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ABSTRACT
Arjun Bhattacharya: Statistical methods for inferring genetic regulation across heterogeneous samples and

multimodal data
(Under the direction of Dr. Michael I. Love and Dr. Melissa A. Troester)

As clinical datasets have increased in size and a wider range of molecular profiles can be credibly

measured, understanding sources of heterogeneity has become critical in studying complex phenotypes.

Here, we investigate and develop statistical approaches to address and analyze technical variation,

genetic diversity, and tissue heterogeneity in large biological datasets.

Commercially available methods for normalization of NanoString nCounter RNA expression data are

suboptimal in fully addressing unwanted technical variation. First, we develop a more comprehensive

quality control, normalization, and validation framework for nCounter data, benchmark it against existing

normalization methods for nCounter, and show its advantages on four datasets of differing sample sizes.

We then develop race-specific and genetic ancestry-adjusted tumor transcriptomic prediction models from

germline genetics in the Carolina Breast Cancer Study (CBCS) and study the performance of these models

across ancestral groups and molecular subtypes. These models are employed in a transcriptome-wide

association study (TWAS) to identify four novel genetic loci associated with breast-cancer specific survival.

Next, we extend TWAS to a novel suite of tools, MOSTWAS, to prioritize distal genetic variation in

transcriptomic predictive models with two multi-omic approaches that draw from mediation analysis. We

empirically show the utility of these extensions in simulation analyses, TCGA breast cancer data, and

ROS/MAP brain tissue data. We develop a novel distal-SNPs added-last test, to be used with MOSTWAS

models, to prioritize distal loci that give added information, beyond the association in the local locus

around a gene. Lastly, we develop DeCompress, a deconvolution method from gene expression from

targeted RNA panels such as NanoString, which have a much smaller feature space than traditional RNA

expression assays. We propose an ensemble approach that leverages compressed sensing to expand the

feature space and validate it on data from the CBCS. We conduct extensive benchmarking of existing

deconvolution methods using simulated in-silico experiments, pseudo-targeted panels from published

mixing experiments, and data from the CBCS to show the advantage of DeCompress over reference-free

methods. We lastly show the utility of in-silico cell-type proportion estimation in outcome prediction and

eQTL mapping.
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CHAPTER 1: LITERATURE REVIEW

1.1 Normalization of NanoString nCounter expression

The NanoString nCounter platform offers a comparatively inexpensive alternative for gene

expression measurement of a panel of pre-specified genes due to its ability to measure mRNA

expression without requiring cDNA synthesis or any amplification steps18. The technology offers key

advantages in sensitivity, technical reproducibility, and strong robustness for analysis of formalin-fixed,

paraffin-embedded (FFPE) samples19. Given these advantages, the NanoString nCounter platform is

increasingly being used in academic settings globally to study differential gene expression, despite the

admitted limitation of requiring pre-specification of genes to measure20–23. nCounter is especially

attractive for longitudinal studies involving FFPE samples carried out over several years24 and

diagnostic assays in clinical settings, as shown by the Clinical Laboratory Improvement

Amendments-approved PAM50-based breast cancer signature assay developed by Prosigna25,26. The

following section gives a quick discussion of the importance of proper quality control and normalization

for mRNA expression panels and overviews existing methods specific to nCounter.

1.1.1 Importance of proper normalization

Proper normalization and quality control (QC) of mRNA expression is necessary prior to statistical

analysis to mitigate any confounding noise from unwanted biological and technical variables that are

associated with potentially important covariates of interest, such as batch effects or degradation of

groups of samples that have been stored over time27,28. Often times, all sources of unwanted noise

cannot be enumerated a priori or measured, beyond those that are easily catalogued in a sample

table, such as different research centers, technicians, or storage units for samples. In all cases, it is

advised to use a proper quality control and normalization pipeline to address any degraded samples

and estimate any such technical noise. All normalization methods deal with a trade-off between any

bias that needs to be corrected and the variance that may be introduced to the data due to estimation

of bias effects29. Naïve normalization methods may err too heavily on the side of bias correction and
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result in adding excessive variance to the expression measurements. Molania et al have recently

suggested an iterative process to normalization, wherein several parameters (i.e. number of

housekeeping genes, number of detected outliers, number of dimensions of technical noise) are tuned

over several iterations with several relevant biological checks used as validation, in nCounter datasets

with technical replicates28.

1.1.2 Normalization using the nSolver software

NanoString provides nSolver 4.0, a graphical user interface software, that aids in QC and

normalization. After imaging, binding density, positive control, and limit of detection quality controls,

NanoString provides two forms of normalization in its nSolver Analysis Software30: (1) a more

user-friendly procedure with optional background correction, followed by positive control and

housekeeping gene normalization and (2) the Advanced Analysis tool, a wizard-based add-on that

draws from the NormqPCR R package31,32.

Briefly, the nSolver normalization procedure is as follows: the arithmetic mean of the geometric

means of the positive controls for each lane is computed and then divided by the geometric mean of

each lane to generate a lane-specific positive control normalization factor30,31. The counts for every

gene are then multiplied by its lane-specific normalization factors. To account for any noise introduced

into the nCounter assay by positive normalization, the housekeeping genes are used similarly as the

positive control genes to compute housekeeping normalization factors used to scale the expression

values30,31.

1.1.3 NanoStringDiff

Wang et al generated a normalization method for NanoString using negative binomial linear

modelling with an empirical Bayes approach33. This method introduces three normalization

parameters to quantify variation and noise across different experimental conditions: (1) the positive

control size factor (ci), accounting for lane-by-lane variation; (2) the background noise parameter (θi),

quantifying the non-specific background level; and (3) the housekeeping size factor (di), adjusting for

the variation in the amount of input sample material.

Here, we denote the observed count from gene g in sample i with Ygi, and the unobserved

expression rate by λgi. The data is assumed to be generated from the following hierarchical model:
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Ygi|λgi ∼ Poisson(cidiλgi + θi)

λgi|ugi, ηg ∼ Gamma(ugi, ηg)

ηg ∼ Normal(m0, τ
2)

logugi = Xiβ
T
g ,

where ugi and ηg denote the mean and log-dispersion of the expression rate λgi to deal with

overdispersion. The mean parameter ugi is specified based on a generalized linear model with

logarithmic link function, where Xi gives the ith row of the design matrix of covariates X and βg is a

vector of regression coefficients.

Hyper-parameters are empirically estimated from the expression data for endogenous genes. For

each endogenous gene, the maximum likelihood estimate (MLE) of the log-dispersion parameter η̂g is

calculated. These estimates are only used from endogenous genes with read counts larger than the

maximum value of negative controls to estimate further hyperparameters due to background noise in

endogenous genes with low read counts. The median of η̂g for endogenous counts is used to find

m̂o = mediang (η̂g). As Wu et al points out34, the sample variance of η̂g overestimates τ and

accordingly, Wang et al apply an ad hoc method to compute pseudo datasets with τ2 = 0 to estimate

var(η̂g|ηg) and subtract it from the sample variance of η̂g to obtain an estimate of τ2. Model parameters

βg and ηg are then estimated through an iterative process that maximizes the conditional likelihoods of

βg|ηg and ηg|βg until convergence.

1.1.4 Remove Unwanted Variation III (RUV-III)

Molania et al proposed a method in the line of Remove Unwanted Variation (RUV) methods27,29

that is catered to a NanoString nCounter panel with technical replicates. RUV-III estimates a

user-defined k dimensions of unwanted variation from differences between expression values of

technical replicates and and the distribution of expression of negative control transcripts.

Here, we assume that we have data from m nCounter assays on m′ < m distinct samples. Let M

be the alliteratively-named m×m′ mapping matrix that maps assays to samples, such that the i, j-th

element of M mi,j = 1 if the i-th assay is an assay of sample j. We assume that all assays have n

probes. Let Y be the m× n matrix of observed log-transformed expression values and we model
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Ym×n = Xm×pβp×n +Wm×kαk×n + ϵm×n (1.1)

where Xβ is the biological variation, Wα is the unwanted variation, ϵ is random error. We assume

p+ k < m and k < m−m′. Here, X corresponds to biological factors of interest and not technical

factors, like batch. In the most general case of RUV-III, both X and W are unobserved. Lastly,

assume that nc < n of the probes are negative controls. We herein indicate sub-matrices of the

matrices identified in Equation 1.1 with a subscript of c. These negative control probes are assumed to

unaffected by factors in X.

Note that if two assays are technical replicates of sample j, then the rows of X corresponding to

this assay are identical. Thus, we have X = MX, where Xm′×p as the biological factors of interest in

terms of samples. The goal is to estimate Wα in Equation 1.1 and regress it out of Y , leaving Ŷ that is

used in downstream analysis. Let

RM = I −M(M ′M)M−1M,

be the residual operator of M . Thus,

RMY = RM (Xβ +Wα+ ϵ)

= RMMXβ +RMWα+RM ϵ

= RMWα+RM ϵ.

α may be estimated with a form of factor analysis on RMY , as long as RMW is full rank. Let α̂ be

the first k singular vectors of RMY , and accordingly Ŵ = Ycα̂
′
c(α̂cα̂

′
c)

−1. It is easy to show that

Ŵ ≈ W .

1.1.5 Summary

It is becoming increasingly popular in both clinical and academic settings to use mRNA

expression measurements from the NanoString nCounter platform. Even though groups have

addressed normalization in this setting previously, the most popular method for normalization is the

NanoString-provided nSolver software. Proper evaluation of this normalization method has not been

conducted before, especially in large cohorts without technical replicates.
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1.2 Transcriptome-wide association studies (TWAS)

1.2.1 Applications of TWAS in breast cancer

Few genome-wide association studies (GWAS) have studied the relationship between germline

variation and survival outcomes in breast cancer, with most focusing instead on genetic predictors of

risk11,35. Recently, GWAS have shown evidence of association between candidate common germline

variants and breast cancer survival, but these studies are often underpowered36,37. Furthermore, the

most significant germline variants identified by GWAS, in either risk or survival, are often located in

non-coding regions of the genome, requiring in vitro follow-up experiments and co-localization

analyses to interpret functionally38. It is important to seek strategies for overcoming these challenges

in GWAS, especially because several studies in complex traits and breast cancer risk have shown that

regulatory variants not significant in GWAS account for a large proportion of trait heritability39–41.

Novel methodological approaches that integrate multiple data types offer advantages in

interpretability and statistical efficiency. Escala-García et al has suggested that aggregating variants

by integrating gene expression or other omics may better explain underlying biological mechanisms

while increasing the power of association studies beyond GWAS36. To alleviate problems with

statistical power and interpretability, a recent trend in large-scale association studies is the

transcriptome-wide association study (TWAS). TWAS aggregates genomic information into

functionally-relevant units that map to genes and their expression. This gene-based approach

combines the effects of many regulatory variants into a single testing unit that increases study power

and provides more interpretable trait-associated genomic loci42,3,43. Here, we describe a few current

approaches to transcriptomic imputation and subsequent downstream tests of associations.

1.2.2 PrediXcan

Gamazon et al’s PrediXcan42 identifies trait-associated genes by estimating the genetic control of

of phenotype through the mechanism of genetic control. Gene expression levels are decomposed into

(1) the genetically regulated expression (GReX) components, (2) a component altered by the trait

itself, and (3) a remaining component attributed to environmental or other factors. PrediXcan tests the

mediated effect of gene expression by quantifying the association between GReX and the phenotype

of interest.

Reference transcriptome datasets from GTEx44, GEUVADIS45, and DGN46 were used to train

additive models of gene expression from genetic variation as follows:

5



Yg =
∑
k

wk,gXk + ϵ, (1.2)

where Yg is the expression trait of gene g, wk,g is the effect size of marker k for gene g, Xk is the

number of reference alleles of marker k, and ϵ is the contribution of other factors that determine the

expression trait assumed to independent of the genetic component. Gamazon et al have built

PredictDB, a database of predictive models using DGN using LASSO47, elastic net48, and/or the

polygenic score at various P -value thresholds.

The genetic heritability of gene expression serves as an upper bound for the prediction of the

GREx of a given gene. Here, the cis-heritability (cis-h2) was estimated for each gene using a variance

component model with a genetic relationship matrix (GRM) estimated from genotype data within 1

Megabase (Mb) of the gene with minor allele frequency (MAF) > 0.05 and in Hardy-Weinberg

Equilibrium (P > 0.05). Gamazon et al calculated the proportion of the variance of gene expression

explained by local single nucleotide polymorphisms (SNPs) using linear mixed modelling in GCTA49:

Y = Xb+Glocal + e, var(Y ) = Alocalσ
2
local + Iσ2

e ,

where Y is a gene expression trait, b is a vector of fixed effects, Alocal is the GRM from local

SNPs, and the random effect Glocal is the genetic effect attributable to the set of local SNPs with

var(Glocal) = Alocalσ
2
local..

Given an optimal vector ŵk,g fitted with Elastic Net48 with α = 0.5 that best predicts Yg as

assessed by 10-fold cross-validation R2, the PrediXcan framework imputes the GREx of each gene in

external GWAS panels using the same genotypes Xk:

ˆGReXg =
∑
k

ŵk,gXk.

These imputed ˆGReXg values are then employed in downstream tests of association to identify

gene-trait associations.

PrediXcan has several advantages in identifying gene-trait associations. It has a much smaller

multiple-testing burden than GWAS, with approximately 10,000 gene-based tests as opposed to 5-10

million single variant tests in GWAS. No transcriptome data is needed since the predicted expression

levels are a function of genetic variation alone and thus can be applied to any existing GWAS panel.

Reverse causality is not a concern since disease status or drug treatment cannot alter germline
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genetic variation. PrediXcan also lends itself seamlessly to meta-analysis as less stringent

harmonization between studies is required.

1.2.3 FUSION

Gusev et al proposed a similar transcriptome-wide association study approach, called FUSION,

nearly concurrently with Gamazon et al’s PrediXcan method3. Again, FUSION uses a reference panel

in relevant tissue to train predictive models of mRNA expression from cis-genotypes. Then, using

these optimally trained models, FUSION either (1) directly predicts expression in genotype samples

using effect-sizes from the predictive models and measures association between predicted expression

and trait or (2) indirectly estimates association between predicted expression and trait as a weighted

linear combination (weighted burden test) of SNP-trait standardized effect sizes while accounting for

linkage disequilibrium among SNPs, as first proposed in Pasaniuc et al50. Similar to PrediXcan, by

focusing on the genetic-component of expression, FUSION avoids instances of expression-trait

associations that are not a consequence of genetic variation but are driven by variation in trait. Figure

1.1, adapted from Gusev et al3, summarizes the possible models of causality for the relationship

between genetic markers, gene expression, and trait.

Model fitting in FUSION is very similar to that in PrediXcan. For genes that are cis-heritable at

P < 0.05, the same additive model for gene expression as in Equation 1.2 is fit using one of the

following schemes:

• the cis-eQTL, the single most significantly associated cis-eSNP (SNP in an eQTL) in the training

set was used as the only predictor;

• LASSO or elastic net47,48 with mixing parameter α ∈ {0, 0.5} and λ tuned over 5 folds;

• the best linear predictor (BLUP)51 which estimates the causal effect-sizes of all SNPs in the

cis-locus jointed using a single-variance component;

• the Bayesian linear mixed model (BSLMM) which estimates the underlying effect-size distribution

and then fits all SNPs in the locus jointly.

The BLUP and BSLMM are fit using all post-QC SNPs using GEMMA52 and perform shrinkage of

the SNP weights, but not variable selection. Predictive accuracy was measured by five-fold

cross-validation in a random sampling of 1,000 of the highly heritable genes using the predictive R2

between predicted and true expression across all predicted folds.
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Figure 1.1: Modes of expression causality using FUSION. Diagrams here shown the possible modes
of causality for the relationship between genetics markers (labelled SNP in blue), gene expression (GE,
green), and trait (red). Models A-D describes scenarios that are considered null models by the TWAS
framework. E-G shows scenarios that can be identified as significant and can be further studied func-
tionally. Modified from Gusev et al3.
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FUSION’s novelty comes in its summary-based imputation that extends the ImpG-Summary

algorithm50 to train on the cis-genetic component of expression. Let Z be a vector of standardized

effect sizes (z-scores) of SNP on trait at a given cis-locus. Here, the Wald-type test statistics (i.e.
β

SE(β) ) are considered. The z-score of the expression and trait is imputed as the linear combination of

elements of Z with weights W . With Σe,s as the covariance matrix between all SNPs at the locus and

gene expression and Σs,s is the linkage disequilibrium (LD) among all SNPs,

W = Σe,sΣ
−1
s,s.

Under the null of no association and a multivariate Gaussian assumption Z ∼ N (0,Σs,s), it can

be shown that the imputed z-score of expression and trait (WZ) has variance WΣs,sW
′. Thus, the

imputation z-score of cis-genetic effect on trait is computed as

WZ

(WΣs,sW ′)
1
2

.

FUSION optionally further subjects significant TWAS-identified loci to a highly conservation

permutation test that tests the loci conditional on high GWAS effects. The eQTL weights are reshuffled

1,000 times to construct a null distribution for the TWAS z-score. This permutation test assesses if the

same distribution of eQTL effect sizes could yield a significant association by chance. The test is

implemented adaptively, so permutation will stop after a sufficient number of significant observations

(or at the maximum specified). This statistic is highly conservative as truly causal genes can fail the

test if their eQTLs are in high LD with many other SNPs, and intended to prioritize associations that

are already significant in the standard test for follow-up3.

1.2.4 Alternative methods for TWAS

Here, we briefly survey three further methods relevant to TWAS: (1) UTMOST53, (2) TIGAR54,

and (3) FOCUS55:

The UTMOST (Unifed Test for MOlecular SignaTures) method performs cross-tissue expression

imputation and gene-level association analyses to unify complex traits that are modulated across

various tissues in the human body. Cross-tissue expression imputation is formulated as a penalized

multivariate regression problem:

YN×P = XN×MBM×P + ϵN×P ,
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where N is the sample size of the training data, M is the number of SNPs in the imputation

models, and P is the number of tissues. Under the assumption that only a subset of tissues was

collected from each individual, expression data in Y is incomplete and the sample sizes for different

tissues are unbalanced. UTMOST estimates B by minimizing the squared loss function with a LASSO

penalty on the within-tissue effects (columns) and a grouped-LASSO penalty on the cross-tissue

effects (rows):

B̂ = argminB

P∑
i=1

∥Yi −XiB.i∥22
2Ni

+ λ1

P∑
i=1

∥B.i∥1
Ni

+ λ2

M∑
i=1

∥Bj.∥2,

where Yi, Xi, Ni are the observed expressions, genotypes, and sample sizes of the ith tissue,

respectively.

Per-tissue tests of association are computed similarly to PrediXcan and FUSION. Imputed gene

expression in the ith tissue is computed as Ei = XiB̂.i and is tested for associated with the trait using

a univariate regression model. The z-scores for gene-traited associated in the ith tissue is denoted as

Zi =
γ̂i

SE(γ̂i)
≈ B̂′

.iΓiZ̃,

where Z̃ denotes the SNP-trait z-scores and Γi is a diagonal matrix wit the ratio between the

standard deviations of the jth SNP and the imputed expression in the ith tissue. Under the null of no

SNP-trait association, Z̃ ∼ N(0, D), where D is the LD matrix for the SNPs and accordingly,

Cov(Z) = Λ′DΛ, where Λ = (B̂.1Γ1, . . . , B̂.PΓP ). Lastly, the per-tissue gene-trait association results

are combined using a generalized Berk-Jones test, taking into account the covariance among

single-tissue test statistics56.

TIGAR adds to the transcriptomic imputation methods employed by PrediXcan and FUSION by

introducing a non-parametric Bayesian model using a latent Dirichlet process regression (DPR)

model57. The cis-eQTL effect sizes w are given a Normal prior N(0, σ2
w) and Dirichlet process (DP)

prior58 for the effect-size variance σ2
w such that

wi ∼ N(0, σ2
w), σ

2
w ∼ D, D ∼ DP (IG(a, b), ξ).

σ2
w is a latent variable and integrating it out induces a non-parametric prior distribution on wi that

is equivalent to a DP mixture model of an infinite number of Normal distributions57,59:

wi ∼
∞∑
k=0

πkN(0, σ2
k), σ

2
k ∼ IG(ak, bk), πk = νk

k−1∏
l=0

(1− νl), νk ∼ Beta(1, ξ).
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Conjugate hyperpriors ξ ∼ Gamma(aξ, bξ) and σ2
ϵ ∼ IG(aϵ, bϵ) are assumed and are generally set

as non-informative. The posterior estimates for w are then obtained by either Markov Chain Monte

Carlo or variational Bayesian algorithms59,60.

FOCUS, a fine-mapping method proposed by Mancuso et al, extends the TWAS testing

framework outlined in Pasaniuc et al and Gusev et al50,3 that models correlation among TWAS signals

to assign a probability for every gene in the risk region to explain the observed association signal.

Here, a quantitative trait y is modelled by a linear combination of expression levels for m genes

G ∈ Rn×m as

Y = Xβ +Gα+ ϵ,

where X ∈ Rn×p is the genome-wide genotype matrix at p SNPs, β is the p pleiotropic effects of

X on y, α is the vector of causal effects for the m genes, and ϵ is the random environmental noise. As

in TWAS predictive models, G = XW , where W is the eQTL effect-size matrix. The marginal TWAS

tests on y using predicted expression Ĝ = XΩ are modeled with

ZTWAS =
1

σe
√
n
ĜT y,

where Ω is an estimate of W from an independent reference panel and σe is the diagonal variance

parameter for ϵ.

Marginalizing out unknown causal gene effects α, the sampling distribution for the marginal

TWAS test statistics is

ZTWAS |λsnp,Ω, V, c, nσ
2
c ∼ N(ΩTV λsnp,VDcV + V),

where V = n−1XTX is the LD matrix, λsnp is the pleiotropic SNP non-centrality parameter,

V = ΩTV Ω is the predicted expression covariance, and Dc is the prior variance for effects at causal

genes (nσ2
c ) as indicated by a binary status vector c. Inference for which genes are causal given the

TWAS statistics is performed by computing the posterior distribution of any set of causal genes c,

assuming a Bernoulli prior (with default probability 10−3) for the causal status of a given gene. The

posterior inference probability offers a flexible mechanism to generate a credible gene sets, as in

previous fine-mapping approaches61,62.
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1.2.5 Summary

Transcriptome-wide association studies are quickly being used to increase power in detection of

SNP-trait associations over traditional genome-wide association studies. Questions of predictive

performance of predictive gene expression models across ancestrally-different populations and in

understudied tissues is still open. Furthermore, it is also important to assess how TWAS performs to

granularity introduced by sample-specific, biological, and disease subtype heterogeneity.

1.3 Mediation analysis in gene regulation

1.3.1 Implications of the omnigenic model

The omnigenic model of the genetics of complex traits advanced that human gene regulatory

networks are so interconnected that thousands of individual genes contribute at least slightly to the

phenotype through expression in relevant cells41. This model extended upon the infinitesimal model,

first proposed in 1918, that quantitative phenotypes are the sum of a genetic and non-genetic

component, such that the genetic component is distributed within families as a Normal random

variable with variance independent of parental traits63. The omnigenic model also includes the

concept of universal pleiotropy, wherein genetic variation in one region of the genome potentially has

an indirect effects on many traits64. If the omnigenic model holds true, then many complex traits are

driven by large numbers of genetic variants with small effects on a phenotype of interest, and thus

implicating most regulatory variants that are active in disease-relevant tissues41. Boyle et al

hypothesized further that disease risk is largely driven by gene with no direct relevance to disease and

is propagated through multi-level regulatory networks with a small number of core genes with direct

effects and a much larger set of peripheral genes with indirect effects41.

These ideas of core and peripheral gene effects on phenotype are similar to ideas of genetic

regulation of genes. Identification of expression trait quantitative loci (eQTLs) is one of the most

important methods of discovering potential genetic regulators of the mRNA transcription of a gene. An

eQTL is a genomic locus that explains a portion of variance in the expression level of the mRNA

transcript of a given gene. eQTLs can be classified by their relative distance to the gene of interest

(local or distal based on a defined window around a gene) or the mechanism of action on the

transcription of a gene (cis- and trans-eQTLs act directly and indirectly, respectively)65.

Liu et al models the contribution of core and peripheral genes to complex trait heritability66:
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Yi = Ȳ +

M∑
j=1

γj(xi,j − x̄j) +

N∑
j−M+1

0× (xi,j − x̄j) + ϵYi
,

where Yi is the phenotype value of individual i, Ȳ is the population mean of the phenotype, γj

represents the direct effect of a unit change in expression of core gene j on E(Yi), and xi,j is the

expression of gene j in individual i (with population mean x̄j). We assume that there are M core

genes out of N total expressed genes in a tissue, and the random error ϵYi has mean 0 and is

independent of genotype and gen expression. Although the N −M peripheral genes have no direct

effects on the phenotype, they may modify the expression of core genes as trans-eQTLs. Phenotypic

variation can thus be broken down as:

Var(Yi) =

M∑
j=1

γ2
j Var(xi,j) +

M∑
j=1

j−1∑
k=1

2γjγkCov(xi,j , xi,k) + Var(ϵYi)

=

M∑
j=1

γ2
jVi,cis

M∑
j=1

γ2
jVi,trans +

M∑
j=1

j−1∑
k=1

2γjγkCj,k

Here, Vj,cis and Vj,trans are the genetic variances of of core gene j determined by cis and trans

effects, respectively. Cj,k represents the genetic covariance of expression of genes j and k. The first

pair of terms on the right-hand side of this variance decomposition depend on the relative importance

of cis and trans effects in determining expression heritability of core genes. Liu et al estimates that, in

general, about 70% of expression heritability is caused by these trans effects. The last term depends

on covariances between core genes. As core genes are seldom adjacent in the genome, genetic

covariances arise from trans effects. As there are more core gene pairs (M2) than singleton core

genes (M ), these trans effects dominate the heritability for most traits66.

The effects of a single SNP may potentially fan through multiple core genes to affect the

phenotype. Suppose SNP s is an eQTL for a core gene j. We let αs,j be the effect size of SNP s on

the expression of gene j and the change in phenotype Y due to one additional copy of the alternative

allele as δs. In the case that s is a trans-eQTLs for multiple core genes, the total phenotypic effect of s

is a sum of trans-effects mediated through each core gene j, and δs =
∑M

j=1 αs,jγj = M ¯αs,j , γj . If we

assume that the effects of SNP s has expectation 0 and are uncorrelated across j, then the effects

cancel out on average, the variance scales multiplicatively with M , and the total effect is not large.

Alternatively, if there exist peripheral master regulators that drive coordinated effects on many

downstream target core genes, these trans-effects can be considerable66.
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1.3.2 Inference on trans-eQTLs

Many groups have cast the omnigenic model directly onto the eQTL framework, treating the

problem of identifying trans-eQTLs for genes as a mediation problem67–69. Distal or trans-eQTLs are

far more difficult to detect that local or cis-eQTLs due to the significant multiple testing burden of

comparing millions of SNPs to thousands of transcripts. Trans-eQTLs are especially important in

identifying to understand tissue-specific gene regulatory mechanism70. Here, we review a few

methods for trans-eQTL prioritization based extensions on mediation analysis.

Brynedal et al demonstrated an approach to look for SNPs associated with the expression of

many genes simultaneously, finding that hundreds of trans-eQTLs each affect hundreds of

transcripts68. At each marker, they tested for overdispersion of association − log10(P )-values across

all probe sets with a null hypothesis that − log10(P ) values are exponentially distributed with λ = 1

against the joint alternative hypothesis that a subset of association statistics are non-null (i.e. λ ̸= 1).

Evidence for these hypotheses were compared as a likelihood ratio test for the cross-phenotype meta

analysis, where the test statistic is defined as

SCPMA = −2× log

(
P (Data|λ = 1)

P (Data|λ = λ̂)

)
∼ χ2

1,

where λ̂ is the observed exponential decay in the data. Correlation between the probe set levels

across individuals was accounted for using empirical significant testing by simulating eQTL association

studies under the null expection of no association to any marker given the observed correlation

between probe sets68. In summary, Brynedal et al discovered that target transcripts of a

high-confidence set of trans-eQTLs encode proteins that interact more frequently than expected by

chance and are bound by the sample transcription factors68.

A more recent paper by Shan et al establishes a simple mediation framework to identify

trans-eQTLs that are mediated by multiple mediating cis-eGenes. First, a candidate trio composed of

a SNP, one or more cis-genes to the SNP, and the trans-gene of interest were selected. Trans

SNP-gene pairs were included if the association has P ≤ 10−6 69. Mediating cis-genes were selected if

they were associated with the SNP at false discovery rate- (FDR) adjusted P ≤ 0.05. The following set

of linear models are chosen to assess the mediation effect. For the ith subject, let Yi be the

expression level of the trans-gene, Xi by the SNP dosage, Mi = (Mi1, . . . ,Mip)
T be the expression

levels of the p cis-genes, and Ci represents the q covariates. Consider:
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Yi = β0 +XiβX +MT
i βM + CT

i βC + ϵYi

Mij = α0j +XiαXj
+ CT

i αCj
+ ϵMij

,

where βM =
(
βM1

, . . . , βMp

)T is the effect of the p cis-genes on the trans-gene, adjusting for the

SNP and covariates, αX = (αX1
, . . . , αXp

)T is the effect of the SNP on the p cis-genes, adjusted for

covariates. ϵYi and ϵMij are the measurement errors, independent and distributed normally such that

dependence is allowed among the p cis-genes. Two quantities are estimated and tested for equality to

0 via bootstrapping71: the total mediation effect (TME) ∆ = αT
XβM and the component-wise effects

δ = (δ1, . . . , δp)
T , where δj = αXjβMj . The test of TME is a broader class of null than the test of CME.

In the case of positive mediation effect through one cis-gene and negative mediation through another,

the test of CME can be more powerful than the TME test72.

Lastly, we consider a pair of cross-condition mediation methods from Yang et al: CCmedgene and

CCmedGWAS. CCmed takes in summary statistics from multiple studies, tissue types, or conditions and

aims to detect robust mediation and trans-association effects shared across conditions. To validate the

trait-associations of the identified trans-genes for GWAS SNPs, a two sample Mendelian

randomization method robust to correlated and some invalid instruments (MR-Robin) was developed.

CCmedgene detects candidate trios of eQTL set, cis-gene, and trans-gene that show evidence of

cross-tissue trans-association and mediation effects by quantifying the joint probability of the following

two conditions being satisfied in at least K1 out of K tissue types: (1) gene-level cis-associations and

(2) non-zero correlations between the expression levels of the cis- and trans-genes conditioning on the

eQTL genotypes. For each trio (Li, Ci, Tj), where Li is a set of eQTL genotypes for a cis-gene i, Ci is

the cis-gene expression, and Tj is the expression level of a trans-gene j, Pmed,ij , the probability that

Ci mediates the effects of Li on Tj in at least K1 tissue types, is computed as follows:

Pmed,ij = P (Li → Ci → Tj in at least K1 out of K tissues)

= P (αC ̸= 0 in all K tissues)× P (β1 ̸= 0 in at least K1 tissues),

where αc is a vector of cis-association effects for the set of eQTLs in a single tissue type, and β1

is the conditional correlation of cis- and trans-gene expression levels in a single tissue type.

To quantify the cross-tissue cis-association probability P (αc ̸= 0 in all K tissues), the gene-level

cis-association statistics are obtains for M cis-genes by F -tests. Using Gleason et al’s integrative
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association analysis approach Primo73, the estimated P̂ (αc ̸= 0 in all K tissues) for genes 1 ≤ i ≤ M .

Similarly, Primo is applied to the conditional correlation statistics from K tissue types for the M ′
i

trans-genes for each cis-gene i to estimate the probability of non-zero conditional correlation in at

least K1 tissue types for all trans-genes of a cis-gene. The product of these two probabilities gives a

lower bound on the probability of gene-level cis-mediated trans-associations for each trio.

CCmedGWAS detects trans-genes associated with GWAS SNPs similarly to CCmedgene using Primo to

estimate the probability that (1) the GWAS SNP is also a cis-eQTL for the cis-gene conditional on

other cis-eQTLs and (2) there is a non-zero correlation between the cis- and trans-gene expression

levels conditioning on the genotypes of eQTL and GWAS SNPs.

1.3.3 Incorporation of regulatory information in TWAS

Here, we give a brief review of an extension of traditional cis-only TWAS that incorporates

information from regulatory elements into the prediction framework. Traditional cis-only prediction

models treat all local genotypes as equally predictive of expression, though variants that lie with

cis-regulatory elements like promoters or enhancers are more likely to affect expression74–76. To this

end, Zhan et al proposes EpiXcan, a simple extension of the PrediXcan, that prioritizes local SNPs

around the gene of interest if they are involved in a cis-regulatory element77. Here, epigenomic

annotations for a given tissue are obtained from the Reference Epigenome Mapping Centers78 to

estimate a posterior probability that a given eQTL is causal for the regulation of the given gene based

on the annotations. This posterior probability is estimated using qtlBHM79, a Bayesian framework that

uses eQTL summary statistics and functional annotations. These posterior probabilities are then

rescaled to penalty factors using Bézier curves employing a shifting-window strategy to approximate

the data-driven function. Finally, these penalty factors are included into a weighted elastic net

prediction model that minimizes a modification of the elastic net objective function:

f(β, λ, α) =

n∑
i=1

(yi −Xiβ)
2 + λα

m∑
j=1

ωj |βj |+ λ(1− α)βTΩβ,

where β is the SNP effect-sizes on gene expression, yi is the gene expression for the ith sample,

Xi is the dosages for cis-genotypes of the ith sample, ω is the vector of SNP penalties, Ω is a matrix

with diagonal ω and 0 for off-diagonal elements, and λ and α are penalization parameters as in elastic

net47,48. The optimal β gives the SNP weights for the predictive model of the gene of interest. In
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general, this prioritization of cis-SNPs generates a small, yet considerable, gain in prediction of gene

expression and increases the power to detect significant gene-trait associations77.

1.3.4 Summary

In general, several studies have shown that variation in both phenotypes and gene expression is

attributed to the aggregation of countless distal variants with small effects on the trait or gene

expression. Groups have shown that a mediation framework is powerful to identify these most

important trans variants, usually associating trans-eQTLs with cis-regulators that cascade effects to

many distal genes that are important in a given tissue. TWAS extensions have also shown the utility of

included regulatory information into the TWAS predictive framework. However, there are gaps in

current transcriptomic prediction in identifying, prioritizing, and leveraging these distal or trans-SNPs

for increase predictive power and power to detect gene-trait associations.

1.4 mRNA expression-based cell-type deconvolution

Here, we discuss another source of biological heterogeneity: cell-type composition in bulk tissue.

Bulk tissue, especially in cancerous tumors, comprise of many different cell types, many rare, and

each contributing a different amount to the assay of interest (i.e. mRNA expression, DNA methylation,

etc)80,81. This cell-type heterogeneity makes it difficult to distinguish gene expression variability that

reflects shifts in cell populations from variability that reflects changes of cell-type-specific expression82.

Since the advent of RNA-seq technology, cell-type deconvolution from mRNA expression has become

important in genetic and genomic association testing, either using compositions in regression models

as covariates to adjust for the association between cell-type proportions and phenotype83–85 or use

them as inputs to solve for cell-type specific quantities6.

mRNA expression-based cell-type deconvolution can be formulated as a matrix factorization of X,

a n× p matrix of raw scale mRNA expression from p genes and n samples:

X = PS (1.3)

where P is the n× k proportion matrix for n samples across k cell types, and S is the k × p

expression signature matrix for k cell-types across p genes. In all cases of deconvolution, X is known

and is a required input. In many studies, references for cell-type gene signatures are known; in these
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reference-based methods, estimation of S is direct from the references, and P can be estimated via

some modification of regression. Alternatively, when reference gene signatures are not readily

available for a given sample, there are multiple reference-free methods. Here, we outline several

reference-based and reference-free methods for cell-type deconvolution.

1.4.1 Reference-based deconvolution methods

Early reference-based methods have approached reference-based deconvolution using some

form of non-negative or constrained least squares method. After filtering out low and high variance

genes, Gong et al’s DeconRNASeq optimizes the following objective function with quadratic

programming86:

min
P

(
∥PS −X∥2

)
, such that

k∑
i=1

pki = 1, pki ≥ 0, ∀i.

The unmix method in Love et al’s DESeq2 package modifies this objective function to include low

and high variance genes by employing a variance stabilizing transformation V ST (·)16 and solves it

with a limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm:

k∑
i=1

(|V ST (X.i)− V ST (PS.i)|q) , such that
k∑

i=1

aki = 1, aki ≥ 0, ∀i.

The Digital Sorting Algorithm (DSA) is an extension of these regression based methods that use

gene signatures, rather than reference cell-type expression profiles, to first estimate S 87. DSA requires

an input of cell-type specific gene signatures. We encode the average of all genes highly expressed in

a single cell-type in the rows of S̃, which is not observed. Instead, let X̃s be the average of all genes

highly expressed in the observed mixed sample. We then consider the rearrangement of Equation 1.3

as S̃−1
s X̃s = W , and since each column of W sums to 1, the elements of S̃s can be determined with

least squares. Accordingly, P can be estimated via non-negative least squares from this estimated S̃s.

There are other reference-based approaches that employ other statistical techniques to estimate

cell-type proportions. Quon et al builds upon their own ISOLATE computational strategy in the ISOpure

algorithm by maximum a posteriori estimation of tumor proportions88. Given R healthy (or non-tumor)

profiles in the data denoted b1, . . . , bR, the nth sample’s total tumor profile tn can be expressed as

tn = αncn +

R∑
r=1

θn,rbr + en,
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where θn,1, . . . , θn,R are parameters to be estimated by ISOpure with the assumptions that these

parameters are non-negative and satisfy αn +
∑R

r=1 θn,r = 1. The ISOpure algorithm reduces to the

maximization of a count vector xn under a multionomial distribution whose probability vector over

transcripts is x̂n = αncn +
∑R

r=1 θn,rbr. The score of a given parameter setting is the product of the

score of the parameters under the Dirichlet prior distributions and the probability of the discretized

tumor profiles under the multinomial distribution for x̂n.

Another reference-based method, DeMixT, is a semi-supervised approach to tumor deconvolution

that assumes that bulk tumor tissue expression Yig for a single gene g is a mixture of a single tumor

component Tig and two non-tumor components N1,ig and N2,ig
89:

Yig = π1,iN1,ig + π2,iN2,ig + (1− π1,i + π2,i)Tig.

Here, only two of N1,ig, N2,ig Each of the component expressions are assumed to be

log2-normally distributed and all model parameters are estimated via maximum likelihood using

iterated conditional modes90. DeMixT is a powerful method, however the assumption of three total

tissue components for tumors may be untenable.

More specifically for the deconvolution of immune infiltrate, CIBERSORT uses a ν-support vector

regression to solve for the P matrix, given inputs for X and S 91. Briefly, the method defines a

hyperplane that captures as many data point as possible given defined constraints and reduces

overfitting by only penalizing data point outside an error radius using a linear epsilon-insensitive loss

function. The orientation of the hyperplane determines the estimated P .

In many cases, microdissection or pure samples of cell-types cannot be obtained. In this case,

external reference panels can also be applied, with several methods addressing this approach. In

particular, Dong et al proposed SCDC that deconvolves bulk gene expression using multiple single-cell

RNA sequencing (scRNA-seq) references92 in an ensemble approach. Based on every single-cell

reference i obtained, we can obtain an estimated proportion matrix P̂i and integrate these estimated

proportion matrices with weights wi, such that P̂ =
∑R

i=1 wiP̂i. The weights can be optimized by

minimizing the difference P − P̂ . Since P is unknown, the surrogate X and Xi can be used to find

(ŵ1, . . . , ŵR) = argmin(w1,...,wR)∥X −
R∑
i=1

wiXi∥

using numerical method based on grid search to maximize the Spearman correlation between X

and X̂.
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Concurrently, Wang et al constructed MuSiC, a method that also utilizes cell-type specific gene

expression from scRNA-seq data to characterize cell type compositions from bulk RNA-seq data93. A

key concept in MuSiC is marker gene consistency - that, when using scRNA-seq data as a reference

for cell type deconvolution, cross-subject and cross-cell consistency must be considers to guard

against bias in subject selection and cell capture in scRNA-seq, respectively. Rather than pre-selecting

marker genes from scRNA-seq based only on mean expression, MuSiC gives weights to each gene to

allow for the use of more genes. Genes with low cross-subject variances are down-weighted, whereas

genes with high cross-subject variances are up-weighted. To deal with collinearity from correlated

genes, MuSiC uses a tree-guided process that recursively finds closely related cell types.

1.4.2 Reference-free deconvolution methods

The precursor to reference-free deconvolution methods was deconf, a algorithm based on

non-negative matrix factorization and iteration of estimation of S and P until ∥X − PS∥ reaches

convergence12. Since then, a population form of reference-free methods uses a geometric approach.

UNDO, a method from Wang et al, assumes tumor and stroma compartments for bulk cancerous

tissue and attempts to discern relative proportions with the assumption that there exist genes that are

significantly expressed in one compartment over the other94. Here, for genes i = 1, . . . , p,

xsample1(i)

xsample2(i)

 =

a12 a12

a21 a22


 stumor(i)

sstroma(i)

→ x(i),

where stumor(i) and sstroma(i) are the gene expressions in pure cells and x(i) are the gene

expression values in heterogeneous samples, and ajk are the mixing proportions, such that

a11 + a12 = a21 + a22. Given this assumption of cell-specific marker genes, the linear latent variable

model above is identifiable. Marker genes are located by searching along the two radii of a scatter

sector that correspond to genes with the minimum and maximum ratio between the two mixed

samples. From here, the tumor-stroma proportions are estimated using the marker gene expression

and the cell-specific expression profiles are obtained via matrix inversion94.

Zaitsev et al extends this simplex hunting formulation for multiple cell-types in LINSEED motivated

by a mutual linearity assumption that proposes that genes that are highly co-expressed in a single cell

type are directly proportionally expressed13. Given the inputted matrix of observed mixed expressions

X, each row is normalized by its sum aligns this proportion between co-expressed genes in a cell-type

to 1 and X is transposed. Using the SISAL algorithm95, the vertices of the geometric simplex can be
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identified and the top genes per corner can be obtained as a gene signature for a given cell type.

These gene signatures can then be inputted to the DSA framework to deconvolve the bulk expression

signal87. Singular value decomposition on X to find the number of linearly independent components

that contribute to variation can be used to obtain the number of cell types in the dataset.

CDSeq, a Bayesian framework for deconvolution from raw RNA-seq data, provides an alternative

to full reference-free deconvolution using a Latent Dirichlet Allocation model5. Here, the random

variable that models the cell-type specific gene expression profiles depends on gene length. Next, the

probability of having a read from a cell type depends on both the proportion of the cell type in the

sample and the typical amount of RNA produced by cells of that type. Together, these assumptions

account for the ratio of mRNA expression contributed by a specific cell type to the size of the cell.

Lastly, an iterative algorithm by Li and Wu called TOAST that better selects features by identifying

features showing distinct profiles among difference cell types, without known the pure cell type profiles

or mixing proportions a priori 14. The general rule of thumb for selecting informative features are genes

with low within-cell type variation and high cross-cell type variation. Assume, for the p-th feature, we

have Yp = [Yp1, . . . , Ypn]
T . The proportions obtained for the ith sample are denoted as

θi = (θi1, . . . , θsk). With known proportions, the observed data can be modeled by a linear model:

E(Yp) = V βp, where V is the matrix of θ proportions and βp is the mean levels for the pth feature in the

jth cell type. This model allows for the testing of the null hypothesis

H0 : µpj − (k − 1)
∑
i ̸=j

µpi = 0, j = 1, . . . , k.

Features with significant test results are cell-type specific features. TOAST can be used with any

form of reference-free deconvolution method to improve estimation of S and P iteratively14.

1.4.3 Recapitulation of cell-type specific expression

A moonshot goal for many deconvolution methods is recapitulating cell-type expression profile per

sample. DeMixT addresses this goal by successive parabolic interpolations to find the maximum of the

joint density function with respect to the expressions specific to the normal compartments89, with

positive constraints such that sum of the normal components cannot exceed the total mixed

expression. The tumor-specific compartment can then be easily estimated from there.

Wang et al also develop a method based on linear mixed modeling for the purpose of estimating

the cell-type specific expression profiles per sample93. MIND extends single-measure deconvolution
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by borrowing information across multiple measurements t = 1, . . . , Ti from the same tissue for subject

i to estimate subject-specific and cell-type specific gene expression. First, cell-type fractions for

subject i and measure t (denoted Wit) can be estimated and combined across measures to yield Wi a

Ti × k matrix. Next, treating Wi as known, the problem is reversed to estimated the cell-type specific

expression. For gene j in subject i, the observed gene expression Xij is a Ti-dimensional vectors that

represents Ti measurements, rather than a scalar and can be modelled as a product of Wi and the

cell-type specific expressions Aij , such that Xij = WiAij + eij . It is assumed that Aij ∼ N(aj ,Σc) and

eij ∼ N(0, σ2
eIT ). Parameters aj and Σc are estimated with an Expectation-Maximization and Aij is

estimated via an empirical Bayes procedure.

1.4.4 Summary

We have outlined several deconvolution methods, both reference-based and reference-free.

Each method hinges on identifying genes whose distributions can distinguish different, often rare, cell

types. This is already a challenging problem in many RNA-seq datasets with thousands of genes. In

targeted panels that assay gene expression with only hundreds of genes, the limited feature space

casts a considerable statistical challenge in inferring cell-type proportions and recapitulating cell-type

specific expression from bulk mRNA expression.
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CHAPTER 2: AN APPROACH FOR NORMALIZATION AND QUALITY CONTROL
FOR NANOSTRING RNA EXPRESSION DATA

In this chapter, we provide a framework for the quality control and normalization of mRNA

expression count data from the NanoString nCounter platform, using a large dataset of breast tumor

expression from the Carolina Breast Cancer Study (CBCS) and various other cohorts of differing

sample size. We illustrate some of the pitfalls in the popularly-used nSolver method of background

correction and positive control normalization and provide an alternative approach that uses RUVSeq27,

which efficiently estimates unwanted variation from endogenous housekeeping genes. Lastly, we

provide various quality checks for normalization and outline the impact of proper normalization on

inference for endogenous genetic associations and expression-based disease subtyping.

2.1 Overview of quality control and normalization process

The full quality control and normalization process using nSolver and RUVSeq is summarized in

Figure 2.1, starting with familiarization of the raw data (Figure 2.1.1), technical quality control (Figure

2.1.2), pre-normalization assessment of housekeeping genes (Figure 2.1.3) and data visualization to

detect problematic samples and assess whether flagged samples should be removed (Figure 2.1.4).

Normalization is performed with either nSolver or RUVSeq (Figure 2.1.5), and the processed

expression data is assessed for validity through relevant visualization and biological checks (Figure

2.1.6). If validation is unsatisfactory and technical variation is still present, this process is iterated.

2.1.1 Technical quality control flags

The first step in quality control is an assessment of the assay quality. nSolver provides several

quality control (QC) flags to assess the quality of the data for imaging, binding density, linearity of the

positive controls, and limit of detection. The definition and implementation of thess QC flags are

summarized in detail in the nSolver30 and NanoStringNorm31 documentation. Here, we mark any

sample that is flagged in at least one of these four QC assessments as technical quality control. We
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1. Data familiarization
• Determine limit of detection.
• Determine raw median expression per sample.

2. Technical quality control
• Using nSolver Functions: Flag samples with Imaging, Binding Density, Positive Control

Linearity, and Limit of Detection QC flags.
• Using Endogenous Genes: Flag samples with high proportions of endogenous genes

below the limit of detection (LOD)
• Using Housekeeping Genes: Flag samples with high proportions of housekeeping genes

below the LOD.

3. Identify housekeeping genes for normalization
• Assess expression of housekeeping genes across biological variables.
• Flag housekeeping genes frequently detected below the LOD.

4. Pre-normalization data visualization
• Create RLE plots/principal component plots to visually inspect flagged samples and 

identify outliers indicative of sample/assay-level failure.
• Assess variation across technical and experimental variables

5. RUVSeq normalization
• Perform upper quartile normalization (Bullard 2010)
• Perform normalization with RUVg (Risso 2014)

4a. Exclude problematic 
samples

7. Downstream analysis

6a. Visualization
• Create RLE plots/principle component plots
• Assess variation across technical variables

6b. Biological checks
• Assess known intrinsic biological 

associations/patterns

Unsatisfactory

Iterate over k

Figure 2.1: Graphical summary of both nSolver and RUVSeq normalization pipelines. The quality con-
trol and normalization process starts with familiarization with the data (Step 1) and technical quality
control to flag samples with potentially poor quality (Step 2). After a set of housekeeping genes are
selected (Step 3), important unwanted technical variables are also investigated through visualization
techniques (Step 4). Problematic samples (e.g. those that are flagged multiple times in technical qual-
ity control checks) are excluded. Next, the data is normalized using upper quartile normalization and
RUVSeq (Step 5), and the normalized data is visualized to assess the removal of unwanted technical
variation and retention of important biological variation (Step 6). Steps 3—6 are iterated until technical
variation is satisfactorily removed, changing the set of housekeeping genes or the number of dimen-
sions of unwanted technical variation (k) estimated using RUVSeq. This data can then be used for
downstream analysis (Step 7).
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use these QC flags in both nSolver normalization and RUVSeq normalization to indicate samples that

may be of poor quality.

2.1.2 Housekeeping gene assessment

Next, we consider the genes on the nCounter assay that can potentially serve as housekeepers in

nSolver- or RUVSeq-normalization. Housekeeping genes serve two purposes: (1) for QC purposes to

remove samples with overall poor quality and (2) to use for assessing the amount of technical variation

and further normalization. There are differences in the definition of housekeeping genes (or negative

control probes) between the nSolver and RUVSeq-based processes27–30. We define a good

housekeeping gene for nCounter expression as one that has little-to-no variability across all treatment

conditions and is not expressed below the limit of detection in samples that pass QC. NanoString

further suggests that ideal housekeeping genes are highly expressed, have similar coefficients of

variation, and have expression values that correlate well with other housekeeping genes across all

samples. Because of these definitions, these targets will ideally vary only due to the level of technical

variation present. To assess the potential for housekeeping correction to introduce bias, housekeeping

genes were assessed for differential expression across a primary biological covariate of interest

(estrogen receptor status in CBCS, tumor stage in the kidney and bladder cancer data, and treatment

groups in Sabry et al) using negative binomial regression on the raw counts from the MASS package96.

Genes with Benjamini-Hochberg1 FDR-adjusted P < 0.05 were flagged, as their association with the

outcome of interest may lead to removal of biological variance due to the primary outcome of interest.

2.1.3 Below limit of detection (LOD) quality control

Lastly, as samples with high proportions of both endogenous and housekeeping genes below the

limit of detection (LOD) may be indicative of reduced assay or sample quality, we define another QC

flag: the number of genes measured at below the LOD per sample. Here, we define the per-sample

limit of detection as the mean of the counts of negative control probes for that given sample. We

further assessed the percent of counts below the LOD in the housekeeping genes per sample as an

added QC step to flag both poor quality samples and poor housekeeping genes. Samples were

flagged if they have more than one housekeeping gene missing and a median percent below LOD in

the endogenous genes greater than the 75th percentile of the samples with all housekeeping genes

present. Based on the age of samples and the level of degradation detected, this per-sample LOD can

be tuned. For example, the LOD can be shifted by multiples of the standard deviation to allow for more

25



liberal or conservative cutoffs. We further assessed the percent of counts below the LOD in the

housekeeping genes per sample as an added QC step to flag both housekeeping genes and samples

with high proportions of below the LOD. For a given sample, an inflated proportion below the LOD in

housekeeping genes may indicate degradation of the sample, especially when it correlates with a high

proportion below the LOD in endogenous genes.

2.2 Normalization of mRNA expression

2.2.1 Background correction with nSolver

NanoString whitepapers and guidelines suggest background corrections30,31 by either subtraction

or thresholding for an estimated background noise level for experiments in which low expressing

targets are common, or when the presence or absence of a transcript has an important research

implication29,31. We believe that the datasets we consider in this work do not fall under this criterion,

and accordingly, we do not background correct by either thresholding or subtraction. However, we

contend that this step may introduce bias in most analyses conducted on NanoString data and should

be generally avoided, as Freytag et al and Irizarry et al point out97,98.

Background thresholding led to increased per-sample variance while per-sample medians

remained relatively similar (Supplemental Figure S1A). The distributions of per-sample median

expression values were more right-skewed (greater mean than median) when using background

thresholding prior to normalization compared to not using background thresholding (Supplemental

Figure S1B). Based on this analysis, we did not perform background correction prior to normalization

for all cohorts analyzed.

2.2.2 Positive control and housekeeping gene-based normalization with nSolver

For nSolver normalization, the arithmetic mean of the geometric means of the positive controls for

each lane is computed and then divided by the geometric mean of each lane to generate a

lane-specific positive control normalization factor30,31. The counts for every gene are then multiplied

by its lane-specific normalization factors. To account for any noise introduced into the nCounter assay

by positive normalization, the housekeeping genes are used similarly as the positive control genes to

compute housekeeping normalization factors used to scale the expression values30,31. NanoString
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also flags samples with large housekeeping gene scaling factors (we call this a housekeeping QC flag)

and large positive control spike-in scaling factors (positive QC flag).

2.2.3 RUVSeq normalization pipeline

After quality control and housekeeping assessment, we alternatively also started the

RUVSeq-based normalization process, an alternative approach to nSolver normalization (see Figure

2.1). We rescaled distributional differences between lanes with upper-quartile normalization99.

Unwanted technical factors were estimated in the resulting gene expression data with the RUVg

function from the RUVSeq Bioconductor package27,29. RUV-III has been created specifically for

normalization of NanoString data with technical replicates28; however, as the datasets we discuss

here do not have technical replicates, we proceeded with RUVg. Unwanted variation was estimated

using the distribution of the endogenous housekeeping genes not associated with the outcome of

interest on the NanoString gene expression panel. We removed k dimensions of unwanted variation

(varied by dataset) from the variance-stabilized transformed-scaled counts of gene expression

data100,16. We lastly used relative log-expression (RLE) plots and principal component analysis to

detect systemic deviation across various technical and biological groups and any potential outliers.

2.2.4 Alternative normalization methods for benchmarking

Using CBCS data, we compared the normalized datasets from nSolver, RUVSeq29,

NanoStringDiff33, and RCRnorm101 with the raw data through visualization methods outlined above

(Figure 2.1.1 to 2.1.4, RLE plots and scatter plots of principal components over important technical

and biological sources of variation). Details about these methods are provided in Supplemental Table

S1.

2.3 Results

We evaluated the ability of normalization methods to remove technical variation while retaining

biologically meaningful variation across four cohorts of differing sample size and varying sources of

technical bias. Known sources of technical variation included age of sample (study phase) and

different study sites. The cohorts varied in preservation methods; two cohorts used fresh-frozen

specimens, while two used archival FFPE specimens. The number of genes measured for both
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endogenous genes and housekeeping genes also varied by study. In addition, some studies used

validated and optimized code sets for specific gene signatures versus a more general code set.

In cohorts with large technical biases, RUVSeq provided superior normalization with more robust

removal of technical variation and provided stronger biological associations compared to other

normalization methods. In two of the datasets, we found that downstream analyses performed on data

normalized with nSolver and RUVSeq detected substantially different biological associations.

However, when few strong technical biases were present or if a validated and optimized code set (e.g.

PAM50 genes) was used, nSolver and RUVSeq performed comparably.

2.3.1 Case study: targeted panel from the Carolina Breast Cancer Study (CBCS)

The Carolina Breast Cancer Study (CBCS) is a multi-phase cohort of women with breast cancer

in North Carolina. Samples were collected during three study phases: Phase 1 (1993-1996), Phase 2

(1996-2001), and Phase 3 (2008-2013). Paraffin-embedded tumor blocks were reviewed and assayed

for gene expression using the NanoString nCounter system as discussed previously24,102. Study

phase gives the relative age of the tumor block. In total, 1,649 samples from patients with invasive

breast cancer from CBCS, across all three study phases, were analyzed on a custom panel of 417

genes. All assays were performed in the Translational Genomics Laboratory (TGL) at the University of

North Carolina at Chapel Hill (UNC). After quality control and normalization, 1,264 samples remained

in the nSolver-normalized data, and 1,219 samples remained in the RUVSeq-normalized data. This

dataset was also used to benchmark against NanoStringDiff33 and RCRnorm101, using the same

1,264 samples in the nSolver-normalized set.

2.3.1.1 Quality assessment of expression levels using LOD of housekeeping genes

We used the housekeeping genes to assess if the lack of expression of endogenous genes was

due to biology or due to technical failures. We compared the level of missing endogenous genes in

samples with all housekeeping genes present to those with increasing number of housekeeping genes

below LOD. There was a strong positive correlation for increasing proportions of genes below the LOD

in both the endogenous and housekeeping genes (Figure 2.2A and Supplemental Figure S1).

Samples with higher numbers of genes below the LOD were from earlier phases of CBCS (i.e. Phase

1 from 1993-1996 and Phase 2 from 1996-2001), and thus associated with sample age (Figure 2.2A

and Supplemental Figure S2). Samples with a higher proportion of endogenous genes below the

LOD had increased numbers of QC flags as well (Supplemental Figure S1).
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Figure 2.2: Quality control and normalization validation in CBCS. (A) Boxplot of percent of endogenous
genes below the limit of detection (LOD) (Y -axis) over varying numbers of the 11 housekeeping genes
below LOD (X-axis), colored by CBCS study phase. Note that the X-axis scale is decreasing. (B) Kernel
density plots of deviations from median per-sample log2-expression from the raw, nSolver-, RUVSeq-,
NanoStringDiff-, and RCRnorm-normalized expression matrices, colored by CBCS study phase. (C)
Plots of the first principal component (X-axis) vs. second principal component (Y -axis) colored by
estrogen receptor subtype of the raw, nSolver-, RUVSeq-, NanoStringDiff-, and RCRnorm-normalized
expression data. (D) Violin plots of the distribution of per-sample silhouette values, as calculated to
study phase, using raw, nSolver-, RUVSeq-, NanoStringDiff-, and RCRnorm-normalized expression.
The boxplot shows the 25% quartile, median, and 75% quartile of the distribution, and the plotted triangle
shows the mean of the distribution.
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2.3.2 Evaluation of normalization methods

We benchmarked RUVSeq and nSolver with two other normalization methods, NanoStringDiff33

and RCRnorm101. We observed differences across the four normalization strategies (described in

Supplemental Table S1), namely greater remaining technical variation using nSolver and

NanoStringDiff than RCRnorm and RUVSeq (Figure 2.2B-D). A large portion of the variation in the

raw expression could be attributed to study phase (Supplemental Figure S4A). While all methods

reduced study phase associated variation compared to the raw data, there were considerable

differences in the deviations from the median log-expressions in the nSolver- and

NanoStringDiff-normalized expression that are not present in the RUVSeq- and RCRnorm-normalized

data (Figure 2.2B). The nSolver and NanoStringDiff methods retained technical variation, either not

fully corrected or re-introduced during the nSolver normalization process.

We examined the ability of each normalization method to retain biological variation. Estrogen

Receptor (ER) status is one of the most important clinical and biological features in breast cancer and

is used for determining course of treatment103,104. ER status drives many of the molecular

classification105–107 and even drives separate classification of breast tumors in TCGA’s pan-cancer

analysis of 10,000 tumors108. In the raw expression, variation due to ER status was captured in PC2

rather than PC1 (study age); however, after RUVSeq-normalization, ER status was reflected

predominantly in PC1 (Figure 2.2C). In the nSolver-, NanoStringDiff-, and RCRnorm-normalized data,

ER status was shared between PC1 and PC2, suggesting that unresolved technical variation was still

present. RUVSeq demonstrated effective removal of technical variation and boosting of the true

biological signal. The PAM50 molecular subtypes109, which are also linked with ER status, were also

clearly separated by PC1 for RUVSeq-normalized data, but this was not the case for nSolver-,

NanoStringDiff-, or RCRnorm-normalization (Supplemental Figure S4B). These results suggest that

RUVSeq-normalization best balances the removal of technical variation with the retention of important

axes of biological variation, with RCRnorm showing better performance than nSolver and

NanoStringDiff, but not superior to RUVSeq. A significant disadvantage of RCRnorm is its

computational cost: RCRnorm was unable to run on the CBCS dataset (N = 1278 after QC) on a

64-bit operating system with 8 GB of installed RAM, requiring RCRnorm-normalization to be performed

on a high-performance cluster. We summarize the maximum memory used by method in CBCS in

Supplemental Table S1.
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We used silhouette width to assess extent of unwanted technical variation from study phase

remaining by the normalization methods. We consider the silhouette value si for sample i110, defined

as

si =
bi − ai

max(ai, bi)
,

where ai is the mean distance between sample i and all other samples in the same study phase

and bi is the smallest mean distance of sample i to all points in any other study phase. Larger positive

silhouette values indicate within-group similarity (i.e. samples clustering by study phase). Per-sample

silhouettes across the alternatively normalized datasets showed that RUVSeq best addressed the

largest source of technical variation identified in the raw data (Figure 2.2D; Supplemental Figure

S5A) while also not removing a significant portion of biological variation (Supplemental Figure S5B).

NanoStringDiff also demonstrated less similarity of samples across study phase similar to RUVSeq but

removed biologically relevant similarity of samples grouped by ER status. Due to the performance of

NanoStringDiff and computational limitations of RCRnorm, for subsequent analyses and datasets, we

only illustrate differences between nSolver- and RUVSeq-normalized data.

2.3.3 Genomic analyses and expression profiles across normalization methods

We evaluated the impact of normalization choice on downstream analyses including eQTLs,

PAM50 molecular subtyping, known expression patterns, and similarity to RNA-seq data. In a full

cis-trans eQTL analysis accounting for race and genetic-based ancestry, we found considerably more

eQTLs using nSolver as opposed to RUVSeq, thresholding at nominal P < 10−3 (2,050 vs. 1,143).

We identified strong cis-eQTL signals in both normalized datasets; however, stronger FDR values

were identified with RUVSeq (Figure 2.3A, densely populated around the 45-degree line). We

observed considerably more trans-eQTLs using nSolver, including a higher proportion of trans-eQTLs

across various FDR-adjusted significance levels (Figure 2.3B; Supplemental Figure S8). We

suspected that spurious trans-eQTLs may have resulted from residual technical variation in expression

data that was confounded with study phase, subsequently being identified as a QTL due to ancestry

differences across study phase. In cross-chromosomal trans-eQTL analysis, distributions of absolute

differences in minor allele frequency (MAF) for trans-eSNPs across women of African and European

ancestry were wide for both methods (Supplemental Figure S8). However, we observed substantially

more trans-eSNPs with moderate absolute MAF differences across study phase with nSolver,

compared to RUVSeq. This provides some evidence for the presence of residual confounding
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technical variation in the nSolver-normalized expression data leading to spurious trans-eQTL results

(with a directed acyclic graph for this hypothesis in Supplemental Figure S9), though we cannot

confirm this with eQTL analysis alone.

We compared each normalization method for the ability to classify breast cancer samples into

PAM50 intrinsic molecular subtype using the classification scheme outlined by Parker et al109. Our

PAM50 subtyping calls were robust across normalization methods with 91% agreement and a Kappa

of 0.87 (95% CI (0.85, 0.90)) (Supplemental Figure S6). Among discordant calls, approximately half

had low confidence values from the subtyping algorithm, and half had differences in correlations to

centroids less than 0.1 between the discordant calls. Most of these discordant calls were among

HER2-enriched, luminal B and luminal A subtypes, which are molecularly similar111.

We observed noticeable differences between the RUVSeq- and nSolver-normalized gene

expression when visualized after hierarchical clustering via heatmaps, similar to the principal

component analysis. Using this method, we identified 14 additional samples with strong technical

errors in the nSolver-normalized data not previously marked by QC flags (Supplemental Figure S10),

emphasizing the need for post-normalization data visualization. In early breast cancer clustering

papers, the first major division was by ER status separating basal-like and HER2-enriched molecular

subtypes (predominantly ER-negative) from luminal A and B molecular subtypes (predominantly

ER-positive)109. This pattern was observed in RUVSeq-data but only partially preserved with nSolver

normalization (Supplemental Figure S10). Rather, nSolver data clustering was driven by a

combination of ER status and study phase. Study phase dominated two of the groups and were

formed by Phase 1 and Phase 3 samples, respectively—samples with a 10+ year difference in age.

Lastly, we compared normalization choices for NanoString data to RNA-seq data performed on

the same samples. CBCS collected RNA-seq measurements for 70 samples that have data on a

different nCounter codeset (162 genes instead of 417) and RNA-seq normalized using standard

procedures. A permutation-based test of independence using the distance correlation112,113 revealed

that the distance correlation between the RNA-seq and nSolver data was small and near 0 (distance

correlation = 0.051, P = 0.24) while the distance correlation between the RNA-seq and RUVSeq- data

was larger (distance correlation = 0.36, P = 0.02). The permutation-based test rejected the null

hypothesis of independence (distance correlation of zero for unrelated datasets) between

RUVSeq-normalized nCounter data and RNA-seq data but fails to reject the null hypothesis for

nSolver-normalization nCounter and RNA-seq data. We conclude that RUVSeq produced normalized

data with closer relation to the RNA-seq, in terms of distance correlation and test of independence,

compared to nSolver.
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Figure 2.3: eQTL analysis in CBCS. (A) Cis-trans plots of eQTL results from nSolver-normalized (left)
and RUVSeq-normalized data with chromosomal position of eSNP on the X-axis and the transcription
start site of eGene on the Y -axis. Points for eQTLs are colored by FDR-adjusted P -value of the associ-
ation. The dotted line provides a 45-degree reference line for cis-eQTLs. (B) Number of cis- (left) and
trans-eQTLs (right) across various FDR-adjusted significance levels. The number of eQTLs identified
in nSolver-normalized data is shown in red and the number of eQTLs identified in RUVSeq-normalized
data is shown in blue.
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2.3.4 Case study: differential expression analysis in natural killer cells

We looked at the impact of the two normalization methods in a small cohort (N = 12) on DE

analysis across natural killer (NK) cells primed for tumor-specific cells and cytokines from Sabry et al4.

RLE plots before and after normalization showed minor differences between the two normalization

methods (Supplemental Figure S10).

Using DESeq216, we identified genes differentially expressed in NK cells primed by CTV-1 or IL-2

cytokines compared to unprimed NK cells at FDR-adjusted P < 0.05. The two normalization methods

led to a different number of differentially expressed genes with a limited overlap of significant genes by

both methods (Figure 2.4A). The raw P -value histograms from differential expression analysis using

nSolver-normalized expression exhibited a slope toward 0 for P -values under 0.3, which can indicate

issues with unaccounted-for correlations among samples114, such as residual technical variation. The

distributions of P -values using the RUVSeq-normalized data were closer to uniform throughout the

range [0, 1] for most genes (Figure 2.4B). While the log2-fold changes were correlated between the

two normalization procedures, the genes found to be differentially expressed only with

nSolver-normalized data tended to have large standard errors with RUVSeq-normalized data and

therefore not statistically significant using RUVSeq (Figure 2.4C). These differences in DE results

emphasize the importance of properly validating normalization prior to downstream genomic analyses.

2.3.5 Further case studies

2.3.5.1 Case study: bladder cancer gene expression

RUVSeq reduced technical variation (study site) while maintaining the biological variation (tumor

grade). RUVSeq data showed the most homogeneity in per-sample median deviation of

log-expressions compared to raw and nSolver data (Figure 2.5A). The first principal component of

nSolver data had significant differences by study sites, which was not present in RUVSeq data (Figure

2.5B). In addition, there was a stronger biological association with tumor grade in the first principal

component of expression using RUVSeq data (Figure 2.5C).

2.3.5.2 Case study: kidney cancer gene expression

We only found subtle differences in the deviations from the median expression between the

normalization procedures for the kidney cancer dataset (Figure 2.6A). This cohort did not have the

same known technical variables observed in the other cohorts such as study site or sample age, and
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Figure 2.4: Differential expression analysis from Sabry et al4 (A) Venn diagram of the number of differ-
entially expressed genes using nSolver-normalized (blue) and RUVSeq-normalized data (red) across
comparisons for IL-2-primed (top) and CTV-1-primed NK cells (bottom). (B) Raw P-value histograms
for differential expression analysis using nSolver-normalized (blue) and RUVSeq-normalized (red) data
across the two comparisons. (C) Scatterplots of log2-fold changes from differential expression analysis
using RUVSeq-normalized data (X-axis) and nSolver-normalized data (Y-axis) for any gene identified
as differentially expressed in either one of the two datasets. Points are colored by the datasets in which
that given gene was classified as differentially expressed. The size of point reflects the standard error
of the effect size as estimated in the RUVSeq-normalized data. X = 0,Y = 0, and the 45-degree lines
are provided for reference.
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Figure 2.5: Normalization differences in bladder cancer dataset. (A) RLE plot from bladder cancer
dataset, colored by assay month. (B) Boxplot of first principal component of expression by tumor col-
lection site (location) across nSolver- (top) and RUVSeq-normalized (bottom) data. (C) Boxplot of first
principal component of expression by tumor grade across nSolver- (top) and RUVSeq-normalized (bot-
tom) data.
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the RNA came from fresh-frozen material. We evaluated normalization methods on a source of

technical variation, DV300, the proportion of RNA fragments detected at greater than 300 base pairs

as a source of technical variation, and tumor stage as a biological variable of interest. The first two

principal components colored by level of DV300 (Figure 2.6B) and tumor stage (Figure 2.6C) showed

little difference across the two normalization methods. When there were limited sources of technical

variation and a robust, high quality dataset, we found both normalization methods performed equally

well.

A

B C

Figure 2.6: Equal performance of normalization procedures in kidney cancer dataset. (A) RLE plot of
per-sample deviations from the median for raw, nSolver, and RUVSeq-normalized data. (B) Scatter plot
of the first and second principal component of nSolver- (left) and RUVSeq-normalized (right) expression,
colored by high and low DV300. (C) Scatter plot of the first and second principal component of nSolver-
(left) and RUVSeq-normalized (right) expression, colored by tumor stage.

2.4 Discussion

Proper normalization is imperative in performing correct statistical inference from complex gene

expression data. Here, we outline a sequential framework for NanoString nCounter RNA expression
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data that provides both quality control checks, considerations for choosing housekeeping genes, and

iterative normalization with biological validation using both NanoString’s nSolver software30,31 and

RUVSeq29. We show that RUVSeq provided a superior normalization to nSolver on three out of four

datasets by more efficiently removing sources of technical variation, while retaining robust biological

associations. We also benchmark RUVSeq-normalization with two other normalization methods

implemented in R and show that RUVSeq outperformed all methods in reducing technical variation.

We observed that normalization methods were sensitive to the quality and the set of

housekeeping genes. Several genes thought to behave exclusively in a “housekeeping” fashion in fact

associate with biological variables under certain conditions115 or across different tissue types116. A

careful validation of housekeeping gene stability on a case-by-case basis and separately for new

studies, considering both technical and biological sources of variation in each dataset, is therefore

imperative for an optimized normalization procedure.

We developed a quality metric to assess sample quality: samples with high proportions of genes

detected below the LOD in both endogenous genes and housekeepers were indicative of either

low-quality samples or reduced assay efficiency. Sample age was correlated with higher proportions of

genes below the LOD in both endogenous and housekeeping genes, which was likely due to RNA

degradation over time. We stress that missing counts in endogenous genes alone does not suggest

poor sample quality in the absence of additional QC flags but could represent genes not expressed

and therefore not detected under certain biological conditions or cell types. An example includes using

an immuno-oncology gene panel in a tumor sample with little to no immune cell infiltration. Conversely,

many samples with counts below the LOD in both endogenous genes and housekeepers had

additional quality control flags including those derived from nSolver’s assessment of data quality. We

excluded these samples for analysis in both the nSolver- and RUVSeq-based procedures.

nSolver-normalized data was prone to residual unwanted technical variation when there were

known technical biases, such as in CBCS and the bladder example. We checked for known biological

associations that are intrinsic to the sample, as in eQTL analysis, to judge the performance of the

normalization process117,70. A full cis-trans eQTL analysis using nSolver- and RUVSeq-normalized

data showed a strong cis-eQTL signal in data from both normalization methods. We found significantly

more trans-eQTLs with the nSolver-normalized data. However, many of the trans-eSNPs for the loci

found with nSolver-normalized data tended to have moderate MAF differences across phase, leading

us to suspect they were spurious associations driven by residual technical variation in gene

expression. Such spurious associations from population stratification have been described in many

previous studies of eQTL analysis118–121.
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The choice of normalization procedure is less of a concern in cohorts with minimal sources of

technical variation or in nCounter targeted gene panels that have been optimized for robust

measurement across preservation methods. In the CBCS breast cancer cohort, we identified

significant differences in gene expression between normalization methods across the entire gene set

(417 total genes). However, PAM50 subtyping was robust across the two normalization procedures.

The genes in the PAM50 classifier were selected due to their consistent measurement in both FFPE

and fresh frozen breast tissues109, suggesting that robustly measured genes may be less affected by

different normalization procedures. Furthermore, we see minimal differences in residual technical

variation in the kidney cancer dataset and the Sabry et al dataset, both of which were measured on

either robustly validated genes or nCounter panels. The kidney cancer example had newer,

fresh-frozen specimens that were profiled using a small and well-validated set of genes important in

that cancer type. This dataset gives an opportunity to stress the importance of the general principles of

normalization: as Gagnon-Bartsch et al and Molania et al recommend27,29, normalization should be a

part of scientific process and should be approached iteratively with visual inspection and biological

validation to tune the process. One normalization procedure is not necessarily applicable to all

datasets and must be re-evaluated on each dataset.

In conclusion, we outline a systematic and iterative framework for the normalization of NanoString

nCounter expression data. Even without background correction, a technique which has been shown to

impair normalization of microarray expression data98,97, we believe that relying solely on positive

control and housekeeping gene-based normalization may result in residual technical variation after

normalization. Here, we show the merits of a comprehensive procedure that includes sample quality

control checks including the addition of new checks, assessments of housekeeping genes,

normalization with RUVSeq29 and data analysis with popular count-based R/Bioconductor packages,

as well as iterative data visualization and biological validation to assess normalization. Researchers

must pay close attention to the normalization process and systematically assess pipelines that best

suit each dataset.
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CHAPTER3: A FRAMEWORKFORTRANSCRIPTOME-WIDEASSOCIATIONSTUD-
IES IN BREAST CANCER IN DIVERSE STUDY POPULATIONS

This chapter provides a framework for transcriptome-wide association studies for complex

disease outcomes in diverse study populations using transcriptomic reference data from the Carolina

Breast Cancer Study, a multi-phase cohort that includes an over-representation of African American

women122. We train race-stratified predictive models of tumor expression from germline variation and

carefully validate their performance, accounting for sampling variability and disease heterogeneity, two

aspects that previous TWAS in breast cancer have not considered. This framework shows promise for

scaling up into larger GWAS cohorts for further detection of risk- or outcome-associated loci.

3.1 The Carolina Breast Cancer Study

The Carolina Breast Cancer Study (CBCS) is a population-based study conducted in North

Carolina that began in 1993. Study details and sampling schemes are described in previous CBCS

work122,123. Patients of breast cancer aged between 20 and 74 years were identified using rapid case

ascertainment in cooperation with the NC Central Cancer Registry, with self-identified African

American and young women (ages 20-49) oversampled using randomized recruitment122.

Randomized recruitment allows sample weighting to make inferences about the frequency of subtype

in the NC source population. Details regarding patient recruitment and clinical data collections are

described in Troester et al24.

Date of death and cause of death were identified by linkage to the National Death Index. All

diagnosed with breast cancer have been followed for vital status from diagnosis until date of death or

date of last contact. Breast cancer-related deaths were classified as those that listed breast cancer

(International Statistical Classification of Disease codes 174.9 and C-50.9) as the underlying cause of

death on the death certificate. By the end of follow-up, we identified 674 deaths, 348 of which were

due to breast cancer.

In total, we compiled 3,828 samples with 1,865 self-identified African American (AA) women and

1,963 self-identified white (WW) women from all phases of CBCS with relevant survival and clinical
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variables. All 3,828 samples have associated germline genotype data, measured using the OncoArray

genotyping assay developed by Illumina and the OncoArray Consortium124. This data was imputed

using the October 2014 (v.3) release of the 1000 Genomes Project dataset as a reference panel using

SHAPEIT2 for phasing and IMPUTEv2 for imputation125–128. SNPs with minor allele frequency (MAF)

less than 1% and significant deviations from Hardy-Weinberg equilibrium at P < 10−8 were excluded.

Of these 3,828 samples, we consider 1,199 (621 AA and 578 WW) samples with NanoString

nCounter expression data for subsequent eQTL analysis and training of predictive expression models.

Quality control and normalization was conducted as detailed in Sections 2.1 and 2.2.

3.2 eQTL analysis

Using the 1,199 samples (621 AA, 578 WW) with expression data, we assessed the additive

relationship between the gene expression values and genotypes with linear regression analysis using

MatrixeQTL129, in the following model:

Eg = Xsβs +XCβC + ϵg,

where Eg is the gene expression of gene g, Xs is the vector of genotype dosages for a given SNP

s, C is a matrix of covariates, βs and βC are the effect-sizes on gene expression for the SNP s and the

covariates C, respectively, and ϵ is assumed to be Gaussian random error with mean 0 and common

variance σ2 for all genes g.

We calculated both cis- (variant-gene distance less than 500 kb) and trans-associations between

variants and genes. Classical P -values were calculated for Wald-type tests of H0 : βs = 0 and were

adjusted post-hoc via the Benjamini-Bogomolov hierarchical error control procedure, TreeQTL130. We

conducted all eQTL analyses stratified by race. Age, BMI, postmenopausal status, and the first 5

principal components of the joint AA and WW genotype matrix were included in the models as

covariates in C. Estimated tumor purity was also included as a covariate to assess its impact on

strength and location of eQTLs. Any SNP found in an eQTL with Benajmini-Bogomolov adjust P -value

BBFDR < 0.05 is defined as an eSNP. The corresponding gene in that eQTL is defined as an eGene.

We exclude samples with Normal-like subtype, as classified by the PAM50 classifier, due to generally

low tumor content. We developed a formal quality control procedure to follow-up on significant eQTLs

by define a further MAF cutoff based on additive genotypes (i.e. 0,1, and 2 copies of the minor allele)

and rigorous visual inspection.
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Figure 3.1: CBCS eQTL results across race and compared with GTEx. (A) Cis-trans plot of top eQTL
by gene stratified by self-reported race. Each point represents the top eQTL for a given gene. The color
and size of each point reflects the Benjamini-Bogomolov FDR-adjusted P -value (BBFDR) for that eQTL.
eGenes with BBFDR < 0.01 are labelled. (B) Comparison of effect sizes of eGenes with significant
cis-eQTLs in CBCS (Y-axis) and GTEx (X-axis) over tissue type, stratified by race. eGenes are colored
by the GTEx tissue that shows the largest effect size. GTEx effect sizes on the X-axis are multiplied by
the sign of the correlation between the genotypes of the GTEx and CBCS eSNPs.
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At a Benjamini-Bogomolov130 FDR-corrected P -value (BBFDR < 0.05) and after quality control,

we identified 266 cis-eQTLs and 71 trans-eQTLs in the AA sample across 32 eGenes, and 691

cis-eQTLs and 15 trans-eQTLs in the WW sample across 24 eGenes. Of these eGenes, 4 are in

common across race: PSPHL, GSTT2, EFHD1, and SLC16A3. Expressions of PSPHL and GSTT2

have been previously reported to be governed by respective cis-deletions and serve as distinguishing

biomarkers for race131–134. The majority of significant eQTLs in both the AA and WW samples were

found in cis-association with respective eGenes. However, we saw a higher proportion of significant

trans-eQTLs in the AA sample (Supplemental Figure S12). The locations and strengths of top eQTLs

for all 406 autosomal genes are shown in Figure 3.1A, with minor allele frequencies of significant

eSNPs plotted in Supplemental Figure S13.

3.2.1 Adjustment for tumor purity

Geeleher et al. show that only a third of conventional eQTLs in bulk breast cancer tumor

expression could be attributed to cancer cells in TCGA85. We wished to assess the extent to which

this observation bore out in CBCS. A study pathologist analyzed tumor microarrays (TMAs) from 176

of the 1,199 subjects to estimate area of dissections originating from epithelial tumor, assumed here

as a proxy for the proportion of the bulk RNA expression attributed to the tumor. Using these 176

observations as a training set and the normalized gene expressions as the design matrix, we trained a

support vector machine model tuned over a 10-fold cross-validation135,136. The cross-validated model

was then used to estimate tumor purities for the remaining 1,023 samples from their gene expressions.

In general, we do not see significant differences in the strength and location of significant eQTLs,

as shown in comparative cis-trans plots of all eQTLs across race and adjustment for tumor purity

(Supplemental Figures S13 and S14). For most genes, top eQTL regions with linkage disequilibrium

(LD) support had small differences in strength of effect size (Manhattan plot for a representative gene

shown in Supplemental Figure S13). Adjusting for tumor purity, at BBFDR < 0.05 and after quality

control, we identified 266 cis-eQTLs and 84 trans-eQTLs in the AA sample across 36 eGenes, and

634 cis-eQTLs and 14 trans-eQTLs in the WW sample across 23 eGenes, shown in Supplemental

Figure S14. All WW eGenes, adjusting for tumor purity, are in common with WW eGenes from bulk

tumor expression, and 32 of 36 AA eGenes, adjusting for tumor purity, are in common with AA eGenes

from bulk tumor expression. Top eQTLs for eGenes remain largely the same across adjustment for

tumor purity. Due to limited differences when we adjust for tumor purity, all downstream analyses do

not involve our computational estimate of tumor purity.
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We do not observe the same difference in eQTLs across adjustment for tumor purity as in

Geeleher et al85. The NanoString expression data from CBCS includes only 417 genes, all of which

were selected for the panel because of their involvement in breast cancer tumorigenesis, biology, or

outcome disparities due to race. Furthermore, our normalization procedure involves the RUV method,

which accounts for unwanted technical and biological variation, estimated from the distributions of

housekeeping negative controls with an unsupervised method27,29. We hypothesize that the RUV

method accounts for a significant percentage of the variability from cell-type heterogeneity that may

confound traditional eQTL analysis in bulk tumor RNA expression. Further implementations of

deconvolution algorithms specialized for expression measured for targeted panels of genes, as in

NanoString, would aid in distinguishing the source cell types or tissues for various breast tumor eQTLs.

Accurate bulk expression deconvolution may also be important in future TWAS to consider sources of

variation in tumor expression due to tissue heterogeneity and how deconvoluted tumor expression

signals contribute to outcomes of interest.

We lastly sought to evaluate the source of the significant eQTLs we detect in CBCS. Similarly to

previous pan-cancer gerrmline eQTL analyses137, we cross-referenced eGenes found in CBCS with

eGenes detected in relevant healthy tissues from Genotype-Tissue Expression (GTEx) Project:

mammary tissue (breast), subcutaneous adipose, and EBV-transformed lymphocytes (immune). We

attributed all but 7 of the cis-eGenes from CBCS across both AA and WW women found in GTEx to

one of these three tissue types (Figure 3.1B), with the effect sizes of the top eQTLs for these eGenes

correlating very well between CBCS and GTEx (see Supplemental Figure S17). We also found

adequate overlap of cis-eSNPs in these GTEx tissues and TCGA-BRCA based on the P-value of

SNP-gene association (see Supplemental Figure S18). Note that, in GTEx v7, adipose (N = 298)

has a larger sample size that mammary tissue (N = 183) and lymphocytes (N = 114). We were

unable to replicate CBCS trans-eQTLs in GTEx and TCGA-BRCA138. The majority of CBCS

trans-eQTLs were identified in AA women, and the sample sizes of individuals of African descent is

low in GTEx version 7 and TCGA-BRCA.

3.2.2 Local ancestry adjustment of eQTLs

For cis-eGenes that were identified in only one of AA or WW women, we followed up with a

cis-eQTL analysis adjusted for inferred local ancestry. Reference genotypes were downloaded from

the 1000 Genomes Project version 3 for Utah residents with Northern and Western European ancestry

(CEU) and Yoruban individuals from Ibadan, Nigeria (YRI)125. Phased genotypes from the assumed
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admixed samples from CBCS were then compared to reference genotypes using RFMix v1.5.4 to

estimate the posterior probability of CEU and YRI ancestry at a given haplotype, which is converted to

an estimated dosage of inherited YRI alleles139,140. We then follow Zhong et al’s framework for

adjusting eQTLs by estimated local ancestry141. Briefly, for gene expression g, dosage of SNP of

interest s, covariates XC , and estimated local ancestry l for the given SNP, we first residualize and

scale to zero mean and unit variance g,s, and l by XC . We then fit the following linear model to

estimate the local ancestry-adjusted eQTL effects:

g̃ = s̃+ l̃ + ϵ,

where g̃, s̃, and l̃ are the residualized and scaled gene expression, SNP dosage, and estimated

local ancestry, respectively141.

Overall, we find marginal increase in the strength of association between lead SNP and cis-eGene

using an estimated local ancestry-adjustment over the association measured with a genome-wide

ancestry adjustment. However, we did not observe considerable harmonization of stratified cis-eQTLs

across populations; in general, race-specific, local ancestry-adjusted lead cis-eQTLs in a given

race-stratified sample did not show similar association in the other (Supplemental Figure S16).

It has been shown that, due to allele frequency differences between populations, the underlying

genetic and eQTL architecture for complex traits may not be well-correlated across diverse

populations142,143. Zhong et al shows that incorporating local ancestry helps to better characterize the

heritability of gene expression and complex traits and accurately map genetics associations141.

However, our local ancestry-adjusted cis-eQTLs were not well-correlated across AA and WW women.

Perhaps, the persistence of this difference can be due to the simplicity of the commonly used

assumption that t here are two major source populations of admixture in CBCS samples (i.e. CEU and

YRI). Several genetic studies into the genome-wide and local hereditary of admixed populations in the

United States have shown that migratory patterns greatly inform these patterns of genetic

ancestry144,145. Though this follow-up analysis is beyond the scope of this work, a full cis-trans eQTL

ancestry incorporating local ancestry estimates, as well as an assessment of the impact of local

ancestry adjustment on the portability of our eventual predictive models of tumor expression across

ancestral populations, could reveal insights into the genetic architecture of breast tumor expression

heritability in admixed populations.
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3.3 Predictive models of tumor expression

3.3.1 Race-specific predictive models of tumor expression

Cis-heritability (cis-h2) using genotypes within 500 kb of the gene of interest was estimated using

the GREML-LDMS method, proposed to estimate heritability by correction for bias in linkage

disequilibrium (LD) in estimated SNP-based heritability49. We do not consider the trans components in

heritability estimation. Analysis was conducted using GCTA v.1.92146. Briefly, Yang et al shows that

estimates of heritability are often biased if causal variants have a different minor allele frequency

(MAF) spectrums or LD structures from variants used in analysis. They proposed an LD and

MAF-stratified GREML analysis, where variants are stratified into groups by MAF and LD, and genetic

relationship matrices (GRMs) from these variants in each group are jointly fit in a multi-component

GREML analysis. Mean cis-h2 of the 406 genes is 0.016 (SE = 0.019) in AA women and 0.015

(SE = 0.019) in WW women, as estimated by GREML-LDMS analysis49. For downstream analysis,

we only consider genes with cis-h2 significantly greater than 0 at a nominal P -value less than 0.10

from the relevant likelihood ratio test. Considering only these genes, the mean cis-h2 of genes is 0.049

(SE = 0.016) in AA models and 0.052 (SE = 0.016) in WW models.

We adopt general techniques from PrediXcan and FUSION to estimate eQTL-effect sizes for

predictive models of tumor expression from germline variants42,3. First, gene expressions were

residualized for the covariates C included in the eQTL models (age, BMI, postmenopausal status, and

genotype PCs) given the following ordinary least squares model:

Eg = XCβC + ϵg.

We then consider downstream analysis on Ẽg ≡ Eg −Xcβ̂C .

For a given gene g, we consider the following linear predictive model:

Ẽg = Xgwg + ϵg,

where Ẽg is the gene expression of gene g, residualized for the covariate matrix XC , Xg is the

genotype matrix for gene g that includes all cis-SNPs for gene g (within 500 kb of either the 5’ or 3’ end

of the gene) and all trans-eQTLs with BBFDR < 0.01, wg is a vector of effect-sizes for eQTLs in Xg,

and ϵg is Gaussian random error with mean 0 and common variance for all g.
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We estimate wgwith the best predictive of three schemes: (1) elastic-net regularized regression

with mixing parameter α = 0.5 and λ penalty parameter tuned over 5-fold cross-validation42,3,48, (2)

linear mixed modeling where the genotype matrix Xg is treated as a matrix of random effects and ŵg is

taken as the best linear unbiased predictor (BLUP) of wg, using rrBLUP147, and (3) multivariate linear

mixed modeling as described above, estimated using GEMMA v.0.97148.

In these models, the genotype matrix Xg is pruned for LD, prior to modeling using a window size

of 50, step size of 5, and LD threshold of 0.5 using PLINK v.1.90b3149 to account for redundancy in

signal. We believe that our LD-pruning thresholds and window sizes are not stringent150 and noticed

that LD-pruning the design matrix of genotypes lead to greater cross-validation R2 (Supplemental

Figure S19). The final vectors ŵg of effect-sizes for each gene g are estimated by the estimation

scheme with the best 5-fold cross-validation performance. All predicted models are stratified by race,

i.e. an individual model of tumor expression for AA women and WW women for each gene g.

To impute expression into external cohorts, we then construct the germline genetically-regulated

tumor expression GReXg of gene g given ŵg in the predictive model as follows:

GReXg = Xg,newŵg,

where Xg,new is the genotype matrix of all available SNPs in the feature set of ŵg in a GWAS

cohort.

Of the predictive models built for these genes, 125 showed a five-fold cross-validation prediction

performance (CV R2) of at least 0.01 (10% Pearson correlation between predicted and observed

expression with P < 0.05) in one of the two predictive models. Figure 2.2A shows the CV R2 of these

153 genes across race. The median CV R2 for the 153 genes was 0.011 in both AA and WW women.

Cis-h2 and CV R2 are compared in Supplemental Figure S20. We also show mean CV and external

validation (EV) R2 with quantiles for prioritized genes across the training set and both external test

sets in Supplemental Table S2.

Based on model performance in CBCS, we selected 46 genes in AA women and 57 genes in WW

women for association analyses between predicted tumor gene expression and breast cancer survival,

using data from all patients from CBCS with genotype data. These genes were selected because they

showed a CV R2 > 0.01 and cis-h2 ≥ 0 with nominal P < 0.10 in a given race strata.

All final models are available here:

https://github.com/bhattacharya-a-bt/CBCS_TWAS_Paper.
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Figure 3.2: Predictive performance of models in cross-validation, external validation, and across race.
(A) Comparison of cross-validation R2 across race in CBCS. Cross-validation R2 in CBCS WW women
(X-axis) and CBCS AA women (Y-axis) for each of the 151 analyzed genes. Scales are logarithmic.
Dotted lines represent R2 = 0.01. Colors represent the model with which a given gene can be predicted
at R2 > 0.01. (B) Cross-validation R2 in CBCS (X-axis) and square Spearman correlation between
observed expression and GReX in TCGA-BRCA (Y-axis) in AA sample (left) and WW sample (right).
Pearson correlations between R2 calculated on the raw scale. R2 are plotted on the log-scale. (C)
Comparison of validation R2 across race in TCGA for 149 analyzed genes found in TCGA expression
data. (D) Comparison of validation R2 across race in held-out CBCS samples for 50 analyzed genes. (E)
Comparison of R2 of genes in TCGA AA sample imputed from WW models (X-axis) and the AA models
(Y-axis). (F) Comparison of R2 of genes in held-out CBCS AA sample imputed from WW models (X-axis)
and the AA models (Y-axis)
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3.3.2 Evaluation of predictive models in independent data

Predictive performance was strong across race and biological and molecular subtype in two

external samples: The Cancer Genome Atlas (TCGA) and a held-out CBCS sample set. We defined

the imputed expression of a given gene in an external cohort as the GReX, or the germline-genetically

regulated tumor expression, of that gene.

The first sample is derived from TCGA breast tumor tissues with 179 AA and 735 WW women.

We compared predictive performance by calculating an external validation R2 (EV R2) with squared

Spearman correlations. Of the 151 genes modeled in CBCS training data with significant cis-h2, 149

genes were measured via RNA-seq in TCGA. A comparison of predictive performance in TCGA for

these 149 genes is shown in Figure 3.2, showing adequate performance in AA women (33 genes with

EV R2 > 0.01) and poor performance in WW women (7 genes with EV R2 > 0.01). The top predicted

gene in cross-validation from CBCS for both races, PSPHL, was not present in the TCGA normalized

expression data and could not be validated. Another top cross-validated gene, GSTT2, was present in

TCGA expression data and was validated as the top genetically predicted gene in TCGA by EV R2.

We also imputed expression into entirely held-out samples from CBCS data (1,121 AA and 1,070

WW women) that have gene expression for a subset of the genes (166 of 417 genes) in the CBCS

training set. These samples were largely derived from Phases I and II of CBCS. A comparison of

imputation performance in CBCS for 50 genes (genes with significant cis-h2 in CBCS training set) is

shown in Figure 3.2C, showing adequate performance in both AA and WW women (18 and 15 genes

with EV R2 > 0.01 in AA and WW women).

Predictive models are not applicable across race We find that the predictive accuracy of most

genes was lower when expression was imputed in AA women using models trained in the WW sample.

We employed the WW predictive models to impute expression into AA samples from TCGA and

held-out CBCS data. We compare the performances of the WW model and AA model in the AA sample

in Figure 3.2D (TCGA) and 3.2E (CBCS). In held-out CBCS samples, with the WW model, we could

only predict PSPHL and GSTT2 at R2 > 0.01 in the AA sample, as the expression of these genes is

modulated mostly by strongly associated cis-eSNPs. In TCGA, our WW models performed adequately

in AA women, though the WW models predicted fewer genes at R2 > 0.01 than the AA models.

3.3.3 Evaluation of predictive performance across subtype

While predictive accuracy of expression models was stable across datasets, there was greater

heterogeneity across biological and molecular subtype. In part, this is due to small sample sizes within

49



AA WW

DTX3 EMP3 GSTT2 IRS1 LEPRE1 DTX3 EMP3 GSTT2 IRS1 LEPRE1
0.0

0.2

0.4

0.6

Gene

R
2  in

 T
C

G
A

A

AA WW

AMH GSTT2 PHGDH PSPHL SH2B3 AMH GSTT2 PHGDH PSPHL SH2B3
0.0

0.1

0.2

0.3

Gene

R
2  in

 h
el

d−
ou

t C
BC

S

B

Subtype Overall
Basal

Her2
LumA

LumB
ER+

ER−

Figure 3.3: Predictive performance of key genes, accounting for sampling variability. Validation R2

across PAM50 molecular subtype and estrogen receptor status, stratified by race, for example genes
with highly variable R2 in TCGA (A) and held-out CBCS (B). Squared Spearman correlation (Y-axis),
denoted R2, between observed and predicted gene expression is plotted for different genes (X-axis),
stratfied by PAM50 subtype and estrogen receptor status. Points are colored and shaped according to
subtype. Error bars provide 90% confidence intervals inverted from the corresponding permutation test.

race and subtype-specific strata. Upon first inspection, we see vast differences in the performance of

our models across subtype (Supplemental Figure S21), with a large majority of genes performing at

EV R2 > 0.01 in rarer subtypes, like HER2-enriched breast cancers. However, we recognized sample

sizes in the TCGA validation set were relatively small, especially when considering AA women and

women of certain subtype, e.g. as low as 16 AA women with HER2-enriched breast cancer. As overall

correlation between observed and imputed expressions are near 0, we sought to account for sampling

variability when imputing into groups of women with such small sample sizes.

To account for sampling variability in calculating correlations in validation cohorts of smaller

sample sizes, we calculated a permutation null distribution for each gene by permuting observed

expressions 10,000 times and calculating a null prediction R2 at each permutation. The sample

validation prediction R2 was compared to this permutation null distribution to generate an empirical

P -value for the sample R2, using Storey’s qvalue package151. We then calculated q-values from these

empirical P -values, controlling for a false discovery rate of 0.051,151. Lastly, we constructed

confidence intervals for R2 by inverting the acceptance region from the permutation test152.
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Supplemental Figure S22 displays q-values in Manhattan form151, showing that the proportion of

genes with EV R2 significantly different from 0 is similar across subtypes. After inverting this

permutation test to construct a confidence interval for EV R2, we find that the EV R2 of several genes

are highly variable across subtypes, even when accounting for differences in sample size and

therefore sampling variation. Key examples of such genes with variable EV R2 across subtypes are

shown in Figure 3.3.

3.4 Association with breast cancer-specific survival

3.4.1 Power analysis of detecting survival associations

Using survSNP153, we generated the empirical power of a GWAS to detect various hazard ratios

with 3,828 samples with 1,000 simulation replicates at a significance level of P = 1.70× 10−8,

corresponding to an FDR-adjusted P = 0.10. We assume an event rate of 10%, a relative allelic

frequency of the risk allele of 0.1 and estimate the 90th percentile of times-to-event as a landmark

time. Similarly, for genes of various cis-h2, we assessed the power of TWAS to detect various hazard

ratios at P = 0.0096 (corresponding to FDR-adjusted P = 0.10) over 1,000 simulation replications from

the empirical distribution function of the GReX of the given gene. It is important to note that the

detectable hazard ratios at 80% for GWAS and TWAS are incomparable due to differences in units of

measure. At 80% power, a GWAS with CBCS data with N = 3,828 is powered to detect a hazard ratio

of breast cancer-specific survival of 1.88 with an addition of one alternative allele in a given SNP. At

80% power, in our study, TWAS can detect hazard ratios 1.186, 1.203, and 1.216 with the GReX of a

gene with cis-h2 ≈ 0.100, 0.055, and 0.030, with respect to an increase of one standard deviation,

respectively (Supplemental Figure S23).

3.4.2 Predicted expression associated with breast cancer-specific survival

Here, we defined a relevant event as a death due to breast cancer. We aggregated all deaths not

due to breast cancer as a competing risk. Any subjects lost to follow-up were treated as right-censored

observations. We estimated the association of GReX with breast cancer survival by modeling the

race-stratified cause-specific hazard function of breast cancer-specific mortality, stratifying on race154.

For a given gene g, the model has form
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Region Gene Hazard Ratio
(90% CI)a Z-statistica P -valuea GReX R2

(h2)b

20q13.2 AURKA 0.83
(0.73, 0.95) -2.52 1.5× 10−3 0.021 (0.055)

2p23.1 CAPN13 1.22
(1.07, 1.41) 2.76 5.4× 10−4 0.011 (0.047)

3q26.32 PIK3CA 0.85
(0.74, 0.97) -2.34 3.2× 10−3 0.020 (0.033)

18q21.33 SERPINB5 0.82
(0.72, 0.93) -2.85 3.4× 10−4 0.010 (0.026)

Table 3.1: Genes with GReX found in association with breast cancer-specific survival in AA women.
(a) Hazard ratio and FDR-adjusted 90% confidence intervals, Z-statistic, and P -value of association of
GReX with breast cancer-specific survival. (b) Cross-validation R2 of gene expression in AA models.

λk(t) = λ0(t)exp {GReXgβg + ZCβC} ,

where βg is the effect size of GReXg on the hazard of breast cancer-specific mortality, ZC

represents the matrix of covariates (age at diagnosis, estrogen-receptor status at diagnosis, tumor

stage at diagnosis, and study phase), and βC are the effect sizes of these covariates on survival. λk(t)

is the hazard function specific to breast cancer mortality, and λ0k(t) is the baseline hazard function.

We test H0 : βg = 0 for each gene g with Wald-type tests, as in a traditional Cox proportional hazards

model. We correct for genomic inflation and bias using bacon, a method that constructs an empirical

null distribution using a Gibbs sampling algorithm by fitting a three-component normal mixture on

Z-statistics from TWAS tests of association155. We control of multiple testing burden using the

Benjamini-Hochberg procedure1. For comparison, we run a GWAS to analyze the association

between germline SNPs and breast cancer-specific survival using GWASTools156. We use a similar

cause-specific hazards model with the same covariates as in the TWAS models of association,

correcting for false discovery with the Benjamini-Hochberg procedure.

Of the genes evaluated, we detected 4 whose GReX were associated with breast-cancer specific

survival at FDR-adjusted P < 0.10 in AA women, shown in Table 3.1 and Figure 3.4. We did not

identify any genes with GReX associated with survival in WW women.

An association between increased GReX and increased risk of breast cancer-specific mortality

was identified for CAPN13 (2p23.1). We also found protective associations between higher GReX of

AURKA (20q13.2), PIK3CA (3q26.32), SERPINB5 (18q21.33) and lower risk of breast cancer-mortality

(Figure 3.4C). Of these 4 loci, associations with survival have been reported with SNPs in near the

same chromosomal region as AURKA, PIK3CA, and SERPINB537,157–161, though none of these
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Figure 3.4: GWAS and TWAS results in AA women. (A) Manhattan plot of traditional GWAS on breast
cancer survival. Genomic regions found to be significantly associated with survival in TWAS are repre-
sented in various colors. No SNVs reach Benjamini-Hochberg FDR-adjusted genome-wide significance.
(B) Manhattan plot of TWAS on breast cancer survival. Genomic regions found to be significant at FDR-
adjusted P < 0.10 are highlighted in red. The blue line represents a cutoff of FDR-adjusted α = 0.05
and the dotted black line represents a cutoff of FDR-adjusted α = 0.10. (C) Caterpillar plot of log-hazard
rates with FDR-adjusted 90% confidence levels (X-axis) and genomic position (Y-axis). Results shown
are significant at nominal P < 0.10. Genes highlighted in red represent genes with GReX significantly
associated with survival at FDR-adjusted P < 0.10.
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Gene Closest survival-
associated SNPa

Distance to closest
survival-associated

SNPa

Hazard ratio,
adjusting for

adjacent GWAS-SNP
(90% CI)a

P -valueb

AURKA rs202100873 87.1 kb 0.84 (0.74, 0.94) 0.027
CAPN13 rs72068647 266.9 kb 1.18 (1.04, 1.33) 0.046
PIK3CA rs66487567 271.9 kb 0.88 (0.78, 1.00) 0.096

SERPINB5 rs376302305 89.4 kb 0.84 (0.75, 0.94) 0.028

Table 3.2: Genes with GReX found in association with breast cancer-specific survival. (a) Top survival-
associated SNP in cis-region of the given gene from GWAS for survival and distance of top cis-SNP
from gene. (b) FDR-adjusted hazard ratio, 90% confidence interval, and P -value for association of
GReX and breast cancer-specific survival, adjusting for adjacent survival-associated SNPs.

reported SNPs were utilized in constructing the GReX of this gene. Furthermore, the GReX of these

four genes were not significantly correlated (P > 0.05 for all pairwise Spearman correlation tests), and

the sets of SNPs used in constructing the GReX of these four genes had no pairwise intersections,

providing evidence that their independent association with breast cancer-specific survival was not a

pleiotropic effect from shared or correlated SNPs.

To determine whether the associations between predicted gene expression and breast

cancer-specific survival were independent of GWAS-identified association signals, we performed

conditional analyses adjusted for the most significant GWAS-identified survival-associated SNPs

closest to the TWAS-identified gene by adjusting the cause-specific proportional hazards model for the

genotype from this SNP. We found that the association for PIK3CA had a small change in effect size

after adjustment for its adjacent survival-associated SNP, and its SNP-adjusted association was

insignificant, while the other genes’ associations remained significant after adjustment (Table 3.2).

This conditional analysis suggests that the GReX of AURKA, CAPN13, and SERPINB5 may be

associated with breast cancer-specific survival independent of the GWAS-identified variant. No

previously reported survival-associated SNPs were found significant at the genome-wide significance

level in our dataset, and none of the closest survival-associated SNPs used in conditional adjustment

were significant (Figure 3.4A). This supports our observation that correctly analyzed TWAS using

relevant tissue gene expression may increase power for association testing.

As we deal with case-only data, we wished to inspect any collider bias that arises from

unmeasured confounders that are associated with both breast cancer incidence and survival (see

Supplemental Figure S24). Since a case-control dataset was not readily available to us to test

associations between the GReX of genes with breast cancer risk, we construct the weighted burden

test, as in FUSION50,3, for the GReX of AURKA, CAPN13, PIK3CA, and SERPINB5 in the GWAS
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summary statistics for breast cancer risk in AA women available from BCAC using the iCOGs dataset

and additional GWAS9,10,162.

In summary, we compose a weighted Z test statistic50,3 as follows:

Z̃ =
WZ

(WΣs,sW ′)1/2
,

where Z is the vector of Z-statistics from iCOGs and W = Σe,sΣ
−1
s,s such that Σe,s is the

covariance matrix between all SNPs represented in Z and the gene expression of the given gene and

Σs,s is the covariance among all SNPs. We find that none of the GReX of these genes are significantly

associated with breast cancer incidence (Z̃ > 1.96, P < 0.05), suggesting minimal presence of collider

bias in our estimates of association with survival for the GReX of these four genes.

Lastly, we examined the association of the GReX of these four genes with breast cancer-specific

survival in AA women, stratified by estrogen receptor (ER) subtype. We find that overall associations

with survival are often driven by significant associations in a single subtype, though there is evidence

of significant hazardous association in both ER subtypes for CAPN13 (Supplemental Figure S25).

We also did not detect a survival association with the total expression of these 4 genes, as estimated

from breast cancer-specific Cox models (Supplemental Figure S26).

3.5 Discussion

In this paper, we studied the relationship between breast cancer-specific survival and germline

genetics using a TWAS framework. This study is the first systematic TWAS for breast cancer-specific

survival, motivated by a full cis-trans eQTL analysis with one of the largest sample sizes for breast

tumor gene expression in African American women. Our analyses underscore the importance of

accounting for sampling variability when validating predictive models for TWAS and incorporating race

or ancestry in these models, an aspect which confounds naive comparisons involving imputed GReX

across validation sub-groups of different sample size.

Our race-stratified eQTL analysis reveals a strong cis-signal between germline variants and tumor

expression of several genes, that is both differential across race and not exclusively attributable to

healthy breast tissue. We also identified considerably more trans-eQTLs in the AA sample. This result

may reinforce race differences in eQTL architecture as the ratio of detected trans-eQTLs to cis-eQTLs

is not directly linked to sample size44. Differences in allele frequencies and linkage disequilibrium may

contribute to observed differences in cis-eQTLs, as reported by Mogil et al143, and we hypothesize that
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such differences may likewise affect trans-eQTLs. Alternatively, there is a prevailing thought in

literature about trans genetic regulation in admixed populations that the genetic diversity in individuals

of African ancestry leads to added power of eQTL detection68,72.

These race differences in eQTLs motivated the racial stratification of our predictive expression

models72,163. Our models showed strong cross-validation predictive performance in genes with

significant cis-heritability. We also show strong predictive performance in a held-out test set from

CBCS and adequate performance of our WW models in TCGA-BRCA data. We noticed a difference in

EV R2 of our predictive expression models in held-out CBCS samples and TCGA-BRCA. We believe

that this difference can be attributed partly to the difference in genotyping platform between the two

samples (only approximately 85% of SNPs from CBCS represented in TCGA imputed genotype data).

There could also be a lack of cis-heritability of the tumor expression of a majority of genes assayed in

TCGA. For example, Gusev et al. has trained models for gene expression in breast tumors in TCGA;

only 8 of the 417 genes in the CBCS NanoString panel showed significant cis-heritability in their

models3, which we downloaded from the Gusev Lab’s TWAS/FUSION repository. We believe that

predictive performance in TCGA data consistent with CBCS data is a high bar for validation due to both

genotyping and RNA expression platform differences between CBCS (Oncoarray and NanoString) and

TCGA (Affymetrix 6.0 and RNAseq). Reproducible performance in both AA and WW women in our

independent test set from CBCS data suggests that our models are quite robust. Follow-up studies, in

which models of tumor expression are trained in TCGA RNA-seq data and validated in CBCS

NanoString data, could elucidate any discrepancies in predictive performance across platform.

An important implication of our work is the race-specificity of TWAS methods. We find that

expression models trained in WW women generally have poor performance in AA women.

Epidemiological studies have stressed accounting for differences in race by stratification or adjustment

for admixture estimates when constructing polygenic scores164. Our observations suggest that this

epidemiological note of caution extends to creating predictive models for RNA expression. Previous

TWAS studies of breast cancer risk have either used models trained in a sample of predominantly

European ancestries165 or imputed into large cohorts of strictly patients of European descent43.

Hoffman et al. excludes SNPs that were monomorphic in any of the 14 different ancestral populations

they analyze165, though this may not capture all effects of ancestry on genetic regulation of expression,

including the possibility for interactions. We contend that accounting for ancestry or stratifying by race

may be necessary to draw correct inference in large, ancestrally-heterogeneous cohorts.

Our data also suggests that predictive performance may vary by molecular subtype. Previous

groups have shown the predictive utility of catering polygenic risk scores to breast cancer
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subtype166,167, a phenomenon we investigated in our predictive models of tumor expression. Even

after accounting for sampling variability in prediction, we found that several genes have varied degrees

of GReX across subtype and race. Not only does this finding suggest that TWAS predictive models

may need to account for subtype heterogeneity, we reinforce the importance of sampling variability in

validation of predictive models in external cohorts. For example, Wu et al. trained their models in a

relatively small set of 67 women from GTEx and validated their 12,824 models in a validation set of 86

women from TCGA without accounting for sampling variability of predictive performance43. A recent

multi-tissue TWAS in ovarian cancer from Gusev et al. considered validation of their predictive models

by leveraging multiple independent cohorts to assess replication rates168. We recommend such an

approach if multiple independent cohorts are accessible. But, in TWAS evaluation in a single tissue,

studies should place a strong emphasis on validation, accounting for sampling variability of prediction

R2 prior to imputation in larger cohorts.

While many of the most significant findings here are methodological in nature, we also have data

to suggest that four genomic loci in AA women may merit further investigation relative to breast cancer

survival. Two of these 4 TWAS-identified genes have strong functional evidence in breast cancer

survival literature. Mutations in AURKA and PIK3CA have previously been shown to be significantly

associated with breast cancer survival rates157–159. Less is known about the involvement of SERPINB5

and CAPN13 in breast cancer survival, though they have been identified in studies into breast cancer

progression169–173. These four loci merit further studies for validation and functional characterization,

both in large GWAS cohorts and using in vitro studies. We did not observe any significant association

between the total expression of these 4 genes and breast cancer-specific survival. This suggests that

the germline-regulated component of the tumor expression of these genes – a small fraction of the

total expression variation – may be associated with survival outcomes. Numerous factors, including

copy number alterations, epigenetic or post-transcriptional regulation, and exposures and technical

artifacts in measurement contributed to the total expression measured in the tumor. Thus, we do not

expect that significant GReX association implies total expression association, or vice versa.

We also observed that 3 of the 4 associations were driven by very strong effect sizes within a

single subtype. Though we cannot contextualize this result, it highlights an often-overlooked modeling

consideration. In a cohort that is both biologically and ancestrally-heterogeneous, as in CBCS,

investigators should consider modeling choices beyond simple linear adjustments for subtype and race.

Akin to the logic of Begg et al and Martínez et al174,175, it may be prudent in future TWAS to stratify

predictive models on both race and biological subtype to increase power to detect outcome-associated

loci that are strongly present within only one such strata or have heterogeneous effects across strata.
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Since the CBCS analysis was a case-only study, we were wary of potential collider bias by

unmeasured confounders associated with both breast cancer risk and progression176,174,175,177, which

may affect the effect sizes of association between survival and GReX of genes. None of the GReX of

these four genes showed significant transcriptome-wide associations with breast cancer risk in iCOGs

data9,10,162, suggesting that our estimates of association may be free of the collider bias. As

Escala-García et al. highlights, germline variation can affect breast cancer prognosis via tumor

etiology (risk of developing a tumor of a certain subtype), or via mechanisms that are relevant

post-tumorigenesis, such as the cellular response to therapy or the host-tumor micro-environment36.

Ideally, in future TWAS and integrated omic analyses of breast cancer survival, it is prudent to consider

joint models of breast cancer risk and survival to account for pleiotropic effects of germline genotype

and any associations with unmeasurable confounders178.

One limitation of our study is that data on somatic amplifications and deletions were not yet

available for the CBCS cohort we analyzed. Removing the somatic copy number variation signal from

tumor expression profiles may improve our estimates of cis-heritability and perhaps the predictive

performance of our models, though previous TWAS in ovarian cancer shows the effect to be

qualitatively small (approximately less than 2% change in heritability)168. Furthermore, not all genes in

the CBCS NanoString panel have a significant heritable component in expression regulation. These

genes, like ESR1, which have a significant role in breast cancer etiology179, could not be investigated

in our study. Lastly, since CBCS mRNA expression is assayed by the NanoString nCounter system,

we could only analyze 94 aggregated locations on the human transcriptome across race. However, the

NanoString platform allows the CBCS to robustly measure expression from FFPE samples on a

targeted panel of breast cancer and race-related genes, allowing us to leverage the large sample size

from all three phases of the CBCS. One of the greatest strengths of our study is that the CBCS affords

us both a large training and test set of AA and WW women for race-stratified predictive models. Such

data is important in drawing inference in more ancestrally-heterogeneous populations. Accordingly,

the statistical power of our study is high to detect associations for genes with relatively high

cis-heritability. Future studies in large GWAS cohorts, such as those within the Breast Cancer

Association Consortium, will elucidate how to account for ancestral and biological heterogeneity in

detecting survival-associated loci.

We have provided a framework of transcriptome-wide association studies (TWAS) for breast

cancer outcomes in diverse study populations, considering both ancestral and subtype-dependent

biological heterogeneity in our predictive models. From a more theoretical perspective, this work will

inform the utilization of TWAS methods in polygenic traits and diverse study populations, stressing
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rigorous validation of predictive models prior to imputation and careful modeling to capture

associations with outcomes of interest in diverse populations.

59



CHAPTER 4: MULTI-OMIC STRATEGIES FOR TRANSCRIPTOME-WIDE ASSOCI-
ATION STUDIES

In this chapter, we outline two extensions to TWAS that draw from ideas of eQTL mediation and

borrowing information from other omics assays. The first extension works backwards from gene

expression by identifying associated, mediating biomarkers (e.g. DNA methylation at relevant loci, or

expression levels of microRNAs and transcription factors) to the gene of interest. We train prediction

models for these mediators using their local SNPs and incorporate their predicted values as fixed

effects in the eventual model of gene expression. The second extension uses mediation analysis to

identify distal eQTLs that show large total mediation effects through local mediators. These prioritized

distal SNPs are upweighted in the eventual gene expression model. Using simulations and data from

the The Cancer Genome Atlas (TCGA)180 and Religious Orders Study and the Rush Memory and

Aging Project (ROS/MAP)181, we show improvements in both in-sample and out-of-sample predictive

performance and power to detect gene-trait associations over local-only models. These Multi-Omic

Strategies for Transcriptome-Wide Association Studies are made available in the R package

MOSTWAS, available freely at www.github.com/bhattacharya-a-bt/MOSTWAS.

4.1 Overview of MOSTWAS

We first outline the two methods proposed in MOSTWAS: (1) mediator-enriched

transcriptome-wide prediction (MeTWAS) and (2) distal eQTL prioritization via mediation analysis

(DePMA). In MOSTWAS, we define that two biological objects (e.g. genetic variant, gene, microRNA,

or CpG site) are local to one another if the genomic distance between them is less than or equal to 0.5

Megabases (Mb). Otherwise, we define the two objects as distal. We adopt local and distal, rather

than cis and trans, to avoid any confusion with biological mechanism.

4.1.1 Heritability estimation

Prior to any predictive modeling, we estimate the heritability of a gene of interest using GCTA

v.1.92146 using all local and distal SNPs considered in either MeTWAS or DePMA. MOSTWAS allows
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the user the capability to employ the GREML-LDMS method49 to estimate heritability in imputed

genotype panels. MOSTWAS will only proceed to predictive modeling if the gene is heritable from the

specified local and distal SNPs at a user-defined P -value threshold (default P < 0.10 for the relevant

likelihood ratio test).

4.1.2 Mediator-enriched TWAS (MeTWAS)

4.1.2.1 Transcriptomic prediction using MeTWAS

We first describe mediator-enriched TWAS, or MeTWAS, one of the two tools available in the

MOSTWAS R package. Across n individuals, consider the vector YG of expression a gene G of

interest, the matrix XG of local-SNP dosages in a 0.5 Mb window around gene G, and mG mediating

biomarkers that are estimated to be significantly associated with the expression of gene G via a

relevant one-way test of association. These mediating biomarkers could be, for example, DNA

methylation sites, microRNAs, or transcription factors. Accordingly, let the matrix XMj be the

local-SNP dosages in a 500 kilobase (kb) window around mediator j, 1 ≤ j ≤ mG. Furthermore, let

Mj be the intensity of mediator j (i.e. methylation M -value if j is a CpG site or log scale expression if j

is an miRNA or a gene). Prior to any modelling, we scale YG and all Mj , 1 ≤ j ≤ mG to zero mean

and unit variance. We also residualize Mj , 1 ≤ j ≤ mG and YG with the covariate matrix XC to

account for population stratification using principal components of the global genotype matrix and

relevant clinical covariates to obtain M̃j 1 ≤ j ≤ mG and ẼG. The number of genotype principal

components included is user-defined and dependent on the dataset.

Transcriptome prediction in MeTWAS draws from two-step regression, as summarized in Figure

4.1A. First, in the training set for a given training-test split, for 1 ≤ j ≤ mG, we model the residualized

intensity M̃j of training-set specific mediator j with the following additive model:

M̃j = XMj ,trainwj + ϵm, (4.1)

where wj is the effect-sizes of the SNPs in XMj ,train on M̃j in the training set. As in traditional

transcriptomic imputation models42,3, we find ŵm using the method that best predicts expression out of

the following methods: (1) elastic net regression with mixing parameter α = 0.5 and λ tuned over

5-fold cross validation using glmnet48, or (2) linear mixed modelling assuming random effects for XMj

using rrBLUP147.
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Figure 4.1: Modeling schemes for MOSTWAS. (A) Two-step regression scheme in MeTWAS that en-
riches transcriptomic prediction with mediating-biomarkers. (B) Mediation analysis based DePMA pro-
cedure to prioritize distal-eQTLs with large total mediation effects for transcriptomic prediction.

For all j, using these optimized predictive models for Mj as denoted by ŵMj
, we estimate the

genetically regulated intensity (GRIn) of the mediator mj , denoted Mmj , in the test set. Denote M̂n×m

as the matrix of estimated GRIn, such that the jth column of M̂j is Mmj
across all n samples.

Next, we consider the following additive model for the residualized expression of gene G:

ỸG = M̂βM + XGwG + ϵYG
,

where βM is the fixed effect-sizes of Mmj
on ỸG, M̂ is the matrix of estimated GRIn for all mj

mediators, XG are the local-genotypes to gene G, and wG are the “random” or regularized effect sizes

of the local-genotypes. We estimate βM by traditional ordinary least squares, where

β̂M =
(
M̂T M̂

)−1

M̂T ỸG. Next, using one of the methods outlined above when estimating ŵMj
, we can

generate estimated effect sizes ŵG of the local-genotypes on ỸG, residualized with M̂.
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4.1.2.2 Transcriptomic imputation with MeTWAS

In an external GWAS panel, if individual genotypes are available, we construct the genetically

regulated expression (GReX) of gene G directly using ŵG and (ŵj , β̂j), 1 ≤ j ≤ mG:

GReXG =

mG∑
j=two1

XMj ,GWASŵMj
β̂M,j + XG,GWASŵG,

where XMj ,GWAS and XG,GWAS are the genotypes in the GWAS panel local to mediator j and gene

G, respectively. GReXG can be used in downstream tests of association.

If individual genotypes are not available, then the weighted burden Z-test proposed by Pasaniuc

et al and Gusev et al can be employed50,3 using summary statistics. Briefly, we compute

Z̃ =
WZ

(WΣs,sWT )1/2
(4.2)

Here, Z is the vector of Z-scores of SNP-trait associations for SNPs used in estimating ŵMj and

ŵG. The matrix W is defined as Σe,sΣ
−1
s,s, the product of the covariance matrix between all SNPs and

the expression of gene G and the covariance matrix among all SNPs. These covariance matrices are

estimated from the reference panel used to estimate ŵMj and ŵG. The test statistic Z̃ can be

compared to the standard Normal distribution for inference.

MOSTWAS also implements permutation testing to quantify the significance of the

expression-trait association conditioning on the SNP-trait effects at the locus3. Here, we perform

1,000 permutations of the SNP-expression weights in the predictive model and compute the Z-test

statistic at each permutation. A permutation P -value is calculated by comparing Z̃ to the distribution of

permuted Z-test statistics.

4.1.3 Distal eQTL prioritization via mediation analysis (DePMA)

4.1.3.1 Transcriptomic prediction using DePMA

We now describe Distal eQTL Prioritization via Mediation Analysis (DePMA), the second of two

tools available in MOSTWAS. Expression prediction in DePMA hinges on up-weighting distal eQTLs to

the gene of interest via mediation analysis, adopting methods from previous studies67,69,72. This

process is summarized in Figure 4.1B. We first split data for gene expression, SNP dosages, and any
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potential mediators into k training-testing splits. Depending on the minor allele frequencies of SNPs

and sample size, we generally recommend a low number of splits (i.e. k ≤ 5).

In the training set, we identify mediation test triplets that consist of (1) a gene of interest G with

expression YG (scaled to zero mean and unit variance), (2) a distal eSNP s in association with G at a

user-defined P -value threshold (default of P = 10−6) with dosages Xs, and (3) a set of m biomarkers

local to s that are associated with s at a user-defined P -value threshold (default of FDR-adjusted

P = 0.05) with intensities as m columns of Mn×m. The columns of M are scaled to zero mean and unit

variance. Consider the following mediation model for 1 ≤ j ≤ m:

YG = Xsβs +MβM + XCβC + ϵYG

Mj = XsαMj
+ XCαC,j + ϵMj

(4.3)

Here, we have βM as the effects of the M mediators local to s on YG adjusting for the effects from

s and the covariates and αM = (αM1
, . . . , αMm

)T as the effects of s on mediators Mj , for 1 ≤ j ≤ m.

We assume that ϵYG
∼ N(0, σ2) and ϵM ∼ Nm (0,�M ), where �M may have non-zero off-diagonal

elements that represent covariance between mediator intensities. Further, we assume that ϵYG
and ϵM

are independent. We define the total mediation effect (TME)182 of SNP s as

TME = αT
MβM.

We are interested in SNPs with large TME, which we prioritize with the test of H0 : TME = 0. We

assess this hypothesis with a permutation test, as more direct methods of computing standard errors

for the estimated TME are often biased71,72, obtaining a permutation P -value. We also provide an

option to estimate an asymptotic approximation to the standard error of TME and conduct a Wald-type

test for TME = 0. This asymptotic option is significantly faster at the cost of inflated false positives.

Corresponding to the t testing triplets identified, we obtain vectors of length t of TMEs and P -values

for each distal eSNP to G. For the predictive model, we select distal SNPs with evidence of TME ̸= 0

at a given q-value threshold (q < 0.10 as a default) and include them with all local genotypes in a

design matrix. We then find estimated SNP weights using either elastic net or weighted least squared

regression.
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4.1.3.2 Asymptotic test of total mediation effect

In DePMA, a distal-eQTL s is tested for its total mediation effect on gene G through m mediators

that are local to s. Consider the following mediation model for 1 ≤ j ≤ m:

YG = Xsβs +MβM + XCβC + ϵYG

Mj = XsαMj + XCαC,j + ϵMj

(4.4)

.

Here, we construct the total mediation effect

TME = αT
MβM =

m∑
i=1

αMi
βMi

.

Note that TME is distributed as the product of two multivariate Normal distributions. By the

multivariate Delta method183, we can obtain the standard error for the estimated TME. Let

θ = (αM, βM) and define f(θ) = TME =
∑m

i=1 αMiβMi .

The first order partial derivative of f(θ̂) is

dθ̂ =
∂(
∑m

i=1 αMi
βMi

)

∂θ̂
= [βM αM]

T .

We also obtain the estimated variance-covariance matrix Σ̂ of θ̂:

Σ̂ =

 Σ̂αM Σ̂αMβM

Σ̂αMβM Σ̂βM

 ,

where Σ̂αM , Σ̂βM , and Σ̂αMβM are the variances and covariance of α̂M, β̂M, and between α̂M and

β̂M, respectively. Sobel previously has shown, that with sufficient sample size, Σ̂αMβM ≈ 0182,184. Thus,

the standard error of θ̂ is given by

σ̂2
θ̂
= dT

θ̂
Σ̂dθ̂.

We then test H0 : TME = 0 against H1 : TME ̸= 0 with the two-sided Wald-type test with the test

statistic Z =
αT
M βM√
σ̂2
θ̂

and comparing to the null standard Normal distribution.
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We illustrate the trade-off between power and computational speed using the asymptotic Sobel

test and the permutation speed. Consider the following simulation framework with m = 5 mediators, 3

covariates and a sample size of n ∈ {200, 500, 700, 1000} for the model in Equations 4.4:

• an n-length genotype vector for SNP s is drawn from Binomial(2,MAF ), where the minor allele

frequency MAF is set at 0.1 in Figure 4.2 below;

• Under the alternative, we simulated βX ∼ N(0, 1), βM ∼ N5(0, I5), βC ∼ N3(0, I3),

αMj |m=5
j=1 ∼ N(0, 1), αC ∼ N5(0, I5).

• Under the null, all regression parameters were simulated as in the alternative case. However, we

set αMj
= 0|mj=1 and βM = 0.

• Lastly, ϵYG
∼ N(0, 1− h2) and ϵMj ∼ N(0, 1− h2

M ), where h2 = h2
M = 0.1 in Figure 4.2 below.

• We then constructed YG and M using Equations 4.4.

We found, that over 10,000 simulations, the permutation test was considerably more powerful,

albeit considerably slower. However, in most cases of implementing DePMA, the number of tests of

mediation are usually on the order of 101 to 102. We recommend the permutation test in most cases,

unless gene G has thousands of identified distal-eQTLs. Parallel implementations have been offered

as options in the MOSTWAS package.

4.1.3.3 Transcriptomic imputation with DePMA

In an external GWAS panel, if individual genotypes are available, we construct the genetically

regulated expression (GReX) of gene G directly using ŵG and ŵt:

GReXG = Xt,GWASŵt + XG,GWASŵG,

where Xt,GWAS is the matrix of dosages of the t distal SNPs and XG,GWAS is the matrix of dosages

of the local SNPs to gene G in the external GWAS panel. GREXG can be used in downstream tests of

association. If individual genotypes are not available, the weighted burden test can be employed using

summary statistics3.
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Figure 4.2: Comparison of power and computational speed comparison of permutation and Sobel test.
Power (A) and computational speed (B) of permutation test (red) and asymptotic Sobel test (blue) in
simulation framework

4.1.4 Added-last test of association from distal variants

In addition to the overall TWAS tests of association and permutation testing, as implemented by

Pasaniuc et al and Gusev et al50,3, we develop here a technique to assess whether the distal loci

included in the predictive models are significantly associated with the phenotype of interest, given the

association at the local locus. In the scenario that individual genotype data is available, we can simply

run a group added-last test in the linear or survival model employed to assess the TWAS association

with phenotype. We use similar logic to develop an added-last test for distal variants conditional on the

local association, when only GWAS summary statistics are available.

Let Zl (an nl-vector) and Zd (an nd-vector) be the Z-scores local and distal SNPs identified by a

MOSTWAS model, with Z = [Zl Zd]
T (an n vector). The local and distal SNP effects from the

MOSTWAS model are represented in wl (an nl-vector) and wd (an nd-vector), with w = [wl wd]
T (an n

vector). Here, we are interested in testing
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H0 : wT
d Zd|wT

l Zl = Z̃l,obs = 0,

where Z̃l,obs is the observed weighted Z-score from local SNPs.

Under the null distribution, as proposed by Pasaniuc et al and Gusev et al in the Imp-G

framework50,3, we assume that Z ∼ Nn (0,�) , where

� =

 �l �l,d

�T
l,d �d


is the LD matrix for the SNPs, as estimated from the reference panel. �l and �d represent the LD

matrices for local and distal SNPs, respectively. The LD matrix between local and distal SNPs �l,d can

be assumed to be zero, though recent studies have showed long-range LD in the human

genome185,186. We allow the user to set cross-chromosomal LD to 0, though by default, we estimate

LD from the reference panel.

Now, we see that, under this null hypothesis, the joint distribution of (Z̃l, Z̃d) = (wT
l Zl, w

T
d Zd) is

given by:

Z̃l

Z̃d

 ∼ N2

0,
 wT

l �lwl wT
l �l,dwd

wT
d �T

l,dwl wT
d �dwd


 .

It follows that, under the null hypothesis and given Z̃l = Z̃l,obs,

Z̃d|Z̃l = Z̃l,obs ∼ N

(
wT

l �l,dwd

wT
l �lwl

Z̃l,obs, w
T
d �dwd −

[wT
l �l,dwd]

2

wT
l �lwl

)
.

We can use this null distribution for the one-sided test of H0 : wT
d Zd|wT

l Zl = Z̃l,obs = 0 against

H1 : wT
d Zd|wT

l Zl = Z̃l,obs > 0. This test is implemented in MOSTWAS as a follow-up to the

weighted-burden test.

4.1.5 Data acquisition for TCGA-BRCA and iCOGs

We retrieved genotype, RNA expression, miRNA expression, and DNA methylation data for

breast cancer indications in The Cancer Genome Atlas180. Birdseed genotype files of 914 subject

were downloaded from the Genome Data Commons (GDC) legacy (GRCh37/hg19) archive. Genotype

files were merged into a single binary PLINK file format (BED/FAM/BIM) and imputed using the

October 2014 (v.3) release of the 1000 Genomes Project dataset as a reference panel in the standard
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two-stage imputation approach, using SHAPEIT v2.87 for phasing and IMPUTE v2.3.2 for

imputation126–128. We excluded variants (1) with a minor allele frequency of less that 1% based on

genotype dosage, (2) that deviated significantly from Hardy-Weinberg equilibrium (P < 10−8) using

appropriate functions in PLINK v1.90b3187,149, and (3) located on sex chromosomes. Final TCGA

genotype data was coded as dosages, with reference and alternative allele coding as in dbSNP.

TCGA level-3 normalized RNA-seq expression data, miRNA-seq expression data, and DNA

methylation data collected on Illumina Infinium HumanMethylation450 BeadChip were downloaded

from the Broad Institute’s GDAC Firehose (2016/1/28 analysis archive). We intersectted to the subset

of samples assayed for genotype (4,564,962 variants), RNA-seq (15,568 genes), miRNA-seq (1,046

miRNAs), and DNA methylation (485,578 CpG sites), resulting in a total of 563 samples. We only

consider the autosome in our analyses. We adjusted gene and miRNA expression and DNA

methylation by relevant covariates (5 principal components of the genotype matrix, tumor stage at

diagnosis, and age).

For association testing, we downloaded iCOGs GWAS summary statistics for breast

cancer-specific survival for women of European ancestry162. Funding for BCAC and iCOGS came

from: Cancer Research UK [grant numbers C1287/A16563, C1287/A10118, C1287/A10710,

C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565], the

European Union’s Horizon 2020 Research and Innovation Programme (grant numbers 634935 and

633784 for BRIDGES and B-CAST respectively), the European Community’s Seventh Framework

Programme under grant agreement n◦ 223175 [HEALTHF2-2009-223175] (COGS), the National

Institutes of Health [CA128978] and Post-Cancer GWAS initiative [1U19 CA148537, 1U19

CA148065-01 (DRIVE) and 1U19 CA148112 - the GAME-ON initiative], the Department of Defence

[W81XWH-10-1-0341], and the Canadian Institutes of Health Research CIHR) for the CIHR Team in

Familial Risks of Breast Cancer [grant PSR-SIIRI-701]. All studies and funders as listed in Michailidou

et al9,10 and in Guo et al162 are acknowledged for their contributions.

4.1.6 Data acquisition from ROS/MAP, IGAP, and PGC

We retrieved imputed genotype, RNA expression, miRNA expression, and DNA methylation data

from The Religious Orders Study and Memory and Aging Project (ROS/MAP) Study for samples

derived from human pre-frontal cortex188,189. We excluded variants (1) with a minor allele frequency of

less that 1% based on genotype dosage, (2) that deviated significantly from Hardy-Weinberg

equilibrium (P < 10−8) using appropriate functions in PLINK v1.90b3187,149, and (3) located on sex
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chromosomes. Final ROS/MAP genotype data was coded as dosages, with reference and alternative

allele coding as in dbSNP. We intersectted to the subset of samples assayed for genotype (4,141,537

variants), RNA-seq (15,857 genes), miRNA-seq (247 miRNAs), and DNA methylation (391,626 CpG

sites), resulting in a total of 370 samples. We only consider the autosome in our analyses. We

adjusted gene and miRNA expression and DNA methylation by relevant covariates (20 principal

components of the genotype age at death, and sex).

For association testing, we downloaded GWAS summary statistics for risk of late-onset

Alzheimer’s disease from the International Genomics of Alzheimer’s Project (IGAP)2. We also

downloaded GWAS and genome-wide association by proxy (GWAX) summary statistics for risk of

major depressive disorder (MDD) from the Psychiatric Genomics Consortium190 and the UK

Biobank191, respectively.

IGAP is a large two-stage study based on GWAS on individuals of European ancestry. In stage 1,

IGAP used genotyped and imputed data on 7,055,881 single nucleotide polymorphisms (SNPs) to

meta-analyse four previously-published GWAS datasets consisting of 17,008 Alzheimer’s disease

cases and 37,154 controls (The European Alzheimer’s disease Initiative – EADI the Alzheimer

Disease Genetics Consortium – ADGC The Cohorts for Heart and Aging Research in Genomic

Epidemiology consortium – CHARGE The Genetic and Environmental Risk in AD consortium –

GERAD). In stage 2, 11,632 SNPs were genotyped and tested for association in an independent set of

8,572 Alzheimer’s disease cases and 11,312 controls. Finally, a meta-analysis was performed

combining results from stages 1 and 2.

4.2 Simulation analysis

We conducted simulations to assess the predictive capability and power to detect gene-trait

associations under various phenotype (h2
p), local heritability of expression (h2

e,l), distal heritability of

expression (h2
e,d), and proportion of causal local (pc,l) and distal (pc,e) SNPs for MeTWAS and DePMA.

We considered two scenarios for each combination of (h2
p, h

2
e,l, h

2
e,d, pc,l, pc,e): (1) the simulated

distal-eQTL (association between SNP and gene of interest) exists in both the reference and

imputation panel, and (2) the distal-eQTL exists in the reference panel, but the distal SNP does not

affect gene expression in the imputation panel (i.e. h2
e,d ≡ 0 in the imputation panel regardless of h2

e,d

in the reference panel).
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Using TCGA data in breast cancer, we extracted 2,592 genotypes local to the gene ESR1 on

Chromosome 6 and 1,431 genotypes local to the gene FOXA1. Though the choice of these loci were

arbitrary for simulations, there is evidence that ESR1 and FOXA1 are highly co-expressed in breast

tumors and local-eQTLs of FOXA1 have been shown to be distal-eQTLs of ESR1192. We believe

these loci served as a strong reference for these simulations. We generated (1) a reference panel with

sample size 400 with simulated genotypes, expressions, and one mediators and (2) a GWAS panel of

1,500 samples with simulated genotypes and phenotypes using the following data generating process,

modified from Mancuso et al’s framework55:

• We estimated the linkage disequilibrium LD matrix of the genotypes XG with n samples and p

SNPs, as follows with regularization to ensure LD is positive semi-definite:

LD =
1

n
XT

GXG +
1

10
Ip.

We computed the Cholesky decomposition of LD for faster sampling. We simulated genotypes

for a 400-sample reference panel Xg,ref and 1,500-sample GWAS panel Xg,GWAS.

• We then simulated effect sizes for pc,l of the 2,592 local genotypes wg,l from a standard Normal

distribution. We generated locally heritable expression

Eg,l = XT
G,refwg,l + ϵl,

with ϵl ∼ N(0, 1− h2
e,l) and wg,l scaled to ensure the given h2

e,l.

Similarly, we simulated effect sizes for pc,d of the 1,431 distal genotypes wg,d and generated the

distally heritable intensity of the mediator Mg,d. We constructed the distally heritable expression

Eg,d by scaling Mg,d by β ∼ N(0, 1) and adding random noise that scaled distal heritability to h2
e,d.

We lastly formed the total expression Eg = Eg,l + Eg, d.

• Next, we simulated the phenotype in the GWAS panel such that the variance explained in the

phenotype reflects only that due to genetics. We drew a causal effect size from gene expression

α ∼ N(0, 1). We computed the “unobserved” gene expression in the GWAS panel as

Eg,GWAS = XT
g,GWAS,localwg,l +XT

g,GWAS,distalwg,dβ.
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Here, we also considered a “null” case as well, where the distal eQTLs were not present in the

GWAS panel (i.e. wg,d = 0 for all distal SNPs). GWAS summary statistics were computed in this

step for downstream weighted burden testing.

• We then fitted predictive models using MeTWAS, DePMA, and local-only models (i.e. FUSION3),

computed the adjusted predictive R2 in the reference panel, and tested the gene-trait association

in the GWAS panel using a weighted burden test.

The association study power was defined as the proportion of gene-trait association tests with

P < 2.5× 10−6, the Bonferroni-corrected significance threshold for testing 20,000 independent genes.

In these simulation studies, we found that MOSTWAS methods performed well in prediction

across different causal proportions and local and distal mRNA expression heritabilities. Furthermore,

across all simulation settings, we observed that MOSTWAS showed greater or equal power to detect

gene-trait associations as local-only models. We saw that, as the proportion of total expression

heritability that is attributed to distal genetic variation, the positive difference in predictive performance

between the best MOSTWAS model and the local-only model increased (Supplemental Figure S28).

Similarly, we found that, under the setting that distal variation contributes to trait heritability, the best

MOSTWAS model has greater power to detect gene-trait associations than the local-only model, with

the advantage in power over local-only models increasing with increased distal expression heritability

(Figure 4.3A). Under the null case that distal variation influences expression in the reference panel but

does not affect the trait in the GWAS panel, we find that local-only and MOSTWAS models perform

similarly. At low causal proportion (pc = 0.01) and low trait heritability (h2
p = 0.2), local-only models

have a modest advantage in TWAS power over MOSTWAS models. This difference is mitigated at

larger causal proportions and trait heritabilities (Figure 4.3). Overall, these results demonstrated the

advantages of MOSTWAS methods for modeling the complex genetic architecture of transcriptomes,

especially when distal variation has a discernibly large effect on the heritability of both the gene and

trait of interest.
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Figure 4.3: Comparison of TWAS power via simulations using MOSTWAS and local-only models. (A)
Proportion of gene-trait associations at P < 2.5 × 10−6 using local-only (red) and the most predictive
MOSTWAS (blue) models across various local and distal expression heritabilities, trait heritability, and
causal proportions. (B) Proportion of significant gene-trait associations across the same simulation
parameters with no distal effect on the trait in the simulated external GWAS panel.
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4.3 Applications of MOSTWAS in real data

4.3.1 Breast cancer expression and survival outcomes

We wished to apply MOSTWAS in the context of breast tumor multi-omics and disease outcomes,

motivated by recent GWAS and TWAS into breast cancer-specific survival161,9,10,162,102. Breast tumor

eQTL studies have also revealed several signficant distal-eQTLs in trait-associated loci, many of

which are in regulatory or epigenetic hotspots102,193, making breast tumors a natural setting for

MOSTWAS application. Using TCGA-BRCA data on germline SNPs, tumor mRNA expression, DNA

methylation, and miRNA expression, we trained MeTWAS, DePMA, and traditional local-only

predictive models for the mRNA expression of all genes with germline heritability h2 > 0 at P < 0.05.

Estimates of heritability for genes were considerably larger when we considered distal variation using

MOSTWAS methods (mean heritabilities in Supplemental Table S3). We also found that MeTWAS

and DePMA perform better in cross-validation R2 in cross-validation, with larger numbers of models at

R2 ≥ 0.01 using MOSTWAS methods than local-only models (Figures 4.3A-C). Mean predictive R2 for

local-only models was 0.011 (25% to 75% inter-quartile interval (0.0,0.013)), for MeTWAS models was

0.028 (0.013, 0.032), and for DePMA models was 0.051 (0.019, 0.068).

In addition to cross-validation, we used 351 paired samples in TCGA-BRCA with genotype and

mRNA expression data that were not used in model training to test the portability of MOSTWAS

models in independent external cohorts. As shown in Figure 4.4A, DePMA models obtain the highest

predictive adjusted R2 in the external cohort (mean 0.016, 25% to 75% inter-quartile interval (0.003,

0.018)), with local-only models (0.013, (0.00,0.013)) outperforming MeTWAS models (0.011, (0.002,

0.012)), considering only genes that attained cross-validation adjusted R2 ≥ 0.01 using a given

method. Overall, among genes with cross-validation adjusted R2 ≥ 0.01, 37 out of 280 genes

achieved external predictive R2 ≥ 0.01 using local-only models, 89 out of 709 using MeTWAS, and

787 out of 1,185 using DePMA (Figure 4.3A-C).

Lastly, we conducted association studies for breast cancer-specific survival using local-only and

the most predictive (in cross-validation) MOSTWAS model trained in TCGA-BRCA and summary-level

GWAS data from iCOGs. Here, we constructed the weighted burden test, as described above and in

Pasaniuc et al and Gusev et al50,3. We prioritized genes with Benjamini-Hochberg adjusted P < 0.05

for permutation testing. Of the 122 genes that had cross-validation R2 ≥ 0.01 in TCGA-BRCA using

both local-only and MOSTWAS models, we found 2 survival associations at Benjamini-Hochberg

FDR-adjusted 0.05 using both local-only and MOSTWAS models, with the strength of association
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marginally larger with the MOSTWAS model in each case (Supplemental Figure S29). QQ-plots for

TWAS Z-statistics and P -values are provided in Supplemental Figure S30A and Supplemental

Figure S31 for both local-only and MOSTWAS models, showing earlier departure for the local-only

models. Overall, using all heritable genes with cross-validation R2 with the best MOSTWAS model in

TCGA-BRCA, we identified 21 survival-associated loci at Benjamini-Hochberg1 FDR adjusted

P < 0.05. Of these 21 loci, 11 persisted when subjected to permutation testing at a significance

threshold of FDR-adjusted P < 0.05 (Figure 4.4C). Our results in TCGA-BRCA showed improved

transcriptomic prediction using MOSTWAS over local-only modeling and the strength of MOSTWAS to

detect gene-trait associations that are influenced by distal variation.

4.3.1.1 Functional hypothesis generation with MOSTWAS

An advantage of MOSTWAS is its ability to aid in functional hypothesis generation for mechanistic

follow-up studies. The added-last test allows users to identify genes where trait association from distal

variation is significant given the strength of the local association. For 8 of the TWAS-associated 11 loci,

at FDR-adjusted P < 0.05 we found significant distal variation added-last associations (see Section

4.1.4), suggesting that distal variation may contribute to the gene-trait association. All 8 of these loci

showed distal association with the gene of interest mediated through a set of four transcription factors

(NAA50, ATP6V1A, ROCK2, USF3), all highly interconnected with the critical MAPK pathway194–199.

These regulatory sites serve as an example of how distal genomic regions can be prioritized for

functional follow-up studies to elucidate the mechanisms underlying the SNP-gene-trait associations.

4.3.2 Brain gene expression and psychiatric disorders

We also applied MOSTWAS to transcriptomic data on samples of prefrontal cortex, a tissue that

has been used previously in studying neuropsychiatric traits and disorders with TWAS200,201. There

has been ample evidence in brain tissue, especially the prefrontal cortex, that non-coding variants (up

to 80%) regulate distal genes, providing a prime example to assess MOSTWAS200,202. Using

ROS/MAP data on germline SNPs, tumor mRNA expression, DNA methylation, and miRNA

expression, we trained MeTWAS, DePMA, and traditional local-only predictive models for the mRNA

expression of all genes with germline heritability h2 > 0 at P < 0.05. Consistent with results in

TCGA-BRCA, estimates of heritability for genes were considerably larger when we considered distal

variation using MOSTWAS methods (Supplemental Table S3). We also find that MeTWAS and

DePMA perform better in cross-validation R2 than local-only models (Figures 4.4D-F). Mean
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predictive R2 for local-only models was 0.029 (25% to 75% inter-quartile interval (0.0,0.015)), for

MeTWAS models was 0.079 (0.019, 0.082), and for DePMA models was 0.045 (0.013, 0.037).

In addition to cross-validation, we used 87 samples in ROS/MAP with genotype and mRNA

expression data that were not used in model training to test the portability of MOSTWAS models in

independent external cohorts. As shown in Figure 4.4A, DePMA models obtain the highest predictive

adjusted R2 in the external cohort (0.042 (25% quantile 0.009, 75% quantile 0.057)), with MeTWAS

models (0.040 (0.010, 0.054)) outperforming local-only models (0.031 (0.007, 0.039)), considering only

genes that attained cross-validation adjusted R2 ≥ 0.01 using a given method. Overall, among genes

with cross-validation adjusted R2 ≥ 0.01, 187 out of 267 genes achieved external predictive R2 ≥ 0.01

using local-only models, 683 out of 911 using MeTWAS, and 2,135 out of 2,934 using DePMA (Figure

4.3D-F).

We next conducted association tests for known Alzheimer’s disease risk loci using local-only and

the best MOSTWAS model (comparing MeTWAS and DePMA cross-validation R2) trained in

ROS/MAP and summary-level GWAS data from IGAP. From literature, we identified 14 known common

and rare loci of late-onset Alzheimer’s disease2,203–205, 11 of which had MOSTWAS models with

cross-validation R2 ≥ 0.01. Five of these 11 loci (APOE, CLU, PLCG2, SORL1, ZCWPW1) showed

significant association at Benjamini-Hochberg FDR-adjusted P ≤ 0.05 (Supplemental Table S4). We

also compared these all 11 associations to those identified by local-only models and by latent Dirichlet

process regression (DPR) as implemented in TIGAR54, with raw P -values of association shown in

Figure 4.5B. MOSTWAS showed stronger associations at 8 of these loci than both local-only and DPR

models. We followed up on the 5 significantly associated loci using the permutation and added-last

tests. The added-last test assesses whether the association from distal loci, given the strength of the

association in the local locus, is significant. Three of these loci (APOE, SORL1, ZCWPW1) persisted

permutation testing at FDR-adjusted P < 0.05 and showed significant associations with distal variants,

given the association with local variants, at FDR-adjusted P < 0.05 (Supplemental Table S4).

We then conducted a transcriptome-wide association study for risk of major depressive disorder

(MDD) using summary statistics from the Psychiatric Genomics Consortium (PGC) genome-wide

meta-analysis that excludes data from the UK Biobank and 23andMe190. QQ-plots for TWAS

Z-statistics and P -values are provided in Supplemental Figure S30B and Supplemental Figure S31.

for both local-only and MOSTWAS models. Overall, using all heritable genes with cross-validation R2

with the best MOSTWAS model in ROS/MAP, we identified 102 MDD risk-associated loci with

FDR-adjusted P < 0.05 that persisted when subjected to permutation testing at an FDR-adjusted

significance threshold of P < 0.05 (colored red in Figure 4.4D). We downloaded genome-wide
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Figure 4.4: Comparison of predictive adjusted R2 in cross-validation using local-only, MeTWAS, and
DePMA models. If a given gene does not have h2 > 0 with P < 0.05, we set the predictive adjusted
R2 to 0 here for comparison. We compare local-only and MeTWAS in TCGA-BRCA (A) and ROS/MAP
(D), local-only and DePMA in TCGA-BRCA (B) and ROS/MAP (E), and MeTWAS and DePMA in TCGA-
BRCA (C) and ROS/MAP (F).
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Figure 4.5: External validation of MOSTWAS and gene-trait associations using MOSTWAS models.
(A) Predictive adjusted R2 in held-out cohorts from TCGA-BRCA and ROS/MAP in local-only, MeTWAS,
and DePMA models that have in-sample significant heritability and cross-validation R2 ≥ 0.01. The
interval shows the 25% and 75% quantiles for external cohort predictive R2. (B) Associations with
12 known Alzheimer’s risk lock, as identified in literature, using MOSTWAS, local-only, and TIGAR
Dirichlet process regression (DPR). (C) TWAS associations for breast cancer-specific survival using
GWAS summary statistics from iCOGs. Loci are colored and labelled if the overall association achieves
FDR-adjusted P < 0.05 and the permutation test also achieves FDR-adjusted P < 0.05. (D) TWAS
associations for major depressive disorder risk using GWAS summary statistics from PGC. Loci are
colored red if the overall association achieves FDR-adjusted P < 0.05 and the permutation test also
achieves FDR-adjusted P < 0.05. We label the 12 loci that were independently validated with UK
Biobank GWAX summary statistics at FDR-adjusted P < 0.05 for both the overall association test and
permutation test.
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association study by proxy (GWAX) summary statistics from the UK Biobank191 for replication analysis

of loci identified using PGC summary statistics. We found that 7 of these 102 loci (labelled in Figure

4.4D) also show an association in UK Biobank GWAX that is in the same direction as in PGC.

Summary statistics for TWAS associations in PGC and UK Biobank are provided in Supplemental

Table S5. It is important to note the UK Biobank dataset is not a GWAS dataset as it defines a case of

MDD as any subject who has the disorder or a first-degree relative with MDD, leading to lower power

to detect associations in this dataset.

We observed that MOSTWAS models generally had higher predictive R2 that local-only models

both in training and independent cohorts. We also found that MOSTWAS has recapitulated 5 known

Alzheimer’s risk loci that were not detected by local-only modeling (both PrediXcan42 and TIGAR54), 3

of which had significant distal associations using our added-last test. We also illustrated that the

MOSTWAS detected MDD-risk loci that were replicable across independent GWAS and GWAX

cohorts190,191.

4.3.3 Comparison of computational time

To assess the difference in computational burden between local-only, MeTWAS, and DePMA

modelling, we randomly selected a set of 50 genes that are heritable across all three models from

TCGA-BRCA and computed per-gene time for fitting using a 24-core, 3.0 GHz processor. We found

that MeTWAS (mean of 225 seconds per gene) and DePMA (mean 312 seconds per gene) takes

approximately 6-10 times longer to fit than a traditional local-only model (mean 36 seconds)

(Supplemental Figure S27). Model-fitting here includes heritability estimation, estimating the

SNP-expression weights, and cross-validation. We have implemented parallel options within a given

gene and recommend fitting an entire set of genes on an RNA-seq panel via a batch computing

approach206. Using parallel implementation with 5 cores and batch computing, we analyzed 15,568

genes from TCGA-BRCA in approximately 28 hours.

4.4 Discussion

Here, through a variety of simulations and real applications in two settings, we have shown that

multi-omic methods that prioritize distal variation in TWAS gave added predictive performance and

power to detect gene-trait associations, especially when distal variation contributed to trait heritability.

We proposed two methods (MeTWAS and DePMA) for identifying and including distal genetic variants
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in gene expression prediction models. We have provided implementations of these methods in the

MOSTWAS (Multi-omic Strategies for Transcriptome-Wide Association Studies) R package, available

freely on Github. MOSTWAS contains functions to train expression models with both MeTWAS and

DePMA and outputs models with 5-fold cross-validation R2 ≥ 0.01 and significant germline heritability.

The package also contains functions and documentation for simulation analyses55, the weighted

burden and follow-up permutation and distal-SNPs added last tests for TWAS50,3 using GWAS

summary statistics, and file-formatting. We also provide guidelines for parallelization to speed up

computational time.

Not only does MOSTWAS improve transcriptomic imputation both in- and out-of-sample, it also

provides a test for the identification of heritable mediators that may affect the eventual transcription of

the gene of interest. These identified mediators can give some insight into the underlying mechanisms

for SNP-gene-trait associations to improve detection of gene-trait associations and prioritize functional

follow-up studies. Using MOSTWAS and iCOGs summary-level GWAS statistics for breast

cancer-specific survival162, we identified 11 survival-associated loci that are enriched for p53 binding

and oxidoreductase activity pathways207,208. These loci include two genes (MAP3K6 and MAP4K5)

encoding mitogen-activated protein kinases, which are signalling transduction molecules involved in

the progression of aggressive breast cancer hormone subtypes209. TWAS using MOSTWAS models

was able to recapitulate 5 out of 14 known Alzheimer’s disease risk loci in IGAP GWAS summary

statistics statistics2, which were not recoverable with local-only models. We showed the utility of the

distal-SNPs added last test to prioritize significant distal SNP-gene-trait associations from follow-up. In

PGC GWAS summary-level data for major depressive disorder190, we found 102 risk loci, 7 of which

were replicated in independent GWAX summary statistics from the UK Biobank191. Three of these

seven loci (SYT1, CACNA2D3, ADAD2) encode important proteins involved in synaptic transmission

in the brain and RNA editing. Studies have shown that variation at these loci may lead to loss of

function at synapses and RNA editing that lead to psychiatric disorders210–214. All survival- or

risk-associated loci identified by MOSTWAS were not detected using local-only models.

An admitted and considerable limitation of MOSTWAS is the increased computational burden

over local-only modelling, especially in DePMA’s permutation-based mediation analysis for multiple

genome-wide mediators. We believe a Monte-Carlo resampling method will aid in scalability by

making some standard distributional assumptions on the effect sizes of SNPs and mediators in the

DePMA mediation model215. Nevertheless, we believe that MOSTWAS’s gain in predictive

performance and power to detect gene-trait associations may outweigh this computational time.

Another limitation of MOSTWAS is the general lack of rich multi-omic panels, like TCGA-BRCA and
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ROS/MAP, that provide a large set of mediating biomarkers that may be mechanistically involved in

gene regulation. However, we believe that mRNA expression data could be re-used as mediator data

to identify distal-eQTLs local to genes that code for transcription factors67,68,72, which is an area of

future development in MOSTWAS.

In conclusion, MOSTWAS provides a user-friendly and intuitive tool that extends transcriptomic

imputation and association studies to include distal genetic variants. MOSTWAS enables users to

utilize rich reference multi-omic datasets for enhanced gene mapping to better understand the genetic

etiology of polygenic traits and diseases with more direct insight into functional follow-up studies.
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CHAPTER 5: CELL-TYPE DECONVOLUTION IN TARGETED RNA EXPRESSION
PANELS

In this chapter, we outline a semi-reference-free cell-type deconvolution method using mRNA

expression data from targeted panels. As mentioned in Chapter 1, targeted panels are particularly

attractive for clinical settings and for longitudinal studies that use archival specimens18. However, a

major limiting factor for targeted panels, especially for cell-type deconvolution, is the limited feature

space; reference-free deconvolution methods rely on identifying genes that can indicate different

cell-types, but targeted panels do not afford a large enough feature space to search for these cell-type

specific genes13,15,17,14. We introduce DeCompress, a semi-reference-free method that uses

compressed sensing to expand the targeted expression panel to a larger feature space using a

reference RNA-seq or microarray dataset as a reference. We benchmark DeCompress against

reference-free methods in simulated and published datasets and show that DeCompress generally

estimates cell-type proportions with less error than competing reference-free methods. We then show

some advantages of including these estimated cell-type proportions in clinical and academic settings

(e.g. eQTL mapping, subtyping and outcome prediction) using data from the Carolina Breast Cancer

Study (CBCS)122,24. DeCompress is available as an R software package at

https://github.com/bhattacharya-a-bt/DeCompress.

5.1 Overview of DeCompress

DeCompress takes in two expression matrices from similar bulk tissue as inputs: the target matrix

T, an n× k matrix from a targeted panel of gene expression, and the reference matrix R, an N ×K

matrix from an RNA-seq or microarray panel, such that K > k. For a user-defined c cell-types,

DeCompress outputs Ŝ, a c×K ′ matrix of cell-type specific expression profiles and P̂, a c× n matrix

of cell-type proportions. The method follows three general steps, as detailed in Figure 5.1: (1)

selection of approximate cell-type specific genes, (2) compressed sensing to expand the feature space

of T, and (3) ensemble reference-free deconvolution on expanded expression dataset. DeCompress is

freely available as an R package on Github (https://github.com/bhattacharya-a-bt/DeCompress).
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Figure 5.1: Schematic for the DeCompress algorithm. DeCompress takes in a reference RNA-seq or
microarray matrix with N samples and K genes, and the target expression with n samples and k < K
genes. The algorithm has three general steps: (1) finding the K ′ < K genes in the reference that
are cell-type specific, (2) training the compressed sensing model that projects the feature space in the
target from k genes to the K ′ cell-type specific genes, and (3) decompressing the target to an expanded
dataset and deconvolving this expanded dataset. DeCompress outputs cell-type proportions and cell-
type specific profiles for the K ′ genes.

5.1.1 Selection of cell-type specific genes

The first step of DeCompress is to find a set of K ′ < K genes that are representative of the

different cell types that comprise the bulk tissue. These K ′ genes, called the cell-type specific (CTS)

genes, can be supplied by the user if prior gene signatures can be applied. If any such gene

signatures are not available, DeCompress borrows methods from two previous reference-free

deconvolution methods to select a parsimonious gene set.

We include methods from Zaitsev et al’s LINear Subspace identification for gene Expression

Deconvolution (LINSEED) method13 that assumes mutual linearity (i.e. y1 = ky2, where y1 and y2 are

the expressions of gene 1 and gene 2, respectively) between cell-type specific genes to generate

gene signatures. Briefly, LINSEED transforms the gene expression space to form a c-vertex simplex,

where each vertex represents a distinct cluster of mutually linear genes corresponding to a cell type.

The algorithm then picks the closest genes to each vertex to represent a cell-type specific gene

signature13. We also include Li and Wu’s feature selection method, TOols for the Analysis of

heterogeneouS Tissues (TOAST)14, which iteratively searches for cell type-specific genes and

performs reference-free estimation at each step. TOAST uses a novel hypothesis testing framework to

conduct cross-cell type differential analysis and identify gene signatures14.
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5.1.2 Compressed sensing framework

After a suitable set of K ′ CTS genes are determined, we take the K ′ corresponding columns of R

to form R′
N×K′ and the k genes corresponding to columns in T to form R(k)

N×k. Consider the following

matrix equation, where � is a k ×K ′ compression matrix that projects R(k) to R′:

R′
N×K′ = R(k)

N×k�k×K′ (5.1)

We can break down Equation 5.1 into a system of equations. For the ith column of R′, denoted r′i,

we wish to find a k-length sparse vector ϕi, 1 ≤ i ≤ K ′ such that

r′i = R(k)
N×kϕi. (5.2)

We estimate ϕ̂i with the following optimization methods: least angle regression (using R package

lars)216, elastic net with elastic net mixture penalty α ∈ {0, 0.5, 1} (using the R package glmnet)48, and

l1, l2, and total variation l1 (TV-L1) non-linear optimization (using R package R1magic)217–220..

Functions in DeCompress allow the user to select any to all of these optimization methods and picks

the best method through 5-fold cross-validation.

Especially when N is sufficiently large, non-linear optimization is computationally expensive (see

comparison of run times in Supplemental Figure S32). We implement parallelization across columns

of R′ using the future package in R221 and recommend linear optimization methods as they are faster

and give generally similar prediction (Supplemental Figure S33).

5.1.2.1 Optimization methods for compressed sensing

Compressed sensing in DeCompress aims to estimate the k ×K ′ compression matrix � in the

equation:

R′
N×K′ = R(k)

N×k�k×K′ . (5.3)

We convert this into a system of equations. For the ith column of R′, denoted r′i, we wish to find a

k-length sparse vector ϕi, 1 ≤ i ≤ K ′ such that

r′i = R(k)
N×kϕi. (5.4)

DeCompress implements several regularized regression or optimization methods to estimate ϕ̂i:
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• Elastic net 48 finds

ϕ̂i = arg min
ϕi

{
∥r′i − R(k)ϕi∥22 + λ

[
(1− α)

2
∥ϕi∥22 + α∥β∥1

]}
. (5.5)

We have implemented α ∈ {0, 0.5, 1}, where α = 0 represents ridge regression with no

sparsification of ϕi and α = 1 represents traditional LASSO47. This optimization is carried out in

DeCompress with the glmnet package48.

• Least angle regression (LARS) minimizes the LASSO objective function in Expression 5.5 that

speeds ups stage-wise forward selection. The algorithm starts with all elements of ϕi equal to

zero and finds the predict most correlated with the response. The largest step possible is take in

the direction of these predictor until some other predictor has as much correlation with the

residual. LARS then proceeds in a direction equiangular between these two predictors until a

third variable shares an equal correlation with the residual. The full mathematical justification

and details are provided by Efron et al216.

• l1 non-linear optimization solves the following optimization using the nlm function in R, as

implemented in the R1magic package217:

ϕ̂i = arg min
ϕi

{
N∑
i=1

|R(k)Tϕi − r′i|2 + λ|ϕi|

}
, (5.6)

where T is a K ′ ×K ′ matrix of sparsity bases and λ is a tuned penalty parameter.

• l2 non-linear optimization solves the following optimization using the nlm function in R, as

implemented in the R1magic package217:

ϕ̂i = arg min
ϕi

{
N∑
i=1

|R(k)Tϕi − r′i|2 + λ
√
|ϕi|

}
, (5.7)

where T is a K ′ ×K ′ matrix of sparsity bases and λ is a tuned penalty parameter.

• total-variation l1 non-linear optimization solves the following optimization using the nlm function

in R, as implemented in the R1magic package217:

ϕ̂i = arg min
ϕi

{
N∑
i=1

∥R(k)Tϕi − r′i∥2F + λTV (ϕi)

}
, (5.8)
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where T is a K ′ ×K ′ matrix of sparsity bases, λ is a penalty parameter, and TV (·) is the

total-variation function, such that for a generic n-length vector ν with jth element νj

TV (ν) =

n−1∑
i=1

|νi − νi+1|.

5.1.3 Ensemble deconvolution on expanded dataset

After the estimated compression matrix Φ̂ is obtained, we then expand the expression matrix from

the targetted panel Tn×k into a larger features space by multiplying T with Φ̂:

T̃n×K′ = Tn×k�k×K′ .

This expanded expression matrix T̃, called the decompressed expression matrix, is then used for

ensemble deconvolution. DeCompress includes multiple options for deconvolution, summarized in

Supplemental Table S6: (1) reference-free methods, such as deconf12, CellDistinguisher15, TOAST

with non-negative matrix factorization14, Linseed13, and DeconICA17, and (2) reference-based

methods using cell-type specific expression profiles from factorization of R′
N×K′ , unmix from the

DESeq2 package16. These methods are summarized in detail in the Supplemental Methods. The

optimal estimated cell-type proportion matrix P̂ and cell-type specific expression profiles matrix Ŝ are

selected from the method that best recreates T̃ (i.e. minimizes ∥T̃− ŜT P̂∥).

5.2 Methods for benchmarking and real data analysis

5.2.1 In-silico GTEx mixing experiments

We downloaded median tissue-specific expression profiles from the Genotype-Tissue Expression

(GTEx) Project222,223 for mammary tissue, lymphocytes, fibroblasts, and adipose tissue. Call these

median expression profiles Eprofile. We randomly generated a matrix of mixing proportions P for n

samples and c ∈ {2, 3, 4} of the tissue types. We then generated mixed expression profiles with the

following model:

Emixed = EprofilePT .
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We then multiplied each element of Emixed with a randomly generated error term drawn from a

Normal distribution with 0 mean and standard deviation of either 4 or 8 (low and high noise). This

simulates natural perturbation to mixed expression profiles. We then randomly generated 25 simulated

pseudo-targeted panels each of K ∈ {200, 500, 800, 1000} genes that have means and variances

above the median mean and variance of all genes in the simulated genes. These simulated datasets

have sample size 200. For benchmarking, in each of these simulated datasets, we selected 100 of the

200 samples as a test set for deconvolution. The other 100 samples are considered only in

DeCompress deconvolution and simulated expression for all genes are kept as the reference. We

added more multiplicative noise to the reference drawn from a Normal distribution with zero mean and

standard deviation of 10 to simulate batch differences between the reference and target.

5.2.2 Benchmarking in published datasets

We downloaded four datasets, summarized in Supplemental Table S7: (1) microarray

expression for mixed rat brain, liver, and lung biospecimens (GEO Accession Number: GSE19830),

commonly used as a benchmarking dataset in deconvolution studies (N = 42)6, (2) RNA-seq

expression (GEO Accession Number: GSE123604) for a mixture of breast cancer cells, fibroblasts,

normal mammary cells, and Burkitt’s lymphoma cells (N = 40)5, (3) microarray expression for laser

capture micro-dissected prostate tumors (N = 30)7, and (4) RNA-seq expression for a mixture of two

lung adenocarcinoma cell lines (N = 40)8. Here, we detail the process of generating pseudo-targeted

panels from these RNA-seq or microarray datasets. Assume the downloaded datasets are coded in

the matrix E with K rows corresponding to genes and n columns corresponding to samples. We take

the K ′ genes such that the means and variances of each of these K ′ genes are in the top 50% of

means and variances of all K genes. This restriction is placed on the K ′ genes so as to not include

lowly expressed genes with no variation across cell-types or other conditions. We then generated 25

pseudo-targeted panels with randomly selected 200, 500, 800, and 100 of the K ′ genes.

For the rat mixture dataset, we used 30 of the 42 samples as a reference microarray matrix (with

multiplicative noise, as in GTEx, to simulate a batch effect) and deconvolved on the remaining 12

samples in the target matrix. In the remaining three datasets, we obtained normalized RNA-seq

reference matrices from The Cancer Genome Atlas180: TCGA-BRCA breast tumor expression for the

breast cancer cell line mixture, TCGA-PRAD prostate tumor expression for the prostate tumor

microarray study, and TCGA-LUAD for the lung adenocarcinoma mixing study.
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5.2.3 Benchmarking in Carolina Breast Cancer Study

We lastly used expression data from the CBCS for validation and analysis122,24.

Paraffin-embedded tumor blocks were requested from participating pathology laboratories for each

samples, reviewed, and assayed for gene expression using the NanoString nCounter system, as

discussed previously24. As described before102,224, the expression data was pre-processed and

normalized using quality control steps from the NanoStringQCPro package, upper quartile

normalization using DESeq299,16, and estimation and removal of unwanted technical variation using

the RUVSeq and limma packages29,130. The resulting normalized dataset comprised of samples from

1,199 patients (628 women of African descent and 571 women of European descent). A study

pathologist analyzed tumor microarrays (TMAs) from 148 of the 1,199 patients to estimate area of

dissections originating from epithelial tumor, intratumoral stroma, immune infiltrate, and adipose

tissue102. These cell-type proportions of the 148 samples were used for benchmarking of

DeCompress against other reference-free methods.

5.3 Results

5.3.1 Benchmarking DeCompress with reference-free deconvolution methods

We benchmarked DeCompress performance across 6 datasets (see Supplemental Table S7 ):

(1) in-silico mixing experiments using tissue-specific expression profiles from the Genotype-Tissue

Expression (GTEx) Project222,223, (2) expression from 4 published datasets with known cell-type

proportions6,5,7,8, and (3) and tumor expression from the Carolina Breast Cancer Study122,24. We

compared the performance of DeCompress against 5 other reference-free deconvolution methods

(Supplemental Table S6): deconf12, Linseed13, and DeconICA17, iterative non-negative matrix

factorization with feature selection using TOAST (TOAST + NMF)14, and CellDistinguisher15.

Estimated cell-type proportions are compared to simulated or reported true cell-type proportions by

calculate the mean square error (MSE) between the two matrices. In total, we observed that

DeCompress best recapitulates cell-type proportions compared to other reference-free deconvolution

methods.
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5.3.1.1 In-silico GTEx mixing

We generated artificial targeted panels by mixing median tissue specific expression profiles from

GTEx in-silico with randomly simulated cell-type proportions for mammary tissue, EBV-transformed

lymphocytes, transformed fibroblasts, and subcutaneous adipose. We added multiplicative noise to

the mixed expression to simulate measurement error and contributions to the bulk expression signal

from other sources at two levels. Figure 5.2A shows the performance of DeCompress compared to

other reference-free methods across 25 simulated targeted panels of increasing sample sizes and

increasing number of genes from GTEx in-silico mixing experiments. In general, we find that

DeCompress gives more accurate estimates of cell-type proportions than the other 5 methods at both

settings for multiplicative noise. As the number of genes in the targeted panel increased, we largely

see the difference in MSE between DeCompress and the other methods increase. Linseed and

DeconICA, methods that search of mutually independent axes of variation that correspond to

cell-types, consistently perform poorly on these simulated datasets. deconf, TOAST + NMF (matrix

factorization-based methods) and CellDistinguisher (topic modeling) perform similarly to one another

and only moderately worse in comparison to DeCompress.

We also investigated how the number of component cell-types affects the performance of all six

reference-free methods. We generated another set of in-silico mixed targeted panels (500 genes)

using 2 (mammary tissue and lymphocytes), 3 (mammary, lymphocytes, fibroblasts), and 4 (mammary,

fibroblasts, lymphocytes, and adipose) and applied all six methods to estimate the cell-type

proportions. Figure 5.2B provides boxplots of the MSE across 25 simulated targeted panels using

DeCompress and the other 5 benchmarked methods. For all 6 methods, the median MSE for these

datasets remained similar as the number of cell-types increased, though the variance in the MSE

decreases considerably. In particular, the performance of DeconICA increases considerably as more

cell-types were used for mixing, as highlighted by their documentation17. Here again, we found that

DeCompress gave the smallest median MSE between the true and estimated cell proportions. In total,

results from these in-silico mixing experiments show both the accuracy and precision of DeCompress

in estimated cell-type proportions.

5.3.1.2 Publicly available datasets

Although in-silico mixing experiments with GTEx data showed strong performance of

DeCompress, we sought to benchmark DeCompress against reference-free methods in previously

published datasets with known cell-type mixture proportions. We downloaded expression data from a
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Figure 5.2: Benchmarking results for in-silico GTEx mixing experiments and real data examples. (A)
Boxplots of mean square error (Y -axis) between true and estimated cell-type proportions in in-silico
GTEx mixing experiments across simulated targeted panels of 200, 500, 800, and 1,000 genes (X-axis),
with 25 simulated datasets per number of genes. GTEx mixing was done at two levels of multiplicative
noise, such that errors were drawn from a Normal distribution with zero mean and standard deviation 8
(left) and 4 (right). Boxplots are colored by the benchmarked method (legend at bottom). (B) Boxplots of
MSE (Y -axis) between true and estimated cell-type proportions over 25 simulated GTEx mixed expres-
sion datasets with 500 genes, multiplicative noise drawn from a Normal distribution with zero mean and
standard deviation 10, and 2 (left), 3 (middle), and 4 (right) different cell-types. Boxplots are collected
by the benchmarked method. (C) Boxplots of mean square error (Y -axis) between true and estimated
cell-type proportions in 25 simulated targeted panels of 200, 500, 800, and 1,000 genes (X-axis), us-
ing four different datasets: breast cancer cell-line mixture (top-left)5, rat brain, lung, and liver cell-line
mixture (top-right)6, prostate tumor samples (bottom-left)7, and lung adenocarcinoma cell-line mixture
(bottom-right)8. Boxplots are colored by the benchmarked method. The red line indicates the median
null MSE when generating cell-type proportions randomly. If a red line is not provided, then the median
null MSE is above the scale provided on the Y -axis.
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breast cancer cell-line mixture (RNA-seq)5, rat brain, lung, and liver cell-line mixture (microarray)6,

prostate tumor with cell-type proportions estimated with laser-capture microdissection (microarray)7,

and lung adenocarcinoma cell-line mixture (RNA-seq)8 and generated pseudo-targeted panels with

200, 500, 800, and 1000 genes. For the rat mixture dataset, we trained the compression sensing

model on a randomly selected training split; for the other three cancer-related datasets, reference

RNA-seq data was downloaded from The Cancer Genome Atlas (TCGA)180. We then performed

reference-free deconvolution in these datasets using DeCompress and the other reference-free

methods.

Overall, DeCompress showed the lowest MSE across all three datasets, in comparison to the

other reference-free methods (Figure 5.2C). The patterns observed in the GTEx results are evident in

these real datasets, as well. As the number of genes in the targeted panel increases, the variance in

the distribution of cell-type proportions decreases. Deconvolution using Linseed gave variable

performance across datasets, with very precise estimates of MSE in the rat microarray and lung

adenocarcinoma datasets while highly variable estimates in the breast cancer and prostate cancer

datasets. We do not present DeconICA in these comparisons due to its large errors across all

datasets (see Supplemental Figure S34 for comparisons to DeconICA). Specific to DeCompress, we

assessed the performance of different deconvolution methods (4 reference-free methods and unmix

from the DESeq2 package16) on the decompressed expression matrix for the breast, prostate, and

lung cancer datasets (Supplemental Figure S35). We found that unmix gives accurate estimates of

cell-type proportions in the breast cancer and prostate tumor datasets, where the component

cell-types are like those in bulk tumors. However, in the case of the lung adenocarcinoma mixing

dataset (mixture of two lung cancer cell lines), unmix performs poorly, perhaps owing to a dissimilarity

to the TCGA-LUAD reference. We lastly investigated the scenario when the reference and target

assays measure different bulk tissue. Using the breast cancer cell-line mixtures pseudo-targets and a

TCGA-LUAD reference, DeCompress estimated cell-type proportions with larger errors, such that the

distribution of MSEs intersect with a null distribution of MSEs from randomly generated cell-type

proportion matrices (Supplemental Figure S36).

Carolina Breast Cancer Study (CBCS) expression We finally benchmarked DeCompress against

the other 5 reference-free deconvolution methods in breast tumor expression data from the Carolina

Breast Cancer Study (CBCS)122,24 on 406 breast cancer-related genes on 1,199 samples. We used

RNA-seq breast tumor expression from TCGA to train the compression matrix for deconvolution in

CBCS using DeCompress; 393 of the 406 genes on the CBCS panel were measured in TCGA-BRCA.

For validation, a study pathologist analyzed 148 tumor microarrays (TMAs) to estimate cell-type
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proportions for epithelial tumor, adipose, stroma, and immune infiltrate, which we treat here as a “gold

standard.”

To determine whether the decompressed expression matrix accurately predicts expression for

samples in the target, we split the 393 genes into 5 groups and trained TCGA-based predictive models

of genes in each group using those in the other four. Overall, in-sample cross-validation prediction

per-sample in TCGA is strong (median adjusted R2 = 0.53), with a drop-off in out-sample performance

in CBCS (median adjusted R2 = 0.38), shown in Figure 5.3A. We also trained models stratified by

estrogen-receptor (ER) status, a major, biologically-relevant classification in breast tumors107,106.

These ER-specific models showed slightly better out-sample performance (median adjusted

R2 = 0.34), though in-sample performance was similar to overall models with the same median R2

(Figure 5.3B). Next, as in the GTEx mixing simulations and the 4 published datasets, DeCompress

recapitulated true cell-type proportions with the minimum error (Figure 5.3B), approximately 33% less

error than TOAST + NMF, the second-most accurate method. To provide some context to the

magnitude of these errors, we randomly generated 10,000 cell-type proportion matrices for 148

samples and 4 cell-types. The mean MSE is provided in Figure 5.3A, showing that 2 of the 5

benchmarked methods (CellDistinguisher and DeconICA) exceeded this randomly generated null MSE

value. We also observed that correlations between true and DeCompress-estimated cell-type

proportions are positive and significantly non-zero for three of four cell-type components (Figure 5.3C).

Unlike those from TOAST + NMF, DeCompress estimates of compartment-specific cell-type

proportions were positively correlated with the truth ( Figure 5.3C and Supplemental Figure S37).

5.3.2 Comparison of computational speed

The computational cost of DeCompress is high, owing primarily to training the compressed

sensing models. Non-linear estimation of the columns of the compression matrix is particularly slow

(Supplemental Figure S38). In practice, we recommend running an elastic net method (LASSO,

elastic net, or ridge regression) which are both faster (Supplemental Figure S32) and give larger

cross-validation R2 (Supplemental Figure S33). The median cross-validation R2 for elastic net and

ridge regression is approximately 16% larger than least angle regression and LASSO, and nearly 25%

larger than the non-linear optimization methods. Using CBCS data with 1,199 samples and 406 genes,

we ran all benchmarked deconvolution methods 25 times and recorded the total runtimes

(Supplemental Figure S38). For DeCompress, we used TCGA-BRCA data with 1,212 samples as the

reference. As shown in Supplemental Figure S38, running DeCompress in serial (approximately 62
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Figure 5.3: Benchmarking results with Carolina Breast Cancer Study expression data. (A) Kernel
density plots of predicted adjusted R2 per-sample in in-sample TCGA prediction (left) through cross-
validation and out-sample prediction in CBCS (right), colored by overall and ER-specific models. (B)
MSE (Y -axis) between true and estimated cell-type proportions in CBCS across all methods (X-axis).
Random indicates the mean MSE over 10,000 randomly generated cell-type proportion matrices. (C)
Spearman correlations (Y -axis) between compartment-wise true and estimated proportions across all
benchmarked methods (X-axis). Correlations marked with a star are significantly different from 0 at
P < 0.05.
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minutes) takes around 40 times longer than the slowest reference-free deconvolution method (TOAST

+ NMF, approximately 1.5 minutes), though DeCompress can comparable in runtime to TOAST + NMF

if run in parallel with enough workers (approximately 2.6 minutes). These computations were

conducted on a high-performance cluster (RedHat Linux operating system) with 25 GB of RAM.

5.3.3 Applications of DeCompress in the Carolina Breast Cancer Study

Given the strong performance of DeCompress in benchmarking experiments, we estimated

cell-type proportions for 1,199 subjects in CBCS with transcriptomic data assayed with NanoString

nCounter. Using TCGA-BRCA expression as a training set, we iteratively searched for cell

type-specific features14 (Step 1 in Figure 5.1) and included canonical cell-type markers for guidance

using a priori knowledge225–227. After expanding the targeted CBCS expression to these genes, we

estimated proportions for 5 compartments. As reference-free methods output proportions for agnostic

compartments, identifying approximate cell-types for compartments is often difficult. Here, we first

outline a framework for assigning modular identifiers for compartments identified by DeCompress,

guided by compartment-specific gene signatures. Then, we present some advantages of using

compartment-specific proportions in downstream analyses of breast cancer outcomes and gene

regulation.

Date of death and cause of death were identified by linkage to the National Death Index. All

diagnosed with breast cancer have been followed for vital status from diagnosis until date of death or

date of last contact. Breast cancer-related deaths were classified as those that listed breast cancer

(International Statistical Classification of Disease codes 174.9 and C-50.9) as the underlying cause of

death on the death certificate. Of the 1,199 samples deconvolved, 1,153 had associated survival data

with 330 total deaths, 201 attributed to breast cancer.

5.3.3.1 Identifying approximate cell-types for compartments

We leveraged compartment-specific gene signatures to annotate each compartment with modular

identifiers. First, we computed Spearman correlations between the compartment-specific gene

expression profiles and median tissue-specific expression profiles from GTEx222,223 and single cell

RNA-seq profiles of MCF7 breast cancer cells228 (Figure 5.4A). Here, we find that Compartment 4

(C4) shows strong positive correlations with fibroblasts, lymphocytes, multiple collagenous organs

(such as blood vessels, skin and the colon229), and MCF7 cells. The C3 gene signature was

significantly correlated with expression profiles of secretory organs (salivary glands, pancreas, liver)
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and contained a strong marker of HER2-enriched breast cancer (ERBB2)230. In fact, we see

significant Spearman correlations between C3 and C4 proportions and ER and HER2 scores109,

scores that represent over-expression of genes up-regulated in ER-positive and HER2-enriched

breast tumors; namely, the strong positive correlation (ρ = 0.53) between C3 proportion and HER2

scores provided more evidence that C3 may be a HER2-enriched tumor compartment.

*
*
*
*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*
*
*

*

*
*

*
*
*
*

*
*
*

*

*

*

*

*

*

*

*
*
*
*
*

*
*

*
*
*
*
*

*
*

*

*

*

*
*
*

*

*
*
*
*

*

Adipose − Subcutaneous
Adipose − Visceral (Omentum)

Adrenal Gland
Artery − Aorta

Artery − Coronary
Artery − Tibial

Bladder
Breast − Mammary Tissue

Cells − EBV−transformed lymphocytes
Cells − Transformed fibroblasts

Cervix − Ectocervix
Cervix − Endocervix

Colon − Sigmoid
Colon − Transverse

Esophagus − Gastroesophageal Junction
Esophagus − Mucosa

Esophagus − Muscularis
Fallopian Tube

Heart − Atrial Appendage
Heart − Left Ventricle

Kidney − Cortex
Liver
Lung

Minor Salivary Gland
Muscle − Skeletal

Nerve − Tibial
Ovary

Pancreas
Pituitary
Prostate

Skin − Not Sun Exposed (Suprapubic)
Skin − Sun Exposed (Lower leg)
Small Intestine − Terminal Ileum

Spleen
Stomach

Testis
Thyroid
Uterus
Vagina

Whole Blood
BRCA

Compartm
ent 1

Compartm
ent 2

Compartm
ent 3

Compartm
ent 4

Compartm
ent 5

M
ed

ia
n 

ex
pr

es
si

on
 p

ro
fil

es
 (G

TE
x)

−0.4−0.20.0 0.2 0.4 0.6Correlation

A B

8

16

tra
ns

la
tio

na
l 

in
iti

at
io

n
pr

ot
ei

n 
lo

ca
liz

at
io

n 
to

 E
R

RN
A 

ca
ta

bo
lic

 p
ro

ce
ss

typ
e 

I in
te

rfe
ro

n 
pr

od
uc

tio
n

pro
tei

n l
oc

ali
za

tio
n t

o m
em

bra
ne

response to toxin

response to antibiotic

imm
way

TF activitypositiv

rylation

m
ito

tic
 c

el
l c

yc
le

 
ra

ns
itio

n

ra
ns

itio
n

v

of m
ito

tic 
ce

ll c
ycl

e

cell cycle G2/M 

ransition

cell cycle G1/S
ransition

mor

r
ructure

r

m

extracellular matrix
evelopm

ent

stem
 cell differentiation

12

4

16

12

8

4

4

4

8

812

12

16

16

Compartment
C1 C2 C3 C4 C5

10 

C

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●
●●●

●

●

●●
●

Immune Tumor

Basal Her2 LumA LumBNormal Basal Her2 LumA LumBNormal
0

20

40

60

PAM50 subtype

Es
tim

at
ed

 p
ro

po
rti

on

Call Basal Her2 LumA LumB Normal

Figure 5.4: Identification of Decompress-estimated compartments. (A) Heatmap of Pearson correla-
tions between compartment-specific gene signatures (X-axis) and GTEx median expression profiles
and MCF7 single-cell profiles (Y -axis). Significant correlations at nominal P < 0.01 are indicated with
an asterisk. (B) Barplot of − log10 FDR-adjusted P -values for top gene ontologies (Y -axis) enriched in
compartment-specific gene signatures. (C) Boxplots of estimated immune (left) and tumor (C3 and C4
compartments, right) proportions (Y -axis) across PAM50 molecular subtypes (X-axis)
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We conducted over-representation analysis (ORA)231 of gene signatures for all five

compartments, revealing cell cylce regulation ontologies for C3 that are consistent with the hypothesis

generated from GTEx profiles at FDR-adjusted P < 0.05 (Figure 5.4B) We conducted gene set

enrichment analysis (GSEA) for the C4 gene signature232, revealing significant enrichments for cell

differentiation and development process ontologies (Supplemental Figure S9). ORA analysis also

assigned immune-related ontologies to the C2 gene signatures at FDR-adjusted P < 0.05 and ERBB

signaling to C4, though these enrichments did not achieve statistical significance. C1 and C5 gene

signatures were not enriched for ontologies that allowed for conclusive cell-type assignment, showing

catabolic, morphogenic and extracellular process ontologies (Figure 5.4B). From these results, we

hypothesized that C3 and C4 resembled epithelial tumor cells, C2 resembled an immune

compartment, and C1 and C5 resembled stromal and mammary tissue.

Distributions of hypothesized immune (C2) and tumor (C3 and C4 proportions) revealed

significant differences across PAM50 molecular subtypes (Figure 5.4C; Kruskal-Wallis test of

differences with P < 2.2× 10−16)109. These trends across subtypes were consistent with a priori

knowledge, as well: Basal and HER2-enriched subtypes, the most aggressive subtypes, had the

largest proportions of the estimated tumor and immune compartments, while Luminal A, Luminal B,

and Normal-like subtypes showed lower proportions233,109,132. Furthermore, we found strong

differences in C4 and total tumor compartment estimates across race (Supplemental Figure S40A)

C3 and C4 also have strong correlations with ER- (estrogen receptor) and HER2-scores,

gene-expression based continuous variables that indicate clinical subtypes based on ESR1 and

ERBB2 gene modules (Supplemental Figure S40B); however, none of the C3, C4, immune, or tumor

compartment estimates showed significant differences across clinical ER stautus determined by

immunohistochemistry (Supplemental Figure S40C).

5.3.4 Incorporating estimated compartment improves outcome prediction

Next, we considered the impact of including the tumor (C3, C4, and combining C3/C4) and

immune (C2) compartments in survival models. We constructed Cox models for breast-cancer specific

mortality154 with the following covariates: race, age, PAM50 molecular subtype, compartment

proportion, and an interaction between subtype and compartment proportion. Supplemental Table S8

shows hazard ratio estimates and 90% FDR-adjusted confidence intervals234 from Cox models with

the C3, C4, tumor, and immune compartments, along with comparisons to a reduced baseline model

that excludes the compartment estimates and interaction terms. General relationships stay similar
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across the baseline and interaction models (e.g. protective hazard ratios of Luminal A subtypes in

comparison to the reference Basal subtypes). We also estimated, in the C4-compartment interaction

model, that increased C4 proportion was associated with shorter survival (hazard ratio 1.69,

FDR-adjusted P = 0.026). We also compared these compartment-specific interaction models with the

nested baseline model that did not contain the compartment proportions using a partial likelihood ratio

test. We found that only the interaction model with the C4 proportions gave a significantly better model

fit (χ2 = 11.52 on 4 degrees of freedom, P = 0.02). Estimated survival Kaplan-Meier curves stratified

by molecular subtype and median-stratified C3 and C4 proportions showed significant differences

between low and high proportion groups within molecular subtypes (Supplemental Table S8).

Namely, we observed that the C3 high and low proportion groups only split the HER2-enriched

molecular subtype based on survival outcomes, reinforcing the ERBB signaling annotations assigned

to C3 in ORA analysis. However, the HER2-enriched subtype was enriched for C3-high samples (127

out of 147 samples in the C3-high group). We also found that the C4 groups split the Basal and

Luminal B subtype groups, though the Basal subtype was disproportionately enriched for C4-high

subjects (315 out of 339 subjects). In sum, these results illustrate that incorporating

computationally-derived estimates of compartments may aid in outcome prediction.

5.3.4.1 Incorporating compartment proportions into eQTL models detects more
tissue-specific gene regulators

We investigated how incorporating estimated compartment proportions affect cis-eQTL mapping

in breast tumors, a common application of deconvolution methods in assessing sources of variation in

gene regulation85,235. In previous eQTLs studies using CBCS expression, several bulk breast tumor

cis-eGenes were found in healthy mammary, subcutaenous adipose, or lymphocytes from GTEx102.

We included DeCompress proportion estimates for the tumor (C3 and C4 estimates) and immune (C2)

compartments in a race-stratified, genetic ancestry-adjusted cis-eQTL interaction model, as proposed

by Geeleher et al and Westra et al85,84. We found that sets of compartment-specific cis-eGenes

generally had few intersections with bulk cis-eGenes (Figure 5.5A), but we detected more eQTLs in

tumor- and immune-specific compartments (Supplemental Figure S41). At FDR-adjusted P < 0.05,

of 209 immune-specific cis-eGenes identified in women of European ancestry (EA), 7 were also

mapped in the bulk models (with no compartment proportions covariates), and no tumor-specific

cis-eGenes were identified with the bulk models. Similarly, at FDR-adjusted P < 0.05, in women of

African ancestry (AA), 27 of 331 and 9 of 124 cis-eGenes identified with the immune- and

tumor-compartment interaction models were also mapped with the bulk models, respectively.
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Figure 5.5: Compartment-specific cis-eQTL mapping in the Carolina Breast Cancer Study. (A) Venn
diagram of bulk, tumor-, and immune-specific cis-eGenes identified European-ancestry (left) and African-
ancestry samples (right) in CBCS. (B) Enrichment analysis of immune- (red) and tumor-specific (blue)
cis-eGenes in CBCS plotting the −log10 P -value of enrichment (X-axis) and description of gene ontolo-
gies (Y -axis). The size of the point represents the relative enrichment ratio for the given ontology. (C)
Scatterplots of GTEx (X-axis) and CBCS effect size (Y -axis) for significant CBCS cis-eQTLs that were
mapped in GTEx. Each point is colored by the GTEx tissue in which the cis-eQTL has the lowest P -
value. Reference dotted lines for the X- and Y -axes are provided. (D) For risk variants from GWAS for
breast cancer from iCOGs9–11, scatterplot of −log10 P-values of bulk (X-axis) and compartment-specific
cis-eQTLs (Y -axis), colored blue for tumor- and red for immune-specific models. A 45-degree reference
line is provided. In the top right corner, 3 tumor-specific cis-eQTLs are labeled with the eGene CCR3
as they are significant at FDR-adjusted P < 0.05. (E) Tumor-specific eQTL effect sizes and 95% confi-
dence intervals (Y -axis) for rs56387622 on CCR3 expression across various estimates of tumor purity.
The eQTL effect size from the bulk model is given in blue.
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Manhattan plots for cis-eQTLs across the whole genome across bulk, tumor, and immune show the

differences in eQTL architecture in these compartment-specific eQTL mappings in EA and AA

samples (Supplemental Figures S42 and S43, respectively). Furthermore, we generally detected

more cis-eQTLs at FDR-adjusted P < 0.05 with the immune-specific interactions than the bulk and

tumor-specific interactions (EA: 565 bulk cis-eQTLs, 65 tumor cis-eQTLs, 8927 immune cis-eQTLs;

AA: 237 bulk cis-eQTLs, 449 tumor cis-eQTLs, 7676 immune cis-eQTLs; Supplemental Figure S41).

We analyzed the sets of EA and AA tumor- and immune-specific eGenes in CBCS with ORA

analysis for biological processes (Figure 5.5B). We found that, in general, these sets of eGenes were

concordant with the compartment in which they were mapped. All at FDR-adjusted P < 0.05, AA

tumor-specific eGenes showed enrichment for cell cycle and developmental ontologies, while

immune-specific eGenes were enriched for leukocyte activiation and migration and response to drug

pathways. Similarly, EA tumor-specific eGenes showed enrichments for cell death and proliferation

ontologies, and immune-specific eGenes showed cytokine and lymph vessel-associated processes.

These results from cis-eQTL analysis provide an example of the advantage of including

DeCompress-estimated compartment proportions in downstream genomic analyses.

We then cross-referenced bulk and tumor-specific cis-eGenes found in the CBCS EA sample with

cis-eGenes detected in healthy tissues from GTEx: mammary tissue, fibroblasts, lymphocytes, and

adipose, similar to previous pan-cancer germline eQTL analyses102,137. We attributed several of the

bulk cis-eGenes to healthy GTEx tissue (all but 2), but tumor specific cis-eGenes were less enriched in

these healthy tissues (Supplemental Figure S44). We compared the cis-eQTL effect sizes for

significant CBCS cis-eSNPs found in GTEx. As shown in Figure 5.5C, 98 of 220 bulk cis-eQTLs

detected in CBCS that were also found in GTEx were mapped in healthy tissue, with strong positive

correlation between effect sizes (Spearman ρ = 0.93). The remaining 122 eQTLs that could not be

detected in healthy GTEx tissue contained some discordance in the direction of effects, though

correlations between these effect sizes were also strongly positive (ρ = 0.71). In contrast, we were

unable to detect any of the CBCS tumor-specific cis-eQTLs in GTEx healthy tissue, and the correlation

of these effect sizes across CBCS and GTEx was poor (ρ = −0.07).

We next extracted 932 breast cancer risk-associated SNPs in women of European ancestry9–11 at

FDR-adjusted P < 0.05 that were available on the CBCS OncoArray panel124. Figure 5.5D shows the

raw − log10 P -values of the association of these SNPs with their top cis-eGenes in the bulk and tumor-

and immune-specific interaction models. In large part, none of these eQTLs reached FDR-adjusted

P < 0.05, except for 3 cis-eQTLs, with their strengths of association favoring the bulk eQTLs.

However, we detected 3 tumor-specific EA cis-eQTLs in near-perfect linkage disequilibrium of
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r2 > 0.99 (strongest association with rs56387622) with the chemokine receptor CCR3, previously

found to be associated with breast cancer outcomes in luminal-like subtypes236,237. As estimated

tumor purity increases, the cancer risk allele C at rs56387622 has a consistently stronger negative

effect on CCR3 expression (Figure 5.5E).

5.4 Discussion

Here, we presented DeCompress, a semi-reference-free deconvolution method catered towards

targeted expression panels that are commonly used for archived tissue in clinical and academic

settings18,25. Unlike traditional reference-based methods that require cell-type specific expression

profiles, DeCompress requires only a reference RNA-seq or microarray data on similar bulk tissue to

train a compressed sensing model that projects the targeted panel into a larger feature space for

deconvolution. Such reference datasets are much more widely available than cell-type specific

expression on the same targeted panel. We benchmarked DeCompress against reference-free

methods12,13,17,14,15 using in-silico GTEx mixing experiments222,223, 4 published datasets with known

cell-type proportions6,5,7,8, and a large, heterogeneous NanoString nCounter dataset from the

CBCS122,233. In these analyses, we showed that DeCompress recapitulated true cell-type proportions

with the minimum error and the strongest compartment-specific positive correlations, especially when

the reference dataset is properly aligned with the tissue assayed in the target. Lastly, we outlined the

advantages of incorporating these computationally derived estimates in downstream analyses of

survival outcomes and eQTL mapping in breast cancer.

A disadvantage of DeCompress is its computational cost, owing mainly to its lengthy compressing

sensing training step. We recommend running mainly linear optimization methods in this step and

have implemented parallelization options to bring computation time on par with the iterative framework

proposed in TOAST14. However, DeCompress estimates cell-type proportions both accurately and

precisely, compared to other reference-free methods, and provides a strong computational alternative

that is much faster than costly lab-based measurement of composition. Another disadvantage, which

also affects reference-based methods, is the proper selection of a reference dataset. As seen in the

lung adenocarcinoma example, where TCGA-LUAD data was not an accurate reflection of a mixture of

adenocarcinoma cell-lines, DeCompress performance is slightly worse than with datasets with

properly matched references. Yet, DeCompress performance is on par with that of the other

reference-free methods. The compression model may also be sensitive to phenotypic variation in the
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reference, as evidenced by the increase in out-sample prediction R2 in ER-specific models compared

to overall models in CBCS. This specificity may be leveraged to train more accurate models by using

more than one reference dataset to reflect clinical or biological heterogeneity in the targeted panel.

A universal challenge of reference-free deconvolution methods, like DeCompress, is selecting an

appropriate number of compartments. Previous groups have detailed how important a priori

knowledge is for deconvolving well-studied tissues, such as blood and brain238,239. However, diseased

tissues, like bulk cancerous tumors, especially in understudied subtypes or populations, are more

difficult to deconvolve due to the similarity between compartments, many of which are rare, when

comparing across individuals of different subtypes or phenotypes (e.g. activated and inactivated

stroma in breast tumors)106,226,240,108. For this reason, though DeCompress includes several

data-driven approaches in estimating the number of compartments from variation in the gene

expression, we recommend applying prior domain knowledge about the tissue of interest. Another

challenge for all reference-free methods is assigning gene module-based annotations to the

unidentified estimated compartments. Several previous reference-free methods have leveraged in

vitro mixtures of highly distinct cell lines in training and testing previous reference-free deconvolution

methods6,13, namely the rat cell line mixture (GSE19830). Though this dataset is easy to deconvolve

and thus useful in testing methodology, the extreme differences in gene expression between these

three tissue types renders this dataset sub-optimal for methods benchmarking. Furthermore, assigning

estimated compartments to known tissues in this dataset is straightforward and does not capture how

difficult this task in typical deconvolution applications. Instead, our applications in breast cancer

expression with CBCS provided such a difficult statistical challenge. Our outlined approach of first

comparing compartment-specific gene signatures to known tissue profiles from GTEx or single-cell

profiles, then analyzing these signatures with ORA or GSEA, and lastly searching for known biological

trends provides a structured framework for addressing the compartment identification problem.

Our downstream eQTL analysis in CBCS breast tumor expression also provided some insight into

gene regulation, similar to recent work into deconvolving immune subpopulation eQTL signals from

bulk blood eQTLs235. In breast cancer, Geeleher et al previously showed that a similarly implemented

interaction eQTL model gave better mapping of compartment-specific eQTLs84,85. Our results are

consistent with this finding, especially since tumor- and immune-specific eGenes were enriched for

commonly associated ontologies. However, unlike Geeleher et al, we generally detected a larger

number of immune- and tumor-specific eQTLs and eGenes than in the bulk, unadjusted models. We

believe that this larger number of compartment-specific eGenes may be due to the specificity of the

genes assayed by the CBCS nCounter panel. As the panel included 406 genes, all previously

101



implicated in breast cancer pathogenesis, proliferation, or response102,233,241, the interaction model will

detect for SNPs that have large effects on cell-type specific genes. The interaction term is interpreted

as the difference in eQTL effect sizes between a samples of 0% and 100% of the given compartment;

accordingly, for genes implicated in specific breast cancer pathways, we expect to see large

differences in cell-type specific eQTL effects242–244. Though this interaction model is straight-forward

in its interpretation for the tumor compartment (i.e. a sample of 100% tumor cells versus 100%

tumor-associated normal cells), this interpretation may be tenuous for less well-defined compartments,

like an immune compartment that includes several different immune cells. In addition, we did not

consider trans-acting eQTLs that are often attributed to cell-type heterogeneity, though we believe that

methods employing mediation or cross-condition analysis can be integrated with compartment

estimates to map cell-type specific trans-eQTLs relevant in breast cancer245,72,67.

Relevant to risk and proliferation of breast cancer, we detected a locus of cis-eSNPs associated

with expression of CCR3 (C-C chemokine receptor type 3) that were GWAS-identified risk SNPs9–11

but were not significantly associated with CCR3 expression using the bulk models and were not

detected in GTEx. If one or more causal SNPs in this genomic region affects CCR3 expression only in

cancer cells and the effect on CCR3 expression is the main mechanism by which the locus

predisposes individuals to breast cancer, we can hypothesize that an earlier perturbation in the

development of cancer (e.g. transcription factor or microRNA activation) may cause this SNP’s

tumorigenic effect. Given this perturbation in precancerous mammary cells, individuals with the risk

allele would convey the tumorigenic effects of decreased CCR3 expression. It has been previously

shown that increased peritumoral CCR3 expression is associated with improved survival times in

luminal-like breast cancers236,237. The CCR3 receptor has been shown to be the primary binding site

of CCL11 (eotaxin-1), an eosinophil-selective chemoattractant cytokine246,247, and accordingly CCR3

antagonism prohibited chemotaxis of basophils and eosinophils, a phenomenon observed in breast

cancer activation and proliferation248,249. Without DeCompress and the incorporation of compartment

estimated in the eQTL model, this association between eSNP and CCR3 expression would not have

been detected250.

DeCompress, our semi-reference-free deconvolution method, provides a powerful method to

estimate cell-type specific proportions for targeted expression panels that have a limited number of

genes that only requires RNA-seq or microarray expression from a similar bulk tissue. Our method’s

estimates recapitulate known compartments with less error than reference-free methods, and provides

compartments that are biologically relevant, even in complex tissues like bulk breast tumors. We

provided examples of using these estimated compartment proportions in downstream studies of
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outcomes and eQTL analysis. Given the wide applications of reference-free deconvolution, the

popularity of targeted panels in both academic and clinical settings, and increasing need for analyzing

heterogeneous tissues, we anticipate creative implementations of DeCompress to provide further

insight into expression variation in complex diseases.
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CHAPTER 6: CONCLUSION

Here, we proposed several approaches for the analysis of biological data with various sources of

variation. In Chapter 2, we propose a framework for the normalization of NanoString nCounter RNA

expression data, especially in long-term longitudinal, multi-phase or multi-site cohorts. We compare

our iterative framework with the commercially available nSolver software, showing that the nSolver

software insufficiently removes technical variation, leading to potentially inflated biological associations

due to confounding. In Chapter 3, we conduct a transcriptome-wide association study for breast

cancer-specific survival that leverages race-specific, ancestry-adjusted breast tumor eQTLs. We show

that the cis-germline genetically regulated expression of many important breast cancer-related genes

are different across both race and clinical or molecular subtype. We then identify two novel genetic

regions that are associated for breast cancer mortality. This work informs future research into

disentangling genetic ancestry differences from subtype heterogeneity in breast cancer.

In Chapter 4, we propose an extension to transcriptomic prediction and association studies by

considering distal germline varation. We prioritize distal eQTLs in prediction leading to gains in both

expression predictive accuracy and power to detect gene-trait associations. We showed the

advantage of this TWAS extension in identifying relevant pathways in both breast cancer proliferation

and neuropsychiatric disorder. Our novel extension to test distal associations above and beyond the

local genetic-trait association aids in generating hypotheses for potential gene regulatory mechanisms.

Future work here is necessary to improve computational efficiency, but this approach is encouraging in

tissues or diseases that are governed by complex networks of gene regulation. Lastly, in Chapter 5,

we outline a semi-reference-free cell-type deconvolution method for targeted mRNA expression

panels. We show the utility of this method over reference-free methods in a variety of settings and use

deconvolved expression to better explain survival outcomes and compartment-specific eQTLs in bulk

breast cancer tissue. This method can be integrated with other computational approaches to adjust

complex genomic analyses for cell-type heterogeneity.

104



APPENDIX: SUPPLEMENTAL FIGURES AND TABLES

Figure S1: Comparison of per-sample expression with and without background threshold. (A) Scatter
plot of per-sample median and per-sample variance of CBCS expression across raw expression (left),
nSolver-normalized data with background correction (middle), and without background correction (right),
with samples colored by study phase. (B) Relative log-expression (RLE) plots of raw expression (top),
nSolver-normalized expression with background correction (middle), and nSolver-normalized expres-
sion without background correction (bottom) for 90 randomly selected CBCS breast cancer samples,
ordered from left to right by increasing per-sample median in the raw expression. The dotted line gives
a reference for a deviation of 0.
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Software Implementation Method Memory Used
(CBCS Used) Notes

nSolver GUI with R
backend

Positive- and
housekeeping-control
scaling

0.41 GB (using
NanoStringNorm)

Can be implemented entirely in R using
the NanoStringNorm package

RUVSeq R pacakge
(Bioconductor)

Factor analysis on
housekeeping genes or
technical replicates

3.92 GB
RUV-III has been created by the same
group for NanoString data using
technical replicates

NanoStringDiff R package
(Bioconductor)

Generalized linear
model 0.37 GB

Normalized data is recommended to be
used only for downstream differential
expression analysis using an empirical
Bayes shrinkage approach

RCRnorm R package
(CRAN)

Bayesian random-
coefficient hierarchical
regression

20.93 GB High computational cost,
even in fast mode

Table S1: Summary of normalization software compared in benchmarking. We provide the implemen-
tation of the software, a brief summary of the methods used by the software, total memory used on a
submitted job on a high performance cluster with 25 GB allocated RAM, and any miscellaneous notes
about the methods (i.e. alternative implementations and disadvantages of each method). The memory
used is calculated from a submitted job that processed the CBCS expression data (417 genes, 1264
samples).
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Figure S2: Comparison of quality control flags and sample quality in CBCS. Boxplot of percent of
zero-counts in endogenous genes (Y-axis) over varying numbers of zero-counts in the 11 housekeeping
genes (X-axis), colored by various QC flags.
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Figure S3: Comparison of sample quality with sample age in CBCS. Boxplots of percent of zero-counts
per sample by CBCS study phase with percent of zero-counts of 406 endogenous genes (A) and percent
of zero-counts of 11 housekeeping genes (B).
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Figure S4: Comparison of normalization methods on reflecting technical and biological variables. Scat-
ter plots of first two principal components of raw, nSolver-, RUVSeq-, NanoStringDiff-, and RCRnorm-
normalized CBCS expression data colored by study phase (A) and PAM50 subtype call (B). PC1 (X-axis)
captures the maximum variation in expression (approximately 9-12% across all datasets), and PC2 (Y -
axis) captures the second most (approximately 3-4%).
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Figure S5: Silhouette analysis of normalized data acros study phase and ER stuatus Boxplots of silhou-
ette widths of raw, nSolver-, RUVSeq-, NanoStringDiff-, and RCRnorm-normalized CBCS expression
data colored by ER status (A) and study phase (B).
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Figure S6: Confusion matrix of PAM50 calls using nSolver-normalized and RUVSeq-normalized ex-
pression
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Figure S7: Gene expression patterns across normalization methods in CBCS. Histograms of raw P -
values of eQTL associations using nSolver-normalized (red) and RUVSeq-normalized (blue) data across
overall (top), cis-eQTLs only (middle), and trans-eQTLs only (bottom) for eQTL associations with FDR-
adjusted P < 0.05.
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Figure S8: Comparison of minor allele frequencies of trans-eSNPs in nSolver- and RUVSeq-normalized
CBCS data. Violin plots of absolute differences in minor allele frequencies of trans-eSNPs specific
to nSolver-normalized data (A) and RUVSeq-normalized data (B) between groups of African ancestry
women (AA) and European ancestry women (EA) and between the three study phases.
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Figure S9: Proposed causal relationships leading to perceived bias in detected trans-eQTLs. Violin
plots of absolute differences in minor allele frequencies of trans-eSNPs specific to nSolver-normalized
data (A) and RUVSeq-normalized data (B) between groups of African ancestry women (AA) and Euro-
pean ancestry women (EA) and between the three study phases.
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Figure S10: Expression patterns in nSolver- and RUVSeq-normalized CBCS data. Heatmap of
nSolver-normalized (left) and RUVSeq-normalized (right) expression of 417 breast cancer-related genes
with hierarchical clustering of samples (horizontal) and genes (vertical). Samples are classified as
Basal-like (red), HER2-enriched (pink), luminal A (dark blue), luminal B (light blue), and normal-like
(green). The left heatmap uses nSolver-normalized normalized data without quality control based on
post-normalization visual inspection. The blue arrow indicates 14 samples without any pre- or post-
normalization quality control flags, but show deviations from expression patterns.
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Figure S11: Technical variation across study groups in Sabry et al data. Relative log-expression (RLE)
plots of raw expression (A), nSolver-normalized expression (B), and RUVSeq-normalized expression (C)
for Sabry et al’s natural killer Nanostring expression profile. Boxplots are colored by various treatment
groups.
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Figure S12: Cis-trans plot of race-stratified eQTL analyses AA eQTLs are shown on the left and WW
on the right. Each point represents an eQTL with BBFDR < 0.125 with the location of the 5’ end of
the corresponding eGenes on the Y-axis and the genomic location of the corresponding eSNP on the
X-axis. A 45-degree line is provided as a reference for cis-eQTLs.
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Figure S13: Minor allele frequency differences of eSNPs across race. Scatter plot of minor allele
frequencies (MAF) of all significant eSNPs (BBFDR < 0.05) in either the AA or WW sample, with the
MAF in the AA sample on the X-axis and in the WW sample on the Y-axis. Points are colored by the
sample in which the eSNP was detected. The 45-degree line is provided for reference.
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Figure S14: Impact of tumor purity adjustment on eQTLs. Example Manhattan plots for eQTL analysis
in bulk tumor LAG-3 expression (A) and tumor purity-adjusted LAG-3 expression (B) in WW women.
Red line represents a genome-wide significance threshold of P = 1 × 10−8 and the dotted black line
corresponds to BBFDR < 0.05.
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Figure S15: Impact of tumor purity adjustment on eQTLs across race. Cis-trans plots, as in Supple-
mentary Figure S12, across self-identified race (top to bottom) and across adjustment for tumor purity
(eQTLs in bulk tumor expression on left and eQTLs in tumor purity-adjusted expression on left)
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Figure S16: Impact of local ancestry adjustment on cis-eQTLs. (A) Kernel density plot of difference
in − log10 P -values for lead cis-eQTLs identified with local ancestry adjustments and genome-wide an-
cestry adjustments. (B) Kernel density plot of difference in − log10 P -values of association of eQTLs
between AA and WW women with genome-wide ancestry adjustment (red) and local ancestry adjusted
(blue) for lead eQTLs identified for AA-specific cis-eGenes. (C) Kernel density plot of difference in
− log10 P -values of association of eQTLs between WW and AA women with genome-wide ancestry ad-
justment (red) and local ancestry adjusted (blue) for lead eQTLs identified for WW-specific cis-eGenes.
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Figure S17: Comparison of eQTL effect sizes across CBCS and GTEx. Each point represents a signif-
icant eQTL for PSPHL (A) and GSTT2 (B) found in both GTEx and the CBCS WW sample, colored by
the strength of linkage disequilibrium to the top eSNP in CBCS. Absolute effect size of significant eQTLs
in WW CBCS is plotted on the X-axis and absolute effect size of significant eQTLs in GTEx multiplied
by the sign of the effect size in CBCS is plotted on the Y-axis.
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Figure S18: Overlap of WW CBCS cis-eQTLs in GTEx and TCGA-BRCA. Each point represents a
given cis-eSNP-eGene pair (cis-eQTL), with the − log10 P -value of the association in CBCS on the X-
axis and the − log10 P -value of the association in the external dataset on the Y-axis. Each cis-eQTL that
is colored orange and labelled is the lead cis-eSNP in CBCS (i.e. the lowest P-value for that eGene in
CBCS).
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Figure S19: Comparison of use of LD-pruning on model performance. For genes with cis-h2 with
P < 0.10, cross-validation R2 with (X-axis) and without (Y-axis) LD-pruning of genotype design matrix.
Points are colored orange if there is increased CV R2 with LD-pruning. The blue line gives the 45-degree
line and the dotted black lines show thresholds for R2 = 0.01, for reference.
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Figure S20: Comparison of heritability and cross-validation predictive performance. Comparison of cis-
h2 estimates (X-axis) and cross-validation R2 (Y-axis) for each gene with likelihood ratio test P < 0.10
for cis-h2 = 0 across AA and WW women in CBCS training set. The 45-degree line (i.e. Y = X) is
provided for reference in red.
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Figure S21: Performance of CBCS expression models in independent external cohorts. Comparison of
EVR2 across race, stratified by PAM50 molecular subtype and estrogen receptor status in TCGA (A) and
CBCS (B). Squared Spearman correlation in WW (X-axis) and AA (Y-axis) for each of the available genes
are plotted. Note that both scales are logarithmic. Dotted lines represent R2 = 0.01. Colors represent
the model with which a given gene can be predicted at cross-validation R2 > 0.01. A representative
gene with variable R2 across subtypes is labelled.
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Figure S22: Assessment of sampling variability on external predictive R2. Storey’s − log10 q-values
from P -values of permutation tests over 10,000 permutations to assess significance of external vali-
dation R2 in TCGA (A) and held-out CBCS (B). Dotted lines represent q = 0.10. Sample sizes are
provided in the form (AA/WW). A representative gene with variable permutation q-value across subtype
is labelled.
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Figure S23: Power analysis of TWAS for survival in CBCS. Comparison of power of TWAS in CBCS
sample of N = 3, 828 and 348 breast cancer-specific deaths. Power (Y-axis) to detect a given hazard
ratio (X-axis) is plotted. Curves correspond to genes of varying cis-h2: DDIT4 (green) has high h2

across AA and WW, AURKA (orange) has average h2 across AA and WW, and KIFC1 (purple) has the
lowest h2 across AA and WW. Power calculations are derived from 1,000 re-samplings of the empirical
distribution function of the GReX of a given gene. Dotted line represents 80% power.
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Figure S24: Directed acyclic graph showing potential backdoor confounding in a case-only study. Mod-
ified from Paternoster et al. Directed acyclic graph that shows how collider bias is introduced (grey path)
in case-only studies. Here, in this case-only study, we condition on breast cancer incidence, which may
open up a potential collider bias with unmeasured confounders in the measure of association between
the GReX of a gene and breast cancer survival.
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Figure S25: Subtype-specific follow-up on TWAS associations. Caterpillar plots for hazard ratio of
breast cancer-specific survival in AA women for an increase of one standard deviation of GReX across
models unadjusted for estrogen receptor subtype and stratifying for estrogen receptor subtype.
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Figure S26: Associations of gene expression and GReX for four TWAS-detected loci in CBCS. Hazard
ratios and 95% confidence intervals, adjusted for false discovery via Benjamini-Hochberg, as estimated
from breast cancer-specific Cox models in AA women. Association with total expression (purple) and
GReX (orange) of 4 TWAS-detected genes are compared.
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TCGA-BRCA ROS/MAP

Local-only 0.037 (0.053) 0.079 (0.119)
MeTWAS 0.040 (0.066) 0.135 (0.099)
DePMA 0.383 (0.194) 0.405 (0.118)

Table S3: Comparison of h2 across local-only, MeTWAS, and DePMA predictive models. The mean and
standard deviation of h2 across all genes that are significantly heritable with the genetic loci considered
in the design matrix of each predictive model.

133



0

100

200

300

400

Local−only MeTWAS DePMA

Method

M
ea

n 
tim

e 
pe

r 
ge

ne
 (

se
co

nd
s)

Figure S27: Comparison of computation times between local-only and MOSTWAS modelling. Mean
and standard deviation of per-gene computation time across 50 randomly selected genes in TCGA-
BRCA. Computations here were done with a 24-core, 3.0 GHz processor.
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Figure S29: Gene-trait associations in iCOGs and PGC using local-only and MOSTWAS models.
− log10 P -values of weighted burden gene-trait associations using iCOGs survival GWAS in European-
ancestry women (left) and PGC MDD risk GWAS in predominantly European-ancestry patients (right)
among genes that were predicted at cross-validation R2 ≥ 0.01 using both local-only and MOSTWAS
models. The X- and Y -axes display the − log10 P -values for local-only and the best MOSTWAS model,
respectively. Note that the scales of both axes are on a doubly logarithmic scale. Points are colored red
if P -value of association is less than or equal using the MOSTWAS model. The horizontal and vertical
reference lines indicate overall Bonferroni-corrected significance thresholds.
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Figure S30: Comparison of QQ-plots from TWAS associations. QQ-plots from TWAS for breast cancer-
specific survival in iCOGs (A) and MDD in PGC (B) with local-only models (left) and MOSTWAS (right)
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Figure S31: Comparison of P -value QQ-plots from TWAS associations. QQ-plots of − log10 P -values
from TWAS for breast cancer-specific survival in iCOGs (A) and MDD in PGC (B) with local-only models
(left) and MOSTWAS (right)
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Figure S32: Comparison of run-times for various methods implemented for compressed sensing in
DeCompress. Over sample sizes of N = 40, N = 200, and N = 1000 and feature sizes of 200, 500,
800, and 100, we plot the mean time of estimation compression model over the 7 methods implemented
in DeCompress: least angle regression (LAR), LASSO, elastic net with α = 0.5, ridge regression, non-
linear optimization with l1 norm, non-linear optimization with total variation-adjusted l1 norm, and non-
linear optimization with l2 norm.
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Figure S33: Comparison of predictive performance of optimization methods used in DeCompress’s
compressing sensing step. Violin plots for distributions of cross-validation R2 (Y -axis) of the various
optimization methods (X-axis) employed by DeCompress for compression sensing for 100 randomly
selected genes from CBCS. From left to right, least angle regression, LASSO, elastic with alpha = 0.5,
ridge regression, and non-linear optimization with l1 norm. Non-linear optimization with either the total
variation-adjusted l1 norm or the l2 norm gives similar results as with the l1 norm, and hence is omitted.
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Method Summary Implementation

deconf 12
Non-negative least squares on normalized expression
matrix in log2-space, seeded by initial non-negative
matrix factorization.

R package CellMix 251

TOAST 14

Feature selection used in combination with iterative
reference-free deconvolution. Feature selection is done
using a method for cross-cell type differential analysis
for data from a mixed sample 252.

R package TOAST 14

CellDistinguisher 15

Topic modeling based on a set of input cell-type
distinguishing genes. CellDistinguisher includes
a method to infer distinguishing genes using the
gene-gene conditional expression vectors in a space
where the number of vectors and number of dimensions
are both equal to the number of genes. This step relies
on a large input number of genes to properly function.

R package CellDistinguisher 15

Linseed 13

Solving a convex hull problem by projecting the gene
expression data and find corners using an assumption
that cell-type specific genes are mutually linear. The
cell-type specific expression genes are then inputted
into the Digital Sorting Algorithm, a gene-signature
based deconvolution method 87.

R package linseed

DeconICA 17

Deconvolution using Independent Component Analysis
(ICA), a matrix factorization method for dimension
reduction by projecting the expression into a space
such that distributions of the data point projections
on the new axes are as mutually independent as possible.

R package DeconICA 17

unmix 16,117

Non-negative least squares on the non-log2 scale
with loss calculated in a variance stabilized space.
This is a reference-based method, and is seeded in
DeCompress using the estimated cell-type specific
expression profiles estimated from the reference.

R package DESeq2 16

Table S6: Summary of deconvolution methods benchmarked against or employed in DeCompress.
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Dataset Accession Number Description

In-silico GTEx mixing 222,223 dbGAP: phs000424.v7.p2
Median tissue-specific expression profiles
were mixed at randomly generated mixing
proportions to simulate targeted panels.

Rat tissue cell-line mixture 6 GEO: GSE19830

Rat brain, liver, and lung biospecimens from
one animal were mixed at the cRNA
homogenate level in different proportions.
Expression was measured using microarray.

Human breast cancer
cell-line mixture 5 GEO: GSE123604

Total mRNA was prepared from Namalwa
(Burkitt’s lymphoma), Hs343T (fibroblasts
from mammary gland adenocarcinoma),
hTERT-HME1 (normal mammary
epithelial cells), and MCF7 (estrogen
receptor positive breast cancer cells).
Cell lines were mixed in different
proportions and expression was
measured using RNA-seq.

Human prostate tumor
laser capture
microdissection 7

GEO: GSE97284

Gene expression profiling of laser capture
microdissected epithelial and stromal
specimens from prostate tumors using
microarray.

Human lung cancer
cell-line mixture 8 GEO: GSE64098

Two lung adenocarcinoma cell lines
(NCI-H1975 and HCC827) were mixed at
different proportions and
expression was measure using RNA-Seq.

Bulk breast tumors from
the Carolina Breast Cancer
Study 122,24

Request GEO download
token from authors

Expression from bulk breast tumors were
measured using NanoString nCounter. A
pathologist estimated cell-type proportions
for 148 samples from tumor microarrays.

Table S7: Summary of datasets used in benchmarking
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Figure S34: Benchmarking of deconvolution performance using DeCompress and 5 other reference-
free deconvolution in published data examples. Boxplots of MSE (Y -axis) over 25 pseudo-targeted
panels using four published datasets over 200, 500, 800, and 1000 genes (X-axis). This plot shows the
same results as Figure 5.2C with the addition of DeconICA.
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Figure S35: Comparison of deconvolution performance using decompressed matrix in DeCompress
across various methods. Boxplots of MSE (Y -axis) between true and estimated cell-type proportions
across pseudo-targeted panels of differing numbers of genes. We compare four reference-free methods
(deconf12, Linseed13, iterative non-negative matrix factorization with feature selection using TOAST14,
CellDistinguisher15) and a reference-based method (unmix16) that uses cell-type specific expressions
estimated from the reference. Here, we present results from the breast cancer cell line mixtures5,
prostate tumor7, and lung adenocarcinoma cell line mixtures8. We do not include DeconICA17 in this
benchmarking due to large errors across all three datasets.
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Figure S36: Deconvolution of breast cancer cell mixture using TCGA-LUAD reference. MSE (Y -axis)
across 25 psuedo-targeted panels with different numbers of genes (X-axis) of using various reference-
free deconvolution methods on decompresed breast cancer cell line data using TCGA-LUAD reference
data. The yellow box-plot gives a distribution of the MSE for 1,000 randomly generated cell-type pro-
portions
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Figure S37: Scatter-plot of known and estimated cell-type proportions in CBCS using DeCompress
and TOAST + NMF. Plots of true (X-axis) and estimated (Y -axis) cell-type proportions in CBCS using
DeCompress and TOAST + NMF (most accurate benchmarked reference-free method). True cell-type
proportions are taken as measurement by a study pathologist for 148 samples. A reference smoothed
linear trend line is provided for reference.
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Figure S38: Comparison of run-times for DeCompress and benchmarked reference-free deconvolution
methods. Mean runtimes in seconds (X-axis on logarithmic scale) for methods benchmarked (Y -axis):
CellDistinguisher, DeCompress (in serial), DeCompress (in parallel with 20 cores), deconf, DeconICA,
Linseed, iterative non-negative matrix factorization with feature selection using TOAST. These runtimes
were generated by running all methods on CBCS data (1,199 samples with 407 genes). DeCompress
was run using TCGA-BRCA (1,212 samples) as a reference. The error bar gives an interval of one
standard deviation around the mean runtime. The blue, black, and red dotted lines provide references
for 1 second, 1 minute, and 1 hour.
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Figure S39: Gene set enrichment plot for combined C3 and C4 gene signature. The green, blue, and
red lines in the top panel of the plot represents the running enrichment score (ES) for the corresponding
gene ontology as the analysis goes down the ranked list. The peak gives the final ES. The green, blue,
and red lines in the middle of the plot shows where the members of ontological groups in the dataset
first appear in the ranked list. The bottom panel shows the value of the ranking metric as it moves down
the list of the ranked genes.
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Figure S40: Comparison of compartment proportion estimates with race and different clinical subtype
metrics. (A) Boxplot of C3, C4, and C3 + C4 proportions across race with P -value of Wilcoxon rank-sum
test provided. (B) Scatterplot of compartment proportions (X-axis) and ER or HER2 score from PAM50
classification algorithm. A regression line is provided with a Spearman correlation ρ for reference. (C)
Boxplot of C3, C4, immune, and tumor compartment estimates acros clinical ER status.
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Figure S41: QQ-plots for bulk, tumor-, and immune-specific eQTL models. QQ-plots from cis-eQTL
analysis with expected − log10 P -values (X-axis) and observed − log10 P -values (Y -axis) colored by
bulk (red), immune- (blue), and tumor-specific (green) models. A 45-degree line is provided for refer-
ence.
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Baseline

Covariate Hazard Ratio (90% adjusted CI) FDR-adjusted P
PAM50: HER2 1.37 (0.97,1.95) 0.310
PAM50: LumA 0.55 (0.39, 0.79) 0.041
PAM50: LumB 1.22 (0.86, 1.72) 0.220
Race: White 0.76 (0.59, 1.00) 0.110
Age (in 10 yrs) 0.84 (0.75, 0.95) 0.072
Compartment (in 10%)
HER2/Compartment
LumA/Compartment
LumB/Compartment

C3

PAM50: HER2 1.65 (0.87, 3.11) 0.260
PAM50: LumA 0.52 (0.30, 0.89) 0.064
PAM50: LumB 1.15 (0.64, 2.05) 0.782
Race: White 0.76 (0.57, 1.03) 0.214
Age (in 10 yrs) 0.84 ( 0.74, 0.96) 0.064
Compartment (in 10%) 1.07 (0.68, 1.68) 0.782
HER2/Compartment 0.86 (0.50, 2.41) 0.782
LumA/Compartment 1.12 (0.59, 2.11) 0.782
LumB/Compartment 1.11 (0.51, 2.41) 0.782

C4

PAM50: HER2 2.57 (1.42, 4.67) 0.026
PAM50: LumA 0.90 (0.51, 1.60) 0.761
PAM50: LumB 2.30 (1.34, 3.94) 0.026
Race: White 0.76 (0.59, 0.98) 0.125
Age (in 10 yrs) 0.86 (0.77, 0.96) 0.045
Compartment (in 10%) 1.69 (1.21, 2.37) 0.026
HER2/Compartment 0.47 (0.19, 1.16) 0.200
LumA/Compartment 0.66 (0.27, 1.59) 0.475
LumB/Compartment 0.40 (0.15, 1.02) 0.146

Tumor

PAM50: HER2 2.51 (1.17, 5.41) 0.070
PAM50: LumA 0.75 (0.37, 1.50) 0.450
PAM50: LumB 1.88 (0.90, 3.92) 0.124
Race: White 0.77 (0.57, 1.04) 0.124
Age (in 10 yrs) 0.84 (0.74, 0.96) 0.070
Compartment (in 10%) 1.32 (1.01, 1.74) 0.101
HER2/Compartment 0.69 (0.48, 1.00) 0.101
LumA/Compartment 0.87 (0.55, 1.39) 0.562
LumB/Compartment 0.75 (0.41, 1.38) 0.446

Immune

PAM50: HER2 1.64 (1.08, 2.50) 0.096
PAM50: LumA 0.51 (0.33, 0.79) 0.042
PAM50: LumB 1.30 (0.86, 1.98) 0.369
Race: White 0.77 (0.59, 1.01) 0.183
Age (in 10 yrs) 0.84 (0.75, 0.95) 0.042
Compartment (in 10%) 1.03 (0.70, 1.53) 0.878
HER2/Compartment 0.48 (0.19, 1.19) 0.250
LumA/Compartment 1.47 (0.65, 3.33) 0.494
LumB/Compartment 0.74 (0.29, 1.84) 0.606

Table S8: Results from bulk and compartment-specific survival models with PAM50 molecular subtype.
Hazard ratio estimates, 90% FDR-adjusted confidence intervals, and FDR-adjusted P-values for base-
line and compartment-specific interaction Cox models for breast cancer-specific survival.
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Figure S42: Manhattan plot of cis-eQTLs across the genome in EA CBCS samples. − log10 P -values
of eQTL association (Y -axis) across chromosomal position of cis-eQTLs across bulk (top), immune
(middle), and tumor (bottom) models. Top cis-eGenes are labelled.
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Figure S43: Manhattan plot of cis-eQTLs across the genome in AA CBCS samples. − log10 P -values
of eQTL association (Y -axis) across chromosomal position of cis-eQTLs across bulk (top), immune
(middle), and tumor (bottom) models. Top cis-eGenes are labelled.
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Figure S44: Cross-referencing of bulk and tumor-specific CBCS EA cis-eGenes with GTEx. Com-
parison of absolute effect sizes of eGenes with significant cis-eQTLs in EA CBCS (Y -axis) and GTEx
(X-axis) over tissue type, stratified by bulk and tumor-specific eQTLs. eGenes are colored by the GTEx
tissue that shows the eQTL with smallest P -value.
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Figure S45: Associations of CCR3 expression across clinical variables, subtypes, and mortality. Violin
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