), nor was significant

similarity between Xist and Rsx detected using BLASTN or the hidden-markov based nhmmer

[26, 27].

26

2.2 Tandem repeats domains in Xist and Rsx share k-mer content

We hypothesized that sequence similarity between Xist and Rsx might become apparent

using an algorithm we recently developed to detect sequence similarity between evolutionarily

unrelated lncRNAs [20]. In our algorithm, called SEEKR (Sequence evaluation through k-mer

representation), groups of lncRNAs are compared to each other by counting the number of oc-

currences of each k-mer of a given length k in each lncRNA, then normalizing k-mer counts by

the length of the lncRNA in question, and finally calculating a z-score for each k-mer in each

lncRNA. The list of z-scores for each k-mer in a lncRNA is referred to as its “k-mer profile”

and represents the abundance of each k-mer in the lncRNA relative to the abundance of each

k-mer in the other lncRNAs that were analyzed as part of the group. In SEEKR, k-mer profiles

from lncRNAs of interest are compared to each other using Pearson’s correlation. We previ-

ously demonstrated that SEEKR can be used to quantify the similarity between any number of

lncRNAs regardless of their evolutionary relationships or differences in their lengths, and that

similarities in k-mer profiles correlated with lncRNA protein binding potential, subcellular local-

ization, and Xist-like repressive activity. A major strength of SEEKR is that it ignores positional

information in similarity calculations, allowing it to quantify non-linear sequence relationships

[20].

In order to compare Xist and Rsx via SEEKR, we calculated the k-mer profile at k = 4 of

individual repeat domains in mouse Xist and koala Rsx, using all mouse lncRNAs from GEN-

CODE as a background set to derive the mean and standard deviation of the counts for each

k-mer [28]. The mechanisms through which Xist functions have been most extensively studied

in mouse [4]. For this reason, we primarily used the repetitive regions from mouse Xist as search

features in this work. However, because of the conservation of Repeat D-like domains in non-

murid eutherian mammals ([23, 24]), we also included the sequence of human Xist Repeat D in

our analyses. We used the sequence from koala Rsx as our exemplar, owing to the high-quality of

the koala genome build relative to builds from other marsupials [19].

In our previous work, we found that SEEKR performed best when the length of the lncRNA

or lncRNA fragment being studied was similar to 4k, i.e. the total number of possible k-mers at

k-mer length k. In tests of Xist-like repressive activity, we found that comparisons of lncRNAs

27

using k-mer lengths of 7+ underperformed relative to comparisons using smaller k-mer lengths,

owing to the fact that most annotated lncRNAs are much less than 47 (16384) nucleotides long,

and k-mer profiles of individual lncRNAs at k = 7 (≈16384 possible k-mers) are dominated by

“0” values [20]. Based on this observation, and because Repeats A and B, two essential repetitive

regions within Xist [7, 11–14], are each about 44 (256) nucleotides in length, we reasoned that k-

mer profiles at k = 4 (44=256 possible k-mers) would provide a reasonable estimate of sequence

complexity for the repeats without being dominated by “0” values.

We also noted that relative to most lncRNAs, k-mer content in the repetitive regions of Xist

and Rsx was skewed (Figure S2A). We therefore elected to log2-transform z-scores in k-mer pro-

files prior to comparison via Pearson’s correlation, recognizing that this transformation would

reduce skew and allow us to evaluate similarity in the context of a log-linear scale (Figure S2B).

The individual repeat domains in Xist and Rsx vary substantially in terms of their length

and sequence complexity. Xist repeats tend to be shorter and lower in overall complexity than

repeats in Rsx (Figure 2A, B). Despite these differences, using SEEKR, we identified substantial

levels of similarity between the repeat domains of Xist and Rsx. The Repeat A region of Xist

was most similar to Rsx Repeat 4, exhibited a weak positive correlation with Repeat 2, and had

negative correlations with Rsx Repeats 1 and 3 (Pearson’s r of 0.21, for Repeat A versus Repeat

4, respectively, and r of -0.02, 0.09, and -0.08 for Repeats 1, 2, and 3, respectively; Figure 2C).

In contrast, Xist Repeat B was most similar to Rsx Repeat 1 and had negative correlations with

Rsx Repeats 2 through 4 (Pearson’s r of 0.33 for Repeat B versus Repeat 1; Figure 2C). Repeat

C, which is specific to murid rodents (i.e. it is not found in other eutherians), had no appreciable

correlation with any Rsx repeat, whereas human Repeat D had positive correlations with Rsx

Repeat 1 and 4 (r of 0.20, 0.12, respectively; Figure 2C). The k-mer profile of Xist Repeat E had

positive correlations that increased progressively in Rsx Repeats 2, 3, and 4. (Pearson’s r of 0.15,

0.25, 0.40, respectively; Figure 2C).

We sought to quantify the strength of the similarity between repeat domains in Xist and Rsx

relative to other mouse lncRNAs. To do this, we used Pearson’s correlation to compare the k-mer

profile of each Xist repeat domain to the k-mer profiles of the set of spliced GENCODE M18

mouse lncRNAs [28]. We compared this distribution of Pearson’s r values to the r value obtained

when comparing each Xist repeat to each Rsx repeat.

28

Figure 2.2: Length of Xist and Rsx repeat domains and (B) sequence complexity estimated by
the number of unique 4-mers that constitute 25% of the total 4-mer counts in a transcript, each
relative to all other GENCODE M18 lncRNA transcripts. For panels A – E: “M”, “H”, and “K”
signify mouse, human, and koala, respectively, “X” and “R” signify Xist and Rsx, respectively,
and the final letter or number in each abbreviation signifies the repeat domain in question. (C)
Correlation matrix displaying the Pearson’s r value derived from comparing k-mer profiles at
k = 4 of each of the four repeat domains in koala Rsx (Repeats 1 – 4), the major repeats in
mouse Xist (Repeats A, B, C, E), and human Xist Repeat D. The set of mouse lncRNAs from
GENCODE was used to derive mean and standard deviation values for length normalized abun-
dance of each k-mer. (D) Similarity of repeat domains in Xist and Rsx relative to all lncRNA
transcripts in the mouse GENCODE M18 database [28]. Each subplot shows the distribution
of Pearson’s r values describing the similarity between the Xist repeat in question and the set
of GENCODE lncRNA transcripts. Similarities between Xist and Rsx that are above the 95th

percentile of similarity for all mouse lncRNAs are highlighted in yellow. (E) The correlation
matrix in (A) subject to hierarchical clustering. Colors represent clusters for all descendent links
beneath the first node in the dendrogram with distance less than 70% of the largest distance
between all clusters. (F) SEEKR- derived similarity (in the form of Pearson’s r; [20]) between
full-length Xist, other cis- repressive lncRNAs in mouse, and koala Rsx [19]

.

This analysis revealed striking similarities between the repeat domains of Xist and Rsx. Xist

Repeat B was more similar to Rsx Repeat 1 than it was similar to 99.6% of all lncRNAs (similar-

ity ranked 65th out of 17523 comparisons), despite the fact that the two repeats differ in length

29

by 50-fold (Figures 2A, D; Tables S1, S2). Xist Repeat A was more similar to Rsx Repeat 4

than it was similar to 96.4% of all other lncRNAs (its similarity ranked 626nd out of 17523 com-

parisons), Xist Repeat D was more similar to Rsx Repeat 1 than it was similar to 97.1% of all

other lncRNAs (its similarity ranked 515th out of 17523 comparisons), and Xist Repeat E was

more similar to Rsx Repeat 4 than it was similar to 97.3% of all other lncRNAs (its similarity

ranked 467th out of 17523 comparisons; Figure 2D; Table S1, S2). No other repeat domains in

Xist and Rsx fell above the 95th percentile in terms of their similarity to each other. Similar

trends were observed when we used k-mer lengths k = 4, 5 and 6 for this analysis (Figure S3A).

Current models suggest that the tandem repeats in Xist have distinct functions [1–4]. Thus,

we were surprised to find that the repeat domains within Xist also exhibited high levels of simi-

larity to each other (Table S1, S2). Repeat A was more similar to Repeat E than it was similar

to 99.6% of all lncRNAs. Likewise, Repeats B and C were more similar to each other than they

were similar to 97.8% and 99.6% of all other lncRNAs, respectively. Finally, Repeats C and D

were more similar to each other than they were similar to 97.0% and 96.2% of all other lncRNAs,

respectively (Table S1, S2).

The similarities between specific domains of Xist and Rsx were also evident in an unsuper-

vised hierarchical cluster of the matrix from Figure 2C. Xist Repeat B and Rsx Repeat 1 formed

a basal cluster which joined with a second basal cluster comprising Xist Repeat C and Xist Re-

peat D. Rsx Repeat 4 and Xist Repeat E formed a basal cluster that that joined with Xist Re-

peat A. This multilevel cluster (Rsx Repeat 4, Xist Repeat E, and Xist Repeat A) joined with

another basal cluster comprising Rsx Repeats 2 and 3 (Figure 2E).

At k-mer length k = 4, Pearson’s correlation with and without log-transformation of k-mer

z-scores, as well as Spearman’s correlation of non-transformed z-scores, detected similar rela-

tionships between Xist and Rsx repeat domains (Figure S4). While the similarities between

individual domains were still evident at higher k-mer lengths, particularly when using Pearson’s

correlation of log-transformed k-mer counts, the clustering patterns that we observed at k-mer

length k = 4 began to dissolve (Figure S4). At high k-mer lengths, Spearman’s correlation was

the least informative method of comparison, owing to the large number of “zero” values that pop-

ulate k-mer profiles at these lengths (Figure S4). Thus, to a certain extent, the similarities in the

repeat domains of Xist and Rsx are detectable regardless of prior assumptions about log-linear,

30

linear, and monotonic relationships between k-mer profiles. However, the most robust similar-

ities are detected using Pearson’s correlation of log-transformed k-mer counts (Figure S4). We

observed that the similarities between Xist and Rsx were obscured when the k-mer profiles of

the full-length lncRNAs were compared to each other (Pearson’s r of -0.01 for the comparison

of full-length Xist to full-length Rsx ; Figure 2F). This loss of similarity highlights the utility of

domain-based similarity searches, particularly for lncRNAs whose functional domains may com-

prise a fraction of their overall length. The dissimilarity between k-mer profiles of full-length Xist

and full-length Rsx likely stems from the fact that virtually all of Rsx is comprised of repetitive

sequence domains that harbor limited k-mer diversity relative to the non-repetitive sequence of

Xist (Figure 2B and compare Figures 1A-C to 1D).

2.3 Tandem repeat sequence properties

Qualitative similarities between Xist and Rsx repeat domains were also revealed using MEME

to visualize motifs that were enriched within individual domains [29]. In Xist Repeat A, MEME

identified one motif comprised of short runs of G and C nucleotides and one motif most notable

for runs of T nucleotides (Figure 3A). Similar patterns were seen in the motifs enriched in Rsx

Repeat 4 (Figure 3B). The single motif from Repeat B was almost exclusively comprised of two

tandemly arranged ‘GCCCC’ motifs, and motifs containing runs of ‘G’ and ‘C’ nucleotides could

be seen in Rsx Repeat 1 (Figure 3A, B). The pyrimidine-rich runs that were characteristic of

Xist Repeat E were also observed Rsx Repeat 4 (Figure 3A, B). Rsx Repeat 2 was unique in its

enrichment of AAAG and GAAA motifs (Figure 3B). Several of the repeat domains in Xist and

Rsx could be distinguished by the presence of k-mers comprised of runs of individual nucleotides

that extended for two or more consecutive positions (such as AA, CC, GG, or TT; File S1). Sim-

ilar to enriched motifs, k-mers containing mononucleotide runs may function to recruit different

subsets of RNA binding proteins [30, 31]. We therefore sought to quantify the enrichment of k-

mers containing mononucleotide runs in the repeat domains of Xist and Rsx, reasoning that this

analysis might provide insight into function. Similar to what we observed in our motif analysis

(Figure 3), Rsx Repeat 2 had the highest length-normalized abundance of polyA k-mers, followed

closely by Rsx Repeat 3 (Figure 4A). Repeat B, which is only 250 nucleotides long and is almost

entirely comprised of polyC sequence, had the highest length-normalized abundance of polyC

31

Figure 2.3: The top three de novo motifs identified by MEME in Xist repeats (panel A; all
repeats from mouse Xist except for Repeat D, which is the human sequence), and in the four
repeats in koala (B) and opossum (C) Rsx. The length in nucleotides of each repeat is shown
in parentheses below the repeat name. The number of matches to each motif, as well as the
expectation-value for that number, is shown below each motif logo. Some repeats had less than
three motifs detected by MEME.

32

k-mers, followed by Rsx Repeat 1, and Xist Repeats C, D, and A (Figure 4B). Mouse Repeat

A had the highest length-normalized abundance of polyG k-mers, followed by Rsx Repeats 1, 2,

and 4 (Figure 4C). Xist Repeats A and E, as well as Rsx Repeats 3 and 4 had the highest length-

normalized abundance of polyT k-mers, reflecting the high degree of SEEKR-detected similarity

between these regions (Figure 4D). Similar trends were detected when we used k-mer lengths k =

4, 5, and 6 for this analysis (Figure S3B). Thus, certain Xist and Rsx repeat domains share sim-

ilarity in their overall k-mer profiles (Figure 2), in their enriched motifs (Figure 3), and in their

enrichment in subsets of low-complexity k-mers that are comprised of mononucleotide runs (Fig-

ure 4). The repeat domains also harbor differences in sequence composition that are consistent

with their lack of alignment via methods designed to detect linear sequence similarity (Figure 1).

2.4 Enrichment of HNRNPK tandem repeat motifs in Xist and Rsx

Xist Repeat B is known to bind a protein called HNRNPK, and this binding activity is es-

sential for Xist to recruit PRC1 to the inactive X chromosome [14]. Given the quantitative and

qualitative sequence similarities between Xist Repeat B and Rsx Repeat 1 (Figures 2 – 4), we

sought to compare HNRNPK-binding potential between the two repeats using two conceptually

distinct approaches. First, we weighted z-scores of individual k-mers in all Xist and Rsx repeat

domains by the probability that the k-mer would occur in the Position-Weight-Matrix (PWM)

describing the HNRNPK-binding motif from ([31]; see PWM in Figure 4E). We then summed

HNRNPK-scaled z-scores over each repeat, and plotted the results in a manner similar to Figure

4A-D. In this analysis, a positive sum indicates that k-mers matching the HNRNPK PWM occur

more frequently in the domain in question than they occur in other lncRNAs in the GENCODE

database.

On a length-normalized basis, Xist Repeats B, C, A, and D, in descending order, had positive

sums of HNRNPK-scaled z-scores. Repeat 1 was the only repeat in Rsx to have a positive sum,

perhaps consistent with a role in recruiting HNRNPK to Rsx (Figure 4E). The sum of HNRNPK-

scaled z-scores in Rsx Repeat 1 was lower than the sums in Xist Repeats B, C, and A (Figure

4E), which might be taken as evidence that on a length-normalized basis, Xist Repeats B, C, and

A have a higher density of k-mers that are likely to bind HNRNPK than Rsx Repeat 1 or any

other Rsx repeat. However, at 13 kb in length, Rsx Repeat 1 is ≈50 times longer than Xist Re-

33

Figure 2.4: The sum of z-scores in each repeat for k-mers containing consecutive (A) A, (B) C,
(C) G, and (D) T nucleotides. For this analysis we defined “consecutive” as at least two con-
secutive nucleotides of the specified identity, and used k-mer length k = 5 (Methods). Repeat
abbreviations as in Figure 2. (E) The sum of z-scores for all k-mers in each Xist and Rsx repeat
domain after weighting the k-mers by the likelihood with which they fit the consensus HNRNPK-
binding motif. Motif logo that describes the consensus HNRNPK-binding motif obtained from
(Ray et al., 2013) is also shown. (F) Component arcs of outer circle indicate the proportion and
number of HNRNPK-binding motif matches detected by FIMO (p < 0.01) in each Xist and
Rsx repeat domain. Component arcs of inner circle indicate the proportion of motif matches
in each repeat domain normalized for domain length. Repeat abbreviations as in Figure 2. (G)
Rsx enrichment relative to IgG control after RNA IP-qPCR in cultured fibroblasts from female
M. domestica. For each antibody, left (black) is enrichment of Rsx, right (grey) is enrichment
of Gapdh. The histone modification H3K27me3 is enriched on the inactive X in marsupials, so
an association with Rsx was expected. CTCF has nanomolar affinity for RNA and along with
“bead only”/no-antibody IP serves as a negative control demonstrating IP specificity [32]. Dots
represent values from replicate RNA IP experiments; error bars represent bootstrap 95 CI.

peat B, and is over half of the length of full-length Xist itself [19, 22, 25]. Thus, we also counted

the absolute number of matches to HNRNPK-binding motifs in Xist and Rsx repeats. Rsx Re-

peat 1 had 15 times more matches to HNRNPK-binding motifs than did Xist Repeat B (589

34

matches in Repeat 1 compared to 40 matches in Repeat B; Figure 4F; [29]). Rsx Repeat 4 also

had a large number of matches to HNRNPK-binding motifs (182 matches), and human Repeat D

and mouse Repeat C each had more HNRNPK-binding sites than Repeat B (70 and 56 matches,

respectively, compared to 40 in Repeat B; Figure 4F). CLIP performed in mouse and human cells

supports a direct association between HNRNPK and Repeat C and Repeat D, respectively ([33,

34]). Collectively, these data support the ideas that mouse Repeat C and human Repeat D co-

operate with Repeat B in recruiting HNRNPK to Xist, and suggest that Rsx Repeat 1, and to a

lesser extent, Rsx Repeat 4, could also recruit HNRNPK to Rsx.

We next used RNA immunoprecipitation (RNA IP) followed by RT-qPCR to determine

whether we could detect evidence of HNRNPK association with Rsx. In fibroblast cells derived

from a female gray short-tailed opossum, Monodelphis domestica, we found that HNRNPK IP

enriched for Rsx 20-fold over IgG control IPs (Figure 4G). This enrichment was similar to that

seen for an IP using an antibody that detects histone H3-lysine27-trimethylation (H3K27me3), a

modification known to be enriched on the opossum inactive X (Figure 4G; (Wang et al., 2014)).

Gapdh mRNA was not enriched by IP of HNRNPK or H3K27me3 (Figure 4G). IP of CTCF,

a protein that binds RNA with nanomolar affinity in a sequence non-specific manner, showed

neither Rsx nor Gapdh enrichment (Figure 4G; [32]). Leaving out HNRNPK antibody prior to

performing IP and qPCR also led to a loss of Rsx signal (“beads only” in Figure 4G). DNase-

treated input RNA (no reverse transcription control) did not yield signal in qPCR assays, indi-

cating DNase digestion prior to cDNA synthesis and qPCR proceeded to completion (not shown).

These data support our computational analyses and suggest that HNRNPK associates with Rsx

in marsupial cells.

2.5 Conservation of Xist and Rsx Repeats

Considering that not all of the repeat domains in Xist exhibit conservation across eutherian

mammals, we sought to determine whether or not the repeat domains in koala Rsx were con-

served in another marsupial. Rsx was originally identified in opossum [18], but the most current

assembly of the opossum genome (mondom5) harbors significant gaps within the sequence of Rsx.

To assemble a complete sequence of opossum Rsx for comparison to koala, we used Oxford

Nanopore technology to sequence two Bacterial Artificial Chromosomes (BACs) that encom-

35

passed the opossum Rsx locus (VMRC18-839J22 and VMRC18-303M7). De novo assembly and

polishing of sequence reads identified a single 235,139 base contig aligning to chrX that had on

average a 0.5% error rate with the mondom5 assembly (File S3). Our assembly filled in 16620

bases of unannotated sequence in the Rsx locus, 361 bases of which were a part of the spliced

Rsx lncRNA annotation from [18].

KR1
KR2

OR1
OR2

OR3
OR4

KR3
KR4

OR1
OR2
OR3
OR4
KR1
KR2
KR3
KR4

E)

F)

C)

D)

A)

B)

5

10

15

20

25

0 10 20

5

10

15

20

25

0 10 20 30
Koala Rsx

O
po

ss
um

 R
sx

Opossum Rsx

1

2
4

O
po

ss
um

 R
sx

3

G) H) I)

93.795.595.5 89.1

97.5

MXA
MXB

MXC
HXD

MXE

OR1
OR2
OR3
OR4
MXA
MXB
MXC
HXD
MXE

HXA
HXB1

HXB2
HXD

HXE
MXA

MXB
MXC

MXE

HXA
HXB1
HXB2
HXD
HXE
MXA
MXB
MXC
MXE

O
R

1

O
R

2
O

R
3

O
R

4
M

XA

M
XB

M
XC

H
XD

M
XE

0

1

OR1
OR2

OR3
OR4

MXA
MXB

MXC
HXD

MXE

H
XB

1
H

XB
2

M
XB

H
XD

M
XC H
XA

M
XA H
XE

M
XE

KR
1

O
R

1

KR
4

O
R

4

KR
3

O
R

3

KR
2

O
R

2

Figure 2.5: (A,B) Dot plots of opossum Rsx aligned to (A) itself or (B) koala Rsx. (C) Similarity
between repeat domains in koala and opossum Rsx as calculated in Figure 2C. (D) Hierarchical
cluster of similarity values from (C). (E) Similarity between repeat domains in mouse and human
Xist as calculated in Figure 2C. (F) Hierarchical clustering of similarity values from (E). G) Simi-
larity between repeat domains in opossum Rsx and Xist repeat domains as calculated in Figure
2C. (H) Hierarchical cluster of similarity values from (G). (I) Percentiles for Pearson’s R for
opossum Rsx repeat domains compared to each Xist repeat domain as in Figure 2D. Numbers
mentioned in the body of the manuscript are highlighted in yellow.

36

Alignment of this ungapped assembly of spliced opossum Rsx to koala Rsx revealed high

levels of similarity between their repeat domains in a dot plot analysis (Figure 5A, B). This

similarity could also be seen at the level of k-mers (Figure 5C, D), and by extraction of enriched

motifs using MEME (Figure 3B, C). Opossum and koala, which are members of distantly related

American and Australian marsupial families, respectively, diverged approximately 82 million

years ago [35]. By comparison, mouse and human are separated by approximately 90 million

years of evolution [35]. Repeat domains 1 through 4 in opossum and koala Rsx exhibited levels

of sequence similarity that approximated or exceeded the similarity found between the repeat

domains in mouse and human Xist (with the exception of Repeat C/Repeat D; Figure 5C-F).

Thus, the repeat domains in Rsx appear to be at least as conserved between distantly related

marsupials as the repeat domains in Xist are conserved among eutherians.

Next, we compared the k-mer contents of repeat domains in Xist to the k-mer contents of re-

peat domains in opossum Rsx. We identified a level of similarity (Figure 5G, H, I) that mirrored

the similarity we found between repeat domains in Xist and koala Rsx (Figure 2B, D, E). Xist

Repeat A was most similar to opossum Repeats 2 and 4 (93.7th and 95.5th percentile relative to

all other mouse lncRNAs, respectively); Xist Repeat B was most similar to opossum Repeat 1

(89.1st percentile relative to all other lncRNAs); and Xist Repeat E was most similar to opossum

Repeat 4 (97.5th percentile relative to all other lncRNAs; Figure 5I). Thus, the major repeat do-

mains in Rsx are conserved between opossum and koala, and the repeat domains in Rsx from

both marsupials harbor k-mer contents similar those in repeat domains from mouse and human

Xist.

2.6 Multiple protein-binding motifs are enriched to extreme levels in Xist and Rsx re-

peat domains

We examined the extent to which Xist and Rsx repeat domains were enriched for sequence

motifs known to recruit RNA binding proteins, hypothesizing that the patterns of enrichment

might provide additional insight into similarities between the two lncRNAs. For this analysis,

we downloaded PWMs for all mammalian RNA binding proteins available in the CISBP-RNA

database [31], and for each PWM in each repeat, we quantified enrichment by weighting k-mer

z-scores by the probability that the k-mer matched the PWM, then calculating the sum of those

weights, as we did for the HNRNPK PWM in Figure 4E. To gauge the extent of enrichment rel-

37

ative to other mouse lncRNAs, we determined the percentile rank of the sum for each PWM

in each repeat relative to the sums generated from the same PWM-weighting procedure per-

formed on all mouse lncRNAs. We then hierarchically clustered repeat domains from Xist and

Rsx based on the percentile ranks of motif enrichment for each domain. The results of these

analyses are shown in Figure 6A.

Using ranked enrichment of protein-binding motifs as a metric for hierarchical clustering, we

identified the same relationships between Xist and Rsx repeat domains as we did when we hier-

archically clustered domains by their k-mer content alone (dendrogram in Figure 6A compared

to dendrograms in Figures 2E and 5H). Via protein-binding motif enrichment, Xist Repeats B,

C, and D formed a second order cluster that next joined with Rsx Repeat 1. This clustering or-

der is the same as that detected using k-mer content alone (Figure 6A vs. 2E and 5H). Likewise,

protein-binding motif enrichment grouped Repeats A and E together with Rsx Repeat 4, while

Rsx Repeats 2 and 3 formed a separate cluster that joined with the Repeat-A-E-4 cluster. Again,

similar clustering patterns were obtained based purely on k-mer content (Figure 6A vs. 2E and

5H). We note that the motifs used to create these clusters are limited in complexity and are ca-

pable of recruiting different proteins depending on cellular and sequence contexts [30, 31]. Thus,

the enrichment of a particular protein-binding motif in an individual Xist or Rsx repeat domain

does not provide direct evidence that the protein binds to the domain. Nevertheless, these results

are consistent with the notions that lncRNA k-mer content encodes information about protein-

binding potential [20], and that the various repeats in Xist and Rsx encode function through the

concerted recruitment of multiple RNA-binding proteins.

A closer inspection of the protein-binding motifs that were enriched in each repeat domain

yielded several insights. First, our motif analysis uncovered relationships between repeat domains

that were not obvious from direct k-mer comparisons. For example, both human and mouse Xist

Repeat B were enriched in motifs that recruit polyC-binding proteins and little else (Figure 6A;

Table S4). Rsx Repeat 1, which most closely resembles Xist Repeat B at the level of k-mers,

was also enriched in polyC-binding motifs, in both koala and opossum (Figure 6A; Table S4).

However, Repeat 1 from koala and opossum Rsx were also enriched in many motifs that were

absent in Repeat B, such as motifs that bind the proteins SRSF1, SRSF9, and RBM5 (Figure 6A;

Table S4). In addition, while both pure k-mer analysis and motif analysis identified similarities

38

1 2 3 4Rsx

A B C/D EXist

SNRPA, SNRPB2

HNRNPK
PCBP2-4

SART3
SYNCRIP
HNRNPR

RBM38
CELF3
BRUNO 4,5,6
MBNL1,2,3

SNRPA
SRNPB2

PCBP1,3,4
U2AF2
PTBP1
SF3B4

ELAV1, 3
HNRNPC
TIA1

SRSF1
RBM5
SRSF9
HNRNPA1, 3
NONO

%-tile

A)

B)

100
80
60
40
20
0

Figure 2.6: (A) Hierarchically clustered heatmap of PWM weighted z-scores for each repeat
in Xist and Rsx, expressed as a percentile relative to the set of all GENCODE M18 lncRNA
annotations. (B) Regions predicted to have similar protein-binding functions in Xist and Rsx.
Arrows connect domains in each lncRNA that have similar k-mer and motif contents.

between Xist Repeats A and E and Rsx Repeats 2, 3, and 4, our motif analysis also identified

similarities exclusive to pairs of domains within this group, such as similarities between Rsx

Repeats 2 and 3 and similarities between Xist Repeat E and Rsx Repeat 4 (Figure 6A; Table

S4).

39

Second, within individual repeat domains, many protein-binding motifs were enriched to ex-

treme levels. Well over half of the motifs analyzed (101 out of 175) were in the 99th percentile

in terms of their enrichment relative to other mouse lncRNAs in at least one Xist or Rsx repeat

domain, and all repeat domains in Xist and Rsx harbored multiple protein-binding motifs that

were enriched at the 99th percentile or greater (Figure 6A; Table S4). This extremity was no-

table considering that most Xist and Rsx repeats are greater in length than the average mouse

lncRNA (Figure 2A). For example, at 13kb in length, Rsx Repeat 1 is longer than 99.97% of

spliced mouse lncRNAs (Figure 2A). Nevertheless, on a length-normalized basis, multiple protein-

binding motifs were enriched in Repeat 1 at the 99th percentile, in both koala and opossum Rsx.

Inasmuch as motif density is known to be an important driver of associations between proteins

and RNA [20, 30, 34], our data suggest that at the level of sequence composition, the repeat

domains in Xist and Rsx each have the potential to serve as high-affinity binding platforms for

multiple proteins.

Lastly, many of the most strongly enriched motifs in both Xist and Rsx are known to recruit

near-ubiquitous RNA-binding proteins that play core roles in the process of splicing [36]. These

included PTBP1, RMB5, SF3B4, SNRPA, SNRPB2, U2AF2, multiple SR proteins, and multiple

HNRNP proteins, including HNRNPA1, HNRNPC, and HNRNPK (Figure 6A; Table S4). We

recognize that the motifs available for this analysis are biased towards RNA-binding proteins

whose functions are best understood; overwhelmingly, these proteins are splicing factors [30, 31].

Nevertheless, it is possible that an extreme enrichment for a motif that recruits a ubiquitously ex-

pressed splicing factor may confer a function that a single binding motif would not. For example,

we presume that the function of Repeat B could not be recapitulated by a single motif that binds

HNRNPK [14].

3 Discussion

Xist has served as a paradigmatic regulatory lncRNA for more than 25 years [1–4]. Never-

theless, it has been challenging to apply the information gained from the study of Xist to other

lncRNAs. This is because Xist has little linear sequence similarity to other RNAs, even to lncR-

NAs like Rsx, which seem likely to encode analogous functions [18, 37]. In the present study, we

used a non-linear method of sequence comparison called SEEKR [20] to compare the repetitive

40

regions of Xist and Rsx. Our data provide sequence-based evidence to support the hypothesis

that Xist and Rsx are functional analogues that arose through convergent evolution, and provide

insights into mechanisms through which their repeat domains may encode function.

Unexpectedly, at the level of k-mers, the repeat domains of Xist and Rsx partitioned into two

major clusters. Xist Repeats B, C, and D were highly similar to each other and to Rsx Repeat

1, whereas Xist Repeats A and E were most similar to each other and to Rsx Repeats 2, 3, and

4. From prior analyses of sequence content, there is little that would have suggested that the

repeats in these two lncRNAs would cluster together in such a manner. However, prior molecular

analyses of Xist are consistent with such a clustering [1–4].

Specifically, Xist Repeats B and C are known to play important roles in recruiting PRC1

to the inactive X through their ability to bind HNRNPK and possibly other proteins [14]. The

similarity between Repeats B and C and Xist Repeat D and Rsx Repeat 1 suggests that the

latter two repeats may also play roles in recruiting PRC1. Consistent with this possibility, we

found that an antibody specific to HNRNPK robustly retrieved Rsx RNA in an IP. Moreover,

eCLIP data show that Xist Repeat D is enriched for HNRNPK binding in human cells ([34]).

Thus, even within Xist, murid and non-murid mammals may have convergently evolved separate

repeats to recruit PRC1, in the form of Repeats C and D, respectively.

Relatedly, Xist Repeats A and E have been implicated in recruitment of PRC2 to the inac-

tive X, both via direct and cooperative means [13, 15, 17, 38–42]. The similarity between Xist

Repeats A and E and Rsx Repeats 2, 3, and 4 suggests that the Rsx repeats could also play roles

in recruiting PRC2.

Based on these data, we propose that the two major clusters of repeats in Xist and Rsx func-

tion in part to cooperatively recruit PRC1 and PRC2 to chromatin. Within Xist, Repeat B plays

a dominant role in recruiting PRC1 via its ability to bind HNRNPK; in turn, PRC1-induced

chromatin modifications likely stimulate loading of PRC2 onto chromatin of the inactive X [13,

14]. Nevertheless, a PRC1-dominant model does not preclude other repeats in Xist or Rsx from

functioning in PRC2 recruitment. Indeed, while there does not appear to be a single domain in

Xist that is absolutely required to recruit PRC2 during the early stages of XCI [12, 40], it is pos-

sible that multiple domains in Xist recruit PRC2 duplicatively, such that deletion of any single

domain alone does not cause complete loss in PRC2 recruitment. This hypothesis is supported by

41

prior studies that link both Repeat A and E to recruitment of PRC2 [13, 15, 17, 38–42], and by

our own data that show Xist Repeats A and E and Rsx Repeats 2, 3, and 4 have similar k-mer

profiles and motif contents. PRC1, PRC2, and related complexes function cooperatively in flies,

mammals, and plants [43–45]. Considering this cooperativity, it is conceivable that the repeat

domains in Xist and Rsx also cooperate to distribute PRC1 and PRC2 on chromatin.

Beyond recruiting PRCs, Xist evades nuclear export, it associates with transcribed regions

of chromatin, and it induces Polycomb-independent gene silencing [1, 2, 4]. It is possible that

Rsx carries out many, if not all of these actions, and that Rsx relies on sets of proteins similar to

those employed by Xist to achieve them [18, 37]. We found that all Xist and Rsx repeat domains

harbored extreme levels of enrichment for multiple motifs known to recruit different subsets of

RNA-binding proteins. Most of these proteins have been best-characterized in the context of

splicing, rather than epigenetic silencing.

In light of these data, we suggest that the repeat domains in Xist and Rsx may encode some

of their functions not by recruiting a set of dedicated RNA silencing factors, but by engaging

with ubiquitously-expressed RNA-binding proteins in ways that are distinct from most other

RNAs. Such a model was recently proposed [2], and agrees well with what is known about the

specificity of RNA-protein interactions. Most RNA-binding proteins have limited sequence speci-

ficity, and are capable of binding many thousands of regions in hundreds to thousands of ex-

pressed RNAs [30, 31, 34]. SPEN and HNRNPK are two RNA-binding proteins that are crit-

ical for Xist-induced silencing, yet they clearly associate with RNAs other than Xist [33, 34].

Relatedly, many other proteins important for Xist-induced silencing play central roles in RNA

splicing and nuclear export and, through these latter roles, likely associate with a large portion

of the transcriptome [9]. Thus, Xist and Rsx may distinguish themselves from other chromatin-

associated transcripts not necessarily by the proteins to which they bind, but by the manner in

which they bind these proteins.

That the related repeat domains were present in a different order in Xist and Rsx supports

the notion that within a lncRNA, the order of functional domains is likely to be less important

than the presence of the functional domains (Figure 6B). This notion is consistent with a body

of work that suggests lncRNAs encode regulatory function in a modular fashion, via discrete

domains that recruit distinct subsets of effector proteins [10, 12, 14, 16, 20, 46–54].

42

From a methodological standpoint, our manuscript outlines approaches that should prove

useful in the study of functional domains in other sets of RNAs. Intuitively, k-mer based com-

parisons like SEEKR seem most likely to succeed in identifying similarity when the domains of

interest are repetitive. By nature, repetitive domains that share enrichments of similar subsets of

k-mers will be more similar to each other than they will be similar to the average non-repetitive

region in the transcriptome.

Nevertheless, similarity between two repetitive domains, when observed, should be carefully

considered, especially when the similarity occurs in lncRNAs such as Xist and Rsx, which are ex-

pressed at similar levels in equivalent subcellular compartments [18, 37]. Motif density is known

to be a dominant factor driving protein/RNA interactions [20, 30, 37]. All other variables being

equal, two lncRNAs that harbor domain-specific k-mer similarity should possess similar protein-

binding profiles that could specify similar or analogous function.

However, SEEKR is not limited to analysis of repetitive domains. It also has the ability to de-

tect similarity between repetitive and non-repetitive domains and between strictly non-repetitive

domains as well. In any given sequence, a set of k-mers can be arranged in repetitive or non-

repetitive ways, and SEEKR has no inherent preference for one over the other. As a contrived

example, the sequence of Xist Repeat D can be shuffled in a way that eliminates its repeated

monomers, yet entirely preserves its k-mer content (File S1). By BLAST, this shuffled sequence

has little internal similarity to itself or to Repeat D (Figure S6). Yet, by k-mer content, the shuf-

fled sequence and Repeat D are literally identical (Figure S6). In a real-world example, the top

five lncRNAs that SEEKR found to be the most similar to Repeat D are not nearly as repetitive

as Repeat D itself (Figure S6). Of all Xist and Rsx repeats, Repeat D is the most complex (Fig-

ure 2B). Nevertheless, these results demonstrate that k-mer based similarity searches performed

with repetitive domains can identify non-repetitive top hits.

With regard to non-repetitive domains, our 2018 study showed that SEEKR rivaled BLAST-

like alignment in its ability to detect lncRNA homologues in human and mouse [20]. The ma-

jority of homologues detected by SEEKR either lacked obvious repetitive elements, or were pre-

dominantly comprised of non-repetitive sequence; the lncRNAs H19, Hottip, Malat1, Miat, and

RMST being specific examples. We also found that SEEKR could identify Xist-like repressive

activity in several synthetic and natural lncRNAs that lacked repetitive elements [20]. Thus, even

43

in non-repetitive regions of RNA, SEEKR should be capable of detecting meaningful similarities.

However, functional domains comprised of high-complexity sequence elements will likely remain

challenging to identify, regardless of the method in use.

Key variables to decide upon when using SEEKR are the k-mer length and the appropriate

set of RNAs that define the background k-mer frequency; i.e. the set of RNAs used to define the

means and standard deviations from which k-mer z-scores are calculated. At present, data re-

garding functional domains in lncRNAs are too limited to arrive at conclusive recommendations

for either variable. We favor using a k-mer length at which 4k most closely resembles the length

of the shortest domain being analyzed. This approach minimizes the number of k-mers that yield

counts of zero in the domain. Data from the present study as well as our prior work suggest that

this minimization increases discriminatory power ([20]).

In terms of the set of RNAs that should be used to define the background k-mer frequency,

it is worth noting that SEEKR measures relative, not absolute, similarity. Pearson’s r values re-

turned by SEEKR reflect the similarity between two sequences relative to the k-mer frequency

present in the background set of RNAs. We have found that using a background set of all lncR-

NAs in a genome provides a convenient way to identify trends. For example, in the present study,

we used all known spliced lncRNAs in the mouse as a background set. Accordingly, we were able

to identify properties in the repeat domains of Xist and Rsx that were distinct from the average

spliced lncRNA annotated by GENCODE [28].

In our initial description of SEEKR, we used k-mer contents of full-length lncRNAs as search

features; we did not examine k-mer contents at the level of individual domains [20]. The domain-

centric approaches outlined in the present study may be better suited for lncRNAs such as Xist

and Rsx, which have multiple functions that are likely to be distributed amongst multiple do-

mains. Indeed, at the level of k-mers, full-length Xist and Rsx were negatively correlated to each

other. Similarities between the two lncRNAs emerged only when we took a domain-centric ap-

proach. Other eutherian lncRNAs known to harbor Xist-like silencing function, such as Kcnq1ot1

and Airn, are exceptionally long – each on the order of 90kb. Extrapolating from our findings

above, we would expect these lncRNAs to harbor the greatest levels of similarity to each other

not at the level of their full-length transcripts, but at the level of specific domains.

44

4 Methods

4.1 Long read sequencing of Rsx

High molecular weight DNA from VMRC18-839J22 and VMRC18-303M7 BACs was prepared

using the NucleoBond BAC 100 kit (Machery Nagel). DNA from the two BAC preparations was

pooled, sheared to an average length of 20kb using a g-TUBE (Covaris), and then sequenced

on the Oxford Nanopore Technologies (ONT) MinION using an R9.4 flow cell (FLO-MIN106)

following the 1D ligation protocol (SQk-LSK109).

Reads were base-called with Albacore 2.3.1 (ONT) then assembled using Flye 2.3.5b [55].

The six resulting scaffolds were aligned to E. coli K12 (NC000913.3), opossum chromosome X

(MonDom5, NC008809.1) and the pCC1BAC cloning vector (EU140750.1). Scaffolds consist-

ing entirely of E. coli or cloning vector DNA were removed. Three scaffolds aligned to adjacent

regions of the MonDom5 X chromosome. These were merged together into a single candidate

assembly sequence that was then polished iteratively with Racon 1.3.2 four times [56], followed

by Nanopolish 0.10.1 [57], to produce a final complete assembly of 235,139 nucleotides.

This polished assembly sequence was aligned again to MonDom5 using BLASTN to establish

start and end coordinates to use as a reference when replacing the gaps in MonDom5 with the

completed sequence in our assembly. The final sequence of opossum Rsx used in this work was

generated using splice annotations from [18], and replacing the N’s in mondom5 with the corre-

sponding sequence from our polished assembly (nucleotide substitutions are listed in Table S3).

Raw sequencing reads were deposited in NCBI’s SRA, under accession number PRJNA522427.

4.2 Nanopore sequencing and Rsx splice structure determination

High molecular weight DNA from VMRC18-839J22 and VMRC18-303M7 BACs was prepared

using the NucleoBond BAC 100 kit (Machery Nagel). DNA from the two BAC preparations was

pooled, sheared to an average length of 20kb using a g-TUBE (Covaris), and then sequenced on

the Oxford Nanopore Technologies (ONT) MinION using an R9.4 flow cell (FLO-MIN106) follow-

ing the 1D ligation protocol (SQk-LSK109). Reads were base-called with Albacore 2.3.1 (ONT)

then assembled using Flye 2.3.5b [55]. The six resulting scaffolds were aligned to E. coli K12

(NC000913.3), opossum chromosome X (MonDom5, NC008809.1) and the pCC1BAC cloning

vector (EU140750.1). Scaffolds consisting entirely of E. coli or cloning vector DNA were removed.

45

Three scaffolds aligned to adjacent regions of the MonDom5 X chromosome. These were merged

together into a single candidate assembly sequence that was then polished iteratively with Racon

1.3.2 four times [56], followed by Nanopolish 0.10.1 [57], to produce a final complete assembly of

235,139 nucleotides.

This polished assembly sequence was aligned again to MonDom5 using BLASTN to establish

start and end coordinates to use as a reference when replacing the gaps in MonDom5 with the

completed sequence in our assembly. The final sequence of opossum Rsx used in this work was

generated using splice annotations from [18], and replacing the N’s in mondom5 with the corre-

sponding sequence from our polished assembly. Raw sequencing reads were deposited in NCBI’s

SRA, under accession number PRJNA522427.

4.3 Defining tandem repeat domains of Xist/Rsx

The sequence of all Xist and Rsx repeat domains used in this work can be found in File S1.

The sequences of all full-length Xist and Rsx lncRNAs used in this work can be found in File S2.

The spliced mouse Xist sequence was sourced from the mm10 build of the mouse genome and an-

notations for the tandem repeats were sourced from [22]. The spliced human Xist sequence was

sourced from the hg38 build of the human genome and the annotations for the tandem repeats

were sourced from [24, 25].

The sequences of spliced Xist used to generate the dot plots in Figure S1 were obtained di-

rectly from annotations in the UCSC genome browser, or, for genomes in which full annotations

were unavailable, were reconstructed from partial annotations by UCSC and RNA-seq data from

[47]. In the case of the vole Microtus rossiaemeridionalis, Xist sequence was obtained directly

from [23].

Spliced koala Rsx was obtained from [19]. To identify repeat domains, Rsx was aligned to

itself using EMBOSS dotmatcher with a 10bp window and a 40 threshold [21]. Starts and stop

positions of each repeat were defined by visual inspection of the dot plot. We considered separat-

ing the fourth major repeat in Rsx into two repeat domains, one 500bp and the other 5000bp in

length (see Figure 1D); however, analysis of the shorter sub-repeat within Repeat 4 revealed its

k-mer content to be highly similar to the larger sub-repeat (not shown). Thus, to simplify our

analyses and to clarify our presentation, we elected to merge the sub-repeats. Repeat domains

46

in opossum Rsx (after filling in the gaps in assembly; see below) were defined in the identical

manner.

4.4 k-mer correlations

SEEKR was performed essentially as described in [20], with minor modifications. As a ref-

erence for normalization, we first calculated the mean and standard deviation for all k-mers at

k = 4 in the GENCODE M18 lncRNA annotation file. We then generated length normalized

counts of all k-mers at k = 4 for each repeat domain in Xist and Rsx and calculated z-scores for

each k-mer by subtracting the mean and dividing by the standard deviation for each k-mer from

our reference set of GENCODE lncRNAs. Prior to performing Pearson’s correlation, z-scores

were log2 transformed.

To generate the distributions of Pearson’s values in Figure 2B and Figure 5I, we calculated

the k-mer profile for each repeat domain and each GENCODE M18 lncRNA using the mean

and standard deviation values from the full-length GENCODE M18 lncRNA annotation file,

as described above. We then log2-transformed the z-scores and used Pearson’s correlation to

compare all lncRNAs to the Xist repeat in question.

4.5 Motif enrichment algorithm

To weight the sums of z-scores by the HNRNPK PWM in Figure 4E we performed the follow-

ing calculation. For all k-mers at k = 5 we calculated the probability of a given k-mer’s sequence

occurring in the PWM for HNRNPK. The probability was defined as the independent probabil-

ity of each letter in the k-mer occurring at the corresponding location within the PWM for each

possible frame within the PWM. The HNRNPK motif is 8nt long, therefore there were 3 possible

frames for a 5-mer to fall within. The z-score for the k-mer in question was then weighted by tak-

ing the sum of the product between the z-score and each probability. The height of the bars in

Figure 4E represent the sum of weighted z-scores for each Xist and Rsx repeat domain. The set

of mouse lncRNAs from GENCODE M18 was used to derive z-scores that described the length

normalized abundance of each k-mer in each repeat domain.

4.6 De novo motif analysis

Motifs in each Xist and Rsx repeat domain were detected with MEME (version 5.0.2; [29]),

run using the following options: -mod anr -dna -bfile bkg.meme -nmotifs 100 -minw 4 -maxw 12

47

-maxsites 1000, where the “bkg.meme” file specified a background frequency of 0.25 for all four

nucleotides.

4.7 Consecutive k-mer analysis

To calculate the sums of z-scores for k-mers containing matches to mononucleotide runs in

Figures 4A-D, we used the following approach. A mononucleotide run was defined as at least two

consecutive occurrences of the nucleotide in question. For each nucleotide [A—C—G—T], we

multiplied the z-score for each k-mer that contained a run by (the nucleotide length of the run

minus 1). The sum of these products for each repeat domain at k-mer length k = 5 is plotted in

Figures 4A-D. Identical trends were seen using k-mer lengths k = 4, 5, and 6 (Figure S3). k-mer

length k = 5 was chosen for plotting in Figure 4 to emphasize trends that were present but less

pronounced when using k-mer length k = 4. The set of mouse lncRNAs from GENCODE M18

was used to derive z-scores that described the length normalized abundance of each k-mer in

each repeat domain.

4.8 Detecting HNRNPK-binding motif matches

Motifs occurrences in each Xist and Rsx repeat domain were detected with FIMO (version

5.0.2; [29]), run using the following non-default option: –thresh 0.01.

4.9 RNA Immunoprecipitation

Cultured female M. domestica fibroblast cells were harvested at 70% confluency by scraping,

then aliquoted into 1 107 cells, pelleted by centrifugation at 200g, then snap-frozen and stored at

-80C until used. RIPs from non-crosslinked cells were performed essentially as described in [42],

using the following antibodies from Abcam: H3K27me3 (ab6002), CTCF (ab70303), HNRNPK

(ab39975), and mouse IgG (ab18413). Briefly, cell pellets were gently resuspended in 1 mL of

ice-cold RIPA buffer supplemented with 1 EDTA-free Proteinase Inhibitor Cocktail (Thermo Sci-

entific) and lysed for 15 min at 4C. Samples were sonicated at 4C (Qsonica Q700 with cup horn

accessory) at 12% amplitude for fifteen 30 second intervals, with 30 second resting steps between

intervals. Cell debris was removed by centrifugation (at 6000 g for 5 minutes), and samples were

subsequently diluted to 1mg of protein per ml with ice-cold RIPA buffer. Lysates with 1mg of to-

tal protein (i.e. 500ul) were incubated with the appropriate antibody coupled to Protein G beads

(Life Technologies), overnight at 4 C with end-over-end rotation. Beads with no antibodies (mock

48

IP) were used as background control. Beads were removed from lysate using a magnetic stand

and were re-suspended in 1ml of ice cold NP-40 buffer (50 mM Tris at pH 7.5, 50 mM NaCl, 10

mM EDTA, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS) and washed for 15min at 4

C with end-over-end rotation, repeated twice, followed by three washes with RIPA buffer. Follow-

ing the last wash, beads were collected and re-suspended in 1ml of Trizol (Life Technologies) for

RNA extraction. 10% of the input lysate (i.e. 50ul) was processed in parallel. RNA was cleaned

using RNeasy spin columns (Qiagen), following the manufacturer’s “RNA Cleanup” protocol,

with on-column RNase-free DNase Set (Qiagen) treatment. cDNA was synthesized using input

and immunoprecipitated RNA with SuperScript III reverse transcriptase (Life Technologies) and

random hexamer priming. Rsx was detected by RT-qPCR (in technical triplicate) with primer

pair L2 from (Grant et al., 2012). Cycle threshold (Ct) values were normalized to input and rela-

tive to the IgG. Fold enrichment was determined by relative quantification, which was calculated

using the 2e(∆∆Ct) method. The level of Gapdh mRNA enrichment was used as an internal

non-target index in the qPCR analysis.

49

REFERENCES

[1] B. P. Balaton, T. Dixon-McDougall, S. B. Peeters, and C. J. Brown, The eXceptional nature
of the X chromosome, 2018.

[2] N. Brockdorff, “Local tandem repeat expansion in Xist RNA as a model for the functionali-
sation of ncRNA,” Non-coding RNA, 2018, issn: 2311553X.

[3] S. T. Da Rocha and E. Heard, Novel players in X inactivation: Insights into Xist-mediated
gene silencing and chromosome conformation, 2017.

[4] A. Sahakyan, Y. Yang, and K. Plath, The Role of Xist in X-Chromosome Dosage Compensa-
tion, 2018.

[5] C. Chu, Q. C. Zhang, S. T. Da Rocha, R. A. Flynn, M. Bharadwaj, J. M. Calabrese, T.
Magnuson, E. Heard, and H. Y. Chang, “Systematic discovery of Xist RNA binding pro-
teins,” Cell, 2015, issn: 10974172.

[6] J. M. Engreitz, A. Pandya-Jones, P. McDonel, A. Shishkin, K. Sirokman, C. Surka, S. Kadri,
J. Xing, A. Goren, E. S. Lander, K. Plath, and M. Guttman, “The Xist lncRNA exploits
three-dimensional genome architecture to spread across the X chromosome,” Science, 2013,
issn: 10959203.

[7] Y. Hoki, N. Kimura, M. Kanbayashi, Y. Amakawa, T. Ohhata, H. Sasaki, and T. Sado, “A
proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation
in mouse,” Development, 2009, issn: 09501991.

[8] C. A. McHugh, C. K. Chen, A. Chow, C. F. Surka, C. Tran, P. McDonel, A. Pandya-Jones,
M. Blanco, C. Burghard, A. Moradian, M. J. Sweredoski, A. A. Shishkin, J. Su, E. S. Lan-
der, S. Hess, K. Plath, and M. Guttman, “The Xist lncRNA interacts directly with SHARP
to silence transcription through HDAC3,” Nature, 2015, issn: 14764687.

[9] B. Moindrot, A. Cerase, H. Coker, O. Masui, A. Grijzenhout, G. Pintacuda, L. Schermelleh,
T. B. Nesterova, and N. Brockdorff, “A Pooled shRNA Screen Identifies Rbm15, Spen, and
Wtap as Factors Required for Xist RNA-Mediated Silencing,” Cell Reports, 2015, issn:
22111247.

[10] D. P. Patil, C. K. Chen, B. F. Pickering, A. Chow, C. Jackson, M. Guttman, and S. R. Jaf-
frey, “M6 A RNA methylation promotes XIST-mediated transcriptional repression,” Nature,
2016, issn: 14764687.

[11] M. E. Royce-Tolland, A. A. Andersen, H. R. Koyfman, D. J. Talbot, A. Wutz, I. D. Tonks,
G. F. Kay, and B. Panning, “The A-repeat links ASF/SF2-dependent Xist RNA processing
with random choice during X inactivation,” Nature Structural and Molecular Biology, 2010,
issn: 15459993.

[12] A. Wutz, T. P. Rasmussen, and R. Jaenisch, “Chromosomal silencing and localization are
mediated by different domains of Xist RNA,” Nature Genetics, 2002, issn: 10614036.

[13] M. Almeida, G. Pintacuda, O. Masui, Y. Koseki, M. Gdula, A. Cerase, D. Brown, A. Mould,
C. Innocent, M. Nakayama, L. Schermelleh, T. B. Nesterova, H. Koseki, and N. Brockdorff,

50

“PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation,” Science,
2017, issn: 10959203.

[14] G. Pintacuda, G. Wei, C. Roustan, B. A. Kirmizitas, N. Solcan, A. Cerase, A. Castello, S.
Mohammed, B. Moindrot, T. B. Nesterova, and N. Brockdorff, “hnRNPK Recruits PCGF3/5-
PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing,”
Molecular Cell, 2017, issn: 10974164.

[15] R. Ridings-Figueroa, E. R. Stewart, T. B. Nesterova, H. Coker, G. Pintacuda, J. Godwin,
R. Wilson, A. Haslam, F. Lilley, R. Ruigrok, S. A. Bageghni, G. Albadrani, W. Mansfield,
J. A. Roulson, N. Brockdorff, J. F. Ainscough, and D. Coverley, “The nuclear matrix protein
CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory,” Genes
and Development, 2017, issn: 15495477.

[16] M. J. Smola, T. W. Christy, K. Inoue, C. O. Nicholson, M. Friedersdorf, J. D. Keene, D. M.
Lee, J. M. Calabrese, and K. M. Weeks, “SHAPE reveals transcript-wide interactions, com-
plex structural domains, and protein interactions across the Xist lncRNA in living cells,”
Proceedings of the National Academy of Sciences of the United States of America, 2016, issn:
10916490.

[17] H. Sunwoo, D. Colognori, J. E. Froberg, Y. Jeon, and J. T. Lee, “Repeat E anchors Xist
RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein
(CIZ1),” Proceedings of the National Academy of Sciences of the United States of America,
2017, issn: 10916490.

[18] J. Grant, S. K. Mahadevaiah, P. Khil, M. N. Sangrithi, H. Royo, J. Duckworth, J. R. Mc-
Carrey, J. L. Vandeberg, M. B. Renfree, W. Taylor, G. Elgar, R. D. Camerini-Otero, M. J.
Gilchrist, and J. M. Turner, “Rsx is a metatherian RNA with Xist-like properties in X-
chromosome inactivation,” Nature, 2012, issn: 00280836.

[19] R. N. Johnson, D. O’Meally, Z. Chen, G. J. Etherington, S. Y. Ho, W. J. Nash, C. E. Grue-
ber, Y. Cheng, C. M. Whittington, S. Dennison, E. Peel, W. Haerty, R. J. O’Neill, D. Col-
gan, T. L. Russell, D. E. Alquezar-Planas, V. Attenbrow, J. G. Bragg, P. A. Brandies, A. Y. Y.
Chong, J. E. Deakin, F. Di Palma, Z. Duda, M. D. Eldridge, K. M. Ewart, C. J. Hogg, G. J.
Frankham, A. Georges, A. K. Gillett, M. Govendir, A. D. Greenwood, T. Hayakawa, K. M.
Helgen, M. Hobbs, C. E. Holleley, T. N. Heider, E. A. Jones, A. King, D. Madden, J. A.
Graves, K. M. Morris, L. E. Neaves, H. R. Patel, A. Polkinghorne, M. B. Renfree, C. Robin,
R. Salinas, K. Tsangaras, P. D. Waters, S. A. Waters, B. Wright, M. R. Wilkins, P. Timms,
and K. Belov, “Adaptation and conservation insights from the koala genome,” Nature Genet-
ics, 2018, issn: 15461718.

[20] J. M. Kirk, S. O. Kim, K. Inoue, M. J. Smola, D. M. Lee, M. D. Schertzer, J. S. Wooten,
A. R. Baker, D. Sprague, D. W. Collins, C. R. Horning, S. Wang, Q. Chen, K. M. Weeks,
P. J. Mucha, and J. M. Calabrese, “Functional classification of long non-coding RNAs by
k-mer content,” Nature Genetics, 2018, issn: 15461718.

[21] P. Rice, L. Longden, and A. Bleasby, EMBOSS: The European Molecular Biology Open
Software Suite, 2000.

51

[22] N. Brockdorff, “The product of the mouse Xist gene is a 15 kb inactive X-specific transcript
containing no conserved ORF and located in the nucleus.,” Cell (Cambridge), vol. 71, no. 3,
pp. 515–526, 1992 10, issn: 0092-8674.

[23] T. B. Nesterova, S. Y. Slobodyanyuk, E. A. Elisaphenko, A. I. Shevchenko, C. Johnston,
M. E. Pavlova, I. B. Rogozin, N. N. Kolesnikov, N. Brockdorff, and S. M. Zakian, Character-
ization of the genomic Xist locus in rodents reveals conservation of overall gene structure and
tandem repeats but rapid evolution of unique sequence, 2001.

[24] Z. C. Yen, I. M. Meyer, S. Karalic, and C. J. Brown, “A cross-species comparison of X-
chromosome inactivation in Eutheria,” Genomics, 2007, issn: 08887543.

[25] C. J. Brown, “The human XIST gene: analysis of a 17 kb inactive X-specific RNA that
contains conserved repeats and is highly localized within the nucleus.,” Cell (Cambridge),
vol. 71, no. 3, pp. 527–542, 1992 10, issn: 0092-8674.

[26] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment
search tool,” Journal of Molecular Biology, 1990, issn: 00222836.

[27] T. J. Wheeler and S. R. Eddy, “Nhmmer: DNA homology search with profile HMMs,” Bioin-
formatics, 2013, issn: 14602059.

[28] T. Derrien, R. Johnson, G. Bussotti, A. Tanzer, S. Djebali, H. Tilgner, G. Guernec, D. Mar-
tin, A. Merkel, D. G. Knowles, J. Lagarde, L. Veeravalli, X. Ruan, Y. Ruan, T. Lassmann, P.
Carninci, J. B. Brown, L. Lipovich, J. M. Gonzalez, M. Thomas, C. A. Davis, R. Shiekhat-
tar, T. R. Gingeras, T. J. Hubbard, C. Notredame, J. Harrow, and R. Guigó, “The GEN-
CODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolu-
tion, and expression,” Genome Research, 2012, issn: 10889051.

[29] T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li,
and W. S. Noble, “MEME Suite: Tools for motif discovery and searching,” Nucleic Acids
Research, 2009, issn: 03051048.

[30] D. Dominguez, P. Freese, M. S. Alexis, A. Su, M. Hochman, T. Palden, C. Bazile, N. J. Lam-
bert, E. L. Van Nostrand, G. A. Pratt, G. W. Yeo, B. R. Graveley, and C. B. Burge, “Se-
quence, Structure, and Context Preferences of Human RNA Binding Proteins,” Molecular
Cell, 2018, issn: 10974164.

[31] D. Ray, H. Kazan, K. B. Cook, M. T. Weirauch, H. S. Najafabadi, X. Li, S. Gueroussov, M.
Albu, H. Zheng, A. Yang, H. Na, M. Irimia, L. H. Matzat, R. K. Dale, S. A. Smith, C. A.
Yarosh, S. M. Kelly, B. Nabet, D. Mecenas, W. Li, R. S. Laishram, M. Qiao, H. D. Lipshitz,
F. Piano, A. H. Corbett, R. P. Carstens, B. J. Frey, R. A. Anderson, K. W. Lynch, L. O.
Penalva, E. P. Lei, A. G. Fraser, B. J. Blencowe, Q. D. Morris, and T. R. Hughes, “A com-
pendium of RNA-binding motifs for decoding gene regulation,” Nature, 2013, issn: 00280836.

[32] J. T. Kung, B. Kesner, J. Y. An, J. Y. Ahn, C. Cifuentes-Rojas, D. Colognori, Y. Jeon, A.
Szanto, B. C. delRosario, S. F. Pinter, J. A. Erwin, and J. T. Lee, “Locus-specific targeting
to the X chromosome revealed by the RNA interactome of CTCF,” Molecular Cell, 2015,
issn: 10974164.

52

[33] D. Cirillo, M. Blanco, A. Armaos, A. Buness, P. Avner, M. Guttman, A. Cerase, and G. G.
Tartaglia, Quantitative predictions of protein interactions with long noncoding RNAs: To the
Editor, 2016.

[34] E. L. Van Nostrand, G. A. Pratt, A. A. Shishkin, C. Gelboin-Burkhart, M. Y. Fang, B.
Sundararaman, S. M. Blue, T. B. Nguyen, C. Surka, K. Elkins, R. Stanton, F. Rigo, M.
Guttman, and G. W. Yeo, “Robust transcriptome-wide discovery of RNA-binding protein
binding sites with enhanced CLIP (eCLIP),” Nature Methods, 2016, issn: 15487105.

[35] S. Kumar, G. Stecher, M. Suleski, and S. B. Hedges, “TimeTree: A Resource for Timelines,
Timetrees, and Divergence Times,” Molecular biology and evolution, 2017, issn: 15371719.

[36] M. C. Wahl and R. Lührmann, Snapshot: Spliceosome dynamics I, 2015.

[37] X. Wang, K. C. Douglas, J. L. VandeBerg, A. G. Clark, and P. B. Samollow, “Chromosome-
wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta
of the opossum, Monodelphis domestica,” Genome Research, 2014, issn: 10889051.

[38] C. Cifuentes-Rojas, A. J. Hernandez, K. Sarma, and J. T. Lee, “Regulatory Interactions
between RNA and Polycomb Repressive Complex 2,” Molecular Cell, 2014, issn: 10974164.

[39] C. Davidovich, X. Wang, C. Cifuentes-Rojas, K. J. Goodrich, A. R. Gooding, J. T. Lee, and
T. R. Cech, “Toward a consensus on the binding specificity and promiscuity of PRC2 for
RNA,” Molecular Cell, 2015, issn: 10974164.

[40] A. Kohlmaier, F. Savarese, M. Lachner, J. Martens, T. Jenuwein, and A. Wutz, “A chro-
mosomal memory triggered by Xist regulates histone methylation in X inactivation,” PLoS
Biology, 2004, issn: 15449173.

[41] X. Wang, K. J. Goodrich, A. R. Gooding, H. Naeem, S. Archer, R. D. Paucek, D. T. Youmans,
T. R. Cech, and C. Davidovich, “Targeting of Polycomb Repressive Complex 2 to RNA by
Short Repeats of Consecutive Guanines,” Molecular Cell, 2017, issn: 10974164.

[42] J. Zhao, B. K. Sun, J. A. Erwin, J. J. Song, and J. T. Lee, “Polycomb proteins targeted by a
short repeat RNA to the mouse X chromosome,” Science, 2008, issn: 00368075.

[43] N. P. Blackledge, N. R. Rose, and R. J. Klose, “Targeting Polycomb systems to regulate
gene expression: Modifications to a complex story,” Nature Reviews Molecular Cell Biology,
2015, issn: 14710080.

[44] Z. Li, X. Fu, Y. Wang, R. Liu, and Y. He, “Polycomb-mediated gene silencing by the BAH–EMF1
complex in plants,” Nature Genetics, 2018, issn: 15461718.

[45] B. Schuettengruber, N. Oded Elkayam, T. Sexton, M. Entrevan, S. Stern, A. Thomas, E.
Yaffe, H. Parrinello, A. Tanay, and G. Cavalli, “Cooperativity, specificity, and evolutionary
stability of polycomb targeting in Drosophila,” Cell Reports, 2014, issn: 22111247.

[46] E. Hacisuleyman, C. J. Shukla, C. L. Weiner, and J. L. Rinn, “Function and evolution of
local repeats in the Firre locus,” Nature Communications, 2016, issn: 20411723.

53

[47] H. Hezroni, D. Koppstein, M. G. Schwartz, A. Avrutin, D. P. Bartel, and I. Ulitsky, “Princi-
ples of Long Noncoding RNA Evolution Derived from Direct Comparison of Transcriptomes
in 17 Species,” Cell Reports, 2015, issn: 22111247.

[48] R. Johnson and R. Guigó, “The RIDL hypothesis: Transposable elements as functional do-
mains of long noncoding RNAs,” RNA, 2014, issn: 14699001.

[49] D. R. Kelley, D. G. Hendrickson, D. Tenen, and J. L. Rinn, “Transposable elements modu-
late human RNA abundance and splicing via specific RNA-protein interactions,” Genome
Biology, 2014, issn: 1474760X.

[50] F. Liu, S. Somarowthu, and A. M. Pyle, “Visualizing the secondary and tertiary architec-
tural domains of lncRNA RepA,” Nature Chemical Biology, 2017, issn: 15524469.

[51] Z. Lu, Q. C. Zhang, B. Lee, R. A. Flynn, M. A. Smith, J. T. Robinson, C. Davidovich, A. R.
Gooding, K. J. Goodrich, J. S. Mattick, J. P. Mesirov, T. R. Cech, and H. Y. Chang, “RNA
Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure,” Cell, 2016,
issn: 10974172.

[52] Y. Lubelsky and I. Ulitsky, “Sequences enriched in Alu repeats drive nuclear localization of
long RNAs in human cells,” Nature, 2018, issn: 14764687.

[53] S. Somarowthu, M. Legiewicz, I. Chillón, M. Marcia, F. Liu, and A. M. Pyle, “HOTAIR
Forms an Intricate and Modular Secondary Structure,” Molecular Cell, 2015, issn: 10974164.

[54] M. C. Tsai, O. Manor, Y. Wan, N. Mosammaparast, J. K. Wang, F. Lan, Y. Shi, E. Segal,
and H. Y. Chang, “Long noncoding RNA as modular scaffold of histone modification com-
plexes,” Science, 2010, issn: 00368075.

[55] M. Kolmogorov, J. Yuan, Y. Lin, and P. A. Pevzner, “Assembly of long, error-prone reads
using repeat graphs,” Nature Biotechnology, 2019, issn: 15461696.

[56] R. Vaser, I. Sović, N. Nagarajan, and M. Šikić, “Fast and accurate de novo genome assembly
from long uncorrected reads,” Genome Research, 2017, issn: 15495469.

[57] N. J. Loman, J. Quick, and J. T. Simpson, “A complete bacterial genome assembled de novo
using only nanopore sequencing data,” Nature Methods, 2015, issn: 15487105.

54

CHAPTER 3: HMMSEEKR

1 Introduction

XIST and Rsx provide compelling examples of how the sequence-to-function relationship

in lncRNAs may be modular in nature [1–5]. These two transcripts demonstrate clear sequence

regions, defined by the boundaries of their tandem repeat domains [2, 6–8], that are conserved

and are clearly functional as demonstrated by the binding of RNA binding proteins to their tran-

scripts [6, 7, 9–13]. Our model of lncRNA function, specifically the bag-of-words model that the

order of short motifs in a sequence is less important than their overall density [14], implicitly

means that a tandem repeated sequence may not be essential for recruitment of these RNA bind-

ing proteins [2].

It is possible to show that the k-mer content of a sequence can be perfectly preserved while

destroying the tandomly repeated nature of a sequence (Fig 3.1 A-C). This can be done by build-

ing a graph whose nodes are (k − 1)-mers and whose edges are connected such that a sequence is

reconstructed with the exact same k-mer frequencies as the original sequence [15]. Furthermore,

if we examine lncRNA sequences in mouse with very high SEEKR correlation to HXD it is clear

that not all these sequences contain substantial tandemly repeated sequence as in XIST (Fig 3.1

D-H).

Therefore, a challenge in understanding lncRNA function is identifying where functional mod-

ules may be located within a sequence [16–18]. Clearly, the answer is not solely exonic sequence

as in a protein coding reading frame. Within XIST these sequence regions are sub-sequences

within the spliced transcript [1–3, 6, 7, 9, 11]. Compounding the issue is that as far as is known,

no specific boundary motifs (e.g., splice junction boundaries) are required. Potential splice junc-

tions in genes are relatively easy to identify based off a combination of sequence content, and

the presence of conserved 5’ and 3’ splice site motifs that demarcate the beginning and end of an

intron, respectively [19].

To model this hypothesized sequence structure, we have developed an HMM that is designed

55

Figure 3.1: Dot plot alignments and SEEKR-defined similarity between human Xist Repeat D,
shuffled Repeat D, and the top 5 mouse lncRNAs that are most similar to Repeat D. Repeat D
was shuffled using µShuffle and preserving k-mer content at k = 4 (Jiang et al., 2008). Dotplots
were generated using a window size 20 nucleotides and a threshold of 50% identity.

to identify sub-sequences within a larger transcript that contain regions of elevated k-mer content

to a known functional domain. Given how little is known in the field about the sequence-to-

function relationship in lncRNAs, we use the archetypal lncRNA XIST and its known functional

sub-sequences (A-,B-,D-,E- repeats) as our model.

We demonstrate here the first computational tool capable of detecting sequence similarity

between functionally related but non-homologous long non-coding RNAs in the human genome.

Rather than deriving functional relationships through homology as in traditional sequence align-

ment [20, 21], we consider and model the problem of functional analogy between non-coding

transcripts. lncRNAs are free to mutate at significantly faster rates than mRNAs however that

56

lack of conservation has been shown to not necessarily imply lack of function [2, 12, 22]. The

model developed here is capable of identifying sequence features that are much too subtle and

jumbled for even the most sensitive alignment algorithms to detect [20, 21, 23], yet these same

features have been shown to strongly predictive of function [2, 14].

2 Results

2.1 Model Structure

Given a transcript sequence of k-mers, X, of length L, and a set of predefined functional

features Y , the objective is to map each x ∈ X to a functional state, y ∈ Y through an HMM.

Our underlying biological hypothesis is that non-coding RNAs contain sub-sequences of specific

k-mer content that are enriched for motifs that bind a specific RBP or subset of RBPs and that

these domains are free to start and stop within a larger sequence[1, 16, 17]. The primary purpose

of the HMM is to identify the most likely positions within a sequence that these RBP-interacting

functional domains begin and end. We therefore defined the first functional feature to be the

query, which is a categorical distribution of k-mer frequencies from training sequences known

to have some specific functional role (e.g. tandem repeats of XIST). We defined one additional

functional feature which comprises a null feature. The null state is a categorical distribution of k-

mer frequencies that represent the average of the transcriptome, or background sequence, which

is designed to encapsulate all other sequences that don’t match the query.

The two hidden states, query and null are represented by the symbols “+” and “-” respec-

tively, throughout the rest of this chapter, as this is how they are coded within the python imple-

mentation of hmmSEEKR.

From a probabilistic point of view, the HMM models an RNA sequence by assuming the se-

quence we observe (X) is stochastically sampled from an unknown sequence of hidden states

(functional domains) that control the behavior of X [24]. Prior HMM based models have pri-

marily modeled the emission of a sequence of individual nucleotides and incorporated high-order

interactions through conditional probabilities [19, 25, 26].

As an example, if the following sequence were observed, the probability of that sequence

occurring could be calculated using varying amounts of prior information. Generally, the more

relationships captured within the sequence, the better the sequence can be modeled (Table 3.1).

57

Observed Sequence X = ATCGA

Markov Order P(X) Parameters

0 P (A)P (T)P (C)P (G)P (A) 4

1 P (A)P (T |A)P (C|T)P (G|C)P (A|G) 16

2 P (A)P (T |A)P (C|AT)P (G|TC)P (A|CG) 64

3 P (A)P (T |A)P (C|AT)P (G|ATC)P (A|TCG) 256

Table 3.1: Progressively more prior history can be incorporated to model the probability distri-
bution of a sequence, however doing so exponentially increases the number of parameters to be
estimated.

Given the underlying assumptions of SEEKR [14] we chose to model the emissions of k-mers

directly rather than individual nucleotides conditioned on k previous nucleotides. When con-

structing a parse of a sequence, this choice better represents the bag-of-words model underyling

SEEKR [14] while allowing each emission to be conditionally dependent only on the functional

feature emitting it (Figure 3.2).

These two probabilities, e.g. P (ATCGA) vs. P (A|ATCG), are very similar to each other,

and are related by a normalizing factor. E.g., if k = 5, then the probability of observing the

5-mer ATCGA is equivalent to the probability of observing A given the probability of the preced-

ing nucleotides ATCG, multiplied by the probability of observing ATCG.

P (ATCGA) = P (A|ATCG)P (ATCG)

This example illustrates another reason that we chose to model the joint probability of a k-mer

rather than the conditional probability of a nucleotide on the preceding k-mer – the joint prob-

ability distribution better models differentials between enriched and depleted k-mers in a bag-

of-words model, whereas the conditional distribution better models longer-range interactions in

the sequence. E.g., the k-mer ATCG might be quite rare in the training data, but A preceded by

ATCG might have a high probability so long as it is observed, and so within the context of the

HMM this sparsity of ATCG would not get modeled as desired in SEEKR.

The last modeling choice we make is to construct the HMM such that each hidden state y

has a non-zero probability of transitioning to any other state, including itself. This is formally

known as an ergodic HMM [24]. Prior HMM models of DNA sequences are primarily left-right

structured [19, 21, 25, 26], due to prior knowledge of the structure of a gene, or motif. If a model

58

for a gene were constructed, the transition Intron → 5’ UTR can be assigned a probability of

zero given prior knowledge. Within lncRNAs, we and others hypothesized and shown that pro-

tein binding functional domains are modular in nature and therefore the hidden states within our

HMM are free to transition in all directions.

Figure 3.2: Graphical model of HMM SEEKR. The Query (“+”) hidden state represents the
functional domain to be identified in other lncRNA sequences and the Null (“-”) hidden state
represents the average k-mer frequencies of the transcriptome. The α and β parameters represent
the self-transition probabilities for the hidden state.

2.2 Viterbi Parsing and Scoring

The primary use for the HMM in hmmSEEKR is identifying the most likely parse, φmax for a

given sequence or set of sequences, Xi ∈ {X1, X2, . . . , Xn}, where each Xi is a sequence of k-mers.

The regions that we define as “hits” are all sub-sequences of contiguously query-labeled sequence,

e.g. for a sequence/parse pair such as:

59

(Xi = ATCGCCCG, φmax = −,−,+,+,+,+,+,+)

The “hit” in this example as defined in hmmSEEKR is the sub-sequence CGCCCG. There

may be any number of hits within a sequence, but a hit is always composed of contiguous “+”

(query) labeled nucleotides. The Viterbi path through each sequence was calculated as in algo-

rithms 5, 6 (Methods), and was implemented in corefunctions.py within the hmmSEEKR pack-

age. This code can be called as in section 3.4.3 within the mSEEKR.py program.

The score for the HMM, S, is calculated for each “hit” within the transcript. We assume that

the set of state labels from the Viterbi algorithm are now known. The score is the log-likelihood

of the hit belonging to the query state relative to the null state (Equation 3.1; Methods 4.2,

HMM Score). In Equation 3.1, xi is an individual k-mer within the hit, L is the length of the

hit, and the probability distributions p(xi|+) and p(xi|−) correspond to the k-mer frequency

distributions in the emission matrix.

S =
L∑
i=1

[log2 p(xi|+)− log2 p(xi|−)] (3.1)

Table 3.2 illustrates the output of mSEEKR.py when scanning mouse Xist using a human

XIST query and parameters θ = (k = 4, α = .9999, β = .9999) (Methods 4.1 Transition Pa-

rameters and k). Here, an HMM was trained on human XIST repeat A as the query hidden

state, and the null hidden state was trained on the set of all unspliced lncRNAs in mice (Meth-

ods 3.4.3,[27]), and mouse Xist was scanned for matches to the repeat A query. In mouse Xist,

repeat A is defined as spanning basepairs 292-713 [7], and hmmSEEKR called basepairs 201-748

as a hit to the repeat A query within mouse Xist (Table 3.2), yielding 100% recovery of the orig-

inal sequence. The score S is displayed in the kmerLLR column in the output. As the original

definition for repeat A was formally defined by the presence of the tandem repeat [6, 7], and not

based on functionality, such as RBP motif enrichment or experimentally determined presence of

protein binding, it is significantly more challenging to accurately assess the false positive rate of

the HMM (Figure 3.3).

As there are no pre-existing annotations for these k-mer based sequence features within lncR-

60

Rank Start End Length kmerLLR seqName

0 201 748 547 285.225 >xist
1 10295 11052 757 42.734 >xist
2 1532 1576 44 30.685 >xist
3 11326 11450 124 29.306 >xist
4 17941 17946 5 -0.968 >xist

Table 3.2: Output of mSEEKR.py. Each hit from scanning XIST with an HMM trained on
the A-repeat of mouse Xist is shown and sorted by the hmmSEEKR score, “kmerLLR”. The
parameter vector θ = (k, α, β) for this HMM is θA = (4, .9999, .9999).

Figure 3.3: UCSC wiggle- density display of HNRNPK CLIP data (orange) aligned over the
mouse (mm9) and human (hg38) Xist genomic loci. Mouse and human clip data are from [28,
29]. Arrows denote direction of Xist transcription. Black rectangles indicate genomic locations of
mouse and human repeat sequences used in this work.

NAs, it is difficult to define what constitutes a true positive and a true negative. For example,

HNRNPK binds large regions of sequence outside the formal definitions of the B- and D-repeats

in human XIST (Figure 3.3). To help elucidate what sequence features within XIST and other

lncRNAs are functional, beyond mere repetitiveness, we turned to protein binding data to iden-

tify proteins most associated with core tandem repeat domains within XIST.

2.3 Xist Associated RBPs

A crucial feature of the XIST transcript are the 4 core repeats that bind unique subsets of

RNA binding proteins [3–5, 9, 11]. Several RBPs have been shown to be crucial for the function

of XIST, including HNRNPK, RBM15, and several others [3–5, 9, 11, 30]. The tandem repeats

have been defined based only on their repetitiveness, but Figure 3.1 demonstrates that a non-

repetitive sequence can have the same motif content as a repetitive one. Indeed, examination of

61

ENCODE eCLIP data for HNRNPK reveals significant eCLIP binding adjacent to and extending

beyond the formally defined B- and D-repeats of XIST (Figure 3.3). Therefore, we hypothesized

that the functional elements of a lncRNA such as XIST are not defined by repetitiveness but

rather by enrichment of protein binding motifs [2, 4, 14, 31, 32]. To further test hmmSEEKR,

we sought to identify the proteins most associated with the A,B,D,E-repeats of XIST so that we

could validate the predictive power of our model against existing protein binding data.

A) B)

C) D)

Figure 3.4: Proteins selectively enriched within tandem repeats of XIST. A) log2 ratio of read
density for Repeat A compared to the remainder of XIST. B) log2 ratio of read density for Re-
peat B compared to the remainder of XIST is shown. C) log2 ratio of read density for Repeat D
compared to the remainder of XIST. D) log2 ratio of read density for Repeat E compared to the
remainder of XIST. A-D) Individual points within each protein represent biological replicates.

To do this, we compared eCLIP signal for all proteins with data in the ENCODE database in-

side each tandem repeat relative to the remainder of the XIST transcript (Methods 4.5, Xist En-

62

riched Proteins). We found that each repeat within XIST contained at least one protein that was

at least 2x more enriched in within the repeat than the remainder of the XIST transcript (Figure

3.4A). RBM15 and SRSF1 were found to be the most specific proteins to repeat A. RBM15 is

required for full XIST silencing functionality [10], and that RBM15 recruits the m6A complex to

the 5’ region of XIST [33]. SRSF1 has previously been shown to bind the A-repeat of XIST but

its function within the sequence is currently unknown.

Both the B-repeat and D-repeat were found to be significantly enriched for HNRNPK over

the rest of the transcript (Figure 3.4B-C). HNRNPK is required for recruitment of PRC1 to the

XIST transcripts [3]. Deletion of the B-repeat region has previously been shown to be sufficient

to abrogate XIST dependent PRC recruitment, as well as XIST mediated silencing. Our analysis

showed that DROSHA is also enriched within the B-repeat of XIST, however no previous studies

have identified DROSHA as a direct interactor with XIST and so the function of this interaction

is unknown.

Xist Repeat eCLIP Data

A RBM15,SRSF1
B HNRNPK
D HNRNPK
E TIA1,MATR3,PTBP1

Table 3.3: Most enriched RBPs for each tandem repeat domain in XIST.

The E-repeat of XIST was highly enriched for several proteins. The E-repeat itself is com-

posed primarily of T-rich sequence, and therefore the proteins we observe often contain similar

motifs ([32]). PTBP1, MATR3, TARDBP, and TIA1 were all found to be the most enriched

within the E-repeat. PTBP1 has previously been shown to be required for proper XIST expres-

sion and splicing during development [34]. TARDBP depletion is also associated with increased

expression of mis-spliced XIST transcripts [34]. A recent study found that MATR3 and PTBP1

form a condensate mediated by the XIST E-repeat and this condensate is required for XIST

localization to the Xi [35].

2.4 Detection of Rsx Domains

Our Rsx study in Chapter 2 relied on the existence of tandem repeats within the Rsx tran-

script to perform the domain based SEEKR analysis. On a whole transcript level, XIST and

63

Rsx were slightly anti-correlated despite their shared function. The relationship between the

two sequences didn’t become apparent until we parsed out the tandem repeats within Rsx and

performed pairwise comparisons between each XIST tandem repeat.

We hypothesized that we could use hmmSEEKR to identify regions of non-linear sequence

similarity between XIST and Rsx without a priori identification of tandem repeats. To do this,

we trained 4 separate HMMs on the A,B,D, and E-repeats of XIST at k ∈ {2, 3, 4, 5, 6} and all

pairwise combinations of α, β ∈ {.5, .75, .9, .99, .999, .9999}. The results outlined in Figure 3.5 and

Table 3.4 are using the set of parameters that yielded the best F1 score (Methods 3.4.X).

Repeat A

Repeat B

Repeat D

Repeat E

Figure 3.5: hmmSEEKR hits within koala Rsx for an HMM trained on each XIST repeat. Blue
regions represent hits to the query, whereas dashed grey lines represent null sequence. The pa-
rameter vectors θ = (k, α, β) for each repeat A,B,D,E used as a query were: θA = (4, .9999, .9999),
θB = (4, .9999, .9999), θD = (2, .9999, .9999), θE = (4, .9999, .9999).

We found that the HMM trained on the XIST D-repeat (θD = (2, .9999, .9999)) captured the

entire tandem repeat from transcript coordinates 1,000-14,000 (Figure 3.5, Table 3.4). Likewise,

the HMM trained on the XIST B-repeat (θB = (4, .9999, .9999)) captured a significant portion of

Rsx repeat 1, and these regions were significantly more C-rich than the remainder of Rsx repeat

1. Additional C-rich sequence were also identified at the 5’ and 3’ regions of Rsx (Figure 3.5).

The HMMs trained on the A-repeat (θA = (4, .9999, .9999)) and E-repeat (θE = (4, .9999, .9999))

both significantly aligned with Rsx repeat 4, with 100% precision and 25.45% recall of the full-

length repeat 4. In our original analysis, we mapped A,E-repeats to repeats 2,3, and 4 in Rsx,

however repeats 2 and 3 had relatively marginal correlation to the A,E-repeats, whereas the

A,E→4 relationship was the strongest of all comparisons in the original Rsx analysis [2].

64

Rsx Repeat Name Start End Xist Association Precision Recall

1 1000 14000 B,D 98.42% 100%
2 17500 21000 A,E 100% 1.32%
3 21500 22500 A,E - 0%
4 23000 27500 A,E 100% 25.45%

Table 3.4: Precision and recall for each HMM using the tandem repeat definitions from [2].
Precision is defined as the number of correct nucleotides relative to the number of incorrect
nucleotides, whereas recall is the fraction of the total domain retrieved by the HMM. The param-
eter vectors θ = (k, α, β) for each repeat A,B,D,E used as a query were: θA = (4, .9999, .9999),
θB = (4, .9999, .9999), θD = (2, .9999, .9999), θE = (4, .9999, .9999).

2.5 Sequence based prediction of RBP binding in KCNQ1OT1

There is at least one conserved lncRNA in the mammalian transcriptome that is known to

silence gene expression in cis through a PRC-mediated mechanism similar to XIST, KCNQ1OT1.

The mouse Kcnq1ot1 has been shown to silence megabase scale regions of chromosome 7 and

human KCNQ1OT1 silences a large region of chromosome 11. Unlike XIST, the sequence of

KCNQ1OT1 is not predominantly comprised of tandem repeat domains (Figure 3.6), barring a

region in the 3’ region of the sequence.

0 20000 40000 60000 80000
[bp]

0

20000

40000

60000

80000

[b
p]

mm10kcnq1ot1

Figure 3.6: Dot plot alignment of human KCNQ1OT1 against itself using flexidot software [36].
The window parameter is 20bp and the threshold is 40%. Black regions correspond to windows
that succesfully aligned against each other.

Furthermore, eCLIP data for RBPs known to be essential for XIST ’s function show that they

predominantly bind in the 5’ half of KCNQ1OT1 ’s sequence (Figure 3.7). Therefore, we sought

to use the hmmSEEKR package to identify functional sub-sequences within KCNQ1OT1 that are

similar in k-mer content to XIST A-,B-,D-, and E-repeats.

65

RBM15

HNRNPK

MATR3

Figure 3.7: Browser tracks for RBM15 (top), HNRNPK (middle), and MATR3 (bottom) within
the KCNQ1OT1 locus. Tracks represent peak intensity from ENCODE narrowPeak files for each
protein, regions with no signal were not called as statistically significant peaks.

KCNQ1OT1 contained regions of similarity to each of the XIST HMMs that we trained

(Figure 3.8 A-D) with parameterizations θA = (4, .9999, .9999), θB = (4, .9999, .9999), θD =

(2, .9999, .9999), θE = (4, .9999, .9999). We found that the 5’ region of KCNQ1OT1 ’s sequence

in particular containins regions of similarity to A-,B-,D-, and E-repeats of XIST (Figure 3.8 A-

D) – suggesting that this region of KCNQ1OT1 could be a multipurpose binder of numerous

RBPs. Indeed, eCLIP data for RBM15 and SRSF1 (Figure 3.8 A), HNRNPK (Figure 3.8 B-

C), and MATR3 and PTBP1 (Figure 3.8 D) reveal elevated read density for all these proteins

at the 5’ region of KCNQ1OT1 ’s sequence. Additionally, a large portion of the inner region

of KCNQ1OT1 ’s sequence was identified by hmmSEEKR to have similarity to the B- and D-

repeats of Xist. (Figure 3.8 B-C). Similar to actual B- and D-repeats of XIST, these regions

within KCNQ1OT1 correspond to elevated HNRNPK read density (Figure 3.8 B,C).

We then sought to compare the read density for each protein in Table 3.3 found within our

hmmSEEKR prediction for the associated XIST query against a randomized shuffling of the hits

found within KCNQ1OT1 (Method 3.4.6 randomization). We found that the A-repeat HMM sig-

nificantly outperformed randomized shuffles for both RBM15 (Figure 3.8 E; p < 10−8, chi-square

test) and SRSF1 (Figure 3.8 F; p < 10−5, chi-square test). HNRNPK was also significantly better

predicted by the HMMs trained on the B- and D-repeats of XIST (Figure 3.8 G,H;p < 10−33

B-repeat, p < 10−51 D-repeat, chi-square test). Finally, the E-repeat trained HMM significantly

outperformed a shuffled parse for both MATR3 (Figure 3.8 I, p < 10−28, chi-square test) and

PTBP1 (Figure 3.8 J; p < 10−43, chi-square test). Thus, our predictions from hmmSEEKR would

support our hypothesis that KCNQ1OT1 does contain shared sequence features with XIST. Un-

66

der the traditional hypotheses of sequence alignment, XIST and KCNQ1OT1 have no shared

sequence features [20, 21, 23], however using a k-mer based similarity metric we have identified

> 104 basepairs of sequence in KCNQ1OT1 that map to functional domains in XIST.

67

A)

B)

C)

D)

E)

F)

G)

H)

I)

J)

Figure 3.8: hmmSEEKR predicts XIST associated protein binding in KCNQ1OT1. A) HMM
viterbi parse showing hits to the A-repeat in KCNQ1OT1 (blue), RBM15 eCLIP read den-
sity (middle plot), and SRSF1 eCLIP read density (bottom plot). B) HMM viterbi parse
showing hits to the B-repeat (top, blue regions), and HNRNPK eCLIP read density (bot-
tom). C) HMM viterbi parse in KCNQ1OT1 for the D-repeat (top, blue regions) and HN-
RNPK eCLIP read density (bottom). D) HMM viterbi parse for E-repeat in KCNQ1OT1 (top,
blue regions) and eCLIP read density for MATR3 (middle) and PTBP1 (bottom). E-J) Total
eCLIP reads assigned to the HMM or randomized parses for RBM15, SRSF1, HNRNPK (B-
repeat), HNRNPK (D-repeat), MATR3, and PTBP1 respectively. HMM parameterizations were
θA = (4, .9999, .9999), θB = (4, .9999, .9999), θD = (2, .9999, .9999), θE = (4, .9999, .9999) for
A-,B-,D-,and E- respectively.

68

2.6 Transcriptome-wide RBP Prediction

Many of the proteins that bind to XIST and KCNQ1OT1 bind throughout the transcrip-

tome [29]. Furthermore, XIST clusters with thousands of transcripts in the human genome based

on k-mer content [14]. Therefore, we hypothesized that XIST -like sub-sequences may be found

throughout the transcriptome, both in lncRNAs as well as in pre-mRNAs. To test this hypoth-

esis, we trained 4 HMMs on the A-,B-,D-, and E-repeats of human XIST using parameters in

Table 3.5 (Methods 4.1, Transition parameters) and used hmmSEEKR to scan the set of all

unspliced coding and non-coding transcripts in the human genome. The Viterbi parses for the

A-,B-,D-, and E-repeat HMMs extracted sequences from the transcriptome that were significantly

more similar to the query compared to the unparsed sequences (Figure 3.9). We then compared

the results of our HMM against ENCODE eCLIP data for proteins that we have shown are en-

riched within each XIST repeat (Table 3.3).

A)

B)

C)

D)

SEEKR Correlation SEEKR Correlation

HMM Hits
Unspliced Transcripts

Figure 3.9: hmmSEEKR models trained on XIST tandem repeats extract sub-sequences with
higher SEEKR correlation to the query than unparsed sequences using parameters listed in Table
3.5. A) A-repeat HMM hits relative to unparsed sequences, B) B-repeat HMM hits relative to
unparsed sequences. C) D-repeat HMM hits relative to unparsed sequences. D) E-repeat HMM
hits relative to unparsed sequences. x-axis represents the SEEKR correlation from the query to
each transcript. Parameterizations as in Table 3.5 (Methods 4.1, Transition parameters).

The hmmSEEKR HMMs significantly out-performed randomized HMM parses for each of the

proteins we tested. The A-repeat trained HMM successfully captured significantly more reads for

69

RBM15 (Figure 3.10 A left; p� 10−100, chi-squared test) and SRSF1 (Figure 3.10 B; p� 10−100,

chi-squared test) than did the randomized hits. Furthermore, true HMM hits throughout the

transcriptome had significantly more reads per hit than the shuffled parses for RBM15 eCLIP

data as well as significantly more reads per hit than three RBPs that are not known to associate

with XIST : UTP3, RBM22, and ZC3H8 (Figure 3.11 A; p� 10−100, student’s t-test) and SRSF1

(Figure 3.11 B; p� 10−100, student’s t-test).

R
ea

ds
R

ea
ds

R
ea

ds

R
ea

ds
R

ea
ds

R
ea

ds

A)

B)

C)

D)

E)

F)

G)

R
ea

ds

Figure 3.10: hmmSEEKR models trained on XIST tandem repeats predict RBP binding regions
throughout the transcriptome. A-G) Total number of eCLIP reads assigned to HMM Viterbi
parse hits compared to randomized shuffling of hits within each transcript for RBM15 (A),
SRSF1 (B), HNRNPK B-repeat (C), HNRNPK D-repeat (D), MATR3 (E), TIA1 (F), PTBP1
(G) Parameterizations as in Table 3.5 (Methods 4.1, Transition parameters).

The B-repeat trained model had significantly more reads assigned from HNRNPK eCLIP

data than the random parse (Figure 3.10 C, p � 10−100, chi-squared test), and significantly

more reads per hit than the randomized parses (Figure 3.11 C, p � 10−100, student’s t-test).

70

The B-repeat model is the only HMM that has a smaller mean of log2 read counts than UTP3

per hit (1.09, 1.24 respectively; p < 10−52 student’s t-test), but had significantly more reads

per hit than RBM22 and ZC3H8 (p � 10−100, student’s t-test). The D-repeat HMM captured

more reads than the B-repeat HMM (Figure 3.10 C-D), and overlapped significantly more reads

than randomized parses (Figure 3.10 D, p � 10−100, chi-square test) as well as more reads per

hit than the randomized parses and RBM22, ZC3H8, and UTP3 (Figure 3.11 D, p � 10−100,

student’s t-test).

A) B) C) D)

E) F) G)

Figure 3.11: hmmSEEKR models trained on XIST tandem repeats predict binding sites of XIST
associated RBPs throughout the transcriptome. A-G) log2 read count per hit distribution for
the true HMM hits compared to the shuffled parses, for RBM15 (A), SRSF1 (B), HNRNPK
B-repeat (C), HNRNPK D-repeat (D), MATR3 (E), TIA1 (F), PTBP1 (G). Also shown are the
distribution of log2 read counts for non-XIST associated proteins RBM22, ZC3H8, and UTP3.
Parameterizations as in Table 3.5 (Methods 4.1, Transition parameters).

Finally, the E-repeat trained HMM also successfully predicted associated protein binding bet-

ter than randomized parses (Figure 3.11 E-G). MATR3 had significantly more reads assigned by

the true HMM (Figure 3.10 E, p� 10−100, chi-square test) and more reads per hit than random

(Figure 3.11 E, p � 10−100, student’s t-test). The E-repeat trained HMM assigned significantly

71

more reads from TIA1 eCLIP (Figure 3.10 F, p � 10−100, chi-squared test) and the number of

reads per hit for the true HMM parses and the randomized parses was significantly higher (Fig-

ure 3.11 F, p � 10−100, student’s t-test). PTBP1 displayed the highest ratio of assigned reads

between the true HMM and randomized parses over all comparisons (Figure 3.10 A-G) and as-

signed significantly more eCLIP reads than the randomized parses (Figure 3.10 G, p � 10−100,

chi-squared test) as well as more reads per hit compared to random (Figure 3.11 G, p� 10−100,

student’s t-test). MATR3, PTBP1, and TIA1 all had significantly more reads per hit in the

HMM parse compared to the RBPs that do not associate with XIST (p � 10−100, student’s

t-test). These data show that domains with k-mer based similarity to XIST in the transcriptome

are binding XIST -associated proteins in a manner consistent with the hypotheses in [2, 14].

3 Discussion

The non-coding portion of our genome is a vast and nebulous network of RNA transcripts

whose functions are largely unknown – and if they are, their mechanism(s) of action have proven

difficult to understand. A major obstacle to better understanding lncRNA function is the rela-

tively unknown sequence-to-function relationship in lncRNAs. In particular, even the traditional

principles of conservation analysis seem to provide little insight into lncRNAs [12, 16, 22]. There-

fore, an entirely different toolbox is needed if computational prediction of functional lncRNAs are

to be made.

Our lab has recently developed a k-mer based algorithm for quantification of sequence simi-

larities between non-coding transcripts [14]. This method was built for comparison of full-length

sequences, however it is clear from the relationship between XIST and Rsx that much of XIST ’s

sequence bears no resemblance to Rsx [2], and often only sub-sequences within a larger lncRNA

may be conserved between species [12, 16]. A statistical model was necessary to identify where

within a lncRNA sequence there are regions of non-linear sequence similarity between the lncRNA

and a query domain that has some a priori known function, e.g. the tandem repeats of XIST.

Here, we have developed a python package, hmmSEEKR, that uses an HMM to parse se-

quences of interest into regions that either have k-mer based similarity to some known functional

domain, or not. hmmSEEKR utilizes the underlying model of lncRNA sequence functionality

in SEEKR [14] and hypothesizes that the functionality of lncRNA can be localized within func-

72

tional modules [1, 2, 12, 16, 17] in order to more precisely pin down the sequence relationship

between two lncRNAs.

We found that hmmSEEKR was able to reproduce the non-linear sequence relationship be-

tween XIST and Rsx without the a priori extraction of tandem repeat domains from Rsx ([2],

Figure 3.5). Additionally, hmmSEEKR identified regions of non-linear sequence similarity be-

tween XIST and KCNQ1OT1 for each of the XIST functional domains that an HMM was

trained on. This indicates that KCNQ1OT1 contains the necessary sequence information bind

the RBPs required for PRC mediated silencing, which we verified with statistical analysis of EN-

CODE eCLIP data [29]. Finally, we found that hmmSEEKR models trained on A-,B-,D-, and E-

repeats within XIST overlapped with significantly more eCLIP reads for each query’s associated

proteins (Table 3.3) than randomly generated parses, and in all cases except TIA1 the eCLIP

reads per hit were significantly higher for the hmmSEEKR parses than the randomized parses.

hmmSEEKR was therefore able to predict functional binding locations for XIST -associated pro-

teins throughout the transcriptome.

There may be numerous transcripts in our genome that contain the necessary information

to function similarly to XIST, Rsx, and KCNQ1OT1. hmmSEEKR represents the first tool de-

signed to consider functional analogy rather than homology when modeling function between

RNA transcripts. Going forward, we hope to computationally predict and experimentally verify

transcripts that hmmSEEKR identifies as containing the necessary information to silence through

PRC recruitment.

4 Methods

4.1 Parameter Estimation

A hidden markov model is comprised of a stochastic transition matrix A, where each row

vector ψi corresponds to a categorical distribution representing the probability of hidden state

i transitioning to state j. The emission matrix E, where each row corresponds to a categorical

distribution of k-mer frequencies. Finally, there is the initialization matrix π that describes the

probability of starting at each hidden state at t = 1.

73

Emission Parameters

We defined the emission distribution for the query and null hidden states to be k-mer frequen-

cies taken from a set of training sequences. For the query hidden state, we defined our training

sets to be XIST repeats A,B,D, and E. For the null hidden state, we defined the set of training

sequences to be the set of unspliced lncRNAs in the human transcriptome. A separate HMM was

trained for each XIST repeat.

Some of the XIST repeats are quite short, for example XIST repeat B is only ≈ 200bp in

length. Therefore, it is often the case that there are fewer nucleotides than there are parameters

to estimate leading to zeros in the probability distribution. In reality, zero probability k-mers are

both unlikely, as many of the motifs for RBPs that bind XIST have no non-zero probabilities,

and also mathematically intractable, as log-space for probability calculations is required for long

sequences.

To correct for this parameterization problem we employed pseudo-counts, specifically we

use a +1 pseudo-count for all k-mers in the training set (i.e. initialize the counts array to 1).

The hypothesis driving the pseudo-count is that despite the limited training data implying zero

probability events, this only occurs because there is insufficient data to sample enough k-mers

and their frequencies. Given the transition matrix A, each row i (representing a hidden state’s

emission distribution) within A is a categorical distribution ψi comprised of the frequencies for

each possible k-mer. It can be shown that the maximum a posteriori, or MAP, estimate for the

k-mer frequency distribution ψi is achieved by adding a pseudo-count of 1 to each k-mer [24].

This is achieved by placing a Dirichlet prior on the k-mer frequency distribution:

ψi ∼ Dir(αAAAi + 1, αAATi + 1, . . . , αGGGi + 1)

xi ∼ Cat(ψAAAi , ψAATi , . . . , ψGGGi)

The α parameters in the Dirichlet distribution would be the observed counts of each k-mer,

and the +1 represents the pseudo-count. As the α for a given k-mer increases, the probability

“concentration” around that k-mer increases – so when a sample of ψi is drawn – the k-mers with

high α parameters are going to have the highest frequencies, and therefore most likely to be

drawn when an observation xi is drawn. That is to say, the best estimate of the k-mer frequen-

cies, given the data available and the uncertainty in it, is achieved by adding a count of 1 to all

74

k-mers. Intuitively this makes sense, as this addition has the largest impact when there is very

little data to work with (less than 4k k-mers to train from), and very little impact when there is

substantial data as is the case for the null hidden state, which is trained on many thousands of

k-mers.

Transition Parameters and k

We used the SEEKR algorithm to calculate a score for how well the HMM performed at iden-

tifying query-like sequence regions based off their k-mer similarity to the original query. For a

given set of parameters, the Kullback-Leibler diveregence was calculated between a SEEKR corre-

lation distributions of parsed and unparsed sequences, by running hmmSEEKR on all transcripts

in the human unspliced transcriptome and comparing the Viterbi “hits” to the original, unspliced

transcripts. The KL-divergence is a metric of “distance” between two probability distributions.

The KL-Divergence is defined as [37]:

DKL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x
(3.2)

Where DKL is the KL-Divergence between two probability distributions P and Q. P represents

the SEEKR score distribution of the HMM parse “hits” (contiguously “+” labeled k-mers within

the sequence) to the query sequence, and Q represent the SEEKR score distribution of unparsed

sequences to the query sequence, representing a ‘reference’. If P = Q then DKL = 0. D increases

as the probability distributions become more dissimilar to each other. DKL(P ||Q) 6= DKL(Q||P),

so for consistency DKL(P ||Q) was always calculated. Being comprised of unparsed sequences,

Q(x) just depends on k. In the real dataset, P and Q are histograms calculated from the data,

and so the calculation of DKL compares the frequencies of SEEKR correlations in each bin for

the two distributions. The larger the difference between P and Q, the more successful the HMM

was at parsing out highly correlated regions to the query.

The goal was to find a set of parameters, α (+ → +), β (− → −), and k, that maximize the

expression in equation 3.3.

argmax
α,β,k

[
µS
∑
x∈X

P (x|α, β, k) log
P (x|α, β, k)

Q(x|k)

]
(3.3)

75

Where µS is the average HMM score (log-likelihood of the sequence, Methods 4.2 “HMM

Score”) over all hits in the transcriptome, P (x) is the distribution of SEEKR scores for parsed

out hits, and Q(x) is the distribution of SEEKR scores for full length unspliced transcripts in the

human transcriptome:

Query k α β

Repeat A 4 .9999 .9999

Repeat B 4 .9999 .9999

Repeat D 2 .75 .9999

Repeat E 3 .5 .9999

Table 3.5: Best values of k, the + → + parameter α, and − → − parameter β as determined
through a grid search based approach to identify sequences with the highest SEEKR correlation
to the query.

We found that β must always be close to 1, whereas significant variance was found for the

value of α amongst the different XIST queries (Table 3.5). We also found that there was often

significant overlap of hits between the varying sets of parameters for each query, implying that

there was general consistency regardless of general parameterization. (Note: Repeat A, k = 5

scored higher than k = 4, however, the HMM model for k = 5 has a positive expectation for the

log-likelihood matrix between query and null. All score based sequence models generally require

a negative expectation [20] to prevent spurious “hits” due to random chance, and simulations we

performed indicated this was a problem).

4.2 Pseudo-code and algorithms

The functions that drive much of analysis in the hmmSEEKR package are found in the core-

functions.py file. These include the algorithms behind HMM analysis including the forward,

backward, Viterbi, and Baum-Welch algorithm implementations. In addition, several functions

crucial for parsing the supplied DNA sequences and outputting in human readable format are

found within this file.

k-mer counting

k-mer counting is at the heart of both SEEKR and hmmSEEKR. This calculation is one

of the simplest, but potentially most time consuming portions of the analysis. This is largely

because there is no way around reading along the supplied string(s), and counting every k-mer

76

as encountered. To speed k-mer counting up, Algorithm 1 has been implented using the cython

package within Python, which is a library that allows for C-like implementation of python code.

The pseudo-code in Algorithm 1 is implemented in kmers.py and kmers.pyx and takes a

FASTA file as input. The program then saves a dictionary, or hash map, with k-mers as keys

and their counts as values is created, and as each k-mer is encountered within the sequence, that

k-mer’s count is incremented by one.

Algorithm 1: Counting k-mers from supplied sequences

Result: Python dictionary of k-mer counts
read in fasta file
strFasta ← concactenate fasta strings with delimiter character
intL ← calculate total length excluding delimiter
dictKmerMap ← initialize dictionary of k-mers with initial counts of 1
for k-mer in sequence do

if k-mer in dictKmerMap then
dictKmerMap[k-mer]←increment k-mer by 1

else
do not increment

end

end
Save binary file of python dictionary containing counts

Ambiguous Nucleotides

Transcripts containing regions of ambiguous sequence are of concern when building the

viterbi parse, as ambiguous k-mers are not included in the emission distributions of the hid-

den state. Therefore only sequences of k-mers containing A,T,C, or G are allowed. To adjust

for any ambiguous positions within the sequence, Algorithm 2 stores two lists of indices. The

first stores the position, or index, of each allowable k-mer, and the second stores the position of

any k-mer containining an “N” within it. If there are any “N” within the sequence, the list of

k-mers passed into the Viterbi algorithm are split into distinct sub-sequences, because the regions

flanking the ambiguous nucleotides are not adjacent to each other. Finally, when mapping the

Viterbi parse back to the original sequence, the two lists of indices generated above are used to

merge the results back to their original order.

An example would best illustrate what this portion of the code is trying to achieve. For sim-

plicity, let k = 1, and our observation be X = A,A,N,N, T, T . Counting indices from 1, the

77

allowable k-mer indices in X are {1, 2, 5, 6}. The ambiguous k-mer indices are {3, 4}. As the se-

quence X is fragmented by two Ns at position 3 and 4, the flanking sequences are passed to the

Viterbi algorithm to be parsed separately: {{A,A}, {T, T}}. The grouping algorithm then sorts

the viterbi parse back in with the ambiguous nucleotides, {+,+, N,N,−,−}.

Algorithm 2: Generate unambiguous observed sequence

Result: Sequence of unambiguous k-mers
listO←initialize empty list to contain k-mers
listIdx←initialize empty list to contain k-mer indices
listAmbigIdx←initialize empty list to contain ambig k-mer locations
listKmers←list of k-mers that can be constructed from ATCG
intIndex←0
for k-mer in sequence do

if k-mer in listKmers then
Append k-mer to listO
Append intIndex to listIdx

else
Append intIndex to listAmbigIdx

end
intIndex+1

end
return listO listIdx listAmbigIdx

Identifying hits from the Viterbi parse

Within hmmSEEKR a Viterbi parse is a sequence of state labels that have been assigned to

each k-mer from a DNA sequence, e.g. if the DNA sequence was “AAAACCCC”, and k = 4,

then the k-mer sequence is {AAAA,AAAC,AACC,ACCC,CCCC}, and a hypothetical Viterbi

parse would be a list such as {−,−,−,+,+}, where “−” represents the null state, and “+” repre-

sents the query state. Algorithm 3 takes the list {−,−,−,+,+} and converts it into a grouped

list, e.g. {{−,−,−}, {+,+}}. This also exactly defines what term a hit within our HMM, consec-

utively labeled “+” regions with a sequence from the viterbi parse.

HMM Score

The score for the HMM is calculated for each “hit” within the transcript, as defined in the

prior section. We assume that the set of state labels from the Viterbi algorithm are now known.

This allows, for a hit X of length L, the likelihood that X was emitted from the query state over

its entire length.

78

Algorithm 3: Group HMM hits

Result: Viterbi backtrack grouped into consecutive states
condition←Swap condition, i.e. ’-’ encountered
Key←Stores a FLAG that switches value when condition is met
previousNuc←Previous nucleotide
for nucleotide in sequence do

currNucBool←TRUE/FALSE is nucleotide in condition
prevNucBool←TRUE/FALSE is previousNuc in condition
if currNucBool6=prevNucBool then

swap Key
else

Key
end
previousNuc←nucleotide

end

P (X = {x1, . . . , xL}|Y = {+, . . . ,+}) =

L∏
i=1

p(xi|+)

This likelihood can be compared to the likelihood of X had it been emitted from the null

state, and a likelihood ratio can be calculated.

S′ =

∏L
i=1 p(xi|+)∏L
i=1 p(xi|−)

Due to the lengths of most sequences, these calculations are moved to log-space, yielding the

formula for the score reported by hmmSEEKR. These calculations are implemented in Algorithm

4.

S =
L∑
i=1

[log2 p(xi|+)− log2 p(xi|−)]

Viterbi Parse

The premise behind the Viterbi algorithm is outlined in the introduction. Briefly, the algo-

rithm finds the sequence of hidden states that maximizes the joint probability function of the

HMM defined in equation 1.4, given the observations X, the transition matrix A, the emission

matrix E, and the initial probabilities of each hidden state π. The viterbi algorithm is imple-

79

Algorithm 4: Log-likelihood

arrLLR←empty array with an element for each hit
hits←list of sequences that HMM called hits
Query←Frequency distribution of kmers in query
Null←Frequency distribution of kmers in null
for hit in hits do

intLLRQuery← 0
intLLRNull← 0
for kmer in hit do

intLLRQuery+ logP (kmer|Query)
intLLRNull+ logP (kmer|Null)

end
arrLLR[hit]←intLLRQuery-intLLRNull

end

mented in hmmSEEKR as in Algorithm 5.

At each step in the Viterbi algorithm, the state transition that maximizes the probability at

time t is recorded, for each state. That is, at time t, the “+” state has a most likely transition

from either “+” or “-” from time t−1, and the “-” state at time t has a most likely transition from

either “+” or “-” from time t− 1 in the sequence. To identify which was the most likely, a back-

trace must be calculated after all these calculations have been made, and this is implemented in

Algorithm 6.

80

Algorithm 5: Viterbi parse

O←Sequence of kmers
E←Emission matrix
A←Transition matrix
π←Starting probability of each state
states← List of states i.e. [-,+]
dictViterbi←List of dicts with cumulative probability at each time t for each state

dictViterbi[1][query] means the cumulative probability at time t = 1 at state=query

dictMaxState←List of dicts containing the state at time t− 1 that maximized transition to
each state at time t

Initial probabilities at each state at time t = 1
for state in states do

dictViterbi[1][state]← logP (state|π) + logP (O1|state)
end

Calculate probability of being in each state at time t and find which state transition
maximizes this probability

for t in range(2,length of O) do

Add new dictionary element to dictViterbi and dictMaxState
for state in states do

selectedState← start with the first state to calculate prob
currMaxProb← logP (state|selectedState) + dictV iterbi[t− 1][selectedState]

for checkState in remaining states do

tempProb← logP (state|checkState) + dictV iterbi[t− 1][checkState]

if tempProb>currMaxProb then
set currMaxProb to tempProb

else
keep currMaxProb the same
selectedState←checkState

end

end
currMaxProb←currMaxProb+ logP (Ot|state)
dictViterbi[t][state]←currMaxProb
dictMaxState[t][state]←selectedState

end

end

81

Algorithm 6: Backtrack viterbi

backtrack←empty list to append maximizing states to
dictViterbi←List of dicts with cumulative probability at each time t for each state

dictViterbi[1][query] means the cumulative probability at time t = 1 at state=query

dictMaxState←List of dicts containing the state at time t− 1 that maximized transition to
each state at time t

maxProbability←largest probability at time t = T
maxState←state associated with maxProbability
maxPriorState←dictMaxState[T][maxState], get state that transitioned to maxState at
t = T − 1

Append maxPriorState to backtrack
for t=T-2 to t=1 do

Append dictMaxState[t+1][maxPriorState] to backtrack
maxPriorState←dictMaxState[t+1][maxPriorState]

end
return backtrack with order flipped to start at t = 1

82

Forward Algorithm

The forward algorithm calculates the likelihood of the data, P (X), as well as the probability

of the sequence x1:t ending at state i at time t. The algorithm was implemented through the

pseudo-code below in hmmSEEKR.

Algorithm 7: Forward Algorithm

X←Sequence of kmers
Y←Sequence of hidden states
E←Emission matrix
A←Transition matrix
π←Starting probability of each state
states← List of states i.e. [-,+]

αi(t)←forward probabilities, indexed by time t and state i i.e. the probability of being in
state i at time t
T ←length of X

Initialize probabilities at t = 1
αi(t = 1)← π(i) + logP (Xt|Yt = i)

for t in T do
Append new entry to α
for state ”i” in states do

currP←{+:0,-:0} : dict with entry for each state, indexed by state name
for state ”j” in states do

Aij(t)← P (Yt = i|Yt−1 = j)
currP[j]← αj(t− 1) +Aij(t)

end
αi(t)← logsumexp (currP) + logP (Xt|Yt = i)

end

end

83

Backward Algorithm

The backward algorithm calculates the probability of the observed sequence P (X), as well as

the probability of sequence xt+1:T starting in state i at time t. The algorithm was implemented

as below in hmmSEEKR and is primarily used in the Baum-Welch algorithm.

Algorithm 8: Backward Algorithm

X←Sequence of kmers
Y←Sequence of hidden states
E←Emission matrix
A←Transition matrix
π←Starting probability of each state
states← List of states i.e. [-,+]

βi(t)←backward probabilities, indexed by time t and state i i.e. the probability of being
in state i at time t
T ←length of X

Initialize probabilities at t = T
βi(t = T)← 0 ; probability of 1 in log space

for T to t=1 do
Append new entry to β
for state ”i” in states do

currP←{+:0,-:0} : dict with entry for each state, indexed by state name
for state ”j” in states do

Aij(t)← P (Yt+1 = j|Yt = i)
Ej(t+ 1)← P (Xt+1|Yt+1 = j)
currP[j]← βj(t+ 1) +Aij(t) + Ej(t+ 1)

end
βi(t)← logsumexp (currP)

end

end
return β inverted s.t. 1→ T rather than T → 1

Baum-Welch Algorithm

This algorithm updates the transition matrix parameters. The premise of this algorithm

is outlined in the introduction. Briefly, the BW algorithm calculates the expected number of

“observations” of each hidden state i, as well as the expected number of “observed” transitions

from each hidden state i to all possible states j (which may include i, and in hmmSEEKR does).

84

Algorithm 9: Baum Welch Parameter Update

X←Sequence of kmers
Y←Sequence of hidden states
E←Emission matrix
A←Transition matrix
π←Starting probability of each state
states← List of states i.e. [-,+]

α(t)←forward probabilities
β(t)←backward probabilities

γi(t)← P (Yt=i,X|A,E,π)
P (Xt)

; probability of being in state i at time t

εij(t)← P (Yt=i,Yt+1=j,X|A,E,π)
P (Xt)

; probability of being in state i at time t and state j at time

t+1

for each time ”t” in sequence X do
for state ”i” in states do

γi(t)← αi(t) + βi(t)− logsumexp (αi(t) + βi(t))
for state ”j” in state do

Aij(t+ 1)← logP (Yt+1 = j|Yt = i)
Ej(t+ 1)← logP (Xt+1|Yt+1 = j)
numerator← αi(t) +Aij(t) + βj(t+ 1) + Ej(t+ 1)
denominator← logP (Xt)

εij(t)←numerator-denominator

end

end
Append new entry to γ list of dicts
Append new entry to ε list of dicts

end
Sum γ and ε over all values of T for all states i and j. The sum below represents the
expected number of transitions from state i to state j over the sequence.

A∗ij =

∑
t εij(t)∑
t γi(t)

Do not update emission matrix E.

return A∗

85

Program Input Purpose

kmers.py fasta file Count k-mers within fasta
files provided

train.py counts files from kmers.py for
query and null

Generate matrices that
define the HMM

mSEEKR.py fasta file for sequence(s) of
interest, path to output of
train.py

retrieve the viterbi parse of
the sequence of interest to
identify potential functional
domains

bw.py HMM training sequences,
initial parameterizations

provide MLE of transition
parameters

Table 3.6: Individual programs within the hmmSEEKR package.

4.3 Python implementation

hmmSEEKR has been implemented as a python package in order to rapidly train HMMs

and scan sequences of interested for potential function domains. Given the general algorithms

defined above, which roughly correspond to individual functions within the hmmSEEKR package,

a thorough guide is provided for how the algorithms have been implemented.

Installation

Table 3.6 provides an overview of the different python programs within the hmmSEEKR

package. The first step is to ensure that Python3.6 or greater is installed, as well as the SEEKR

package and hmmSEEKR repository which can be retrieved entering the following commands:

> pip install seekr

> git clone https://github.com/spragud2/mSEEKR

> cd mSEEKR/

> python setup.py build_ext --inplace

k-mer frequencies

To count k-mers for a set of sequences, a single fasta file containing any number of sequences

is required. The program counts the k-mers in all sequences, and then calculates the average over

all of them to provide a single distribution of k-mer frequencies. Additionally the program is ca-

pable of multi-processing over different values of k, such that 2-,3-,4-,. . . -mers can be calculated

simultaneously.

86

Parameter Function

–fasta Path to fasta file
–name Output file name
–dir Output directory
-k Comma delimited list of values of k e.g. 2,3,4,5
-a Alphabet to use e.g. ATCG
-n Number of processors to use

Table 3.7: Parameters for kmers.py

The program counts k-mers as defined in Algorithm 1. The following python code reads in

the parameters defined above. The provided fasta file is converted into a singular string with

a delimiter character $, and the total length of the string excluding the delimiter is calculated.

Finally, the script kmers.pyx, which contains the implementation of Algorithm 1, is spooled onto

the number of processors passed, and the results are compiled into a dictionary.

> python kmers.py --fasta ./fastaFiles/gencode.vM17.lncRNA_transcripts.fa -k 2,3,4 --

name mm10Trscpts -n 3

The results are then saved into a binary file containing a python dictionary containing k-mer

frequencies for each value of k specified in the arguments.

Read in specified values of k, and the alphabet
kVals = [int(i) for i in args.k.split(’,’)]
a = args.a.upper ()

#SEEKR fasta reader module
F = Reader(args.fasta)
fS = F.get_seqs ()

#Join sequences together using $ delimiter character
fString = ’$’.join(fS).upper().strip()
lenFString = sum([len(i) for i in fS if ’$’ not in i])

Need to figure out how to deal with very long fasta files (~ 2-3X the
size of the transcriptome in mice)

if lenFString >= 2147483647:
fString=’$ ’.join(fS [::10]).upper ()

#Split jobs onto processors and call kmers.pyx cython file
with pool.Pool(args.n) as multiN:

jobs = multiN.starmap(kmers.main ,product (*[[fString],kVals ,[a]]))
dataDict = dict(jobs)

#Save data
kDir = args.dir
if not kDir.endswith(’/’):

kDir+=’/’
pickle.dump(dataDict ,open(f’{kDir}{args.name}.skr’,’wb’))

87

HMM Creation

To create the HMM files necessary for running the mSEEKR.py program, the train.py defines

the matrices A,E, π that are defined in Algorithms 5, 7, 8, and saves them in a single binary file.

The emission probabilities are equivalent to the k-mer frequencies calculated from kmers.py. Due

to restrictions of available training data for our own experiments, the user can manually provide

the self-transition parameters for the query and null hideen states.

If training sequences are available, the –bw flag can be passed to run the Baum-Welch algo-

rithm to obtain an MLE for the transition parameters. If the –bw flag is passed, the –iter argu-

ment must be passed. The results from the –bw are then passed directly into the main train.py

program. To better check the results of a Baum-Welch operation it is recommended to run the

bw.py program separately with a variety of initial parameterizations. This allows for inspec-

tion of whether local minima or a potential global maximum have been reached. The results

from the previous experiment can then be manually passed to train.py –qT and –nT arguments.

Parameter Function

–query Path to kmer counts of query
–null Path to kmer counts of null
–qT Query→Query transition probability
–nT Null→Null transition probability
–qPrefix Name of query for file path
–nPrefix Name of null for file path
–dir Directory to put HMM model
-k Comma delimited list of values of k e.g. 2,3,4,5
-a Alphabet to use e.g. ATCG

Table 3.8: train.py parameters

hmmSEEKR creates directories for the save files in a predefined fashion to ensure proper

retrieval of the correct matrices when running mSEEKR.py. The following code checks to see if

the directory specified in –dir exists, and if not, creates the directory.

> python train.py --query ./counts/mouseA.skr --null ./counts/mm10Trscpts.skr -k 2,3,4

--qPrefix mouseA --nPrefix mm10Trscpts --qT .9999 --nT .9999 --dir ./markovModels/

if not args.dir.endswith(’/’):
args.dir+=’/’

newDir = f’{args.dir}{args.qPrefix}_{args.nPrefix }/’

88

if not os.path.exists(newDir):
os.mkdir(newDir)

else:
flag = True
while flag:

usrIN = input(f’Directory {newDir} exists , continue? y/n: ’).strip
().lower()

if usrIN == ’y’:
flag = False

elif usrIN == ’n’:
print(’Initiating self -destruct sequence ’)
sys.exit()

else:
print(’Please enter y or n’)

The script then loads the k-mer counts specified in –query and –null and passes and begins loop-

ing through the values of k specified in the -k argument. The following code loops through each

value of k, loads the k-mer frequencies, and creates the matrices A,E, π in the form of a python

dictionary. The 2-state dimensions of this HMM are hard-coded into the script.

Load k-mer counts
qCount = pickle.load(open(args.query ,’rb’))
nCount = pickle.load(open(args.null ,’rb’))

Loop through specified values of k
Check if they exist in the counts file ,
and call corefunctions.HMM to generate the HMM matrices
for k in kVals:

if (k in qCount.keys()) and (k in nCount.keys()):
qKCount = qCount[k]
nKCount = nCount[k]
kDir = newDir+f’{k}/’
if not os.path.exists(kDir):

os.mkdir(kDir)
A,E,states ,pi = corefunctions.HMM(qKCount ,nKCount ,k,args.a,args.qT

,args.nT)
kmers = [’’.join(p) for p in itertools.product(alphabet ,repeat=k)]
queryMkv = corefunctions.transitionMatrix(qKCount ,k,alphabet)
nullMkv = corefunctions.transitionMatrix(nKCount ,k,alphabet)
lgTbl = corefunctions.logLTbl(queryMkv ,nullMkv)

else:
print(f’Missing {k}-mer counts in count file ... skipping ’)

np.savetxt(f ’{kDir}logtbl.mkv ’,lgTbl)
pickle.dump({’A’:A,’E’:E,’pi’:pi ,’states ’:states},open(f’{kDir}hmm.mkv

’,’wb’))

The resulting python dictionaries are then saved into a binary file in a dictionary within the

directory matching the following pattern:

--dir/--qPrefix_--nPrefix/-k/hmm.mkv

89

4.4 Viterbi Parsing

The primary script within the hmmSEEKR is mSEEKR.py. This script takes the matri-

ces A,E, π created from train.py and scans a sequence, or set of sequences, and calculates the

most likely parse, or Viterbi path, through each sequence. Therefore a sequence, e.g. ATCG,

is converted into an equal length string of state lebels, e.g. - - + -. The program then extracts

consecutively + (query) labeled nucleotides, and reports each such region as a hit.

> python mSEEKR.py --db ./fastaFiles/mm10kcn.fa -n 8 --prefix test --model ./markovModels

/mouseA_mm10Trscpts -k 3 --fasta

Parameter Function

–model Path to .mkv file output from train.py or bw.py
-k Length of short motif (k-mer)
–db Sequence database to use, currently accepts FASTA format
–prefix Output file name prefix
-a Alphabet to use e.g. ATCG
-n Number of processors to use (default=1)
–fasta Include sequence in output

Table 3.9: mSEEKR.py parameters

The following code section from mSEEKR.py loads in the specified HMM model from the

–model argument, and ensures that the path has been provided in the correct format, i.e. ending

with a “/”.

if not model.endswith(’/’):
model +=’/’

kDir = model+f’{args.k}’+’/’
modelName = model.split(’/’)[-2]
Check if file exists and open if so, else skip this iteration of the

loop

hmm = pickle.load(open(kDir+’hmm.mkv’,’rb’))

Explicitly determine k from the size of the log matrix and the size of
the alphabet used to generate it

k = int(log(len(hmm[’E’][’+’].keys()),len(args.a)))
kmers = [’’.join(p) for p in product(alphabet ,repeat=k)] # generate k-mers
target = Reader(args.db)
targetSeqs ,targetHeaders = target.get_seqs (),target.get_headers ()
targetMap = defaultdict(list)

The sequences to be parsed are then spooled onto the number of threads provided in the -n

argument, and that is executed by this code:

90

#Pool processes onto number of CPU cores specified by the user
with pool.Pool(args.n) as multiN:

jobs = multiN.starmap(hmmCalc ,product (*[list(zip(targetHeaders ,
targetSeqs))]))

dataDict = dict(jobs)
#Check if no hits were found
if not all(v == None for v in dataDict.values ()):

Each sequence is then prepared for input into the Viterbi algorithm. First, the sequences are

passed to the function kmersWithAmbigIndex, which implements the pseudo-code outlined in

Algorithm 2. The next step is the calculation of the Viterbi parse, as outlined in Algorithm 5.

’’’ hmmCalc
Run several functions including viterbi algorithm , log -likelihood , and

generate output dataframes
Input: fasta file information
Output: dataframe object
’’’
def hmmCalc(data):

tHead ,tSeq = data
O,oIdx ,nBP = corefunctions.kmersWithAmbigIndex(tSeq ,k)
A,E,states ,pi= hmm[’A’],hmm[’E’],hmm[’states ’],hmm[’pi’]
bTrack = corefunctions.viterbi(O,A,E,states ,pi)
#Zip the indices of unambig k-mers with their viterbi derived HMM

state labels
coordBTrack = list(zip(oIdx ,bTrack)) # [(1,’-’) ,(2,’+’,...(n,’+’))]
mergedTrack = coordBTrack + nBP # add back in ambig locations
mergedTrack.sort(key=itemgetter (0)) # sort master list by index
hmmTrack = [i[1] for i in mergedTrack] # fetch just state label from

mergedTrack [’-’,’+’,...,’+’]
groupedHits = corefunctions.groupHMM(hmmTrack) #

[’-----’,’++++++++++’,’-’,’++++’,’------------’]

Return sequences of HMM hits , and their start and end locations in
the original sequence

seqHits ,starts ,ends = corefunctions.formatHits(groupedHits ,k,tSeq)
if (seqHits):

df = corefunctions.hitOutput(seqHits ,starts ,ends ,k,E,tHead ,tSeq)
return tHead ,df

The parsed sequences are then combined with any ambiguous sequence regions from the orig-

inal supplied sequence such that the original sequence is reconstructed, but with hidden state

labels instead of nucleotides.

Finally the regions that have been designated as “hits” are compiled in a dataframe within

the formatHits and hitOutput functions. Additionally, this is where the HMM score is calcu-

lated as in Algorithm 4.

91

4.5 bw.py - Transition parameter optimization

A key feature of hmmSEEKR is that it searches target transcripts for a very specific query

that is defined a priori. hmmSEEKR obtains the query k-mer frequency estimates using the

maximum likelihood estimate plus a pseudocount from the training sequences. The transition

parameters, however, are less well defined or have no clear calculation from the data. Therefore,

we opted to use an iterative expectation-maximization scheme while keeping the emission param-

eters, i.e. the k-mer frequencies, fixed.

To do this, a custom implementation of the Baum-Welch algorithm was written as part of the

hmmSEEKR package. The algorithm works by alternating between the expectation of P (Y |X, θ),

and then updating the parameters in a way that is guaranteed to increase the likelihood of the

model, relative to the previous set of parameters, up to a local maximum.

Within the context of an HMM and the transition parameters, this corresponds to calculating

the expected number of observations belonging to each hidden state i in the training sequence,

as well as the expected number of hidden state transitions i → j, where j can be any allowable

transition from the transition matrix A. From here, these expectations are used to update the

parameters θ. This is done by taking the partial derivative of the complete log-likelihood func-

tion with respect to each parameter and solving for 0. These update rules are outlined in the

introduction as well as in algorithm 9.

Parameter Function

–prior Path to binary .mkv file output from train.py
-k Length of short motif (k-mer)
–db Sequence database to use, currently accepts FASTA format
–createfile Create new file rather than overwrite
–its Number of iterations to run BW algorithm

Table 3.10: bw.py parameters

Example usage:

> python bw.py -k 4 --db ./fastaFiles/xist.fa --prior markovModels/mouseA_mm10Trscpts

/4/hmm.mkv --its 3 -cf

The algorithm is implemented in python as in algorithms 7, 8, 9. Initially, the bw.py script

reads in an initially trained model that contains guesses for the parameters α and β. The script

then checks the sequence for any ambiguous nucleotides, and if any exist, the sequence is split

92

into contiguous chunks of unambiguous sequence. From here, a dictionary is created that will

track the values of the parameters α and β over each iteration of the BW algorithm.

fa = Reader(args.db)
seqs = fa.get_seqs ()[0]
model = args.prior

k = args.k

Identify the location of any ambiguous nucleotides (N)
O,oIdx ,nBP = corefunctions.kmersWithAmbigIndex(seqs ,k)
Load in train.py output
hmm = pickle.load(open(args.prior ,’rb’))

’’’
A - transition matrix (dictionary)
E - emission matrix (dictionary)
pi - initial state probabilities (always 50/50)
states - list of states (query ,null)
’’’
A,E,pi,states = hmm[’A’],hmm[’E’],hmm[’pi’],hmm[’states ’]

data = defaultdict(list)
data[’alpha’]. append(A[’+’][’+’])
data[’beta’]. append(A[’-’][’-’])

Following this, the main loop of the BW algorithm begins. First, the forward and backward

probabilities are calculated for the entire training sequence. The updated parameters α and β are

then calculated. Last, these parameters are normalized to sum to one (to be a proper probability

distribution), and the loop continues until the specified number of iterations is completed.

for i in tqdm(range(args.its)):
a = corefunctions.fwd(O,A,pi,states ,E) # forward probabilities
b = corefunctions.bkw(O,A,pi,states ,E) # backwards probabilities
A = corefunctions.update(a,b,O,states ,A,E) # update parameter values

The above step yields probabilities that are not yet normalized (do
not sum to 1)

That is , for prior state "i" (can be either query or null)
transitioning to either query (+) or null (-): p(-|i) + p(+|j) != 1

Here , we calculate the marginal probability for transitioning from
state i to either state i or j (normalizing constant)

Then , divide each probability p(-|i) and p(+|i) by the marginal
probability

Now , p(-|i) + p(+|i) = 1
for i in states:

marginal probability (normalizing constant)
marg = logsumexp(list(A[i]. values ())) # cannot simply sum in log -

space , logsumexp to sum log -space numbers without over/under -
flow (see wiki page)

A[i][’+’]-=marg # log -space , so this represents the division by
the normalizing constant

A[i][’-’]-=marg # as above
data[’alpha ’]. append(A[’+’][’+’])
data[’beta’]. append(A[’-’][’-’])

93

From here, two files are saved. One contains the values of α and β over each iteration of the

BW algorithm. This file should be checked for convergence of the parameters. Second, a new

binary file containing the updated HMM is saved, and can be passed to mSEEKR.py.

Data dictionary tracks the iterations of BW algorithm for manual
inspection if necessary

arr = np.array(list(data.values ()))
arr = 2** arr
arr = arr.T
np.savetxt(os.path.dirname(args.prior) +’/hmm_BWparameters.txt’,arr ,fmt=’

%.9f’)
if args.createfile:

bn = os.path.basename(args.prior)
bn = bn.split(’.’)[0]
bn+=’_MLE’
bn = os.path.dirname(args.prior) +’/’+ bn
pickle.dump({’A’:A,’E’:E,’pi’:pi ,’states ’:states},open(f’{bn}.mkv’,’wb

’))
elif not args.createfile:

pickle.dump({’A’:A,’E’:E,’pi’:pi ,’states ’:states},open(f’{args.prior}’
,’wb’))

4.6 Xist Enriched Proteins

All ENCODE eCLIP Experiments (non-controls) in K562 cells were selected and downloaded

from the ENCODE database (bigWig file type).

xargs -L 1 curl -O -L < encodefileurls.txt\\for i in *bigWig; do ./bigWigToBedGraph

ii.bedGraph;done

We then calculated the ratio of average eCLIP signal within Xist Repeats to the average

signal outside repeats.

We defined X as a set of size L = 19275, where each entry corresponds to a basepair in XIST.

Each nucleotide within this set, xi, was given a value depending on whether or not eCLIP signal

was present from the bigWig files retrieved from ENCODE. If there was no signal, a value of 0

was given to xi, otherwise the read density from the bigWig file was assigned to xi.

We calculated the eCLIP signal enrichment of each protein within each XIST repeat by using

the transcript coordinates of each repeat in XIST to define a set I, which contains all individual

nucleotide positions within a given XIST repeat. Set Ic is the complement of I, relative to X,

and contains all basepairs in XIST that are not in I.

If N is the size of I, i.e. the size of the given repeat in XIST, then the ratio of average signal

R is:

94

R =
L−N
N

∑
i∈I Xi∑
j∈Ic Xj

4.7 Rsx HMM Analysis

Human XIST repeats A,B,D,E were used as queries within 4 separate hmmSEEKR mod-

els. For the null model, human unspliced lncRNAs (GENCODE V26) were used. A model was

trained for each value of k ∈ {2, 3, 4, 5, 6} and for the transition parameters all combinations of

the following values were tested, α, β ∈ {.5, .75, .9, .99, .999, .9999}. The koala Rsx transcript [38]

was then scanned using each of these HMMs. For measuring performance of the HMM, precision

was defined as the number of nucleotides from the HMM Viterbi parse that fell within the correct

Rsx repeat as found in [2]. Recall was defined as the percentage of each Rsx repeat recovered

from the associated XIST trained HMM. The F1 score was then calculated as

F1 =

(
2

precision−1 + recall−1

)
(3.4)

And the set of parameters for each XIST query with the highest F1 score was chosen (Table

3.11.

Query k α β

Repeat A 4 .9999 .9999

Repeat B 4 .9999 .9999

Repeat D 2 .9999 .9999

Repeat E 4 .9999 .9999

Table 3.11: Best values of k, the + → + parameter α, and − → − parameter β as determined
through a grid search based approach to identify sequences with the highest SEEKR correlation
to the query.

4.8 KCNQ1OT1 Analysis

HMM Training

HMMs were trained on each of the human XIST A-,B-,D-, and E- repeats [6] with parame-

ters θ = (k, α, β). The A-repeat had parameters θA = (4, .9999, .9999), B-repeat θB = (4, .9999, .9999),

D-repeat θD = (2, .9999, .9999), E-repeat θE = (3, .9999, .9999). The unspliced human KCNQ1OT1

gene (GENCODE V26) was provided as the “target” sequence to be parsed.

95

Randomization

Randomized parses were generated for each query’s results by taking each hit i after scanning

KCNQ1OT1 and generating a random point between [1, L− li + 1] (where li is the length of hit i).

The hit was then “moved” to this new location within the transcript. This process was repeated

for each hit.

eCLIP Read overlap

To calculate eCLIP signal, we used featureCounts (-s 2 -F SAF -p options) to overlap the

reads from each proteins BAM file with the genomic coordinates of the HMM hits, and random-

ized parses.

4.9 Transcriptome Search

The eCLIP files from the RBPs in Table 3.3 were sourced from ENCODE, with the BAM

files corresponding to the GRCH38 build of the human genome pulled from the following experi-

ments:

• RBM15 - ENCFF739LLZ

• SRSF1 - ENCFF696TJG

• HNRNPK - ENCFF894NKS

• TIA1 - ENCFF080VML

• MATR3 - ENCFF162SAS

• PTBP1 - ENCFF765BPN

• RBM22 - ENCFF045LAO

• ZC3H8 - ENCFF409GUM

• UTP3 - ENCFF826UUS

ENCODE chromatin association RNA-seq data (experiment ID: ENCFF957VGD) was used

to identify expressed transcripts that are enriched around chromatin. The following programs

96

were then used to identify these expressed transcripts, parse sequences of interest, and overlap

the reads from the BAM files above with the HMM parses:

• mSEEKR/v1.0.8

• RSEM/1.2.31

• deeptools/3.0.0

• subread/2.0.0

The unspliced/spliced ratio for each transcript was done using RSEM. A fasta file with tran-

script isoforms of interest was generated. For this analysis, a single spliced isoform (primary) and

the unspliced transcript were included in the fasta file from the GENCODE V26 annotation gff

file. The following commands were then run:

module add rsem/1.2.31

module add samtools

module add deeptools/2.5.2

module add bowtie/1.2.2

sbatch --mem 50g -t 5:00:00 -N 1 -n 24 --wrap=’bowtie-build --threads 24 v26_combo.fa

hgT’

sbatch --mem 50g --wrap=’rsem-prepare-reference . hgT’

After the reference was built for RSEM, the rsem-calculate-expression program was

called to quantify the TPM of the unspliced and spliced isoforms of each transcript, where EXP-

NAME was replaced with the name of the ENCODE experiment being quantified.

sbatch -N 1 --mem 50g -t 5:00:00 -J rsemChr -n 24 --wrap=’rsem-calculate-expression -p

24 --paired-end READS1.fastq READS2.fastq hgT EXPNAME’

Following this, transcripts with unspliced isoforms above a threshold TPM (> log2 TPM 0)

were used as input into hmmSEEKR. Parameterizations for the A-,B-,D-, and E-repeat HMMs

were as in Table 3.5, with the null models trained on unspliced human lncRNAs (GENCODE

V26).

A SAF (Simple Annotation Format) file was then created from the hmmSEEKR output. A

SAF file is similar to BED6 input with re-arranged columns. We then used feature counts to

97

quantify the read overlaps between the hmmSEEKR SAF file and the ENCODE BAM files for

each protein.

In tandem with the real hmmSEEKR parse, a randomized parse for each transcript was cre-

ated (as in the KCNQ1OT1 analysis). For each hit within a transcript a random point was cho-

sen with uniform probability within the transcript from position 1, to the final coordinate less

the length of the hit. This randomly chosen point was then designated as the start point for the

random hit, with length equal to the original hit from hmmSEEKR. From here, a SAF file was

created for all randomized hits and overlapped with the ENCODE eCLIP data.

We then calculated the total number of reads retrieved by the true HMM and the randomized

parses, as well as the average number of reads per hit. Statistics were calculated using a chi-

square test for total reads retrieved, with a null hypothesis of 1:1 ratio between the true HMM

and the randomized parses, and a student’s t-test of the average number of reads per hit with a

null hypothesis of no difference between HMM and random.

98

REFERENCES

[1] N. Brockdorff, “Local tandem repeat expansion in Xist RNA as a model for the functionali-
sation of ncRNA,” Non-coding RNA, 2018, issn: 2311553X.

[2] D. Sprague, S. A. Waters, J. M. Kirk, J. R. Wang, P. B. Samollow, P. D. Waters, and J. M.
Calabrese, “Nonlinear sequence similarity between the Xist and Rsx long noncoding RNAs
suggests shared functions of tandem repeat domains,” RNA, 2019, issn: 14699001.

[3] G. Pintacuda, G. Wei, C. Roustan, B. A. Kirmizitas, N. Solcan, A. Cerase, A. Castello, S.
Mohammed, B. Moindrot, T. B. Nesterova, and N. Brockdorff, “hnRNPK Recruits PCGF3/5-
PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing,”
Molecular Cell, 2017, issn: 10974164.

[4] X. Wang, K. J. Goodrich, A. R. Gooding, H. Naeem, S. Archer, R. D. Paucek, D. T. Youmans,
T. R. Cech, and C. Davidovich, “Targeting of Polycomb Repressive Complex 2 to RNA by
Short Repeats of Consecutive Guanines,” Molecular Cell, 2017, issn: 10974164.

[5] J. Zhao, B. K. Sun, J. A. Erwin, J. J. Song, and J. T. Lee, “Polycomb proteins targeted by a
short repeat RNA to the mouse X chromosome,” Science, 2008, issn: 00368075.

[6] C. J. Brown, “The human XIST gene: analysis of a 17 kb inactive X-specific RNA that
contains conserved repeats and is highly localized within the nucleus.,” Cell (Cambridge),
vol. 71, no. 3, pp. 527–542, 1992 10, issn: 0092-8674.

[7] N. Brockdorff, “The product of the mouse Xist gene is a 15 kb inactive X-specific transcript
containing no conserved ORF and located in the nucleus.,” Cell (Cambridge), vol. 71, no. 3,
pp. 515–526, 1992 10, issn: 0092-8674.

[8] J. Grant, S. K. Mahadevaiah, P. Khil, M. N. Sangrithi, H. Royo, J. Duckworth, J. R. Mc-
Carrey, J. L. Vandeberg, M. B. Renfree, W. Taylor, G. Elgar, R. D. Camerini-Otero, M. J.
Gilchrist, and J. M. Turner, “Rsx is a metatherian RNA with Xist-like properties in X-
chromosome inactivation,” Nature, 2012, issn: 00280836.

[9] Y. Hoki, N. Kimura, M. Kanbayashi, Y. Amakawa, T. Ohhata, H. Sasaki, and T. Sado, “A
proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation
in mouse,” Development, 2009, issn: 09501991.

[10] B. Moindrot, A. Cerase, H. Coker, O. Masui, A. Grijzenhout, G. Pintacuda, L. Schermelleh,
T. B. Nesterova, and N. Brockdorff, “A Pooled shRNA Screen Identifies Rbm15, Spen, and
Wtap as Factors Required for Xist RNA-Mediated Silencing,” Cell Reports, 2015, issn:
22111247.

[11] H. Sunwoo, D. Colognori, J. E. Froberg, Y. Jeon, and J. T. Lee, “Repeat E anchors Xist
RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein
(CIZ1),” Proceedings of the National Academy of Sciences of the United States of America,
2017, issn: 10916490.

[12] T. B. Nesterova, S. Y. Slobodyanyuk, E. A. Elisaphenko, A. I. Shevchenko, C. Johnston,
M. E. Pavlova, I. B. Rogozin, N. N. Kolesnikov, N. Brockdorff, and S. M. Zakian, Character-
ization of the genomic Xist locus in rodents reveals conservation of overall gene structure and
tandem repeats but rapid evolution of unique sequence, 2001.

99

[13] M. E. Royce-Tolland, A. A. Andersen, H. R. Koyfman, D. J. Talbot, A. Wutz, I. D. Tonks,
G. F. Kay, and B. Panning, “The A-repeat links ASF/SF2-dependent Xist RNA processing
with random choice during X inactivation,” Nature Structural and Molecular Biology, 2010,
issn: 15459993.

[14] J. M. Kirk, S. O. Kim, K. Inoue, M. J. Smola, D. M. Lee, M. D. Schertzer, J. S. Wooten,
A. R. Baker, D. Sprague, D. W. Collins, C. R. Horning, S. Wang, Q. Chen, K. M. Weeks,
P. J. Mucha, and J. M. Calabrese, “Functional classification of long non-coding RNAs by
k-mer content,” Nature Genetics, 2018, issn: 15461718.

[15] M. Jiang, J. Anderson, J. Gillespie, and M. Mayne, “uShuffle: A useful tool for shuffling
biological sequences while preserving the k-let counts,” BMC Bioinformatics, 2008, issn:
14712105.

[16] K. C. Pang, M. C. Frith, and J. S. Mattick, Rapid evolution of noncoding RNAs: Lack of
conservation does not mean lack of function, 2006.

[17] H. Hezroni, D. Koppstein, M. G. Schwartz, A. Avrutin, D. P. Bartel, and I. Ulitsky, “Princi-
ples of Long Noncoding RNA Evolution Derived from Direct Comparison of Transcriptomes
in 17 Species,” Cell Reports, 2015, issn: 22111247.

[18] R. Johnson and R. Guigó, “The RIDL hypothesis: Transposable elements as functional do-
mains of long noncoding RNAs,” RNA, 2014, issn: 14699001.

[19] C. Burge and S. Karlin, “Prediction of complete gene structures in human genomic DNA,”
Journal of Molecular Biology, 1997, issn: 00222836.

[20] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment
search tool,” Journal of Molecular Biology, 1990, issn: 00222836.

[21] T. J. Wheeler and S. R. Eddy, “Nhmmer: DNA homology search with profile HMMs,” Bioin-
formatics, 2013, issn: 14602059.

[22] P. Johnsson, L. Lipovich, D. Grandér, and K. V. Morris, Evolutionary conservation of long
non-coding RNAs; Sequence, structure, function, 2014.

[23] P. Rice, L. Longden, and A. Bleasby, EMBOSS: The European Molecular Biology Open
Software Suite, 2000.

[24] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition,” Proceedings of the IEEE, 1989, issn: 15582256.

[25] L. Pachter, M. Alexandersson, and S. Cawley, “Applications of generalized pair Hidden
Markov models to alignment and gene finding problems,” Journal of Computational Biology,
2002, issn: 10665277.

[26] J. Henderson, “Finding genes in DNA with a Hidden Markov Model,” Journal of Computa-
tional Biology, 1997, issn: 10665277.

[27] T. Derrien, R. Johnson, G. Bussotti, A. Tanzer, S. Djebali, H. Tilgner, G. Guernec, D. Mar-
tin, A. Merkel, D. G. Knowles, J. Lagarde, L. Veeravalli, X. Ruan, Y. Ruan, T. Lassmann, P.
Carninci, J. B. Brown, L. Lipovich, J. M. Gonzalez, M. Thomas, C. A. Davis, R. Shiekhat-

100

tar, T. R. Gingeras, T. J. Hubbard, C. Notredame, J. Harrow, and R. Guigó, “The GEN-
CODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolu-
tion, and expression,” Genome Research, 2012, issn: 10889051.

[28] D. Cirillo, M. Blanco, A. Armaos, A. Buness, P. Avner, M. Guttman, A. Cerase, and G. G.
Tartaglia, Quantitative predictions of protein interactions with long noncoding RNAs: To the
Editor, 2016.

[29] E. L. Van Nostrand, G. A. Pratt, A. A. Shishkin, C. Gelboin-Burkhart, M. Y. Fang, B.
Sundararaman, S. M. Blue, T. B. Nguyen, C. Surka, K. Elkins, R. Stanton, F. Rigo, M.
Guttman, and G. W. Yeo, “Robust transcriptome-wide discovery of RNA-binding protein
binding sites with enhanced CLIP (eCLIP),” Nature Methods, 2016, issn: 15487105.

[30] C. Chu, Q. C. Zhang, S. T. Da Rocha, R. A. Flynn, M. Bharadwaj, J. M. Calabrese, T.
Magnuson, E. Heard, and H. Y. Chang, “Systematic discovery of Xist RNA binding pro-
teins,” Cell, 2015, issn: 10974172.

[31] D. Dominguez, P. Freese, M. S. Alexis, A. Su, M. Hochman, T. Palden, C. Bazile, N. J. Lam-
bert, E. L. Van Nostrand, G. A. Pratt, G. W. Yeo, B. R. Graveley, and C. B. Burge, “Se-
quence, Structure, and Context Preferences of Human RNA Binding Proteins,” Molecular
Cell, 2018, issn: 10974164.

[32] D. Ray, H. Kazan, K. B. Cook, M. T. Weirauch, H. S. Najafabadi, X. Li, S. Gueroussov, M.
Albu, H. Zheng, A. Yang, H. Na, M. Irimia, L. H. Matzat, R. K. Dale, S. A. Smith, C. A.
Yarosh, S. M. Kelly, B. Nabet, D. Mecenas, W. Li, R. S. Laishram, M. Qiao, H. D. Lipshitz,
F. Piano, A. H. Corbett, R. P. Carstens, B. J. Frey, R. A. Anderson, K. W. Lynch, L. O.
Penalva, E. P. Lei, A. G. Fraser, B. J. Blencowe, Q. D. Morris, and T. R. Hughes, “A com-
pendium of RNA-binding motifs for decoding gene regulation,” Nature, 2013, issn: 00280836.

[33] D. P. Patil, C. K. Chen, B. F. Pickering, A. Chow, C. Jackson, M. Guttman, and S. R. Jaf-
frey, “M6 A RNA methylation promotes XIST-mediated transcriptional repression,” Nature,
2016, issn: 14764687.

[34] C. Stork, Z. Li, L. Lin, and S. Zheng, “Developmental Xist induction is mediated by en-
hanced splicing,” Nucleic Acids Research, 2019, issn: 13624962.

[35] A. Pandya-Jones, Y. Markaki, J. Serizay, T. Chitiashvilli, W. Mancia, A. Damianov, C.
Chronis, B. Papp, C.-K. Chen, R. McKee, X.-J. Wang, A. Chau, H. Leonhardt, S. Zheng,
M. Guttman, D. L. Black, and K. Plath, “An Xist-dependent protein assembly mediates Xist
localization and gene silencing,” bioRxiv, 2020.

[36] K. M. Seibt, T. Schmidt, and T. Heitkam, “FlexiDot: Highly customizable, ambiguity-aware
dotplots for visual sequence analyses,” Bioinformatics, 2018, issn: 14602059.

[37] B. C. Brookes and A. N. Kolmogorov, “Foundations of the Theory of Probability,” The
Mathematical Gazette, 1951, issn: 00255572.

[38] R. N. Johnson, D. O’Meally, Z. Chen, G. J. Etherington, S. Y. Ho, W. J. Nash, C. E. Grue-
ber, Y. Cheng, C. M. Whittington, S. Dennison, E. Peel, W. Haerty, R. J. O’Neill, D. Col-
gan, T. L. Russell, D. E. Alquezar-Planas, V. Attenbrow, J. G. Bragg, P. A. Brandies, A. Y. Y.
Chong, J. E. Deakin, F. Di Palma, Z. Duda, M. D. Eldridge, K. M. Ewart, C. J. Hogg, G. J.

101

Frankham, A. Georges, A. K. Gillett, M. Govendir, A. D. Greenwood, T. Hayakawa, K. M.
Helgen, M. Hobbs, C. E. Holleley, T. N. Heider, E. A. Jones, A. King, D. Madden, J. A.
Graves, K. M. Morris, L. E. Neaves, H. R. Patel, A. Polkinghorne, M. B. Renfree, C. Robin,
R. Salinas, K. Tsangaras, P. D. Waters, S. A. Waters, B. Wright, M. R. Wilkins, P. Timms,
and K. Belov, “Adaptation and conservation insights from the koala genome,” Nature Genet-
ics, 2018, issn: 15461718.

102

CHAPTER 4: SEEKR K-MERS

1 Introduction

K-mer counting is a seemingly relatively straightforward process. Given a sequence X =

{x1, . . . , xL} of length L, for each position i ∈ 1 ≤ i ≤ (L− k + 1) within the sequence, a

sub-string is sliced from [i, i+ k). Where “[” indicates inclusive, and “)” indicates non-inclusive.

A hash-map (python dictionary), then saves the count for each k-mer as encountered in X. In

many applications, the frequency of each k-mer is then calculated by dividing each k-mer count

by the total number of k-mers, i.e. L− k + 1.

SEEKR differs from this approach in that the algorithm adjusts for the non-uniformity of

k-mers within the genome. Some k-mers are more, or less, frequent than others solely due to

mononucleotide frequency variations within the genome [1, 2]. Therefore, the enrichment for

already common k-mers, or depletion of rare k-mers, is not informative unless it is known that

they are significantly more enriched or depleted than background. To account for this, SEEKR

calculates a z-score for each k-mer rather than a frequency.

The z-score is calculated by first calculating the k-mer frequencies within some reference

set of sequences, e.g. the transcriptome. From this reference set of k-mer frequencies, SEEKR

calculates, for each k-mer “j”, the mean frequency of each k-mer µj and the standard deviation

of each k-mer σj .

For each k-mer j within a sequence X, Xj (the frequency of j in X), has a z-score X∗j [3]:

X∗j =
Xj − µj
σj

(4.1)

We observed that k-mer similarities between XIST and RSX that these z-scores were approx-

imately log-normally distributed [4]. For the analysis in [4], we transformed z-scores as outlined

in 2.3.4. However, we sought to perform a more rigorous analysis of different methodologies for

adjusting k-mer counts. This chapter outlines the methods that we used and their results.

103

2 Results and k-mer counting methods

2.1 k-mer counts are log-normally distributed

We observed that a challenge when estimating the correlation between highly repetitive re-

gions of XIST and other cis-repressive lncRNAs was that the k-mer counts were heavily right-

skewed [4]. Pearson correlation is primarily intended to calculate the correlation between two

normally distributed random variables. Spearman correlation can be used when this condition

is not met, for a strictly monotonic relationship, but we found that the mode of the k-mer count

distribution for any sequence or sub-sequence was 0, yielding artificially high correlations be-

tween any two given sequences [4].

To correct for the right skewed distribution of k-mers across all sequences, we first confirmed

that k-mer counts within lncRNAs are log-normally distributed (Figure 4.1). The left panel of

Figure 4.1 shows the marginal count distribution of k-counts summed over all possible k-mers,

over all annotated human transcripts (Methods 4.3.1). We then log-transformed the data and

observed an approximately normal distribution (Figure 4.1), with the exception being the mode

of the distribution was still a count of 0. This indicated that k-mer frequencies amongst all tran-

scripts were log-normally distributed and that correcting for this in the SEEKR algorithm may

yield better correlation estimates amongst transcripts.

0 100 200
raw count

0.0

0.1

De
ns

ity

0 5
log count

0

1

2

Figure 4.1: k-mer counts are log-normally distributed. A) The frequency of k-mer counts over
all k-mers, over all annotated transcripts in the human genome. B) The distribution in (A),
log-transformed.

104

2.2 k-mer counting methodologies

We then asked if a k-mer counting strategy could be devised that yielded more consistent

estimates of correlations between two sequences, in a way that is sensible and mathematically

tractable. The primary difficulty is the addition of a z-score calculation step within SEEKR,

which transforms the data in a way that suppresses the influence of naturally frequent or de-

pleted k-mers within a reference set, e.g. the transcriptome.

We found in [4], that the z-scores themselves were log-normally distributed, and so we log-

transformed the z-scores after shifting all values by equation 4.2 [4].

M∗ij = log2 (Mij + |minM |+ 1) (4.2)

Where M is the SEEKR z-score matrix, i is the row, j is the column (Mij is then the co-

ordinates of a single data point in M), and minM is the smallest value in the matrix M . This

translation of the data allows for the calculation of the logarithm. An issue with this methodol-

ogy, however, is that there is no clear best choice of value to add to each data point in M , due to

the log-transform. The goal, therefore, was to add the smallest possible value to each data-entry

without destroying the linear relationship between row vectors. Each row within a SEEKR ma-

trix represents the vector of k-mer frequencies within a single sequence, and the correlation step

in SEEKR calculates the Pearson correlation between all pair-wise combinations of rows within

M .

Below, we iterate through a series of algorithms for generating the final SEEKR matrix from

which correlations will be calculated, and the resulting correlations.

Method 1. Kirk et al. 2018

The first method we outline is the original algorithm published in Kirk et al.. Here, we first

count the occurrence of each k-mer in a sequence. This count is then normalized to a per-kB

count by dividing each k-mer count by the length of the sequence and multiplying by 1000. This

process is then repeated for a reference set of sequences, e.g. the transcriptome, and the mean

frequency and standard deviation for each k-mer over the reference set are calculated. From

there, each frequency count in the SEEKR frequency matrix is transformed using Equation 4.1

105

[3].

MXA MXB MXC HXD MXE
KR1 -0.048 0.266 0.001 0.146 -0.117
KR2 0.085 -0.089 -0.111 -0.024 0.147
KR3 -0.041 -0.119 -0.009 -0.021 0.267
KR4 0.180 -0.114 -0.081 0.087 0.294

Table 4.1: SEEKR Pearson correlations between the tandem repeats of Xist and Rsx. Correla-
tions were calculated as in [3], 2018.

From here, the pair-wise correlations of each sequence’s k-mer profile, i.e. the row vector

of k-mer z-scores, are calculated. For each of the methods outlined in this chapter, the tandem

repeats of XIST were compared against the tandem repeats of Rsx as in [4]. The correlations for

this algorithm are shown in Table 4.1.

0 5 10
MXA

0

5

10

15

KR
1

0 20
MXB

0

5

10

15

KR
1

0 5 10
MXC

0

5

10

15

KR
1

2 0 2 4
HXD

0

5

10

15

KR
1

0 5 10
MXE

0

5

10

15

KR
1

0 5 10
MXA

0.0

2.5

5.0

7.5

KR
2

0 20
MXB

0.0

2.5

5.0

7.5

KR
2

0 5 10
MXC

0.0

2.5

5.0

7.5

KR
2

2 0 2 4
HXD

0.0

2.5

5.0

7.5

KR
2

0 5 10
MXE

0.0

2.5

5.0

7.5

KR
2

0 5 10
MXA

2

0

2

4

6

KR
3

0 20
MXB

2

0

2

4

6

KR
3

0 5 10
MXC

2

0

2

4

6

KR
3

2 0 2 4
HXD

2

0

2

4

6

KR
3

0 5 10
MXE

2

0

2

4

6

KR
3

0 5 10
MXA

0.0

2.5

5.0

7.5

KR
4

0 20
MXB

0.0

2.5

5.0

7.5

KR
4

0 5 10
MXC

0.0

2.5

5.0

7.5

KR
4

2 0 2 4
HXD

0.0

2.5

5.0

7.5

KR
4

0 5 10
MXE

0.0

2.5

5.0

7.5

KR
4

Figure 4.2: Scatter plots of SEEKR z-scores for all pair-wise comparisons between
MXA,MXB,HXD,MXE and KR1,KR2,KR3, and KR4 using Method 1. Each dot represents
a k-mer z-score for both transcripts being compared (x,y axis).

106

MXA MBX MXC HXD MXE
KR1 -0.021 0.325 0.038 0.193 -0.163
KR2 0.084 -0.122 -0.122 -0.013 0.145
KR3 -0.077 -0.093 0.014 -0.023 0.249
KR4 0.210 -0.114 -0.068 0.112 0.398

Table 4.2: SEEKR Pearson correlations between the tandem repeats of Xist and Rsx. Correla-
tions were calculated as in [4], 2019.

Method 2. Sprague et al. 2019

The second method outlined is the algorithm published in [4]. The k-mers are counted ex-

actly as in [3], however we additionally calculated the log2 of the z-scores using Equation 4.2.

Tandem repeat comparisons that were highly correlated as in Method 1 saw large increases in

correlation using this method, whereas uncorrelated regions saw little change (Table 4.2).

0 2 4
MXA

0

1

2

3

4

KR
1

0 2 4
MXB

0

1

2

3

4

KR
1

0 2
MXC

0

1

2

3

4

KR
1

0 1 2 3
HXD

0

1

2

3

4

KR
1

0 2
MXE

0

1

2

3

4

KR
1

0 2 4
MXA

0

1

2

3

KR
2

0 2 4
MXB

0

1

2

3

KR
2

0 2
MXC

0

1

2

3

KR
2

0 1 2 3
HXD

0

1

2

3

KR
2

0 2
MXE

0

1

2

3

KR
2

0 2 4
MXA

0

1

2

3

KR
3

0 2 4
MXB

0

1

2

3

KR
3

0 2
MXC

0

1

2

3

KR
3

0 1 2 3
HXD

0

1

2

3

KR
3

0 2
MXE

0

1

2

3

KR
3

0 2 4
MXA

0

1

2

3

KR
4

0 2 4
MXB

0

1

2

3

KR
4

0 2
MXC

0

1

2

3

KR
4

0 1 2 3
HXD

0

1

2

3

KR
4

0 2
MXE

0

1

2

3

KR
4

Figure 4.3: Scatter plots of SEEKR z-scores for all pair-wise comparisons between
MXA,MXB,HXD,MXE and KR1,KR2,KR3, and KR4 using Method 2. Each dot represents
a k-mer z-score for both transcripts being compared (x,y axis).

107

Method 3. Row-wise addition to z-scores

A concern when translating data, as in Equation 4.2, is the unequal effect it has when calcu-

lating the log of the data. Typically, Pearson correlation is translation invariant, i.e. the addition

of any constant to all elements of a vector does not affect its correlation with another vector.

This is because the calculation of the Pearson correlation involves 0-mean centering each vector,

which negates the addition or multiplication of any constant. Another intuition for this is that

moving a scatter plot around on a graph changes the location of the data points, but it doesn’t

change the line of best fit between the data.

MXA MXB MXC HXD MXE
KR1 -0.017 0.327 0.042 0.197 -0.163
KR2 0.088 -0.124 -0.120 -0.009 0.147
KR3 -0.079 -0.090 0.016 -0.022 0.246
KR4 0.214 -0.110 -0.066 0.115 0.404

Table 4.3: SEEKR Pearson correlations between the tandem repeats of Xist and Rsx. Corre-
lations were calculated as in Sprague et al., 2018., except that instead of the minimum of the
z-score matrix being added, the minimum of each row was added to all values within the row.

However, the inclusion of a log-transformation step alters the linear relationship of the data

depending on how far the data point is from 0. Therefore, it is ideal to add the smallest possible

constant to each entry in the matrix. Sprague et al. added the minimum of the entire matrix to

each z-score, however adding the minimum of each row to all values within that row allows for

the addition of the smallest possible value such that the log can be taken, without altering the

relationship between the k-mer counts within a given sequence. The results were similar to those

in Method 2, except with further increases in correlation between high correlated domains such

as KR4-MXE and KR1-MXB (Table 4.3).

Method 4: Column-wise addition to z-scores

To illustrate the point that the value added to the SEEKR matrix must be constant within a

row, here we repeat what was done in Method 3, but instead of adding the minimum of each row

to all values within that row, we take the minimum of each column and add that value to each

element within the column.

As an example, consider the hypothetical SEEKR z-score matrix in Table 4.5. After applying

108

0 2 4
MXA

0

1

2

3

4

KR
1

0 2 4
MXB

0

1

2

3

4

KR
1

0 2
MXC

0

1

2

3

4

KR
1

0 1 2 3
HXD

0

1

2

3

4

KR
1

0 2
MXE

0

1

2

3

4

KR
1

0 2 4
MXA

0

1

2

3

KR
2

0 2 4
MXB

0

1

2

3

KR
2

0 2
MXC

0

1

2

3

KR
2

0 1 2 3
HXD

0

1

2

3

KR
2

0 2
MXE

0

1

2

3

KR
2

0 2 4
MXA

0

1

2

3

KR
3

0 2 4
MXB

0

1

2

3

KR
3

0 2
MXC

0

1

2

3

KR
3

0 1 2 3
HXD

0

1

2

3

KR
3

0 2
MXE

0

1

2

3

KR
3

0 2 4
MXA

0

1

2

3

KR
4

0 2 4
MXB

0

1

2

3

KR
4

0 2
MXC

0

1

2

3

KR
4

0 1 2 3
HXD

0

1

2

3

KR
4

0 2
MXE

0

1

2

3

KR
4

Figure 4.4: Scatter plots of SEEKR z-scores for all pair-wise comparisons between
MXA,MXB,HXD,MXE and KR1,KR2,KR3, and KR4 using Method 3. Each dot represents
a k-mer z-score for both transcripts being compared (x,y axis).

the transformation described in this section, all values are greater than 0 which allows for the

log-transform of the data (Table 4.6. However, the k-mer frequencies within each sequence have

become jumbled. Consider the relationship between A and T in seq1. Prior to the transforma-

tion, T was clearly depleted relative to A in seq1, with z-scores of -2 and 0 respectively. After

the transformation, the SEEKR matrix is now indicating that A and T are equally frequent in

seq1. Likewise, G was depleted relative to A in both seq1 and seq2, but after the operation is

now enriched relative to A. This operation therefore does not make sense, as we are only trying

to move the data to be positive, such that we can calculate the log. While the correlations look

promising in Table 4.4, the scatter plots of the k-mer counts show that significant aberration has

been introduced to the data relative to Methods 1,2 and 3 (Figure 4.5).

Method 5: Pseudo-count to raw counts

A more natural transformation of the data is to take the logarithm of the raw count data,

which is guaranteed to be ≥ 0. A potential downside with this approach is that adding 1 to raw

109

MXA MXB MXC HXD MXE
KR1 -0.048 0.348 0.093 0.284 -0.098
KR2 0.057 -0.046 0.034 0.201 0.261
KR3 -0.061 -0.015 0.144 0.173 0.347
KR4 0.147 -0.094 0.044 0.241 0.451

Table 4.4: SEEKR Pearson correlations between the tandem repeats of Xist and Rsx. Corre-
lations were calculated as in Sprague et al., 2018., except that instead of the minimum of the
z-score matrix being added, the minimum of each column was added to all values within the
column.

A T C G
seq1 0 -2 5 -3
seq2 0 1 3 -2

Table 4.5: A hypothetical SEEKR z-score matrix.

A T C G
seq1 1 1 7 1
seq2 1 4 5 2

Table 4.6: The same matrix as in Table 4.5 but transformed by adding the minimum of each
column to all values within that column, then adding 1 such that all values are greater than 0.

counts has a differential effect on sequences of different lengths, i.e. adding +1 to the count of

all k-mers in a sequence that is 200bp long has a larger effect on the frequencies than a 10,000bp

sequence. Therefore, we tried two different approaches. In Method 5, we added +1 to the raw

counts of the data, length normalized the counts, and then took the log-transform, followed by

z-score calculation as in Kirk et al. (Table 4.7).

Method 6: Length normalized pseudo-count

The second method was to add 1 after length normalizing the k-mer counts per kB, effec-

tively making the pseudo-count equivalent between transcripts of different lengths, and then go-

ing through SEEKR as before. The results are shown in Table 4.8. This latter method of adding

a pseudo-count posterior to length normalization is the method we chose to continue using with

SEEKR going forward, as the mathematics are straigt forward and are best suited to the data

at hand, as well as yielding strong results between regions known to share similar function and

k-mer frequencies (Figure 4.7).

110

0 2 4
MXA

0

1

2

3

4
KR

1

0 2 4
MXB

0

1

2

3

4

KR
1

0 2
MXC

0

1

2

3

4

KR
1

0 1 2
HXD

0

1

2

3

4

KR
1

0 2
MXE

0

1

2

3

4

KR
1

0 2 4
MXA

0

1

2

3

KR
2

0 2 4
MXB

0

1

2

3

KR
2

0 2
MXC

0

1

2

3

KR
2

0 1 2
HXD

0

1

2

3

KR
2

0 2
MXE

0

1

2

3

KR
2

0 2 4
MXA

0

1

2

3

KR
3

0 2 4
MXB

0

1

2

3

KR
3

0 2
MXC

0

1

2

3

KR
3

0 1 2
HXD

0

1

2

3

KR
3

0 2
MXE

0

1

2

3

KR
3

0 2 4
MXA

0

1

2

3

KR
4

0 2 4
MXB

0

1

2

3

KR
4

0 2
MXC

0

1

2

3

KR
4

0 1 2
HXD

0

1

2

3

KR
4

0 2
MXE

0

1

2

3

KR
4

Figure 4.5: Scatter plots of SEEKR z-scores for all pair-wise comparisons between
MXA,MXB,HXD,MXE and KR1,KR2,KR3, and KR4 using Method 4. Each dot represents
a k-mer z-score for both transcripts being compared (x,y axis).

MXA MXB MXC HXD MXE
KR1 -0.068 0.232 0.024 0.181 -0.179
KR2 -0.074 -0.295 -0.087 0.071 0.126
KR3 -0.170 -0.170 0.063 0.001 0.205
KR4 0.119 -0.175 -0.014 0.148 0.387

Table 4.7: SEEKR Pearson correlations between the tandem repeats of Xist and Rsx. Correla-
tions were calculated adding a pseudo-count to the raw count data (Method 5).

MXA MXB MXC HXD MXE
KR1 -0.013 0.335 0.059 0.200 -0.163
KR2 0.039 -0.152 -0.080 -0.007 0.135
KR3 -0.102 -0.067 0.076 -0.025 0.220
KR4 0.249 -0.078 0.015 0.150 0.431

Table 4.8: SEEKR Pearson correlations between the tandem repeats of Xist and Rsx. Correla-
tions were calculated using a length normalized pseudo-count (Method 6).

111

0 5 10
MXA

0

5

10

15

KR
1

0 10 20 30
MXB

0

5

10

15

KR
1

0 5 10
MXC

0

5

10

15

KR
1

2 0 2 4
HXD

0

5

10

15

KR
1

0 5 10
MXE

0

5

10

15

KR
1

0 5 10
MXA

0.0

2.5

5.0

7.5

KR
2

0 10 20 30
MXB

0.0

2.5

5.0

7.5

KR
2

0 5 10
MXC

0.0

2.5

5.0

7.5

KR
2

2 0 2 4
HXD

0.0

2.5

5.0

7.5

KR
2

0 5 10
MXE

0.0

2.5

5.0

7.5

KR
2

0 5 10
MXA

2

0

2

4

6

KR
3

0 10 20 30
MXB

2

0

2

4

6

KR
3

0 5 10
MXC

2

0

2

4

6

KR
3

2 0 2 4
HXD

2

0

2

4

6

KR
3

0 5 10
MXE

2

0

2

4

6

KR
3

0 5 10
MXA

0.0

2.5

5.0

7.5

KR
4

0 10 20 30
MXB

0.0

2.5

5.0

7.5

KR
4

0 5 10
MXC

0.0

2.5

5.0

7.5

KR
4

2 0 2 4
HXD

0.0

2.5

5.0

7.5

KR
4

0 5 10
MXE

0.0

2.5

5.0

7.5

KR
4

Figure 4.6: Scatter plots of SEEKR z-scores for all pair-wise comparisons between
MXA,MXB,HXD,MXE and KR1,KR2,KR3, and KR4 using Method 5. Each dot represents
a k-mer z-score for both transcripts being compared (x,y axis).

112

2.5 0.0 2.5
MXA

2

0

2

4

KR
1

0 5
MXB

2

0

2

4

KR
1

2.5 0.0 2.5
MXC

2

0

2

4

KR
1

2.5 0.0 2.5
HXD

2

0

2

4

KR
1

2.5 0.0 2.5
MXE

2

0

2

4

KR
1

2.5 0.0 2.5
MXA

2

0

2

KR
2

0 5
MXB

2

0

2

KR
2

2.5 0.0 2.5
MXC

2

0

2

KR
2

2.5 0.0 2.5
HXD

2

0

2

KR
2

2.5 0.0 2.5
MXE

2

0

2

KR
2

2.5 0.0 2.5
MXA

2

0

2

KR
3

0 5
MXB

2

0

2

KR
3

2.5 0.0 2.5
MXC

2

0

2

KR
3

2.5 0.0 2.5
HXD

2

0

2

KR
3

2.5 0.0 2.5
MXE

2

0

2

KR
3

2.5 0.0 2.5
MXA

2

0

2

KR
4

0 5
MXB

2

0

2

KR
4

2.5 0.0 2.5
MXC

2

0

2

KR
4

2.5 0.0 2.5
HXD

2

0

2

KR
4

2.5 0.0 2.5
MXE

2

0

2
KR

4

Figure 4.7: Scatter plots of SEEKR z-scores for all pair-wise comparisons between
MXA,MXB,HXD,MXE and KR1,KR2,KR3, and KR4 using Method 6. Each dot represents
a k-mer z-score for both transcripts being compared (x,y axis).

113

3 Discussion

Several methods for counting k-mers in SEEKR were analyzed. We observed the methodol-

ogy in [3] could be improved, but the calculation in [4] was not optimal and a touch convoluted.

We found that k-mers are log-normally distributed in the genome (Figure 4.1), and that adding

a pseudo-count of 1 posterior to length normalization of the raw count data (Method 6), pro-

vided the sharpest distinction between correlated domains in Xist and Rsx, without erroneously

increasing correlation between domains that we originally did not find to have sequence based re-

lationships in [4] as well as linear relationships between the data that are well suited for Pearson

correlation calculations (Figure 4.7).

4 Methods

4.1 k-mer count distributions

For a given sequence, e.g.“seq1”, the number of occurrences for each k-mer was calculated.

This yields a vector representing {cAAA, cAAT , . . . cGGG}, where ckmer is the number of observed

counts for that k-mer. We then calculated the frequency distribution of counts in a sequence,

over all k-mers. E.g., if the k-mers AAA and GGG had counts cAAA = 5 and cGGG = 5, and no

other k-mers had a count of 5 in “seq1”, then we would record a frequency of 2 for the number

of times we observed a count of 5 in “seq1”. These observed frequencies were calculated for each

transcript and then summed, e.g. if we observed a count of 5 twice in “seq1” and 10 times in

“seq2”, then the marginal frequency of a count of 5 over those two sequences is 15.

P (frequency) =
∑

k-mers

∑
sequences

P (frequency,sequences,k-mers)

4.2 SEEKR Data Sources

For each of the analyses above, we used the following transcript annotations. For XIST, we

used Mouse A-repeat (MXA) [5], mouse B-repeat (MXB) [5], human D-repeat (HXD) [6], and

mouse E-repeat (MXE)[5]. For the Rsx repeats, we used the koala Rsx 1,2,3, and 4 repeats as

defined in [4]. For the reference set of sequences within SEEKR, used the GENCODE (M14)

annotated set of spliced lncRNA transcripts in the mouse transcriptome [7].

114

REFERENCES

[1] B. Haubold, “Alignment-free phylogenetics and population genetics,” Briefings in Bioinfor-
matics, 2014, issn: 14774054.

[2] K. Yang and L. Zhang, “Performance comparison between k -tuple distance and four model-
based distances in phylogenetic tree reconstruction,” Nucleic Acids Research, 2008, issn:
03051048.

[3] J. M. Kirk, S. O. Kim, K. Inoue, M. J. Smola, D. M. Lee, M. D. Schertzer, J. S. Wooten,
A. R. Baker, D. Sprague, D. W. Collins, C. R. Horning, S. Wang, Q. Chen, K. M. Weeks,
P. J. Mucha, and J. M. Calabrese, “Functional classification of long non-coding RNAs by
k-mer content,” Nature Genetics, 2018, issn: 15461718.

[4] D. Sprague, S. A. Waters, J. M. Kirk, J. R. Wang, P. B. Samollow, P. D. Waters, and J. M.
Calabrese, “Nonlinear sequence similarity between the Xist and Rsx long noncoding RNAs
suggests shared functions of tandem repeat domains,” RNA, 2019, issn: 14699001.

[5] N. Brockdorff, “The product of the mouse Xist gene is a 15 kb inactive X-specific transcript
containing no conserved ORF and located in the nucleus.,” Cell (Cambridge), vol. 71, no. 3,
pp. 515–526, 1992 10, issn: 0092-8674.

[6] C. J. Brown, “The human XIST gene: analysis of a 17 kb inactive X-specific RNA that
contains conserved repeats and is highly localized within the nucleus.,” Cell (Cambridge),
vol. 71, no. 3, pp. 527–542, 1992 10, issn: 0092-8674.

[7] T. Derrien, R. Johnson, G. Bussotti, A. Tanzer, S. Djebali, H. Tilgner, G. Guernec, D. Mar-
tin, A. Merkel, D. G. Knowles, J. Lagarde, L. Veeravalli, X. Ruan, Y. Ruan, T. Lassmann, P.
Carninci, J. B. Brown, L. Lipovich, J. M. Gonzalez, M. Thomas, C. A. Davis, R. Shiekhat-
tar, T. R. Gingeras, T. J. Hubbard, C. Notredame, J. Harrow, and R. Guigó, “The GEN-
CODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolu-
tion, and expression,” Genome Research, 2012, issn: 10889051.

115

CHAPTER 5: CONCLUSION

The non-coding portion of our genome represents a significant fraction of the mammalian

transcriptome [1]. Small non-coding RNAs are relatively well understood [1], however they make

up only a fraction of annotated non-coding RNA transcripts. Despite representing a large frac-

tion of known transcripts in the mammalian genome, we have solid understanding of only a hand-

ful of lncRNAs. XIST was discovered in 1992 [2], and yet we are still learning how exactly Xist

functions within the cell [3, 4].

A significant frustration is the unclear sequence to function relationship in lncRNAs. This

relationship has long been understood in protein coding genes [5] and has been facilited by nu-

merous bioinformatics tools that can rapidly predict relationships between protein coding genes

[6–10]. Relatively speaking though very little is known about lncRNAs. It is known that the tan-

dem repeats of XIST encode a significant amount of its function [11–15], despite much of the

sequence of XIST being relatively poorly conserved [11]. This has led to the notion that lncR-

NAs may derive a significant amount of their function from small sub-sequences [16, 17].

Our lab developed a k-mer based algorithm for quantifying sequence similarity between two

lncRNAs [18]. This revealed large communities of lncRNAs that are related based on their k-mer

content, and these communities were predictive of cellular function [18]. However, the functional

analog to XIST in marsupials, Rsx was anti-correlated with XIST in this analysis. This ob-

servation led to the implementation of a modular approach to lncRNA sequence analysis – i.e.,

breaking the sequences up into known or hypothesized functional domains and comparing only

those regions. It was only after this that the degree of similarity between XIST and Rsx could

be realized [17]. We then developed a statistical model using an HMM framework that was ca-

pable of identifying functional domains within lncRNAs that lack any sort of obvious tandem

repeat domains as in XIST and Rsx.

We now have a set of tools that can answer how and where the function is encoded within

lncRNAs. There remain significant ways that they can be improved and areas in which further

116

understanding is needed within lncRNAs. A primary shortcoming of SEEKR is that we do not

consider secondary structure of the RNA when modeling its potential function. RNA molecules

are able to form a wide variety of secondary structures in a sequence dependent manner that are

known to be functional within the cell [19, 20]. Despite this, we are able to capture extensive

RBP binding events in XIST and KCNQ1OT1 with high precision and without considering

structure at all. While structure is certainly important and has been shown to be conserved in

lncRNAs [21], these results imply that overly focusing on secondary structure as the primary

mechanism of lncRNA function may not tell the whole story.

Another limitation of hmmSEEKR is the assumption of a 2-state HMM and the require-

ment for the a priori definition of a query. Extending the logic behind what the XIST queries

represent, it is possible to generate a query-of-interest through a Bayesian sampling algorithm

[22]. One way to view the sequences of the functional domains of XIST is as a mixture model

of k-mers that ultimately correspond to subset of differing proteins that recognize that sequence

region. Given a set of weights from which to sample RBP PWMs, an artificial query can be gen-

erated by sampling k-mers from the PWMs with frequencies determined by the weights given

to each protein. A further extension of the HMM model removes the assumption on a 2-state

system entirely by utilizing a hierarchical Dirichlet process HMM (HDP-HMM) [23]. Put briefly,

the HDP-HMM models the number of hidden states within a sequence without any prior infor-

mation on what the hidden states are. This allows the model to determine how many functional

domains may be within a sequence, what the k-mer content of those functional domains is, and

where these domains are within a sequence.

lncRNAs represent a significant challenge in molecular biology – both computationally and

experimentally. However, they represent approximately a third of annotated transcripts in the hu-

man genome, so it is crucial that models of their function are developed. Given the complex na-

ture of lncRNAs, and their roles as hubs within the cell, I expect that future developments in the

field will extend beyond simply modeling the sequence of a lncRNA, as well as their secondary

and tertiary structure. Rather, integrative models, that model the complex interactions between

RNA, protein, and DNA, will push the field further. With proteins and mRNAs, this was un-

necessary to prediction the function of a transcript – because the protein was effectively the

molecule performing a single function. With lncRNAs, again, their role is much more subtle and

117

a piece in a larger puzzle. I also believe that as more knowledge is gained about lncRNA func-

tion, more advanced models can be proposed that incorporate more prior information. Perhaps

there are sequence features that, due to lack of training data knowledge, are simply undetectable

for the moment. Finally, further developments in understanding conservation of non-coding re-

gions of the genome, and development of models that consider conservation of sequence features

other than linear alignment, will be crucial to understanding the nature of lncRNAs in the cell.

118

REFERENCES

[1] J. L. Rinn and H. Y. Chang, “Genome Regulation by Long Noncoding RNAs,” Annual Re-
view of Biochemistry, 2012, issn: 0066-4154.

[2] C. J. Brown, “The human XIST gene: analysis of a 17 kb inactive X-specific RNA that
contains conserved repeats and is highly localized within the nucleus.,” Cell (Cambridge),
vol. 71, no. 3, pp. 527–542, 1992 10, issn: 0092-8674.

[3] M. D. Schertzer, K. C. Braceros, J. Starmer, R. E. Cherney, D. M. Lee, G. Salazar, M. Jus-
tice, S. R. Bischoff, D. O. Cowley, P. Ariel, M. J. Zylka, J. M. Dowen, T. Magnuson, and
J. M. Calabrese, “lncRNA-Induced Spread of Polycomb Controlled by Genome Architecture,
RNA Abundance, and CpG Island DNA,” Molecular Cell, 2019, issn: 10974164.

[4] S. T. Da Rocha and E. Heard, Novel players in X inactivation: Insights into Xist-mediated
gene silencing and chromosome conformation, 2017.

[5] J. C. Whisstock and A. M. Lesk, Prediction of protein function from protein sequence and
structure, 2003.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment
search tool,” Journal of Molecular Biology, 1990, issn: 00222836.

[7] T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,” Jour-
nal of Molecular Biology, 1981, issn: 00222836.

[8] T. J. Wheeler and S. R. Eddy, “Nhmmer: DNA homology search with profile HMMs,” Bioin-
formatics, 2013, issn: 14602059.

[9] H. Yi and L. Jin, “Co-phylog: An assembly-free phylogenomic approach for closely related
organisms,” Nucleic Acids Research, 2013, issn: 03051048.

[10] J. Qi, B. Wang, and B. I. Hao, “Whole Proteome Prokaryote Phylogeny Without Sequence
Alignment: A K-String Composition Approach,” Journal of Molecular Evolution, 2004, issn:
00222844.

[11] T. B. Nesterova, S. Y. Slobodyanyuk, E. A. Elisaphenko, A. I. Shevchenko, C. Johnston,
M. E. Pavlova, I. B. Rogozin, N. N. Kolesnikov, N. Brockdorff, and S. M. Zakian, Character-
ization of the genomic Xist locus in rodents reveals conservation of overall gene structure and
tandem repeats but rapid evolution of unique sequence, 2001.

[12] X. Wang, K. J. Goodrich, A. R. Gooding, H. Naeem, S. Archer, R. D. Paucek, D. T. Youmans,
T. R. Cech, and C. Davidovich, “Targeting of Polycomb Repressive Complex 2 to RNA by
Short Repeats of Consecutive Guanines,” Molecular Cell, 2017, issn: 10974164.

[13] Y. Hoki, N. Kimura, M. Kanbayashi, Y. Amakawa, T. Ohhata, H. Sasaki, and T. Sado, “A
proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation
in mouse,” Development, 2009, issn: 09501991.

[14] J. Zhao, B. K. Sun, J. A. Erwin, J. J. Song, and J. T. Lee, “Polycomb proteins targeted by a
short repeat RNA to the mouse X chromosome,” Science, 2008, issn: 00368075.

119

[15] G. Pintacuda, G. Wei, C. Roustan, B. A. Kirmizitas, N. Solcan, A. Cerase, A. Castello, S.
Mohammed, B. Moindrot, T. B. Nesterova, and N. Brockdorff, “hnRNPK Recruits PCGF3/5-
PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing,”
Molecular Cell, 2017, issn: 10974164.

[16] N. Brockdorff, “Local tandem repeat expansion in Xist RNA as a model for the functionali-
sation of ncRNA,” Non-coding RNA, 2018, issn: 2311553X.

[17] D. Sprague, S. A. Waters, J. M. Kirk, J. R. Wang, P. B. Samollow, P. D. Waters, and J. M.
Calabrese, “Nonlinear sequence similarity between the Xist and Rsx long noncoding RNAs
suggests shared functions of tandem repeat domains,” RNA, 2019, issn: 14699001.

[18] J. M. Kirk, S. O. Kim, K. Inoue, M. J. Smola, D. M. Lee, M. D. Schertzer, J. S. Wooten,
A. R. Baker, D. Sprague, D. W. Collins, C. R. Horning, S. Wang, Q. Chen, K. M. Weeks,
P. J. Mucha, and J. M. Calabrese, “Functional classification of long non-coding RNAs by
k-mer content,” Nature Genetics, 2018, issn: 15461718.

[19] N. A. Siegfried, S. Busan, G. M. Rice, J. A. Nelson, and K. M. Weeks, “RNA motif dis-
covery by SHAPE and mutational profiling (SHAPE-MaP),” Nature methods, 2014, issn:
15487105.

[20] Y. Wan, M. Kertesz, R. C. Spitale, E. Segal, and H. Y. Chang, Understanding the transcrip-
tome through RNA structure, 2011.

[21] P. Johnsson, L. Lipovich, D. Grandér, and K. V. Morris, Evolutionary conservation of long
non-coding RNAs; Sequence, structure, function, 2014.

[22] G. J. McLachlan, S. X. Lee, and S. I. Rathnayake, “Finite Mixture Models,” Annual Review
of Statistics and Its Application, 2019, issn: 2326-8298.

[23] M. J. Johnson and A. S. Willsky, “Bayesian nonparametric Hidden semi-Markov models,”
Journal of Machine Learning Research, 2013, issn: 15324435.

120

