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ABSTRACT

RUITUO FAN: Learning Latent Community Structures in Network-based Data
(Under the direction of Shankar Bhamidi, Nicolas Fraiman and Andrew Nobel)

In this thesis we study two models that incorporate latent group structure related to net-

works. In particular, for the first part we introduce a new multitype recursive tree model

called Community Modulated Recursive Tree (CMRT) that assigns group labels to vertices in

a way similar to the popular stochastic block model for random graphs. Then we introduce a

closely related population dependent branching process, and proceed to derive some of CMRT’s

asymptotic properties based on that, including limiting degree distribution, a tightness result

for maximal degree and almost sure convergence of height. For the second part, we study

a collection of random processes driven by certain latent community structure in a network

and show that global optimum of K-means criterion can recover the groups exactly with high

probability given enough observations across time. We shall also discuss other algorithms, and

their performance is assessed in a simulation study. For the third part, we focus on a vector

autoregressive model driven by stochastic block model, as a special case under the framework

considered in the second part, but with change points. We show that this model can be studied

under the structural break framework, given that the community structure is fixed and known

(or can be recovered from algorithms). We also propose an algorithm for the general case where

both communities and edge probabilities change across time, and its performance is compared

with other methods in numerical experiments.
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CHAPTER 1

Introduction

Graphs representing real systems are not regular like. They are objects where

order coexists with disorder. —— Santo Fortunato [41]

Given a population, oftentimes we can divide it into groups such that objects within the

same group are more similar to each other than outsiders. In different contexts, these groups

may be referred to as classes, types, clusters, blocks, modules, communities, etc. And in some

cases groups are known explicitly, and the focus is on predicting group assignment based on a

set of covariates. This problem is known as classification under the framework of supervised

learning. In other cases however, the groups are not given and have to be learned. And a

central issue in this unsupervised learning problem is that of clustering, which aims to partition

the population into groups consisting of similar objects. To these ends, various algorithms have

been developed: the distribution-based Gaussian mixture model [103], the centroid-based K-

means algorithm [65], the dissimilarity-based hierarchical clustering [55], just to name a few.

Naturally, there is no universal clustering scheme that works for all problems, and successful

algorithms have to adapt to the population of interest. Throughout this thesis, we shall focus

on problems motivated by a special class of population, namely that of networks and graphs.

Over the past decades, the world has seen an emergence of networks in various fields such as

computer science, biology, sociology and physics. Driven by the need to understand these net-

works, many classic statistical problems have been reformulated in the context of networks and

became active research fields on their own. As a canonical example, the problem of clustering

for networks now takes on the name “community detection”, borrowing the terminology from

social science. These “communities” can be found in many networks representing real systems.

In sociology from which the term is coined, people are organized by hierarchies of communities,

from families to nations, and these communities have been studied for decades [26][42]. In com-

puter science, websites form communities based on relevance of topics and these communities

may be detected by hyperlinks for example [40]. The advent of internet era has also given rise

to online communities such as those in social networking service (SNS). In biology, communities
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may correspond to compartments in food webs [58], or modules in protein-protein interaction

networks [100]. In all of the examples given above, there typically exist more “links” within

each community, and fewer between different communities. However, the communities per se

are not defined through these links, but rather that we hope to detect them using information

encoded in the links.

Community detection is important for multiple reasons [41], and we will just list a few

here. First, networks have grown so large, to the size of millions or even billions of nodes,

that we need better tools just to represent them, and community structure can provide a

parsimonious way to achieve that purpose. This may, for example, lead to better visualization

of large networks. Moreover, many real world network systems display a hierarchical structure

characterized by nested communities, e.g. the pyramidal organization in business. In these

cases, communities are essential building blocks of the whole system. Second, communities

can reveal structural properties of the network. Nodes sharing a large number of edges with

other community members may play a central role in maintaining the community structure,

such as hubs in traffic networks and opinion leaders in the network of media users. Nodes

lying on the boundaries between communities, on the other hand, may serve crucial mediation

or communication role. Finally, communities also has important practical implications, e.g. in

building efficient recommendation system for online retailers, or designing better data structures

for navigation. After all, these applications are intrinsically related to communities being a

useful tool to better understand networks.

The study of community structure can be traced back to Stuart Rice [91], who in 1927 did a

research on the identification of blocs in small political parties based on voting behavior. Now,

almost a century later, sociologists, computer scientists, biologists, physicists, statisticians, etc.

all enter the game and much work has been done to develop various community detection

algorithms. While clustering algorithms for non-network data like hierarchical clustering can

be carried over to community detection, these generic methods are known to work not so well

for real-world network data [81] and this has led to active development of clustering algorithms

tailored for networks. In modern days, any practitioner who wishes to conduct some kind of

community detection has to choose from a mass of algorithms. To list just a few popular ones,

there are the divisive algorithm based on edge betweenness proposed by Girvan and Newman

[46][82], a large variety of modularity-based methods starting from the seminal work of Girvan

and Newman [82], and spectral clustering [92].
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While there is some truth to the saying “clustering is in the eye of the beholder”[38], it is still

important to have models under which algorithms can be assessed through their performance.

As an example, popular clustering algorithms such as expectation-maximization (EM) and K-

means are known to perform well under Gaussian mixture model [66][103]. In the context of

community detection, stochastic block model arguably plays a similar role.

In random graph theory, stochastic block model (SBM) generates a graph as follows. First,

vertices are partitioned into two or more groups (usually referred to as blocks). And in many

cases the group labels are chosen independently for each vertex according to a vector specifying

the probabilities of belonging to each group. After the labels are determined, each pair of

vertices are connected independently at random with probability that depends only on their

group labels.

To assess the performance of community detection algorithms, most results focus on either

exact recovery (also called perfect recovery), which seeks to recover the true partition with

high probability, or partial recovery, which only requires a constant proportion of objects to be

clustered correctly. For stochastic block model with n nodes, both recovery problems depend

on how edge probabilities scale as n increases. The cases where edge probabilities are of order

Θ(1), Θ(log n/n) and Θ(1/n) are called dense, semi-sparse and sparse, respectively. As graph

gets sparser, it becomes harder to recover the communities, and two types of barriers show

up: statistical and computational. Statistically, one is interested in when recovery becomes

impossible. For partial recovery, the barrier is shown to lie in the sparse domain under the

special case of two equal-sized communities [71][76], and for exact recovery of (any number of)

equal-sized communities it is in the semi-sparse domain [2]. For both problems the thresholds

are known explicitly, under which recovery becomes impossible. On the computational side

of things, one is interested in the existence of feasible algorithms (e.g. polynomial-time) that

can get the job done. Typical algorithms studied in the literature include spectral methods

[59][71][19][61], belief propagation [29][77] and semi-definite programming (SDP) [1][48][49][4].

In the two models we consider however, we shall deal with two classes of population that

are related to yet different from the random graphs stochastic block model is used to model.

The first population is random recursive trees. Contrary to usual graphs, here we have built-in

hierarchical structure and the problem is connected to that of information flow on trees [78].

The second model is for collections of Gaussian processes with network-based correlations. In

this case we do not have access to the network itself and aim to extract information about latent
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communities from noisy signals observed across time. And as we shall see, the problem here

can be reformulated to relate to Gaussian mixture model.

1.1 Community Modulated Recursive Tree

A recursive tree of size n is a rooted tree labeled {1, 2, ..., n} such that paths from the root

to any vertex have increasing labels. The word “recursive” comes from the fact that these trees

can be generated recursively and are used to model a growing population. Therefore, instead of

thinking about a single tree, it is better to have in mind a collection of growing trees, which are

sometimes referred to as a recursive tree without specifying the size. In these cases a recursive

tree is viewed as a stochastic process of nested labeled trees. As an example, consider a private

club where members meet weekly. At each meeting, one member is asked to invite a new

member next week. Then as long as everyone accepts the invitation and no one quits, the club

will keep growing and we can model the invitation process by a recursive tree. More precisely,

we treat members as vertices, and label them by the order in which they join the club. Each

time a newcomer arrives, we connect that person to the member who invited her. It is clear

that the random graphs generated this way form a recursive tree. Moreover, if the member who

sends out invitation each week is selected uniformly at random, we get the so-called uniform

recursive tree (URT).

From a statistical point of view, URT serves as a natural null model for recursive trees.

Given that, the next thing one may look for is possible alternatives. For our work, we introduce

an alternative to URT that allows for group structure in the spirit of the celebrated stochastic

block model. Just as stochastic block model can be viewed as an alternative to the Erdős-Rényi

model, where each pair of vertices are connected independently with the same probability, our

model, which we shall refer to as Community Modulated Recursive Tree (CMRT), generalizes

URT in a similar way to allow for latent group structure. Specifically, whenever a new vertex

gets added in CMRT, it is assigned type i with probability pi. Then it chooses type j with

probability qij and connects to one vertex of that type uniformly at random. When there is

only one type, CMRT reduces to the usual URT.

Since URT has been studied extensively in the literature and many of its properties are

well-known, it makes sense to compare CMRT with URT in hope of understanding their differ-

ence. Therefore we look at three important properties of random trees, namely limiting degree

distribution, maximal degree and height. For CMRT of two types, we derive the limiting degree
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distribution explicitly and note that it is different from that of URT except for certain special

cases. For maximal degree and height however, we show that they both scale like log n asymp-

totically in non-trivial cases, just as in URT. In fact, we are able to establish almost convergence

of height to the same limit as that of URT, except for some special cases. We shall also mention

the study of subtree sizes and the related root-finding algorithm.

1.2 Recovering clusters from covariance structure

Under the Gaussian setting, Gaussian mixture model is one of most prevalent models

around. The model consists of n i.i.d. observations, each distributed as a mixture ofK Gaussian

distributions called components. There are also n latent variables specifying the component for

which each observation belongs to. Typically these latent variables are sampled from a multi-

nomial distribution.

While there are many things one can do with Gaussian mixture model, we are particularly

interested in using it to assess performance of clustering algorithms through error rate. As could

be expected, separation between Gaussian components in the mixture is an essential factor here.

Intuitively, the larger the gaps are between means of components compared to variances, the

easier it is to recover the true partition.

From the point of modeling group structure, we see that groups in a mixture model are char-

acterized by difference in parameters of their distributions, while the observations themselves

are independent. In our work we take a different perspective and consider a collection of corre-

lated Gaussian vectors with the same mean. We index their coordinates by time, making them

Gaussian processes. In fact, our model is motivated by a vector autoregressive model where

the coefficient matrix is specified by an adjacency matrix with certain community structure.

The correlation we consider here are two-fold. First, each process is correlated across time, so

the vector we observe will have dependent coordinates. Second, the processes themselves are

correlated based on some group structure. Roughly speaking, we assume that processes within

the same group are more correlated than those from different groups. Then under certain con-

ditions, we are able to show that global optimum of K-means criterion can recover the true

group partition exactly given enough observations across time.

We shall also consider algorithms applied to the sample covariance matrix, including K-

means, spectral clustering and an iterative algorithm, similar in spirit to Lloyd’s algorithm for
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K-means, that fits a blockwise constant approximation to a given matrix. Performance of these

algorithms are then assessed in a simulation study.

1.3 SBM-driven VAR model with change points

As a special case and motivating example for what we consider in the previous part, we

focus on a vector autoregressive model where the coefficient matrix is a scaled adjacency matrix

generated from certain stochastic block model. In addition, we introduce change points into

the model, and allow both communities and edge probabilities to change across time. Our goal

is to detect the true change points, given that their number is known explicitly.

GuDmundsson [47] studied a similar and more general model (with normalization instead

of scaling) without change points, and showed that a spectral clustering based method can

partially recover the communities. While one may also choose to use other algorithms, e.g.

K-means based methods discussed in previous part, existing theoretical guarantees typically

break down. On the other hand, in cases where the community structure is fixed and known (or

can be recovered from algorithms), we show that this SBM-driven VAR model can be studied

under the structural break framework.

We will also propose a change point detection algorithm for the general case where both

communities and edge probabilities vary across time, and compare its performance with other

methods using simulated data.
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CHAPTER 2

Community Modulated Recursive Tree

Trees are everywhere. From real botanical trees seen in daily life, to abstract data struc-

tures used in computer science, these hierarchical forms first created by nature are also adored

by us humans. Quite naturally, trees are often grown recursively. In probability models for

rooted trees labeled {1, 2, ..., n}, this means that paths from root to any vertex have increasing

labels. These recursive trees have been studied for decades, with applications to epidemics [74],

pyramid schemes [43][44], convex hull algorithms [70] and modeling family trees of preserved

copies of ancient or medieval texts [80], where vertices represents people or texts that arrive

chronologically and are labeled by time.

In many applications, uniform recursive tree (URT) is the model actually used. As any

recursive tree, it can be defined recursively. First, URT of size 1 is just a single vertex 1.

Assuming that URT of size n is already defined, then URT of size n + 1 is a tree formed by

attaching vertex n + 1 uniformly at random to a vertex in a URT of size n. It is not hard to

verify that this actually produces a recursive tree. Alternatively, a URT of size n can be formed

by choosing uniformly at random a tree from all recursive trees of size n.

Of course there are other alternatives for modeling recursive trees. For example, preferential

attachment [13], because of its power law degree distribution, is favored in the complex network

community where real data exhibits this scale-free property. There are also variants of URT that

introduce choices to the attachment rule. Instead of choosing one existing vertex, these models

choose k previous vertices (with or without replacement) as candidates, and connect the new

vertex to one of them based on certain optimization criterion. D’Souza et al. [37] investigated

criteria such as selecting the candidate with maximal or minimal depth (i.e. distance from

the root) or maximal degree, and Mahmoud [68] discussed models where the candidate with

largest or smallest label is chosen. These models typically lead to improvement in statistics

used as the optimization criterion (e.g. asymptotic maximal degree becomes larger if candidate

with largest degree is chosen). Related to these models there is the so called scaled attachment

random recursive tree (SARRT) [34], where at the n-th step the new vertex n is connected
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to vertex ⌊nXn⌋, with X1, X2, ... being a sequence of i.i.d. random variables taking value in

[0, 1). When Xn follows uniform distributions, SARRT reduces to the usual URT. And when

the random variable tends to take smaller values, new vertices are more likely to connect to

existing vertices with small labels.

However, all of these alternatives are still homogeneous in the sense that attachments are

made according to the same rule for each vertex, no matter how complicated. In hope of

modeling heterogeneity, we introduce an alternative to URT that incorporates group structure

so that vertices in different groups behave differently. Just as stochastic block model can be seen

as a heterogeneous alternative for the Erdős-Rényi model, our model, which we shall refer to as

Community Modulated Recursive Tree (CMRT), generalizes URT in a similar way to allow for

latent group labels.

The rest of this chapter is organized as follows: Section 2.1 reviews related work on recursive

trees and highlights some of the main findings. Section 2.2 gives a brief introduction to branching

processes and their applications to the study of random trees. Section 2.3 introduces CMRT

and derives results on its asymptotic properties, including limiting degree distribution, maximal

degree and height. Section 2.4 studies structure of subtrees in CMRT, with potential application

to root-finding algorithms. Finally, Section 2.5 extends the limiting degree distribution results

in Section 2.3 to two variants of the model.

2.1 Literature review

In this section we shall review known results on various global and local properties of

recursive trees. The summary here is by no means comprehensive and for a more detailed

survey on classic results interested readers are referred to Smythe and Mahmoud [98]. Unless

otherwise specified, results stated here are for URT.

2.1.1 Terminology

We gather here terminology on rooted trees we shall use extensively later on.

First, a rooted tree is just a tree with one vertex identified as the root. And since trees are

connected (undirected) graphs with no cycles, there exists a unique path from any given vertex

v to the root. Any vertex u ̸= v in this path is called an antecedent of v, and v its descendant.

In addition, if u and v are adjacent, we call u the parent of v and v its child. The length of this

path (i.e. the number of vertices in the path) is called the depth of v. And the maximal depth
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among all vertices in a rooted tree is called its height. Note that depth essentially measures the

graph distance between v and the root, and height is the number of levels if one visualizes the

whole tree in a hierarchical way. Finally, the subgraph induced by v and all of its descendants

is called the subtree rooted at v.

For degree, people typically consider out-degrees, i.e. the number of children associated

with each vertex. This is consistent with the definition of out-degree in directed graph, if one

treats each edge in a rooted tree as directed from the parent to its child. In fact, there are

authors who view recursive trees as directed graphs, but we shall stay with the undirected

definition. It is easy to see that out-degree of the root is the same as its degree, and for other

vertices out-degree is equal to degree minus 1. In addition, maximal degree is defined as the

largest out-degree among all vertices.

2.1.2 Degree distribution

For graphs, degree is one of the most important quantities to look at and trees are no

exception. Throughout we shall use Nk(n) (k ≥ 0) to denote the number of vertices with out-

degree k in a recursive tree of size n. Na and Rapoport [79] first derived recursive formula for

the expected values ENk(n) and from that showed lim
n→∞

ENk(n)/n = 1/2k+1. Moon [74] later

proved this convergence in probability as well.

More recently, Janson [54] established a central limit result:

n−
1
2 (Nk(n)− 2−k−1n)

d−→ Vk

jointly for all k ≥ 0, where any finite subset of {Vk}k≥0 is jointly Gaussian and covariances can

be computed from a generating function. This rather strong result is proved using generalized

Pólya urns, where vertices of different degrees are treated as balls of different colors. And the

main tool applied there is a functional limit theorem derived by the author earlier [53].

2.1.3 Internodal distance

For trees, distance is measured by the usual graph distance. Given any two vertices u and v,

the distance between them is length of the unique path from u to v. These internodal distances

are some of the first properties studied in recursive trees. Because of its prevalence, some of the

key results are summarized here though we will not study internodal distance in CMRT.
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Let dij denote the distance between vertex i and j, and Dn := d1n be the depth of vertex

n. Moon [74] was able to find recursive formulas for expectation and variance of dij and solved

them exactly, yielding the following result:

E dij =
i∑

k=1

1

k
+

j−1∑
l=1

1

l
+

1

i
− 2

Var(dij) = (1− 4

i
)

i∑
k=1

1

k
+

j−1∑
l=1

1

l
− 3

i∑
k=1

1

k2
−

j−1∑
l=1

1

l2
+ 4 +

3

i
− 1

i2
.

As a corollary, we have EDn ∼ log n and Var(Dn) ∼ log n.

Devroye [32] proved the asymptotic normality of Dn using theory of records. Mahmoud

[67] later gave a more elementary proof by computing moment generating function of D∗
n =

(Dn − log n)/
√
log n from the exact distribution of Dn and showed that it converges to that of

a standard normal variable.

2.1.4 Extremal statistics

Let Mn and Hn denote respectively the maximal degree and height in a recursive tree with

size n. Devroye and Lu [35] showed that maximal degree, when scaled properly, converges both

almost surely and in L1:

Mn

log2 n

a.s.−→ 1 and lim
n→∞

EMn

log2 n
= 1.

The proof involves writing the degree of each vertex as a sum of indicator functions, the deriva-

tion of tail bounds from that and some sort of union bound device.

As for the height, Pittel [88] proved that

Hn

log n

a.s.−→ e

using results on first birth problems of Crump-Mode-Jagers branching processes [57]. The proof

involves embedding the recursive tree into a continuous time process, which is also crucial in

our work. In fact, our proof for convergence of height essentially follows the same procedure.

We shall give a more detailed discussion about this technique later in Section 2.2.
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2.1.5 Structure of subtrees

Asymptotic properties of subtrees in URT can be studied through two observations [69].

First, distribution of the subtree rooted at vertex k, conditioning on its size, has the same

distribution as a URT of that size. Second, if we let Sk(n) be size of the subtree rooted at k in

a recursive tree of size n, then

Sk(n)

n

a.s.−→ Beta(1, k − 1).

To see that, note the problem can be formulated into a Pólya urn. Specifically, treat vertex k

as a red ball and 1, 2, ..., k− 1 as blue balls. Following the rule of Pólya urns, at each time step

a ball is chosen uniformly at random and put back, together with another new ball of the same

color. It can be shown that Sk(n) has the same distribution as the number of red balls when

there are a total of n balls. The rest follows immediately from classic results on asymptotics of

Pólya urns.

In light of these two observations, asymptotic distribution of a statistic of the subtree rooted

at some vertex k is a mixture of asymptotic distributions corresponding to URTs of various sizes

with Beta(1, k − 1) as the mixing density. For concrete examples, see Smythe and Mahmoud

[98].

2.1.6 Preferential attachment tree

The preferential attachment tree and its variants have also been studied extensively in the

literature. In linear preferential attachment trees, instead of uniform attachment, a new vertex

connects to an existing vertex with probability proportional to α plus that vertex’s out-degree,

where α > 0 is a parameter. The linear preferential attachment tree is known to have a limiting

power law distribution with exponent depending on the model parameter α [18]. And maximal

degree, when scaled by n
1

1+α , converges a.s. to a positive random variable as n goes to infinity

[75]. As for height, in the same paper as that of URT Pittel [88] proved that Hn/ logn converges

a.s. to a positive constant dependent on α.

In terms of models with multiple types, which shall be our focus, an extension of preferential

attachment based on genealogy of a multitype branching process has been considered in [93].

And more related to the Community Modulated Preferential Attachment (CMPA) tree that we
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shall study, Deijfen and Fitzner [30] computed the limiting degree distribution for a special case

of CMPA with two types heuristically and conducted a simulation study.

2.2 Branching processes applied to trees

It is becoming folklore, however, that global properties such as the maximum of

some quantity in the tree, are not easily amenable to combinatorial analysis, but

follow from probabilistic reasoning. —— Smythe and Mahmoud [98]

Since a key step in our proof is to embed the recursive tree into a continuous-time process

related to branching processes, we will include a short introduction here, with a focus on their

applications to the study of random trees.

In discrete time, the customary formulation is that of Galton-Watson process, often used

to model reproduction of a population. Mathematically, it consists of a sequence of random

variables Z0, Z1, Z2, ... representing population sizes of the zeroth, first, second, ... generation.

By default one assumes that Z0 = 1. Then the process is defined recursively via:

Zn+1 =

Zn∑
i=1

ξn,i.

Here ξn,i denotes the number of children born to the i-th individual in the n-th generation,

and are i.i.d. over all n ∈ N and i ∈ {1, 2, ..., Zn}. The equation essentially states that

individuals reproduce independently following the same probability distribution, and the (n+1)-

th generation consists of all children born to the n-th generation.

The most basic result on these processes is about extinction probability, formally defined

as P(∃n : Zn = 0). Note that if ZN = 0 for some N , then Zn = 0 holds for any n > N as well.

Thus we have P(∃n : Zn = 0) = P( lim
n→∞

Zn = 0) and the latter can be used as an alternative

definition for extinction probability. Let pk = P(Zn = k) for k = 0, 1, 2, ... be the probability

that an individual in the population gives birth to exactly k children, and µ =
∑∞

k=1 kpk be the

mean of this offspring distribution. Then the theorem states:

Theorem 2.1. When µ ≤ 1, we have P(∃n : Zn = 0) = 1 except for the degenerate case where

p1 = 1. Otherwise if µ > 1, then P(∃n : Zn = 0) < 1. Moreover, in the latter case we have

P(∃n : Zn = 0) + P( lim
n→∞

Zn = ∞) = 1.
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In other words, a Galton-Watson process becomes extinct when each individual gives birth

to at most one child, except for the case of course, when all individuals have exactly one

child. What might seem more interesting is the fact that the process either goes extinct or

explode in terms of population size. And accordingly, a process is called subcritical, critical and

supercritical respectively when µ < 1, µ = 1 and µ > 1.

In connection to random trees, Galton-Watson processes are largely used to study global

properties such as height [31]. Interested readers are directed to Devroye [33] for a nice summary

of these results. Now, we shall not dwell too much in discrete time and will proceed to consider

branching processes in continuous time, which are more relevant to us.

As a starting point, consider a Crump-Mode-Jagers (CMJ) branching process [27]. It starts

with a single ancestor at time t = 0 and the number of its children by time t follows some

counting process Z(t). All individuals, from the time of their births, reproduce independently

of each other according to random processes with the same (joint) distribution as Z(·). In

general Z(t) can be arbitrary, and when between-birth intervals are exponentially distributed

with parameters λ1, λ2, ... we call it a Poisson CMJ branching process.

To produce a rooted random tree from a CMJ branching process, one simply treat the

ancestor as the root and connect each individual to its parent. Moreover, the random tree

generated is recursive as long as births do not occur at the same time, which is satisfied by the

Poisson CMJ process. We give two special cases here. When λi ≡ 1, each individual has the

same probability giving birth to the next child in the population, or equivalently, we choose

a parent uniformly at random when growing a tree. This leads to a uniform recursive tree.

When λi = i + 1, parents are picked with probabilities proportional to the number of children

(i.e. out-degree in the rooted tree) plus one. This leads to the so-called plane-oriented tree,

sometimes discussed under the broader context of preferential attachment.

Now, given the embedding of a recursive tree into some CMJ branching process, in theory

we can transform any problem about the original tree into its counterpart with respect to the

branching process: out-degrees become the number of children and height becomes the number

of generations. Similar to Galton-Watson process, CMJ branching process has been used to

derive global properties of recursive trees, notably their height [88].

This continuous-time embedding technique is not limited to the study of global properties

and also sees success in local properties such as degree distribution. Historically, most results on

degree distribution were derived via combinatorics. However, the instant one asks for more than
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the distribution itself and wants, for example, to establish some kind of central limit theorem,

combinatorics quickly becomes insufficient. In these cases the problems of interest are often

formed as an urn scheme. The embedding hereto can be traced back to Athreya and Karlin [7],

who first introduced the embedding of urns into continuous-time Markov branching processes.

For URT, Janson [54] was able to prove central limit results for its joint degree distribution using

a functional limit theorem of generalized Pólya urns that builds on continuous time embedding.

Moreover, as we shall see in our application, continuous-time embedding is particularly useful

when the attachment rule is too complicated for combinatorics. For an example other than our

own, see Bhamidi et al. [15] where a change point is present in preferential attachment model.

2.3 Community Modulated Recursive Tree and its asymptotic properties

We shall first focus on a special case of CMRT with two types (say A and B) for simplicity.

Extension to the general case is discussed in Section 2.3.10.

2.3.1 Model formulation

Recall that a uniform recursive tree (URT) can be constructed as follows: starting with a

root vertex, at each step choose uniformly at random an existing vertex, and add a new vertex

connected to the chosen vertex. This procedure yields a growing tree-valued process, which

we shall denote by {Un}n≥1, where Un is the random recursive tree given by the process as it

reaches size n. Then {Un}n≥1 is a URT and Un a URT of size n.

Now we are ready to introduce Community Modulated Recursive Tree (CMRT) with two

types:

• Start with a type A vertex 1 and a type B vertex 2. We shall refer to them as roots of

each type. A CMRT of size 2 is the tree containing vertex 1 and 2, with an edge between

them.

• Given a CMRT of size n− 1 (n ≥ 3), a new vertex n is added to the tree at the next time

step and assigned type A with probability p ∈ (0, 1] and type B with probability 1 − p.

Note here that we do not lose any generality by excluding the case where p = 0 because

one can just switch the types.

• Vertex n then chooses its own type with probability q ∈ [0, 1] and the other type with

probability 1 − q. Similar to stochastic block model, we call it assortative when q ≥ 1/2
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Figure 2.1: A (two-type) Community Modulated Recursive Tree of size 100, with parameters p = 0.5
and q = 0.8. The type A and B roots are plotted as blue circle and orange diamond respectively, and
other type A and B vertices as black squares and yellow triangles.

and disassortative when q < 1/2. In general the probability for a vertex to choose its own

type may vary across types. Here we assume that they are the same for simplicity and

the general case is discussed in Section 2.3.10.

• Finally vertex n chooses uniformly at random an existing vertex of that chosen type, and

connect to it, forming a CMRT of size n.

The process then uses the above dynamics recursively to yield a growing tree-valued process,

which we shall denote by {Tn}n≥2, where Tn is the random recursive tree given by the process

as it reaches size n. Then we call {Tn}n≥2 a Community Modulated Recursive Tree (CMRT)

and Tn a CMRT of size n.

Since both vertices 1 and 2 are called roots, notions of out-degree and depth change slightly

for CMRT. Out-degree is still defined as the number of children, and in CMRT that is equal

to degree minus 1 for all vertices including the roots. Depth of a vertex in this case is the

distance between that vertex and the nearest root. Although one can define things differently,

asymptotically we will get the same results.
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2.3.2 Special cases

1. When p = 1 and q = 1, CMRT becomes a URT consisting of type A vertices plus an

additional type B vertex (i.e. the type B root) connecting to the type A root. Thus one

may consider this case to be degenerate.

2. When p = 1 and q ̸= 1, all new vertices are of type A and have a fix probability 1− q to

connect to the unique type B vertex. This case is degenerate too in the sense that one can

construct such a CMRT from a URT. To do so, take a URT consisting of type A vertices,

and add a single type B vertex connected to the root of that URT. Treat this type B vertex

as the type B root. Then remove each edge between type A vertices independently with

probability 1−q. For each edge removed this way, add an edge between the corresponding

child and the type B root. The recursive tree formed this way has the same distribution

as a CMRT with p = 1 and q ̸= 1.

3. When q = 1, CMRT can be partitioned into two disjoint subtrees, one for each type, if one

removes the edge between the two roots. Furthermore, each of these subtrees, conditioning

on its size, has the same distribution as a URT of that size. However, existence of this

edge makes it non-trivial to separate the two subtrees even in this simple case. Although

not fully comparable, we note that in stochastic block model the recovery problem (i.e.

recovering the block assignment for each vertex) becomes trivial if each block is connected

and the probability to connect to vertices in other blocks is zero.

4. When q = 0, each new vertex will connect to a vertex of the other type. Therefore we

would observe an alternating behavior if we know the types: for any path, the types of

vertices along this path will be alternating.

2.3.3 Continuous time embedding

In this section we will introduce a continuous time embedding which plays a crucial role

in later proofs. To fix ideas, we shall refer to “vertices” in our continuous time process as

“individuals” to differentiate them from vertices in the corresponding discrete time recursive

trees. To state the embedding result, we need to introduce a (two-type) continuous time process

which we shall refer to as a population dependent branching process (pdBP). As we shall

see, this process is not a branching process in the common sense, not even a time inhomogeneous
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Figure 2.2: A URT of size 1000.

one, since reproduction processes of different individuals are not independent. We now describe

this in more details:

Initialization: start with two individuals at time t = 0, with one of each type, which we shall

refer to as “ancestors”. For any time t ≥ 0 let nA(t), nB(t) denote the number of type A

and type B individuals respectively. We have nA(0) = nB(0) = 1. For future reference

denote by F(t) the σ-field generated by the process until time t and let {F(t) : t ≥ 0} be

the natural filtration of the process.

Types: Each individual in the system has a type ∈ {A,B} and lives forever, while giving

birth to other type A and B individuals (which we shall refer to as its “offsprings”).

Reproduction: At any time t, the rates at which a living individual gives birth are as follows:

• For a type A individual, it gives birth to type A individuals at rate rAA(t) = q and

type B individuals at rate rAB(t) = (1− p)(1− q)/p.

• For a type B individual, it gives birth to type A individuals at rate

rBA(t) =
nA(t)

nB(t)
· (1− q)
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Figure 2.3: CMRTs of size 1000 with p=0.5, q=1 (top) and 0.5 (bottom). The type A root 1 is used
as the root to make these plots.
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and type B individuals at rate

rBB(t) =
nA(t)

nB(t)
· q(1− p)

p
.

Write n(t) := nA(t)+nB(t) for the total number of individuals alive at time t. Let pdBP(t)

denote the recursive tree corresponding to the genealogical structure of the process until time

t: treat each individual as a vertex and ancestors as roots, label them according to birth order,

and include edges between each vertex and all of its offsprings. For roots, label the type A root

as 1, the type B one as 2, and add an edge between them.

Now we are ready to state the following embedding result:

Lemma 2.2. Consider the process {pdBP(t) : t ≥ 0} above and for fixed n ≥ 2 define the

stopping time Tn = inf {t ≥ 0 : n(t) = n}. Then pdBP(Tn)
d
= Tn where {Tn}n≥2 is a CMRT. In

fact, {pdBP(Tn)}n≥2
d
= {Tn}n≥2 as processes.

We postpone the proof to Section 2.3.5.

2.3.4 Asymptotics for CMRT

The first result we have deals with limiting degree distribution.

Theorem 2.3. For each fixed k, let Nk(n) denote the number of vertices with out-degree k in

Tn. Then

Nk(n)

n

P−→ pk

where

pk :=
p

1 + r∗A
(

r∗A
1 + r∗A

)k +
1− p

1 + r∗B
(

r∗B
1 + r∗B

)k. (2.1)

Here

r∗A := q +
(1− p)(1− q)

p
and r∗B :=

p(1− q)

1− p
+ q.

Note that when p = 1 the second term in pk should be interpreted as 0.

Remark 2.1. This limiting degree distribution is a mixture of two geometric distribution shifted

by 1 (to the left), with parameters 1/(1 + r∗A) and 1/(1 + r∗B). It is not hard to see that this is

identical to that of URT if and only if p = 1/2 or q = 1.
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Also, note that when p ̸= 1/2 and q ̸= 1, the limiting proportion of leaves p0 satisfies:

p0 −
1

2
=

p

1 + r∗A
+

1− p

1 + r∗B
− 1

2
=

(2p− 1)2(1− q)2

2(1− (1− 2p)2q2)
> 0.

Thus one characteristic of CMRT is a larger proportion of leaves. In fact, p0 → 1 as p→ 1 and

q → 0. For this extreme case, Tn looks like a “star” where n− 1 type A vertices are connect to

the type B root.

To better understand Theorem 2.3, we shall make the following heuristic calculations which

are made possible by continuous time embedding. First we consider cases where p < 1 and

note that in discrete time (i.e. for {Tn}n≥2) the proportions of type A and B vertices converge

almost surely to p and 1 − p respectively as n → ∞ by strong law of large numbers. Turning

back to continuous time (i.e. for {pdBP(t)}t≥0), one may imagine similar things to hold (and

even prove it rigorously using stopping times). So we can reasonably expect

nA(t)

nB(t)
≈ p

1− p

to hold for large t. This suggests the following approximations to the rates defined in Section

2.3.3:

rBA(t) ≈
p

1− p
· (1− q), rBB(t) ≈

p

1− p
· q(1− p)

p
= q.

Combine the rates we get rAA(t) + rAB(t) = r∗A and rBA(t) + rBB(t) ≈ r∗B. This suggests that

one might be able to approximate our population-dependent branching process with a time

homogeneous multitype branching process with rates given by the approximations above. By

results from Jagers and Nerman [52], for such an approximating process, the type of a randomly

chosen individual v in pdBP(t) and its age have limiting distribution π × Exponential(α) as

t → ∞, where × denotes product measure, π is a discrete measure on {A,B} with π(A) = p

and π(B) = 1− p, and α = 1 is the Malthusian parameter.

Thus we have by simple calculus that

P(v is of type A and has k offsprings) ≈ p

∫ ∞

0
P(Poisson(r∗As) = k)e−sds =

p

1 + r∗A
(

r∗A
1 + r∗A

)k.
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Here s in the integral denotes the age of v, and the number of its offsprings born in a time

period of length s follows a Poisson distribution with parameter r∗As (given that v is of type A).

Similar calculation can be done for type B individuals.

One may check a similar approximation for URT, for which the corresponding process is a

(unitype) continuous time branching process with Poisson offspring process (say of rate 1). The

limiting age distribution for a randomly chosen individual v, again by results from Jagers and

Nerman [52], is Exponential(1) and simple calculus readily gives

P(v has k offsprings) ≈
∫ ∞

0
P(Poisson(s) = k)e−sds = 2−k−1.

This is exactly the limiting degree distribution of URT.

Now suppose p = 1, using the construction in special case 2 of Section 2.3.2 we have that

for a randomly chosen individual v of type A in pdBP(t)

P(v has k offsprings) ≈
∞∑
i=0

2−k−i−1

(
k + i

k

)
qk(1−q)i = qk

2k+1

∞∑
i=0

(
k + i

k

)
(
1− q

2
)i =

1

q + 1
(

q

q + 1
)k.

Here the infinite sum is calculated using binomial series, which is equivalent to summing up the

probability mass function of a negative binomial distribution in this case.

As oftentimes is the case in mathematics, these intuitive calculations agree with the actual

theorem. In fact, the last step of our formal proof ends up with exactly the same integral. This,

to some extent, shows the power of continuous time embedding in transforming intuition into

fact.

Based on this limiting degree distribution, we can derive consistent estimators of model

parameters p and q. One will need at least two statistics to do this and what we choose here

are N0(n), the number of leaves, and N1(n), the number of vertices with out-degree 1:

Corollary 2.4. Given that p ̸= 1/2 and q ̸= 1, there exist consistent estimators p̂ and q̂ for

p and q that can be computed by solving a quadratic equation that depends only on N0(n) and

N1(n).

Remark 2.2. In practice, with a large number of vertices, one might want to use a subsample

to estimate N0(n) and N1(n) instead of counting the exact number. As long as one replaces

N0(n) and N1(n) with their consistent estimators, p̂ and q̂ will remain consistent.
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The second and third results we have deal with two global statistics of the tree: maximal

degree and height.

Theorem 2.5. Let Mn denote the maximal degree in Tn. Then when p, q ̸= 1, there exist

constant C1, C2 > 0 that depend only on p and q such that

lim inf
n→∞

Mn

logn
≥ C1 and lim sup

n→∞

Mn

log n
≤ C2 a.s.

When q = 1,

Mn

log n

a.s.−→ 1

log 2

and when p = 1 but q ̸= 1,

Mn

n

a.s.−→ 1− q.

Theorem 2.6. Let Hn denote the height of Tn. Then when p ̸= 1 or q = 1,

Hn

log n

a.s.−→ e.

When p = 1 but q ̸= 1,

lim inf
n→∞

Hn

log n
≥ qe and lim sup

n→∞

Hn

log n
≤ e a.s.

Remark 2.3. When p = 1 and q = 0, Tn looks like a “star” where n − 1 type A vertices are

connect to the type B root. And height of this tree is Hn = 1. In this case lim
n→∞

Hn/ log n = 0.

2.3.5 Proof for continuous-time embedding and some basic properties

In this section we shall first give a proof of the continuous-time embedding (Lemma 2.2).

Proof: Assume that {pdBP(Tn)}2≤n≤k
d
= {Tn}2≤n≤k for a fixed integer k ≥ 2 (which holds

for k = 2 by definition). Conditioning on {pdBP(Tn)}2≤n≤k, it can be checked using properties

of exponential distribution that the probability for the next individual born to be of type A is

nA(Tn)rAA(Tn) + nB(Tn)rBA(Tn)

nA(Tn)(rAA(Tn) + rAB(Tn)) + nB(Tn)(rBA(Tn) + rBB(Tn))
= p
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and the probability for the next type A individual born to have a parent of type A is

nA(Tn)rAA(Tn)

nA(Tn)rAA(Tn) + nB(Tn)rBA(Tn)
= q.

Also, given a type ∈ {A,B}, the probability for each individual of this type to give birth to

the next type A individual is equal. Similarly one can check the corresponding probability for

type B individuals. Thus the dynamics of pdBP(Tk+1) conditioning on {pdBP(Tn)}2≤n≤k is the

same as that of Tk+1 conditioning on {Tn}2≤n≤k. Therefore by induction we have the desired

result.

■

Now that we have the continuous-time embedding, we shall proceed to derive some of its

basic properties that will come in handy. In what follows, we shall assume that natural filtration

{F(t) : t ≥ 0} is used throughout.

Lemma 2.7. The process
{
e−tnA(t)

}
t≥0

is an L2-bounded positive martingale. In particular

there exists a strictly positive finite random variable W such that

e−tnA(t)
a.s.−→W, as t→ ∞.

Remark 2.4. As will be evident from the calculation below, the marginal distribution of nA(·)

is identical to that of a rate one Yule process starting with a single individual. In particular

the limit random variable W
d
= exp(1). Recall that a Yule process with rate λ is a time-

inhomogeneous Poisson process with birth rate λi, where i is the current population size.

Proof: First we introduce some preliminary notations that will be used extensively through-

out the proofs. Recall that for a jump diffusion {X(t) ∈ Rn}t≥0, its infinitesimal generator A

is defined for functions f : Rn → R by

Af(x) = lim
t→0+

1

t
(E(f(X(t))|X(0) = x)− f(x))

if the limit exists. Then by Dynkin’s formula (see Øksendal and Sulem [83, Chapter 1.3] for a

formulation) and Markov property of jump diffusion we have that
{
X(t)−

∫ t
0 AX(s)ds

}
t≥0

is a

martingale. Note that if the diffusion term is not present and the jump part is an inhomogeneous

Poisson process, we have that AX(t) = δ(X(t))λ(X(t)) where δ(x) and λ(x) are size and

intensity of jump when the process is at x ∈ Rn.
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Now we are ready to introduce some martingales. Denote exp(−t)nA(t) by ñA(t). Using

the rates in Section 2.3.3 we have

AñA(t) = e−tnA(t)− e−tnA(t) = 0

and

Añ2A(t) = e−2t(2nA(t) + 1)nA(t)− 2e−2tn2A(t) = e−2tnA(t).

Thus by Dynkin’s formula we have that both {ñA(t) : t ≥ 0} and

ñ2A(t)−
∫ t

0
e−2snA(s)ds, t ≥ 0

are martingales. Taking expectation of both martingales we get E(nA(t)) = exp(t) and

E(ñ2A(t)) = 2 − exp(−t). Therefore {ñA(t) : t ≥ 0} is L2 bounded and the second statement

follows from standard martingale convergence theorem.

■

Lemma 2.8. Define Z(t) := pnB(t) − (1 − p)nA(t). Then {Z(t) : t ≥ 0} is a martingale and

further e−tZ(t)
a.s.−→ 0. This implies e−tnB(t)

a.s.−→ (1− p)W/p where W is as in Lemma 2.7.

Proof: Again using the rates in Section 2.3.3 we have

AZ(t) = p
1− p

p
nA(t)− (1− p)nA(t) = 0

and

AZ2(t) = p2An2B(t) + (1− p)2An2A(t)− 2p(1− p)AnAnB(t),

with

An2B(t) = (2nB(t) + 1)
1− p

p
nA(t), An2A(t) = (2nA(t) + 1)nA(t)

and

AnAnB(t) = nA(t)
1− p

p
nA(t) + nB(t)nA(t).

Thus by some elementary algebra and Dynkin’s formula we have that both {Z(t) : t ≥ 0}

and

M(t) = Z2(t)−
∫ t

0
(1− p)nA(s)ds, t ≥ 0
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are martingales. From Lemma 2.7 we get that E(nA(s)) = exp(s). Taking expectation of

E(M(t)) shows

E(Z2(t)) = (1− p)(et − 1) + (2p− 1)2.

Now apply Markov’s inequality to exp(−4 log n)Z2(2 log n) we have for any ϵ > 0:

P
(
e−4 lognZ2(2 log n) > ϵ

)
≤ e−4 logn((1− p)(e2 logn − 1) + (2p− 1)2)

ϵ
=

1− p

n2ϵ
+

4p2 − 3p

n4ϵ
.

Thus by the Borel-Cantelli lemma exp(−2 log n)Z(2 log n)
a.s.−→ 0. Since we know by Lemma 2.7

that exp(−2 log n)nA(2 log n)
a.s.−→W , we get exp(−2 log n)nB(2 log n)

a.s.−→ (1− p)W/p.

Finally for any t > 0 we can find a positive integer n such that 2 log n ≤ t < 2 log(n + 1).

By monotonicity of nB(·) we have nB(2 log n) ≤ nB(t) < nB(2 log(n+ 1)) and further

e−2 log(n+1)nB(2 log n) ≤ e−tnB(t) < e−2 lognnB(2 log(n+ 1)).

Since the left hand side

e−2 log(n+1)nB(2 log n) = e−2 lognnB(2 log n) ·
n2

(n+ 1)2
a.s.−→ (1− p)W

p

and similarly the right hand side converges a.s. to the same limit, we have exp(−t)nB(t)
a.s.−→

(1− p)W/p. This immediately implies exp(−t)Z(t) a.s.−→ 0.

■

Remark 2.5. This lemma essentially proves that nB(t)/nA(t)
a.s.−→ (1− p)/p, which is used in

Section 2.3.4 for heuristic calculations. As noted there, the corresponding statement in discrete

time (i.e. the original tree-valued process) follows easily from strong law of large numbers.

Judging from this point alone, it might seem that continuous-time embedding is making things

more complicated. However, as we shall see later, all this hard work is well worth the effort and

the embedding really facilitates our analysis of degree asymptotics.

Lemma 2.9. The population size process n(t) satisfies e−tn(t)
a.s.−→ W + (1 − p)W/p := W∞.

In particular, the sequence of stopping times Tn satisfy

Tn − log n
a.s.−→ − log(W∞),

where W∞ is a strictly positive finite random variable.

25



The first statement here is a direct corollary of Lemma 2.7 and 2.8, and the second statement

follows by replacing t with Tn. Note that the first statement essentially says that the Malthusian

parameter for process {n(t) : t ≥ 0} is 1.

2.3.6 Proof for limiting degree distribution

In this section we shall prove Theorem 2.3.

To work in continuous time, we need to reformulate Theorem 2.3 via the embedding. Let

Nk,A(n) and Nk,B(n) denote the number of type A and B vertices with out-degree k in Tn. The

plan is as follows: first we focus on type A vertices and prove the result below, and as similar

result holds for type B vertices, using Nk(n) = Nk,A(n)+Nk,B(n) we completes the proof. Note

that when p = 1, there is no need to consider type B vertices.

Theorem 2.10. For a fixed integer k > 0, let nk,A(t) denote the number of type A individuals

with k offsprings in pdBP(t). Then

nk,A(t)

n(t)

P−→ pk,A, as t→ ∞.

Here

pk,A := p

∫ ∞

0
P(Poisson(r∗As) = k)e−sds =

p

1 + r∗A
(

r∗A
1 + r∗A

)k

where r∗A is the total reproduction rate of type A individuals:

r∗A = q +
(1− p)(1− q)

p
. (2.2)

Thus by the embedding in Lemma 2.2 for {Tn}n≥2 we have

Nk,A(n)

n

P−→ pk,A, as n→ ∞.

Proof: Throughout the proof we work with the continuous time embedding. For any fixed

constant 0 < a < t, let nk,A[t − a, t] be the number of type A individuals born in the interval

[t − a, t] that have exactly k offsprings by time t. Given Lemma 2.9, it is enough to show the

following two propositions.
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Proposition 2.11.

lim sup
a→∞

lim sup
t→∞

e−t (nk,A(t)− nk,A[t− a, t]) = 0, a.s.

Proof: Since the population size nA(t) grows exponentially, most type A individuals are

born after time t− a. Indeed, nk,A(t)− nk,A[t− a, t] = nk,A(t− a) ≤ nA(t− a), and by Lemma

2.7 we have

lim sup
t→∞

e−t (nk,A(t)− nk,A[t− a, t]) ≤ e−a lim
t→∞

e−(t−a)nA(t− a) = e−aW, a.s.

Letting a→ ∞ proves the proposition.

■

Proposition 2.12. Recall the random variable W in Lemma 2.8. Then for each fixed a > 0,

we have

e−tnk,A[t− a, t]
P−→W

∫ a

0
P(Poisson(r∗As) = k)e−sds

as t→ ∞.

This assertion needs some work and the proof follows a similar procedure as that in Bhamidi

et al. [15, Section 4.2.2]. First, recall from Lemma 2.7 that nA(t) ≈ Wet for large t. For our

proof we will need a finer concentration result that goes as follows:

Lemma 2.13.

P
(

sup
t−a≤s≤t

|nA(s)−Wes| <
√
tet
)

→ 1

as t → ∞ where W is as in Lemma 2.7. Equivalently, we shall say that w.h.p. as t → ∞,

supt−a≤s≤t |nA(s)−W exp(s)| <
√
t exp(t).

Proof: First note that

e−snA(s)− e−(t−a)nA(t− a), s ≥ t− a

is a martingale by Lemma 2.7 and recall that E(exp(−2s)n2A(s)) = 2− exp(−s) from the proof.

Now fix any T > t − a, Doob’s L2-maximal inequality (here we use the version stated in

Øksendal [83, Theorem 3.2.4], see also Karatzas and Shreve [56, Theorem 3.8] for a proof)

applied to the above martingale gives, for any C > 0:
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P

(
sup

t−a≤s≤T
|e−snA(s)− e−(t−a)nA(t− a)| > C

)
≤ E(e−TnA(T )− e−(t−a)nA(t− a))2

C2
(2.3)

Recall that {ñA(t) := exp(−t)nA(t)}t≥0 is a martingale so we have

E(ñA(T )ñA(t− a)) = E (ñA(t− a)E (ñA(T )|ñA(t− a))) = E(ñ2A(t− a)) = E(e−2(t−a)n2A(t− a)).

It follows that

E(e−TnA(T )− e−(t−a)nA(t− a))2 = E(e−2(t−a)n2A(t− a))− E(e−2Tn2A(T )) = e−(t−a) − e−T .

Plug this in (2.3) we get

P

(
sup

t−a≤s≤T
|e−snA(s)− e−(t−a)nA(t− a)| > C

)
≤ e−(t−a) − e−T

C2
(2.4)

Now, let T → ∞ and use the a.s. convergence result from Lemma 2.7 to yield

P
(
|W − e−(t−a)nA(t− a)| > C

)
≤ e−(t−a)

C2
.

On the other hand, let T = t in (2.4) we get

P
(

sup
t−a≤s≤t

|e−snA(s)− e−(t−a)nA(t− a)| > C

)
≤ e−(t−a) − e−t

C2
≤ e−(t−a)

C2
.

Finally, combine the above two inequalities we have

P
(

sup
t−a≤s≤t

|e−tnA(t)−W | > 2C

)
≤ 2e−(t−a)

C2
.

Let C =
√
t exp(−t)/2 and after some simple algebraic manipulation we get the wanted

result.

■

Now that we have Lemma 2.13, we will proceed to approximate the integral in Proposition

2.12 by e−tnk,A[t−a, t]. To do so, we divide the interval [t−a, t] into intervals of length δ := e−t/3

and denote by Ii(1 ≤ i ≤ a/δ) the i-th interval [t − a + (i − 1)δ, t − a + iδ] (for simplicity we
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treat a/δ as if it is an integer but this should not matter). Let ti = t − a + (i − 1)δ and write

nA(Ii) for the number of type A individuals born in Ii.

On the event given in Lemma 2.13, we have

|nA(ti + δ)− nA(ti)−Weti(eδ − 1)| < 2
√
tet.

Since W exp(ti)(exp(δ)− 1) = δW exp(ti) + op(
√

exp(t)), we can further get

P

a/δ∩
i=1

{
|nA(Ii)− δWeti | < 3

√
tet
}→ 1 (2.5)

as t→ ∞. This shows that the number of type A individuals born in Ii is approximately δWeti .

Unfortunately, even individuals born in the same interval could start reproducing at different

times (i.e. have distinct birth times), and we need to at least align these individuals. To

facilitate the analysis, for each type A individual born in Ii, we call it “good” if it gives birth

to no offspring (type A or B) in Ii and “bad” otherwise. Since the interval is small, we expect

most individuals born to be good:

Lemma 2.14. There exists a constant M > 0 such that

P

a/δ∩
i=1

{
nbadA (Ii) < MWtet/3

}→ 1

as t→ ∞, where nbadA (Ii) is the number of bad individuals born in Ii.

Proof: Call a bad individual in Ii a “direct” bad individual if it is an offspring of individuals

born before Ii and write ndirA (Ii) for the number of direct bad individuals born in Ii. As

non-direct bad individuals in Ii must have an antecedent that is direct bad in Ii, we have

nbadA (Ii) ≤ ndescA (Ii), where ndescA (Ii) is the number of descendants of direct bad individuals in

Ii.

Note that a direct bad individual in Ii has to satisfy the following two conditions:

• First it has to be an offspring of individuals born before Ii and the number of such

offsprings is at most nA(Ii).
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• Secondly it has to give birth to at least one offspring in Ii and the corresponding (condi-

tional) probability is at most

pbad := P(Exp(r∗A) ≤ δ) ∼ r∗Aδ.

Combining the above conditions we have

ndirA (Ii) ⪯ Bin(nA(Ii), pbad).

where ⪯ denotes stochastic dominance. By (2.5) we have that w.h.p. as t → ∞,

W exp(2t/3)/2 ≤ nA(Ii) ≤ 2W exp(2t/3) for all i. Condition on this event and use Hoeffd-

ing inequality for binomial distribution we get

P
(
ndirA (Ii) > nδpbad +

√
nδ log(nδ)

)
≤ 1

n2A(Ii)
≤ 4

W 2 exp(4t/3)

where nδ := 2W exp(2t/3). Since there exists C1 > 0 such that nδpbad+
√
nδ log(nδ) < C1Wtet/3

for large enough t, and

a

δ
· 4

W 2 exp(4t/3)
→ 0

as t→ ∞, using a union bound we have

P

a/δ∩
i=1

{
ndirA (Ii) ≤ C1Wtet/3

}→ 1 (2.6)

as t→ ∞.

Conditioning on the event in (2.6) we have

ndescA (Ii) ⪯
ndir
A (Ii)∑
j=1

Yj(δ) ⪯
C1Wt exp(t/3)∑

j=1

Yj(δ)

where {Yj(·) : j ≥ 1} is an sequence of i.i.d. Yule process with rate r∗A. Since Yj(t) follows a

geometric distribution with parameter exp(−r∗At), we have that for any positive integer C2:

P(Yj(δ) ≥ C2) = (1− exp(−r∗Aδ))C2−1 ≤ (r∗Aδ)
C2−1
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Using a union bound it follows (for simplicity the conditional is suppressed) that

P(ndescA (Ii) ≥ C1C2Wtet/3) ≤ C1Wtet/3 P(Yj(δ) ≥ C2) ≤ C1W (r∗A)
C2−1t(et/3)2−C2 .

Apply union bound once again we get

P

a/δ∪
i=1

{
ndescA (Ii) ≥ C1C2Wtet/3

} ≤ a

δ
· C1W (r∗A)

C2−1t(et/3)2−C2 → 0

as t → ∞ for C2 ≥ 4. Recall that nbadA (Ii) ≤ ndescA (Ii) and we can get rid of the conditional

that was suppressed with the aid of (2.6). Then letting M = 4C1 completes the proof.

■

Now that we get the bad individuals under control, we can turn our attention to those good

individuals. To start, combine Lemma 2.14 with (2.5) we have

P

a/δ∩
i=1

{
|ngoodA (Ii)− δWeti | < 4

√
tet
}→ 1 (2.7)

as t→ ∞, where ngoodA (Ii) is the number of good individuals in Ii.

Next, note that good individuals in Ii reproduce independently at rate r∗A starting from

time ti + δ = ti+1. In particular the probability that a good individual has k offsprings by time

t is

gk(t− ti+1) := P(Poisson(r∗A(t− ti+1)) = k).

Here t − ti+1 refers to the time left until time t. Since reproductions are all independent, we

have (conditioning on pdBP(ti+1))

ngoodk,A (Ii)
d
= Bin(ngoodA (Ii), gk(t− ti+1)) (2.8)

where ngoodk,A (Ii) is the number of good individuals in Ii that have k offsprings by time t. Similar

to the proof of (2.6), by (2.7), (2.8) and Hoeffding inequality for binomial distribution together

with a union bound, there exists C > 0 such that

P

a/δ∩
i=1

{
|ngoodk,A (Ii)− δWetigk(t− ti+1)| < CW log(W )tet/3

}→ 1 (2.9)
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as t→ ∞.

With both good and bad individuals under control, we are ready to prove what we started

out for. Note that

a/δ∑
i=1

ngoodk,A (Ii) ≤ nk,A[t− a, t] ≤
a/δ∑
i=1

[ngoodk,A (Ii) + nbadA (Ii)].

For the bad individuals we know from Lemma 2.14 that

e−t

a/δ∑
i=1

nbadA (Ii)
P−→ 0 as t→ ∞.

On the other hand, for the good individuals we have from (2.9) that

e−t

a/δ∑
i=1

ngoodk,A (Ii)−
a/δ∑
i=1

δWe−(t−ti)gk(t− ti+1)
P−→ 0 as t→ ∞.

Finally, note that by definition of Riemann integral we know

a/δ∑
i=1

δWe−(t−ti)gk(t− ti+1) →W

∫ a

0
P(Poisson(r∗As) = k)e−sds as t→ ∞.

This completes the proof for Proposition 2.12.

■

2.3.7 Estimation of model parameters

In this section we derive consistent estimators for model parameters p and q based on the

limiting degree distribution (i.e. Corollary 2.4).

Specifically, from Theorem 2.3 we know

N0(n)

n

P−→ p

1 + r∗A
+

1− p

1 + r∗B

and

N1(n)

n

P−→
pr∗A

(1 + r∗A)
2
+

(1− p)r∗B
(1 + r∗B)

2
.
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Let θA := 1/(1 + r∗A) and θB := 1/(1 + r∗B). If we can solve for unique p̂, θ̂A and θ̂B (up to a

switch between two types) that satisfy the following equations

m1 :=
N0(n)

n
= p̂θ̂A + (1− p̂)θ̂B (2.10)

m2 :=
N0(n)−N1(n)

n
= p̂θ̂2A + (1− p̂)θ̂2B, (2.11)

then p̂, θ̂A and θ̂B are consistent estimators of p, θA and θB. We can further solve for a consistent

estimator q̂ for q from either θ̂A or θ̂B together with p̂. Note that all estimators are consistent

because (as we shall see) they are continuous functions of m1 and m2.

To solve three unknowns from two equations (2.10) and (2.11), we need a third equation

p̂

θ̂A
+

1− p̂

θ̂B
= 2 = p(1 + r∗A) + (1− p)(1 + r∗B) (2.12)

where the second equality can be verified from the definitions of r∗A and r∗B.

From (2.10) we have

p̂ =
m1 − θ̂B

θ̂A − θ̂B
. (2.13)

Plug it back to (2.11) and (2.12) we get m1(θ̂A + θ̂B)− θ̂Aθ̂B = m2 and θ̂A + θ̂B −m1 = 2θ̂Aθ̂B.

Then we can solve for

θ̂Aθ̂B =
m2 −m2

1

2m1 − 1
and θ̂A + θ̂B =

2m2 −m1

2m1 − 1
,

so θ̂A and θ̂B are roots of the following quadratic equation:

x2 − 2m2 −m1

2m1 − 1
x+

m2 −m2
1

2m1 − 1
= 0.

After we solve for θ̂A and θ̂B we can compute p̂ from (2.13) and

q̂ =
p̂− θ̂A

(2p̂− 1)θ̂A
=

1− p̂− θ̂B

(1− 2p̂)θ̂B

from definitions of θA and θB.

Note that these estimators fail when m1− 1/2, m2−m2
1 or 2m2−m1 is negative. However,

these cases are unlikely to occur for CMRT as all three quantities have positive limits as n→ ∞
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(recall that m1 and m2 both depend on n). When m1 = 1/2, these estimators also fail: from

the remark under Theorem 2.3 we know m1 has limit 1/2 if and only if p = 1/2 or q = 1, and

parameters p, q are not identifiable from the limiting degree distribution in these special cases.

2.3.8 Proof for maximal degree

In this section we shall prove Theorem 2.5. Throughout the proof we work with the con-

tinuous time embedding unless otherwise noted.

First we consider cases where p, q ̸= 1. By Lemma 2.9 and Egoroff’s Theorem, given any

ϵ > 0, we can choose K > 0 such that (the dependence of K on ϵ is suppressed throughout):

P
(
sup
n

|Tn − log n| < K

)
> 1− ϵ. (2.14)

To ease notations, write T+
n = log n+K and T−

n = log n−K.

Lower bound: Here it is enough to consider just the type A root. Recall from Section

2.3.3 that this vertex reproduces at constant rate

r∗A = q +
(1− p)(1− q)

p
. (2.15)

Denote by D(t) the out-degree of type A root at time t. Then D(t) follows a Poisson(r∗At)

distribution. So for any 0 < γ < 1, by standard tail bound for Poisson distribution we have

P (D(Tn) ≤ γr∗A log n) ≤ P
(
D(T−

n ) ≤ γr∗A log n
)
≤ exp{−M log n} (2.16)

for large enough n, conditioning on the event in (2.14). Here M > 0 is a constant that depends

on both γ and r∗A.

Denote by M(t) the maximal number of offsprings an individual has by time t. Since

M(t) ≥ D(t), it follows from (2.16) that

P (M(Tn) ≤ γr∗A logn) ≤ n−M (2.17)

conditioning on the event in (2.14).
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Let {nk}k≥1 be an increasing sequence of positive integers such that nk ≥ k2/M . Then from

(2.17) we know

P (M(Tnk
) ≤ γr∗A log nk) ≤

1

k2
(2.18)

for large k, conditioning on the event in (2.14). By Borel-Cantelli lemma and (2.14) it follows

that

P
(
lim inf
k→∞

M(Tnk
)

log nk
≤ γr∗A

)
≤ ε.

From that we can also get

P
(
lim inf
n→∞

M(Tn)

log n
≤ γr∗A

)
≤ ε.

Recall that Mn
d
=M(Tn) from the embedding, let γ → 1 and ε→ 0 we have

P
(
lim inf
n→∞

Mn

log n
≥ r∗A

)
= 1.

This completes the proof for the lower bound part, with C1 = r∗A.

Alternatively, we provide here another proof for the lower bound part that works when

q ̸= 0. Ideas used in the proof shall become useful later on.

Consider type A individuals alone. We call a type A individual “pure-blooded” if all of its

antecedents are type A individuals. Define pdBPA(t) to be the branching process consisting

of all pure-blooded type A individuals in pdBP(t). Let Tn,A := inf {t ≥ 0 : | pdBPA(t)| = n}.

Note that pure-blooded type A individuals give birth to new pure-blooded type A individuals

at constant rate q, mimicking the results for CMRT (i.e. Lemma 2.2 and Lemma 2.9 ) it is not

hard to see that:

• {pdBPA(Tn,A)}n≥1
d
= {Un}n≥1 as processes, where {Un}n≥1 is a URT.

• The sequence of stopping times Tn,A satisfy

Tn,A − 1

q
log n

a.s.−→ − log(WA) (2.19)

for a finite positive random variable WA
d
= exp(1).
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Since we can transform results for URT into that of the branching process pdBPA(t) through

embedding, using Devroye and Lu [35] we get

Mpure
A (Tn,A)

log n

a.s.−→ 1

log 2

where Mpure
A (t) is the maximal number of offsprings a pure-blooded type A individual has by

time t. Similar to (2.14) we have that by (2.19) and Egoroff’s Theorem, given any ϵ > 0, we

can choose KA > 0 such that (again for simplicity the dependence of KA on ϵ is suppressed

throughout):

P
(
sup
n

|Tn,A − 1

q
log n| < KA

)
> 1− ϵ. (2.20)

For each t > 0, let n∗(t) be the positive integer satisfying 1
q log(n

∗(t)) +KA ≤ t < 1
q log(n

∗(t) +

1) +KA. Conditioning on the event in (2.20) we have

Mpure
A (t)

t
≥
Mpure

A (1q log(n
∗(t)) +KA)

1
q log(n

∗(t) + 1) +KA
≥

Mpure
A (Tn∗(t),A)

1
q log(n

∗(t) + 1) +KA

a.s.−→ q

log 2

as t→ ∞, and it follows that

P
(
lim inf
t→∞

Mpure
A (t)

t
≥ q

log 2

)
> 1− ϵ.

Denote by M(t) the maximal number of offsprings an individual has by time t. Let ϵ → 0 in

the above inequality and note M(t) ≥Mpure
A (t), we have

P
(
lim inf
t→∞

M(t)

t
≥ q

log 2

)
= 1.

Finally, since

Tn
log n

a.s.−→ 1, (2.21)

by Lemma 2.9, and Mn
d
=M(Tn) from the embedding, we get

P
(
lim inf
n→∞

Mn

log n
≥ q

log 2

)
= 1.

This completes the proof for the lower bound part when q ̸= 0, with C1 =
q

log 2 .

Upper bound: First we consider the simpler type A individuals. Given {pdBP(t)}t≥0,

we couple it with another process where: whenever a type A individual is born to a type B
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individual in {pdBP(t)}t≥0, chose uniformly at random a living type A individual, and treat

the newborn individual as an offspring of that chosen individual. In this new process, if we look

at type A individuals alone, it is not hard to see that they give birth to new type A individuals

at constant rate 1. Denote by MA(t) and M̃A(t) respectively the maximal number of offsprings

a type A individual has by time t in {pdBP(t)}t≥0 and new process. Using the same argument

as in the proof for lower bound we see that

P

(
lim sup
t→∞

M̃A(t)

t
≤ 1

log 2

)
= 1.

Since M̃A(t) ≥MA(t), this immediately implies

P
(
lim sup
t→∞

MA(t)

t
≤ 1

log 2

)
= 1.

Denote by Mn,A the maximal degree of type A vertices in Tn. Then it follows from (2.21) and

Mn,A
d
=MA(Tn) that

P
(
lim sup
n→∞

Mn,A

log n
≤ 1

log 2

)
= 1.

Next we consider the more complicated type B individuals. For a given type B individual v

and time T ∈ [0, t), write nv[T, t] for the number of offsprings this individual produced in time

interval [T, t]. This is a pure birth process with rate

c
nA(t)

nB(t)
:=

(
1− q +

(1− p)q

p

)
nA(t)

nB(t)
.

Therefore for a fixed T , the following process

X(t) = nv[T, t]−
∫ t

T
c
nA(s)

nB(s)
ds, t ≥ T, (2.22)

is a martingale (here the infinitesimal generator is exactly the rate).

To handle the variability of X(t), we will need its predictable quadratic variation process

⟨X⟩(t). Note that

AX2(t) = An2v[T, t] +A
(∫ t

T
c
nA(s)

nB(s)
ds

)2

− 2A
(
nv[T, t]

∫ t

T
c
nA(s)

nB(s)
ds

)
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with

An2v[T, t] = (2nv[T, t] + 1)c
nA(t)

nB(t)
,

A
(∫ t

T
c
nA(s)

nB(s)
ds

)2

= 2(

∫ t

T
c
nA(s)

nB(s)
ds)c

nA(t)

nB(t)

and

A
(
nv[T, t]

∫ t

T
c
nA(s)

nB(s)
ds

)
= nv[T, t]c

nA(t)

nB(t)
+ (

∫ t

T
c
nA(s)

nB(s)
ds)c

nA(t)

nB(t)
.

It then follows from some elementary algebra that AX2(t) = cnA(t)/nB(t) and

⟨X⟩(t) =
∫ t

T
c
nA(s)

nB(s)
ds, t ≥ T. (2.23)

Now use Lemma 2.8 to choose T such that

P

(
sup
t≥T

∣∣∣∣nA(t)nB(t)
− p

1− p

∣∣∣∣ > ε

)
≤ ε. (2.24)

Also, define the stopping time

S = inf

{
t ≥ T :

∣∣∣∣nA(t)nB(t)
− p

1− p

∣∣∣∣ > ε

}
.

Observe that by our choice of T we have P(S <∞) ≤ ε. The idea here is to bound nA(t)/nB(t)

around p/(1 − p) after some finite time T , and show that what happened before time T does

not have a noticeable effect in the long run.

Recall that we write T+
n = log n + K and T−

n = log n − K. Consider the process

{X(t ∧ S) : t ≥ T} and note that for n large enough we have T−
n ≥ T . By the exponential

martingale inequality from Liptser and Shiryayev [64, Section 4.13, Theorem 5] with choices

K = 2 and φ(t) = c

(
p

1− p
+ ε

)
t,

we have for any δ > 0,

P

(
sup

t≤T+
n ∧S

X(t) ≥ δc

(
p

1− p
+ ε

)
T+
n

)
≤ exp

(
−κc

(
p

1− p
+ ε

)
T+
n

)
+ P

(
⟨X⟩(T+

n ∧ S) ≥ 2φ(T+
n )
)
, (2.25)
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where κ = (δ+2) log δ+2
2 − δ. By definition of S and the expression of ⟨X⟩(·) in (2.23), we have

that with probability one

⟨X⟩(T+
n ∧ S) ≤ φ(T+

n ),

so the second term on the right hand side of (2.25) vanishes. Further, using the expression of

X(·) in (2.22) we get

P
(
nv[T, T

+
n ∧ S] ≥ (δ + 1)c

(
p

1− p
+ ε

)
T+
n

)
≤ exp

(
−κc

(
p

1− p
+ ε

)
T+
n

)
. (2.26)

For a < b, denote by MB[a, b] the maximal number of offsprings produced by a type B

individual in time interval [a, b] and let MB(t) =MB[0, t]. Then using a union bound and note

that MB[T, Tn ∧ S] ≤MB[T, T
+
n ∧ S] with probability at least 1− ε, we have

P
(
MB[T, Tn ∧ S] ≥ (δ + 1)c

(
p

1− p
+ ε

)
T+
n

)
≤ ε+ n exp

(
−κc

(
p

1− p
+ ε

)
T+
n

)
.

Further, from our choice of T in (2.24) it follows that

P
(
MB[T, Tn] ≥ (δ + 1)c

(
p

1− p
+ ε

)
T+
n

)
≤ 2ε+ n exp

(
−κc

(
p

1− p
+ ε

)
T+
n

)
.

Next, note that there exists L > 0 such that

P (MB(T ) ≥ L) < ε.

As MB(Tn) ≤MB(T ) +MB[T, Tn], combining the above results readily yields

P
(
MB(Tn) ≥ L+ (δ + 1)c

(
p

1− p
+ ε

)
T+
n

)
≤ 3ε+ n exp

(
−κc

(
p

1− p
+ ε

)
T+
n

)
. (2.27)

Denote by Mn,B the maximal degree of type B vertices in Tn. Letting ε→ 0 in (2.27) and note

Mn,B
d
=MB(Tn), we have

P
(
Mn,B ≥ L+ (δ + 1)

cp

1− p
T+
n

)
≤ n exp

(
− κcp

1− p
T+
n

)
. (2.28)

Recall that κ = (δ + 2) log δ+2
2 − δ. So given any ε̃ > 0, for δ > max{2e2 − 2, (2+ε̃)(1−p)

cp − 4}

we have κcp
1−pT

+
n > (2 + ε̃) log n for large enough n, which makes the right hand side of (2.28)
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summable. By Borel-Cantelli lemma this implies

P
(
lim sup
n→∞

Mn,B

log n
≤ (δ + 1)

cp

1− p
+ ε̃

)
= 1.

Letting ε̃→ 0 we get

P
(
lim sup
n→∞

Mn,B

log n
≤ C2

)
= 1

where C2 = max{ (2e2−1)cp
1−p , 2− 3cp

1−p}. This completes the proof for the upper bound part.

This left us with the cases where p = 1 or q = 1. When q = 1, as noted in Section 2.3.2,

{Tn}n≥2 looks like two disjoint URTs connected by a single edge between roots. By strong law

of large numbers, with probability one these two subtrees have sizes proportional to p and 1−p

asymptotically. Therefore, appealing to existing results on maximal degree of URT [35] we have

Mn

log n

a.s.−→ 1

log 2
.

Last we consider the special case where p = 1 but q ̸= 1. We shall use the same notations as

defined before. First, note that what we proved for type A individuals still holds. Specifically,

recall that

P
(
lim sup
n→∞

Mn,A

log n
≤ 1

log 2

)
= 1.

However, we can no longer define T by (2.24). In fact, consider the unique type B vertex

(i.e. the type B root) in Tn and note that all type A vertices other than the root have a fixed

probability 1− q to connect to the type B root independently. By strong law of large numbers

applied to binomial distribution we have

Mn,B

n

a.s.−→ 1− q, and therefore
Mn

n

a.s.−→ 1− q.

This completes the proof for Theorem 2.5.

■

2.3.9 Proof for height

In this section we shall prove Theorem 2.6. Instead of proving the result from scratch using

continuous time martingales as what we did for maximal degree, we present here a proof that

appeals to existing results on first birth problem of branching processes.
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Once again, we consider first cases where p, q ̸= 1. The basic idea here is still the same, i.e.

to bound nA(t)/nB(t) around p/(1 − p) after some finite time and prove that what happened

in the beginning does not really matter in the long term.

To obtain strong convergence, it is enough to prove that for any δ, ε > 0,

lim sup
n→∞

P

(
sup
k≥n

| Hk

log k
− e| > δ

)
< ε (2.29)

Define the event

E1 =

{
sup
t≥T

∣∣∣∣nA(t)nB(t)
− p

1− p

∣∣∣∣ < η
p

1− p

}
. (2.30)

where 0 < η < 1 is any given constant. By Lemma 2.8 there exists T > 0 such that P(E1) >

1 − ε/3. Also, choose N ∈ Z+ such that P (n(T ) > N) < ε/3, and define another event

E2 = {n(T ) ≤ N}. Moreover, choose T+
n and T−

n in the same way as in Section 2.3.8, with ε

replaced by ε/3, and define our last “good” event E3 = {T−
n < Tn < T+

n for all n ∈ Z+}. In

what follows, we condition on the event E1 ∩ E2 ∩ E3 and note that P(E1 ∩ E2 ∩ E3) > 1 − ε

(for simplicity the conditional is suppressed throughout).

On this event, we have at most N individuals alive at time T and the ratio of nA(t) to

nB(t) is bounded around p/(1− p) after that time. For a fixed individual v alive at time T and

t > 0, denote by Hv(t) the height of the subtree root at v in pdBP(T + t). To bound Hv(t),

we now construct two processes. Recall our continuous time process as defined in Section 2.3.3,

and consider a process where each type B individual gives birth to type A individuals at rate

(1− η)p(1− q)/(1− p) and type B individuals at rate (1− η)q, while everything else stays the

same. Denote by Hmin(t) the height of this tree at time t, Bmin(n) the time when the first

individual in the n-th generation is born, and define Hmax(t) similarly using 1 + η instead of

1− η in the rates. Since the reproduction rates of type A individuals are constants, and those

of type B individuals only depend on nA(t)/nB(t), we have Hmin(t) ⪯ Hv(t) ⪯ Hmax(t) where

⪯ denotes stochastic dominance as processes (i.e. for any monotone increasing functional f we

have f(Hmin(t)) ⪯ f(Hv(t)) ⪯ f(Hmax(t)) where ⪯ denotes the usual stochastic dominance).

From Biggins [17, Theorem 2] we know that

lim
n→∞

Bmin(n)

n
= γmin,
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where γmin can be calculated following the procedure given in the paper. First, compute the

matrix Φ(θ) with entries

Φij(θ) = θ

∫ ∞

0
e−θtE(Zij(t))dt =

rij
θ
.

Here Zij(t) denotes the number of type j individuals born to a type i individual by time t, and

rij denotes the rate at which a type i individual gives birth to type j individuals. Then take

the largest eigenvalue ϕ(θ) = λmin/θ of Φ(θ). In our case we have

λmin =
(2− η)q +

√
η2q2 + 4(1− η)(1− q)2

2

by calculation. Finally, define

µ(a) = inf

{
eθaϕ(θ) : θ > 0

}
,

and compute γmin = inf
{
a : µ(a) ≥ 1

}
= 1/(λmine).

Since

Bmin(Hmin(t)) ≤ t ≤ Bmin(Hmin(t) + 1),

dividing by Hmin(t) and letting t→ ∞ we get

Hmin(t)

t

a.s.−→ λmine. (2.31)

Similarly we have

Hmax(t)

t

a.s.−→ λmaxe, (2.32)

where

λmax =
(2 + η)q +

√
η2q2 + 4(1 + η)(1− q)2

2
.

As the eigenvalues are continuous with respect to η, and λmax = λmin = 1 when η = 0, we can

choose η in (2.30) small enough such that both λmax − 1 and 1− λmin are smaller than δ/3.

Remark 2.6. Since we will need to generalize the result to CMRT with more types, we include

here an alternative argument using Perron-Frobenius theory of positive matrices [73, Chapter

8]. Note that when η = 0, the rate matrix consisting of rij ’s is a positive matrix (i.e. a matrix
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where all entries are strictly positive)

 q (1−p)(1−q)
p

p(1−q)
1−p q


with left eigenvector (p, 1 − p) corresponding to eigenvalue λ = 1. Since this eigenvector has

strictly positive coordinates, we have that λ = 1 is the unique largest eigenvalue of that rate

matrix. Therefore the largest eigenvalue of rate matrix is continuous with respect to η around

η = 0, and the previous result we established on λmax and λmin follows.

By (2.31), (2.32) and stochastic dominance (as processes) we see that

lim
s→∞

P
(
inf
t≥s

Hv(t)

t
< λmine−

δ

3

)
= 0 and lim

s→∞
P
(
sup
t≥s

Hv(t)

t
> λmaxe+

δ

3

)
= 0

hold for all v ∈ V , where V denotes the set of individuals alive at time T .

Since Hn ≥ Hv(T
−
n − T ), we have

lim sup
n→∞

P
(
inf
k≥n

Hk

T−
k − T

< λmine−
δ

3

)
≤ lim

s→∞
P
(
inf
t≥s

Hv(t)

t
< λmine−

δ

3

)
= 0.

On the other hand, note that Hn ≤ maxu∈V Hu(T
+
n − T ) + N . Using union bound with

|V | ≤ N we get

lim sup
n→∞

P

(
sup
k≥n

Hk −N

T+
k − T

> λmaxe+
δ

3

)
≤
∑
u∈V

lim
s→∞

P
(
sup
t≥s

Hu(t)

t
> λmaxe+

δ

3

)
= 0.

With

| Hk

T−
k − T

− Hk

log k
| < δ

3
and |Hk −N

T+
k − T

− Hk

log k
| < δ

3

for large enough k, by our choice of η and triangle inequality it follows that

lim sup
n→∞

P

(
sup
k≥n

| Hk

log k
− e| > δ

)
= 0. (2.33)

Finally, do not forget that we are conditioning on the event E1 ∩ E2 ∩ E3, which occurs with

probability at least 1− ε. Therefore we have (2.29) as desired.
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Once again we are left with cases where p = 1 or q = 1. When q = 1, recall that {Tn}n≥2

looks like two disjoint URTs in this case. Using results for URT [88] we have

Hn

log n

a.s.−→ e.

Last we turn to cases where p = 1 but q ̸= 1. Consider only pure-blooded type A individuals

as in Section 2.3.8 and use the same argument there we have

P
(
lim inf
n→∞

Hn

log n
≥ qe

)
= 1.

For upper bound we construct {Tn}n≥2 from a URT {Un}n≥1 as described in special cases of

Section 2.3.2 and note that by construction the height of Tn is at most equal to that of Un.

From results for URT [88] we know that

P
(
lim sup
n→∞

Hn

log n
≤ e

)
= 1.

This completes the proof for Theorem 2.6.

■

2.3.10 Extension to general case

To extend our results to more types, first we need to define Community Modulated Recursive

Tree (CMRT) with K > 2 types precisely. As in CMRT with two types, we start with one vertex

of each type to make sure new vertices always have a vertex to connect to. When K = 2, these

two vertices must be adjacent. However, when K > 2 one has to specify the starting tree.

The choice we make is as follows. To construct a CMRT with K > 1 types:

• Take a URT of size K and randomly assign each vertex to one of the K types based on

uniform random permutation. We shall refer to these vertices as roots of each type.

• Given a CMRT of size n − 1 (n ≥ K + 1), a new vertex n is added to the tree at the

next time step and assigned type i (1 ≤ i ≤ K) with probability pi ∈ [0, 1]. W.L.O.G. we

assume that p1 = max1≤i≤K pi > 0.

• Vertex n then chooses type j (1 ≤ i ≤ K) with probability qij ∈ [0, 1].
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• Finally vertex n chooses uniformly at random an existing vertex of that chosen type, and

connect to it, forming a CMRT of size n.

The process then uses the above dynamics recursively to yield a growing tree-valued process,

which we denote by {Tn}n≥K , where Tn is the random recursive tree given by the process as it

reaches size n. Then we call {Tn}n≥K a Community Modulated Recursive Tree (CMRT) with

K types and Tn a CMRT of size n.

Accordingly, we will need a population-dependent branching process withK types as follows:

Initialization: start with K individuals at t = 0, with one of each type. For any time t ≥ 0

and 1 ≤ i ≤ K, let ni(t) be the number of type i individuals. We have ni(0) = 1. Denote

by F(t) the σ-field generated by the process until time t.

Types: Each individual in the system has a type ∈ {1, 2, ...,K} and lives forever, while giving

birth to individuals of all types.

Reproduction: At any time t, a living type i individual gives birth to type j (1 ≤ j ≤ K)

individuals at rate:

rij(t) =
n1(t)

ni(t)
· pjqji
p1

.

Then using the same arguments as in the proofs for CMRT with two types we can prove

similar results in the general case:

Theorem 2.15. For each fixed k, let Nk(n) denote the number of vertices with out-degree k in

Tn. Then

Nk(n)

n

P−→ ck

where

ck :=
K∑
i=1

pi
1 + ri

(
ri

1 + ri
)k.

Here

ri =
1

pi

K∑
j=1

pjqji.

When pi = 0 the i-th term in ck should be interpreted as 0.

Remark 2.7. Similar to CMRT with two types, the limiting degree distribution is a mixture

of K shifted geometric distributions, and coincides with that of URT if and only if the balance

equation
∑K

j=1 pjqji = pi holds for all 1 ≤ i ≤ K. Note that
∑K

j=1 pjqji is the probability for the
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parent of a new vertex to be of type i. So the balance equation essentially states that the type

distribution for parents is identical to that of children. For the continuous time embedding, the

condition implies that all individuals will reproduce at approximately the same rate once the

population stabilizes.

Theorem 2.16. Let Mn denote the maximal degree in Tn. Then when p1 < 1 and qii < 1 for

some 1 ≤ i ≤ K, there exists constants C1 and C2 that depend only on pi and qij such that

lim inf
n→∞

Mn

logn
≥ C1 and lim sup

n→∞

Mn

log n
≤ C2 a.s.

When qii = 1 for all 1 ≤ i ≤ K,

Mn

log n

a.s.−→ 1

log 2

and when p1 = 1 but q11 < 1,

Mn

n

a.s.−→ max
2≤i≤K

q1i.

Theorem 2.17. Let Hn denote the height of Tn. Then when p1 < 1 or q11 = 1,

Hn

log n

a.s.−→ e.

When p1 = 1 and q11 < 1,

lim inf
n→∞

Hn

log n
≥ q11e and lim sup

n→∞

Hn

log n
≤ e a.s.

2.4 Structure of subtrees

As mentioned in Section 2.1.5, subtree rooted at a fixed vertex in URT has conditional

distribution identical to URT of the same size. This is obvious from the continuous embedding

since rates are constant. For CMRT however, similar result does not hold. Still, one can ask if

subtrees in CMRT retain some properties of CMRT. In this section, we shall consider CMRT

with two types and prove that the ratio between type A and B vertices is retained asymptotically

in subtrees. We will also relate the convergence of branch sizes to root finding algorithms.
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2.4.1 Ratios between population size of different types

For a fixed positive integer k, let Sk(n) be size of the subtree rooted at k in Tn, and SA
k (n)

and SB
k (n) be the number of type A and B vertices in this subtree. As the type sequence is

i.i.d. Bernoulli random variables, we have that ratio between population size of different types

in Tn converges a.s. to (1− p)/p. We shall prove that this holds for all subtrees as well:

Theorem 2.18. For any fixed positive integer k,

SB
k (n)

SA
k (n)

a.s.−→ 1− p

p
.

Proof: Once again we shall work with the continuous embedding in Section 2.3.3.

Denote by sAk (t) and sBk (t) the number of type A and B descendants of individual k in

pdBP(t), and define Y (t) := (1− p)sAk (t)− psBk (t) and Z(t) := (1− p)nA(t)− pnB(t).

Denote f(t) := EY 2(t), by calculations similar to those in Lemma 3.2 we can compute f ′(t).

Then take its absolute value and we get:

f ′(t) ≤2|2q − 1|f(t) + 2|2q − 1|E |Y (t)Z(t)|+ |2pq − p− q|E |Z(t)|

+|1− p− q + 2pq|E |Z(t)sBk (t)|+ pE sBk (t)

≤2|2q − 1|f(t) + 2|2q − 1|
√
E |Y (t)|2 E |Z(t)|2 + |2pq − p− q|E |Z(t)|

+|1− p− q + 2pq|
√

E |Z(t)|2 E |nB(t)|2 + pEnB(t)

≤2|2q − 1|f(t) + C1e
t/2
√
f(t) + C2e

t

for some positive constant C1 and C2. Here we use results obtained in Section 2.3.5 on moments

of nB(t) and Z(t).

Since f(t) is strictly positive, we can define g(t) =
√
f(t) and derive:

g′(t) ≤ |2q − 1|g(t) + C3e
t/2 +

C4e
t

g(t)
(2.34)

for C3 = C2/2 and C4 = C3/2. W.L.O.G suppose C3, C4 > 1. We want to show that g(t) ≤

C(exp(t/2) + t exp(λt)), ∀t ≥ 0 for some C > 0, where λ = |2q − 1|.

For given t ≥ 0, note that g(t) is deterministic and let

s = sup{0 ≤ t∗ ≤ t : g(t∗) ≤ et
∗/2}.
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If s = t then letting C = 1 we have g(t) ≤ C exp(t/2) trivially. Otherwise we have s < t and by

continuity g(s) = exp(s/2). From (2.34) we get

g(t)− g(s) = g(t)− es/2 ≤
∫ t

s
λg(u)du+ (C3 + C4)

∫ t

s
eu/2du,

and

g(t) ≤
∫ t

s
λg(u)du+ C5e

t/2

follows, where C5 = max{1, (C3 + C4)/2}.

By Gronwall’s inequality,

g(t) ≤ C5e
t/2 + λC5

∫ t

s
eu/2eλ(t−u)du.

If λ ≥ 1/2 we have

g(t) ≤ C5e
t/2 + λC5te

λt,

and if λ < 1/2 we have

g(t) ≤ C5

1− 2λ
et/2.

Letting C = max{C5, C5/(1− 2λ)} we have g(t) ≤ C(exp(t/2) + t exp(λt)).

Thus we have EY 2(t) ≤ 2C2(exp(t) + t2 exp(2λt)). Note that Ci (i = 1, 2, ..., 5) do not

depend on p and q, so we can take C as a constant independent of p and q as well. For large

enough K > 0 using Markov inequality and Borel-Cantelli lemma just as in Lemma 2.8 we get

exp(−K log n)Y (K log n)
a.s.−→ 0. Note that K log n ≤ t < K log(n+ 1),

|e−tY (t)| ≤ max
{
n−K |(1− p)sAk (K log(n+ 1))− psBk (K logn)|,

n−K |(1− p)sAk (K log n)− psBk (K log(n+ 1))|
}
.

(2.35)

For the first term on the right hand side we have

|(1− p)sAk (K log(n+ 1))− psBk (K log n)| ≤|Y (K log(n+ 1))|+ p|sBk (K log(n+ 1))− sBk (K logn)|

≤|Y (K log(n+ 1))|+ p|nB(K log(n+ 1))− nB(K log n)|.
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and second term can be bounded similarly to yield

|e−tY (t)| ≤ n−K(p|nB(K log(n+1))−nB(K log n)|+max{|Y (K log n)|, Y (K log(n+1))|}) a.s.−→ 0.

Here we use the facts that ( n
n+1)

K → 1 and {n−KnB(K logn)} is a.s. Cauchy by the previously

established a.s. convergence of exp(−t)nB(t). It follows that e−tY (t)
a.s.−→ 0 as t→ ∞.

Since |sAk (t1) − sAk (t2)| ≤ |nA(t1) − nA(t2)| and e−tnA(t)
a.s.−→ W , {e−tsAk (t)} must be a

Cauchy sequence a.s. and e−tsAk (t)
a.s.−→ V for some nonnegative r.v. V . Note that W ∼ Exp(1)

is positive a.s. so we also have sAk (t)/nA(t)
a.s.−→ U for some nonnegative r.v. U . Then e−tY (t) =

e−t
(
(1− p)sAk (t)− psBk (t)

) a.s.−→ 0 as t→ ∞ readily gives sBk (t)/s
A
k (t)

a.s.−→ (1− p)/p.

■

2.4.2 Convergence of subtree sizes

We observe that types of vertice 1, 2, ..., k are not specified in Section 2.4.1. Therefore, the

results there actually hold more generally. To state this precisely, we need to define some terms.

For K ≥ 2 and i ≤ K, denote by T (i,K)
n the tree containing vertex i after removing all edges

between vertices {1, 2, ...,K}. Then let NA(n) (or N
(i,K)
A (n)) and NB(n) (or N

(i,K)
B (n)) be the

number of type A and B vertices in Tn (or T (i,K)
n ). For fixed K and a partition X ∪ Y of

{1, 2, ...,K}, let aX (or aY ) and bX (or bY ) be the number of type A and type B vertices in X

(or Y ). Define

NX
A (n) :=

∑
i∈X

N
(i,K)
A (n), NX

B (n) :=
∑
i∈X

N
(i,K)
B (n).

Then conditioning on (aX , bX , aY , bY ), it can be proved using the same argument as in Section

2.4.1 that NX
A (n)/NA(n) and N

X
B (n)/NB(n) converge a.s. to the same nonnegative r.v. U . It

follows that (NX
A (n) +NX

B (n))/n also converges a.s. to U . Here the law of U depends only on

(aX , bX , aY , bY ), so we shall use U(aX , bX , aY , bY ) to denote the law of the limiting r.v..

It is not hard to see by monotonicity that the following lemma holds:

Lemma 2.19. If x ≤ x′, y ≤ y′, z ≥ z′,w ≥ w′, then U(x, y, z, w) ⪯ U(x′, y′, z′, w′), where ⪯

denotes stochastic dominance.

Let bX = bY = 0 and p = q = 1, which cannot happen in CMRT because the type B root

is always present. Still we can see that U(aX , 0, aY , 0) is well defined in this case and has a
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Beta(aX , aY ) distribution. Therefore, it seems natural to compare U(x, x, y, y) with Beta(x, y).

Indeed, we hypothesized the following moment bounds:

Hypothesis 2.20. For any positive integer k, we have

EUk(x, x, y, y) ≤ EV k

where V ∼ Beta(x, y).

Much work has been done in an attempt to prove this hypothesis, and we include a discussion

in Appendix A. For the rest of this section, we will show that this hypothesis, if it were indeed

true, has important implications for understanding branching structure of CMRT.

First we examine subtrees rooted at the two roots, i.e. T (1,2)
n and T (2,2)

n . Since we know

that both |T (1,2)
n |/n and |T (2,2)

n |/n converges a.s. to some nonnegative r.v., we can expect to

obtain tail bounds on the limiting distribution.

Let τ be the stopping time n when the first type A vertex is added to

T (2,2)
n . Then conditioning on Tτ we have that |T (1,2)

n |/n converges a.s. to r.v.

U(N
(1,2)
A (τ), N

(1,2)
B (τ), N

(2,2)
A (τ), N

(2,2)
B (τ)). Note that N

(1,2)
A (τ), N

(1,2)
B (τ) ≤ τ−2, N

(2,2)
A (τ) = 1

and N
(2,2)
B (τ) ≥ 1, so the r.v. above is stochastically dominated by U(τ − 2, τ − 2, 1, 1) using

Corollary 2.19. Therefore, conditioning on τ we have by Markov inequality and Hypothesis 2.20

that

lim sup
n→∞

P(|T (1,2)
n | ≥ (1− ε)n) ≤ EUk(τ − 2, τ − 2, 1, 1)

(1− ε)k
≤ τ − 2

(τ − 2 + k)(1− ε)k

for all positive integer k.

Let k = ⌈1/ε⌉ − τ + 2 we get

lim sup
n→∞

P(|T (1,2)
n | ≥ (1− ε)n) ≤ (τ − 2)ε(1− ε)τ−1−1/ε ≤ 4(τ − 2)ε

for ε < 1/2.

On the other hand, let C1 = p(1− q) and note the following fact. At time t + 1, a type A

vertex is added and connect to a type B vertex with probability C1, and there are at most t−1

type B vertices to choose from. Since the subtree rooted at vertex 2 has at least one type B
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vertex (i.e. the root itself), we have

P(τ > t+ 1) ≤ (1− C1

t− 1
)P(τ > t)

It follows that

P(τ > t) ≤
t−2∏
i=1

(1− C1

i
) =

Γ(t− 1− C1)

Γ(t− 1)Γ(1− C1)
.

Then using Stirling’s approximation we know there exists a universal constant C2 > 0 such that

P(τ > t) ≤ C2

(t− 1− C1)C1
≤ C2

(t− 2)C1
.

Combine the above results we have (unconditionally)

lim sup
n→∞

P(|T (1,2)
n | ≥ (1− ε)n) ≤ 4(t− 2)ε+

C2

(t− 2)C1

for all t ≤ 2 + ⌈1/ε⌉. Let t = ⌈1/ε1/(1+C1)⌉ we get

lim sup
n→∞

P(|T (1,2)
n | ≥ (1− ε)n) ≤ C3ε

C1
1+C1

for some universal constant C3 > 0.

Similarly we can establish bounds for |T (2,2)
n |. Then from

lim sup
n→∞

P
{
|T (1,2)

n | ≥ (1− ε)n or |T (1,2)
n | ≤ εn

}
= lim sup

n→∞
P(|T (1,2)

n | ≥ (1− ε)n)

+ lim sup
n→∞

P(|T (2,2)
n | ≥ (1− ε)n),

we get

lim sup
n→∞

P
{
|T (1,2)

n |/n /∈ (ε, (1− ε))
}
≤ C∗ε

(1−q)ω
1+(1−q)ω (2.36)

where ω = min(p, 1− p) and C∗ > 0 is some universal constant.

Next we consider general subtrees T (k,K)
n for 1 ≤ k ≤ K. Intuitively we would expect that

these subtrees should be small when K is large. We shall see that this is indeed true assuming

the moment bounds given in Hypothesis 2.20.

Using Hoeffding’s inequality for binomial r.v., we know that with probability at least 1 −

2/k2, min(NA(k), NB(k)) ≥ Kω −
√
K logK. Denote Kω −

√
K logK by M . Then for any
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1 ≤ k ≤ K, we have that |T (k,K)
n |/n converges a.s. to a r.v. stochastically dominated by

U(1, 1,M,M). By Markov inequality and Hypothesis 2.20 we see that

lim sup
n→∞

P
{
|T (k,K)

n | ≥ εn
}
≤ EU2(1, 1,M,M)

ε2
≤ 2

M(M + 1)ε2
.

Using union bound we get

lim sup
n→∞

P
{
∃1 ≤ k ≤ K : |T (k,K)

n | ≥ εn
}
≤ 2K

M(M + 1)ε2
∼ 2

Kω2ε2
(2.37)

where the approximation holds for large K. This shows that all subtrees T (k,K)
n are relatively

small when K is large. Note that we can always take higher moments in Markov inequality and

get better bounds asymptotically (with respect to ε), but the coefficient will increase accordingly.

2.4.3 Root-finding algorithm

As shown by Bubeck et.al. [21], convergence of subtree sizes in URT has important implica-

tion for root-finding algorithms. Following their notations, given a (unrooted) tree T and one of

its vertex v, let ψ(v) be size of the largest subtree rooted at a child of v when regarding v as the

root of T . Then given an integer K, let H(K) be the set of K vertices with the smallest values

of ψ(v) (with ties broken arbitrarily). Bubeck et.al. [21] showed that H(K) gives a root-finding

algorithm for URT. In this section, we shall apply results in Section 2.4.2 to show that H(K)

also gives a root-finding algorithm for CMRT, assuming Hypothesis 2.20.

First observe directly from (2.36) that

lim sup
n→∞

P
{
ψ(1) ≥ (1− ε)n or ψ(2) ≥ (1− ε)n

}
≤ lim sup

n→∞
P
{
|T (1,2)

n |/n /∈ (ε, (1− ε))
}

≤ C∗ε
(1−q)ω

1+(1−q)ω

where ω = min(p, 1− p) and C∗ > 0 is some universal constant.

Next we proceed to bound ψ(i) for large i. Fix a large K and assume i ≥ K. We shall use

the following inequality from Bubeck et.al. [21]:

ψ(i) ≥ min
1≤k≤K

K∑
j=1,j ̸=k

|T (j,K)
n | = n− max

1≤k≤K
|T (k,K)

n |.
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Then using (2.37) we have

lim sup
n→∞

P
{
∃i > K : ψ(i) < (1− ε)n

}
≤ lim sup

n→∞
P
{
∃1 ≤ k ≤ K : |T (k,K)

n | ≥ εn
}

≤ 2K

M(M + 1)ε2
∼ 2

Kω2ε2

Finally, combine these results we get

1− lim inf
n→∞

P({1, 2} ⊆ H(K)) ≤ C∗ε
(1−q)ω

1+(1−q)ω +
2K

M(M + 1)ε2
.

Therefore if K ≥ 1/ε3, we have

P({1, 2} ⊆ H(K)) = 1−O(ε
(1−q)ω

1+(1−q)ω )

as ε → 0, where ω = min(p, 1 − p). This shows that H(K) gives a confidence set for roots in

CMRT.

2.5 Extension to other variants of the model

There are other variants of the model that could be of potential interest, and we shall focus

on two of them in this section.

Construct a random recursive tree with K > 1 types as follows:

• Take a URT of size K and randomly assign each vertex to one of the K types based on

uniform random permutation. We shall refer to these vertices as roots of each type.

• Given a tree of size n−1 (n ≥ K+1), a new vertex n is added to the tree at the next time

step and assigned type i (1 ≤ i ≤ K) with probability pi ∈ [0, 1]. W.L.O.G. we assume

that p1 = max1≤i≤K pi > 0.

• Vertex n then connects to an existing type j (1 ≤ j ≤ K) vertex with probability propor-

tional to ωij > 0. Specifically, for an existing type j vertex v, the probability for vertex n

to connect to v is given by

ωij∑K
l=1 nlωil

,

where nl is the number of existing type l (1 ≤ l ≤ K) vertices. We shall refer to these ωij

as weights.
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The process then uses this dynamics recursively to yield a growing tree-valued process,

which we denote by
{
T̃n
}
n≥K

, where T̃n is the random recursive tree given by the process as it

reaches size n. Then we call
{
T̃n
}
n≥K

a Community Weighted Recursive Tree (CWRT) with

K types and T̃n a CWRT of size n.

Similar to CMRT, we can define a population-dependent branching process with K types

for CWRT as follows:

Initialization: start with K individuals at t = 0, with one of each type. For any time t ≥ 0

and 1 ≤ i ≤ K, let ni(t) be the number of type i individuals. We have ni(0) = 1. Denote

by F(t) the σ-field generated by the process until time t.

Types: Each individual in the system has a type ∈ {1, 2, ...,K} and lives forever, while giving

birth to individuals of all types.

Reproduction: At any time t, a living type i individual gives birth to type j (1 ≤ j ≤ K)

individuals at rate:

rij(t) =
n1(t)

p1
· pjωji∑K

l=1 ωjlnl(t)
.

Then following the same procedure as in the proof for CMRT we can derive the limiting

degree distribution of CWRT:

Theorem 2.21. For each fixed k, let Nk(n) denote the number of vertices with out-degree k in

T̃n. Then

Nk(n)

n

P−→ c̃k

where

c̃k :=
K∑
i=1

pi
1 + r̃i

(
r̃i

1 + r̃i
)k.

Here

r̃i =

K∑
j=1

pjωji∑K
l=1 plωjl

.

Remark 2.8. Similar to CMRT, the limiting degree distribution of CWRT is a mixture of K

geometric distributions, with a different set of parameters. As a special case, when ωij ≡ 1, the

limiting distribution becomes identical to that of URT.

Next we consider a “preferential attachment” version of CMRT which we shall refer to as

Community Modulated Preferential Attachment (CMPA) model. To construct a CMPA tree
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with K types, we follow the same rule as that of CMRT, except for the attachment step. Given

that vertex n is of type i and chooses to connect to vertices of type j, instead of choosing

uniformly among vertices of type j, vertex n now connects to a type j vertex v with probability

proportional to Dv +αij , where Dv is the out-degree of v, and αij are positive parameters. We

denote by {T ∗
n }n≥K a Community Modulated Preferential Attachment (CMPA) tree with K

types and T ∗
n a CMPA tree of size n.

Accordingly, we need to adjust the reproduction rates for our population-dependent branch-

ing process as follows:

Reproduction: For any time t ≥ 0, 1 ≤ i, j ≤ K and individual v, let nij(t) be the number

of type j individuals born to type i individuals, and dv(t) be the number of offsprings

born to individual v. Then at any time t, a living type i individual v gives birth to type

j (1 ≤ j ≤ K) individuals at rate:

rv(t, j) =
n1(t)

p1
· pjqji(dv(t) + αji)

αjini(t) +
∑K

l=1 nil(t)
. (2.38)

Note here that
∑K

l=1 nil(t) is exactly the total number of offsprings born to type i indi-

viduals.

Let p∗i =
∑K

j=1 pjqji be the probability for the parent of a new vertex to be of type i.

Following the same procedure as in the proof for CMRT we can derive the corresponding

limiting degree distribution:

Theorem 2.22. For each fixed k, let Nk(n) denote the number of vertices with out-degree k in

T ∗
n . Then

Nk(n)

n

P−→ c∗k

where

c∗k :=

K∑
i=1

pi
νi

Γ(k + αi)Γ(1/νi + αi)

Γ(αi)Γ(k + 1 + 1/νi + αi)
. (2.39)

Here

νi =
K∑
j=1

νji

with

νji =
pjqji

αjipi + p∗i
,
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and

αi =

∑K
j=1 νjiαji∑K
j=1 νji

=

∑K
j=1 νjiαji

νi
.

And Γ(·) is the gamma function. When p∗i = 0, the i-th term in c∗k should be interpreted as pi

when k = 0, and 0 otherwise.

Since the proof mimics that of CMRT, we will only include here the computation for the

final step. Recall that for CMRT we have the integral

∫ ∞

0
P(Poisson(r∗As) = k)e−sds =

1

1 + r∗A
(

r∗A
1 + r∗A

)k.

For CMPA, the (time-homogeneous) Poisson process is replaced by a time-inhomogeneous Pois-

son process. To get the birth rates, observe that similar to the proof of CMRT we have

ni(t)/n(t)
a.s.−→ pi and nij(t)/n(t)

a.s.−→ pjqji as t → ∞. Therefore from (2.38) the reproduc-

tion of a type i individual v is approximately

K∑
j=1

pjqji(dv(t) + αji)

αjipi +
∑K

l=1 plqli
= νi(dv(t) + αi).

This leads to a pure birth process with rate νi(m+ αi − 1), where m is the current population

size. We shall denote this process by {Ỹ (νi, t) : t ≥ 0} (with Ỹ (νi, 0) = 1). Then similar to

CMRT we need to compute the integral
∫∞
0 P(Ỹ (νi, s) = k + 1)e−sds.

Since transition probability function of {Ỹ (νi, t) : t ≥ 0} can be computed explicitly (see

e.g. [94, Proposition 6.1]), we have

P(Ỹ (νi, s) = k + 1) =
Γ(k + αi)

Γ(αi)Γ(k + 1)
e−αiνis(1− e−νis)k.

Plugging it into the integral we get

∫ ∞

0
P(Y (νi, s) = k + 1)e−sds =

Γ(k + αi)

Γ(αi)Γ(k + 1)

∫ ∞

0
e−αiνis(1− e−νis)ke−sds.

Let x = e−νis and by change of variable we have

∫ ∞

0
e−αiνis(1− e−νis)ke−sds =

1

νi

∫ 1

0
x1/νi+αi−1(1− x)kdx =

1

νi

Γ(k + 1)Γ(1/νi + αi)

Γ(k + 1 + 1/νi + αi)
.

This leads to the constant in (2.39).
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Remark 2.9. Similar to CMRT, the limiting degree distribution of CMPA tree is a mixture

of K distributions, and coincides with that of preferential attachment model [18] when αji ≡ α

and the balance equation p∗i =
∑K

j=1 pjqji = pi holds for all 1 ≤ i ≤ K. Moreover, for

large k, using Stirling’s approximation we get c∗k = O(k−1−1/ν) where ν = maxi νi. Consider

the special case where αji ≡ α. we have
∑K

i=1 p
∗
i =

∑K
j=1 pj

∑K
i=1 qji =

∑K
j=1 pj = 1, and∑K

i=1 p
∗
i (1/νi−1) = α

∑K
i=1 pi = α. It follows that −1−1/ν ≥ −2−α and equality holds if and

only if the balance equation holds. Therefore, the limiting degree distribution of CMPA tree

typically has a heavier tail than that of preferential attachment tree with the same parameter

α. The tail is heavier when p∗i is larger compared to pi, which agrees with intuition.
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CHAPTER 3

Recovering clusters from covariance structure

Clustering, a central problem in unsupervised learning, aims to partition a set of objects

into similar groups. Among the various algorithms developed to this end, many are based on the

K-means criterion, e.g. the standard iterative algorithm first proposed in 1957 by Stuart Lloyd

of Bell Labs [65]. To analyze these algorithms theoretically and computationally, one popular

choice is to consider their performance under Gaussian mixture model. Under this framework,

we have independent observations from a mixture of Gaussian components, and the goal is to

examine the clustering error rate using certain algorithm.

However, given that the goal of K-means is to minimize within-cluster sum of squares, it

might be more natural to think about covariances instead of means. Intuitively, K-means should

work when covariances within the same group are larger than that between different groups.

In this work we take this prospective and consider a collection of correlated Gaussian vectors

that have certain latent group structure. For better illustration we index the dimensions by

time and treat these vectors as processes. Specifically, we have n Gaussian processes and each

process is observed at the same T time points. Moreover, each process belongs to one of the K

groups, and information about group labels are encoded in the covariance structure. Our goal

is to recover the groups using as few observations as possible.

In this chapter we shall provide conditions under which exact recovery from covariance

structure is possible via K-means. Compared with previous results, which mostly focus on the

mean structure and require observations to be independent, we assume that no information is

contained in the group means and impose covariance structure based on group partition instead.

For a motivating example, consider the following vector autoregression (VAR) model with n

nodes as dimensions. Write X(t) = (X1(t), X2(t), ..., Xn(t))
′ and ε(t) = (ε1(t), ε2(t), ..., εn(t))

′

for the observations and white noise at time t. Suppose

X(t+ 1) = AX(t) + ε(t) (3.1)
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where A is the adjacency matrix of some graph with certain community structure. For example,

consider a simple case where each node belongs to one of the K groups, and the (i, j)th entry

of A is equal to 1/n if i and j are in the same group, and 0 otherwise. Here the normalizing

factor n is needed to ensure stationarity of the process.

Then as a special case of the model we shall consider in the main theorem, we have the

following exact recovery result:

Theorem 3.1. Suppose each group has size at least rn for r > 0. Then for all n ≥ 1 and

T ≥ Cn log n, with probability at least 1 − n−2, global optimum of K-means is unique and

recovers the K groups exactly. Here C = C(r,K) > 0 is a constant that depends on r and K.

As an application, (3.1) can be used to model brain activity, where the n processes repre-

sent signals observed from voxels and the K groups represent brain regions. Indeed, PECOK

algorithm [24], based on convex relaxation of K-means, is used to analyze fMRI data [23], and

theoretical guarantees are given under a variable clustering scheme called G-block covariance

model. However, G-block covariance model assumes that observations are independent across

time, and in this sense (3.1) could be a more reasonable choice for brain data.

In general, we do not require a generative model like (3.1) and instead impose conditions

on covariances. And as in Theorem 3.1, instead of any specific algorithm, we work directly with

the global optimum of K-means.

We shall also conduct a simulation study to compare performance of various algorithms,

including K-means, spectral clustering and an iterative algorithm, similar in spirit to Lloyds

algorithm for K-means, that fits a blockwise constant approximation to the sample covariance

matrix.

The rest of this chapter is organized as follows: Section 3.1 gives an overview on related

work. Section 3.2 formulates the model and introduces assumptions we make on the covariance

structure. Section 3.3 states the main theorem, with applications to several special cases.

Section 3.4 contains the proofs. Section 3.5 discusses algorithms based on sample covariance

matrix. And Section 3.6 is devoted to simulation study.
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3.1 Literature review

3.1.1 Notation

For an N × N square matrix A = (aij)
N
i,j=1, we write Tr(A) =

∑N
i=1 aii for its trace,

||A||F = (
∑N

i,j=1 a
2
ij)

1/2 =
√

Tr(A′A) for its Frobenus norm, ||A||op = inf{c ≥ 0 : ||Aν|| ≤

c||ν|| for all ν ∈ RN} for its operator norm (here || · || denotes the usual Euclidean norm in RN ),

||A||∞ = maxi
∑N

j=1 |aij | for its L∞ norm (i.e. maximal absolute row sum), and ||A||max =

maxi,j |aij | for its max norm. Denote by IN an identity matrix of order N and by

δ(i, j) =


1, if i = j

0, otherwise.

the delta function.

3.1.2 Recovery rate of clustering algorithms

Under the framework of Gaussian mixture model, much work has been done to estimate

the model parameters, but less was devoted to the study of clustering error rate. In the context

of K-means, theoretical guarantees for the standard Lloyd’s algorithm and other variants were

given under different signal to noise conditions. For Lloyd’s algorithm (with appropriate ini-

tialization), Lu and Zhou [66] give the minimax optimal rate in partial recovery. Another line

of work is based on the convex relaxation of K-means proposed by Peng and Wei [85], where

various exact recovery results [95] [62] have been derived and generalized to partial recovery

[45]. There are partial recovery results based on other convex relaxations as well [39].

Since estimation of model parameters is not an issue in recovery problem, most of these

results apply to the more general sub-Gaussian mixture model. Also, these results are often

stated in terms of certain signal to noise ratio (SNR). For simplicity let us consider a Gaus-

sian mixture with K groups of equal size n/K and covariance Σ (in general the sizes and

covariance matrices need not be the same). Use θ to denote the minimum Euclidean dis-

tance between means of different components and define the following two notions of SNR:

s21 = min{ θ2

||Σ||op ,
nθ4

K||Σ||2F
} and s22 = θ2/||Σ||op. Then for perfect recovery, Royer [95] provides a

sufficient condition s21 ≥ Cmax{K, log n} for some constant C > 0. For partial recovery, Giraud

and Verzelen [45] prove that the proportion of mis-clustered observations decay exponentially
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with respect to s21 as long as s21 ≥ CK for some constant C > 0. Lu and Zhou [66] and Fei and

Chen [39] prove similar exponential decay rate with respect to s22 under stronger minimal SNR

conditions. For our work we do not have a notion of SNR, but as we shall see in Section 3.13,

our results are comparable with that of Royer [95] under special cases.

Performance of these algorithms have been analyzed under other probabilistic model as well,

e.g. the stochastic ball model [9] [51]. Closer to our work, Bunea et al. [24] derive exact recovery

results based on the aforementioned PECOK algorithm under G-block covariance model. In

the deterministic setting, Kumar and Kannan [60] and Awasthi and Sheffet [10] prove that

under certain proximity or separation conditions, Lloyd’s algorithm with an initialization step

will recover all groups exactly with high probability. These results have the advantage of not

requiring any distributional assumption. However, they do not apply to the high dimensional

setting we shall consider.

3.1.3 K-means based methods

Let X ∈ Rn×p be a n × p matrix, whose rows Xi (i = 1, ..., n) are observations to be

clustered. The K-means objective function with respect to a partition {1, 2, ..., n} = ∪K
a=1Ca is

given by the within-cluster sum of squares (WCSS):

WCSS({Ca}Ka=1) :=

K∑
a=1

∑
i∈Ca

||Xi − X̄(a)||22 (3.2)

where X̄(a) =
∑

i∈Ca
Xi/|Ca| are the cluster means, and ||·||2 denotes the usual Euclidean norm.

K-means algorithm aims to find the partition that minimizes the above objective function, given

the number of clusters K.

The K-means optimization problem is NP-hard in worst cases, and most practical algorithms

are only guaranteed to find local optimums, e.g. the standard Lloyd’s algorithm [65], sometimes

also referred to as “naive K-means”. This iterative algorithm takes K initial cluster centers

(usually chosen from the n observations), and alternative between two steps. In the assignment

step, each observation is assigned to the nearest cluster center in terms of Euclidean distance

and this leads to K clusters. In the update step, cluster centers are updated as means of the

K clusters formed in the assignment step. There are many variants of K-means, and some

of them has better theoretical guarantee than just local optimums. For example, k-means++
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[6] includes a randomized seeding step to choose the initial cluster centers, and a competitive

provable upper bound on the objective function (3.2) can be established accordingly.

As another alternative, semi-definite programming (SDP) relaxations of K-means are also

well-developed. While there are many variants in the literature, we are only going to introduce

the one used in [45] to derive the state-of-the-art recovery results.

Note first that any partition {1, 2, ..., n} = ∪K
a=1Ca can be represented uniquely by a n× n

matrix Z such that Zij = 1/|Ca| if i and j are in the same group Ca, and Zij = 0 otherwise. Peng

and Wei [85] show that minimizing (3.2) is equivalent to the following optimization problem:

min < XX′, Z >

Z is symmetric, Z ≥ 0,

Z2 = Z,Z1 = 1,Tr(Z) = K.

(3.3)

Here Z ≥ 0 means that the inequality holds entry-wise, i.e. all entries of Z are nonnegative.

Given a maximizer Ẑ, clusters can be constructed by grouping i and j together for Ẑij ̸= 0.

To relax (3.3), Peng and Wei replace the non-convex constraint Z2 = Z by positive semi-

definiteness and consider the following SDP problem:

min < XX′, Z >

Z is positive semi-definite,

Z ≥ 0, Z1 = 1,Tr(Z) = K.

(3.4)

To construct the clusters from maximizer Ẑ of (3.4), one has to apply a rounding procedure.

In the original work [85] Peng and Wei use a procedure based on principal component analysis,

and in [45] this is replaced by clustering rows of Ẑ using an approximate K-medoids algorithm.

3.1.4 G-block covariance model

In this section we give a brief introduction to the G-block covariance model considered in

[22] as a framework for variable clustering, and relate that to the covariance-based clustering

problem we shall study.
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Let X = (X1, ..., Xp) be a p-dimensional zero-mean random vector, and suppose its covari-

ance matrix Σ has the following block structure:

Σ = ZΩZ ′ + Γ, (3.5)

where the p ×K matrix Z is the membership matrix corresponding to partition {1, 2, ..., p} =

∪K
a=1Ga with entries Zja := 1{j ∈ Ga}, Ω is a K × K symmetric matrix, and Γ is a p × p

diagonal matrix with Γjj = γa ≥ 0 for j ∈ Ga.

An important sub-class of G-block covariance model is studied in [24], when

Xj =Ma + εj , for all j ∈ Ga, (3.6)

whereM = (M1, ...,MK) is aK-dimensional zero-mean vector independent of the p-dimensional

zero-mean error vector ε = (ε1, ..., εp). In addition, Cov(M) = Ω, and ε is assumed to have

independent coordinates with variances given by Cov(ε) = Γ. Not all G-block covariance model

is of this form because Ω is not necessarily positive semi-definite in general.

For the generalG-block covariance model (3.5), separation between clusters can be measured

by

MCord(Σ) := min
i≁j

max
k ̸=i,j

|Σik − Σjk|,

where i ∼ j is the equivalence relation induced by partition {Ga}, i.e. i ∼ j when i and j belong

to the same block. MCord(Σ) = 0 if and only if all off-diagonal entries of Σ are identical. For

the special case (3.6), separation can be the within-between group covariance gap, which is

equivalent to distance between the latent means Ma:

∆(Ω) := min
a ̸=b

(Ωaa +Ωbb − 2Ωab) = min
a ̸=b

E(Ma −Mb)
2.

∆(Ω) = 0 if and only if all coordinates of M are identical.

Suppose we have n i.i.d. observations X(1), ..., X(n) of X from a G-block covariance model,

the goal of variable clustering is to recover the true partition {Ga}. Note that here the block

structure is encoded in the covariance matrix, which fits into our framework. Indeed, if we

index the observations by time and consider p processes X
(t)
j (j = 1, ..., p), variable clustering

is equivalent to clustering the processes. However, these processes are independent across time.
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In terms of perfect recovery, the CORD algorithm introduced in [22] is minimax-optimal

with respect to the separation measure MCord(Σ) in the general case (3.5), and a penalized

convex relaxation of K-means called PECOK is near minimax-optimal with respect to ∆(Ω) in

the special case (3.6).

3.1.5 Stochastic block network VAR model

In this section we give an introduction to a class of vector autoregressive (VAR) model

considered in [47], in which coefficient matrices are specified by certain generalized stochastic

block model. For simplicity we shall only describe the undirected case.

Let X(t) = (X1(t), X2(t), ..., Xn(t))
′ be a n-dimensional vector, with dynamics given by the

following VAR(p) model:

X(t) =

p∑
l=1

ΦlX(t− l) + ε(t)

where Φl (l = 1, ..., p) are n × n coefficient matrices, and {ε(t)} is a zero-mean covariance-

stationary stochastic process.

Assume that Φl is specified by a latent undirected weighted graph Gl. Let Al be the n× n

adjacency matrix of Gl, with (Al)ij equal to the edge weight wij if there exists an edge between

vertex i and j, and 0 otherwise. Define also the n×n diagonal degree matrix Dl, with (Dl)ii =∑n
j=1(Al)ij , and the symmetric normalized Laplacian matrix Ll = D

−1/2
l AlD

−1/2
l . Then Φl is

defined as follows:

Φl = ϕlD
−1/2
l AlD

−1/2
l = ϕlLl,

where ϕl > 0 is called the stationarity parameter. Assume further that Gl are i.i.d. realizations

of a generalized stochastic block model defined below.

Definition 3.2 ( (Generalized stochastic block model [89])). Let Z be the n ×K membership

matrix, with entries Zia = 1 if vertex i belongs to community a, and 0 otherwise. Let P be the

K ×K symmetric edge probability matrix, and Θ be the n × n diagonal matrix of nonnegative

vertex-specific weights. Let F be a probability distribution supported on a bounded interval.

In a generalized stochastic block model with n vertices, the probability that an edge exists

between vertex i and j which belong to community a and b, respectively, is ΘiiΘjjPab ≤ 1, and all

edges are formed independently. Moreover, each edge (i, j) is assigned a weight wij that follows

the distribution F , independent of all edges and other weights. Write G ∼ GSBM(Z,P,Θ, F )

when a random graph G is generated this way.

64



Note that P and Θ are only unique up to a multiplicative constant, so we can normalize Θ

such that Θii sums to 1 within each community.

Remark 3.1. If one treats the observations at each vertex, namely {Xi(t)}, as individual

processes, we get n correlated stationary processes, and the covariance matrix of X(t) has an

underlying block structure. This fits into our framework perfectly. However, as we shall see

in simulation study, algorithms tailored to this VAR model perform much better than more

generic methods like K-means.

As in [47], we call the VAR model generated above the stochastic block network VAR(p)

model. And community detection aims to recover the block structure given a sample of obser-

vations X(t) (t = 1, ..., T ). To this end GuDmundsson proposes an algorithm called VAR Block-

buster. First, derive the ordinary least squares (OLS) estimates of coefficient matrices. Write

R(t) = (X(t− 1)′, ...,X(t− p)′)′ for the lagged values. Then the OLS estimate Φ̂ = (Φ̂1, ..., Φ̂p)

is given by

Φ̂ =
( T∑

t=p+1

X(t)R(t)′
)( T∑

t=p+1

R(t)R(t)′
)−1

when
∑T

t=p+1R(t)R(t)′ is invertible. Compute the sum of symmetrized coefficient matrices∑p
l=1(Φ̂l + Φ̂′

l) and gather eigenvectors corresponding to its K largest eigenvalues into a n×K

matrix Û . Finally, apply k-means++ [6] to the row-normalized version of Û .

GuDmundsson establishes the following clustering error rate bound for the VAR Blockbuster

algorithm:

Theorem 3.3. Consider a stochastic block network VAR(p) model with fixed Θ and F . Define

pn = mina Paa. Let r be the proportion of mis-clustered vertices. Then under Assumption 3.4

and 3.5 we have:

r = O(
n

T
+

log n

npn
)

with high probability as n→ ∞, if T = Ω(n2/γ−1), where γ is as in (g) of Assumption 3.5.

The first assumption here concerns edge probabilities:

Assumption 3.4. P is positive definite and pn = mina Paa = Ω(log n/n).

Recall here that pn = Θ(log n/n) is the “semi-sparse” domain, the sparsest regime where

exact recovery is possible.
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Assumption 3.5. Let {X(t)} be a stochastic block network VAR(p) model. Write G =

{G1, ...,Gp}. Define covariance matrices Σε = Cov(ε(t)) = E(ε(t)ε(t)′) and ΣX =

E(X(t)X(t)′|G). Assume that:

(a) {ε(t)} is covariance-stationary and serially uncorrelated.

(b) E(X(t)ε(t)′|G) = 0 for all t.

(c) ||Σε||op < C1 and ||Σ−1
ε ||op < C2, where C1, C2 > 0 are constants.

(d)
∑p

l=1 ϕl < 1.

(e) {Σ−1/2
X X(t)} is strongly mixing with mixing coefficient

α(m) ≤ e−c1mγ1

for all positive integer m, where c1, γ1 > 0 are constants.

(f) For arbitrary n-dimensional vector c with unit Euclidean norm,

P(|c′Σ−1/2
X X(t)| > s|G) ≤ e1−(s/c2)γ2

for all s > 0 and t, where c2, γ2 > 0 are constants.

(g) γ < 1 where 1/γ = 1/γ1 + 1/γ2.

Assumptions (a),(b) and (d) guarantee that {X(t)} is covariance-stationary. (c) bounds

eigenvalues of Σε from both sides. The remaining assumptions are needed for the concen-

tration inequality of Merlevàde [72] to apply. Note that the mixing coefficient in (e) is

defined conditioning on G. Specifically, let F t
−∞ = σ{Σ−1/2

X X(s) : −∞ ≤ s ≤ t} and

F∞
t = σ{Σ−1/2

X X(s) : t ≤ s ≤ ∞}. Then the α-mixing coefficient is defined as

α(m) := sup
t

sup
A∈Ft

−∞,B∈F∞
t+m

|P(A ∩B|G)− P(A|G)P(B|G)|.

Remark 3.2. In the special case where {ε(t)} is Gaussian, we have γ1 = 1 and γ2 = 2

from [72, Corollary 3]. It follows that γ = 2/3 and the condition in Theorem 3.3 becomes

T = Ω(n2/γ−1) = Ω(n2). Suppose further that infn pn > 0, then Theorem 3.3 states that the

number of mis-clustered vertices is of order O(log n), which is the best bound one could hope

for from the theorem.
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3.2 Model formulation and assumptions

We use Xi(t) to denote value of process i observed at time t, and write Xi =

(Xi(1), Xi(2), ..., Xi(T ))
′ for process i. The first assumption we need is joint Gaussianity of

these processes.

Assumption 3.6. {Xi}ni=1 are jointly Gaussian.

Let {1, 2, ..., n} = ∪K
a=1Ga corresponds to the partition of n processes into K groups such

that processes in group a have indices in Ga. Let n
G
a = |Ga| be the size of group a. We assume

that each group has size of order n:

Assumption 3.7. mina nGa ≥ rn/K for some r ∈ (0, 1].

The normalizing factor K here ensures that r does not necessarily depend on K, and r = 1

if and only if we have K groups of equal size n/K.

For simplicity we center and scale the process and introduce some notations to better

describe the group structure:

Assumption 3.8. For all 1 ≤ i ≤ n and 1 ≤ t ≤ T ,

E(Xi(t)) = 0.

For all 1 ≤ i, j ≤ n with i ∈ Ga, j ∈ Gb for some 1 ≤ a, b ≤ K, and 1 ≤ t1, t2 ≤ T ,

Cov(Xi(t1), Xj(t2)) = δ(i, j)δ(t1, t2) + ρab(t1, t2) + ξij(t1, t2). (3.7)

Here ρab(t1, t2) and ξij(t1, t2) are fixed parameters. ρab(t1, t2) should be interpreted as

the part of autocovariance that can be explained by the group labels (similar to a “groupwise

average”), while ξij(t1, t2) is some kind of perturbation.

For convenience we define T × T matrices P (i, j) = Cov(Xi,Xj) − δ(i, j)IT , Ξij =

(ξij(t1, t2))
T
t1,t2=1 and Pab = (ρab(t1, t2))

T
t1,t2=1 for 1 ≤ i, j ≤ n and 1 ≤ a, b ≤ K. Then

(3.7) can be rewritten as

Cov(Xi,Xj) = δ(i, j)IT + Pab + Ξij (3.8)

for i ∈ Ga and j ∈ Gb.

To recover the groups, we need the following assumptions on the covariance structure:
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Assumption 3.9. For all 1 ≤ i, j ≤ n with i ∈ Ga, j ∈ Gb for some 1 ≤ a, b ≤ K, and

1 ≤ t, t1, t2 ≤ T ,

ρab(t1, t2) ≥ |ξij(t1, t2)| ≥ 0, (3.9)

K∑
b=1

||Pab||∞ ≤ M

n
, for some constant M > 0, (3.10)

ρaa(t, t) + ρbb(t, t)− 2ρab(t, t) ≥
2γ

n
, for some constant γ > 0 when a ̸= b, (3.11)

||Ξij ||∞ ≤ rγ

4K3n2
. (3.12)

Note that from (3.10) and (3.11) we have γ ≤M .

We briefly explain the motivation behind these assumptions. First, (3.9) ensures nonneg-

ative correlation between observations at different points and time. This condition can be

relaxed and it is obvious from the proof that we only need sign of ρab(t1, t2) to be the same

for all 1 ≤ a, b ≤ K, given any pair of time points t1 and t2. Violation of this assumption can

cause larger variability in the objective function of K-means and makes recovery harder. (3.11)

tells us that correlation within the same group is stronger than that between different groups.

Since K-means aims to minimize within-cluster sum of squares, larger within group covariance

will encourage the optimum to include points from the same group in the same cluster. (3.10)

controls long-range dependence of processes across time. If observations at different time are

highly correlated, we gain little information by adding more time points. Note that instead of

the sum over b, we can assume ||Pab||∞ ≤ M
nK instead. However, as (3.11) and examples in

Section 3.3 suggest, ||Paa||∞ is usually much larger compared to ||Pab||∞ with b ̸= a. In cases

where they are of the same order, we can choose M as a multiple of K. Finally, (3.12) controls

magnitude of the perturbation terms.

Although M and γ are not necessarily independent of n, K and T , the results are more

natural when that is indeed the case. To see that, note that (in this case) (3.10) and (3.11)

readily give ρaa(t, t) = O(1/n) for large n. Moreover, from (3.12) we know that ξij(t1, t2) =

O(1/n2) for fixed K. It follows that Var(Xi(t)) = 1+ρaa(t, t)+ξii(t, t) = 1+O(1/n) for i ∈ Ga,

and ρab(t1, t2) + ξij(t1, t2) is approximately equal to the auto-correlation function. Order 1/n

here comes from the normalizing factor n in (3.10), and we shall see in Section 3.13 that this is

a reasonable choice.
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3.3 Main theorem and special cases

Theorem 3.10. Under Assumptions 3.6, 3.7, 3.8 and 3.9, for all n ≥ 1 and T ≥ CK5n log n,

with probability at least 1 − n−2K2
, global optimum of K-means is unique and recovers the K

groups exactly. Here C = C(r,M, γ) > 0 is a constant that depends on r, M and γ.

3.3.1 Time-independent case

For a special case where the process is independent across time, consider:

Xi(t) = µa(t) + εi(t) if i ∈ Ga (3.13)

Here µa(t) ∼ N(0, 1n) and εi(t) ∼ N(0, 1) are mutually independent.

In this case Assumption 3.6, 3.8 and 3.9 hold without further assumptions if we let

ρab(t1, t2) =
1
nδ(a, b)δ(t1, t2) , ξij(t1, t2) = 0, M = 1 and γ = 1.

Note that if we condition on µk(t), we actually have a Gaussian mixture model here, and the

minimum Euclidean distance between means of different components θ satisfies θ2 = O(T/n).

Recall from Section 3.1 that signal to noise ratio s21 = min{ θ2

||Σ||op ,
nθ4

K||Σ||2F
}. In this case Σ = IT

and s21 = O(T/n) if one treats K as a constant. From Royer [95] we know that perfect recovery

can be achieved by the Peng-Wei convex relaxation of K-means when s21 ≥ C log n for some

constant C > 0. This is exactly the same condition as given by Theorem 3.10 with respect to

n.

In general, under time-independence our model is similar to the G-block covariance model

described in Section 3.1.4, for which (3.13) is also a special case. So the case above also shows

a relationship between G-block covariance model and Gaussian mixture model.

3.3.2 Block VAR model

Write X(t) = (X1(t), X2(t), ..., Xn(t))
′ and ε(t) = (ε1(t), ε2(t), ..., εn(t))

′. Consider the

following vector autoregression (VAR) model:

X(t+ 1) = AX(t) + ε(t) (3.14)

where ε(t) ∼ N(0, In) are mutually independent. Suppose entries of the coefficient matrix A

are specified by Ai,j = pab when i ∈ Ga and j ∈ Gb. Consider the following assumptions:
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Assumption 3.11.

pab ≥ 0. (3.15)

n

K∑
b=1

pab ≤ 1− τ. (3.16)

paa − pab ≥
η

n
, when a ̸= b. (3.17)

Here a, b ∈ {1, 2, ...,K} and 0 ≤ τ ≤ 1, η > 0 are constants.

Then we have the following proposition:

Proposition 3.12. Under assumption 3.7, Assumption 3.11 implies Assumptions 3.8 and 3.9

with M = 2K/τ2 and γ = rη2/K.

In the simple case of (3.1), we have pab = δ(a, b)/n and Assumption 3.11 obviously holds.

3.3.3 Stationary case

The previous two examples are both special cases of stationary processes. In general, (with

a slight abuse of notation) if ρab(t1, t2) = ρab(|t1 − t2|) is a function of |t1 − t2|, we have

Pab =



ρab(0) ρab(1) · · · ρab(T − 1)

ρab(1) ρab(0) · · · ρab(T − 2)

...
...

. . .
...

ρab(T ) ρab(T − 2) · · · ρab(0)


. (3.18)

Also, (3.10) in Assumption 3.9 can be replaced by

K∑
b=1

(
ρab(0) + 2

∞∑
t=1

ρab(t)
)
≤ M

n
, (3.19)

which is a more natural condition on autocovariances in the stationary case. In fact, from (3.18)

we know that (3.19) is equivalent to the stronger assumption that (3.10) jointly holds for all

T > 0.

Note that we only require ρab(t1, t2) to be stationary here, so the process is not necessarily

stationary. For that to be the case, ξij(t1, t2) also has to be a function of |t1 − t2|.

Further if we assume no perturbation altogether, i.e. ξij(t1, t2) = 0, we may replace As-

sumptions 3.8 and 3.9 with the following assumptions:
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Assumption 3.13.

E(Xi(t)) =0.

Var(Xi(t)) =1 + ρaa(0) when i ∈ Ga.

Cov(Xi(t), Xj(t)) =ρab(0) when i ̸= j, i ∈ Ga and j ∈ Gb.

Cov(Xi(t1), Xj(t2)) =ρab(|t1 − t2|) when t1 ̸= t2, i ∈ Ga and j ∈ Gb.

(3.20)

Assumption 3.14.

ρab(t) ≥ 0. (3.21)

n

K∑
b=1

(|ρab(0)|+ 2

∞∑
t=1

|ρab(t)|) ≤M, for some constant M > 0. (3.22)

ρaa(0) + ρbb(0)− 2ρab(0) ≥
2γ

n
, for some constant γ > 0 when a ̸= b. (3.23)

Here a, b ∈ {1, 2, ...,K}.

In this case we have the following theorem:

Theorem 3.15. Under Assumptions 3.6, 3.7, 3.13 and 3.14, for all n ≥ 1 and T ≥ CK5n log n,

with probability at least 1 − n−2K2
, global optimum of K-means is unique and recovers the K

groups exactly. Here C = C(r,M, γ) > 0 is a constant that depends on r, M and γ.

3.4 Proofs

In this section we give a proof for Theorem 3.15. Proof for the more general Theorem 3.10

essentially follows the same argument, with lengthier computations. For completeness we still

include a proof for Theorem 3.10 in Appendix B.

3.4.1 Proof of Theorem 3.15

Recall that K-means aims to partition the n nodes into sets {Ca}Ka=1 that minimize the

within-cluster sum of squares:

WCSS({Ca}Ka=1) :=

K∑
a=1

∑
i∈Ca

||Xi − X̄(j)||22

where X̄(j) =
∑

i∈Ca
Xi/|Ca| are the cluster means.
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Our goal here is to show that under the assumptions, with probability close to 1, global

optimum is uniquely achieved when the clusters coincide with the latent groups, i.e. {Ca}Ka=1 =

{Gb}Kb=1. For clarity we shall refer to {Ca}Ka=1 as clusters and {Gb}Kb=1 as groups throughout.

We proceed in two steps. First we show that WCSS({Ca}Ka=1) > WCSS({Gb}Kb=1) with

high probability for a given partition {Ca}Ka=1 ̸= {Gb}Kb=1. Then we use a union bound on all

possible partitions to establish the desired result.

Step 1: For a given partition {Ca}Ka=1, write nCa = |Ca| and nab = |Ca ∩ Gb| (a, b ∈

{1, 2, ...,K}). First note that

WCSS({Ca}Ka=1) :=

K∑
a=1

∑
i∈Ca

||Xi − X̄(j)||22 =
K∑
a=1

(
∑
i∈Ca

||Xi||22 − |Ca| · ||X̄(j)||22)

=

n∑
i=1

||Xi||22 −
K∑
a=1

|Ca| · ||X̄(j)||22

=
n∑

i=1

||Xi||22 −
K∑
a=1

||
∑

i∈Ca
Xi||22

|Ca|
.

Therefore we have

∆ :=WCSS({Ca}Ka=1)−WCSS({Gb}Kb=1) =

K∑
b=1

||
∑

i∈Gb
Xi||22

nGb
−

K∑
a=1

||
∑

i∈Ca
Xi||22

nCa
.

Instead of expressing ∆ as a quadratic form in {Xi}ni=1 with nT dimensions, we shall

view it as a quadratic form in group and cluster means with 2KT dimensions. Formally, let

Ya =
∑

i∈Ga
Xi/

√
nGa for 1 ≤ a ≤ K be the scaled group means and Zb =

∑
i∈Cb

Xi/
√
nCb for

1 ≤ b ≤ K be the scaled cluster means. Then ∆ =
∑K

a=1 ||Ya||22 −
∑K

b=1 ||Zb||22 = U′ΩU, where

Ω =

 IKT

−IKT


and U = (Y′

1, ...,Y
′
K ,Z

′
1, ...,Z

′
K)′.
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We proceed to derive the distribution of U from (3.20). Specifically, we know that U is

multivariate Gaussian with mean 0 and covariance matrix

Σ =



ΣG
11 · · · ΣG

1K Σ̃11 · · · Σ̃K1

...
. . .

...
...

. . .
...

ΣG
K1 · · · ΣG

KK Σ̃1K · · · Σ̃KK

Σ̃′
11 · · · Σ̃′

1K ΣC
11 · · · ΣC

1K

...
. . .

...
...

. . .
...

Σ̃′
K1 · · · Σ̃′

KK ΣC
K1 · · · ΣC

KK


(3.24)

where ΣG
bd = Cov(Yb,Yd), Σ

C
ac = Cov(Za,Zc) and Σ̃ab = Cov(Za,Yb). For clarity in what

follows we shall use a, c to index the clusters and b, d to index the groups. These matrices can

be computed explicitly using (3.20). Covariances between scaled group means are

ΣG
bb = Cov(Yb) =

1

nGb
Cov(

∑
i∈Gb

Xi) =
1

nGb
(nGb IT + (nGb )

2Pbb) = IT + nGb Pbb, (3.25)

and similarly

ΣG
bd =

√
nGb n

G
d Pbd (3.26)

when b ̸= d. By symmetry we have ΣG
bd = ΣG

db.

Covariances between scaled cluster means are

ΣC
aa = Cov(Za) =

1

nCa
Cov(

∑
i∈Ca

Xi) =
1

nCa
(nCa IT +

∑
1≤b,d≤K

nabnadPbd)

=IT +
1

nCa

∑
1≤b,d≤K

nabnadPbd,

(3.27)

and similarly

ΣC
ac =

1√
nCa n

C
c

∑
1≤b,d≤K

nabncdPbd, (3.28)

when a ̸= c. Again by symmetry we have ΣC
ac = ΣC

ca.
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Finally covariances between scaled group and cluster means are

Σ̃ab = Cov(Za,Yb) =
1√
nCa n

G
b

Cov(
∑
i∈Ca

Xi,
∑
j∈Gb

Xj) =
1√
nCa n

G
b

(nabIT +
K∑
d=1

nGb nadPbd)

=
nab√
nCa n

G
b

IT +

√
nGb
nCa

K∑
d=1

nadPbd.

(3.29)

Going back to the quadratic form ∆ = U′ΩU, we decorrelateU so that ∆ can be expresses in

terms of a white noise. Let ε be multivariate Gaussian with mean 0 and covariance matrix I2KT

such that U = Σ1/2ε. Then we have E∆ = EU′ΩU = E ε′Σ1/2ΩΣ1/2ε = Tr(Σ1/2ΩΣ1/2) =

Tr(ΩΣ). Block matrix algebra readily gives

ΩΣ =



ΣG
11 · · · ΣG

1K Σ̃11 · · · Σ̃K1

...
. . .

...
...

. . .
...

ΣG
K1 · · · ΣG

KK Σ̃1K · · · Σ̃KK

−Σ̃′
11 · · · −Σ̃′

1K −ΣC
11 · · · −ΣC

1K

...
. . .

...
...

. . .
...

−Σ̃′
K1 · · · −Σ̃′

KK −ΣC
K1 · · · −ΣC

KK


. (3.30)
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And from that we know

E∆ =Tr(ΩΣ) =

K∑
b=1

Tr(ΣG
bb)−

K∑
a=1

Tr(ΣC
aa)

=KT + T
K∑
b=1

nGb ρbb(0)−KT − T
K∑
a=1

1

nCa

∑
1≤b,d≤K

nabnadρbd(0)

(by (3.25) and (3.27))

=T (
K∑
a=1

K∑
b=1

nabρbb(0)−
K∑
a=1

1

nCa

∑
1≤b,d≤K

nabnadρbd(0))

(using nGb =
K∑
a=1

nab)

=T (

K∑
a=1

1

nCa

∑
1≤b,d≤K

nabnadρbb(0)−
K∑
a=1

1

nCa

∑
1≤b,d≤K

nabnadρbd(0))

(using nCa =

K∑
d=1

nad)

=
1

2

K∑
a=1

K∑
b,d=1
b ̸=d

nabnad
nCa

(ρbb(0) + ρdd(0)− 2ρbd(0))T

≥(

K∑
a=1

K∑
b,d=1
b ̸=d

nabnad
nCa

)
γT

n
. (by (3.23) in Assumption 3.14)

(3.31)

To make this lower bound more amenable to analyze, we introduce a measure s to quantify

the difference between {Ca}Ka=1 and {Gb}Kb=1. W.L.O.G. we can reorder {Ca}Ka=1 and {Gb}Kb=1

such that naa = maxa′,b′≥a{na′b′} . Let

s = max
a

{nCa − naa}. (3.32)

Then we have the following lower bound on δ:

Lemma 3.16.

δ ≥ rsγ

2

T

K2n
.

Since {Ca}Ka=1 ̸= {Gb}Kb=1, we have s ≥ 1 and δ > 0. This should come as no surprise:

since covariances within groups are larger than those between groups, we should expect larger

within-group sum of squares when clusters coincide with the groups.
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Define δ := E∆ > 0. We should expect P(∆ ≤ 0) to be small. To bound this probability,

we use Hanson-Wright inequality in the form introduced by Rudelson and Vershynin[96] :

Lemma 3.17 ( (Hanson-Wright inequality [96])). Let ε = (ε1, ..., εN )′ ∈ RN be a random vector

with independent, mean zero, sub-Gaussian coordinates. Let A be an N ×N matrix. Then for

all λ ≥ 0,

P(ε′Aε ≤ E(ε′Aε)− λ) ≤ exp{−c1min{ λ2

||Σ1/2ΩΣ1/2||2F
,

λ

||Σ1/2ΩΣ1/2||op
}}

where c1 depends on the largest sub-Gaussian norm among coordinates ε1, ..., εN .

Using Hanson-Wright inequality with λ = δ, we get

P(∆ = ε′Σ1/2ΩΣ1/2ε ≤ 0) ≤ exp{−c1min{ δ2

||Σ1/2ΩΣ1/2||2F
,

δ

||Σ1/2ΩΣ1/2||op
}}, (3.33)

where c1 > 0 is some universal constant because coordinates of ε are i.i.d. N(0, 1) random

variables. Note that if we replace Assumption 3.6 by (joint) sub-Gaussianity of {Xi}ni=1, we

have that U is sub-Gaussian. However, it is not clear if there exists a random vector ε with

independent coordinates such that U = Σ1/2ε.

The following two lemmas bound the two norms in (3.33) from above.

Lemma 3.18. ||Σ1/2ΩΣ1/2||op ≤ 2K(M +1), where M is the constant in (3.22) of Assumption

3.14.

Lemma 3.19. ||Σ1/2ΩΣ1/2||2F ≤ K(1 + 2
rγ + 2M2

γ )δ.

Using Lemma 3.18 and 3.19 we get

P(∆ ≤ 0) ≤ exp{−c2
δ

K
}, (3.34)

where c2 = c2(r,M, γ) > 0 is a constant that depends on r, M and γ. This completes step 1 of

the proof.

Step 2: Now, for fixed {nab}Ka,b=1, the number of possible partitions {Ca}Ka=1 is at most

K∏
b=1

(
nGb

n1k, ..., nKk

)
≤

K∏
b=1

nn
G
b −nbb = n

∑K
a=1(n

C
a −naa) ≤ nKs.
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Here s as defined in (3.32) is a function of {nab}Ka,b=1. Moreover, we have that for fixed s > 0,

the number of possible partitions {Ca}Ka=1 is at most

∑
{nab}Kj,k=1

nKs ≤ (n+ 1)K
2
nKs ≤ n2K

2
nKs,

as nab ∈ {0, 1, ..., n} and 1 ≤ a, b ≤ K.

Using (3.34), Lemma 3.16 and union bound we get

P(∆ ≤ 0 for any {Ca}Ka=1 ̸= {Gb}Kb=1) ≤
n∑

s=1

n2K
2
nKs exp{−c2

rγsT

2K3n
}

≤
n∑

s=1

exp{2K2s(log n− c2rγ

4K5

T

n
)}

≤
n∑

s=1

exp{2K2s(1− Cc2rγ/4) log n}

≤n exp{2K2(1− Cc2rγ/4) log n}

≤ exp{2K2(2− Cc2rγ/4) log n}.

(3.35)

Here we used the fact that T ≥ CK5n log n.

Choose C = 12
c2rγ

and the proof is complete.

■

3.4.2 Proof of Lemma 3.16

First note that nGb ≥ rn/K by Assumption 3.7. If there exists (a′, b′, d′) such that na′b′ ≥

nGb′/K and na′d′ ≥ nGd′/K, then we have

K∑
b,d=1
b̸=d

K∑
j=1

nabnad
nCa

≥
na′b′(n

C
a′ − na′b′)

nCa′
≥ na′b′na′d′

na′b′ + na′d′
≥ rn

2K2
≥ rs

2K2
.

Here we used the fact that na′b′(n
C
a′ − na′b′)/n

C
a′ is increasing in nCa′ and na′b′na′d′/(na′b′ + na′d′)

is increasing in both na′b′ and na′d′ .

If such (a′, b′, d′) does not exist, we have nab < nGb /K whenever b > a. Otherwise let a′ be the

smallest a such that there exists b′ > a with nab′ ≥ nGb′/K. Choose that b′ so that na′b′ ≥ nGb′/K.

Moreover, for all a < a′, nab < nGb /K whenever b > a. Set a = a′ to yield naa′ < nGa′/K for

all a < a′. Since
∑K

a=1 naa′ = nGa′ , there must exist a ≥ a′ such that naa′ ≥ nGa′/K. Thus we
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have na′a′ = maxa,b≥a′{nab} ≥ maxa≥a′{naa′} ≥ n′a/K, and (a′, b′, a′) satisfies the condition of

(a′, b′, d′), a contradiction.

Furthermore, we have naa ≥ nGa /K for all 1 ≤ a ≤ K. Otherwise there exists a′ such that

nGa′/K > na′a′ = maxa,b≥a′{nab} ≥ maxa≥a′{naa′}. But we have naa′ < na′/K whenever a < a′

and together we get naa′ < nGa′/K for all a, contradicting the fact that
∑K

a=1 naa′ = nGa′ .

Let a′ = argmaxa{nCa − naa}. We have na′a′ ≥ nGa′/K and it follows that

K∑
b,d=1
b ̸=d

K∑
a=1

nabnad
nCa

≥
na′a′(n

C
a′ − na′a′)

nCa′
=
sna′a′

nCa′
≥ sna′a′

n
≥
snGa′

nK
≥ rs

K2
.

Lemma 3.16 then follows.

■

3.4.3 Proof of Lemma 3.18

Since operator norm is sub-multiplicative and ||Ω||op = 1, we have

||Σ1/2ΩΣ1/2||op ≤ ||Σ1/2||op||Ω||op||Σ1/2||op = ||Σ||op.

Next, note that we can upper-bound the operator norm by the L∞ norm. And from (3.22)

in Assumption 3.14 we have

n
K∑
d=1

||Pbd||∞ ≤M (3.36)

for 1 ≤ b, d ≤ K. We use this inequality to bound L∞ norms of components in Σ part by part.

For ΣG
bd in (3.25) and (3.26) we have

K∑
d=1

||ΣG
bd||∞ ≤ 1 +

K∑
d=1

√
nGb n

G
d ||Pbd||∞ ≤ 1 + n

K∑
d=1

||Pbd||∞ ≤ 1 +M.

using nGb , n
G
d ≤ n and (3.36).
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Similarly, for ΣC
ac in (3.27) and (3.28) we have

K∑
c=1

||ΣC
ac||∞ ≤1 +

K∑
c=1

1√
nCa n

C
c

∑
1≤b,d≤K

nabncd||Pbd||∞

≤1 + n

K∑
c=1

1

nCa n
C
c

∑
1≤b,d≤K

nabn
C
c ||Pbd||∞

(using nCa , n
C
c ≤ n and ncd ≤ nCc )

=1 + nK

K∑
b=1

nab
nCa

K∑
d=1

||Pbd||∞

≤1 +KM
K∑
b=1

nab
nCa

= 1 +KM. (by (3.36)).

and for Σ̃ab in (3.29) note that nab ≤ min{nCa , nGb } ≤
√
nCa n

G
b and nGb ≤ n, we get

||Σ̃ab||∞ ≤ nab√
nCa n

G
b

+

√
nGb
nCa

K∑
d=1

nad||Pbd||∞

≤1 + n

K∑
d=1

||Pbd||∞ ≤ 1 +M.

It follows that
∑K

a=1 ||Σ̃ab||∞ ≤ K(1 +M) and

||Σ||op ≤ K(1 +M) + 1 +KM ≤ 2K(M + 1)

and this proves the lemma.

■

3.4.4 Proof of Lemma 3.19

First note that

||Σ1/2ΩΣ1/2||2F = Tr(Σ1/2ΩΣΩΣ1/2) = Tr(ΩΣΩΣ) (3.37)

by properties of traces. And from (3.30) we can compute the trace as

Tr(ΩΣΩΣ) =
∑

1≤b,d≤K

Tr((ΣG
bd)

2) +
∑

1≤a,c≤K

Tr((ΣC
ac)

2)− 2
∑

1≤a,b≤K

Tr(Σ̃2
ab).
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Divide this trace into two parts and write Tr(ΩΣΩΣ) = I1 + I2, where

I1 :=
∑

1≤b,d≤K

Tr((ΣG
bd)

2)−
∑

1≤a,b≤K

Tr(Σ̃2
ab)

and

I2 :=
∑

1≤a,c≤K

Tr((ΣC
ac)

2)−
∑

1≤a,b≤K

Tr(Σ̃2
ab).

Plugging in (3.25), (3.26) and (3.29) we get

I1 =

K∑
b=1

Tr(IT + 2nGb Pbb) +
∑

1≤b,d≤K

nGb n
G
d Tr(P 2

bd)

−
∑

1≤a,b≤K

Tr(
n2ab
nCa n

G
b

IT +
2nab
nCa

K∑
d=1

nadPbd)−
∑

1≤a,b≤K

nGb
nCa

Tr
(
(

K∑
d=1

nadPbd)
2
)
.

Divide it further into I1 = J11 + J12, where the linear term

J11 :=
K∑
b=1

Tr(IT + 2nGb Pbb)−
∑

1≤a,b≤K

Tr(
n2ab
nCa n

G
b

IT +
2nab
nCa

K∑
d=1

nadPbd)

and the quadratic term

J12 :=
∑

1≤b,d≤K

nGb n
G
d Tr(P 2

bd)−
∑

1≤a,b≤K

nGb
nCa

Tr
(
(

K∑
d=1

nadPbd)
2
)
.

For the linear term we have

J11 :=

K∑
b=1

Tr(IT + 2nGb Pbb)−
∑

1≤a,b≤K

Tr(
n2ab
nCa n

G
b

IT +
2nab
nCa

K∑
d=1

nadPbd)

=T
∑

1≤a,b≤K

(
nab
nGb

−
n2ab
nCa n

G
b

) +
∑

1≤a,b,d≤K

nabnadTr(Pbb + Pdd − 2Pbd)

nCa

(using Tr(IT ) = T and nGb =
K∑
a=1

nab)

=T
( K∑

a=1

K∑
b,d=1
b̸=d

nabnad
nCa n

G
b

+

K∑
a=1

K∑
b,d=1
b̸=d

nabnad(ρbb(0) + ρdd(0)− 2ρbd(0))

nCa

)

(using nCa − nab =
∑
d ̸=b

nad, Tr(Pbd) = Tρbd)
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From (3.31) and using Assumption 3.7 we know that

T

K∑
a=1

K∑
b,d=1
b̸=d

nabnad
nCa n

G
b

≤ KT

rn

K∑
a=1

K∑
b,d=1
b̸=d

nabnad
nCa

≤ K

rγ
δ

and

T

K∑
a=1

K∑
b,d=1
b̸=d

nabnad(ρbb(0) + ρdd(0)− 2ρbd(0))

nCa
= 2δ.

Combine these terms we get J11 ≤ (2 + K
rγ )δ.

For the quadratic term we have

J12 :=
∑

1≤b,d≤K

nGb n
G
d Tr(P 2

bd)−
∑

1≤a,b≤K

nGb
nCa

Tr
(
(

K∑
d=1

nadPbd)
2
)

≤
∑

1≤b,d≤K

nGb n
G
d Tr(P 2

bd)−
∑

1≤a,b≤K

nGb
nCa

K∑
d=1

n2adTr(P
2
bd) (by (3.21) in Assumption 3.14)

=
∑

1≤a,b,d≤K

nCa n
G
b nad − nGb n

2
ad

nCa
Tr(P 2

bd) (using nGd =

K∑
a=1

nad).

Since n2Tr(P 2
bd) ≤ Tn2(ρ2bd(0)+2

∑∞
t=1 ρ

2
bd(t)) ≤ TM2 by (3.18) and (3.22) in Assumption 3.14,

it follows that Tr(P 2
bd) ≤ TM2/n2 and

J12 ≤
TM2

n2

∑
1≤a,b,d≤K

nCa n
G
b nad − nGb n

2
ad

nCa

=
TKM2

n

∑
1≤a,d≤K

nCa nad − n2ad
nCa

(using nGb ≤ n)

≤TKM
2

n

K∑
a=1

K∑
b,d=1
b̸=d

nabnad
nCa

(using nCa − nad =
∑
b̸=d

nab)

≤KM
2

γ
δ. (by (3.31))

Similarly, for I2 we can plug in (3.27), (3.28) and (3.29) and get

I2 =
K∑
a=1

Tr(IT +
2

nCa

∑
1≤b,d≤K

nabnadPbd) +
∑

1≤a,c≤K

nCa n
C
c Tr

(
(

1

nCa n
C
c

∑
1≤b,d≤K

nabncdPbd)
2
)

−
∑

1≤a,b≤K

Tr(
n2ab
nCa n

G
b

IT +
2nab
nCa

K∑
d=1

nadPbd)−
∑

1≤a,b≤K

nGb
nCa

Tr
(
(

K∑
d=1

nadPbd)
2
)

=J21 + J22,

81



where the linear term

J21 :=
K∑
a=1

Tr(IT +
2

nCa

∑
1≤b,d≤K

nabnadPbd)−
∑

1≤a,b≤K

Tr(
n2ab
nCa n

G
b

IT +
2nab
nCa

K∑
d=1

nadPbd)

and the quadratic term

J22 :=
∑

1≤a,c≤K

nCa n
C
c Tr

(
(

1

nCa n
C
c

∑
1≤b,d≤K

nabncdPbd)
2
)
−

∑
1≤a,b≤K

nGb
nCa

Tr
(
(

K∑
d=1

nadPbd)
2
)
.

The linear term J21 can be bounded similarly as J11:

J21 =T
∑

1≤a,b≤K

(
nab
nGb

−
n2ab
nCa n

G
b

) +
∑

1≤a,b,d≤K

nabnadTr(2Pbd − 2Pbd)

nCa

=T
K∑
a=1

K∑
b,d=1
b̸=d

nabnad
nCa n

G
b

≤K

rγ
δ.

For the quadratic term we reverse the first term back to Frobenius norm and get

∑
1≤a,c≤K

nCa n
C
c Tr

(
(

1

nCa n
C
c

∑
1≤b,d≤K

nabncdPbd)
2
)

=
∑

1≤a,c≤K

nCa n
C
c ||

1

nCa n
C
c

∑
1≤b,d≤K

nabncdPbd||2F

≤
∑

1≤a,c,b,d≤K

nabncd||Pbd||2F (by convexity of squared Frobenius norm)

=
∑

1≤b,d≤K

nGb n
G
d Tr(P 2

bd).

It readily follows that J22 ≤ J12 ≤ KM2

γ δ.

Collect all the above inequalities we get

Tr(ΩΣΩΣ) = J11 + J12 + J21 + J22 ≤ 2(1 +
K

rγ
+
KM2

γ
)δ ≤ K(1 +

2

rγ
+

2M2

γ
)δ.

Lemma 3.19 then follows from (3.37).

■
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3.4.5 Proof of Proposition 3.12

Since (3.16) implies ||A||∞ ≤ 1 − τ , it follows that ||A||op ≤ 1 − τ , and the process is

stationary (in time). For ease of notation we shall follow Section 3.3.3 and use ρbd(|t1 − t2|),

ξij(|t1 − t2|) instead of ρbd(t1, t2), ξij(t1, t2).

From (3.14) we get

Cov(X(t1),X(t2)) = A|t1−t2|
∞∑
q=0

A2q.

This readily implies Assumption 3.8. Specifically, for i ∈ Gb and j ∈ Gd, ρbd(0) is equal to

the (i, j)th entry of
∑∞

q=1A
2q and ρbd(t) is equal to the (i, j)th entry of At

∑∞
q=0A

2q for t > 0.

ξij(t) = 0 for all 1 ≤ i, j ≤ n.

We now proceed to examine Assumption 3.9. All of these matrices have nonnegative entries

by (3.15) so (3.9) holds. To verify (3.10) (or the equivalent (3.19)), we need the following simple

lemma:

Lemma 3.20. For all positive integer q, we have

||Aq||max ≤ (1− τ)q

n
(3.38)

Proof: From (3.16) we have pbd ≤ 1−τ
n so (3.38) holds for q = 1.

Suppose Lemma 3.20 holds for q. Then we have for the (i, j)th entry of Aq+1

(Aq+1)i,j =
n∑

k=1

Ai,k(A
q)k,j ≤ ||A||∞||Aq||max ≤ (1− τ)

(1− τ)j

n
=

(1− τ)q+1

n
.

It follows that (3.38) holds for all positive integer q by induction.

■

Going back to (3.10), Using Lemma 3.20 we have

n

K∑
d=1

(ρbd(0) + 2

∞∑
t=1

ρbd(t)) ≤ n

K∑
d=1

(

∞∑
q=1

(1− τ)2q

n
+ 2

∞∑
t=1

∞∑
q=0

(1− τ)2q+t

n
)

= K

∞∑
q=0

(1− τ)2q((1− τ)2 + 2

∞∑
t=1

(1− τ)t)

≤ 2K

∞∑
q=0

(1− τ)q
∞∑
t=0

(1− τ)t =
2K

τ2
.

Therefore (3.10) and (3.19) holds with M = 2K/τ2.
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To verify (3.11), note that for any symmetric n× n matrix B = (bij), we have

(B2)i,i + (B2)j,j − 2(B2)i,j =
n∑

k=1

(b2ik + b2jk − bikbjk) =
n∑

k=1

(bik − bjk)
2 ≥ 0.

Recall that for i ∈ Gb and j ∈ Gd, ρbd(0) is equal to the (i, j)th entry of
∑∞

q=1A
2q. Therefore

ρbb(0) + ρdd(0)− 2ρbd(0) ≥ (A2)i,i + (A2)j,j − 2(A2)i,j =
K∑
k=1

nGk (pbk − pdk)
2

≥ nGb (pbb − pbd)
2 + nGd (pdd − pbd)

2

≥ 2rn

K
(
η

n
)2 =

2rη2

Kn

when b ̸= d. Here the last inequality follows from Assumption 3.7. Thus we have that (3.11)

holds with γ = rη2/K.

Finally (3.12) holds trivially since ξij(t) = 0 for all 1 ≤ i, j ≤ n.

3.5 Other algorithms

Since our goal is to recover the clusters from block structured covariance structure, it makes

sense to consider algorithms based on sample covariance matrix Σ̂X. And in this section we

shall describe three different approaches.

The first approach simply applies K-means clustering to rows of the sample covariance

matrix Σ̂X. Specifically, given the number of clusters K, it aims to find the partition

{1, 2, ..., n} = ∪K
a=1Ca and K n-dimensional vector Oa = (Oa,1, ...,Oa,n) that minimizes:

WCSS({Ca}Ka=1) :=
K∑
a=1

∑
i∈Ca

n∑
j=1

(Σ̂X
ij −Oa,j)

2. (3.39)

The second approach applies spectral clustering to Σ̂X, treating it as a weighted graph.

Notice however that entries of Σ̂X can be negative in general so a symmetric normalized Lapla-

cian does not always exists. Specifically, we compute the eigenvectors of Σ̂X corresponding to

its K eigenvalues that are largest in absolute value, and combine them into a n×K matrix Û .

Then we normalize the rows of Û so that they have unit Euclidean norms, and apply K-means

clustering.

The third approach fits a blockwise constant approximation to Σ̂X (with permutation on

the indices). Specifically, it aims to find the partition {1, 2, ..., n} = ∪K
a=1Ca and K ×K matrix
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M that minimizes:

l({Ca}Ka=1) :=
K∑
a=1

K∑
b=1

∑
i∈Ca

∑
j∈Cb

(Σ̂X
ij −Mab)

2. (3.40)

Similar to Lloyd’s algorithm, we alternative between two steps. In the assignment step, each

i ∈ {1, 2, ..., n} is assigned to the cluster that minimizes l({Ca}Ka=1). This is done in a greedy

way, i.e. cluster assignment is updated sequentially for i ∈ {1, 2, ..., n}, treating membership of

other indices and M as fixed. Note that for each i we need to compute the objective function

(3.40) K times, each time summing over 2n−1 terms so each step has time complexity Θ(Kn2).

In the update step, M is updated as the entry-wise average within and between clusters:

M̂ab =
1

|Ca||Cb|
∑
i∈Ca

∑
j∈Cb

Σ̂X
ij .

For initialization we apply naive K-means (i.e. Lloyd’s algorithm) to rows of Σ̂X. This procedure

can be viewed as a biclustering version of Lloyd’s algorithm, and finds a local minimum of the

objective function (3.40). We shall refer to this algorithm as “block k-means”.

3.6 Simulation

For each setting considered below, clustering error rate is measured by the proportion of

mis-clusterd indices. 100 independent simulation runs are made and the error rates shown are

averages.

3.6.1 G-block covariance model

Consider a G-block covariance model as described in (3.6):

Xi(t) =Ma(t) + εi(t), for all i ∈ Ga and 1 ≤ t ≤ T,

whereM(t) = (M1(t),M2(t)) is a 2-dimensional Gaussian vector with zero mean and covariance

matrix ( 4 1
1 2 ), independent of the i.i.d. standard normal white noises εi(t). Here n = 100

and G1 = {1, 2, ..., 70} and G2 = {71, 72, ..., 100} are the two blocks. Moreover, M(t) are

independent across time therefore so are {Xi(t)}.

Figure 3.1 shows the error rate as T increases. The four algorithms considered here are

kmeans++ and the three sample covariance based methods described in Section 3.5. We can

see that kmeans++ on the original data works reasonably well. Performance of kmeans++ and
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Figure 3.1: Clustering error rate for G-block covariance model

block k-means on sample covariance are comparably the best. However, we remark that perfect

recovery is not achieved up to T = 1500. Spectral clustering does not seem to work very well in

this setting, whenM(t) is heteroscedastic. In cases whereMa(t) have similar variances, spectral

clustering works reasonably well and is only slightly worse than kmeans++ and block k-means.

3.6.2 G-block covariance model with auto-correlation

Write ηi(t) for Xi(t) defined in the previous setting. Consider a G-block covariance model

with auto-correlation as follows: X1(t) = η1(t) and Xi(t) = 0.5Xi(t − 1) + ηi(t) for 2 ≤ t ≤

T . Figure 3.2 shows the error rate as T increases for the same four algorithms. The overall

performance degrades in the presence of auto-correlation, especially for spectral clustering.

3.6.3 Stochastic block network VAR model

Consider a stochastic block network VAR model as described in Section 3.1.5: X(1) = ε(1)

and

X(t) = ϕD−1/2AD−1/2X(t− 1) + ε(t), for 2 ≤ t ≤ T.

Here {X(t)} is a n-dimensional stationary process and {ε(t)} have i.i.d. standard normal

coordinates. A is an adjacency matrix generated from an undirected unweighted stochastic
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Figure 3.2: Clustering error rate for G-block covariance model with auto-correlation

block model without vertex-specific weights. In our simulation, n = 100 and G1 = {1, 2, ..., 60}

and G2 = {61, 62, ..., 100} are the two blocks. The edge probability matrix is ( .8 .2
.2 .8 ), that is the

probability of an edge within communities is 0.8 and that between communities is 0.2. D is the

diagonal degree matrix with Dii =
∑n

j=1Aij so that D−1/2AD−1/2 is the symmetric normalized

Laplacian. ϕ = 0.9, and that ensures stationarity of the process.

Figure 3.3 shows the error rate as T increases. We consider three more algorithms here, all

based on the ordinary least squares (OLS) estimate of coefficient matrix ϕD−1/2AD−1/2, which

we shall denote by Φ̂OLS . The three algorithms applies spectral clustering, k-means++ and

block k-means to Φ̂OLS , respectively. Note that spectral clustering on Φ̂OLS is exactly the VAR

Blockbuster algorithm in [47]. We can see that all three algorithms are comparable and perform

much better than the four generic algorithms. This should not come as a surprise as these

algorithms explicitly exploit the VAR model assumption. Among the four generic algorithms

considered before, k-means++ on sample covariance matrix performs relatively well compared

to the others. However, k-means++ on the original data can achieve a comparable recovery

rate for large T . We remark here that for T = 2000 the average error rates for algorithms based

on Φ̂OLS are less than 0.002 so that in most cases the blocks are recovered perfectly.
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Figure 3.3: Clustering error rate for stochastic block network VAR model. kms stands for k-means
and sc for spectral clustering.

3.6.4 SBM-driven VAR model

Consider an unnormalized version of stochastic block network VAR model where the sym-

metric normalized Laplacian is replaced by the scaled adjacency matrix:

X(t) = ϕ
A

n
X(t− 1) + ε(t).

Here the factor n is required to ensure stationarity of the process, since degrees are of order n in

dense graphs. We set ϕ = 1.5 and the other parameters are same as in the previous stochastic

block network VAR model setting. Figure 3.4 shows the error rate as T increases.

We can see that OLS based algorithms still perform significantly better than generic algo-

rithms that do not assume a VAR model. However, spectral clustering suffers in this setting,

presumably as an effect of unnormalized adjacency matrix on the eigenstructure. Moreover,

the discrepancy between performance of k-means++ on sample covariance and other generic

algorithms becomes larger. We remark here that for T = 3000 the average error rates for

k-means++ and block k-means applied to OLS are less than 0.001 so that in most cases the

blocks are recovered perfectly.
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Figure 3.4: Clustering error rate for SBM-driven VAR model. kms stands for k-means and sc for
spectral clustering.

3.6.5 Summary

Overall, k-means++ (applied directly to the data) performs reasonably well, but is outper-

formed by k-means++ applied to the sample covariance matrix. However, in cases where the

processes follow an underlying VAR model with coefficient matrices specified by community

structure, clustering algorithms should be applied to estimate of coefficient matrices instead.
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CHAPTER 4

Change point detection in SBM-driven VAR model

In time series analysis, parameters governing the underlying model are usually assumed

to be constant across time. However, in many applications these parameters are subject to

abrupt changes at unknown time points. Examples include quality control and fault detection

in industrial processes, and automatic segmentation of a signal into stationary segments in signal

processing. Change point detection addresses this problem by allowing model parameters to

vary across time segments, and aims to estimate the time points where changes occur.

In this chapter, we consider change point detection in the SBM-driven VAR model described

in Chapter 3. Specifically, let X(t) = (X1(t), X2(t), ..., Xn(t))
′ be a n-dimensional vector, with

dynamics given by the following VAR(p) model:

X(t) =

p∑
l=1

Φ
(j)
l X(t− l) + ε(t), t = T 0

j−1 + 1, ..., T 0
j , (4.1)

where Φ
(j)
l (j = 1, ...,m and l = 1, ..., p) are n× n coefficient matrices, and 1 = T 0

0 < T 0
1 < ... <

T 0
m < T 0

m+1 = T are the m ≥ 1 change points. Moreover, Φ
(j)
l = ϕ

(j)
l A

(j)
l /n where A

(j)
l is an

adjacency matrix generated from a dense unweighted stochastic block model without vertex-

specific weights, independent of {ε(t)}, and ϕ(j)l > 0 is called the stationarity parameter. Recall

that factor n is required here to ensure stationarity of the process, since degrees are of order n

in dense graphs. Parameters of the underlying stochastic block model, including both the block

partition and community-specific edge probabilities, are allowed to change across time segments,

but are the same for different l within each segment. Our goal is to estimate the change points

T 0
1 < ... < T 0

m, given the observations X(t) (t = 1, ..., T ) and the number of change points m.

More precisely, we want to understand what is the minimum number of observations T needed

to detect change points in underlying networks of size n.

Closely related to our problem is the change point detection in general VAR model with

changing coefficients, also known as structural breaks in the econometrics literature. However,

dimension of the process n is usually treated as a constant, and asymptotic analysis mostly focus
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on consistency of estimated change points as T goes to infinity. While it is true that changes

in a single coefficient can be hard to detect, things should be easier when groups of coefficients

are changing in a structural way as in our case. To exploit that community structure, we need

to either know the communities explicitly, or extract that information from observations, e.g.

through community detection.

There has also been some work done in the temporal network literature on dynamic com-

munities. Most work in this area studies a deterministic sequence of evolving networks [3][101],

with a focus on social networks [84][99][63][104]. Temporal networks with underlying probabilis-

tic model are less explored, and typically assume a static network and independent snapshots.

Specifically, static network has a fixed size so its evolution across time is restricted compared to

dynamic network where size of the network is allowed to change across time, e.g. a growing so-

cial network. Moreover, observations at different time points, called snapshots, are taken to be

independent, which makes the analysis even simpler. In most cases, statistics are computed for

each snapshot, and traditional change point detection techniques are applied. As an example,

consider the sequence of adjacency matrices in our model, which are independently generated

from stochastic block model with changing communities and edge probabilities. Recall that

communities can be perfectly recovered, and model parameters consistently estimated, from

just one realization of a dense stochastic block model. Based on that, one can show that both

change points and model parameters within each time segment can be consistently estimated

as well, using the standard least squares criterion [16]. On the other hand, very little work has

been done to model dynamic networks under a probabilistic framework. For an example, see

[15] for a growing linear preferential attachment graph with changing parameter. In our model,

the underlying network is static and independently generated across different time segments.

However, we do not has access to the underlying network directly, and estimates of the adja-

cency matrix are noisy and correlated across time, which makes the two problems connected

but different.

The rest of this chapter is organized as follows: Section 4.1 gives an overview on related

literature. Section 4.2 connects our model to structural breaks when communities are fixed and

known. Section 4.3 introduces our proposed algorithm. And Section 4.4 contains numerical

experiments and discussion.
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4.1 Literature review

4.1.1 Change point detection

We shall not dwell on the general change point detection problem, as any overview of this

vast literature, even a brief one, will amount to a chapter on its own. Instead, we refer the

interested readers to [14] for an exhaustive overview of classic literature, and [20][97][5][102][8]

for more recent results. Nevertheless, we will give a short note on the typical consistency results

that can be found in asymptotic analysis of change point detection, e.g. [28][25][87].

Write 1 < T1 < ... < Tm < T for the m change points, and T̂1 < ... < T̂m their estimates.

The usual notion of consistency as T goes to infinity would be T̂j
P−→ Tj for 1 ≤ j ≤ m.

Since both T̂j and Tj are integer-valued, this is equivalent to limT→∞ P(T̂j = Tj) = 1. As can

be expected, this is not achievable in most nontrivial cases, and consistency in estimation is

defined in terms of Tj/T instead, that is, the relative location of change points. Alternatively,

write Tj = ⌊Tαj⌋ and consider consistency of αj . In many cases, however, one can hope for a

stronger result of the form T̂j − Tj = O(1), that is, for any ε > 0, there exists M > 0 such that

P(|T̂j − Tj | > M) < ε for large T .

4.1.2 Structural breaks

In this section we give a brief introduction to structural breaks in multivariate regression, for

which vector regressive model is a special case. Our focus here is on key assumptions needed for

consistent estimation of break dates. Interested readers are directed to [86] for a more detailed

review from the viewpoint of econometric applications, which notably addresses the interplay

between structural breaks, unit root and long range dependence.

For simplicity we present the framework in univariate case only, and note that the same

result holds in multivariate case, with properly extended assumptions. Consider the following

multiple linear regression with m ≥ 1 breaks:

yt = x′tβ + z′tλj + εt, t = T 0
j−1 + 1, ..., T 0

j .

where 1 = T 0
0 < T 0

1 < ... < T 0
m < T 0

m+1 = T are the break dates. Here yt denote the observed

dependent variable at time t, xt and zt are covariates of dimension p and q, β and λj are the

vectors of corresponding coefficients, and εt is the noise. For a given partition of time into
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segments 1 = T0 < T1 < ... < Tm < Tm+1 = T , denote by β̂j and λ̂j the least squares estimates

of β and λj based on observations in t ∈ (Tj−1, Tj ]. Define the least squares loss function:

l(T1, ..., Tm) :=

m+1∑
j=1

Tj∑
t=Tj−1+1

(yt − x′tβ̂j − z′tλ̂j)
2.

The estimated break dates are given by

(T̂1, ..., T̂m) = argmin
1<T1<...<Tm<T

l(T1, ..., Tm). (4.2)

Then under suitable assumptions T̂j − T 0
j = O(1) as T → ∞.

While some assumptions like invertibility are technical, others are crucial as they limit

the range of models the results can be applied to. Next we proceed to examine these key

assumptions, as stated in [86], which are based on [12] and [90].

Assumption 4.1. Denote ut = (x′t, z
′
t)
′. For each 1 ≤ j ≤ m + 1 and lj = T 0

j − T 0
j−1,

(1/lj)
∑T 0

j−1+⌊ljv⌋
t=T 0

j−1+1

P−→ Qj(v) uniformly in v ∈ [0, 1], where Qj(v) is a deterministic positive

definite matrix.

This assumption requires the covariates to be covariance-stationary processes, e.g. as in a

stationary VAR model.

Assumption 4.2. Denote by ||X||r = (
∑

i

∑
j E|Xij |r)1/r the Lr (r ≥ 1) norm of a random

matrix X. With some increasing σ-field {Ft}, assume that {utεt,Ft} forms a Lr-mixingale

sequence with r = 4 + δ for some δ > 0. That is, there exist nonnegative constants {ct : t ≥ 1}

and {ψj : j ≥ 0} with ψj ↓ 0 as j → ∞, such that for all t ≥ 1 and j ≥ 0: (a) ||E(utεt|Ft−j)||r ≤

ctψj, (b) ||utεt − E(utεt|Ft+j)||r ≤ ctψj+1, (c) supt ct < ∞, (d)
∑∞

j=0 j
1+κψj < ∞ for some

κ > 0, (e) supt ||zt||r <∞ and supt ||εt||r <∞.

This set of assumptions is needed to establish certain functional central limit theorem that

plays an important role in the proofs. It allows for a wide range of correlation (e.g. lagged

dependent variables) and heterogeneity in covariates and errors.

Assumption 4.3. T 0
j = ⌊Tα0

j⌋ where 0 = α0 < α0
1 < ... < α0

m < α0
m+1 = 1 and α0

j+1 − α0
j ≥ ε

for some (small) ε > 0.

This assumption specifies the minimum separation between break dates, which is standard

for offline change point detection. Note that it does not make sense for online detection where
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more and more observations are collected chronologically so that only the last time segment is

increasing.

4.1.3 Factor model

In this section we relate our SBM-driven VAR model to dynamic factor model (DFM) and

show that they are similar yet different. Let X(t) = (X1(t), X2(t), ..., Xn(t))
′ be a n-dimensional

stationary process, with dynamics given by the following factor model:

X(t) = ΛF(t) + η(t), (4.3)

where F(t) is a r-dimensional stationary process representing latent common factors, Λ is a n×r

matrix consisting of factor loadings, and η(t) is a n-dimensional stationary process corresponding

to the idiosyncratic component. For identifiability assume EF(t)F(t)′ = Ir.

Recall that our SBM-driven VAR model (without change points) is:

X(t) = ϕ
A

n
X(t− 1) + ε(t). (4.4)

where A is an adjacency matrix generated from a stochastic block model. Note that E(A) =

ZPZ ′ where Z is the n×K membership matrix with entries Zia = 1 when vertex i belongs to

community a and 0 otherwise, and P is the K × K edge probability matrix with entries Pab

specifying the probability of an edge between two vertices in community a and b. Then (4.4)

can be rewritten as:

X(t) =
ϕZPZ ′

n
X(t− 1) +

ϕ(A− ZPZ ′)

n
X(t− 1) + ε(t).

Write Ya(t) =
∑

i∈Ca
X(t− 1)/

√
|Ca| where {1, 2, ..., n} = ∪K

a=1Ca is the community partition.

Write Y(t) = (Y1(t), ...YK(t))′. Then by stationarity of X(t) we have that Y(t) is also sta-

tionary with fixed covariance ΣY that does not depend on n. Write F(t) = Σ
−1/2
Y Y(t) and

C = diag{|C1|, ..., |CK |}. It follows that EF(t)F(t)′ = IK and Z ′X(t − 1) = C1/2Y(t) =

C1/2Σ
1/2
Y F(t). Let r = K and write Λ = ϕZPC1/2Σ

1/2
Y /n and η(t) = ϕ(A−ZPZ ′)X(t−1)/n+

ε(t). Then (4.4) can be formulated into a DFM of the form in (4.3).

However, in asymptotic analysis of dynamic factor models (cf. [36]) eigenvalues of Λ′Λ are

assumed to be of order n. In our case, entries of Λ′Λ = ϕ2Σ
1/2
Y C1/2PZ ′ZPC1/2Σ

1/2
Y /n2 =
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ϕ2Σ
1/2
Y C1/2PCPC1/2Σ

1/2
Y /n2 are of constant order, assuming that community sizes are of order

n. Intuitively what this means is that the signal, in terms of factor loadings, is diminishing

as n increases. It is not clear if this weak signal case can be handled within the factor model

framework.

As a side note, there is work done in the dynamic factor model literature on change point

detection [50], where factor loadings are allowed to vary across time. Since the algorithm

proposed does not seem to work very well in numerical experiments under our model, we will

not include it in Section 4.4.

4.2 Structural breaks with fixed communities

For simplicity we consider a VAR(1) model, but the results have obvious extension to

VAR(p) model. Recall that our SBM-driven VAR(1) model can be written as:

X(t) = ϕ(j)
A(j)

n
X(t− 1) + ε(t), t = T 0

j−1 + 1, ..., T 0
j . (4.5)

Here A(j) is an adjacency matrix generated from stochastic block model withK fixed and known

communities {1, 2, ..., n} = ∪K
a=1Ca, and edge probability matrix P (j). The superscript 0 here

denotes true change points. We make the following assumptions:

Assumption 4.4. {ε(t),Ft} is a martingale difference sequence, where Ft = σ{ε(1), ..., ε(t)}

(i .e.E(ε(t)|Ft−1) = 0). In addition, E(ε(t)ε(t)′|Ft−1) = I and suptE(||ε(t)||4+δ
2 ) <∞ for some

δ > 0.

Assumption 4.5. P (j) ̸= P (j+1) and each pair of (ϕ(j), A(j)) gives rise to a stationary VAR

model in (4.5).

Assumption 4.6. T 0
j = ⌊Tα0

j⌋ where 0 = α0 < α0
1 < ... < α0

m < α0
m+1 = 1 and α0

j+1 − α0
j ≥ ε

for some (small) ε > 0.

By recursion we have that

X(t) =

l−1∑
s=0

(ϕ(j)
A(j)

n
)sε(t− s) + (ϕ(j)

A(j)

n
)lX(t− l) (4.6)

for T 0
j−1 ≤ t− l < t ≤ T 0

j .
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Write na := |Ca| for size of community a. Define Ya(t) =
∑

i∈Ca
Xi(t)/na and Y (t) =

(Y1(t), ..., YK(t))′. Denote by a(i) the community for which vertex i belongs to. We have

Y (t) = B(j)Y (t− 1) + η(t), t = T 0
j−1 + 1, ..., T 0

j .

Here B
(j)
ab = ϕ(j)P

(j)
ab na/n and η(t) = (η1(t), ..., ηK(t))′ where

ηa(t) =

∑
i∈Ca

εi(t)

na
+

∑n
i=1

∑n
k=1

(
A

(j)
i,k − P

(j)
a(i),a(k)

)
Xk(t− 1)

nna
. (4.7)

This falls into the structural break framework described in Section 4.1.2. For the change point

detection method based on least squares loss there to work, we need to verify a collection of

assumption. Assumption 4.4 is the same as in [11] and ensures the technical assumptions in [90]

to hold. Assumption 4.5 ensures stationarity of the process, and corresponds to Assumption

4.1. Assumption 4.6 is identical to Assumption 4.3. Finally we need to verify the multivariate

counterpart of Assumption 4.2:

Assumption 4.7. With some increasing σ-field {Ft}, {Y (t−1)′η(t),Ft} forms a Lr-mixingale

sequence with r = 4 + δ for some δ > 0. That is, there exist nonnegative constants {ct : t ≥ 1}

and {ψj : j ≥ 0} with ψj ↓ 0 as j → ∞, such that for all t ≥ 1 and j ≥ 0: (a) ||E(Y (t −

1)′η(t)|Ft−j)||r ≤ ctψj, (b) ||Y (t− 1)′η(t)− E(Y (t− 1)′η(t)|Ft+j)||r ≤ ctψj+1, (c) supt ct <∞,

(d)
∑∞

j=0 j
1+κψj <∞ for some κ > 0, (e) supt ||Y (t)||r <∞ and supt ||η(t)||r <∞.

Let Ft = σ{ε1, ..., εt, A(1), ..., A(m+1)}. From (4.7) we have that

Y (t−1)′η(t) =

K∑
a=1

(

∑
i∈Ca

Xi(t− 1)

na
)′
(∑

i∈Ca
εi(t)

na
+

∑n
i=1

∑n
k=1

(
A

(j)
i,k − P

(j)
a(i),a(k)

)
Xk(t− 1)

nna

)
.

Plug in (4.6) and note that from Assumption 4.4 we have E(ε(t1)′ε(t2)|Ft) = 0 for all t1, t2 > t.

Also, A
(j)
i,k −P

(j)
a(i),a(k) is a centered Bernoulli random variable with bounded moments, indepen-

dent of all ε(t). It follows that ||E(Y (t − 1)′η(t)|Ft−j)||r ≤ Cλj , where λ < 1 is the largest

eigenvalue among all A(j), and C > 0 is some constant. Let r = 4+δ, ct = C and ψj = λj , where

δ > 0 is the constant in Assumption 4.4. Then both (c) and (d) are satisfied. Since Y (t−1)′η(t)

is Ft-measurable, (b) is satisfied as well. Finally, (e) follows from (4.6) and Assumption 4.4.

It then follows from the structural break framework that:

Theorem 4.8. T̂j − T 0
j = Op(1) where T̂j (j = 1, ...,m) are as in (4.2).
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To summarize, in this case the known communities are used to reduce dimension of the

problem from n to K: the n-dimensional observations X(t) are replaced by averages among

observations within K communities, and the n × n coefficient matrix Φ(j) is approximated by

its rank-Kmean matrix.

4.3 Algorithms

We start with the algorithm described in Section 4.1.2 that applies to general VAR model

with structural breaks. Write R(t) = (X(t−1)′, ...,X(t−p)′)′ for the lagged observations. Then

the OLS estimate Φ̂ = (Φ̂1, ..., Φ̂p) is given by

Φ̂ =
( T∑

t=p+1

X(t)R(t)′
)( T∑

t=p+1

R(t)R(t)′
)−1

given that
∑T

t=p+1R(t)R(t)′ is invertible.

Recall from Section 4.1.2 that the estimated break dates are given by (T̂1, ..., T̂m) =

argmin1<T1<...<Tm<T l1(T1, ..., Tm) with loss function

l1(T1, ..., Tm) :=
m+1∑
j=1

Tj∑
t=Tj−1+1

||X(t)−
p∑

l=1

Φ̂
(j)
l X(t− l)||22,

where Φ̂
(j)
l is the OLS estimate of Φ

(j)
l based on observations in t ∈ (Tj−1, Tj ].

For our model, however, we want to utilize the latent block structure. Therefore we propose

the following loss function instead:

l2(T1, ..., Tm) :=

m+1∑
j=1

Tj∑
t=Tj−1+1

||X(t)−
p∑

l=1

Ẑ(j)B̂
(j)
l (Ẑ(j))′X(t− l)||22,

where Ẑ(j) is the membership matrix given by certain community detection algorithm ap-

plied to observations in t ∈ (Tj−1, Tj ] (e.g. the ones described in Chapter 3), and B̂
(j)
l

is the OLS estimate with the constraint that Φ
(j)
l = Ẑ(j)B

(j)
l (Ẑ(j))′ for some K × K ma-

trix B
(j)
l . Change points are then estimated by minimizing the loss function: (T̂1, ..., T̂m) =

argmin1<T1<...<Tm<T l2(T1, ..., Tm).
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4.4 Simulation

In this section we present numerical results for three algorithms: the algorithm for general

VAR model with structural break and the algorithm proposed for our model as described in

the previous section, with communities estimated by either spectral clustering or kmeans++

on OLS estimate as in Section 3.6.3. We shall refer to them as “OLS method”, “restricted

OLS with spectral clustering” and “restricted OLS with kmeans++” respectively. All cases

considered here are SBM-driven VAR(1) model as defined in (4.1), with single change point.

4.4.1 Fixed communities

We first consider cases where community structure is fixed and only edge probabilities

are changing across time. We start with a simple case with n = 100 and K = 2 equal-

sized communities where edge probabilities change from strictly assortative P (1) = ( 1 0
0 1 ) to

strictly disassortative P (2) = ( 0 1
1 0 ). The true change point is set to T1 = 0.5T and stationarity

parameter is ϕ = 1.5. Figure 4.1 shows standard error of estimated change point for a range

of T . Here standard error is computed from just 10 independent simulation runs so the curves

shown, especially for that of OLS method, are not very smooth. We can see that restricted OLS

methods perform much better than unrestricted OLS when T is moderately large. Moreover,

there seems to be a threshold around T = 500, above which estimation of change point becomes

much more accurate.

Next we examine the performance of algorithms for differentK, i.e. number of communities.

Table 4.1 shows standard error of estimated change point for a range of K computed from 10

independent simulation runs. Here n = 100 and T = 1200, with equal-sized communities

and edge probabilities changing from strictly assortative to strictly disassortative as in the

previous case. The true change point is set to T1 = 0.3T , and stationarity parameter is ϕ(j) =

0.8K/||P (j)||, where || · || denotes spectral norm of a matrix. We see no substantial effect of K

on accuracy of estimated change point, and restricted OLS consistently performs better than

unrestricted OLS for different K.

Finally we consider a case with n = 100 and K = 2 equal-sized communities where edge

probabilities change from P (1) = ( .7 .3
.3 .7 ) to P (2) = ( .9 .1

.1 .9 ). The true change point is set to

T1 = 0.5T where T = 2000, and stationarity parameter is ϕ(j) = 0.8K/||P (j)|| as before. Figure

4.2 shows the averaged loss function computed from 10 independent simulation runs, where
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Figure 4.1: Standard error of estimated change point as T increases, with fixed communities

K OLS Restricted OLS w/ sc Restricted OLS w/ kms

2 16.6 13.3 7.4
3 22.5 14.1 7.2
4 21.2 11.7 8.8
5 29.8 7.5 9.6

Table 4.1: Standard error of estimated change point as K increases, with fixed communities
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Figure 4.2: Averaged loss function, with fixed communities

“oracle restricted OLS” stands for restricted OLS method using the true community partition

as constraint. The curves are normalized such that the range is always [0, 1]. We can see

that the averaged loss function for both OLS and oracle restricted OLS methods shows a clear

minimum around t = 1400, the true change point. For the other two restricted OLS algorithms,

however, the minimum is not so clear. One possible cause is that error rate for recovered

communities is not ignorable in this case (cf. Section 3.6.4). Figure 4.3 shows the combined

error rate, computed as the sum before and after each time t. We can see that the combined

error rate is approximately 0.37 around the true change point. Note that this does not imply

that OLS method performs better than restricted OLS, since the loss function curves shown

here are averages. In fact, while the estimated change point from oracle restricted OLS lies in

the interval [950, 1050] 10 times out of 10 simulation runs, but only 2,2,4 times respectively for

OLS, spectral clustering and kmeans++.

If one increase the number of observations, however, restricted OLS starts to work and

Figure 4.4 shows an example when T increases to 4000. The standard error computed from 10

runs is 98.9, 42.8 and 32.1 respectively for OLS, spectral clustering and kmeans++.
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Figure 4.3: Combined error rate, with fixed communities

Figure 4.4: Loss function, with fixed communities
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Figure 4.5: Standard error of estimated change point as T increases, with changing communities

4.4.2 Changing communities

We start with a simple case with n = 100 and K = 2 communities where edge probabilities

stay strictly assortative P (1) = P (2) = ( 1 0
0 1 ) across time, and the block partition changes from

G
(1)
1 = {1, ..., 60}, G(1)

2 = {61, ..., 100} to G
(2)
1 = {1, ..., 40}, G(2)

2 = {41, ..., 100}. The true

change point is set to T1 = 0.5T and stationarity parameter is ϕ(j) = 0.8n/(||P (j)||maxa n
(j)
a ),

where n
(j)
a = |G(j)

a |. Figure 4.5 shows standard error of estimated change point for a range of T .

We can see that OLS method does not work so well in this case, indicating that the algorithm is

not very sensitive to changes in community structure. On the other hand, restricted OLS with

kmeans++ performs better than that with spectral clustering, which is consistent with the fact

that restricted OLS with kmeans++ has higher recover rate (cf. Section 3.6.4).
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APPENDIX A

DISCUSSION ON HYPOTHESIS 2.20

This appendix is devoted to the discussion of Hypothesis 2.20. The first key observation

is that coin flips do not seem to matter. Note that there are two kinds of coin flips here, one

determining the types, and the other determining the type of vertices a new vertex connects to.

More precisely, for n > 2, let I(n) ∈ {A,B} denotes the type of vertex n. Also, let J(n) = 1 if

vertex n connects to a vertex of same type, otherwise let J(n) = −1.

For simplicity we treat x, y in U(x, x, y, y) as fixed and suppressed them in notations

throughout. Define UA(n) := NX
A (n)/NA(n) and UB(n) := NX

B (n)/NB(n). We condition

on the entire sequences of I(n) and J(n), and note that if I(n + 1) = A and J(n + 1) = 1, by

the recursive construction we have (again the conditioning is suppressed for simplicity)

EUk
A(n+ 1)U l

B(n+ 1) =
Nk

A(n)

(1 +NA(n))k
EUk

A(n)U
l
B(n)

+
1

(1 +NA(n))k

k−1∑
i=0

(
k

i

)
NA(n)

i EU i+1
A (n)U l

B(n).

(A.1)

However if I(n+ 1) = A and J(n+ 1) = −1, we have

EUk
A(n+ 1)U l

B(n+ 1) =
Nk

A(n)

(1 +NA(n))k
EUk

A(n)U
l
B(n)

+
1

(1 +NA(n))k

k−1∑
i=0

(
k

i

)
NA(n)

iU i
A(n)U

l+1
B (n)

(A.2)

instead. When I(n+ 1) = B we have similar recursive formulas.

Conditioning on NA(n) and NB(n), we suspect that the largest moments occur in one of

the two extreme cases:

• I(m) = A and J(m) = 1 for 2(x+y) < m ≤ NA(n)+x+y, I(m) = B and J(m) = −1 for

NA(n)+x+ y < m ≤ n. We denote by gA(NA(n), NB(n), k, l) the value of EUk
A(n)U

l
B(n)

corresponding to this case.

• I(m) = B and J(m) = 1 for 2(x+y) < m ≤ x+y+NB(n), I(m) = A and J(m) = −1 for

x+ y+NB(n) < m ≤ n. We denote by gB(NA(n), NB(n), k, l) the value of EUk
A(n)U

l
B(n)

corresponding to this case.
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What this essentially says is that the extreme cases are either a string of type A vertices

connecting to type A vertices, followed by a string of type B vertices also connecting to type A

vertices, or the other way around.

Let M = x + y. To better understand this claim we consider a reference sequence f(n, k)

(n ≥ M , k ≥ 1) which corresponds to the moments of classic Pólya urn. To be precise, the

sequence is defined by the following recursive formula:

f(M,k) = (
x

M
)k,

f(n+ 1, k) =
nk

(n+ 1)k
f(n, k) +

k−1∑
i=0

(
k

i

)
ni

(n+ 1)k
f(n, i+ 1), n ≥M.

It is easy to see that f(n, k) gives the k-th (raw) moment of the ratio of red balls in a classic

two-type Pólya urn that starts with x red ball and y blue balls, stopped when the model reaches

n balls in total.

In fact, we can calculate the explicit formulas for f(n, k), gA(a, b, k, l) and gB(a, b, k, l) using

method of undetermined coefficients. Specifically, f(n, k) is of the form
∑k−1

i=0 Ci/n
i. Ci satisfy

a system of linear equations, k − 1 of which come from equating the coefficients in recursive

formulas (the one corresponding to the leading degree is always equal), and the last one is

determined by the initial values. In general, given any initial values of f(M,k), one can derive

the explicit formulas by solving this linear system.

As for gA(a, b, k, l), it is easy to see that gA(a,M, k, l) = f(a, k)f(M, 1)l = ( x
M )lf(a, k).

Then gA(a, b, k, l) can be calculated by applying formula (A.2) b− (x+ y) times. Similar to the

calculation of f(n, k), gA(a, b, k, l) is of the form
∑l

i=0Ci/b
i, where Ci satisfy a system of linear

equations, one of which is determined by the initial values ( x
M )lf(a, k).

Unfortunately, there does not seem to be an obvious pattern for these coefficients and

formulas are hard to generalize to arbitrary order.

We gather some useful properties of f(n, k) in the following proposition.

Proposition A.1. (i) f(n, k) is strictly increasing in n and converges to the k-th moment of

Beta(x, y) distribution, which is
∏k−1

i=0
i+x
i+M . (ii) The following equality holds:

∑k−1
i=0 Cin

if(n, i+ 1)∏k−1
i=0 (n+ i)

= µk :=
k−1∏
i=0

i+ x

i+M
, (A.3)
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where Ci is the coefficient of ni in
∏k−1

i=0 (n+ i).

The first statement follows from the convergence of the ratio, as a martingale, to a Beta(x, y)

r.v.. Thus its k-th power is a submartingale and has increasing expectations.

The second statement can be proved by induction on n and k.

Now we are ready to state the following hypothesis.

Hypothesis A.2. Conditioning on I and J ,

EUk
A(n)U

l
B(n) ≤ max(gA(NA(n), NB(n), k, l), gB(NA(n), NB(n), k, l))

for all n. Also,

lim
b→∞

max(gA(a, b, k, l), gB(a, b, k, l)) = lim
b→∞

gB(a, b, k, l) =

∑l−1
i=0Cia

if(a, k − l + i+ 1)∏l−1
i=1(a+ i)

.

The second equality here is not part of the hypothesis and can be proved by induction on a.

When l = 1 or 0, both limits are defined as f(a, k).

This hypothesis can be verified for any finite n by computer program, where at each time

step EUk
A(n)U

l
B(n) is replaced by max(gA(NA(n), NB(n), k, l), gB(NA(n), NB(n), k, l)).

Remark A.1. When l = 2, the limit is

af(a, k) + f(a, k − 1)

a+ 1
.

When l = 3, the limit is

a2f(a, k) + 3af(a, k − 1) + 2f(a, k − 2)

(a+ 1)(a+ 2)
.

And so on and so forth. Note that this is consistent with (A.3). In fact, the limits are calculated

by first sending b to infinity and then apply (A.2) a times.

Explicit formula for gA(a, b, k, 1) and gB(a, b, 1, k) are easily calculated to be

gA(a, b, k, 1) =
M

b
µ1f(a, k) +

b−M

b
f(a, k + 1)

gB(a, b, 1, k) =
M

a
µ1f(b, k) +

a−M

a
f(b, k + 1)

105



Explicit formula for gA(a, b, k, 2) are more complicated:

gA(a, b, k, 2) =
M2

b2
µ21f(a, k) +

2M(b−M)

b2
µ1f(a, k + 1)

+
(b−M)(b−M − 1)

b2
f(a, k + 2) +

b−M

b2
f(a, k + 1).

Formulas for more complicated moments again seem to have no obvious pattern.

For some special cases we know which one of gA(NA(n), NB(n), k, l) and

gB(NA(n), NB(n), k, l) is larger: max(gA(a, b, k, 0), gB(a, b, k, 0)) = gA(a, b, k, 0) = f(a, k)

and max(gA(a, b, k, 1), gB(a, b, k, 1)) = gA(a, b, k, 1) =
M
b µ1f(a, k) +

b−M
b f(a, k + 1). And from

simulations it seems that for l > 1, max(gA(a, b, k, l), gB(a, b, k, l)) = gB(a, b, k, l) would hold

for large enough b.

Next we present some actual proofs for the lower moments.

Proof of Hypothesis A.2 for k + l = 1: Trivial, since EUA(n) = EUB(n) = x/(x+ y).

Proof of Hypothesis A.2 for k+ l = 2: Surprisingly, we have gA(a, b, 1, 1) = gB(a, b, 1, 1)

so type sequence doesn’t matter at all and since gA(a, b, 1, 1) ≤ f(a, 2) and gB(a, b, 1, 1) ≤ f(b, 2)

we are done.

Proof of Hypothesis A.2 for k + l = 3: By symmetry we only have to proof that

if EU2
A(n)UB(n) = gA(UA(n), UB(n), 2, 1) and EU2

B(n)UA(n) = gB(UA(n), UB(n), 1, 2) then

EU2
A(n+1)UB(n+1) ≤ gA(UA(n)+1, UB(n), 2, 1) if I(n+1) = A. Turns out that this requires

gB(a, b, 1, 2) ≤
M

b
µ1f(a, 2) +

b−M

b

af(a, 3) + f(a, 2)

a+ 1
,

which further requires that

gB(a, b, 0, 3) = f(b, 3) ≤ M

b
µ1
af(a, 2) + f(a, 1)

a+ 1
+
b−M

b

a2f(a, 3) + 3af(a, 2) + 2f(a, 1)

(a+ 1)(a+ 2)
.

But

M

b
µ1
af(a, 2) + f(a, 1)

a+ 1
+
b−M

b

a2f(a, 3) + 3af(a, 2) + 2f(a, 1)

(a+ 1)(a+ 2)
=
M

b
µ1µ2 +

b−M

b
µ3

= lim
a→∞

gA(a, b, 1, 2)

=
bf(b, 2) + f(b, 1)

b+ 1
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so the requirement is satisfied.

Proof of Hypothesis A.2 for k + l = 4: In this case gA(a, b, 2, 2) > gB(a, b, 2, 2) when

a > b and gA(a, b, 2, 2) ≤ gB(a, b, 2, 2) when a ≤ b. However the proof is more involved, since in

proving the third moment we used something like:

f(n+ 1, k + 1) =
nk

(n+ 1)k
f(n, k + 1) +

k−1∑
i=0

(
k

i

)
ni

(n+ 1)k
nf(n, i+ 2) + f(n, i+ 1)

n+ 1
,

(n+ 1)f(n, k + 2) + f(n, k + 1)

n+ 2
=

nk

(n+ 1)k
nf(n, k + 2) + f(n, k + 1)

n+ 1

+

k−1∑
i=0

(
k

i

)
ni

(n+ 1)k
n2f(n, i+ 3) + 3nf(n, i+ 2) + 2f(n, i+ 1)

(n+ 1)(n+ 2)

(so on and so forth also holds). But for forth moment if we want to do the same thing we would

need something like

n

n+ 1
f(n, 3) +

1

n+ 1

n2f(n, 3) + 3nf(n, 2) + 2f(n, 1)

(n+ 1)(n+ 2)
≤ f(n+ 1, 3)

and things like these don’t seem to hold in general. Still one can brute force prove it and the

fact that gA(a, b, 2, 2) > gB(a, b, 2, 2) when a > b is useful.

Proof of Hypothesis A.2 for k+ l > 4: In general there does not seem to be any obvious

way to determine whether gA(a, b, k, l) > gB(a, b, k, l), and this prohibits generalization of our

proofs.
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APPENDIX B

PROOF OF THEOREM 3.10

The proof of Theorem 3.10 essentially follows that of Theorem 3.15. In particular, Step 2

of the proof remains the same. For step 1, we need to consider the perturbation term ξij(t1, t2).

In particular, for the matrices in (3.24), we have that covariances between scaled block means

are

ΣG
bb = Var(Yb) =

1

nGb
Var(

∑
i∈Gb

Xi) =
1

nGb
(nGb IT +

∑
i,j∈Gb

P (i, j))

=
1

nGb
(nGb IT + (nG)2bPbb +

∑
i,j∈Gb

Ξij) = IT + nGb Pbb +
1

nGb

∑
i,j∈Gb

Ξij

(B.1)

and similarly

ΣG
bd =

√
nGb n

G
d Pbd +

1√
nGb n

G
d

∑
i∈Gb

∑
j∈Gd

Ξij (B.2)

when b ̸= d.

Covariances between scaled cluster means are

ΣC
aa = Var(Za) =

1

nCa
Var(

∑
i∈Ca

Xi) = IT +
1

nCa

∑
i,j∈Ca

P (i, j)

=IT +
1

nCa

∑
1≤b,d≤K

nabnadPbd +
1

nCa

∑
i,j∈Ca

Ξij

(B.3)

and similarly

ΣC
ac =

1√
nCa n

C
c

∑
1≤b,d≤K

nabncdPbd +
1√
nCa n

C
c

∑
i∈Ca

∑
j∈Cc

Ξij (B.4)

when a ̸= c.

Finally covariances between scaled block and cluster means are

Σ̃ab = Cov(Yb,Za) =
1√
nCa n

G
b

Cov(
∑
i∈Ca

Xi,
∑
j∈Gb

Xj) =
1√
nCa n

G
b

(nabIT +
∑
i∈Ca

∑
j∈Gb

P (i, j))

=
nab√
nCa n

G
b

IT +

√
nGb
nCa

K∑
d=1

nadPbd +
1√
nCa n

G
b

∑
i∈Ca

∑
j∈Gb

Ξij .

(B.5)

Note that all of these expressions have a leading part with the blockwise defined Pbd, and

a perturbation part with the node-wise defined Ξij . The two parts will be analyzed separately,
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so for convenience we introduce the following notation:

Σ
G(1)
bd = δ(b, d)IT +

√
nGb n

G
d Pbd,

Σ
G(2)
bd =

1√
nGb n

G
d

∑
i∈Gb

∑
j∈Gd

Ξij ,

ΣC(1)
ac = δ(a, c)IT +

1√
nCa n

C
c

∑
1≤b,d≤K

nabncdPbd,

ΣC(2)
ac =

1√
nCa n

C
c

∑
i∈Ca

∑
j∈Cc

Ξij ,

Σ̃
(1)
ab =

nab√
nCa n

G
b

IT +

√
nGb
nCa

K∑
d=1

nadPbd,

Σ̃
(2)
ab =

1√
nCa n

G
b

∑
i∈Ca

∑
j∈Gb

Ξij .

(B.6)

The following lemma summarizes some of the useful inequalities involving Pbd and Ξij that

we shall need along the proof.

Lemma B.1. For all 1 ≤ i, j ≤ n and 1 ≤ a, b, c, d ≤ K,

||Ξij ||max ≤ rγ

4K3n2
, (B.7)

||Ξij ||∞ ≤ min{M
n
,

rγ

4K3n2
} (B.8)

max{||ΣG(1)
bd ||∞, ||ΣC(1)

ac ||∞, ||Σ̃(1)
ab ||∞} ≤ 1 +M, (B.9)

max{||ΣG(2)
bd ||∞, ||ΣC(2)

ac ||∞, ||Σ̃(2)
ab ||∞} ≤ min{M,

rγ

4K3n
}, (B.10)

∣∣||ΣG
bd||2F − ||ΣG(1)

bd ||2F
∣∣ ≤ 2M + 1

K

rγT

2K2n
(B.11)

∣∣||ΣC
ac||2F − ||ΣC(1)

ac ||2F
∣∣ ≤ 2M + 1

K

rγT

2K2n
(B.12)

∣∣||Σ̃ab||2F − ||Σ̃(1)
ab ||

2
F

∣∣ ≤ 2M + 1

K

rγT

2K2n
(B.13)

Next we turn to E∆ in (3.31) and note that we still have

E∆ = Tr(ΩΣ) =
K∑
b=1

Tr(ΣG
bb)−

K∑
a=1

Tr(ΣC
aa).
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Using (B.1) and (B.3) we have

Tr(ΣG
bb) = T + nGb

T∑
t=1

ρbb(t, t) +
1

nGb

T∑
t=1

∑
i,j∈Gb

ξij(t, t)

and

Tr(ΣC
aa) = T +

1

nCa

T∑
t=1

∑
1≤b,d≤K

nabnadρbd(t, t) +
1

nCa

T∑
t=1

∑
i,j∈Ca

ξij(t, t).

The first term will cancel out and we can write E∆ = δ1 + δ2, where

δ1 :=
T∑
t=1

K∑
b=1

nGb ρbb(t, t)−
T∑
t=1

K∑
a=1

1

nCa

∑
1≤b,d≤K

nabnadρbd(t, t)

and

δ2 :=
T∑
t=1

K∑
b=1

1

nGb

∑
i,j∈Gb

ξij(t, t)−
T∑
t=1

K∑
a=1

1

nCa

∑
i,j∈Ca

ξij(t, t).

For the leading part δ1 we have

δ1 ≥ (
K∑
a=1

K∑
b,d=1
b̸=d

nabnad
nCa

)
γT

n
(B.14)

as in (3.31). And in place of Lemma 3.16 we have the same lower bound on δ1:

Lemma B.2.

δ1 ≥
rsγ

2

T

K2n
.

The proof of this lemma is identical to that of Lemma 3.16, with δ replaced by δ1.

For the perturbation part δ2 we have

|δ2| ≤
T∑
t=1

K∑
b=1

1

nGb

∑
i,j∈Gb

|ξij(t, t)|+
T∑
t=1

K∑
a=1

1

nCa

∑
i,j∈Ca

|ξij(t, t)|

≤
T∑
t=1

K∑
b=1

1

nGb

∑
i,j∈Gb

||Ξij ||max +

T∑
t=1

K∑
a=1

1

nCa

∑
i,j∈Ca

||Ξij ||max

≤
T∑
t=1

(

K∑
b=1

(nGb )
2

nGb
+

K∑
a=1

(nCa )
2

nCa
)

rγ

4K3n2
=

2Tnrγ

4K3n2
=
rγ

2

T

K3n
.

The last inequality here follows from (B.7) in Lemma B.1. Since K ≥ 2 and s ≥ 1 we have

|δ2| ≤ δ1/2 by Lemma B.2.

In place of Lemma 3.18 and 3.19 we have the following lemmas:
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Lemma B.3. ||Σ1/2ΩΣ1/2||op ≤ 2K(2M+1), where M is the constant in (3.10) of Assumption

3.9.

Lemma B.4. ||Σ1/2ΩΣ1/2||2F ≤ (5 + 2
rγ + 2M2

γ + 8M)Kδ1.

The rest of the proof stays the same.

B.1 Proof of Lemma B.1

The first two inequalities are straightforward. (B.7) follows from ||Ξij ||max ≤ ||Ξij ||∞ and

(3.12). Since (3.9) implies that ||Ξij ||∞ ≤ ||Pbd||∞ for i ∈ Gb and j ∈ Gd, (B.8) follows from

(3.10) and (3.12).

For (B.9), using (3.10) in Assumption 3.9 we have

||ΣG(1)
bd ||∞ ≤ 1 +

√
nGb n

G
d ||Pbd||∞ ≤ 1 + n||Pbd||∞ ≤ 1 +M,

||ΣC(1)
ac ||∞ ≤1 +

1√
nCa n

C
c

∑
1≤b,d≤K

nabncd||Pbd||∞

≤1 +
n

nCa n
C
c

∑
1≤b,d≤K

nabncd||Pbd||∞

(using nCa , n
C
c ≤ n)

=1 +
M

nCa n
C
c

∑
1≤b,d≤K

nabncd

=1 +M

and

||Σ̃(1)
ab ||∞ ≤ nab√

nCa n
G
b

+

√
nGb
nCa

K∑
d=1

nad||Pbd||∞ ≤ 1 + n

K∑
d=1

||Pbd||∞ ≤ 1 +M.

For (B.10), note that

||ΣG(2)
bd ||∞ ≤ 1√

nGb n
G
d

∑
i∈Gb

∑
j∈Gd

||Ξij ||∞ ≤
nGb n

G
d√

nGb n
G
d

min{M
n
,

rγ

4K3n2
} ≤ min{M,

rγ

4K3n
}.

Similarly we have max{||ΣC(2)
ac ||∞, ||Σ̃(2)

ab ||∞} ≤ min{M, rγ
4K3n

}.

For (B.11), we have

||ΣG
bd||2F = Tr((ΣG

bd)
′ΣG

bd) = ||ΣG(1)
bd ||2F + ||ΣG(2)

bd ||2F + 2Tr((Σ
G(2)
bd )′Σ

G(1)
bd ).
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And by (B.9) and (B.10) we know that

||ΣG(2)
bd ||2F ≤ T ||ΣG(2)

bd ||2∞ ≤ T
r2γ2

16K6n2
≤ T

r2γ2

2K3n

and

|Tr((ΣG(2)
bd )′Σ

G(1)
bd )| ≤ T ||ΣG(2)

bd ||∞||ΣG(1)
bd ||∞ ≤ T

rγ

4K3n
(M + 1).

Now, recall that r ∈ (0, 1) and γ ≤M . Therefore we have

∣∣||ΣG
bd||2F − ||ΣG(1)

bd ||2F
∣∣ ≤ T

rγM

2K3n
+ 2T

rγ

4K3n
(M + 1) =

2M + 1

K

rγT

2K2n
.

Similarly we have (B.12) and (B.13). This completes the proof of Lemma B.1.

■

B.2 Proof of Lemma B.3

Same as in the proof of Lemma 3.18 we have

||Σ1/2ΩΣ1/2||op ≤ ||Σ1/2||op||Ω||op||Σ1/2||op = ||Σ||op.

Next, note that we can upper-bound the operator norm by the L∞ norm. Therefore from

(3.24), (B.9) and (B.10) we know that

||Σ||op ≤ 2K max
1≤a,b,c,d≤K

{||ΣG
bd||∞, ||ΣC

ac||∞, ||Σ̃ab||∞}

≤ 2K(1 +M +M)

= 2K(2M + 1).

This proves the lemma.

■

B.3 Proof of Lemma B.4

Same as in the proof of Lemma 3.19 we have

||Σ1/2ΩΣ1/2||2F = Tr(Σ1/2ΩΣΩΣ1/2) = Tr(ΩΣΩΣ) (B.15)
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by properties of traces. And from (3.30) we can compute the trace as

Tr(ΩΣΩΣ) =
∑

1≤b,d≤K

Tr((ΣG
bd)

′ΣG
bd) +

∑
1≤a,c≤K

Tr((ΣC
ac)

′ΣC
ac)− 2

∑
1≤a,b≤K

Tr(Σ̃′
abΣ̃ab)

=
∑

1≤b,d≤K

||ΣG
bd||2F +

∑
1≤a,c≤K

||ΣC
ac||2F − 2

∑
1≤a,b≤K

||Σ̃ab||2F .

Divide this trace into three parts and write Tr(ΩΣΩΣ) = I1 + I2 + I3, where

I1 :=
∑

1≤b,d≤K

||ΣG(1)
bd ||2F −

∑
1≤a,b≤K

||Σ̃(1)
ab ||

2
F ,

I2 :=
∑

1≤a,c≤K

||ΣC(1)
ac ||2F −

∑
1≤a,b≤K

||Σ̃(1)
ab ||

2
F

and

I3 :=
∑

1≤b,d≤K

(||ΣG
bd||2F−||ΣG(1)

bd ||2F )+
∑

1≤a,c≤K

(||ΣC
ac||2F−||ΣC(1)

ac ||2F )−2
∑

1≤a,b≤K

(||Σ̃ab||2F−||Σ̃(1)
ab ||

2
F ).

Since I1 and I2 are identical to those defined in the proof of Lemma 3.19, we use the same

bounds to get

I1 + I2 ≤ K(1 +
2

rγ
+

2M2

γ
)δ1.

For I3, we have

I3 ≤ 4K2 2M + 1

K

rγT

2K2n
= 4K(2M + 1)

rγT

2K2n

by (B.11),(B.12) and (B.13). Using Lemma B.2 we get I3 ≤ 4K(2M + 1)δ1.

It follows from the above inequalities that

Tr(ΩΣΩΣ) = I1+ I2+ I3 ≤ K(1+
2

rγ
+

2M2

γ
)δ1+4K(2M +1)δ1 ≤ (5+

2

rγ
+

2M2

γ
+8M)Kδ1.

Lemma B.4 then follows from (B.15).

■
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