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ABSTRACT

Judith Noemi Rivera: Exploring Potential Therapeutic Benefits of Spatially Fractionated
Radiation Therapy

(Under the direction of Sha X. Chang, PhD)

The work presented in this dissertation focuses on investigating new and safe ways to use

radiation for enhancing cancer treatment via preclinical studies of Spatially Fractionated

Radiation Therapy (SFRT). SFRT is a very promising, yet poorly understood, cancer

radiotherapy approach that has recently gained traction due to its remarkable tissue

selectivity, eradicating tumors effectively with little treatment toxicity, as well as its easy

implementation on a wide range of clinical radiotherapy machines. Decades of clinical and

preclinical research have demonstrated that SFRT may be used as a safe and effective way

to shrink very large, bulky tumors in patients for whom other modern treatment approaches

have been ineffective. Despite its very high therapeutic ratio and potential to satisfy

several unmet needs in cancer treatment, SFRT remains largely an experimental approach,

and a lack of preclinical SFRT research leaves many important questions unanswered.

This body of work investigates the development of a novel SFRT-delivery system

and its implementation in a variety of preclinical SFRT research scenarios in the hopes

of shedding light on some of the unanswered questions that hinder clinical translation

of this promising treatment technology. In this work, systemic studies investigate key

unique SFRT dosimetric parameters and their correlations with treatment response, as

well as SFRT’s specific advantages over conventional radiotherapy, particularly those

enhancing multi-modality cancer therapy approaches such as anti-cancer immunotherapy

and nanoparticle chemotherapy drug-delivery to tumors. SFRT is a low-toxicity and

low-cost radiation therapy treatment that offers hope for many cancer patients, especially
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those failed by current cancer treatment technologies. The work presented here aims to

improve the understanding of this treatment approach and contribute to the effective and

accessible treatment of cancer.
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A mis padres, Lorena y Jose Daniel, por haber sido como lo fueron
conmigo, por haberme dado todo sin esperar nada a cambio, y que
por su gran apoyo y amor he podido alcanzar una meta más en mi
carrera.

A mis hermanos, mis amigos, y demás familia en general por estar
siempre a mi lado y quererme tanto.

Amo estar con ustedes, vivendo cada anécdota, emoción, y experiencia que
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CHAPTER 1: CANCER AND THE ROLE OF RADIATION THERAPY

1.1 Cancer- What Is It?

Loosely defined, cancer refers to a group of cells that have lost their inherent ability to

perform normal functions or form normal tissues, and these cells even gain new functions

including the ability to grow uncontrollably, invade, and metastasize. These cells often

create a small body of cells, a tumor, but though a tumor is made from cancerous cells,

the environment is far from homogenous. A distinct microenvironment exists within a

tumor, including different cell types and vasculature, and this microenvironment is still

not fully understood. Because each instance of cancer is unique and highly dependent on

the environment, mutation, and other factors, the most effectual treatment methods for

cancer still remain mysterious.

New discoveries are made every year that help shed light on some of these mysteries

and the very definition of “cancer” and what are considered to be its distinguishing

features are still evolving [1]. A vast amount of molecular cancer research has embraced

the notion that the key to curing cancer lies in finding and decoding the common cancer

genes responsible for the majority of cancers [1]. The gene mutation theory of cancer

indicates that the genetic differences between cancer types determine how aggressively any

individual type of cancer grows and affects its host environment. Numerous studies have

created molecular and genetic profiles of cancer and their different subtypes. With huge

amounts of emerging genetic molecular data of cancer. In 2000 Hannan and Weinberg

classified these large number of diverse gene mutations into simplified molecular principles,

known as the Hallmarks of Cancer [2].
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1.2 Radiobiology- The Hallmarks of Cancer

Hannan and Weinberg organized the framework for the Hallmarks of Cancer into

6 major pathways which cancer alters to develop: insensitivity to anti-growth signals,

self-sufficient oncogenes, evasion of apoptosis, sustained angiogenesis, metastasis, and

limitless replicative potential[2]. Each leg of this framework offers a method through

which cancer develops, grows, and develops a distinct microenvironment and are briefly

summarized, below.

1. Cancers cells are insensitive to anti-growth signals, circumventing the cell’s natural

tumor suppressor genes through mutations that prevent anti-growth signals from

binding to a receptor, or alternatively, phosphorylation, etc.

2. Cancer cells develop self-sufficiency in growth signals, locking a cell’s oncogenes into

an ON state so normal sources for growth signals are not needed.

3. Cancers evade cell death, apoptosis, through mutations in tumor suppressor signals,

such as the p-53 tumor suppressor protein, which allow tumor cells to survive where

they otherwise would not, potentially bypassing replicative senescence, a natural

stop to cell division after appropriate population doublings.

4. Cancers have sustained angiogenesis, development of new vasculature. This present

a unique challenge as tumors may become resistant to angiogenesis inhibitor drugs,

such as VEGF-pathway inhibitors, by seeking alternative signaling pathways for

recruiting vasculature into the tumor [3].

5. Cancers have an increased ability to both invade surrounding normal tissues and also

metastasize, wherein tumor cells breach the tumor basement membrane and move

after proliferation and angiogenesis of the primary tumor. In addition, metastatic

cells may detach themselves from the primary tumor and invade the circulatory
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system, adhere to a vessel wall, extravasate, establish a microenvironment in a

micrometastases and then further proliferate. However, this metastatic cascade is

extremely inefficient and very few cells manage to generate macroscopic metastases.

6. Cancers have limitless replicative potential, where disruption of the pathway that

limits cell replication allows tumor cells to become immortalized. Benign tumor

cells that have undergone the first five major pathway mutations discussed so far

cannot yet divide with infinite replicative potential. However, these cells finally

become immortalized due to the overexpression of telomerase, an enzyme cells use

to synthesize DNA, after the erosion of the cell’s telomeres.

The gene mutation theory of cancer underlying the hallmarks that Hannahan and

Weinberg organized into a blueprint for understanding carcinogenesis have served as a

driver of cancer biology research. By organizing the cellular properties of carcinogenesis

into a framework of six pathways they provided a guideline for cancer treatments. The

majority of modern cancer treatments attempt to target and disrupt at least one of these

major pathways to halt cancer progression [4], [5]. Cancer therapies with drugs that target

one or more of these pathways are an area of very active investigation; thousands of drugs

are in development [6].

Notably, a decade after their initial publication, Hannahan and Weinberg updated

Hallmarks of Cancer framework to include four additional pathways: reprogramming

energy metabolism, evading the immune response, and the enabling traits of genome

instability/mutation, and tumor promoting inflammation [7]. “Hallmarks II” also mentions

the emerging importance of the Tumor Microenvironment and its numerous modifiers.

Many investigators have noted that the majority of research on cancer to date has

focused on the parenchyma of the tumor and the associated normal tissues [5], where the

parenchyma is the part (s) of the tissue that performs biological functions and in a tumor

refers to the tumor cells themselves. However, in the last decade there has been emerging
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evidence of the importance of the tumor microenvironment, including the tumor stroma,

tissues that support the function of the parenchymal cells such as the basement membrane,

extracellular matrix, immune cells, and vasculature etc. [8], [9]. The seed and soil theory,

in which cells will only grow in microenvironments that are correct for them [10], [11],

invites cancer therapies to target the tumor microenvironment and many treatments have

been developed to do so [3], [8], [12]. One such treatment includes altering the tumor

microvasculature, a component that plays a key role in the tumor’s ability to grow [5], [13].

These and other modifiers within the tumor microenvironment play a role in the health

and persistence of the tumor, and along with targeting the pathways described in the

Hallmarks of Cancer, research can be guided toward effective and appropriate treatment

[1].

One common treatment for cancer, Radiation Therapy (RT), is used in about half of

all cases of cancer within the U.S. [14], [15]. The primary target of Radiation Therapy

is to cause ionization events within the tissue, resulting in damage to DNA base-pairs,

single strand breaks (SSBs), and double-strand breaks (DSBs) [16], [17]. In each of these,

a pathway to tumor growth is potentially disrupted and researchers have linked these

pathways to the original Hallmarks [4], [5]. In principle, highly energetic, ionizing radiation

penetrates tissues and deposits energy to the cells that it passes through, destroying them

or inducing genetic changes that result in eventual cell death [17]. Radiation does not

distinguish between normal cells and cancer cells and is equally damaging to both; however,

all cells do not respond to radiation in the same way. Normal cells generally have vastly

improved repair mechanisms compared to cancer cells and can recover from radiation

damage more quickly [16], [18]. Radiation therapy may be used to exploit these differences

in cellular repair mechanisms to kill cancer cells, while minimizing exposure to normal

cells [16].
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1.3 Background and History of Radiotherapy

The start of Radiation Therapy can be traced to the discovery of x-rays by Wilhelm

Rontgen in 1895, natural radioactivity by Henry Becquerel in 1896, and radium by Pierre

and Marie Curie in 1898. The biological and physiological effects of x-ray radiation

immediately caught the interest of researchers and physicians around the world, and

only two months later, Austrian radiologists Freund and Schiff proposed their potential

therapeutic use [19], [20]. This discovery was quickly followed by the first experimental,

but ultimately fatal, treatment with x-rays. French physician Victor Despeignes attempted

to use x-rays to treat a case of stomach cancer in 1896, and though ultimately fatal, a

year later Radiation Therapy resulted in the successful treatment of lupus by Schiff in

1897 [19], [20]. The recognized therapeutic benefits of ionizing radiation for the use in

treatments of cancers and other malignancies quickly ushered in an era of rapid technology

development and a radical change in how cancer treatment was approached. Since the

turn of the 20th century, radiation therapy treatments have undergone several massive

changes, which have greatly enhanced therapeutic indices for patients as well as improved

survival and quality of life [16].

Among these changes is the development of the modern linear accelerator (LINAC)

machine, which has the ability to precisely deliver highly energetic x-ray radiation to target

patient tumors in any site of the body and destroy them. These machines use advanced

technology to shape the x-rays as they exit the machine to conform to the specific shape

of a tumor, while avoiding some of the surrounding critical organs. This modern linear

accelerator has revolutionized the way cancer is treated and over a century after the initial

discover of radiation, radiation therapy is still routinely used around the world as a means

for treating cancer and a multitude of other ailments. Today, radiation therapy is used in

approximately 50% of cancer treatments in the U S. [14].
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1.4 Overview of Modern Radiotherapy Treatments

The benefits of Radiation Therapy have advanced with technology and research, though

the ultimate goal has long remained: to eradicate the malignancy while minimizing the

effects on normal tissue, especially those tissues that are critical to patient survival

and quality of life. Modern radiation therapy technologies and techniques have been

specifically developed to enhance the Therapeutic Index (TI) of cancer treatment, that is,

the ability to eradicate tumors, while maximally sparing surrounding critical structures

and normal tissues in the body. In the last two decades, highly sophisticated and

complex radiation therapy and imaging technologies have been developed that result

in high precision and conformal radiation targeting of tumors. When combined with

advanced radiobiological understanding of tissue responses, these developments have led to

significant improvements in patient outcomes [21]. These developments include radiation

therapy techniques used both separately and in tandem to allow clinicians to strive toward

eradication of malignancy but preservation of normal tissue. Some of these techniques

include Multi-fractionated Therapy, Image-Guided Radiation Therapy (IGRT), Intensity

Modulated Radiation Therapy (IMRT), Stereotactic Radiosurgery (SRS) and Stereotactic

Body Radiation Therapy (SBRT), Proton Therapy, among others.

1.4.1 Multi-fractionated RT

The dose required to kill a tumor is often very high, and when delivered as a single

treatment may result in severe normal tissue toxicities [22]. These toxicities may cause

undue pain and stress to the patient and result in decreased quality of life. One technique

for limiting the damage to normal tissues involves dividing the tumor killing dose into

a number of smaller dose fractions, delivered over time, known as multi-fractionated

radiation therapy (MFRT). This technique effectively exploits differences between tumor

and normal tissue radiobiological repair mechanisms to guide treatment, effectively sparing
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normal tissues while increasing damage to the tumor [16].

1.4.2 3D Conformal RT, Intensity Modulated RT, and Image-Guided RT

Further sparing of normal tissue is achieved by conforming the 2-dimensional radiation

beam to fit the shape of the tumor volume and deliver a customized, irregular radiation

field shape to fit the tumor for each treatment angle used. Individually controlled miniature

radiation shields, called multi-leaf collimators (MLCs), create beamlets that when combined

with advances in CT imaging technology allow for this 3-dimensional conformal radiation

field shaping, called 3-dimensional Conformal Radiation Therapy (3DCRT) [23]. By

optimizing beam placement and shielding, 3DCRT has an enhanced ability to localize

treatment to the target volume and avoid nearby critical structures, known as organs at

risk (OAR), compared to conventional 2D radiotherapy that used rectangular-shaped fields

[24]. Intensity modulated radiation therapy (IMRT) improves on the 3DCRT technique

via advancements in treatment planning software [25]. The software user delineates

the treatment targets and OARs, defines the minimum and maximum dose limits and

number of beam angles to use, then the inverse planning software algorithm calculates the

optimal intensity for each individual beamlet. Computer-controlled MLCs are then used

to modulate each beamlet intensity for each angle which enables enhanced OAR sparing,

even for complex concave radiation field shapes [26].

As these advanced highly conformal 3D IMRT techniques allow users to create much

narrower treatment margins and higher dose gradients than ever before, there is also

enhanced risk of setup error and inadvertent radiation to nearby OARs [25]. The

development of advanced image-guided radiotherapy (IGRT), such as cone-beam CT

scans acquired before each treatment, allow for more accurate positioning to avoid nearby

misses. IGRT’s anatomical tracking allows for changes in daily treatment repositioning, as

well as computing the total volumetric dose from the entire treatment course [25]. These

advances in modern image-guidance procedures, as well as highly advanced treatment
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planning techniques and computer-controlled MLC technology, have helped make IMRT

possible.

The primary patient and physician concern is to control or eradicate cancers in the

immediate future; however, the biggest drawback of advanced radiotherapy techniques

like 3DCRT, IMRT, and IGRT is the increased total dose delivered to the patient’s body,

which is correlated with secondary malignancies later in life [27]. While the dose to critical

organs is minimized, the use of smaller beamlets of radiation through more angles in the

body leads to longer treatment times and, hence, increased radiation leakage through the

collimator leaves. The increased leakage is especially enhanced in patients with larger

tumor sizes or patients with recurring or more aggressive tumors types that require higher

total dose to eradicate. However, this radiation leakage contributes only a few percent of

the total dose to the body, where the total dose is largely determined by the prescription

dose and treatment tumor volume. In addition to being time-consuming and complex,

these advanced radiotherapy techniques require very expensive, sophisticated equipment

and well-trained staff to implement [26]. IMRT in particular remains very sensitive to

setup error and treatment misses near the setup margins [25].

1.4.3 Stereotactic Body RT

Advances in both IGRT, IMRT, as well as specialized treatment planning methods

have helped resulted in high targeting accuracy and step dose gradients beyond the target

volume [28], [29]. In conjunction with anatomy tracking, they have additionally enabled

the development of stereotactic body radiation therapy (SBRT), which precisely delivers

high, tumor-killing doses of radiation as a single treatment session, or a limited number

of time-fractionated session to cranial or extracranial targets anywhere within the body

[30]. These treatments have shown remarkable success in the treatment of extracranial

oligometastases less than 3cm [30] and limited success for all solid tumors less than 5cm

[31]; however, it is not recommended for tumors 5cm or larger due to high risk of fatal
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normal tissue toxicity complications [32].

1.4.4 Proton RT

Radiation therapy may also be carried out with energetic charged particles such as

protons. In x-ray radiotherapy, as well as electron radiotherapy, the x-rays deposit their

maximum energy at or near the tissue entrance and then continue depositing dose along

their entire trajectory until they come out the other side of the patient, killing cancer as

well as damaging normal cells in the process. However, protons in radiotherapy have a very

low dose at the tissue entrance which then increases with increasing depth until they reach

a sudden peak, maximum dose at the tumor and then falls off very rapidly, with no exit

dose [33]. In principle, protons are much less damaging to normal tissue cells compared to

modern x-ray radiotherapy for similar rates of tumor killing [34], [35]; however it is also

more sensitive to organ motion as well as anatomy changes within the path of the beam than

x-ray radiotherapy [34].. The distinct radiobiological advantages inherent to proton therapy

make a very promising treatment approach that has been used on thousands of patients

already, but it comes at a very steep cost and is considered a highly controversial treatment.

A single treatment room may be up to an order of magnitude higher than for even the most

high-end photon radiotherapy unit, requiring costly cyclotrons or synchrotron facilities

to produce and uses the most advanced beam shaping collimators, image-guidance, and

treatment planning techniques [33], [36]. In addition, several physicians and researchers

have raised concerns over its lack of cost-effectiveness as there is little convincing evidence

that proton therapy is superior to x-ray radiotherapy in terms of clinical outcomes [35],

[37]. Proton therapy is still considered a largely experimental, evolving approach and

needs further investigation to demonstrate its cost-utility balance on the world-wide stage

[38].
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1.4.5 Combination Therapies

Combination therapies are designed to exploit complementary cancer treatment

strategies to disrupt the pathways for malignancies. Though radiation therapy is the most

successful treatment type, the addition of other therapies may dramatically enhance the

effects of radiation therapy [39], [40]. Research shows a relationship between radiation

therapy and the immune response, complementary to immunotherapy [21], [41] as well as

chemotherapy [42]. Hannan and Weinberg’s Hallmarks of Cancer have been hugely

influential in driving the new molecular cancer and genetic research, which has identified

several new targets for anti-cancer drug development and revolutionized the field of

immunotherapy research citeahmadClinicalDevelopmentNovel2019. Currently, cancer

research that targets specific parts of the tumor’s genetic pathways to disrupt progression

is being explored [43]–[45]. There is evidence, albeit limited, that combining radiation

with immunotherapy may help augment the biological effects of treatment and induce a

greater tumor response and several immunomodulatory agents in development for this

purpose [46]–[49]. In 2016, the CTRad working group within the UK National Cancer

Research Institute (NCRI), published a consensus statement that called for identifying

barriers and solutions to increase the number of clinical trials in drug-radiotherapy

combinations as well as a list of recommendation and guidelines for future work in this

area [21]. In this call to action, the UK NCRI acknowledged many challenges to

widespread clinical implementation, and has shifted focus away from exclusive use of

Radiation Therapy alone.

1.5 The Case for Additional Treatment Technologies

Modern day radiotherapy treatments have undoubtedly benefited millions of patients

across the US and the world. These advancements include geometric precision and targeting

abilities and allow for some differentiation between the treatment target (tumor) and other
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sensitive tissues to control cancers and improve clinical outcomes [28], [29], [50]. However,

the benefit of these advanced technologies come with a high price tag. Several researchers

have argued that the development of these state-of-the-art technologies have significantly

contributed to the high rise in treatment costs [29], [50], [51], general healthcare costs

[52], [53], and places additional financial barriers to quality cancer care on medically

underserved communities [38], [49]. In addition, many of these treatment technologies are

still largely inaccessible for developing countries, where the majority of the world’s cancer

population resides [54], [55].

Beyond the need for cost-effective treatments, leaps made in this technological revolution

have not led to improvements in clinical outcome near the same order of magnitude. Today,

many experts believe that further geometric and dosimetric improvements have had a

diminishing return in clinical utility of radiation therapy. There remain a host of patients

with cancers that do not respond to conventional treatment approaches or for whom these

approaches are extremely dangerous. These patient populations include pediatric and

geriatric patients [29], [55], [56], patients whose critical organs have already received the

maximum tolerance dose [57], [58], patients with chemoresistant and radioresistant cancers

[59]–[62], and patients with recurring or metastatic disease [62]. Further, by 2040, the

global number of newly diagnosed cancers is expected to increase drastically to nearly

28 million, an increase of almost 40% from 2018 as a result of population growth and an

aging population [63], [64].

Therefore, there is a need to look beyond the physics and engineering approaches

for cancer therapy advancement and towards very different and innovative,

radiobiologically-driven, approaches that have the potential to significantly increase the

treatment therapeutic ratio compared to the current conventional standards, especially for

those patients for whom modern treatment approaches remain ineffective or are not an

option [65]. In addition, a closer look at alternative, cost-effective approaches may make

effective cancer treatment more widely accessible to all radiation therapy clinics [66]–[68].
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A treatment approach that may meet some of these clinical needs and has gained

traction in recent years is spatially fractionated radiation therapy (SFRT). Spatially

fractionated radiation therapy is an experimental treatment approach that may offer new

hope for these cancer patients. Modern radiotherapy treatment approaches generally fall

under the umbrella of classical radiobiology, wherein the entire tumor volume, including

margins, must receive a high curative radiation dose to achieve tumor control and any

unirradiated volume may eventually lead to local treatment failure in the form of disease

progression or recurrence. However, recent SFRT research has shown that local tumor

control may still be achieved even with multiple “cold”, unirradiated spots present within

the tumor [69]–[71]. In fact, numerous preclinical and limited clinical studies have supported

the hypothesis that this unique treatment is more effective in tumor control with less

treatment toxicity [72]. Additionally, compared to conventional radiotherapy, this spatially

inhomogeneous dose distribution may induce vastly different microenvironmental effects in

tumors and may even play an important role in multimodal treatment approaches such as

chemotherapy and immunotherapy [73]. Despite the potential for SFRT to satisfy several

unmet needs in cancer treatment, this approach has historically been difficult to accept

by most clinicians and researchers. Further, a general lack of preclinical SFRT research

leaves many important questions unanswered and the underlying working mechanism of

this treatment is still poorly understood, hindering the broad clinical translation of this

promising cancer treatment technology.

1.6 The Scope of This Work

This body of research discusses the development of a novel SFRT-delivery system and

its implementation in a variety of SFRT preclinical research scenarios in the hopes of

shedding light on some of the unanswered questions that hinder clinical translation of

SFRT treatment technology. Systemic studies demonstrating SFRT’s ability to control

tumors while sparing normal tissue as well as on potential methods to optimize treatment
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are performed. However, no research is completed in isolation and the work described in

this dissertation is no exception. The development, validation, and implementation of

this novel SFRT-delivery system for use in a variety of preclinical studies has required

extensive multi-disciplinary collaborations with a variety of researchers at three major

universities and may be broken down into three major parts:

1. Development of a novel pre-clinical SFRT-delivery system for cancer treatment in

Chapter 3, including all relevant design, construction, testing, methodologies, and

results. This work was dosimetrically validated with the help of the Duke University

Dosimetry Laboratory and Department of Medical Physics.

2. Application of the SFRT-delivery system for use in an investigation of unique SFRT

dosimetric parameters and their correlations with treatment outcomes in Chapter 4.

This work was completed in collaboration with Dr. Paul Dayton and the Dayton

Lab in the department of Biomedical Engineering at UNC-Chapel Hill and NC State

University.

3. Investigations of the specific advantages of SFRT over conventional radiation therapy

in multi-modality cancer therapy approaches, including

• An investigation of potential methods for immunotherapy enhancement using

spatially fractionated radiation therapy in Chapter 5. This work was completed

in collaboration with Dr. Palmer and the Palmer Lab at the Duke University

Dept. of Radiation Oncology.

• An investigation of potential methods for anti-cancer drug delivery enhancement

via SFRT-induced changes to the tumor microenvironment in Chapter 6. This

work was completed in collaboration with Dr. Zamboni, the Zamboni Lab, and

the UNC Animal Studies Core at UNC-Chapel Hill.
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In addition, Chapter 2 provides a literature review of the current state of SFRT,

including its historical background and modern-day clinical treatment outcomes, preclinical

SFRT research, as well as the current major challenges facing it’s broad-clinical translation.

Lastly, Chapter 7 offers a more global perspective on the potential impacts of SFRT

treatment technology and its promising future prospects.

SFRT is a new low toxicity and low-cost radiation therapy treatment that offers hope for

many cancer patients, especially those failed by the current cancer treatment technologies.

The work presented hopes to improve our understanding of this treatment approach and

in small part, contribute to the effective and accessible treatment of cancer.
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CHAPTER 2: SPATIALLY FRACTIONATED RADIATION THERAPY
BACKGROUND

2.1 Introduction

Spatially fractionated radiation therapy (SFRT) is a very promising experimental cancer

treatment approach that has recently gain traction due in part to its high therapeutic

ratio and relatively easy implementation on a wide range of clinical machines. SFRT

has remarkable tissue selectivity, eradicating tumors effectively with little treatment

toxicity. Decades of clinical studies have demonstrated that SFRT may be used as a

safe and effective way to shrink very large, bulky tumors in patients for whom other

modern treatment approaches have been ineffective. In direct contrast to conventional

radiotherapy, which demands treating the entire tumor volume with a high, uniform dose,

SFRT directly irradiates only small sub-regions within the treatment volume with very high

doses of radiation, and so the broad clinical translation of this promising cancer treatment

technology has both been historically difficult to accept and achieve. A general lack of

preclinical SFRT research has left many important questions unanswered, notably including

optimal spatial fractionation pattern and dose. Furthermore, the working mechanisms

behind this technique are not yet understood, but some theories include systemic immune

stimulation effects, radiation-induced bystander (abscopal) effects, altered cell signaling

that induces indirect cell death, and even changes to the tumor micro-vasculature or

micro- environment. This chapter provides a general overview of SFRT, a review of some

prominent clinical and preclinical studies, brief explanation of some of SFRT’s potential

working mechanisms, and a discussion of some of the critical barriers to widespread clinical

translation of the approach.
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2.2 Unique Dosimetric Characteristics of SFRT

Both clinical and preclinical SFRT share the same characteristic trait with very few

exceptions; a single, high dose, spatially inhomogeneous radiotherapy treatment is delivered

to the target. While the specific dose distributions and dosimetric parameters in preclinical

and clinical SFRT are vastly different, they may be described using largely the same

nomenclature. Common terms include the peak dose, valley dose, peak-to-valley dose

ratio (PVDR), peak width, valley width, peak-to-peak distance, as well as the percentage

% of target directly irradiated (also known as the ratio of open-to-shielded area). Figure

1 visually describes some of the characteristic properties that are common to all SFRT

treatments.

Figure 1: The unique beam profiles of SFRT may be dosimetrically characterized, in
part, by the high dose in the ”peak” region, the low dose in the ”valley” region between
consecutive peaks, the ratio of the peak to the valley dose, the peak widths and the
distance between them, as well as the valley widths.

2.2.1 Peak dose, valley dose, and peak-to-valley dose ratio

The peak dose is the maximum dose measured in the unshielded “peak” region of the

collimator opening located along the central axis of the SFRT field and at a depth at
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which dose for specific-energy photons are at maximum, Dmax. Ideally, the peak dose is

the same for each of the SFRT beams in the field. Peak dose is critically important to

the effectiveness of SFRT treatments and must be carefully considered in the selection or

design of a collimator and GRID pattern. Another critical factor in SFRT treatments is the

valley dose, defined as the minimum dose measured in the shielded “valley” region, located

between two adjacent collimator openings, at the same depth, Dmax. The peak-to-valley

dose ratio (PVDR) is a numerical description of the difference in dose intensity between

the dose delivered to an unshielded area, the peak dose, and the dose delivered under

a shielded area, the valley dose, at Dmax [74]. Ideally, the valley dose would be zero;

however, in practice the PVDR is maximized for a given peak dose, in order to deliver the

lowest possible dose to the shielded areas of the GRID pattern. High PVDR is presumed

to maximally spare the negative effects of radiation on skin cells below the shielded regions

and enable the repopulation of skin cells in the unshielded regions of the GRID collimator

and decrease the severity of possible skin reactions to the treatment and normal tissue

toxicities [74]. Decreased time to heal and reduced severity of reactions is a distinct benefit

of SFRT therapy, therefore peak dose, valley dose, and PVDR must be designed, measured,

and calibrated for effective treatment.

2.2.2 Peak width, valley width, and peak-to-peak distance

Peak width, valley width, and peak-to-peak distance are factors that rely heavily on

the design of a collimator/GRID pattern. The peak width is the measured

full-width-at-half-maximum (FWHM) of the central SFRT peak located along the central

axis of the SFRT field. The peak-to-peak distance is the measured distance between the

central SFRT peak and the next nearest peak. In practice, the measured peak-to-peak

distance may vary along different axes of the SFRT field depending on the specific

geometry of the collimator. For example, in an ideal hexagonally-shaped, or

honeycomb-shaped, lattice GRID collimator [75], the peak-to-peak distance between the
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central peak and its nearest neighbor along one axis is geometrically calculated to be

exactly
√

3 times larger than the peak-to-peak distance between the central peak and its

nearest neighbor along the other, orthogonal axis. The valley width describes the overall

width of the valley regions of the SFRT collimator and may be calculated as the

peak-to-peak distance measurement minus the peak width measurement.

2.2.3 Collimator (or GRID) output factor

The collimator output factor (alternatively known as the GRID output factor) may

be described as the ratio of the dose with the SFRT/GRID collimator to the dose absent

the collimator at the linear accelerator calibration condition, measured at a given field

size. The collimator output factor is a function of field size and photon energy and is an

important tool for determining the treatment exposure time for a specific dose prescription.

An example output factor calculation for a clinical-type SFRT (GRID) collimator is shown

in Figure 2 [74].

Figure 2: The measured GRID factor as a function of field size, in cm2, at isocenter, d=
Dmax, for 6MV and 10MV photons on Novalis Varian accelerator using a brass GRID
collimator. For a given field size, the GRID treatment dose is calculated using the GRID
output factor curve [76].
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2.3 The Evolution of SFRT

2.3.1 A brief history of SFRT

Spatially Fractionated Radiation Therapy is an old radiotherapy treatment modality

that has been around for over a century, with varying degrees of use throughout that time.

Soon after x-rays were introduced for the treatment of malignancies, a growing number of

patients began experiencing severe radiation-induced normal tissue toxicities such as skin

ulcerations. The low, orthovoltage energy x-rays were heavily irradiating and subsequently

damaging the radiosensitive, superficial skin tissues on their path to the tumor [77]–[79].

In addition, the risk for developing a refractory, un-healing skin ulcer was increased when

delivering the tumoricidal doses needed to treat very large and very deeply seated tumors.

In 1909 Alban Kohler invented a sieve-like iron mesh to partially shield patient skin from

the radiation with remarkable success [77], [80]. The skin cells lying directly beneath the

iron “sieve” were protected from the high doses of radiation, and this protection promoted

skin healing in the unprotected regions [77]–[79], [81]. By the 1930s, this early form of

SFRT, known at the time as “sieve therapy” or “GRID therapy”, became a commonly

used method for limiting skin tissue toxicities while delivering a high dose of radiation to

tumors, and a variety of different types of collimator shapes and materials such as steel,

lead, and lead-rubber were utilized [69]. The technique remained in use through the 1950s

until the advent of the megavoltage, clinical linear accelerator (LINAC). The LINAC

completely revolutionized the way that radiation is delivered, allowing for greater tissue

penetration with improved surface skin sparing capabilities than ever before. By the late

1960s, GRID therapy as a treatment modality became largely phased out, and eventually

abandoned until a group of physicians and researchers at Thomas Jefferson University

Hospital revived the technique in the late 1980s [69], [82].
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2.3.2 The modern resurgence of SFRT

The development of clinical linear accelerators undoubtedly benefited hundreds of

thousands of patients across the US and the world; however, there remain a host of patients

with cancers that do not respond to conventional treatment approaches or for whom these

approaches are extremely dangerous. The search for innovative cancer treatment approaches

with the potential to significantly increase the treatment therapeutic ratio has sparked

renewed interest in SFRT. Physicians and researchers have asked how precise delivery

and exact dosimetry in SFRT affect survival, as well as what is needed to significantly

improve patient outcomes. Significant resources have been dedicated to these questions,

and while specific answers may vary, it is becoming increasingly clear that an improved

understanding of radiobiology is necessary to understand the impact of physics on clinical

outcomes. Though it has century-old roots, SFRT is a radically different, very promising,

and unique treatment approach, which makes studying the radiobiological mechanism

behind it very attractive.

2.4 Clinical SFRT

2.4.1 GRID Therapy

In late 1980s, Mohiuddin et al. at Jefferson University Hospital were the first group

to revive orthovoltage-style “sieve” therapy and adapt it for megavoltage accelerators for

the treatment of very large, deeply seated tumors [82], [83]. They accomplished this by

creating a large, square array grid of cylindrical apertures with a 1:1 open-to-closed area

made from a combination of stainless-steel tubing and lead alloy[74], [83]. The new “GRID

compensator” collimator was then mounted onto a fixed tray in the blocking tray-holder of

a LINAC head, and single fields of approximately 10-20Gy dose to Dmax were delivered to

patient tumors. Figure 3 shows an example of SFRT dose profiles created using a similar

type of GRID-compensator fitted onto a LINAC.
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Figure 3: On the left, Gafchromic RTQA-2 film is irradiated, top, and then, bottom.
The film density is converted to dose using a film density calibration curve based on ion
chamber data. Blue, horizontal, and Green, vertical, lines on film to indicate the location
of beam profiles measured. On the right, the GRID horizontal, top, and vertical, bottom,
dose profiles are measured at Dmax for 6MV and/or 10MV beams using 25x24cm field
size, 100cm SSD and either 1.5cm or 2cm buildup.

Despite these very high single doses of radiation, results using this GRID-compensator

type of megavoltage SFRT, now named “GRID radiotherapy”, have demonstrated high rates

of pain relief (in up to 91% of patients) with few to no associated normal tissue morbidities

[73], [82], [84]–[88], as well as reductions in bleeding [73], [82], and partially-controlled

shortness of breath [82]. In addition, reductions in tumor volume were observed in both

palliative and definitive treatment settings. In fact, complete tumor control responses were

observed when GRID radiotherapy was used as neoadjuvant to conventional radiotherapy,

chemotherapy, surgery, or immunotherapy [49], [73], [82], [86]. This improved tumor control

is not limited to SFRT; several non-SFRT studies have suggested that high “induction”

doses of uniform radiation prior to a conventional course of radiotherapy may result in

even better tumor suppression outcomes, though not without significant side effects [89].
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This GRID therapy technique has been used for treatment in a variety of sites and

specifically for bulky disease, larger than 8cm. Some treatment sites include (but are not

limited to) tumors in the extremities [73], [82], [84], the abdomen and pelvis in the case of

gynecological, gastrointestinal, and liver cancers [73], [82], [84], the thorax in the case of

breast and lung cancers [73], [85]–[87], and notably, in the rapidly proliferating tumor cells

common in head and neck cancers [49], [52], [73], [84], [90], [91]. These treatments have all

reported good oncological outcomes and few to none reported complications in the short or

long term, including to the CNS [73]. Importantly, the GRID therapy treatments targeted

advanced, very large disease that has historically been very difficult to treat, especially

for patients with recurring tumors, or patients that had already reached the maximum

chemotherapy or radiotherapy tolerance dose [82]. Massive, recurring tumors not only

have unfavorable tumor histology with limited chemotherapy options, but are also highly

vascularized, precluding treatment with surgery due to the risk of uncontrolled blood loss

during excision. In addition, traditional radiotherapy has limited impact on radio-resistant

tumors and tumoricidal doses do little to spare normal tissues with unacceptably high

risks for tissue morbidity [92]. The large size of bulky tumors also makes them unsuitable

candidates for treatment with specialized stereotactic radiosurgery [93], [94].

The amazing treatment outcomes reported by Mohiuddin et al in the 1990s sparked

a renewed interest in this radically different radiotherapy treatment modality, especially

for its potential as an additional tool in the radiation oncologist’s toolbox for treating

patients that have exhausted all other treatment options. The overall design principles

used in creating the compensator-based GRID therapy have not changed significantly over

the last 3 decades. GRID compensators may now be purchased commercially and are

customizable to fit a variety of LINAC models for use in clinical SFRT [76], [95].
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2.4.2 Advanced clinical SFRT techniques

Beyond customizable commercial collimators, in the last decade researchers have

developed additional methods for delivering spatially fractionated radiation patterns to

targets. MLC-based GRID therapy uses the multi-leaf collimators (MLCs) that come

pre-installed in modern LINAC treatment heads to create spatially modulated beam

patterns. This technique was developed in response to the impracticalities of repeatedly

installing and removing the heavy (up to 50lbs) GRID-compensator for treatment as

well as the fact that SFRT treatments are not optimized, employing a wide range of

SFRT pattern geometries [96]–[98]. MLCs allow for greater flexibility in creating different

geometric GRID patterns and ease in treatment planning since the dosimetry can more

readily be determined within the treatment planning system. However, major drawbacks

to MLCs include the limited ability for the large collimator leaves to generate small beam

sizes comparable to the pencil-beams generated with GRID-compensators [96]. In addition,

MLC-based GRID therapy produces up to 2 rows of spatial modulation at a time, requiring

a longer treatment time, which results in a higher surface dose as result of leakage through

the MLCs [99].

Both GRID-compensator and MLC-GRID-based SFRT share many of the same

dosimetric features, particularly that each delivers a single, high-dose fractionated pattern

to tumors, as well as normal tissues, using one (and sometimes two) field(s). To minimize the

dose delivered to normal tissues, especially for deeply seated tumors, Helical Tomotherapy

or Volumetric Arc Therapy techniques may be applied to simulate a virtual GRID collimator

and deliver SFRT to tumors with the advantage of sharp dose fall-offs just outside the

tumor treatment volume, avoiding critical structures [100].

The “traditional” GRID-compensator-based radiation dose distribution is fractionated

only in the plane perpendicular to the radiation pencil beams (x- and y- axes) and is not

fractionated in the direction parallel to the beams (z-axis), where the dose distributions
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for each beamlet may be approximated as 2-dimensional gaussians at any given depth in

(z), (an example of a 2-D gaussian model shown in Figure 4) [101]. Three-dimensional

Lattice Radiotherapy (3DLRT) is a novel spatial fractionation technique which expands

the 2-dimensional traditional dose distribution and applies it in 3-dimensions, spatially

fractionating the dose distribution throughout the entire 3-dimensional target volume.

This technique results in multiple spherical “hot spots” of high doses within the tumor

[102]. To date this technique has safely been used in treating large, bulky tumors without

observed normal tissue toxicities at doses of up to 18Gy [86]–[88]. The advanced SFRT

treatment techniques described above offer additional, potentially life-saving treatments

for patients, achieving more normal tissue sparing than ever before with high rates of

tumor eradication. However, these advancements would not have been possible without

the vast number of preclinical SFRT studies that helped elucidate some of the working

mechanisms of the promising treatment approach.

Figure 4: The dose distribution from a GRID-compensator with a “square lattice” pencil
beam geometry may be modeled as an array matrix of 2-dimensional gaussians at any
given depth in tissue. Image modeled in Matlab [103].
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2.5 Preclinical SFRT

2.5.1 Microbeam Radiation Therapy

Spatially micro-fractionated radiation therapy (MRT) is an experimental, preclinical

form of SFRT consisting of very high (peak) and very low (valley) doses that are alternated

at a high spatial frequency over the treatment volume. Like SFRT, these spatially

modulated doses are usually, though not always, delivered as a single field to the treatment

volume. However, MRT is distinctly different from SFRT in several ways. MRT typically

consists of very narrow, highly collimated planes of radiation, each approximately 20-700

microns wide (FWHM) and between 100 to 4000 microns apart (peak-to-peak distance)

[104], [105]. The unique geometry of these micro-planar arrays allows for the delivery of

well-tolerated peak doses up to 2000Gy (or higher) for the smallest beam widths [105]–[107].

One example of a multi-slit MRT collimator is shown in Figure 3.
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Figure 5: The SFRT Minibeam dose profile measurement, top, is calculated along the
direction perpendicular to the beams. For this specific collimator, the minibeam PVDR
was 5.11 with peak width = 0.69mm and peak-to-peak distance = 1.87mm. At the bottom,
an irradiated EBT-3 film is shown with the dotted line on the film indicate location of
Beam Profile. Measurement specifications include 160kVp, 25mA, 0.254mmCu added
filtration, 37cm SSD, at 1cm depth.

To achieve these astounding dosimetric values, MRT is typically conducted at

synchrotron light source facilities, which are capable of producing brilliant, nearly parallel

x-rays, 50-600 keV, with minimal beam divergence and at ultra-high dose rates, 8-16

kGy/second [105]. Placing a multi-slit collimator in the path of the beam results in highly

collimated planes of light with very high dose gradients, peak-to-valley dose ratios of up

to 56 [104], [106], [107], and that are well-preserved even at depths of 15cm [108].

2.5.2 Radiobiological studies in MRT

Decades of preclinical research have demonstrated that SFRT has the ability to eradicate

tumors while simultaneously sparing normal tissues and functions, even when these are
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exposed to the same tumor-killing radiation. Preclinical MRT research from the last

three decades has demonstrated that these incredibly high doses are very well tolerated

for the given beam geometries. Early dose escalation studies investigated heavy cosmic

radiation exposure delivered by 25um-wide MRT beams with peak skin entrance doses of

up to 10,000Gy to live rodent cerebellums and reported maximum tissue tolerance doses

of 5000Gy at the skin entrance, with no apparent histological brain damage reported for

doses ¡=5000Gy [109]–[111]. In addition, this tolerance dose is several orders of magnitude

higher than conventional uniform or even millimeters-wide beams [109], [112] and the

tissue-sparing effect increases with increasing distance between beams [109].

These very promising early studies have sparked significant interest in advancing

understanding of SFRT through preclinical research. Since then, other preclinical studies

have validated the remarkably high tissue sparing effect of SFRT. Studies of CNS tissues

irradiated with MRT, between 50-600Gy, have demonstrated extremely high dose tolerances

with no long-term observable effects to tissue function or developmental behavior, including

in immature embryonic duck brain tissues [113], brains of suckling rat pups [114], weaning

piglet brains [115], and rat spinal cords observed without paralysis for over a year [116].

Most recently, highly sensitive testes organ germ cells were irradiated with MRT and

showed preserved spermatogenesis [117], [118].

MRT also preferentially kills tumors over normal tissues when exposed to the same

radiation doses and with high efficacy. This tumoricidal effect has been demonstrated in

a vast number of preclinical small animal studies, with nearly all demonstrating either

effective growth suppression or complete tumor eradication in several tumor models [119];

examples include tumorcidal results in very advanced stage rat 9L gliosarcomas [120]–[125],

in mouseEMT-6.5 mammary carcinomas [126], in human glioma xenografts in nude mice

[127], in mouse 4T1 mammary carcinomas [128], among others. In addition, these studies

have been repeated for highly radioresistant tumors such as squamous cell carcinoma

VII [129] and radioresistant B16-F10 melanomas in mice [130]. This preferential tissue
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sparing effect combined with the high tumor killing efficacy has led to much longer-term

survival outcomes compared to conventional, uniform radiation fields at significantly lower

doses [121], [122], [131], [132] . Additionally, similar studies examined the effects of

interlacing MRT beams for tumor killing and added tissue sparing [133], and then applied

this interlacing pattern to suppress seizures [134] as a potential treatment for epilepsy

[135].

2.6 Potential Working Mechanisms of SFRT

Radiation does more than just kill cells; it can affect biological processes throughout

the body. The radiobiological mechanisms behind the SFRT preferential normal tissue

sparing and tumor ablative effects, especially in relation to conventional radiation therapy,

are not well understood. Several theories and studies have been developed to help explain

some of these mysteries, such as the bystander and system immune effects, the tumor

reoxygenation effect, and differential microvascular tissue responses. However, these effects

are very complex and are likely inter-related, so studies have had difficulty isolating and

determining cause.

2.6.1 Bystander effect

The most interesting mystery in SFRT radiobiology is that although a large portion of

the tumor lies within the spared tumor fraction, which is not directly irradiated, tumor

growth suppression or outright eradication still occurs in the low dose non-cytotoxic “valley”

region, which means cells in the spared tumor fraction are being indirectly killed. This

indirect cell killing has been observed in numerous SFRT preclinical and clinical studies

and may be attributed to the Bystander Effect, the indirect killing of cells as a result of

radiation damage to other, adjacent cells [91], [136]–[138]. In theory, the high amount

of direct cell killing within the tumor causes this indirect cell killing response, which

may trigger other radiobiological observations, including the induction of cell signaling
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pathways and systemic immune (abscopal) effects [139], [140]. Many of these effects

may fall under the category of radiation bystander effects and these extended effects are

theorized to stimulate physical changes to tumor vasculature, which have been directly

observed [141]–[143]. Subsequently, some combination of these effects are likely responsible

for changes in tumor volume and eventual eradication.

Some of the potentially important cell signaling pathways that have been induced

after SFRT treatment include bystander factors such as TNF-alpha (protein), TRAIL

(protein), and Ceramide (lipid). TNF-alpha, TRAIL and Ceramide have all been identified

as potential mediators of or participants in the cell killing response (cellular apoptosis)

after exposure to high doses of radiation [144]–[146], including high-dose SBRT [147]. In

studies of serum samples taken from patients before and after SFRT treatment, TNF-alpha

[144], [145], TRAIL [144], and Ceramide [146] induction in the high-dose, unshielded

areas of the radiation beam was strongly correlated with increased incidences of partial or

complete tumor therapeutic response to the SFRT treatment, and induced pathways may

even have played a part in the improved 2-year survival of these patients [145]. Conversely,

activity levels for these bystander factors were not elevated in patients whose tumors were

unresponsive to the treatment [145], [146]. These observed bystander-type effects have not

been limited to the localized, primary tumor treatment. Distant, or “abscopal” systemic,

bystander effects have been reported as well, wherein completely unirradiated tumors,

distant from the irradiated volume, partially or completely respond to the radiotherapy

treatment [49], [91], [136], even in the case of advanced metastatic disease [49], [91].

Further, Tubin et al. reported progression-free disease at least 9 months post treatment

with SFRT in 87% of patients [136]. The role of SFRT in tumor oxygenation and, relatedly,

the bystander/abscopal effect is under active investigation; however, some of the effects

observed include increased oxygenation levels in radioresistant, hypoxic tumors within 2

weeks following treatment with SFRT [128]. This re-oxygenation effect may not be directly

involved in tumor-cell killing; however, it may still have therapeutic benefits.
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2.6.2 Reoxygenation effect

The interactions between high dose radiotherapy and tumor oxygenation are not

well understood. Although tumor oxygenation effects may not directly be involved in

tumor cell killing, some clinical outcomes show tumor reoxygenation following SFRT [89]

may be exploited as a radio-sensitizing agent, where the addition of oxygen to hypoxic

tumors increases the effectiveness of radiation therapy. In addition, targeting only the

radioresistant, hypoxic regions of tumors with high doses of radiation similar to SFRT

may successfully induce bystander and abscopal immune responses in clinical patients

with advanced metastatic disease [136]. In theory, these enhanced bystander/abscopal

responses may be due to the combined effect of the very high dose of radiation used [148]

and the observed significant increases in bystander and abscopal responses in cases when

radiation is targeted to hypoxic tumor cells [149]. However, these effects may depend in

part on the initial hypoxic fraction, the % of tumor volume directly irradiated, as well as

dose [89].

2.6.3 Differntial microvasculature and microenvironmental effects

SFRT also modifies the tumor microenvironment differently than uniform radiation by

preferentially damaging or reorganizing the tumor and tumor rim vascular architecture

[128], [150], [151], a theory which is supported by increased endothelial apoptosis in tumors

[146], [152]; however, these effects may depend on the state of vascular maturation [151],

differences in HIF-1 expression, a pro-angiogenic factor and participant in the bystander

effect, and which specific tumor model is studied [153]. For example, SFRT has also shown

increased tumoral angiogenesis [150], increased tumoral vascular density in radioresistant

tumors [150], and upregulated expression of HIF-1 and VEGF, a pro-angiogenic factor

[154], [155]. Generally, HIF-1 and VEGF are both associated with tumor progression,

tumor angiogenesis [156], [157], and promoting oxygen delivery to tumors [158], [159],
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though over-expression of HIF-1 may correlate with treatment failure and increased patient

mortality [153]. In MRT, hypoxia is associated with increased HIF-1 and VEGF expression

, and may lead to tumor cell protection from apoptosis and tumor radio-resistance [155].

Conversely, VEGF inhibition may decrease tumor blood vessel density and increase tumor

hypoxia following high-dose radiation [160].

2.6.4 Dose-volume effect

An additional potential working mechanism that may help to explain the tissue sparing

effect of SFRT is the dose-volume effect. The dose-volume effect in tissues is where the

tolerance dose of a given tissue is strongly correlated with the irradiated volume of that

tissue. In SFRT this may play a role to partially explain the treatment effects. For

example, in an MRT study researchers varied the spacing between radiation beams, from

50 to 100µm, delivered to intracranial rodent tumors to determine peak-to-peak distance

impact on survival. The resulting medial survival for all rodents in the larger beam

spacing was more than double that of the smaller width used [113]. This indicates that

increasing the distance between beams not only allows for improved animal survival, but

also allows for higher tumor peak doses while minimizing the skin dose and improving

the skin sparing effect. This dose-volume effect may help partially explain the normal

tissue sparing effects seen in SFRT treatments; however, there overall working mechanisms

behind the radiobiological outcomes of SFRT largely remain unclear.

This discussion presented several examples of some of the potential working mechanisms

behind SFRT and demonstrated their complex interconnectedness. Although each of these

individual radiobiological effects may potentially impact the tumor response, it is unlikely

that they act independently. In fact, these radiobiological effects are not unique to SFRT.

However, SFRT uniquely combines multiple radiobiological mechanisms, and it is the

complimentary nature of these effects, each working in unison to induce the observed

tumor control and tissue sparing, that makes SFRT exceptional.
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2.7 Challenges to Clinical Translation

There are many challenges impeding the widespread clinical translation of SFRT.

Although SFRT treatment technology has been around for decades, it remains relatively

poorly understood, and a lack of preclinical SFRT research on varied animal models and

cancer types remains a serious obstacle. A review of MRT preclinical research showed

that while nearly a hundred experimental animal studies have been completed, nearly 60%

are in a single rat model of 9L gliosarcoma and about 33% are in other murine models of

only a handful other types of cancer [119]. The use of so few severely limits our ability to

characterize the effects of SFRT treatment, so more and different types of animal and cancer

models desperately need be studied in preclinical SFRT. In addition, the pace of research

output, as measured by the number of MRT-specific papers published, is exceedingly slow,

peaking at 11 publications at one year, but usually only about 5 per year [119]. Furthermore,

the working mechanisms behind this technique need further investigation, including SFRT’s

systemic immune stimulation effects, radiation-induced bystander (abscopal) effects, altered

cell signaling that induces indirect cell death, and changes to the tumor micro-vasculature

or micro- environment. In addition, some SFRT studies have shown synergy or success

with other treatments, such as anti-cancer immunotherapy and chemotherapy, which both

deserve further investigation with neoadjuvant SFRT.

Solving some of the dosimetric challenges faced in SFRT may improve the pace of

preclinical research. MRT dosimetry in particular is challenging due to due to the high

dose gradients, sub-millimeter sized widths of the microbeams, and a lack of dosimeters

available with the spatial resolution necessary to measure them [161]–[164]. A number

of dosimeters have been developed or tested for application in MRT with these specific

dosimetry needs in mind, including novel Ge-doped silica fibers for thermoluminescence

measurements of dose [165], MOSFETs [108], [166], thermoluminescent dosimeters [164],

radiochromic film [167], [168], and related advancements in Monte Carlo dose simulations
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[108], though their success has varied. Beyond dosimetry, accurately positioning tumors

and organs under the MRT beams is often challenging and has led to developments in

image guidance [169] techniques and optical CT [170], [171], as well as the use of g-H2AX

as a marker for dose deposition in rodent brains for post-vivo analysis of treatment and

positioning accuracy [172].

One of the potential keys to unlocking our understanding of SFRT may involve

large-scale studies examining clinical treatment outcomes as a function of specific SFRT

parameters, fractionation patterns, dose prescriptions, etc. . . SFRT is not a

well-characterized and all researchers and clinicians apply it differently. Very few studies

have looked at SFRT pattern optimization, which can vary based on desired outcome

(destroy tumor, induce inflammatory response, etc) [98]. However, even if such a study

was attempted, understanding how to interpret the impacts would be a difficult

undertaking as human patients are highly variable; different ethnic and socioeconomic

backgrounds, ages, gender, and other relevant factors in human patients may play a role

in treatment outcome and should be considered in data collection methods. As with any

new or not well-understood treatment, there is a fear of potentially inducing negative

short- or long-term effects in patients. This fear is rightly justified. More conventional

radiotherapy temporally fractionates high doses, delivering only very small doses daily

over several weeks and at multiple entrance sites, while SFRT is characteristically

delivered as a single, very high dose to the treatment volume, intentionally irradiating

normal tissues lying directly in the beam path along the way. Any miscalculation or setup

error could lead to unintended, potentially disastrous effects to the patient such as

accidently delivering a very high single dose to an at-risk organ or other critical structure.

However, with the advent of the novel 3D Lattice therapy that delivers a high, spatially

fractionated dose within the tumor only and at multiple angles around the patient’s body,

hesitance to use SFRT may soon change as recent studies using these techniques have

resulted in very positive patient outcomes [86]–[88], [173] [xxx].
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With a century-old history of treating tumors, and a resurgence of interest from modern

research, Spatially Fractionated Radiation Therapy (SFRT) has potential cost-reducing

benefits as well as the potential to serve patients who are not eligible for conventional

cancer treatments. SFRT also has several unique benefits from multiple complementary

radiobiological effects, including a network of bystander factors, distinct vasculature

response, and re-oxygenation of hypoxic tumors. Though SFRT researchers face many

technical and general challenges, including a lack of preclinical research on varied models

in the literature, the next chapter will address the specific difficulties faced in this research

through applied engineering, physics, and unavoidable trial-and-error.
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CHAPTER 3: DEVELOPMENT OF PRECLINICAL SFRT DELIVERY
SYSTEM

3.1 Introduction and Motivation

Decades-long research in SFRT has demonstrated the ability to eradicate tumors while

sparing normal organs exposed to the same radiation. However, SFRT remains relatively

poorly understood and many challenges impede its widespread clinical translation. One

of the potential keys to unlocking a better understanding of SFRT technology may lie in

the small-scale, preclinical research designed to examine the new radiobiology observed in

SFRT. However, there is currently no commercially available microbeam radiation therapy

(MRT) treatment system and, as such, the pace of preclinical research progress is slow.

Hence, there is a need to develop SFRT-tech using existing small animal RT irradiators.

3.1.1 Synchrotron-based MRT

To this end, Microbeam Radiation Therapy (MRT) technology is a novel form of SFRT

consisting of very narrow, highly collimated microplanar arrays of radiation, approximately

20 – 700 µm wide, delivering alternating high and low radiation doses at a high spatial

frequency over the treatment volume [104], [174]. The majority of MRT research is

conducted in synchrotron facilities, particle accelerators that use very high-energy electrons

travelling at or nearly the speed of light in a large closed-loop that is approximately a

kilometer in circumference [105], [175]. The unique physics intrinsic to a synchrotron light

source results in a very intense and highly brilliant biomedical radiation beamline capable

of ultra-high dose-rates on the order of hundreds of Gray per second [105]. These ultra-high

dose-rates result in radiotherapy treatment times of fractions of seconds [105]. Furthermore,
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synchrotron-MRT involves a unique geometry where the synchrotron light source is a

very large relative distance (approximately 40 meters) from the MRT collimator, thus

closely mimicking an ideal point source. This results in highly collimated, nearly perfectly

parallel set of micro-planar arrays of radiation with very sharp edges [174][xxx] that may

be adjusted to be anywhere between just a few microns in width up to several-hundred

microns width [107].

This highly specialized treatment technology has opened new doors to understanding

SFRT; however, these magnificent, extremely small and non-divergent beamlets of radiation

delivered at ultra-high dose rates come with several inherent limitations and achieving a

successful MRT treatment at any of these facilities is no small feat. The unique physics

and geometry of synchrotron-based MRT require complex dosimetric techniques and

unique technologies to achieve that are not readily available to a majority of researchers

[176]. Investigations involving synchrotron-MRT are extremely expensive[177]; each of

these facilities may cost many millions of dollars to build and significant manpower to

operate [178]. In addition, since there are only a handful of synchrotron facilities around

the world equipped to perform MRT research, synchrotron-MRT investigations are also

geographically inaccessible to a majority of investigators.

3.1.2 Non-Synchrotron-based MRT using compact irradiators

To help combat the technological and monetary barrier to preclinical MRT research,

there has been a recent move to develop low-cost MRT-treatment machines that are much

more compact and therefore, more easily accessible for preclinical studies and patients [176],

[179]–[181]. There is currently no commercially available microbeam radiation therapy

(MRT) treatment system. To help increase the pace of this exciting research, a handful of

investigators, including ourselves, have taken to developing our own non-synchrotron-based,

low-cost MRT-treatment technologies.

One such research group at UNC-Chapel Hill has developed the first MRT-system
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made up of miniature x-ray tubes using a unique carbon nanotube (CNT) design.

Researchers Zhou and Chang at UNC-Chapel Hill developed and patented a novel compact

MRT-treatment delivery system with built-in CT imaging that used this CNT field emission

technology to produce highly collimated micro-beamlets of radiation[179], [182]. This

system utilizes an array of CNTs as the “cold” cathode to emit electrons under a bias

electrical field at room temperature [179]. This technology has successfully been used

to image and then treat hundreds of small animals with remarkable tissue sparing and

imaging results [176], [183], [184]. A handful of other researchers have developed desktop

SFRT research irradiators by modifying existing small animal research irradiators and

demonstrated their feasibility for conducting preclinical MRT research [180], [181], [185],

[186]. By placing a multi-slit collimator in the beam path between the source and the

animal, then aligning the target (tumor or other animal part) very close to the collimator

exit, they have been able to produce beam arrays with peak and valley beam widths

sufficiently collimated for MRT research and have achieved geometries on the order of

hundreds of microns, known as Minibeam radiotherapy (MBRT).

Several major limitations are associated with non-synchrotron-based MBRT research

including inherently low dose-rates and long treatment exposure times compared to

synchrotron-based MRT [179]. When combined with the animal anesthesia exposure

time limitations, the low dose-rate of non-synchrotron MBRT place an upper limit to

the achievable peak dose that may be delivered. Further, the long exposure times may

result in radiation off-target effects, where peak “broadening” (or blurring) occurs due

to respiratory and cardiac motion [104]. While the beams used in MBRT are slightly

larger than for synchrotron-MRT, dosimetry remains a challenge. While none of these

research irradiators can reproduce the distinct geometry and dosimetry possible using

synchrotron technology, these alternative methods for producing SFRT-beams provide

additional, unique, low-cost opportunities for furthering SFRT preclinical research [186].

The widespread availability and far-reduced cost of small animal irradiators makes them
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a very attractive resource. Using a conventional research irradiator and modifying it

to produce preclinical SFRT-treatment capable beams, we create a low-cost, accessible

alternative to investigating SFRT in a variety of radiobiological applications and scenarios.

In this chapter, I will focus largely on SFRT technology development using a

commercial research irradiator as well as on resolving some of the dosimetric challenges

that require novel approaches for measuring dose. Further, I will address some of the

unique considerations and challenges in designing spatially fractionated radiation fields

and will validate their experimental treatment accuracy and uncertainty. In this

dissertation work, I do not intend to replicate the superior synchrotron-specific dosimetry,

but rather, show that the SFRT beams generated using commercial research irradiators

may achieve similar radiobiological responses in tumor and normal tissues as their

synchrotron-generated counterparts. Therefore, by developing our own SFRT-treatment

system, we take a crucial first step towards investigating the effects of spatial

fractionation in living systems and, hopefully, advance preclinical research in the process.

3.2 SFRT Treatment Delivery System and Design

3.2.1 Overview

The primary goal in this chapter is to develop a novel small animal treatment

system capable of delivering a variety of unique spatial dose distribution profiles from

sub-millimeter-sized beamlets of radiation to seamless conventional radiotherapy patterns,

intended for delivery to solid tumors in small animals. These fractionation patterns are

carefully designed such that a specific peak/integral dose, valley dose, peak and valley

width, dose-rate, dose-profile, and percentage of tumor coverage are achieved for the

intended radiobiological outcome studied. I solve the unique physics and dosimetric

challenges for measuring dose in each of my SFRT collimators using novel approaches.

Finally, I will address the unique considerations and challenges to designing spatially
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fractionated radiation fields, and then will validate the experimental treatment accuracy

and uncertainty for these challenges.

I will modify a commercially available XRad-320 research irradiator [Precision XRay,

Inc., North Branford, CT] to accommodate the specialized the SFRT-treatment system for

small animals. This involves many unique inter-related design considerations, including

physics, geometry, and animal design-related issues, each of which present a unique

set of challenges. For example, beam spreading is one of the major challenges in

SFRT-treatment design with three major causes: geometry, radiation physics, and animal

motion. Throughout this chapter I will address each challenge or limitation as I come

across them and describe solutions developed to overcome them.

3.2.2 Physics considerations- energy and filtration

Physics considerations are an important component of the SFRT-delivery system design.

For example, the tube potential, the electrical potential difference, or voltage, applied

between the anode and cathode components of the x-ray tube, used during treatment

has a downstream effect on resulting beam dosimetric profiles and on the patient normal

tissues and organs at risk, such as the skin. In any x-ray tube, electrons are accelerated

from the cathode through a vacuum up to a high energy, then strike a target material,

the anode, wherein the production of x-ray photons occurs [187]. The tube potential

essentially defines the energy of the x-rays produced. Inherently, this process produces

photons in a range of energies and types, rather than photons with uniform parameters.

Bremsstrahlung photons, for example, are emitted from the x-ray tube and consist of

a broad, continuous energy spectrum, up to the maximum accelerated electron energy

used. Furthermore, a unique set of target material-dependent characteristic x-rays with

specifically defined energies are produced. Any material placed in the path of the photons

between source and detector will attenuate photons to a degree, which is dependent on

the material composition and thickness. However, lower energy photons are preferentially
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attenuated due to their higher interaction probabilities with in-path materials. On the

other hand, higher energy photons have significantly lower interaction probabilities for

these same materials. In practice, skin is a nearly unavoidable in-path material, which can

lead to skin toxicity damage.

To enhance skin sparing during treatment, physics photon attenuation principles may

be exploited by preferentially filtering lower energy photons that would otherwise deposit

their energy at the immediate skin surface, or at 0cm depth. Known as beam hardening,

specific materials and thickness, such as those shown in Figure 6, are chosen to filter

these lower energy photons to maximize the photons that are directly contributing to the

dose delivered to the target, while simultaneously minimizing the energy deposited at the

skin surface. These factors must be taken into careful consideration during the treatment

design.
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Figure 6: The x-ray transmission spectra through different filtration materials is shown,
above. The table, below, show the specific properties for 3 different types of filters used
with the X-Rad 320 Irradiator . Each filter attenuates x-rays differently, allowing for
varying degrees of photon transmission through the filtration material. These unique,
material-specific properties may be exploited to maximize tissue sparing in small animal
studies and are taken into consideration in the SFRT system design. Mass attenuation
coefficients from NIST Database [188].

Figure 6 shows a few properties of different filters that are useful for the range of energy

photons produced by the x-ray tube and that may be used in the SFRT-delivery system.

Among these properties are the type of filter material used, the filter thickness, the mass

attenuation coefficients (a measure of the ability for the material to attenuate radiation) of

each filter, the specific fraction of the incident x-ray beam intensity that is attenuated for

each filter, as well as the approximate average photon energy of the resulting transmitted
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x-rays. Compared to the filter-free measurement, each of the different filters produce vastly

different degrees of photon attenuation. The right-shifted spectra following the addition of

the different filters shows the preferential attenuation of the lower energy photons, photons

that would otherwise play no role in the overall dose deposited to the treatment target. In

addition, these resulting average spectral energies have an important role in approximating

the amount of dose that is absorbed by the target tissue and is discussed in detail in the

Dosimetry Section 3.3.

3.2.3 Physics considerations- radiation shielding

From a radiation safety design perspective, we want to shield everything that is not the

intended target of treatment, such as the animal’s healthy tissues or sensitive electronics,

to minimize unnecessary exposure to the electromagnetic radiation. All materials placed

between the source and detector attenuate radiation differently. Less attenuative materials

require additional thickness, often several orders of magnitude thicker than others, to

achieve the same total attenuation. Since the probability that a photon travelling a set

distance will undergo any scattering or absorption interaction in a medium is directly

correlated to its initial energy, more energetic photons require additional shielding (or

denser radiation absorbers) to achieve the same overall exposure underneath the shield.

In our studies we largely attenuate radiation with Cerrobend (Bolton Metal Products

Co., Inc, PA, USA) (Tin 13.3%, Bismuth 50%, Lead 26.7%, Cadmium 10%) due to its

high attenuation coefficient and ease of use (see Figure 7). Comparable to lead, Cerrobend

attenuates photons well and is convenient in radiotherapy treatment applications as it can

be used to make custom-shaped apertures and blocks. A eutectic alloy, Cerrobend has a

low melting point, below that of water, and is firmer than lead at standard temperature

and pressure. However, even in solid form it is easily prone to damage.

42



Figure 7: At the top, a table of several specifications are shown for the three different
shielding materials used to block the 320kVp photons in our SFRT delivery system. Each
material is weighted against the other in terms of its ability to attenuate photons effectively,
its ease of use for creating custom shapes, and its ability to withstand repeated use without
deformation. The figure below shows the mass attenuation coefficents for each of the
shields across a wide range of energies, calculated using XMuDat Photon Attenuation
software [189].

In terms of collimator aperture design, we use shielding materials that maximize photon

attenuation while allowing the flexibility to create specific collimator shapes. In most cases

our collimator apertures are made of either Cerrobend or lead. However, in the case of our

smallest slit collimators for creating submillimeter sized beams, we use Tungsten due its

combined high attenuation coefficient and material strength to withstand daily, repeated

use without risk of aperture deformation.
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3.2.4 Geometric considerations

A variety of different SFRT and seamless broadbeam collimators are carefully designed

to meet specific SFRT characteristics for each of our radiobiological studies. Such

characteristics include peak dose, dose-rate, dose-profile, overall tumor coverage,

peak-to-peak (P-P) distances, the peak width (full-width-at-half-maximum or FWHM) for

the SFRT collimator peaks, and their valley widths and doses. Several physics and

geometric factors play an important role in SFRT collimator design. One design element

includes creating radiation beams with very high dose-gradients at the edge of the

radiation beam field, called penumbra. Since the beam penumbra contributes to valley

dose (dose located directly under the collimator) as well as the peak width (the FWHM of

the beam), sharpening the beam penumbra is a very important. In an ideal point source

(where the source-to-skin distance is significantly greater than the source width), the

radiation beams would be nearly step-wise, with very narrow penumbra. However, given

that the radiation source in the XRad irradiator is 8mm-wide and effectively not a point

source, collimating the radiation field results in wide geometric penumbra.

Figure 8, on the left, shows a point source of radiation compared to a wide source and

the resulting wide penumbra S1. The geometric penumbra width increases with distance

between the collimator and the detector (or skin); therefore, we minimize this penumbra

and sharpen the beam edges by decreasing the collimator-to-skin distance (CSD) and

positioning the detector (or skin) as close to the collimator exit as possible (shown by

position S2). In addition, reducing the CSD in position S2 of Figure 8 also increases the

dose-rate of the beam, a side-effect of reducing the photons’ geometric attenuation (by

decreasing the overall source-to-detector distance) (see Footnote1). However, the beam

1Supposing we draw a straight line from the source through a slab of material with attenuation coefficient
(µ) of thickness (t) to the radiation detector, the total number of photons that reach the detector without
interaction make up the uncollided dose Do(r) = SpR(E)

4πr2 × e−µ(E)t, where the total material attenuation
is e−µ(E)t, the geometric attenuation of the photons radiating outward from the point source is 1

4πr2 ,
and R is the dose air-to-tissue conversion coefficient for the detector [190].
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penumbra width is also inversely proportional to the source-to-collimator distance (SCD);

therefore, increasing the SCD as much as possible will decrease the geometric penumbra

width as well as the dose-rate. As discussed previously, the number of photons that

penetrate the attenuating medium (collimator in this case) is a function of the attenuator

thickness. Figure 8, on the right, shows that photons that are not completed attenuated

by the collimator, known as transmission penumbra, may also contribute to the beam

penumbra and the valley dose. Increasing the collimator thickness reduces the number of

photons directly underneath the collimator, both in the sharpened geometric penumbra

and the reduced number of transmission photons and therefore minimizes the valley dose.

As can also be seen in Figure 8, reducing the collimator separation as well as increasing

the collimator width will also help minimize the number of photons that contribute to the

valley dose. Although intended to reduce valley dose, this effect has a distinct disadvantage;

both reducing the collimator separation and increasing the collimator thickness also lower

the peak dose rate of the resulting beams.
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Figure 8: This schematic drawing illustrates the effects of SFRT collimator design on the
resulting geometric penumbra, on the left, and the transmission penumbra, on the right,
of the resulting SFRT beams. Geometric penumbra may be minimized by maximizing
the source-to-skin distance while minimizing the collimator-to-skin distance, shown in the
figure as positions S1 and S2. The transmission penumbra may be minimized by increasing
the collimator thickness as well as the collimator width.

To maintain peak dose rates and other SFRT-treatment requirements, other geometric

design factors must be considered, including solid angle and source-to-collimator distance

(SCD). Increasing the collimator thickness and decreasing collimator separation has the

intended effect of attenuating photons that travel at an oblique angle from the source to

the detector (or skin). The solid angle subtended by the span of the collimators from the

source is dependent on the source-to-collimator distance (SCD). At large solid angles,

this geometry may limit the span of the beams (the total number of beams) that may be

generated. Since treatment areas may be as wide as 2cm in diameter, significantly larger

than the x-ray source, it is very important to increase the span of the beams as much as

possible to achieve complete target coverage. Increasing the distance between the source

and collimator (SCD) is an effective way to decrease the solid angle subtended by the span

of the collimators and therefore increase the overall span of the SFRT beams. However, this
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has the unintended effect of also reducing the dose-rate of the SFRT beams via geometric

attenuation (see Footnote1.) Therefore, SFRT collimators need to be positioned such that

they are optimally situated between the radiation source (focal spot of the x-ray tube)

and the target through a combination of careful collimator positioning, trial and error,

and testing.

SFRT collimators are carefully designed in the hope of yielding specific treatment

outcomes. To this effect, achieving specific SFRT characteristic dosimetric parameters

requires a thoughtful balance of collimator aperture width, thickness, and separation,

among other parameters. Figure 9 shows an example SFRT collimator configuration that

was rigorously designed to achieve specific peak dose and width, valley dose and width,

peak-to-valley dose ratio, percentage of tumor directly irradiated, and other parameters

that are discussed in great detail in Chapter . This collimator was created by pouring

heated liquid Cerrobend into a 20x20x1cm mold and then manually drilling aperture slits

and a circular 1cm diameter cross-section hole to fit an endoscopic camera.
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Figure 9: The schematic above illustrates an example of a SFRT-Minibeam style collimator
that was carefully designed with all physics and geometric considerations mind. In
addition, a 1cm bore hole was drilled into the collimator at a steep, 63-degree angle for
insertion of a PC-linked camera. The steep, 63-degree camera viewing angle allows for
collimator-to-target alignment, discussed in detail in Section 3.2.5.

3.2.5 Animal considerations

Animal welfare must be carefully considered as an essential part of any radiotherapy

treatment design. Using live animals in radiobiological studies adds several additional

requirements, both institutional and practical, that must be made before performing any

radiotherapy treatments. As such, all protocols are approved by Institutional Animal

Concerns and Use Committee (IACUC) and all recommended NIH guidelines are strictly

followed to ensure that animal welfare remains a top priority in all studies.

The dose to surrounding non-targeted normal tissues should always be minimized
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for any given radiotherapy treatment; however, preventing radiation toxicity-triggered

euthanasia is especially vital in longitudinal studies where the long-term survival of the

animal is critically important to completing the study. The sub-millimeter geometry of

the SFRT beamlets not only makes them very difficult to align with the treatment target

(usually a tumor), but it also makes minimizing the dose delivered to surrounding normal

tissues in the region increasingly challenging. To overcome these positioning challenges, we

created a treatment system that includes two cameras as well as an animal/target height-

and angle-positioning platform, shown in Figure 10.

Figure 10: The SFRT delivery system includes two cameras, one for animal monitoring
during treatment, and the other for beam-to-animal alignment aided by the rotatable,
height-adjustable platform. Large cerrobend blocks shield the animal and electronics
from unintended irradiation. The cerrobend shields, collimators, electronics, and other
equipment are supported by a 1cm thick acrylic shelf that is cut to fit the length of the
irradiator and that has a large square hole drilled through the center for photons to travel
unimpeded from the collimator to the animal. In addition, the shelf is reinforced lengthwise
with two anodized aluminum 80/20 T-slot bars [80/20 Inc, Columbia, IN, USA], a type of
high strength(yield strength 35,000 psi), light-weight metal [191].
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During animal treatments, the animal platform is positioned downstream from the

stationary collimator and shielding blocks, and the position of the SFRT collimator with

respect to the x-ray source is determined via the built-in light field of the XRad irradiator.

A small hole through the Cerrobend shield near the collimator exit is fitted with a PC-linked

endoscopic camera. The resulting live video feed provides a beams’-eye-view of the target

during alignment with the radiation light-field. In addition, each animal is fixed to a

height-adjustable rotatable platform and angled with the radiation light field in such a

way that normal tissues lie beneath the Cerrobend shielding and are maximally spared.

The small beam widths of the SFRT collimators makes the resulting beams especially

prone to beam spreading due to motion blur; therefore, animals are rendered immobile and

fixed to the rotatable platform throughout treatments. To minimize stress to the animal

during the procedure as well as to reduce animal motion, all irradiations are performed under

anesthesia, typically continuously-delivered vaporized isoflurane. Delivering anesthesia

safely requires continual animal monitoring as prolonged exposure to isoflurane anesthesia

may result in respiratory and cardiac depression as well as hypothermia and hypoglycemia

[192]. Shown in Figure 10, the SFRT treatment setup includes a second camera for

post-alignment monitoring of the animal’s respiration, since change in respiration may

be an early indicator of potential problems during treatment. For example, animal

respiratory rate and depth may be determined by observing chest wall motion, where

10-40 breaths per minute is the expected normal range when the animal is exposed to the

recommended isoflurane anesthesia flow rate of 1.5 liters/min oxygen mixed with 1.5%

isoflurane [193]. As the depth of anesthesia increases, the respiratory rate and volume will

decrease; however, abnormally low respiratory rate (< 8− 10 breaths per minute) may

indicate that the anesthetic level is too high and needs to be reduced [193]. Conversely,

an elevated respiratory rate is the first sign of animal arousal from anesthesia, which may

impact radiotherapy treatment delivery due to motion.

The low dose-rates of the SFRT beams may result in relatively long radiation exposure
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times which translate into long periods under anesthesia for the animals. For animal

anesthesia exposures lasting longer than 10 minutes, animals are susceptible to body

temperature depression. Temperature depression is mitigated via a heat source placed

underneath the animal, such as an externally controlled, electronic heated platform. For any

radiotherapy treatment involving the use of vaporized isoflurane, an anesthesia scavenger

should be included in the anesthesia setup to remove the vented gas from the irradiation

chamber. In addition, longer exposure times may result in exhaled anesthetic gas or

anesthesia rodent nose cone leakage buildup in the irradiation chamber during course of

treatment. For irradiations lasting longer than 20 minutes, an active (electric) scavenger

is highly recommended as it is the most effective method for removal of anesthetic waste

gas. Figure 11 shows the electronics components of an electronic heated platform that

maintains the animal body temperature at a constant 38.2 degrees Celsius, as well as an

active scavenging unit that suctions airflow from waste anesthetic gas and then passes it

through an activated charcoal canister to adsorb the toxins before discharging the cleaned

air back into the room. These precautions are especially important to maintain animal

welfare during and after treatment, as well as ensure the effectiveness of said treatment.
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Figure 11: The animal body temperature is maintained via an externally-controlled electric
heating pad, external electrical component shown, and an anesthesia active scavenger is
used to draw anesthetic waste gas from the irradiation chamber.

3.3 Machine Specific Dosimetry

3.3.1 Equipment for measurements of exposure

The radiation output and quality of x-rays in a given machine may be highly susceptible

to minute changes in the x-ray tube. Ensuring the stability and reliability of the machine

x-ray output under standard operating conditions are critical in our SFRT experiments

to ensure that the treatment dose is delivered to the target as intended. Therefore, we

perform a series of extensive machine output measurements for quality assurance testing

as a standard practice and first step prior to adding an SFRT collimator for small animal

dosimetry.

The radiation output of the machine may be measured in terms of exposure, or the

amount of ionization the radiation produces in a volume of air. Under charged particle

equilibrium conditions (see footnote1), an ion chamber may be used to measure radiation

exposure, where a voltage potential, applied between two electrodes in the ion chamber
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with an incremental volume of air, measures the total charge (C) generated by the ion

pairs that are liberated and completed stopped in air, per unit mass of air (kg) (or

2.58x10−4C/kg) [190]. These exposure measurements may also then be used to calculate

absolute dose, discussed in Section 3.3.2.

We used several different ion chambers throughout our studies; however, the calibration

for each may be traced to a national Accredited Dosimetry Calibration Laboratory (ADCL)

traceable to the National Institutes of Standards and Technology (NIST), as recommended

[194], [195]. Furthermore, each measurement was verified with a second, independent source

whenever possible for enhanced measurement confidence. When measuring the XRad

machine output, we used an ion chamber from Duke University’s Radiation Dosimetry

Laboratory and cross-calibrated it against an ion chamber in the Department of Radiation

Oncology at UNC Chapel Hill. In addition, all measurements are corrected for differences

between ion chamber calibration conditions at the ADCL and any changes in measurement

conditions. The fully-corrected ion chamber reading, M , then is calculated as follows:

M = Mraw × PTP × Pion × Ppol × Pelec

, where Mraw corresponds to the Raw, uncorrected ion chamber reading, chamber

corrections for temperature and pressure (PTP ), ion recombination (Pion), polarity effects

(Ppol), and electrometer accuracy (Pelec) [194].

Prior to measuring machine output, we take a measure of the ion chamber dark current

(the residual current in the device without the presence of ionizing radiation), to ensure the

ion chamber itself does not affect reading results. Shown in Figure 12, measurements of

the ion chamber dark current are on the order of tens of milliRoentgen (mR), a negligible

amount as the machine output readings expected are on the order of hundreds of R.
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Figure 12: The ion chamber dark current, residual internal noise, may indicate potential
measurement issues. For this ion chamber, the dark current is negligible. In addition, the
ion chamber should be used for the dose ranges at which it was calibrated, shown in the
table.

3.3.2 Dose calculation

While measurements of exposure are informative for determining how much radiation

is present in air (air ionization), a more useful measure is how much energy that radiation

deposits to a specific medium, called the absorbed dose, which is linked to how much

radiation damage will occur in that medium. Absorbed dose is equal to the radiation

exposure multiplied by the ionization energy of that radiation in the medium ionized in J/kg

(and 1J/kg = 1Gy = 100rad). For example, an exposure of 1 Roentgen (2.58×10−4C/Kg)

yields a dose of 0.00876J/Kg in air (or 0.876Gyor0.876rad), where the ionization energy

of dry air is 33.97J/C at normal temperature and pressure conditions.

For the radiotherapy and radiobiology study applications outlined in this dissertation,
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the absorbed dose to tissue is of special interest. Therefore, we follow the American

Association of Physicists in Medicine (AAPM) guidelines set by the Radiation Therapy

Committee Task Group 61(TG− 61) for low (superficial) to medium (orthovoltage) energy

x-rays, 40 – 300kV [194]. The protocols outlined in TG-61 yield absorbed dose in water

and tissue at the point of measurement absent the ion chamber. For all of our small animal

radiotherapy experiments, doses need only be calculated at depths <= 2cm, and at points

on or near the surface of the skin (with measurement reference depth zref = 0); therefore,

the “in air” method described in TG-61 is the preferred method for calibration of our x-ray

beams and dose calculation. The absorbed dose “in air” is calculated using the formula:

Dw,d=0 = MMkBwPstem,air

[(
µen
ρ

)w]
air

,where M is the ion chamber reading at the reference measurement depth (dref = 0),[(
µen

ρ

)w]
air

is the mean mass energy-absorption coefficient ratio of water to air, Nk is the

ion chamber correction factor for the x-ray beam quality used, Pstem,air is the ion chamber

correction factor that accounts for any changes in field size as compared to the initial

calibration conditions that result in differences in measured charge in the ion chamber

stem, and Bw is the photon backscatter correction factor.

3.3.3 Beam quality

For calculating dose to tissue, the mass energy-absorption coefficient ratio of water to

air needs to be determined from the beam quality of the x-rays (320kV tube potential).

The x-rays half-value layer (HVL) and the tube potential are both used to characterize

the beam quality, where HVL is the thickness of material (usually Aluminum or Copper)

required to attenuate the beam intensity down to half of its original value. Shown in

Figure13, SpekCalc software is used to generate the x-ray emission spectra, on the left,

and is used to calculate their corresponding mean and effective (equivalent monoenergetic
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photon) energies and HVLs [196], [197]. In addition, Figure 13 shows the various photon

interaction coefficients for Dry Air and Soft Tissue (ICRU-44), calculated using XMuDat

software (InternationalAtomicEnergyAgency−NuclearDataSection, V ienna,Austria)

[189] . The table in Figure 14 summarizes the resulting dose calculation coefficients needed

for determining absorbed dose in tissue, including calculations for HVL, mean and effective

energy, and their corresponding mass-energy absorption coefficients [194].

Figure 13: The f-factors in Figure 14 were calculated from energy spectra generated with
Spekcalc, shown on the left [196], [197], which were used to determine the the mass-energy
absorption coefficients in XMuDat, shown on the right [189]. The resulting f-factor
calculations are used for converting converting the ion chamber in-air measurements of
exposure to dose in water [194].
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Figure 14: Dose calculation coefficients for converting the ion chamber in-air measurements
of exposure to dose in water. [188]. The f-factors were calculated from energy spectra
generated with Spekcalc [196], [197], which were used to determine the the mass-energy
absorption coefficients in XMuDat [189].

3.3.4 Irradiator linearity of current output

Absorbed dose is linearly related to the machine tube current; hence we perform

linearity of output measurements to verify the linear relationship between machine output

and current. Measurements were performed on the X-RAD 320 X-Ray Irradiator located

in Marsico B121 and under normal operating conditions on November 16, 2016. For all the

following measurements, the ion chamber was placed on 1cm of acrylic and measurements

were taken at the approximate open field isocenter at 37cm from the source. The plots in

Figure 15 show the machine output plotted as a function of the tube current at a constant

250kVp tube potential and 0.254mm Cu filtration. There is a linear relationship between

the exposure rate and current (R2 = 0.9841), where the exposure doubles as the current

is doubled, as expected. This linearity response is confirmed with measurements from

a second ion chamber (0.18cc farmer chamber). The small deviations in the linearity

measurements may be accounted for by the end effect, the amount of time that is not

accounted for by the internal machine timing mechanism during the exposures.
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Figure 15: The current-time product, in milliAmpere-seconds (mAs), is varied for different
time and current combinations and then plotted against the measured ion chamber,
in-air exposures. The linearity of output R2 value indicates the machine current output is
relatively stable. Linearity of output measurement conditions included 250kVp, 0.254mmCu
added filtration, at 38cm SSD.

3.3.5 Irradiator energy response and kVp check

Figure 16 details the energy response of the machine output. The top panel is a plot

of the machine exposure as a function of peak tube voltage (kVp). In general, the energy

response of the x-ray tube output is expected to be a quadratic function and approximately

a square of the tube voltage, where, depending on the filtration used, doubling the energy

will quadruple the measured output. For a copper filter 0.254mm thick, the measured

machine response is consistent with a fitted quadratic curve (R2 = 0.9995) and doubling

the energy from 160kVp (60.4R) to 320kVp (234.55R) yields an output 3.89 times the

initial output, just 2.9% short of the expected 4× output. The bottom panel in Figure 16

is a table of the XRad-320 X-Ray Irradiator kVp accuracy test measurements for selected

kVp tube potentials within a range of 50 to 150kVp and a fixed tube current of 1mA. All

nine measurements were within the recommended accuracy limit +/− 5% for all selected

tube potentials with a mean kVp accuracy of 2% [198].
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Figure 16: (Top) The machine energy exposure response was measured by varying the tube
potential while maintaining the current constant. (Bottom) A kVp check of the XRad-320
Irradiator was performed to verify the accuracy of the selected kVp against actual kVp
measurements.

3.3.6 Radiation field uniformity- flatness and symmetry

Looking at the wide field uniformity, namely via calculations of the field flatness and

symmetry, will help determine the optimal SFRT collimator positions for achieving the

most uniform beams possible. Point measurements along the x- and y-axis were made

to determine the cross-beam profiles of the generated x-rays for an open, 18cm x 18cm

field (with the large collimator in the fully open position) at 38cm axial distance from the

59



source. Shown in Figure 17, the ion chamber was positioned at several points within the

irradiation chamber along the x- and y-axis, approximately 2cm apart.

Figure 17: The large-field radiation beam profiles were measured through the central
beam axis along the vertical, y-axis (back-to-front) and horizontal, x-axis (left-to-right)
directions and subsequently plotted. Each ion chamber measurement lasted 20seconds and
was completed under standard conditions (320kVp, 12.5mA, Cu0.254m added filtration).

For our study, the reference region of flatness is defined as the region extending from

the central axis outward up to 2cm from the field edges to exclude penumbral effects of

the outer beam [187]. In Figure 17, the reference region for calculating beam flatness is

defined in light blue. Along the x-axis (as measured from left-to-right within the chamber)

the flatness differed from measurements at the central axis of the field by as much as

+3.76% (at -6cm from the central axis, 38cm from the source.) Similarly, along the y-axis

(as measured from the back wall to the front chamber door) the flatness differed as much

as 3.5% (at -6cm from the central axis, 38cm from source.) Though this is not perfect field

flatness, the variation is significantly decreased nearer the central axis of the field, less

than 0.7% difference within 2cm from the central axis in all directions. To determine field
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symmetry, the x- and y-axis profiles are folded at the field center and the two halves are

compared. The field symmetry varies from the central ray as much as 3.3% for the x-axis

and 2.6% for the y-axis at the outer edges of the radiation field. Again, the field symmetry

increases closer to the central axis, and at 2cm is only 1.1% different from the isocenter.

3.4 Relative Dosimetry

Measurements of absolute exposure (or dose) via ion chamber are the gold standard in

radiation therapy due to their low energy dependence, real-time measurement capabilities,

and reliability for use in repeated measurements. However, while extremely valuable

tools for large field clinical dosimetry, when it comes to their use in preclinical SFRT

dosimetry, ion chambers are severely limited in their ability to measure regions of

high-gradient fields. Even the smallest ion chambers lack the high spatial resolution

necessary to measure sub-millimeter beam widths of our preclinical SFRT collimators in

real-time while maintaining charged particle equilibrium [187]. Among the many challenges

impeding the widespread clinical translation of SFRT technology is the lack of a suitable

radiation detector and overcoming this barrier is instrumental to advancing preclinical

SFRT research. Other types of radiation detectors for performing relative dosimetry

include semiconductors, thermoluminescent dosimeters (TLDs), radiographic film, and

the novel NanoFOD fiber-optic detector; however, each come with their own limitations,

including accuracy and precision, energy response, dose or dose-rate dependence, directional

dependence, spatial resolution, and real-time (or timely) dose read-out, among others.

In these next sections, I will describe these alternative measurement methods, and their

benefits and flaws in relation to this body of work.

3.4.1 Relative dosimetry using film

Gafchromic film is one of only a select few radiation detector types that are readily

available and meet some of the requirements for use in SFRT dosimetry. With a very
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high spatial resolution (25µm or less [199]) and low energy dependence of < 5% in the

100keV – 18MeV photon range [199], it is the most commonly used relative dosimeter

type in preclinical SFRT research [181]. Gafchromic film dosimeters contain a layer of

“photo-monomer molecules” in the form of a gel that undergoes self-polymerization chemical

changes when exposed to high energy photons such as those in ionization radiation [199],

[200]. Gafchromic EBT-3 film consists of a thin active layer of the polymerizable gel, 28µm

thick that is sandwiched between two layers of a clear polyester base, 125µm thick [199].

In addition, the gel polymers are largely insensitive to low-energy radiation such as visible

light and develop without post-exposure treatment since they do not require any special

wet chemical processing. However, EBT-3 Gafchromic film requires a lengthy development

time that may take anywhere between 4hrs – 48 hours [199] . This lack of timely dose

readout makes it less than ideal for fast-paced, practical SFRT dosimetry and research.

Nevertheless, the high spatial resolution capabilities of film dosimeters make using them a

practical method for SFRT dosimetry.

3.4.2 EBT-3 film calibration

Accurate EBT-3 film dosimetry first requires the film to be calibrated against an

ion chamber to establish a film-dose response curve. The film is cross-calibrated with

the ion chamber in large-field conditions, without any SFRT collimators in place, and

the irradiator is operated under identical conditions as those used during treatment, (at

full power using 320kVp anode voltage, 12.5mA current, and with 0.254mm Cu copper

added filtration). A sheet of film is cut into rectangular pieces, approximately 3cm x 2cm

area, using a precision paper cutter to minimize damage to the outer edges of the film

(since frayed film edges are known to result in erroneous measurements.) In addition, the

film orientation is recorded and maintained (relative to the original uncut sheet) for all

exposures, handling, and film readout as any changes in the film orientation may result in

measurement error [199].
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Film calibration setup is shown in Figure 18, a film piece is carefully placed on top of

water-equivalent bolus material and directly beside the ion chamber, at a height matching

the approximate center of the ion chamber’s sensitive volume such that ion chamber

readings would very closely correspond to the film results. In addition, these are all

placed onto a metal z-axis stage for adjusting the height of the detectors for specific

source-to-detector-distances, with a 1cm-thick acrylic slab placed between the detectors

and stage to minimize backscatter from the metal. The film is then irradiated for a

pre-determined length of time, the ion chamber reading is recorded, and the film piece is

removed and stored in the dark for readout later, taking care not to disturb the exposure

setup. This procedure is identically repeated for each new piece of unirradiated film,

varying only the exposure time, for accurate and reproducible film dosimetry. We limit

film exposures to the optimal dynamic range of the EBT-3 film, between 0.2Gy – 10Gy

[199], [200].
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Figure 18: Different components of the EBT-3 film and nanoFOD detectors setup for
cross-calibration with ion chamber (IC). The EBT-3 film (1) and nanoFOD scintillator
tip (2) are both placed on top of water equivalent bolus material (3) and directly next to
the ion chamber (cross-sections of each are visible) (4). In addition, these are all placed
onto a metal z-axis stage for height adjustment with a 1cm-thick acrylic slab (5) placed
in between for limiting the photon backscatter from the metal stage. The figure insert
shows a piece of film (sitting above a piece of water-equivalent bolus) placed next to the
ion chamber, as viewed from above.

For film readout we adhere to scanner and EBT-3 Gafchromic film manufacturer

recommendations [199]. Film is read out using a 48-bit RGB flatbed photo scanner

(such an Epson 10000XL or similar model with transparency adapter) and takes place

approximately 24hrs post-exposure (exact time post-exposure is recorded). The film are

handled with gloves and any smudges on the film are gently removed using alcohol wipes

prior to scanning. After the scanner has been warmed up, according to manufacturer

instructions, the film are placed in the center of the sensitive area of the scanner and then

scanned with all image and color correction features turned off using 72dpi resolution and

48-bit color settings. The scanned film images are saved as TIFF files due to their lossless

“deep color” formatting, retaining the 16-bit RGB color components need for triple channel
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dosimetry.

Figure 19, bottom, shows a complete film calibration set. The calibration regions of

interest are shown as blue dotted rectangles are shown below the calibration curve. Figure

regions of interest are selected near the center of the film, with a 2mm margin from the

edge of the film where the dose is most uniform. The digitized film transmission values

for each 16-bit color channel (red, green, and blue) are averaged within the regions of

interest using ImageJ (NIH public domain, MD, USA) and plotted against their respective

ion-chamber-derived dose values to create the three separate film dose response curves,

shown in Figure 19. The dose measurement points are fitted to an interpolating polynomial

to create a continuous curve. A Matlab [103] script was written to perform automatic dose

conversion calculations from film transmission value input. The film calibration is valid at

a specific point in time and requires re-calibration at minimum every 6 months or sooner

based on film storage conditions or machine changes. The red channel is used for dose

calculations up to 10Gy due to its high sensitivity to changes in dose (This determination

is based on the red channel’s observable steep dose response curve).
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Figure 19: (Bottom) EBT-3 film pieces are calibrated against an ion chamber and scanned.
The dotted blue lines indicate regions with 2mm margins in the center of each film that
are used for computing the average film-response for a given energy. (Top) The resulting
film dose-response curves are plotted and used for converting film readings to dose.

3.4.3 Film limitations

Given the limited dynamic range of the film, we are limited to exposures within

0.2Gy =< x >= 10Gy. These values are simultaneously greater than the minimum/valley

dose of some of our SFRT treatments (at the lower end of the film dynamic range) as

well as less than the peak dose of the SFRT treatments (at the higher end of the dynamic

range.) Therefore, overcoming this film limitation requires careful dose-rate calculation

and extrapolation to determine the peak and valley doses of our SFRT treatments. To

determine the valley dose in the 300µum SFRT collimator, film is intentionally over-exposed

in the peak region so as to bring the valley dose film regions up to within the dynamic

range of the film, ideally somewhere along the steepest portion of the calibration curve.

After scanning the resulting film, the measured dose in the valley region is divided by

the recorded total exposure time to determine the valley dose-rate. Similarly, to measure
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the dose in the peak regions of the SFRT beams, the film is intentionally under-exposed

in the peak region so as to lower the peak dose to within the dynamic range of the film.

After scanning the resulting film, the measured dose in the peak region is divided by the

recorded total exposure time to determine the peak dose-rate. These two measurements

of peak- and valley- dose rate combined help determine the peak and valley doses for a

treatment with a given exposure time.

3.4.4 Film dosimetry for SFRT

After positioning the SFRT collimators, 3cm × 4cm rectangles of ETB-3 film are

irradiated under the area defined by the collimated beams. Of specific interest are

measurements of the SFRT beam profiles, the profile of irradiation perpendicular to the

radiation beams, and their percentage dose distribution in depth, the profile of irradiation

parallel to the radiation beams. Shown in Figure 20, this is achieved by tightly sandwiching

a piece of film between two identical 3cm× 3cm× 4cm solid rectangular acrylic prisms

that act as phantom for the percentage depth dose film measurement. For this depth

dose measurement, the film is positioned edgewise, both parallel to the collimated rays

and centered along the lateral profile of the beams. Additionally, a second piece of film

is fixed to the top of the acrylic phantom (acrylic-film-sandwich), placed perpendicular

to collimated rays and centered over the percentage depth dose film. In the figure, the

approximate location of the percentage depth dose film underneath the beam profile film

is indicated by the red line. The film setup is then aligned with the collimator and source,

then irradiated. The process described above for measuring SFRT beam profiles and

PDDs is repeated for all collimators as needed for beam profile or percentage depth dose

measurement.
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Figure 20: The SFRT beam profile is taken perpendicular to the lateral direction of the
SFRT beams. The SFRT PDD measurements are calculated for up to 2cm depth along
the direction of the beam. RED drawings on film indicate location of Beam Profile and
PDD measurements. Similar measurement procedure is followed for all other SFRT beam
patterns.

3.4.5 Relative dosimetry using the NanoFOD

In addition to using film, we use a second, efficient dose measurement technique for SFRT

using a new technology based on nano-scintillator fiber-optic detector (nanoFOD), created

in conjunction with Duke University Department of Medical Physics. The nanoFOD system

successfully achieves real-time dosimetry measurements by simultaneously employing an

integrated positioning stage and automatic dose-rate integration script. In addition, the

nanoFOD is a portable, low-cost, real-time high-resolution dosimeter, which is particularly

useful for research labs such as our own. In addition, the 20-um-sized detector tip makes

it especially suitable for measurements of the peak dose of our smallest SFRT beams and

the beam profile [201].
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Shown in Figure 21, this device uses inorganic nano-crystalline (Y1.9O3, Eu0.1, Li0.16)

powder that is compressed into an 20µm-sized pellet and attached to one terminal of a

60µm UV/Vis Optical Fiber (LEONI Fiber Optics, Inc) [202]. The scintillating pellet

consists of highly sensitive photon absorbers in the x-ray range, with emission spectra that

peak at 611nm, well within the visible light part of the electromagnetic spectrum. The

emission photons travel down the fiberoptic cable, which is coupled to a S150C compact

silicone photodiode power sensor, selected for fiber-based optical power measurements

in the wavelength range 350-1100nm and optical power range 50nW-5mW, for photon

detection [201], [202]. The output is then read out by a PM100USB Power and Energy

Meter Interface which is operated and powered via PC [201], [202]. A standard laptop is

used for all data collection and display. In addition, the optical fiber is coated with black

paint to attenuate signals from ambient light.

Figure 21: A (2) 20µm-wide, inorganic, nanocrystalline, scintillating pellet is attached to
(1) the tip of an ultraviolet/visible wavelength optical fiber (Leoni Fiber Optics). The
signal travels through the (1) fiber and is detected by a (3) S150C silicone photo-diode
and PM100USB photo-diode laser power meter (Thorlabs) and then read out using a (4)
standard laptop for data collection and display. Photo adapted from Belley et al. [201]
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3.4.6 NanoFOD calibration

With proper calibration, the nanoFOD may be used to calculate the amount of radiation

incident on the nanoparticle scintillator (measured in Gy) based on the scintillation energy

of the photo-diode (measured in Joules). Both film and nanoFOD dosimeters are calibrated

together using the ion chamber for large-field geometry as recommended by TG-61, using

the setup shown previously in Figure 18. The nanoFOD scintillation tip is placed into a

fixed position next to the ion chamber and irradiated for a predetermined length of time.

Figure 22 shows resulting nanoFOD signal after a 30 second exposure, with background

signal (from ambient light and internal component noise, shown in red) subtracted. The

area under the signal-time curve (in green) is integrated to determine the Integral Net

output value. This procedure is repeated for multiple different exposures and all resulting

integrated output values are plotted against their respective ion chamber measurements

to create the NanoFOD Response Curve, shown in Figure 22 in the panel on the right.

The linear slope of this curve corresponds to the nanoFOD calibration factor (CF (E)),

as a function of energy, and is used for converting the nanoFOD light output (L) to a

measurement of Dose (D) at a given energy using equation,

D = L× CF (E)

.
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Figure 22: The nanoFOD calibration factor, CF, is used for converting the nanoFOD light
output measurement under the radiation to Absorbed Dose in tissue (or Exposure). Once
the scintillation tip is in a fixed position, ready for measurement, the light output (J/s)
of the NanoFOD is linear with Dose (D) at a given energy. To calibrate the nanoFOD,
background signal is collected and then the beam is turned on. After subtracting the
background signal (red dotted line) the area under the signal-time curve (green shaded
area) is integrated to determine the Integral Net output value. This value is plotted onto
the NanoFOD Response Curve. The linear slope for several plotted values is calculated
and dose conversion is performed by comparing the integrated signal from nano-FOD
system (J) to cumulative exposure (R) 2% cumulative calibration uncertainty.

3.4.7 NanoFOD dosimetry for SFRT

For accurate nanoFOD positioning, especially for peak dose and lateral beam profile

measurements under the SFRT micro-collimator, the nanoFOD is attached to a

computer-controlled positioning stage, which positions the detector tip precisely under the

micro-collimator beams. Figure 23 graphically displays the measurement setup and an

example output graph is shown in the insert. Additionally, we developed a user-friendly

automatic data collection script for easy use of the nanoFOD system, shown in Figure 23.

The script controls both detector data collection, performing automatic dose conversion

for real-time readings and background measurement subtractions, as well as the

computer-controlled positioning stage, ensuring that the data and stage are synchronized.

Data collection begins with background acquisition and is followed by dose measurement.

The GUI displays dose, dose rate, position, and speed of the detector in real time, shown
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in the graphical insert (bottom right) where we compare the performance of two different

scintillator tips. Of these two tips, one displays a 910% increase in signal sensitivity

compared to an older generation detector with small crystal (purple line).

Figure 23: The nanoFOD scintillation tip is fixed to a x-y translation stage and is translated
through the lateral direction of the SFRT beams profile. A in-house written script performs
automatic data collection, background correction, data collection and synchronization
with stage translation, signal-to-dose conversion, and displays the data in real time for
quick readout.

3.4.8 NanoFOD limitations

Several limitations have been encountered with NanoFOD dosimetry that make SFRT

dosimetry challenging.
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1. The nanoFOD scintillator is strongly energy dependent; therefore, dose measurements

in the valley region of the SFRT beams are unreliable, because scattered photons in

the valley region may have vastly different energy spectra than those photons lying

directly in the path of the beam.

2. NanoFOD measurements for SFRT are only valid when the entire scintillator tip

(active volume) is illuminated; therefore, as the solid angle between the scintillator tip

and the radiation source changes, the active volume of the scintillator becomes either

only partially illuminated at the edge of the SFRT beams or completely blocked in

the valley regions directly underneath the SFRT collimator.

3. At long exposure times nanoFOD measurements undergo upwards signal drift, and

noise amplitude rises over time due to increases in natural temperature and resistance

of the detector’s internal components; therefore, a heat exchanger should be included

in future detector setups to mitigate thermal noise and related measurement error .

3.5 SFRT Dosimetry for Small Animal Studies

3.5.1 SFRT beam profiles

Shown in Figure 24, the 300µm-sized SFRT collimator dose profile was measured using

both the EBT-3 Gafchromic film and the nanoFOD detectors, and these results were

compared. In the SFRT peak regions, the film and nanoFOD largely agreed, with less

than 2% difference in measurements for the central 7 peaks. Unsurprisingly, measurements

in the valley region did not agree. This is likely due to the nanoFOD limitations discussed

earlier, namely the strong energy dependence of the nanoFOD detector as well as changes

to the percentage area activated in the scintillator as a function of position.
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Figure 24: EBT-3 Gafchromic film and nanoFOD were both used to measure the SFRT
beam profile for a multi-slit collimator with 300µm-wide peaks. The film and nanoFOD
largely agreed in the peak with < 2% difference (after correcting for upwards signal drift
due to noise). Measurements do not agree in the valley region largely due to strong
nanoFOD detector energy dependence and variability in detector scintillated active area
as a function of position. Setup conditions included a 320kVp tube potential, 12.5mA, and
Cu0.254mm added filtration.

Additional film beam dose profile results are shown in Figure 25. A variety of different

“broad beam” or large field collimators as well as SFRT collimator measurements are

included to demonstrate the versatility of the radiotherapy treatment setup. While the

primary focus of the treatment setup was to develop a system capable of delivering

spatially fractionated radiotherapy beams, an important aspect of radiobiological studies

involves comparing the SFRT treatments against their more conventional “seamless”, or

uniform, radiotherapy counterparts. The radiotherapy beam dose profile measurements are

largely taken at 320kVp; however, two plots notably contain an additional measurement at

160kVp (Figure 25-A and G). The “TBI- Large Field” and “SFRT-TBI” curves correspond

to a total body irradiation study (TBI), where the entire mouse (with dimensions

3cm-width and approximately 8cm-length) undergoes radiotherapy treatment with SFRT.

The corresponding large TBI collimators, 4× 10cm, were dosimetrically tested at both

320kVp and 160kVp to determine at which treatment energy superior SFRT beams and
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corresponding peak-to-valley dose ratios were produced for the given TBI treatment field

size requirements.

Figure 25: The measured relative beam profiles are shown for a variety of SFRT collimators.
The large variation in fractionation scale demonstrates the flexibility of the SFRT treatment
system for potentially delivering a wide range treatments for a number of disease sites.
Calibrated EBT-3 film was used for measuring the dose profiles (largely at 320kVp, 12.5mA
with 0.254mmCu added filtration.) Additional details for each collimator are shown in
Figure 26.

Beam profile measurements are useful for determining a number of dosimetric

parameters for radiotherapy treatments. Figure 26 summarizes several of the computed

dosimetric parameters for the collimator dose beam profiles shown in Figure 25. The table

in Figure 26 includes the overall field size (or span of the SFRT beams) for each of the

collimators as well as their collimator factors, ratio of the maximum (or peak) dose to the

open-field measurements under the same measurement conditions. In addition, the table

includes several characteristic SFRT parameters such as peak-to-valley-dose-ratio

(calculated as the average dose in the “peaks” divided by the average dose in the “valleys”
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of the SFRT beams), the average SFRT peak beam width (calculated as the average

full-width-at-half-maximum of the SFRT beams), the average width of the “valley”

regions, and their corresponding peak-to-peak distances. It should be noted that not all

studies used the same treatment conditions. For example, the TBI-Large Field and

SFRT-TBI dose profile measurements are at depth d = 10mm, whereas all other dose

profile measurements are at depth d = 0mm.

Figure 26: Dosimetric results for a variety of SFRT collimators used in small animal
studies. The first 4 are uniform, seamless radiotherapy collimators, intended distinguish
the effects of SFRT treatments from more conventional therapies. The bottom 4 are all
SFRT collimators varying in shape.

3.5.2 SFRT percentage depth dose

In our small animal experiments, the radiation target or region of interest may often

be tissue, lying at or just below the surface of the skin, or a tumor up to 10mm deep.

However, the dose deposited to tissue generally decreases with increasing depth, and

for larger treatment targets the tissue exit dose deposition will differ significantly from
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deposition at the tissue entrance. This depth-dependent variable dose distribution may be

characterized as percentage depth dose (PDD), defined as the dose distribution in depth

(D) normalized to100% of the maximum dose (Dmax) along the central axis of the beam,

where

PDD = D

Dmax

× 100

[187]. For beam energies below 400kVp such as our own, Dmax corresponds to a depth of

d = 0; however, at higher energies, the depth ofDmax may be significantly greater, d >> 0.

Figure 27 shows the PDD film measurement results for some of the various collimators

used in our radiobiological studies

Figure 27: Some of the wide variety of SFRT collimators we used in our preclinical studies
are shown. Panel ’A’ corresponding to the ”TBI-Large Field” collimator film measurement
shows both 160kVp and 320kVp PDD calculations. The size and shape of the collimator,
photon energies, and experimental setup conditions all play a role in dose depositions
in depth. Hence, film irradiated at different energies were often examined to aid in the
experimental design of a preclinical study. Percentage Depth Dose (PDD) results for a
variety of SFRT collimators that we used in animal studies.
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PDD measurements for the different collimators were largely taken at 320kVp; however,

the TBI- Large Field plot also includes a PDD measurement at 160kVp. Note the steeper

dose fall-off for the lower energy 160kVp beam. TBI treatments should ensure near-uniform

(or as uniformly as possible) delivery of radiotherapy to the entire body. As the TBI

radiotherapy beams enter the body they become attenuated by approximately 20% at the

torso exit at 320kVp and by nearly 30% at 160kVp, which demonstrates that the 320kVp

treatment energy delivers a more uniform dose. For this reason, among others, the 320kVp

treatment energy was chosen for the TBI mouse study.

3.5.3 Integral dose calculation

Some studies require knowledge of the absorbed dose in tumor and normal tissues,

integrated over their entire volumes. The volume-averaged doses are approximated by

computing the film dose within an area of 1cm× 1cm(depth) of the scanned PDD film.

Similarly, to capture the effects of the radiation on nearby tissues that may have been

exposed, the volume-averaged tissue dose is approximated by computing the film dose

average within a 2cm × 2cm(depth) of the PDD film, as shown in Figure 28. The

Trapezoidal Riemann summation method is used to approximate the area under the

definite integral along both dimensions of the 2D film-dose response surface shown, giving

the volume-averaged tissue dose approximations.

∫ b

a
f(x)dx ≈

N−1∑
n=0

(1
2

)
(fn + fn+1)(∆x)n
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Figure 28: Integral dose was determined for specific depths in tissue from Percentage Depth
Dose (PDD) film measurement results and were computed using an in-house generated
Matlab script (Mathworks, Natick, MA) [103]. The top panel shows a 2Dimensional dose
intensity map (with x-dimension in cm, z-dimension in cm, and y-dimension displaying
the radiation intensity (Gy) of the 2D film PDD measurements for the 300µm peak width
collimator. The integral dose is calculated in depth, shown in the middle panel, and the
Riemman summation method is used to compute the definite integral for the area under
the 2Dimensional curved dose surface of the PDD film.

3.6 SFRT Delivery System

SFRT radiobiological studies are ready to begin after completing dosimetry.

Standardized protocols, located in the Appendix, were created for consistent, repeatable

treatment system setup and animal alignment and to enable reliable radiotherapy delivery.

Figure 29 shows the full SFRT treatment system setup. The external beam x-ray source

(1) produces a large radiation field that is attenuated by one of the custom Cerrobend

collimators (2). The position of the collimator with respect to the x-ray source is

determined via a built-in light field in the XRad irradiator and the dosimetry

79



measurements. Once the optimal position is identified, the collimator is fixed onto the

custom-made stationary shelf. The animal stage is positioned below the stationary

collimator and shielding blocks. Both the animal and tumor (4) are aligned with the

source-collimator setup using the beam’s-eye-view PC-linked camera (3) as well as the

rotable platform and z-stage for angle and height adjustment (5). Live video feeds via a

second PC-linked endoscopic camera will be used for animal tumor alignment as well as

monitoring vitals throughout the procedure.

Figure 29: The SFRT treatment delivery system includes (1) the uncollimated
treatment source, (2) a live-video feed endoscopic camera that is angled for target
viewing and alignment, (3) a lead-alloy collimator and other shielding placed onto an
alumninum-reinforced acrylic shelf, (4) a second PC-linked endoscopic camera placed
close to the anesthetized animal for treatment monitoring, as well as (5) the height- and
angle-adjustable platform for animal positioning under the collimated radiation field.

Prior to irradiating the animal, radiochromic film is placed over the tumor/radiation
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target, directly on top of the skin. This is to verify tumor alignment with radiation field

during treatment. This film is intended as a second method to verify post-treatment

that the radiotherapy beams were aligned with and delivered to the target as intended,

though the treatment-verification film has multiple other uses. If any target motion occurs,

this may be indicated on the treatment-verification film. Treatment-verification film also

ensures that there were no off-target or otherwise unintentional exposures during the

course of treatment. These films serve as treatment documentation, for record-keeping

purposes, and may be re-examined at a later date if necessary.

3.7 SFRT Delivery System Limitations

Despite the great care and consideration taken for several possible factors that may

affect our radiation treatments and setup, there are still several important limitations. First,

there is no on-board imaging available for this treatment machine or setup. Clinically,

on-board imaging is used regularly and has proven incredibly beneficial for accurate

treatment delivery. However, delivering accurate treatments to targets such as tumors

or specific internal organs without on-board imaging is very difficult and subject to high

incidences of off-target treatments, such as the one shown in Figure 30.
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Figure 30: Several challenges were encountered during SFRT delivery system design.
Examples of some of these challenges include off-target treatment failure due to a lack
of pre-treatment imaging for precise targeting of the SFRT beams to the treatment site
and beam smearing caused by animal cardiac or respiratory motion. These challenges
were met with creative solutions for overcoming them, involving a combination of several
techniques, including developing strategies to minimize their impact such as selectively
choosing treatment sites that are distant from motion-causing organs, placing a PC-linked
endoscopic camera near the target for target viewing and alignment, and trial and error,
among others.

To overcome this limitation, we use several techniques to ensure that we have a high

probability of hitting our target. We include a 5mm margin around all gross tumor (or

other target) areas to account for variations in shape and position of the target during

treatment and decrease the probably of treatment failure. While this inevitably may

sub-optimally expose more normal tissues to high doses of radiation, we look to decades

of preclinical data that have demonstrated the preferential normal tissue sparing effect

and safety of high dose SFRT. Additionally, whenever possible, we use externally visible

anatomic markers to identify regions of interest. For example, when targeting a mouse

brain for a whole brain irradiation treatment (with rodent lying prone and viewed in the

frontal/coronal plane), the mouse cerebellum within the skull very reliably lies inferior to

ocular cavity and superior to the ear lobes, a section approximately 1cm long. Furthermore,

when viewed in the sagittal plane, the brain reliably occupies half the cranial cavity, lying
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inferior to the esophagus/oral cavity. For superficial solid tumor tissues we physically

palpate the tumors to identify tumor/normal tissue boundaries and delineate them with

permanent marker to visually define them for treatment. In addition to visual external

markers, we use a PC-linked live video feed from a small endoscopic camera with a near

beam’s-eye-viewing angle help align the target with the radiation light field. Finally,

the post-treatment verification film is used to verify that we delivered the intended dose

to the target as described earlier. However, with no access to onboard imaging, or live

video-rate CT, x-ray imaging of the treatment, or in vivo during treatment, we have no

way of knowing what the animal organs look like or where they are at any given time,

so it is nearly impossible to avoid them. Though on-board imaging would be ideal, our

error is mitigated with visual and technological tools, and when error occurs, it is reliably

identified with post-treatment verification radiochromic film.

A second limitation to our SFRT treatment setup is that all dosimetric calculations

do not consider potential effects from cardiac or respiratory motion. Shown in Figure 30,

motion blur has the unintended consequence of smearing the sub-millimeter treatment

beams and reducing the peak dose while increasing the valley dose such that the delivered

dose more closely resembles a conventional radiotherapy treatment, effectively eliminating

the potential impact of SFRT. For this reason our radiobiological studies primarily focus

on treatment targets that are distant from the source of organ motion, near the animal

pelvis or head/neck area. In addition, animals are immobilized as much as is feasible

during treatments without restricting breathing. However, even after immobilization and

controlling for disease site, there may still be some organ motion effects beneath the skin

to consider; therefore, the 5mm margin around the radiation target may also help account

for any resulting variation in target shape or position in addition to limiting the target size

to fit within this margin. Developing creative solutions to overcoming some of these design

and implementation challenges or minimizing their impact is essential for successfully

carrying out SFRT treatments.
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A third limitation in our SFRT delivery system is the limited treatment planning

techniques we have available. While we do have a treatment planning method that uses

a combination of dosimetry, modeling on matlab, visual image alignment, etc. these

methods do not allow for accurate dose delivery and do not provide dose volume histogram

information. However, we do not expect this limitation to impact any of the final study

results as these are limitations that affect all study arms throughout each of the studies

and not on any specific study arm.
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CHAPTER 4: CONVENTIONAL DOSE RATE SPATIALLY
FRACTIONATED RADIATION THERAPY TREATMENT RESPONSE

AND ITS ASSOCIATION WITH DOSIMETRIC PARAMETERS – A
PRECLINICAL STUDY IN A FISHER 344 RAT MODEL

4.1 Overview

Previously, we demonstrated the feasibility of creating a compact and low-cost spatially

fractionated radiation therapy (SFRT) delivery system for use in advancing preclinical

SFRT research. Despite deades of research shoing that SFRT has an enhanced therapeutic

ratio over conventioanl radiotherapy, SFRT remains poorly understood, which hinders its

broad clinical translation. One front to advance wide-spread clinical translation of this

approach is to identify key SFRT dosimetric parameters that have close associations with

treatment outcomes in the hopes of gaining a better understanding of SFRT.

This chapter has been submitted for publication in PLOS One and is in review at

the time of this writing2. I have included the study here in full and have additionally

incorporated several additional figures (Figures 41, 45, 46, and 36) of statistical analysis

results as well as their accompanying text throughout the Methods, Results, and Discussion

sections. These are included only to elaborate on several ideas presented throughout the

paper that was originally condensed for publication.

2This chapter has been submitted as an article in the Journal PLOS One. The original citation is as
follows: Rivera JN, Kierski TM, Kasoji SK, Abrantes AS, Dayton PA, Chang SX, Conventional dose rate
spatially-fractionated radiation therapy (SFRT) treatment response and its association with dosimetric
parameters – A preclinical study in a Fisher 344 rat model. PlosONE. 2020 [Manuscript In Review]
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4.2 Introduction

Spatially-fractionated radiation therapy (SFRT) is a nonconventional radiation

therapy that is characterized by intentionally-created high dose inhomogeneities,

ultra-high maximum doses, and single fraction treatments [70], [97]. The dose

inhomogeneity consists of many small sub-regions with alternating high and low doses

throughout the treatment volume. SFRT includes clinical GRID therapy [70], [77] and

preclinical microbeam radiation therapy (MRT) [203], each of which of has a decades-long

history demonstrating its superior therapeutic ratio compared to conventional radiation

therapy, especially in terms of normal organ sparing. Detailed summaries can be found in

two recent reviews by Billena and Khan [204] for GRID therapy and by Eling et al. [203],

[205] for MRT. Today, there are a number of modern treatment delivery technologies

available for clinical SFRT including multi-leaf collimator generated GRID [96],

LATTICE [88], [100], [206], Tomotherapy [204], and particle GRID therapy [207], [208].

For preclinical SFRT, newer technologies include “minibeams” with larger spatial

fractionation scales (on the order of millimeter instead of the tens of microns used in

classical MRT) [209], [210] and with conventional dose-rates [180], [186]. Most published

MRT research utilized brilliant x-rays generated from synchrotron accelerator facilities

with ultrahigh dose rates [203]. The conventional dose rate SFRT radiations, such as the

ones used in this study, are highly relevant to translational research for LINAC-based

SFRT clinical applications, where conventional dose rates are also used.

Despite the long history and well demonstrated therapeutic ratio advantage over

conventional uniform dose radiation therapy, SFRT remains an experimental therapy.

There are several reasons attributed to the sluggish clinical translation progress including

a lack of understanding of SFRT working mechanisms and of the association between

SFRT treatment response and dosimetry. While we have verified treatment dosimetry

and tumor control outcome correlations for conventional radiation therapy (i.e., tumor
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minimum dose and Equivalent Uniform Dose (EUD) are closely correlated with tumor

control) [211]; however, we do not yet have such understanding for SFRT, which has

significantly more complex dosimetry than that of conventional radiation therapy. Unique

SFRT dosimetric parameters that describe the dosimetry include peak dose, valley dose,

peak-to-valley-dose-ratio, peak width, valley width, and percentage tumor volume directly

irradiated. It is reasonable to assume that not all these dosimetric parameters have

the same clinical significance. To effectively advance SFRT clinical translation it is

critically important to identify which parameters have strong/weak associations with a

given treatment response.

The goal of this study is to identify key dosimetric parameters that are most closely

associated with treatment response using a preclinical animal model. We hypothesize

that while peak dose has always been used to prescribe SFRT treatment for both clinical

and preclinical applications, peak dose may not be the dosimetric parameter most closely

associated with SFRT tumor control or treatment toxicity. If it is not, which SFRT

dosimetric parameters are? Further, we ask that, for a given pattern of SFRT treatment,

what is its conventional radiation therapy equivalence for a given treatment response? The

answers to these questions are crucial to advance clinical translation of SFRT. Unfortunately,

decades of synchrotron-based MRT studies may not be able to answer these questions due

to the use of ultrahigh dose rates (1000sGy/sec) [212]. Recent research on FLASH radiation

has shown that radiation with dose-rates of 100Gy/s or higher selectively spares normal

tissue not tumor [203], [213], [214]. This new finding revealed that the ultrahigh dose-rate

alone is partially responsible for the observed high therapeutic-ratio demonstrated in the

majority of SFRT research published so far [203]. This study will help discern the impact

of radiation spatial fractionation at dose rates relevant to clinical SFRT treatments.

Today, SFRT is receiving much deserved renewed attention and enthusiasm in the

field of radiation oncology. In 2018 National Cancer Institute and Radiosurgery Society

jointly held the first workshop on Understanding High-Dose, Ultra-Dose-Rate and Spatially
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Fractionated Radiotherapy and created three standing working groups (clinical, biology,

and physics) aiming to provide guidelines on SFRT research and clinical application [215].

We hope this work will assist in this endeavor by shedding light on the clinical impact of

SFRT dosimetry parameters.

4.3 Materials and Methods

4.3.1 Study design

The secret of SFRT lays in its radiation dose spatial fractionation. Although this work

does not address the very much needed understanding of working mechanism it addresses

another important matter for SFRT application - the association of SFRT dosimetric

parameters with treatment response at conventional dose rates (dose rate ranges from 4.27

to 5.25Gy/min was used). Figure 31 shows a six-arm study design using a very large span

of radiation spatial fractionation, constructed to explore the impact of radiation spatial

fractionation. The table in Figure 32 summarizes the dosimetric parameters of each of

the six arms. To study the effect of radiation spatial fractionation under the condition

of equal volume-averaged dose we used the following four study arms: 20GyUniformRT

(entire tumor directly irradiated), 20GyHalfRT (only one-half of tumor directly irradiated),

20Gy2mmSFRT (50% of tumor directly irradiated by 2mm-wide planar beam array),

and 20GySFRT (20% of tumor directly irradiated with 0.3mm-wide planar beam array).

Note that the doses are volume-averaged doses computed for the entire tumor volume. A

50GySFRT arm (50Gy volume-averaged dose, beam width 0.31mm) is added as it has a

peak dose of 225Gy, which is within the known minibeam peak dose range showing tumor

control. To account for unavoidable variations in tumor position under the 20Gy2mmSFRT

treatment beams during animal irradiations, we computed the maximum and minimum

beam coverage positions and calculated their corresponding dosimetric specifications. The

20Gy2mmSFRT treatment arm dosimetric values reported in Table 1 correspond to the
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average at these positions for a 10mm diameter tumor. For example, a 10mm sized tumor

is irradiated by at most three 2mm-peaks and at minimum two 2mm-peaks and the average

dosimetric parameter at these two positions was calculated.

Figure 31: A very large range of radiation spatial fractionation scale was used to derive the
impact of radiation spatial fractionation. Four arms share the same 20Gy volume-average
dose. The high dose 50GySFRT arm is added because 20GySFRT is not known to have
tumor control. The dosimetric parameters studied and number of animals per study arm
are listed in 32.

Figure 32: Summary of nine SFRT dosimetric parameter specifications in the six-arm
study.
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Custom-made radiation blocks and collimators made of Cerrobend or tungsten were

used to define the 2cm× 2cm field for 20GyUniformRT arm treatment, the 2cm× 1cm

for 20GyHalfSFRT treatment, and the beamlet array 2cm × 2cm fields for both the

20Gy2mmSFRT and 20Gy/50GySFRT treatments. The 2cm field size in the direction of

the uniform dose within each of SFRT planar beams is made possible by the very large

focal spot size (8mm2) of the XRad irradiator (Precision X-ray Inc., North Branford, CT

USA). All irradiations in this study used the same irradiator.

4.3.2 Animal tumor model

This study was carried out in strict accordance with the recommendations in the

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health

(NIH). The University of North Carolina- Chapel Hill Institutional Animal Care and Use

Committee (IACUC) reviewed and approved the animal protocol (IACUC ID: 15-366.0)

in accordance with NIH standards. All animal surgical, radiation, and imaging procedures

were performed under general anesthesia and all efforts were made to minimize suffering.

Forty-two eight-week-old female Fischer 344 rats from Charles River Labs and rat

fibrosarcoma tumor allografts were used [216]. The rat fibrosarcoma (FSA) allograft

model has been well characterized in several radiotherapy response studies by our and

collaborator labs [216]–[218]. Rat FSA is characterized as a local, non-metastasizing tumor

that is highly vascular and oxygen dependent [219], [220]. It is an appropriate tumor

model for our long-term study goal that investigates the association of SFRT dosimetric

parameters with treatment responses, which is reported here, and the association between

SFRT treatment response and tumor vascular change post radiation using 3D acoustic

angiography. The latter is ongoing research for future publication.

All surgical, radiation, and imaging procedures were performed under general anesthesia,

induced in the animals initially using 5% vaporized isoflurane mixed with pure oxygen as

the carrier gas and then maintained at 2.5% isoflurane mixed with pure oxygen throughout
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each procedure. Depth of anesthesia was monitored by toe pinch reflex and breathing

rate. Opthalmic ointment was placed on the animal’s eyes during anesthesia to provide

lubrication and body temperature under anesthesia was maintained via electronically

controlled heating pad. Tumors were grown in each rat by implanting freshly resected tumor

tissue (1mm3) that was harvested from tumor-bearing donor rats into the subcutaneous

space of the rodent flank using blunt dissection. Postoperative care included daily incision

surveillance, body temperature monitoring, and a water bottle containing 6mg/mL

cherry-flavored, dye-free children’s Tylenol diluted in water for a minimum of 24-hrs

post-surgery to alleviate any associated pain from the implantation procedure. Animals

were used for experiments 2-3 weeks post-implantation, when the tumors reached the

target RT treatment size of approximately 5-10mm.

In preclinical studies the pre-treatment tumor volume is known to be strongly correlated

with treatment tumor control [216]. We minimize this unwanted effect by controlling the

pre-treatment tumor volume in a randomized, matched group study design. We binned

animals according to their pre-treatment tumor volume and then randomly assigned these

matched bins of animals such that at least one animal from each bin is assigned to each

treatment group. This technique resulted in an average initial tumor volume across groups

of 566± 47mm3 on RT treatment day. Biological variability was minimized by ordering

animals from the same vendor and of the same age (6 weeks old), implanting tumor on

the same day and from the same donor animal, treating with radiation on the same day,

and housing animals in the same Vivarium location with identical husbandry conditions.

All animals (mixed caged) were provided identical standard laboratory rodent diets of

(23% > crude protein) and water ad libitum throughout the study. In addition, all animal

diets were supplemented with high-calorie, nutritionally fortified water-based gel cups to

help mitigate any potential significant weight loss and dehydration post-radiation.

The animals body weight and tumor volumes are monitored prior to radiation and

every third day thereafter for up to 30 days. Study endpoints are maximum tumor burden
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(2.5cm or larger in any dimension), weight loss in excess of 15%, body condition scores [221]

less than or equal to 2, or other signs of pain, discomfort, or moribundity as recommended

by University of North Carolina- Chapel Hill Division of Comparative Medicine veterinary

staff. Animals that met study end-point criteria will be ethically euthanized primarily via

compressed carbon dioxide gas or vaporized isoflurane overdose followed by thoracotomy

as a secondary means of physical euthanasia per the approved animal study protocol.

4.3.3 Animal radiation dosimetry

XRad Irradiator and 320kV x-rays were used in this study. Surface dose rates ranging

from 4.27 to 5.25Gy/min were used for all study arms. Figure 33 shows the treatment

setup, the radiation light field on animal seen by the camera, and treatment verification

films. Dosimetry was measured via EBT-3 film calibrated by an ADCL-calibrated ion

chamber under large field conditions.
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Figure 33: Animal irradiation setup and treatment alignment and verification. (A−B)
The treatment setup components include (1) X-ray source, (2) endoscopic camera (lens
shielded), (3) field shaping collimator for all treated arms (20GySFRT shown), (4) animal
and tumor, and the (5) 3-axial heated animal positioning stage. (C) Photo of the built-in
irradiator light shines through the 50GySFRT collimator and onto the outlined tumor
as seen from the beams-eye view camera (live feed used to position tumor within the
treatment fields.) (D) EBT-3 treatment verification films with a cutout in the tumor
region. The films were reviewed for all treated animals for treatment targeting verification.

Acrylic phantom measurement setup and beam profile and percentage depth dose

(PDD) dosimetry are shown in Figs 3 and 4. The volume-averaged tumor dose was

approximated by computing the film average dose within an area of 1cm by 1cm (depth)

of the PDD film. The differential dose volume histograms of the PDD films were used for

tumor and normal tissue EUD calculations as described by Niemierko [222] using values

of a = −10 for tumor and a = 5 for normal tissue and the resulting computed EUDs are

shown in Figure 36.
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Figure 34: EBT-3 films were calibrated by ion chamber under large field conditions. All
beam profiles and corresponding percentage depth dose were measured using two films as
shown: one is on the surface perpendicular to radiation beam (A) and one sandwiched
between two small phantom blocks parallel to radiation beam (B). The circles indicate the
film areas used for volume-average dose calculation estimates. The following assumption
was made for volume-averaged tumor dose and EUD calculations: dose value does not
vary +/− 1cm along the direction parallel to the same valleys/peaks.
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Figure 35: (A − D) Figures display the percentage depth doses for each of the 20Gy
volume-averaged treatment arms. (E −H) Figures display the corresponding SFRT beam
profiles for each of the 20Gy volume-averaged treatment arms. Note that the 20GySFRT
and 50GySFRT arms share the same SFRT collimator and thus the same relative dosimetry.
The large non-uniformity of the peak doses in the SFRT radiation is due to the finite x-ray
target size and the nondivergence of the SFRT collimator. However, the actual peak dose
non-uniformity in the treated tumor (diameter of 10mm) is within 10%.
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Figure 36: Tumor and normal tissue Equivalent Uniform Dose, EUD, calculations are shown
for the different collimators used in each of the 5 radiotherapy treated arms. EUD dose
calculation is a relatively new technique for summarizing inhomogenous dose distributions
under the assumption that they are ”equivalent” if the induce the same radiobiological
effects. EUD was calculated using the differential dose volume histogram of the PDD
film-based dose distribution and the expected number of surviving clonogens within the
tumor as described by Niemierko [222].

EUD dose calculation is a relatively new technique for “summarizing and reporting

inhomogeneous dose distributions” developed by Niemierko [222]. It assumes that any

two non-uniform dose distributions are considered equivalent if they cause the same

radiobiological effect. For calculating EUD, we estimate that the dose distribution within

the tumor does not vary significantly along the 1cm length of the tissue in the direction of

the valley or peak dose regions This allows us to compute EUD using the differential dose
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volume histogram of the PDD film (depth) as well as the expected number of surviving

clonogens within the tumor as described by Niemierko [222].

4.3.4 Animal radiation delivery and verification

All of the RT collimators were aligned with x-ray target of the irradiator using film

dosimetry. Animals were anesthetized with vaporized isoflurane mixed with oxygen carrier

gas and positioned on an electronically controlled heating pad (Figure 33, panels A and

B). For radiation tumor targeting we used the light field and a PC-linked camera before

radiation and verified it with film dosimetry during each irradiation (Fig 2, panel C). Live

video-feed from the camera was used for animal tumor-radiation alignment and for animal

monitoring during treatment. Radiation targeting is achieved by (a) delineating the tumor

boundary on animal skin using marker pre-treatment, (b) transferring the marking onto

the verification EBT-3 film taped on skin and cutting out the tumor portion of the film,

(c) taping the film back with the tumor inside the cutout, (d) placing the animal in the

irradiator and align the tumor with the radiation, and (e) animal monitoring throughout

irradiation. The treatment verification films were reviewed post-radiation for radiation

targeting documentation (Figure 33, panel D).

4.3.5 Tumor volume imaging and body weight monitoring

Three-dimensional B-mode ultrasound imaging of the tumors was performed using a

Vevo 770 preclinical ultrasound scanner (Vevo 770, VisualSonics, Toronto, ON, Canada)

and the resulting images used to calculate tumor volume, as described in a previous

publication [216]. Imaging was performed on the day before treatment as well as every

third day post-treatment for approximately 30 days, or when maximal tumor burden

was met, at which point the animals were humanely sacrificed per IACUC-approved

animal protocol. 37 shows an illustration of the 3D ultrasound tumor imaging setup

and acquisition. Three-dimensional imaging is performed by mechanically stepping the
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ultrasound probe in the elevational dimension and acquired a two-dimensional image

at each step (100µum step size, 2cm elevational scan length). The reconstructed 3D

ultrasound images were used to calculate tumor volume. The longest orthogonal tumor

dimensions in each 3D image were measured using the digital caliper feature on the Vevo

770 imaging software and tumor volume was approximated using the volume formula for

an ellipsoid, V = 4
3πa× b× c, where V is the calculated tumor volume, and a, b, and c

are each the half lengths of the principal axes of the tumor [223]. A sample tumor volume

change post radiation from a 20GyHalfSFRT arm animal shows no tumor control (Figure

37, panel D). Animal body weight was measured using the same schedule.

Figure 37: Figure (A) is an illustration of the 3D ultrasound imaging setup with
anesthetized animal [216]. Two-dimensional transverse image slices (B) are acquired
along the elevational direction and are then reconstructed into 3D images [224] (C).
Tumors are visually identified on the ultrasound images. Resulting 3D images (C) are
used to measure the tumor dimensions and calculate tumor volume. Imaging data is
acquired pre-treatment (D) and every third day thereafter (E −G). In images D-G the
tumor (yellow dotted line) and corresponding tumor volume grow over time following a
20GyHalfSFRT treatment.

98



4.3.6 Association between SFRT dosimetry and treatment response

We analyzed the associations between animal treatment responses and each of the

nine dosimetric parameters, listed in the table in Figure 32. The treatment responses

are time-to-euthanasia, proportion of animals surviving to Day 17, and change in animal

body weight on Day 17. We deem animal survival is a better indicator of tumor treatment

response than tumor size change in this study. When tumors reach the maximum tumor

mass, defined by the IACUC-approved animal protocol, ethical euthanasia is performed.

As a result, animal numbers in different study arms decrease at different rates, which

can introduce biases due to unbalanced sample sizes in the study. Hence, Day 17 was

chosen for the linear regression association studies because at this timepoint there is a

good compromise between the number of animals available for statistical consideration

and the magnitude of radiation effects (20GyUniformRT n = 8, 20GyHalfSFRT n = 3,

20Gy2mmSFRT n = 4, 20GySFRT n = 4, 50GySFRT n = 5, Untreated n = 0). We

also fit a more robust Cox Proportional Hazards (CoxPH) model to the full data set that

includes all animals. Animal body weight change on Day 17 is used as an indicator of

treatment toxicity. Animal body weight change is a gross assessment on treatment toxicity,

especially in this study where tumors were implanted in the rodent flank, near the lower

gastro-intestinal tract (including the rodent anus, rectum, colon, and cecum) and parts of

the upper gastro-intestinal tract (including portions of the small bowel). We speculate

that some treatment arms may induce more GI toxicity that others. We subtracted the

tumor weight from the measured body weight and regard this “net” animal body weight

change as an indication, not confirmation, of treatment toxicity. To confirm any lower

GI toxicity, additional tissue histological staining or organ function examination studies

would be necessary, both of which are beyond the scope of this work.
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4.3.7 Statistical methods

We computed Product-Limit (Kaplan-Meier) Estimator and Logrank (Mantel-Haenszel)

test for statistical significance of survival difference between each pair of treatment arms

[225]. Multiple simple linear regression models [226] were used to study the association

between dosimetric parameters with animal body weight and percentage survival within

treatment group on Day 17. R2 (square of the Pearson correlation) coefficient is computed

to estimate the proportion of variance explained in each of the linear regression models. In

general, the greater the magnitude of the test statistic (t or F), the more closely associated

the dosimetric parameter studied is with the treatment response (survival or body weight).

In addition to linear regressions, we fit Cox Proportional Hazard (CoxPH) models with

individual animal survival as the time-to-event outcome, which used data from all dates

including Day 17. This allowed us to calculate the hazard ratio associated with the impact

of dosimetric parameters on treatment response. We also used hierarchical linear regression

analysis of predictors to show the association of dosimetric parameters to body weight

change as well as a Pearson Correlation matrix to show the cross-correlation between each

pair of the dosimetric parameters. All data collected were analyzed using R (version 3.5.3)

statistical software available from R Core Team [227] .

4.4 Results

4.4.1 Overall treatment response

Figure 38 shows (A) animal survival, (B) normalized tumor volume, and (C) normalized

body weight post treatment for all 6 study arms. Figure 39 also shows the non-normalized

tumor volume in units of mm3. In this study no animal died of body condition deterioration.

All endpoints were due to ethical animal euthanasia triggered by tumors exceeding the

maximum allowable burden per IACUC-approved animal protocol limitations. Our data

shows that the 20GyUnformRT arm has the best tumor control followed by the 50GySFRT
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and 20Gy2mmSFRT arms. Note that among the four arms sharing similar volume-averaged

dose (20Gy or 18Gy) survival varies greatly, from 33% to 100% on Day 17, which is a strong

indication that volume-averaged dose is poorly associated with tumor treatment response.

The tumor volume data indicate that although 50GySFRT arm and 20Gy2mmSFRT arm

have similar survival the former has a better tumor volume reduction than the latter arm.

Only the 20GyUniformRT arm experienced weight loss post-treatment and then recovered

back to pre-treatment weight after week three. The 20GySFRT and 20Gy2mmSFRT arms

experienced similar body weight gains as the untreated arm, indicating little treatment

toxicity from the two SFRT treatments.
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Figure 38: Animal survival (A), normalized tumor volume (B), and normalized
body weight (C) are shown for all six study arms. The differences between
survival curve pairs are significant (p < 0.05) for 20GyUniformRT-50GySFRT,
20GyUniformRT-20GyHalfSFRT, 20GyUniformRT-20Gy2mmSFRT,
20GyUniformRT-Untreated, 20GyUniformRT-20GySFRT, Untreated–20GySFRT,
Untreated-20Gy2mmSFRT, Untreated-50GySFRT, and Untreated-20GySFRT,
and moderately significant (0.1 > p < 0.05) for 20GyHalfSFRT-50GySFRT,
20Gy2mmSFRT-50GySFRT, and 20GySFRT–50GySFRT.
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Figure 39: Tumor volumes for all animals within each treatment arm are averaged and
then polotted over time in units of mm3. Error bars represent one standard deviation
from the mean.

4.4.2 Association between tumor response and SFRT dosimetry

We associated eight dosimetric parameters with percentage of animals surviving to

Day 17 and with the survival curves shown in Figure 38. Figure 40 shows scatter plots

of eight tumor-related dosimetric parameters vs. percentage survival at Day 17, each

fitted with a corresponding regression line, R2 (Figure 40). In addition, Figure 41 is

the table of coefficients for the corresponding liner regression models used in Figure 40.

The table contains 8 models with single covariates, one for each dosimetric parameter

and their corresponding statistics. Tumor EUD (R2 = 0.7923, F − stat =15.26*), Valley

dose (R2 = 0.7636, F − stat =12.92*), and percentage volume directly irradiated (R2 =

0.7153, F − stat =10.05*) are the top three most statistically significant dosimetric

parameters in terms of association with the animal survival at Day 17 (see Figure 41). Peak
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dose (R2 = 0.04472, F − stat = 0.6874 (not sig.)) and AVG Dose (R2 = 0.2745, F − stat =

1.514 (not sig.)) showed little association with survival.

Figure 40: Tumor EUD (A), valley dose (B), percentage volume irradiated (C), valley
width (D), peak width (E), volume-averaged dose (F ), peak dose (G), and PVDR (H) vs
survival (%) at Day 17 are presented as well as their corresponding regression lines and
R2 values. Eight linear regression models with single covariates, one for each dosimetric
parameter, were used to calculate the R2 value and corresponding statistics.
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Figure 41: Univariate linear regression analysis of Survival on Day 17.

Analyzing data for a single timepoint (Day17) is limited by animal losses at Day 17

(ie: missing data). To validate the above finding in Fig 7 we used data from the entire

survival curves in Univariate Cox Proportional Hazards analysis, a more robust statistical

model that utilizes all of the data, and the results are shown in Table 3. The results

from the Univariate Cox Proportional Hazards analysis confirms the results from the

linear regression analysis - among the eight dosimetric parameters analyzed tumor EUD

(z − stat = −4.07 ∗ ∗∗), valley/min dose (z − stat = −4.338 ∗ ∗∗), and percentage tumor

volume directly irradiated (z − stat = −3.837 ∗ ∗∗) have the closest associations with

animal survival. Compared to the linear regression analysis (Fig 7) the improved p-values

in the CoxPH model analysis is likely due to the increased sample size. The Hazard Ratio

shows the impact of change in each of the dosimetric parameters to the hazard rate (risk

of death). For instance, when valley/min dose parameter changes by 1 Gy, the hazard

rate (risk of death) changes by 19% (95% CI, 26% − 11%) with p-value of 1.44 × 10−5.

For a 1Gy change in peak dose, the corresponding change in hazard rate is 0.2% (95% CI,

0.7% - 0.3%) with p-value of 0.432. Three additional statistical tests were used to validate

the CoxPH z-test statistics results for each model (Likelihood Ratio Test, Wald Test, and
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Logrank Test) and all three tests largely agree with the results presented in Figure 42.

Figure 42: Table of coefficients for univariate Cox Proportional Hazards analysis of survival.

4.4.3 Association between body weight change and SFRT dosimetry

Eight dosimetric parameters are associated with the body weight change on Day-17.

Note that the body weight is the measured body weight subtracted the measured tumor

weight to remove the influence of tumor size on the analysis. Figure 43 is a scatter plot

of the dosimetric parameters vs. the “net” body weight at Day 17. This time point was

chosen for both the tumor and body weight study because it is a good compromise between

data statistics and magnitude of treatment response. The table in Figure 44 is a table of

coefficients for the corresponding linear regression models used in Figure 43. In general, the

greater the magnitude of the t statistic, the greater the individual parameter association

with Body Weight (Day 17). For the F-statistic, the greater the statistic value, the more

closely associated the model is with Body Weight (Day 17). Based on the t statistics and

F-statistics, among the eight dosimetric parameters studied the Valley Dose has the greatest,

yet modest, association with Body Weight (Day 17). The order of decreasing association

with the body weight change are: valley dose (R2 = 0.3814, F − stat = 13.45 ∗ ∗), valley
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width (R2 = 0.2853, F − stat = 8.783∗), peak width (R2 = 0.2759, F − stat = 8.382∗),

percentage volume irradiated (R2 = 0.1985, F − stat = 5.448∗), PVDR (R2 = 0.1203, F −

stat = 3.009(not sig.)), volume-averaged dose (R2 = 0.03308, F − stat = 0.7526(not sig.)),

normal tissue EUD (R2 = 1.022 × 10−03, F − stat = 0.882(not sig.)), and peak dose

(R2 = 5.99× 10−06, F − stat = 1.32× 10−04(not sig.)). A strong similarity between the

peak width and valley width association with body weight is expected (see discussion

in section 4.5.3.5). Further, no significant association is observed between body weight

change post radiation and PVDR, average dose, normal tissue EUD, and peak dose.
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Figure 43: Scatter plots of each of the 8 treatment dosimetric parameters: valley dose
(A), valley width (B), peak width (C), percentage volume irradiated (D), normal tissue
EUD (E), PVDR (F ), volume-averaged dose (G), and peak dose (H) vs % Body Weight
at Day 17 and their corresponding regression lines and R2 values are shown. Eight linear
regression models with single covariates, one for each dosimetric parameter, were used to
calculate the R2 value and corresponding statistics.
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Figure 44: Table of coefficients for univariate linear regression analysis of Body Weight
(Day 17)

To determine the combined effects of multiple dosimetric parameters on treatment body

weight outcomes, we tested several different multivariate models. Results for select variables

are shown in the table in Figure 45, a coefficient table of a multivariable, hierarchical linear

regression analysis of body weight on Day 17. The table contains 4 models with 2 or 3

covariates(dosimetric parameters) each and their corresponding statistics. Included in the

table are the combinations of dosimetric parameters with highest F-statistic values from

the table in Figure 44, namely valley/min dose (12.29**), valley width (5.69*), and peak

width (5.45*). The results are that body weight change is associated with Valley Dose

combined with Peak Width (F − stat = 4.466, p < 0.01) and that Valley Dose combined

with Valley Width (F − stat = 6.348, p < 0.01). This indicates that Valley dose combined

with either Peak Width or Valley Width have a significant effect on Body Weight (Day 17);

however, since Peak Width and Valley Width are co-linear (see Discussion in section 4.5),

then the combination of the 3 dosimetric parameters together results in an insignificant

test statistic and the model lose is predictive capability.
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Figure 45: Multivariate hierarchical regression analysis of predictors of Body Weight (Day
17)

Before completing the formal statistical analysis of the data, we analyze what role

both the pre-treatment body weight and pre-treatment tumor volumes have on Survival

outcomes when analyzed together with each of the other dosimetric parameters. These

results are displayed in Figure 38, a multivariate, hierarchical CoxPH coefficient table

for each of the eight dosimetric parameters studied as well as the pre-treatment tumor

volume and the pre-treatment body weight used as controls. The table in Figure 46 shows

that the Pre-TX tumor volume is associated with treatment outcome, where the row of

pre-treatment tumor volume parameter p-values across 7 of the 8 models are statistically

significant; however, the pre-TX tumor volume does not change the results shown in models

from the tables in Figures 41, 42, and 44. The two models with highest Logrank Test

values still support that Tumor EUD and Valley Dose are most significant for predicting

individual survival outcomes, while pre-treatment body weight is not a significant predictor

of survival outcomes.

110



Figure 46: Hierarchical multivariate CoxPH analysis of predictors of Survival

4.5 Discussion

4.5.1 Study limitations

There are several limitations in this study, many of which are discussed below. (i)

There was no image-guidance used in the irradiation study. Our remedy for the lack of

online imaging technology included the use of light field and video-based animal alignment,

of treatment verification film, and lastly, removal of treatment-misaligned animals from the

study. This was judged from reviewing the treatment verification film for each animal. Our

remedy worked well, resulting in a 20GyHalfRT arm % volume irradiated of 47.8.8% (±2.2)

and which is near the target value of 50% and these results are shown in Figure 47. (ii)

No CT-based treatment planning. Based on the anatomical location of the implanted

tumor (rodent flank) we believe a portion of the rodent GI tract may have been irradiated

but the actual volume irradiated is unknown. Because all animals were randomized across
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study arms such that all arms have the same average pre-treatment tumor size and similar

tumor location distribution, it is reasonable to assume that any variations in portions of

GI track irradiated do not bias any particular study arm. (iii) Only a single tumor model

used. The FSA rat tumor model does not represent tumors with low vascularity, which

may have different treatment responses. The study should be repeated using different

tumor and animal models. (iv) The dosimetric parameters have strong cross correlations

in this study, which is discussed in more detail at the end of this section.

Figure 47: (A) The post-treatment verification film for a 20GyHalfSFRT treated tumor
shows that only one-half the tumor was treated as intended. The black dashed line in
the photograph was drawn to illustrate which half of the tumor was irradiated. (B) The
verification films for all 5 animals included in the study arm were analyzed by calculating
the percentage area of the tumor irradiated.

The potential impact of spatial fractionation pattern (lines vs. dots, for instance) on

treatment response is beyond the scope of this work. However, it is a very important

question that deserves methodical investigations as some spatial fractionation patterns are

easier to achieve than others in practical application. Our data shows that valley/minimum

dose has the closest association with treatment response for tumor and body weight.

However, different spatial fractionation patterns with the same valley dose may not lead

to the same treatment response when a different endpoint is used. In our study the

20Gy2mmSFRT arm and the 20GySFRT arm have similar valley doses but dissimilar

survival fraction on Day 17. To investigate the impact of radiation spatial fractionation
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pattern alone on given treatment responses, carefully designed new studies are needed.

The exciting noncytotoxic effects of SFRT, such as induction therapy to sensitize tumor

to increase therapeutic ratio of the following therapy including anti-tumor immunotherapy,

remain largely underexplored [228]; however, they are also beyond of the scope of this

work. Our own and others’ work have demonstrated that SFRT radiation impacts tumor

microenvironment and modulates immune system very differently than uniform radiation

therapy [150], [220], [229]. We intend to conduct similar studies to identify associations

between dosimetric parameters and these indirect effects of SFRT in the future.

4.5.2 SFRT dosimetric association with treatment tumor response

4.5.2.1 Valley dose and tumor EUD

The importance of tumor minimum dose to tumor control has long been established in

conventional radiation therapy [230]. Does the same association between tumor control

and minimum/valley dose hold for SFRT? For some the answer is yes and sophisticated

techniques have been developed to “fill up” the dose valleys in an MRT beam by interlacing

the microbeams from MRT from different irradiation angles. As a result, a uniform

dose distribution inside the tumor is reached [133] while the surrounding normal tissue

out of the “cross-firing” range still receive largely MRT radiation pattern of peaks and

valleys. In a synchrotron-MRT study Ibahim et al. [231] reported that valley dose

is closely correlated with cell survival, but valley dose alone does not determine the

observed radiobiological effects. Our study shows that the tumor EUD (a = −10) and

minimum/valley tumor dose have the highest linear associations (R2 = 0.7923, F − stat =

15.26∗; R2 = 0.7636, F − stat = 12.92∗, respectively) with tumor treatment response

(Figure 40, 41, and 42). This observed association between tumor treatment response with

tumor valley/minimum dose and tumor EUD dose in this preclinical study is consistent

with their known association in tumor treatment response seen in clinical conventional
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uniform dose radiation therapy. Our data suggests that valley/minimum dose or Tumor

EUD are more appropriate than peak dose for SFRT treatment prescription. When

tumor control is the endpoint, we suggest that equal valley or minimum dose be used for

comparative study between a uniform radiation and SFRT therapy or among different

SFRT treatments.

4.5.2.2 Peak-to-valley dose ratio

Our data showed that PVDR has a consistent but not statistically significant association

with tumor treatment response (R2 = 0.7194, F − stat = 7.691) (Figure 40, 41). The

linear regression analysis on day 17 was not statistically significant. The CoxPH analysis

using the entire survival data set show a modest association with survival. Although

not statistically significant, an inverse association is observed between PVDR value and

survival fraction on Day 17 - the higher PVDR value the less survival fraction. The inverse

association is largely determined by the uniform radiation arm where PVDR value is 1.0.

If this data point is removed, the PVDR association with survival for all SFRT arms is

inconclusive (Figure 40). We believe this result of inverse association is likely biased by the

study design that has very limited PVDR values (4 values) and strong cross-correlations

between PVDR and other SFRT parameters (see more discussion later in the section). A

better understanding of PVDR’s association with a given treatment response requires a

carefully designed new study that focuses on the impact of PVDR value on treatment

response.

4.5.2.3 Percentage volume irradiated, peak width, and valley width

It seems logical that tumor treatment response is closely associated with the tumor

volume irradiated. However, this is not supported by a clinical GRID therapy study by

Neuner et al. [97] where both MLC-based and collimator-based GRID treatments showed
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similar response rates for pain, mass effect, other patient complaints, and have similar

adverse reactions. The collimator-generated GRID had 50% of the radiation field open

while the MLC-generated GRID had only 31% open. In our study the 20GyHalfSFRT and

20Gy2mmSFRT arms have similar percentage-volume-irradiated (as well as PDD curves)

but there is a difference of 5 days in the 50% survival time (Figure 31 and Figurefig:Fig6).

Nonetheless, our data shows that percentage-volume-irradiated has the 3rd highest linear

association (R2 = 0.7153, F − stat = 10.05∗) with tumor treatment response (Figure 40

and figures 41 and 34). Since percentage-volume-irradiated is jointly determined by peak

width and valley width it is understandable to see moderate associations between tumor

treatment response and peak width (R2 = 0.4201, F − stat = 2.898 (not sig.)) and valley

width (R2 = 0.4296, F − stat = 3.012 (not sig.)). In a synchrotron microbeam brain study

using multiple beams Serduc et al. kept valley dose constant while varying peak width

and peak dose. They concluded that the latter two parameters have strong influence

therapeutic ratio [129].

4.5.2.4 Volume-averaged dose and peak dose

This study is designed to scrutinize the association of volume-averaged dose with tumor

treatment response (Figure 31). The four study arms sharing very similar volume-averaged

doses (20 or 18 Gy) exhibited very different tumor treatment responses (Figure 38 and 40)

showing the survival rate at day 17 varied from 100% to 33%. Therefore, the association

between volume-average dose and tumor treatment response is weak. We found that peak

dose has little to no association with tumor treatment response (R2 = 0.04472, F − stat =

0.6874 (not sig.)) (Fig 40, Figure 41, and Figure 42). This finding is significant because

peak dose has been used for treatment prescription in practically all SFRT treatments

[88], [96]. Although the linear regression analysis on day 17 showed a weak association

between peak dose and survival that was not statistically significant, the CoxPH analysis
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using the entire survival data set did show a modest association with survival.

4.5.3 SFRT dosimetric association with normal tissue toxicity

We did not study treatment induced normal tissue toxicity directly in this study. We

used body weight change post radiation (targeted to the flank, lower abdominal region

of the animal) as an indicator, not evidence of normal tissue toxicity. We did not see a

strong association between animal body weight change and any of the eight dosimetric

parameters studied, except a modest association with valley/minimum dose.

4.5.3.1 Valley dose

The strongest association we observed is a weak one between body weight change and

valley/min dose (R2 = 0.3814, F −stat = 13.56∗∗)( Figure 44). Note that valley/min dose

is also strongly associated with tumor treatment response (R2 = 0.7636, F−stat = 12.92∗).

Our finding is consistent with a normal mouse brain MRT study Nakayma et al. reported

that valley dose is one of the important factors to determine normal brain dose tolerance

[232]. Our data suggests that valley dose may have a close correlation with both tumor

control and toxicity, and thus is a crucial dosimetric parameter in SFRT treatment.

4.5.3.2 Valley width, peak width, percentage volume irradiated

The valley width, peak width, and percentage volume of the tumor that is irradiated

parameters were only weakly associated with animal body weight change post radiation

(R2 = 0.2853, F − stat =8.783**;R2 = 0.2759, F − stat =8.382**; and R2 = 0.1985, F −

stat =5.448*, respectively) (Figure 43 and Figure 44). Note that in this study peak width

and valley width are closely correlated (more discussion on correlations, below). Percentage

volume directly irradiated showed no statistically important association with body weight

change. Neuner et al. reported that they observed similar treatment responses from
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clinical GRID treatments of different percentages of volume directly irradiated [97].

4.5.3.3 Normal tissue EUD, peak width, percentage volume irradiated

The normal tissue EUD, PVDR, volume-averaged dose, and peak dose parameters

showed little to no association with body weight change post radiation (R2 = 1.022 ×

10−03, F − stat = 0.882 (not sig.); R2 = 0.1203, F − stat = 3.009 (not sig.); R2 =

0.03308, F−stat = .7526(notsig.); and R2 = 5.99×10−06, F−stat = 1.32×10−04(notsig.),

respectively). Our finding is consistent with a rat normal brain minibeam study by Prezado

et al. showing arms with similar volume-average-doses have drastic differences in survival

(14) and inconsistent with a MRT study on normal mouse skin by Priyadarshika et al.

concluded that integrated dose (i.e., volume-averaged dose) rather than peak or valley

dose, may dictate the acute skin toxicity [233].

4.5.3.4 2mm wide beam array SFRT

Our data indicates that the 20Gy2mmSFRT arm is not only the most relevant to

clinical application because of its millimeter scale, but it also has the potential for superior

therapeutic ratio. The 20Gy2mmSFRT arm showed similar survival with the 50GySFRT

arm but has significantly lower valley dose (6.2 Gy vs. 17 Gy). At the same time, it

showed the least, if any, body weight change compared to the untreated arm while the

50GySFRT arm with 0.31mm beam width exhibited significant body weight growth deficit

(Table 1 and Fig 6). The 20GyUniform arm has the best tumor treatment response and

the worst body weight change. Our data indicated the 2mm wide beam array is a kV

photon SFRT pattern that has the potential for high therapeutic ratio SFRT and deserves

further investigation.
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4.5.3.5 Cross-correlation in the SFRT dosimetry parameters

The dosimetric parameters studied in this work are not all independent variables and

their cross-correlations are shown in the table of Pearson Correlation coefficients (Figure

48) The larger the magnitude of the coefficient, the more co-linear and correlated the

pair of dosimetric parameters. In this study, peak width and valley width are perfectly

co-linear (correlation of 1.0) by study design. Valley/min dose, a parameter used in tumor

EUD calculation, is also highly correlated with tumor EUD (correlation of 0.99). These

strong correlations explain the similar statistical associations of these parameters with

treatment responses. These correlations also limited the study’s ability to better exam the

association between a given treatment response with each of the dosimetric parameters.

For example, in Figure 48, the multi-variate analysis of predictors of Body Weight, when

both Peak Width and Valley Width and Valley Dose are analyzed together in a three

variable model, their combined effect on Body Weight Day 17 is no longer significant due

to the co-linearity of Peak Width and Valley Width.
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Figure 48: Pearson Correlation coefficient matrix for the eight SFRT dosimetric parameters
relevant for tumor treatment response.

4.6 Summary

In this conventional dose rate small animal SFRT study we used a large range of

radiation spatial fractionation scales to study the association of dosimetric parameters with

treatment response. We concluded that valley/minimum dose, tumor EUD, and percentage

tumor irradiated have strong and proportional associations with tumor treatment response

while peak dose exhibited little association. Among the SFRT dosimetric parameters

studied valley/min dose also showed the highest but modest association with body weight

change post radiation
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CHAPTER 5: MINIBEAM RADIATION IS SUPERIOR TO UNIFORM
RADIATION FOR ABSCOPAL EFFECT WITH COMBINED PD-L1

CHECKPOINT INHIBITOR IMMUNOTHERAPY

5.1 Overview

Previously, we demonstrated the feasibility of creating a compact, spatially

fractionated radiation therapy (SFRT) delivery system for use in preclinical studies and

then applied it in a dosimetric parameter study of SFRT. This chapter presents a different

avenue for advancing our understanding of SFRT, using the SFRT delivery system for

investigating the advantages of SFRT in multimodality therapy approaches such as

anti-cancer immunotherapy.

Recent evidence suggests that SFRT may have different mechanisms of tumor cell

killing than conventional radiotherapy, which may include bystander and systemic immune

activating effects such as the abscopal effect, wherein the control or elimination of distant

tumors occurs subsequent to irradiation of the primary tumor. Such effects are thought to

be immune mediated and have been shown to be enhanced by immune therapy, specifically

immune checkpoint inhibition. This chapter explores the combination of SFRT with PD-L1

checkpoint inhibition in a duo-synchronous tumor model of murine mammary carcinoma.

This chapter has been submitted for publication3 in the journal Radiation Research and is

in review at the time of this writing. I have included the study here in full, with minor

changes such as including using full-color versions for all figures.

3This chapter has been submitted as an article in the journal Radiation Research. The original citation is
as follows: Rivera JN, Laemont K, Tovmasyan A, Stryker S, Young K, Chang SX, Palmer GM. Minibeam
Radiation is Superior to Uniform Radiation for Abscopal Effect when Combined with PD-L1 Checkpoint
Inhibitor Immunotherapy. Radiation Research. 2020 [Manuscript In Review]
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5.2 Introduction

Spatially fractionated radiation therapy (SFRT) includes clinical GRID and Lattice

therapy and preclinical microbeam and minibeam radiation therapy. All forms of SFRT

can be characterized by many alternating sub-volumes receiving very high dose separated

by and volumes receiving no direct radiation in a single or a few fraction treatment

[69], [204]. Impressive treatment outcomes have been reported in GRID clinical studies

demonstrating the absence of increased treatment toxicity and benefits of palliation and

local control for patients with bulky and treatment-resistant tumors, especially when SFRT

was followed by a conventional course of chemoradiation [52], [73], [97], [206], [234]. The

preclinical research also produced fascinating results on both the lack of radiation toxicity

and tumor control [70], [120], [160], [210]. Although SFRT research and clinical use have

decades of history, it remains an unconventional treatment and with limited application.

One key reason for it is the lack of understanding of its working mechanism, which not

only impacts its wide acceptance in the field but also hinders the optimization of SFRT

treatment techniques. In 2018, partnered with the Radiosurgery Society, the National

Cancer Institute created a new international working group dedicated to investigating

SFRT and the related Flash radiotherapy [215]. The working group is tasked to develop

strategies to guide the field to advance our understanding of SFRT in biology, physics,

and clinical translation of this promising radiation therapy approach. One area of special

interest that deserves more research is abscopal effect, a systemic anti-cancer effect of

localized radiation, which may be enhanced using anti-cancer immunotherapy.

We hypothesize that compared to the uniform dose radiation therapy we use today

SFRT may have advantages in enhancing anti-cancer immunotherapy. SFRT may results

in unique effects on the tumor microenvironment that in turn may result in different

mechanisms of cell killing such as bystander effects [137], [140] and effects on stromal

cells including the tumor vasculature [128], [143], [146], [150], [235]. Of interest are
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radiation-induced immunological effects which can lead to abscopal or distant tumor

responses. These have been reported in a variety of contexts involving SFRT both with

and without immune therapies [49], [123], [173], [220], [228]. For instance, Kanagavelu et

al. reported a significant growth inhibition in distant unirradiated Lewis lung carcinoma

tumors following partial volume radiation of a primary tumor, which was correlated with a

T-cell mediated immune response [173]. Clinical data also supports the efficacy of partial

volume irradiation targeting the hypoxic tumor regions specifically to elicit an immune

mediated abscopal response [136]. The leading theory is that SFRT induces a systemic

immune response that can target distant (unirradiated) tumor sites. The combination

of SFRT with immunotherapies has also been shown to have potential synergy and may

have unique effects relative to broad beam radiation therapy [45], [49], [123], [173], [220].

The high spatial dose variability in the tumor may induce unique effects by sparing some

fraction of the resident immune population while still delivering high dose [49], to elicit

the in-situ vaccine effect that has been reported for uniform radiotherapy [236]. Several

clinical studies have indicated that “the tumor can serve as an autologous vaccine through

RT-induced immunogenic cancer cell death” [237]. That is, that the radiation itself may

act to activate or enhance the host-immune response against future metastatic tumor

cells, which may lead to better long-term prognoses in patients [237]–[243]. Despite the

tremendous promise of this treatment combination, the specific immune responses elicited

are relatively poorly understood. Therefore, the goal of this study is to characterize the

efficacy of combination radiation (SFRT or uniform radiation) with anti-PD-L1 therapy,

as well as to use flow cytometry to characterize the immune cells present in the primary

irradiated tumor, distant unirradiated tumor, and also systemically.
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5.3 Methods

5.3.1 Study design

In this study we aim to investigate potential advantage of minibeam radiation therapy

(MinibeamRT) over uniform radiation therapy (UniformRT) in synergistic effect with

immune checkpoint inhibitor therapy. We hypothesize that Minibeam is more effective in

activating the host systemic immune response and thus more effectively potentiating this

immunotherapeutic effect. Hence, we compare a single fraction 50Gy (peak/max dose)

MinibeamRT treatment against a 10Gy (uniform dose) conventional seamless UniformRT

treatment (both with and without immunomodulator, anti-PD-L1 antibody) delivered

to one of two tumors in a dual tumor mouse model of adenocarcinoma. The primary

endpoint for this study is tumor growth inhibition on both the irradiated and unirradiated

tumor sites.

A 50Gy peak dose was chosen for the MinibeamRT group based on our initial dose-

determination pilot study comparing single fraction 50Gy peak dose and 100Gy peak

dose MinibeamRT against a 10Gy UniformRT treatments for abscopal tumor control in

a distant, unirradiated tumor. Results from this pilot study indicated that a the 50Gy

MinibeamRT was more effective than the 100Gy MinibeamRT at inhibiting tumor growth

in the unirradiated tumor and hence potentially enabling a more robust immune response.

The table in Figure 49 shows the 5 treatment groups designed for this study, where

both MinibeamRT and UniformRT with and without immunotherapy are tested against

Control (untreated) group. Pre-treatment tumor volumes in both flanks are also reported

in Figure 49. Initial tumor size at the time of treatment is strongly correlated with

treatment outcome. Care was taken minimize this unwanted effect using a randomized,

matched study design with respect to the pre-treatment tumor volume. This was achieved

by organizing the animals into groups of similarly sized right flank tumor volumes and

then randomly assigning animals to each treatment arm within this ordered category.
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This results in similar average pre-treatment tumor volumes and size ranges in the right

flank tumors among different treatment groups; however, we have no control over the

volumes in the left flank tumors per group. To minimize the variance among the left flank

pre-treatment tumor volumes, we set minimum and maximum acceptable pre-treatment

volume limits and excluded any tumor volumes outside of this range from consideration

in the study. The randomized, matched study design technique described above resulted

in an average pre-treatment tumor volume for all right flank tumors of approximately

124mm3 (±7% standard− error) as well as an average pre-treatment tumor volume for

all left flank tumors of 132mm3(±8% standard− error).

Figure 49: Experimental design of seamless (UniformRT) vs spatially fractionated
(MinibeamRT) radiation therapy study of the systemic immune response of mice.

5.4 Animal Model Description and Cell Culture

This study was carried out in strict accordance with the recommendations in the

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health
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(NIH). The University of North Carolina- Chapel Hill Institutional Animal Care and Use

Committee (IACUC) reviewed and approved the animal protocol (IACUC ID: 19-041.0)

in accordance with NIH standards. All animal radiation procedures were performed under

general anesthesia and all efforts were made to minimize suffering.

A dual-tumor model of 6-week-old female C57BL/6 mice with murine mammary

adenocarcinoma (EO771) were used in all in vivo experiments. EO771 cells were derived

from a metastatic mammary gland adenocarcinoma in a C57BL/6 mouse [244]–[246]. This

model was chosen as it is an immune competent, clinically relevant model whose

radiotherapy-induced tumor microenvironment modulation effects have previously been

extensively studied by our group [247]. This mammary gland adenocarcinoma is

characterized as a poorly metastatic, triple negative model of breast cancer.

Tumor cells were cultured in DMEM with 10% FBS (Gibco 16140071) and 1% antibiotic-

antimycotic (Gibco 15240062). Cells were injected into the subcutaneous space of both

mouse flanks such that the right flank received 250,000 cells, and the left flank received

100,000 cells. Figure 50 shows a graphical timeline of the experiment. Following cell

injections, tumors on both flanks are grown naturally for approximately 2 weeks, until the

primary tumor reach the target radiotherapy treatment size of approximately 120mm3.

Tumors on the right flank served as the “primary” tumor and target for radiation therapy,

while tumors on the left flank served as a “secondary” tumor outside the radiation field

for the purpose of evaluating the abscopal (unirradiated tumor growth control) response.

Immediately following radiotherapy treatments, animals are injected with anti-PD-L1

monoclonal antibody (BioXCell clone 10F) or Isotype control antibody (isotype control,

IgG2a). The antibody drug dose is based on our previous studies on mice, i.e. 250 µg

for a single injection. Antibodies are administered via intraperitoneal injection every 3

days beginning on the day of radiation treatment for a total of 4 injections. At 14 days

post-radiotherapy, approximately n=5 animals from each treatment group are ethically

euthanized for immunophenotyping of spleen and the irradiated and unirradiated tumors,
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per IACUC-approved animal protocol. The spleens were homogenized using a syringe

plunger and filtered through the cell strainer (40 mm, Corning, cat#431750). The red blood

cells were lysed with the lysis buffer (15.5 mM NH4Cl, 1.2 mM NaHCO3, 0.01 M EDTA).

Tumor lymphocytes were isolated using the GentleMACS dissociator, Miltenyi Biotec, in a

soluton of 0.2mg/ml DNase I, 1 mg/ml collagenase IV and 0.1 mg/ml hyaluronidase from,

Sigma. This was incubated at 37 degrees Celsius for 1 hour and then passed through a

40µM strainer, Falcon, to get single cell suspensions. Next, the cells were stained with

anti-CD16/32 Ab (BioLegend) to block non-specific binding and LIVE/DEAD Fixable

Violet Dead Cell Stain Kit (Thermo Fisher), which enables exclusion of dead cells. The cells

were stained with antibodies against CD45, CD3, CD4, CD8, CD19, CD335, CD11b, F4/80,

Gr1 and PD-1 (BioLegend) and analyzed by multiparameter flow cytometry (FACSCanto,

BD Bioscience). Analysis of data was performed using FlowJo (Tree Star).

Figure 50: The timeline of the study is shown. A single fraction radiation is given two
weeks after tumor cell implantation. Anti-PD-L1 immune drug was given in 4 fractions
starting on day 0. On day 14 tissues are harvested from n=5 animals per treatment group
for flow cytometry immunophenotypic analysis. The remaining animals are monitored for
tumor growth and the study ends on day 20.

5.4.1 Animal monitoring and husbandry

Animals were monitored before irradiation as well as every third day thereafter until

study end-point criteria were met. Study endpoints included a maximum combined tumor
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burden of 3000mm3 (or greater than 2cm in any dimension for a single tumor), weight

loss in excess of 15%, body condition scores of ≤ 2, as well as any other signs of pain,

discomfort, or moribundity as recommended by DCM veterinary staff. Animals that met

study end-point criteria were ethically euthanized via compressed carbon dioxide gas

followed by a secondary means of physical euthanasia (thoracotomy) per the approved

animal study protocol. Animal body weights and tumor volumes were recorded prior to

radiotherapy treatments as well as every third day thereafter for up to 30 days. Tumor

dimensions were measured via digital caliper and tumor volumes were calculated using

the approximate volume for an oblate spheroid, V =
(

1
2

)
L×W ×W , as recommended

by Faustino-Rocha et al [223]. To minimize biological variability between animals and

experimental rounds, all animals were of similar age and supplied by same vendor [Charles

River Laboratories, Inc., Wilmington, MA], had a full 2 weeks to acclimate to their

environments before the start of any treatments, were injected with cells on the same day,

and were provided identical (mixed caged) housing and husbandry in a UNC Division

of Comparative Medicine (DCM) operated vivarium facility. Further, all animals were

provided with identical standard laboratory rodent diets consisting of 23% > crude

protein and water ad libitum throughout the study. To help mitigate any potential

significant weight loss or dehydration post-radiation, all animal diets were supplemented

with high-calorie, nutritionally fortified water-based gel and hydration cups.

5.4.2 Radiotherapy dosimetry and treatments

Radiotherapy treatments were delivered using a commercially available small animal

research irradiator, XRad-320 [Precision XRay, Inc., North Branford, CT], at 320kVp

and 12.5mA. Different inhouse made collimators were used to deliver both collimated

MinibeamRT and UniformRT radiation patterns to solid tumors. Figure 51 shows (A) the

results for the beam profile and percentage depth dosimetry measurements for both the

MinibeamRT and UniformRT treatments, (B) the small animal radiotherapy treatment
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system setup, and (C) an image of an 10Gy UniformRT-treated mouse example.

Figure 51: (A) Dosimetry beam profiles and percentage depth dose (PDD) for the
UniformRT and MinibeamRT treatments by EBT-3 film. The yellow dotted rectangle
represents the approximate size of a typical tumor at the time of irradiation and the
position in the treatment field. (B) The radiation treatment setup, includes [1] an external
beam x-ray source, [2] an in-house Cerrobend MinibeamRT or UniformRT collimator, [3]
a PC-linked camera provides beam’s-eye-view of the light field on animal skin, and [4] a
6-degree freedom platform for angle and height adjustment. (C) image of an animal treated
with 10GyUniformRT, photographed approximately 3 weeks post-radiation. A demarcated
square patch of white fur is visible, corresponding to the radiation field, indicating a
localized radiation-induced epidermal and fur depigmentation disorder (vitiligo). No
abscopal effect is observed in this animal.

Radiotherapy dosimetry was measured via EBT-3 Gafchromic film [Ashland Inc.,

Covington, KY] calibrated against an ADCL-calibrated ion chamber in large-field

geometry. Thte table in Figure 52 shows the relevant dosimetric parameters for the

UniformRT and MinibeamRT treatment arms calculated from the dosimetry film (Figure

51, panel A). To determine the surface peak dose and valley dose for the MinibeamRT

treatments the individual peak/valley doses are first calculated and then averaged over

the peaks that span 10mm around the center of the overall MinibeamRT field. Surface
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dose-rates are 4.27Gy/min for MinibeamRT and 5.25Gy/min for UniformRT treatments.

The volume-Averaged dose for both radiotherapy treatment types are approximated by

computing the average dose on the 10mm (width) × 10mm (depth) area of the percentage

depth dose (PDD) dosimetry film.

Figure 52: Dosimetric parameters for both radiotherapy treatment types used in the study

Both the uniform and minibeam radiation were formed by inhouse-made collimators.

A single radiation treatment is targeted to the tumors with a 5mm margin for each

radiotherapy treatment type. Radiation targeting is achieved by (a) depilating animal

flanks to locate tumors and delineating target tumor boundaries on skin using marker, (b)

transferring the markings onto a 3cm× 3cm square of Gafchromic film placed over the

tumor (for treatment verification) as viewed from the beams-eye-view frame of reference,

(c) cutting out the tumor portion of the film and placing the film back over the tumor with

the tumor inside the cutout, (d) fixing the film in place with tape and placing the animal

in the irradiator, (e) aligning the tumor with the radiation field using the built-in light

field inside the irradiator together with a PC-linked endoscopic camera live video feed, (f)

performing tumor/animal height adjustments via a manual Z- stage and angle adjustments

via rotatable heated animal platform, and (e) monitoring animal throughout irradiation via

a second PC-linked endoscopic camera. All animals are anesthetized with isoflurane mixed

with 2% oxygen carrier gas as described above throughout the tumor-to-radiotherapy beam
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alignment and irradiation procedures to minimize both stress to the animal and off-target

error due to tumor motion during radiotherapy treatment. The treatment verification film

records the targeting accuracy of the treatment and allows for post-radiation film reviewal

and documentation.

5.4.3 Flow cytometry studies and analysis methods

At 14 days post-radiation approximately n=5 animals from each treatment group were

ethically euthanized and animal spleens and both the irradiated and unirradiated tumors

were harvested for immune profile analysis, per IACUC-approved protocol. Flow cytometry

was used to characterize the prevalence of different immune cell subtypes within these

tissues. Different cell surface markers were identified using fluorescent labeled antibodies

and cells expressing defined combinations of markers could be then categorized into their

respective types. CD45 has been shown to be an essential regulator of T-cell and B-cell

antigen receptor signaling. As such, this makes it a useful selection marker for leukocytes.

Thresholding is used to identify (count) cells high in this marker. To further categorize

the leukocyte population into the primary subtypes, three additional markers were used.

CD3 is a protein that is expressed by a high percentage of circulating peripheral T cells

which makes it a highly effective T cell marker and is useful in further categorizing the

CD45+ leukocytes. CD4 is a glycoprotein commonly found on the surface of immune cells

such as the T helper cell (Th); hence, we use it in our study as a marker for T-helper

cell presentation. Finally, we use the CD8 co-receptor as a marker in our study as it is

predominantly expressed on the surface of cytotoxic T cells (Tc) as well as natural killer

cells (NKcells). Thus cells high for both CD3 and CD4 markers were counted as helper

T cells, and cells high in both CD3 and CD8 were counted as cytotoxic T cells.
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5.5 Results

5.5.1 Irradiated tumor response

Figure 53, on the left side, shows results for normalized tumor volume growth curves

for the irradiated “primary” tumors. Ethical euthanasia was largely triggered by tumors

exceeding the maximum combined tumor burden for both tumors per IACUC- approved

protocol limitations. Our data shows that conventional UniformRT groups (10Gy surface

peak dose and 9.2Gy average dose to tumor), with or without anti-PD-L1 drug, have better

tumor growth control than the corresponding MinibeamRT arms (50Gy surface peak dose

and 11Gy average dose to tumor.) The impact of anti-PD-L1 on the radiation tumor

growth control, however, are different: it suppressed tumor growth in the MinibeamRT

arms but enhanced tumor growth in the UniformRT arms.

Figure 53: Normalized tumor volume change post radiation is shown for both the irradiated
tumor (left) and the unirradiated tumor (right) in the dual tumor animal model study.
For the unirradiated tumor, the difference between the 10GyUniformRT+anti-PD-L1 and
the 50GyMinibeamRT+anti-PD-L1 treatment groups at the end of study is statistically
significant (p=0.04948). Differences between any other two groups are not statistically
significant.
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5.5.2 Unirradiated tumor response

Figure 53, on the right side of the page(B)), shows results for normalized tumor

volume growth curves for the unirradiated tumor. In the absence of anti-PD-L1 drug the

UniformRT and MinibeamRT radiation treatment to the primary tumor have practically

no impact on the secondary, unirradiated tumor, whose growth curves are similar to those

of the control arm animals. When anti-PD-L1 is combined with radiation, MinibeamRT

radiation exhibits the strongest abscopal effect, where the growth of the unirradiated tumor

is significantly reduced, especially when compared to the UniformRT+anti-PD-L1 arm

(p=0.04948). Further, the combination of anti-PD-L1 with UniformRT radiation appears

to generate a negative abscopal effect, where the tumor growth is enhanced compared to

uniform radiation alone; however, differences between these and any other two groups are

not statistically significant.

5.5.3 Spleen lymphocyte profile

Figure 4 shows the flow cytometry immune profiling data from spleen. We analyzed

CD45+, CD3+, CD4+, CD8+, B cells, and NK cells. A few clear differences are seen.

First, the CD4+ cell population is similarly elevated for both the MinibeamRT+isotype

and UniformRT+isotype arms (p=0.01322) compared to Controls, and similarly lowered

for the anti-PD-L1 with RT-treated animals, which are very similar and not statistically

significantly different from the Control arm. A similar but inverse trend is seen for the

CD8+ cells, where the control and RT+anti-PD-L1 drug combination treated animals

retained their CD8+ cell population percentages compared to Controls (and so were

not statistically significant from Controls); however, the RT-alone (without anti-PD-L1

drug) treated animals showed statistically significantly lowered levels compared to Controls

(p=0.02685 for Uniform+isotype arm; p=0.0256 for the MinibeamRT+isotype arm.) B and

NK cells may also be slightly elevated for all the treatment groups relative to the controls,
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but no statistically significant trend is seen among the MinibeamRT and UniformRT

groups.

Figure 54: Flow cytometry immunophenotypic analysis of spleen cells that are
harvested at 14 days post-radiotherapy. Approximately five animals per study
group are harvested. When statistically compared against the Control+isotype arm,
the 10GyUniformRT+isotope arm is significantly different for CD45+ (p=0.04378),
CD4+ (p=0.01322), and CD8 (p=0.02685). In addition, for CD8 cells the
50GyMinibeamRT+isotope arm is significantly different from Control+isotype (p=0.0256).
Differences between all other arms are not statistically significant.

5.5.4 Tumor lymphocyte profiles

Figure 55 shows the flow cytometry immune profiling data from both the irradiated

and unirradiated tumors. where CD3+, CD8+, and CD4+ cell population percentages are

analyzed. For the irradiated tumor, UniformRT alone (without anti-PD-L1) appears to

cause greatest depletion of the overall T-cell population (CD3+), while the MinibeamRT
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alone arm CD3+ population remained nearly same as for the Control arm. This may

indicate that MRT is able to spare some fraction of the resident lymphocyte population.

However, anti-PD-L1 drug enhanced the resident T-cell population in both radiation

groups, especially for the UniformRT group.

Figure 55: Flow cytometry immunophenotypic analysis of tumor cells harvested from the
irradiated tumor (left) and unirradiated tumors (right) of a dual tumor mouse model of
adenocarcinoma. Tumors were harvested from approximately n=5 animals per treatment
group at 14 days. Differences between all arms are not statistically significant.

For the distant unirradiated tumor, there is not a clear difference among the immune

cell populations as a whole. However, there does appear to be a trend towards higher

CD8+ cytotoxic T cells in the MRT+anti-PD-L1 group, which would indicate greater
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anti-tumor immune activity. This is also consistent with the spleen data, where the

MRT+anti-PD-L1 had the highest CD8+ T cell population among the irradiated animals.

This would indicate a greater systemic CD8+ T cell response, which has been shown to be

a critical determinant of response in several models. These observed trends are consistent

with our hypothesis that MRT induces and enhances systemic immune response. However,

the relatively large within group variance and exploratory nature of this study does not

allow us to establish statistical significance between the groups.

5.6 Discussion and Conclusions

Our study demonstrates that when combined with anti-PD-L1 therapy minibeam

radiation is superior to uniform radiation in eliciting abscopal effect. This is indicated

primarily by the tumor growth data, in which a distant tumor showed the significant growth

inhibition in response to Minibeam radiation to a primary tumor site when combined

with anti-PD-L1 therapy. This effect was notably different than a comparable UniformRT

radiation, where a possible negative abscopal effect is observed. Note that we did not

observed negative abscopal effect from UniformRT + anti− PD− L1 in a previous pilot

study, however it also showed that MinibeamRT + anti−PD−L1 had stronger abscopal

effect than UniformRT + anti − PD − L1. This is consistent with other studies [47],

[248] showing that a single dose of seamless, uniform radiotherapy does not induce an

abscopal tumor response. However, many more studies need to be conducted to make the

case for any specific dose and fractionation schedule.

Our study indicates the potentially advantageous role of SFRT and MinibeamRT in

eliciting a systemic anti-tumor immune response. These results are supported by trends

seen in the flow cytometry characterization of immune cell infiltrates. Notably, elevated

CD8+ T cells were seen in the distant (unirradiated) tumor site, as well as the spleen,

indicating greater systemic cytotoxic immune response. In addition, the overall T cell

populations were elevated in MinibeamRT+ anti-PD-L1 treated groups which may indicate
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greater retention of resident T cell populations, in line with our hypothesis. This is

consistent with previous reports on the immune response following more conventional

radiation, where CD8+ T cell response has been reported to be elevated following combined

radiation and PD-1/PD-L1 blockade in mouse models of glioblastoma multiform [249].

Deng et al. also showed that CD8+ T cells play a critical role in the response to UniformRT

+ immune checkpoint inhibition in a breast cancer mouse model [250]. Elevated CD8+ T

cells is also a positive prognostic factor clinically [251], and immune checkpoint inhibition

in combination with radiation has been demonstrated to increase the prevalence and

activation of CD8+ T cell populations as an important mechanism of response [252]. Thus,

the fact that MinibeamRT appears to further enhance this response, may be an important

indication of this treatment’s potential role in enhancing the immune response following

combination therapy as discussed previously [49], [123], [173], [220], [228]. In this work,

we have chosen to use anti-PD-L1 as an immune therapy because it has been shown to

synergize with radiation therapy in a wide range of tumor models and is also being studied

clinically. However, there are a wide range of other potential immune therapies that have

also been shown to be synergistic in combination with radiation therapy.

One challenge in any SFRT scheme is the large parameter space over which to select and

optimize the therapeutic regimen. The spatial dose distribution clearly has a significant

role in how the immune response develops, and this dependence is likely to be dependent

on the specific microenvironmental properties of the tumor. Thus, future work is needed to

better understand how the spatial dose distribution affects immune response, and how this

can be optimally implemented clinically. Our data shows that while Minibeam radiation is

superior at initiating abscopal effect the conventional uniform radiation is better at local

irradiated tumor control. If our finding is validated, there may be a treatment strategy that

can best harvest the benefits of both SFRT and uniform radiation therapy. The treatment

strategy can be first, SFRT+anti-PD-L1 to enhance systemic anti-cancer immunotherapy

and second, conventional radiation therapy for local irradiated tumor control. Research is
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needed to determine the best timing of the conventional treatment course.
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CHAPTER 6: MICROBEAM RADIATION THERAPY ENHANCED
TUMOR DELIVERY OF PEGYLATED LIPOSOMAL DOXORUBICIN

IN A TRIPLE NEGATIVE BREAST CANCER MOUSE MODEL

6.1 Overview

Previously, we showed the potential for spatially fractionated radiation therapy

(SFRT) to enhance the systemic immune response in mice when used in combination

with immunomodulatory anti-cancer drugs. In a similar vein, this chapter presents an

investigation into the potential advantages of SFRT over conventional radiotherapy in

enhancing novel anti-cancer, chemotherapeutic drug delivery.

Carrier-Mediated Agents (CMAs) are a new class of chemotherapy drugs that have

demonstrated to be much safer than typical chemotherapy drugs with significantly

less cardiotoxicty, longer circulation time, and greater tumor exposure than seen with

conventional, free doxorubicin. However, the lack of drug uptake into the tumor hinders the

clinical translation of this promising treatment approach. The purpose of this study is to

investigate the use of SFRT, a safe, experimental radiotherapy approach that preferentially

eradicates tumors while sparing normal tissues, as a potential method for enhancing CMA

anti-cancer drug delivery into tumors as compared to conventional, seamless radiotherapy

methods in a GEMM of aggressive claudin-low triple-negative breast cancer.

This chapter has been submitted for publication4 in the journal Therapeutic Advances

in Medical Oncology and is in review at the time of this writing. I have included the study

4This chapter has been submitted as an article in the journal Therapeutic Advances in Medical Oncology.
The original citation is as follows: Price LSL, Rivera JN, Madden AJ, Herity LB, Piscitelli JA, Mageau S,
Santos CM, Roques JR, Midkiff B, Feinberg N, Darr D, Chang SX, Zamboni WC. Microbeam radiation
therapy enhanced tumor delivery of PEGylated liposomal doxorubicin in a triple negative breast cancer
mouse model. Therapeutic Advances in Medical Oncology, 2020 [Manuscript In Review]. Authors Price
and Rivera contributed equally to this work and should be considered co-first authors. Senior coauthors,
Zamboni and Chang, contributed equally to this work.
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here in full, with minor changes, including full-color versions for all figures and changes to

formatting and terminology for consistency with previous chapters in this dissertation.
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6.2 Introduction

The theoretical advantages of carrier mediated agents (CMAs) in cancer treatment

include increased solubility, prolonged duration of exposure, selective delivery of entrapped

drug to the tumor, and an improved therapeutic index [253], [254]. The primary

types of anticancer CMAs are liposomes, nanoparticles (NPs) and conjugated agents.

PEGylated liposomal doxorubicin (Doxil®; PLD), liposomal daunorubicin (DaunoXome®)

and paclitaxel albumin-bound particles (Abraxane®) are members of this relatively new

class of drugs that are approved by the U.S. FDA for the treatment of solid tumors

[255]. However, the promise of these drugs is currently unfulfilled due to an overall low

tumor uptake [256], [257]. In theory, enhancing permeability of the tumor vasculature

allows CMAs to enter the tumor interstitial space, while suppressed lymphatic filtration

allows them to stay there. This phenomenon, termed the Enhanced Permeability and

Retention (EPR) effect, may be exploited by CMAs to deliver drugs to tumors [256], [257].

However, progress in developing effective CMAs using this approach has been hampered by

heterogeneity of EPR effect in different tumors and the lack of information on factors that

influence EPR [256]–[259]. In addition, cancer cells in tumors are surrounded by a complex

microenvironment comprised of endothelial cells of the blood and lymphatic circulation,

stromal fibroblasts, collagen, cells of the mononuclear phagocyte system (MPS) and other

immune cells that may be associated with the variability in EPR and are potential barriers

to tumor delivery of CMAs [256], [258]–[264]. Moreover, it appears that the ability of

CMAs to enter tumors by EPR or other factors is highly variable across tumor types

and thus all solid tumors may not be conducive for CMA delivery and treatment [256],

[264]–[271]. It also is unclear how these factors affect CMAs of different sizes and shapes

[267], [272], [273]. Thus, it is important to development new methods to overcome barriers

and increase the tumor delivery of several different types of CMAs in solid tumors with

different degrees of EPR effect.
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The pharmacokinetics (PK) of CMAs is dependent upon the carrier and not the

encapsulated drug it carries [263]–[266]. Drug that remains encapsulated within the carrier

has a completely different clearance and distribution compared to small molecule (SM)

drugs. In theory, the EPR effect exists in tumors and may be exploited for selective delivery

of drugs to tumor by CMAs. However, PK studies show that in reality the tumor delivery of

CMAs is low and inefficient due to tumor heterogeneity and associated barriers [259], [263],

[264], [266]. Recent publications have highlighted the relatively lower efficiency of tumor

delivery seen with CMAs compared with SMs. In addition, a workshop by the Alliance

for Nanotechnology in Cancer concluded that there are major gaps in the understanding

of factors that affect and inhibit CMA and NP tumor delivery and new fundamental

preclinical and clinical studies in this area are needed to effectively advance CMA and

NP drug delivery and efficacy in solid tumors [256], [274]. So far, the advancement of

CMA and NP treatment of cancer has been focused primarily on modifying formulations

to overcome PK, efficacy and toxicity issues. However, this approach alone may not be

adequate as biologic issues, such as barriers within the tumor microenvironment appear to

play important roles in low and inefficient tumor delivery of CMAs.

Maximizing tumor control while minimizing treatment toxicity is the holy grail of

all cancer treatments including chemotherapy, radiation therapy, and surgery, the three

standard modalities for cancer treatment. Treatment associated toxicities directly limit

the treatment “dosage” and thus hinder cancer control. Treatment toxicity is becoming

more of an issue, as more cancer patients today live longer due to better cancer treatments

and live to experience cancer reoccurrence years later.

Radiation therapy has been used as cytotoxic therapy for cancer local control since

the discovery of x-rays by Wilhelm Conrad Röntgen in 1895. Therapeutic radiation is

targeted at the tumor and causes tumor cell DNA double strand breaks, which lead

to cell death and then tumor control. Although non-direct radiation effects such as

bystander effect, abscopal effect, and radiation-induced anti-cancer immune responses

142



have received increasing attention from research communities today these effects remain

poorly understood [128], [150], [212]. Microbeam radiation therapy (MRT) is a preclinical

radiotherapy with promising clinical potential. In animal studies high dose MRT has shown

an extremely high tissue-type selectivity where it eradicates tumors without damaging

or inhibiting the function of normal tissues that are exposed to the same high dose

radiation [150], [212]. The extraordinary MRT effect may be stemmed from its unique

spatial, temporal, and dosimetric characteristics, which are radically different than those

of the conventional broadbeam radiation therapy (BRT). MRT consists of many parallel

microplanar beams at peak dose levels that are 10-100 times greater than BRT [212].

Remarkably, in animal studies the ultrahigh cytotoxic MRT dose is well tolerated by

normal tissue while producing tumor control and survival comparable to conventional BRT.

The MRT normal tissue sparing effect are well accepted and include two major hypotheses:

(1) surviving stem cells in the low dose MRT, termed “valley” regions repopulate and repair

tissue damage and (2) its mature microvasculature is resistant to MRT damage. Further,

the mechanism behind MRT tumor control is still poorly understood; however, there are

two major hypotheses under active investigation: (1) cellular bystander effects, wherein

unirradiated or less-irradiated cells in the beam low-dose, “valley”, regions are exposed

to the cytotoxic factors released by nearby dying cells from the beam “peak” regions

that received massive radiation dose; and (2) immature tumor microvasculature damage

effects, where tumor microvasculature is more susceptible to damage by the high dose MRT

compared to normal tissue. In addition to these direct impacts on tumor control, MRT

may also alter the tumor microenvironment factors important to the delivery of CMAs.

Griffin et al. reported that MRT induced a transient but drastic reduction in tumor

hypoxia which might open up vessels for better drug delivery [128]. The combination

of direct anti-tumor activity and improved tumor delivery of CMAs with low off-target

toxicity makes MRT an attractive therapy for multi-modal cancer treatment.
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6.3 Methods

Animal Model All animal studies were completed under a protocol approved by the

University of North Carolina at Chapel Hill Institutional Animal Care and Use Committee

and in accordance with all relevant animal welfare regulations. Mice were maintained in

a barrier facility on a 12-hour light/dark cycle and were provided with folate-free chow

and water ad libitum. Tumors derived from BALB/c TP53 -/- orthotopic mammary gland

transplant line (T11) were transplanted into the inguinal mammary fat pad of 12-week-old

wild-type BALB/c mice (The Jackson Laboratory; strain 000651 [271]). Mice were housed

in the UNC Lineberger Comprehensive Cancer Center’s Mouse Phase I Unit and observed

for tumors as per the standard practice [275]. Mice were randomized to treatment cohorts,

and therapy began once a tumor reached approximately 300-500 mm3.

6.3.1 Treatments

An XRAD-320 Research Irradiator (Precision X-Rays, Inc.) with customized collimators

was used to produce the BRT and MRT radiation. For both, a 2cm × 2cm irradiation

treatment area was centered over the tumor. Radiation dosimetry of the BRT and MRT

radiation was achieved via EBT3 Gafchromic film calibrated against an ion chamber under

large field conditions [194], [199]. The in-house developed MRT collimator generated

microbeams with an average beam width of 307µm and a peak-to-peak separation of

1260µm. PLD was purchased from FormuMax Scientific and diluted with 5% dextrose in

water to 1.2 mg/mL before injection.

6.3.2 Pharmacokinetic studies

Mice (n=3 per treatment per time point) were anesthetized using isoflurane and treated

with either BRT 7Gy, MRT 28Gy, or MRT 100Gy. Following completion of radiation,

mice were returned to the vivarium and monitored for signs of toxicity. Either 16 hours
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(for MRT 28Gy) or 24 hours (for BRT 7Gy and MRT 100Gy) after radiation, mice were

administered 6 mg/kg PLD IV ×1 via a tail vein. An additional group of mice with

no radiation exposure were also administered an identical dose of PLD. At predefined

time points following PLD administration (5 minutes, 24 hours, and 96 hours), mice were

anesthetized using 100 mg/kg ketamine IP ×1 and 1 mg/kg dexmedetomidine IP ×1 then

ethically euthanized via cardiac puncture for collection of blood. Tumors were excised

post-mortem and snap frozen in liquid nitrogen and stored at -80 degress Celsius until

processing. Additional animals received a second treatment of MRT 28Gy + PLD 16 hours

post-MRT one week after the initial treatment. Mice (n=3 per timepoint) were sacrificed

5 minutes and 24 hours following the second dose of PLD and blood and tissues collected

as above.

6.3.3 PLD quantification

The complete methods for sample collection, preparation and analysis of encapsulated

doxorubicin in plasma and sum total (encapsulated + released) doxorubicin in tumor after

administration of PLD have been previously described [271], [276]–[280]. Briefly, blood

samples were collected in sodium heparin tubes at 0.083, 3, 6, 24, 48, and 96 hours after

the administration of PLD. Blood was centrifuged at 1,500xg for 5 minutes to obtain

plasma. Encapsulated and released doxorubicin in plasma were separated using solid

phase separation. Upon processing, tumors were thawed, weighed, and diluted in a 1:3

ratio with phosphate buffered saline prior to homogenizing with a Precellys 24 bead mill

homogenizer (Omni International Inc, Kennesaw, GA). Samples were further processed by

addition of 800µL extraction solution (acetonitrile with 100 ng/mL Daunorubicin internal

standard) to 200µL of plasma or tumor homogenate. The samples were vortexed for 10

minutes and centrifuged at 10,000xg for 10 minutes at 4 degrees Celsius. The supernatant

was removed to a clean tube, evaporated to dryness under nitrogen, and reconstituted in

150µL of 15% acetonitrile in water plus 0.1% formic acid. The samples were then vortexed,
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transferred to autosampler vials, and analyzed by high-performance liquid chromatography

with fluorescence detection (HPLC-FL) set to excitation wavelength 490nm/emission

wavelength 590nm. The HPLC-FL technique had a quantitative range of 10 – 3,000 ng/mL

for sum total doxorubicin in tumor and 300 – 30,000 ng/mL for encapsulated doxorubicin

in plasma. Samples that returned a concentration above the quantitative limit were diluted

to fall within the quantitative range and reinjected.

6.3.4 Pharmacokinetics analysis

The PK of PLD plasma and tumor was analyzed by noncompartmental analysis using

Phoenix WinNonlin Professional Edition version 8.0 (Pharsight Corp., Cary, NC, USA).

The area under the doxorubicin concentration versus time curve (AUC) was calculated

using the linear up/log down rule for plasma and tumor from T0 to Tlast (24 or 96 hours,

depending on treatment group).

6.3.5 Tumor Staining and Immunohistochemistry

A separate group of T11 mice were randomized to either no radiation, BRT 7Gy,

MRT 28Gy, or MRT 100Gy and irradiated as above. Twenty-four hours after radiation

mice were anesthetized with ketamine and dexmedetomidine and sacrificed by cervical

dislocation. Tumors were excised post-mortem and placed into 10% formaldehyde for

paraffin embedding. Tumors were then sliced and mounted on slides for staining. Samples

were stained using Masson’s Trichrome Stain (MTS), anti-Collagen IV monoclonal antibody,

anti-F4/80 monoclonal antibody, and anti-CD31 monoclonal antibody as previously

described. Stained slides were scanned using ScanScope XT (Leica Biosystems Inc.) an

Automated High-Throughput Scanner. A quantifying algorithm employing a modified

membrane analysis was utilized to automatically quantify the stained area of viable tumor

[271]. Collagen IV, MTS, and macrophages (F4/80) in the viable tumor tissue were

quantified by standard H-score [271], [281] and microvessels (CD31) were quantified by
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microvessel density analysis (1/mm2) [271], [281].

6.4 Results and Discussion

In order to assess the impact of MRT on the tumor delivery enhancement of CMAs

we evaluated the pharmacokinetics (PK) of PEGylated liposomal doxorubicin (PLD) in

a genetically engineered mouse model of triple negative breast cancer (T11) following

either MRT or conventional BRT. Radiation-enhanced accumulation of nanoparticles

and macromolecules in tumors has been reported in several previous studies [282], [283].

However, this is the first publication comparing the impact of conventional BRT and the

novel MRT on the tumor microenvironment and the tumor accumulation of a drug-loaded

nanoparticle. We also evaluated the impact of MRT on the tumor microenvironment

through histological examination of tumor in irradiated animals.

6.4.1 Single dose pharmacokinetics

We first evaluated the PK of PLD in tumor-bearing T11 mice following a single dose of

either PLD alone, BRT 7Gy + PLD, MRT 28Gy + PLD, or MRT 100Gy + PLD. For the

MRT 28Gy + PLD arm, radiation was administered 16h prior to PLD. In the remaining

two combination therapy arms (BRT7 Gy + PLD and MRT100 Gy + PLD), radiation

was administered 24 h prior to PLD. The encapsulated plasma and sum total tumor

doxorubicin concentration vs time profiles for all single dose treatments are presented in

Figure 56. The encapsulated plasma and sum total tumor doxorubicin AUC0−96h and

ratio of tumor to plasma AUC0−96h are presented in the table in Figure 57.
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Figure 56: Mean encapsulated doxorubicin concentration in plasma (A) and sum total
doxorubicin concentration in tumor (B) vs time profiles in female T11 mice after
administration of: 1) PLD 6 mg/kg alone, 2) BRT 7Gy + PLD, 3) MRT 28Gy + PLD
16hours post-MRT, or 4) MRT 100Gy + PLD. The encapsulated doxorubicin exposure
in plasma is similar among all groups, consistent with a lack of effect of irradiation on
plasma clearance of PLD. The tumor exposure of sum total doxorubicin is significantly
enhanced at 24 hours post-PLD for all radiation therapy groups compared to PLD alone,
with the greatest increase in tumor exposure of sum total doxorubicin after treatment
with MRT 28Gy + PLD 6 mg/kg 16 hours post-MRT.
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Figure 57: Summary of PLD Pharmacokinetics After a Single Dose of PLD Alone, BRT +
PLD, or MRT + PLD

The encapsulated plasma concentration vs time profiles and AUC0−96h did not

significantly differ between treatments. Because the irradiated area in this study was

limited to a relatively small area centered on the tumor mass, little impact was

anticipated on the primary clearance pathway of nanoparticles – the MPS. Consistent

with this hypothesis, the plasma exposure of PLD was similar across all groups (< 25%

difference in AUC0−96h), regardless of radiation type or dose, suggesting that a single dose

of BRT or MRT minimally alters the plasma clearance and disposition of PLD.

In contrast, all BRT and MRT treatment groups had significantly higher sum total

tumor doxorubicin exposure compared to PLD alone. The sum total tumor doxorubicin

AUC0−96h was 2.7-fold and 2.2-fold higher following BRT 7Gy and MRT 100Gy, respectively,

compared to PLD alone. MRT 28Gy yielded the highest PLD tumor delivery enhancement

with a tumor AUC0−96h 6.3-fold higher compared to PLD alone.

The tumor:plasma doxorubicin AUC ratio represents the relative delivery of

nanoparticles to tumor compared to the plasma. Tumor delivery results following

radiation therapy mirrored the tumor exposure due to the limited impact of radiation on
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the plasma exposure. The ratio of tumor to plasma AUC0−96h were 2.7-fold, 7.1-fold, and

2.8-fold higher following BRT 7Gy, MRT 28Gy, and MRT 100Gy, respectively, compared

to PLD alone. These results show that MRT provides comparable enhancement of tumor

nanoparticle accumulation to BRT when given at 14 times the peak dose (i.e., MRT

100Gy was similar to BRT 7Gy). Despite increased peak doses, MRT typically has

significantly lower normal tissue toxicity when compared to BRT while maintaining

anti-tumor efficacy [72], [174], [212]. The combination of independent anti-tumor activity,

low normal tissue adverse effects, and comparable tumor delivery enhancement makes

MRT an attractive modality for combination therapy in this manner.

Intriguingly, the lower peak radiation dose (MRT 28Gy) provided the most significant

enhancement of tumor delivery following a single dose, suggesting that the relationship

between radiation dose and tumor delivery enhancement may not be direct. While the

administration of BRT 7Gy + PLD enhanced the relative delivery of PLD to the tumor

2.7-fold compared to PLD alone, MRT 28Gy + PLD 16 hours post-MRT enhanced the

relative delivery of PLD a further 2.6-fold compared to BRT 7Gy + PLD. Similarly, MRT

28Gy + PLD 16 hours post-MRT enhanced relative delivery of PLD to tumor 2.5-fold

compared to MRT 100Gy + PLD, which itself provided 2.8-fold enhancement relative to

PLD alone.

Additionally, we explored the efficacy of MRT to enhance the tumor delivery of PLD at

varying levels of systemic exposure. Using the treatment with the greatest tumor delivery

enhancement after a single dose (MRT 28Gy + PLD 16 hours post-MRT), we compared

a group of animals (n=3) with higher plasma doxorubicin exposure 96 hours after PLD

administration to a group of animals (n=3) with lower plasma doxorubicin exposure. The

tumor size, encapsulated plasma doxorubicin concentration, sum total tumor concentration,

and tumor to plasma concentration ratio for these animals is presented in the table in

Figure 58.
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Figure 58: Comparison of MRT-Induced Delivery Enhancement at Low and High Plasma
Exposures After a Single Dose of MRT 28Gy + PLD 16h post-MRT

The animals with higher plasma doxorubicin exposure had smaller tumors

(75.3± 0.6mm3) while those with lower plasma doxorubicin exposure had larger tumors

(210.3± 52.8mm3). Higher plasma exposure led to higher sum total tumor doxorubicin

concentration (110, 416± 29, 753 vs 16, 780± 4, 539 ng/g) but the ratio of tumor to plasma

doxorubicin concentration did not differ between the groups (11.80± 0.60 vs 10.13± 5.88).

This suggests that the tumor delivery enhancement provided by MRT is not limited by

nanoparticle dose across an approximately 4-fold range of plasma concentrations.

6.4.2 Multiple dose pharmacokinetics

After identifying enhanced tumor delivery following a single dose of MRT 28Gy + PLD

16 hours post-MRT, the efficacy of repeated dosing was investigated. The encapsulated

plasma and sum total tumor doxorubicin concentration vs time profiles for 24 hours

following PLD administration for single dose PLD alone, single dose MRT 28Gy + PLD

16 hours post-MRT, and two dose MRT 28Gy + PLD 16 hours post-MRT weekly are

presented in Figure 59. The encapsulated plasma and sum total tumor doxorubicin

AUC0−24h and ratio of tumor to plasma AUC0−24h for these treatments are presented in
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the table in Figure 60.

Figure2

Figure 59: Mean encapsulated doxorubicin concentration in plasma (A) and sum total
doxorubicin concentration in tumor (B) vs time profiles in female T11 mice after
administration of: 1) Single Dose PLD 6 mg/kg alone, 2) Single Dose MRT 28Gy +
PLD 6 mg/kg 16 hours post-MRT, or 3) Two Dose MRT 28Gy + PLD 6 mg/kg 16 hours
post-MRT. The tumor exposure of sum total doxorubicin is significantly enhanced following
one and two doses of MRT 28Gy + PLD 16 hours post-MRT compared to PLD alone.
Tumor sum total doxorubicin exposure after the second dose of MRT 28Gy + PLD 16
hours post-MRT was increased relative to a single dose, consistent with increased plasma
encapsulated doxorubicin exposure.
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Figure 60: Summary of PLD Pharmacokinetics After a Single Dose of PLD Alone or One
or Two Treatments of MRT 28Gy + PLD Weekly.

There are slight differences in the encapsulated plasma doxorubicin exposures with

single dose MRT 28Gy + PLD 16 hours post-MRT giving an AUC0−24h approximately

24% lower relative to PLD alone and two dose MRT 28Gy + PLD, which is 31% higher

relative to PLD alone. The tumor accumulation of sum total doxorubicin is significantly

enhanced following one or two doses of MRT 28Gy + PLD 16 hours post-MRT compared

to PLD alone. The sum total tumor doxorubicin AUC0−24h are 36, 710, 156, 244, and

267, 275 hng
g

following a single dose of PLD alone, a single dose of MRT 28Gy + PLD

16 hours post-MRT, and two doses of MRT 28Gy + PLD 16 hours post-MRT weekly,

respectively. In addition, tumor sum total doxorubicin exposure is increased following a

second dose of MRT 28Gy + PLD 16 hours post-MRT relative to a single dose, consistent

with increased plasma encapsulated doxorubicin exposure. The relative tumor delivery

(given by the ratio of tumor to plasma AUC0−24h) is similar following one (18.28%) or two

(18.05%) doses of MRT 28Gy + PLD 16 hours post-MRT and higher than following a

single dose of PLD alone (3.25%). The relative tumor delivery (ratio of tumor to plasma

AUC0−24h) was approximately 5.6-fold higher following either one or two doses of MRT

28Gy + PLD 16 hours post-MRT compared to PLD alone. The relative tumor delivery
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enhancement of PLD following MRT is conserved following a second dose.

6.4.3 Tumor microenviroment profiling

The tumor microenvironment plays a pivotal role in the delivery and accumulation

of nanoparticle drugs. In particular, alterations in macrophages and vasculature have

been associated with changes in nanodrug delivery to tumors [257], [260], [263], [268]. A

separate group of T11 mice were randomized to either no radiation, BRT 7Gy, MRT 28Gy,

or MRT 100Gy and tumors were profiled via immunohistochemistry. H-scores for F4/80,

Collagen IV, and MTS and microvessel density (CD31) in viable tumor are presented in

Figure 61.
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Figure 61: Tumor microenvironment profiles 24 h after 1) no radiation, 2) BRT 7 Gy, 3)
MRT 28 Gy, or 4) MRT 100 Gy, in female T11 mice. A) F4/80 H-Scores, B) Collagen IV
H-Scores, C) MTS H-Scores, D) CD31 Microvessel Density. *p¡0.01 vs Untreated Control,
#p¡0.01 vs BRT 7 Gy. Both BRT and MRT decrease macrophages with MRT 100 Gy
yielding a larger decrease in F4/80 H-Scores in viable tumor. There are no statistically
significant (p¡0.01) changes in collagen as assessed by either Collagen IV or MTS or
microvessel density (CD31) between untreated control and any radiation therapy group.

There is a significant, dose-dependent reduction in macrophages in viable tumor, as

evidenced by decreases in F4/80 H-Scores, 24 hours after both BRT and MRT. The highest

F4/80 H-score was observed in the Untreated Control group (175.3± 12.1) followed by the
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lower radiation doses, BRT 7Gy (98.2± 4.3) and MRT 28Gy (84.4± 20.2). The higher

peak radiation dose, MRT 100Gy, resulted in the lowest F4/80 H-score (27.5± 21.4). In

this study, radiation led to depletion of macrophages in viable tumor tissue 24 hours after

either BRT or MRT. Lower radiation doses, BRT 7Gy and MRT 28Gy, resulted in 44% and

52% reductions in macrophages, respectively, while the higher peak radiation dose of MRT

100Gy resulted in 84% reduction in macrophages. A previous BRT study associated a

relative increase in macrophages following radiation with an increase in nanodrug delivery

[284]. However, the relative timing of radiotherapy and nanodrug administration differed

between the two studies. Miller et al. administered a therapeutic polymeric cisplatin

prodrug NP (TNP) 72 hours post-irradiation and assessed macrophage presence 24 hours

post-TNP administration (96 hours post-irradiation). Macrophage assessment and PLD

administration in our study was performed 24 h post-irradiation. Furthermore, analytical

techniques differed as macrophages were assessed relative to tumor cells in a flow cytometry

assay by Miller et al. A potential explanation for these seemingly opposite findings would

be a rapid radiation-induced nadir of macrophages (within 24 hours post-irradiation)

followed by later macrophage infiltration resulting in the increased PLD tumor exposure

24-96 hours post-PLD (48-120 hours post-irradiation).

Collagen, assessed by both Collagen IV IHC and MTS, showed no significant changes

between untreated control and irradiated tumors. In addition, microvessel density, assessed

by CD31, also did not differ between untreated control and irradiated tumors. This

suggests that, at least for the first 24 hours following radiation, there is not a change in

collagen content or microvessel number driving the enhancement of nanoparticle delivery

to tumors.

In this study we evaluated the impact of conventional BRT in comparison to novel

MRT on the tumor microenvironment and ability to enhance tumor delivery of a drug

loaded nanoparticle. In a GEMM of triple negative breast cancer, both BRT and MRT

altered the microenvironment through depletion of macrophages and significantly enhanced
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the tumor delivery of PLD. Notably, High dose MRT (100Gy peak dose and valley dose

of approximately 8Gy) provided comparable PLD tumor delivery enhancement to BRT

(7Gy). But the most significant enhancement of tumor delivery occurred when a lower

peak radiation dose MRT of 28Gy was used (and valley dose of 2.26Gy). In addition, the

tumor delivery enhancement provided by pretreatment with MRT 28Gy is maintained at

both high and low plasma exposure and following repeated dosing. Further studies are

warranted to assess the efficacy of radiation-induced tumor delivery enhancement in other

tumor models and with other nanoparticles as well as the mechanism of radiation-induced

tumor delivery enhancement.
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CHAPTER 7: DISCUSSION AND FINAL CONCLUSIONS

7.1 The Potential Global Impact of SFRT

There are nearly 20 million new cancer cases a year, with over 70% of them arising in

the developing world [54], [285], [286]. From a public health perspective, the most rational

and cost-effective method to address this crisis is through prevention and education, but

cancer deaths are already on the rise, with nearly 10 million deaths worldwide in 2018,

and deaths are expected to increase up to 12 million this year, doubled compared to a

decade ago [285], [287].

Radiation therapy is one of the most cost-effective methods for treating cancer and

has the potential for alleviating the global cancer burden [15], [288]; however, severe

inequities exist in access to radiation therapy around the world [15], [288]. Numerous

countries have access to only a limited number of radiotherapy treatment facilities, with

most countries in Asia having only one unit available for every 1-2 million people [286],

though often less, and 29 out of 52 countries in Africa have no radiotherapy facilities at all

[289]. When a radiotherapy treatment facility is available, the barriers to implementation

of radiation therapy are numerous and diverse; high up-front costs for facilities and

equipment [15], [67], [290], the lack of training and personnel for the specialized team

of healthcare professionals needed to use and maintain the equipment [67], [291], and

widespread systemic barriers such as governmental policies or practices (or lack thereof)

make implementation exceedingly difficult [67], [68], [291].

Even after mitigating some of these barriers, increasing access to radiotherapy facilities

is just one small step towards helping meet the pressing clinical needs to effectively

implement radiotherapy treatments. Studies have shown that developing countries also
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have higher incidences of advanced disease presentation, up to 70% presenting with late

stage illness according to the World Health Organization (WHO) [292]. Advanced disease

presentation is correlated with poor prognostic outcomes, and treatments to minimize

suffering, including palliative radiation, are often the only options left available [293]–[296].

With the high number of new cancer cases yearly, and the low number of facilities in

high-need regions, the global cancer burden continues to rise. Alleviating this serious

global cancer burden is critically important and requires new strategies for improving

healthcare outcomes.

Accessible, low-cost radiotherapy and alternatives to conventional radiotherapy may

play a part in utilizing available radiotherapy facilities to reducing cancer burden. Spatially

fractionated radiation therapy is a strong candidate for helping meet some of the most

pressing clinical needs in cancer therapy. As both a therapeutically- and cost-effective

approach, SFRT may have an important role to play in improving patient outcomes in

both the definitive and palliative settings for patients in underserved communities [297].

For example, SFRT treatment has been shown to be beneficial for those patients with very

advanced, or bulky disease and for very aggressive tumors types [73], [204]. Hence, for

those 70% of patients presenting with very advanced, late stage disease, palliative SFRT

may offer a safe treatment option and dramatic pain symptom relief, especially for those

that would otherwise suffer [73]. For the five most common cancers in developing countries,

stomach, lung, liver, breast, and cervix [286], SFRT studies have reported good oncological

outcomes in each of these disease sites [49], [52], [73], [82], [84]–[87], [90], [91]. From an

economic perspective, definitive SFRT may be offered as a boost to conventional courses

of radiotherapy without significantly added time or cost, while palliative SFRT may be

offered as a single, cost-effective treatment, something that would be extremely beneficial

for patients that have to travel long distances to an radiotherapy-equipped facility [287].

SFRT may also be easily implemented in existing radiotherapy units with very low added

costs, since SFRT utilizing a relatively inexpensive, reusable GRID compensator (see
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Chapter 2.4.1 on GRID Therapy) does not require use of the highly advanced, state-of-the

art radiation therapy treatment technologies, which are largely limited to highly developed

industrialized nations.

7.2 New Horizons in SFRT

Despite its very high therapeutic ratio and long history, SFRT remains largely an

experimental treatment and there are still many unanswered questions behind the promising

radiotherapy approach. In the past decade, SFRT has recently gained traction, becoming

a very active area of investigation, and its application in combination treatment strategies

has made studying SFRT an interesting and valuable research endeavor. In fact, in

2018 the National Cancer Institute together with the Radiosurgery Society created a

new, international working group dedicated to investigating SFRT, and the related Flash

radiotherapy, with the goal of advancing our understanding of SFRT biology, physics, and

clinical translation. The new working group consists of a researchers from around the

country and the world, including many leaders in the field of SFRT and MRT technology

research and development, as well as physicians and other stakeholders that have a special

interest in the clinical translation of this promising treatment modality. In just the last

two years, several clinical trials using SFRT have been developed specifically for targeting

patients with massive, bulky tumors, patients with radioresistant tumors such as squamous

cell carcinomas of the head and neck, as well as patients with pediatric osterosarcomas

of the extremities [298]. Current, active clinical trials using SFRT include, but are not

limited to:

1. GRID Therapy as Palliative Radiation for Patients with Advanced and Symptomatic

Tumors (NCT02333110)

2. Phase I Clinical Trial of GRID Therapy in Pediatric Osteosarcoma of the Extremity

(NCT03139318)
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3. Understanding GRID Radiation Therapy Effects on Human Tumor Oxygenation and

Interstitial Pressure to Increase Translation of Solid Tumor Therapy (NCT01967927)

4. Lattice Stereotactic Body Radiation Therapy (LATTICE SBRT) for Localized

Unresectable or Metastatic Conventional Type Chondrosarcoma (NCT04098887)

5. Palliative Lattice Stereotactic Body Radiotherapy (SBRT) (NCT041333415)

6. MRI-Guided Lattice Extreme Ablative Dose Radiotherapy for Prostate Cancer

(NCT01411319)

7. Randomized MRI-Guided Prostate Boosts via Initial Lattice Stereotactic vs Daily

Moderately Hypofractionated Radiotherapy (BLaStM) (NCT02307058) [299]

8. Neoadjuvant Durvalumab and Tremelimumab Plus Radiation for High Risk

Soft-Tissue Sarcoma (NEXIS) (NCT03116529)

Additionally, moves have been made at the European Synchrotron Facility (ESRF)

in Grenoble, France to establish a modern SFRT, micro-collimated beamline for use in

clinical patient trials [203]. The marked, growing interest in this promising treatment

approach is readily apparent and is very encouraging for the future of the field of SFRT

research as well as the future of cancer therapy.

In addition to the new clinical trials, it is very important to continue improving our

understanding of the working mechanisms behind SFRT through preclinical studies. One

avenue for potential SFRT advancement is by using larger animals as pre-clinical models

[174]. Nolan et al noted the remarkable similarities in pet dog cancer outcomes and

radiobiology when compared to humans and that modern veterinary radiation oncology

utilizes the same treatment technologies as those used for human patients [300], including:

• MV energy LINACs capable of stereotactic radiosurgery [301]–[303] (see Section

1.4.3 SBRT in Chapter 1), as well as IMRT [304] (see Chapter 1.4.2 on IMRT),
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• Modern dosimetry technology and protocols [301], [302], and

• Advanced treatment planning techniques [302].

• In addition, in one of our own studies, we implemented veterinary SFRT on a pet

canine model of spontaneous soft-tissue sarcomas [305] while other studies have also

applied SFRT on weanling pigs [115].

These advances in veterinary medicine may enable the use of large animals in pre-clinical

SFRT studies as large animals have the potential for serving as acceptable surrogates for

human clinical trials with similar clinical endpoints, but without the exceedingly high

cost-barriers.

7.3 Conclusions

Clearly, a tremendous amount of work still needs to be completed to expand our

knowledge of SFRT, its radiobiological effects, and what advantages it has to offer. This

body of work attempts to shed light on some of the unanswered questions in SFRT in the

hopes of advancing the broad clinical translation of this promising treatment technology,

especially for those currently underserved patients that may benefit most. In particular,

the fascinating observation that SFRT may modify the tumor microenvironment differently

than conventional radiation has inspired us to formulate creative, innovative research ideas,

aimed to not only understand this unique form of radiation, but also to develop its relevant

technology and dosimetry and identify new applications for it. One such interesting

application explored in this dissertation involves using SFRT multi-modality approaches

for potentially enhancing the therapeutic ratio of anti-cancer drug therapies. Chapter 5

investigated the potential for SFRT to enhance the systemic immune response in mice

when used in combination with anti-cancer immunomodulatory drugs. Results indicated

that SFRT with immunomodulatory drugs significantly enhanced the abscopal effect,

where distant unirradiated tumors exhibited control response, and results also showed
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greater immune cell infiltration as compared to the corresponding conventional, uniform

radiotherapy treatment. In addition, Chapter 6 investigated the potential for SFRT to

enhance the delivery of novel, nanoparticle anticancer agents to tumors. Pharmacokinetic

results indicated that low dose SFRT safely and effectively enhanced tumor delivery of

the nanoparticle drugs compared to conventional radiotherapy and drug alone. These

studies together help provide a deeper understanding of how the unique radiobiological

effects induced by SFRT may be exploited for potentially enhancing treatment outcomes

in combination therapy treatments.

One additional front for advancing the clinical translation of SFRT is a better

understanding of the correlation between dosimetric parameters and treatment outcomes.

In Chapter 4, we identified key SFRT dosimetric parameters and their association

with treatment outcomes using a range of spatial-fractionation patterns at conventional

dose-rates in a preclinical model. Results indicated that although peak dose is often

used to prescribe clinical and pre-clinical SFRT treatments, among the various dosimetric

parameters studied, peak dose was most weakly associated with treatment response, while

the valley dose and tumor EUD were most closely associated with treatment response.

This indicates that clinicians and researchers may need to more carefully consider the

valley dose and tumor EUD, in addition the peak dose, when prescribing SFRT treatments

and that more research examining the effects of dosimetric treatment parameters on

treatment outcomes is warranted. Finally, Chapter 3 discusses the development of a novel,

non-synchrotron-based, low-cost preclinical SFRT delivery system for use in small animal

research, a system that may allow other SFRT researchers to more readily expand upon

these findings and also explore uncharted horizons in our understanding of SFRT and its

uses.

These studies may provide a deeper understanding of the underlying radiobiology of

SFRT and may also reveal new additional pathways for increasing the therapeutic ratio

in patients via combination therapy approaches. Most importantly, these studies may
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allow us to proceed one step closer to the eventual clinical translation of these promising

alternative treatments, with the hope that these cancer therapies may one day become a

“saving grace” to those patients for whom conventional treatments are not an option.
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[11] G. Lorusso and C. Rüegg, “New insights into the mechanisms of organ-specific
breast cancer metastasis,” en, Seminars in Cancer Biology, Novel Concepts in
Cancer Metastasis, vol. 22, no. 3, pp. 226–233, Jun. 2012, issn: 1044-579X. doi:
10.1016/j.semcancer.2012.03.007.

[12] M. E. Hardee, A. E. Marciscano, C. M. Medina-Ramirez, D. Zagzag, A. Narayana,
S. M. Lonning, and M. H. Barcellos-Hoff, “Resistance of Glioblastoma-Initiating
Cells to Radiation Mediated by the Tumor Microenvironment Can Be Abolished
by Inhibiting Transforming Growth Factor-β,” en, Cancer Research, vol. 72, no. 16,
pp. 4119–4129, Aug. 2012, issn: 0008-5472, 1538-7445. doi: 10.1158/0008-5472
.CAN-12-0546.

[13] H. J. Park, R. J. Griffin, S. Hui, S. H. Levitt, and C. W. Song, “Radiation-Induced
Vascular Damage in Tumors: Implications of Vascular Damage in Ablative
Hypofractionated Radiotherapy (SBRT and SRS),” Radiation Research, vol. 177,
no. 3, pp. 311–327, Jan. 2012, issn: 0033-7587. doi: 10.1667/RR2773.1.

[14] R. Baskar, K. A. Lee, R. Yeo, and K.-W. Yeoh, “Cancer and Radiation Therapy:
Current Advances and Future Directions,” International Journal of Medical Sciences,
vol. 9, no. 3, pp. 193–199, Feb. 2012, issn: 1449-1907. doi: 10.7150/ijms.3635.

[15] D. A. Jaffray and M. K. Gospodarowicz, “Radiation Therapy for Cancer,” eng, in
Cancer: Disease Control Priorities, Third Edition (Volume 3), H. Gelband, P. Jha,
R. Sankaranarayanan, and S. Horton, Eds., Washington (DC): The International
Bank for Reconstruction and Development / The World Bank, 2015, isbn:
978-1-4648-0349-9 978-1-4648-0369-7.

[16] J. Thoms and R. G. Bristow, “DNA Repair Targeting and Radiotherapy: A Focus
on the Therapeutic Ratio,” en, Seminars in Radiation Oncology, Harnessing DNA
Repair to Improve Radiotherapy Outcome, vol. 20, no. 4, pp. 217–222, Oct. 2010,
issn: 1053-4296. doi: 10.1016/j.semradonc.2010.06.003.

[17] A. Yokoya, N. Shikazono, K. Fujii, A. Urushibara, K. Akamatsu, and R. Watanabe,
“DNA damage induced by the direct effect of radiation,” en, Radiation Physics
and Chemistry, The International Symposium on Charged Particle and Photon
Interaction with Matter - ASR 2007, vol. 77, no. 10, pp. 1280–1285, Oct. 2008, issn:
0969-806X. doi: 10.1016/j.radphyschem.2008.05.021.

[18] A. C. Begg, F. A. Stewart, and C. Vens, “Strategies to improve radiotherapy with
targeted drugs,” en, Nature Reviews Cancer, vol. 11, no. 4, pp. 239–253, Apr. 2011,
issn: 1474-1768. doi: 10.1038/nrc3007.

[19] P. N. Martins, “A brief history about radiotherapy,” en, vol. 04, no. 02, p. 5, 2018.

166



[20] R. F. Mould, A Century of X-Rays and Radioactivity in Medicine: With Emphasis
on Photographic Records of the Early Years, en. CRC Press, Jan. 1993, isbn:
978-0-7503-0224-1.

[21] R. A. Sharma, R. Plummer, J. K. Stock, T. A. Greenhalgh, O. Ataman, S. Kelly,
R. Clay, R. A. Adams, R. D. Baird, L. Billingham, S. R. Brown, S. Buckland, H.
Bulbeck, A. J. Chalmers, G. Clack, A. N. Cranston, L. Damstrup, R. Ferraldeschi,
M. D. Forster, J. Golec, R. M. Hagan, E. Hall, A.-R. Hanauske, K. J. Harrington,
T. Haswell, M. A. Hawkins, T. Illidge, H. Jones, A. S. Kennedy, F. McDonald, T.
Melcher, J. P. B. O’Connor, J. R. Pollard, M. P. Saunders, D. Sebag-Montefiore, M.
Smitt, J. Staffurth, I. J. Stratford, and S. R. Wedge, “Clinical development of new
drug–radiotherapy combinations,” en, Nature Reviews Clinical Oncology, vol. 13,
no. 10, pp. 627–642, Oct. 2016, issn: 1759-4782. doi: 10.1038/nrclinonc.2016.79.

[22] P. Montay-Gruel, L. Meziani, C. Yakkala, and M.-C. Vozenin, “Expanding the
therapeutic index of radiation therapy by normal tissue protection,” The British
Journal of Radiology, vol. 92, no. 1093, Jan. 2019, issn: 0007-1285. doi: 10.1259/bj
r.20180008.

[23] S. Webb, The Physics of Three Dimensional Radiation Therapy: Conformal
Radiotherapy, Radiosurgery and Treatment Planning, en. CRC Press, Jan. 1993,
isbn: 978-1-4200-5036-3.

[24] W. Schlegel and A. Mahr, 3D Conformal Radiation Therapy: Multimedia
Introduction to Methods and Techniques, Second. Springer Publishing Company,
Incorporated, 2007, isbn: 978-3-540-71550-4.

[25] J. ur Rehman, Zahra, N. Ahmad, M. Khalid, H. M. N. u. H. K. Asghar, Z. A.
Gilani, I. Ullah, G. Nasar, M. M. Akhtar, and M. N. Usmani, “Intensity modulated
radiation therapy: A review of current practice and future outlooks,” Journal of
Radiation Research and Applied Sciences, vol. 11, no. 4, pp. 361–367, Oct. 2018,
eprint: https://doi.org/10.1016/j.jrras.2018.07.006, issn: null. doi: 10.1016/j.jrras

.2018.07.006.

[26] N. Y. Lee and S. A. Terezakis, “Intensity-modulated radiation therapy,” en,
Journal of Surgical Oncology, vol. 97, no. 8, pp. 691–696, 2008, eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jso.21014, issn: 1096-9098. doi:
10.1002/jso.21014.

[27] J. A. Purdy, “DOSE TO NORMAL TISSUES OUTSIDE THE RADIATION
THERAPY PATIENT’S TREATED VOLUME: A REVIEW OF DIFFERENT
RADIATION THERAPY TECHNIQUES,” en-US, Health Physics, vol. 95, no. 5,
pp. 666–676, Nov. 2008, issn: 0017-9078. doi: 10.1097/01.HP.0000326342.47348.06.

167



[28] M. R. Young and J. B. Yu, “Intensity Modulated Radiotherapy and Image Guidance,”
en, in Prostate Cancer, Elsevier, 2016, pp. 413–426, isbn: 978-0-12-800077-9. doi:
10.1016/B978-0-12-800077-9.00045-1.

[29] H. Paganetti, B. S. Athar, M. Moteabbed, J. A. Adams, U. Schneider, and T. I. Yock,
“Assessment of radiation-induced second cancer risks in proton therapy and IMRT
for organs inside the primary radiation field,” en, Physics in Medicine & Biology,
vol. 57, no. 19, p. 6047, 2012, issn: 0031-9155. doi: 10.1088/0031-9155/57/19/6047.

[30] A. C. Tree, V. S. Khoo, R. A. Eeles, M. Ahmed, D. P. Dearnaley, M. A. Hawkins,
R. A. Huddart, C. M. Nutting, P. J. Ostler, and N. J. van As, “Stereotactic body
radiotherapy for oligometastases,” en, The Lancet Oncology, vol. 14, no. 1, e28–e37,
Jan. 2013, issn: 1470-2045. doi: 10.1016/S1470-2045(12)70510-7.

[31] L. Potters, B. Kavanagh, J. M. Galvin, J. M. Hevezi, N. A. Janjan, D. A. Larson,
M. P. Mehta, S. Ryu, M. Steinberg, R. Timmerman, J. S. Welsh, and S. A. Rosenthal,
“American Society for Therapeutic Radiology and Oncology (ASTRO) and American
College of Radiology (ACR) Practice Guideline for the Performance of Stereotactic
Body Radiation Therapy,” English, International Journal of Radiation Oncology
• Biology • Physics, vol. 76, no. 2, pp. 326–332, Feb. 2010, issn: 0360-3016. doi:
10.1016/j.ijrobp.2009.09.042.

[32] N. T. Sebastian, M. Xu-Welliver, and T. M. Williams, “Stereotactic body radiation
therapy (SBRT) for early stage non-small cell lung cancer (NSCLC): Contemporary
insights and advances,” Journal of Thoracic Disease, vol. 10, no. Suppl 21,
S2451–S2464, Aug. 2018, issn: 2072-1439. doi: 10.21037/jtd.2018.04.52.

[33] R. Mohan and D. Grosshans, “Proton therapy – Present and future,” en, Advanced
Drug Delivery Reviews, Radiotherapy for Cancer: Present and Future, vol. 109,
pp. 26–44, Jan. 2017, issn: 0169-409X. doi: 10.1016/j.addr.2016.11.006.

[34] H. Paganetti, “Relative biological effectiveness (RBE) values for proton beam
therapy. Variations as a function of biological endpoint, dose, and linear energy
transfer,” en, Physics in Medicine and Biology, vol. 59, no. 22, R419–R472, Oct.
2014, issn: 0031-9155. doi: 10.1088/0031-9155/59/22/R419.

[35] D. De Ruysscher, M. Mark Lodge, B. Jones, M. Brada, A. Munro, T. Jefferson,
and M. Pijls-Johannesma, “Charged particles in radiotherapy: A 5-year update of
a systematic review,” en, Radiotherapy and Oncology, vol. 103, no. 1, pp. 5–7, Apr.
2012, issn: 01678140. doi: 10.1016/j.radonc.2012.01.003.

[36] A. Peeters, J. P. C. Grutters, M. Pijls-Johannesma, S. Reimoser, D. D. Ruysscher,
J. L. Severens, M. A. Joore, and P. Lambin, “How costly is particle therapy? Cost
analysis of external beam radiotherapy with carbon-ions, protons and photons,”
English, Radiotherapy and Oncology, vol. 95, no. 1, pp. 45–53, Apr. 2010, issn:
0167-8140, 1879-0887. doi: 10.1016/j.radonc.2009.12.002.

168



[37] M. Brada, M. Pijls-Johannesma, and D. De Ruysscher, “Proton Therapy in Clinical
Practice: Current Clinical Evidence,” en, Journal of Clinical Oncology, vol. 25,
no. 8, pp. 965–970, Mar. 2007, issn: 0732-183X, 1527-7755. doi: 10.1200/JCO.2006
.10.0131.

[38] Y. Lievens and K. Nagels, “Economic data for particle therapy: Dealing with different
needs in a heterogeneous landscape,” en, Radiotherapy and Oncology, vol. 128, no. 1,
pp. 19–25, Jul. 2018, issn: 0167-8140. doi: 10.1016/j.radonc.2018.03.016.

[39] T. S. Lawrence, B. G. Haffty, and J. R. Harris, “Milestones in the Use of
Combined-Modality Radiation Therapy and Chemotherapy,” EN, Journal of
Clinical Oncology, vol. 32, no. 12, pp. 1173–1179, Mar. 2014, issn: 0732-183X. doi:
10.1200/JCO.2014.55.2281.

[40] C. N. Coleman, T. S. Lawrence, and D. G. Kirsch, “Enhancing the Efficacy of
Radiation Therapy: Premises, Promises, and Practicality,” Journal of Clinical
Oncology, vol. 32, no. 26, pp. 2832–2835, Sep. 2014, issn: 0732-183X. doi: 10.1200
/JCO.2014.57.3865.

[41] A. R. Kwilas, R. N. Donahue, M. B. Bernstein, and J. W. Hodge, “In the field:
Exploiting the untapped potential of immunogenic modulation by radiation in
combination with immunotherapy for the treatment of cancer,” Frontiers in
Oncology, vol. 2, Sep. 2012, issn: 2234-943X. doi: 10.3389/fonc.2012.00104.

[42] J. A. Bonner, P. M. Harari, J. Giralt, N. Azarnia, D. M. Shin, R. B. Cohen,
C. U. Jones, R. Sur, D. Raben, J. Jassem, R. Ove, M. S. Kies, J. Baselga,
H. Youssoufian, N. Amellal, E. K. Rowinsky, and K. K. Ang, “Radiotherapy
plus Cetuximab for Squamous-Cell Carcinoma of the Head and Neck,” New
England Journal of Medicine, vol. 354, no. 6, pp. 567–578, Feb. 2006, eprint:
https://doi.org/10.1056/NEJMoa053422, issn: 0028-4793. doi: 10.1056/NEJMoa0
53422.

[43] G. C. Barnett, C. M. L. West, A. M. Dunning, R. M. Elliott, C. E. Coles, P. D. P.
Pharoah, and N. G. Burnet, “Normal tissue reactions to radiotherapy: Towards
tailoring treatment dose by genotype,” en, Nature Reviews Cancer, vol. 9, no. 2,
pp. 134–142, Feb. 2009, issn: 1474-1768. doi: 10.1038/nrc2587.

[44] C. M. West and G. C. Barnett, “Genetics and genomics of radiotherapy toxicity:
Towards prediction,” en, Genome Medicine, vol. 3, no. 8, p. 52, 2011, issn: 1756-994X.
doi: 10.1186/gm268.

[45] A. Bouchet, B. Lemasson, T. Christen, M. Potez, C. Rome, N. Coquery, C. Le
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[122] P. Regnard, G. L. Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak,
C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of
intracerebral 9L gliosarcoma by a single array of microplanar x-ray beams from a
synchrotron: Balance between curing and sparing,” en, Physics in Medicine and
Biology, vol. 53, no. 4, pp. 861–878, Feb. 2008, issn: 0031-9155, 1361-6560. doi:
10.1088/0031-9155/53/4/003.

[123] H. M. Smilowitz, H. Blattmann, E. Bräuer-Krisch, A. Bravin, M. D. Michiel,
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[129] R. Serduc, A. Bouchet, E. Bräuer-Krisch, J. A. Laissue, J. Spiga, S. Sarun, A. Bravin,
C. Fonta, L. Renaud, J. Boutonnat, E. A. Siegbahn, F. Estève, and G. Le Duc,
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“High-Precision Radiosurgical Dose Delivery by Interlaced Microbeam
Arrays of High-Flux Low-Energy Synchrotron X-Rays,” en, PLoS ONE,
vol. 5, no. 2, M. Lesniak, Ed., e9028, Feb. 2010, issn: 1932-6203. doi:
10.1371/journal.pone.0009028.

[134] P. Romanelli, E. Fardone, G. Battaglia, E. Bräuer-Krisch, Y. Prezado,
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[177] H. Blattmann, J.-O. Gebbers, E. Bräuer-Krisch, A. Bravin, G. Le Duc, W. Burkard,
M. Di Michiel, V. Djonov, D. Slatkin, J. Stepanek, and J. Laissue, “Applications
of synchrotron X-rays to radiotherapy,” en, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 548, no. 1-2, pp. 17–22, Aug. 2005, issn: 01689002. doi: 10.1016/j
.nima.2005.03.060.

[178] H. Schmied, “The European synchrotron radiation story - phase ii,” en, Synchrotron
Radiation News, vol. 3, no. 6, pp. 22–26, Nov. 1990, issn: 0894-0886, 1931-7344.
doi: 10.1080/08940889008602591.

185



[179] M. Hadsell, J. Zhang, P. Laganis, F. Sprenger, J. Shan, L. Zhang, L. Burk, H.
Yuan, S. Chang, J. Lu, and O. Zhou, “A first generation compact microbeam
radiation therapy system based on carbon nanotube X-ray technology,” Applied
Physics Letters, vol. 103, no. 18, p. 183 505, Oct. 2013, issn: 0003-6951. doi:
10.1063/1.4826587.

[180] S. Bazyar, Y. Lee, O. Zhou, C. R. Inscoe, and E. Timothy O’Brien, “Minibeam
radiotherapy with small animal irradiators; in-vitro and in-vivo feasibility studies,”
Physics in Medicine and Biology, Oct. 2017. doi: 10.1088/1361-6560/aa926b.

[181] S. Bartzsch, C. Cummings, S. Eismann, and U. Oelfke, “A preclinical microbeam
facility with a conventional x-ray tube,” eng, Medical Physics, vol. 43, no. 12,
pp. 6301–6308, Dec. 2016, issn: 2473-4209. doi: 10.1118/1.4966032.

[182] P. Chtcheprov, L. Burk, H. Yuan, C. Inscoe, R. Ger, M. Hadsell, J. Lu, L. Zhang,
S. Chang, and O. Zhou, “Physiologically gated microbeam radiation using a field
emission x-ray source array,” Medical physics, vol. 41, no. 8, p. 081 705, 2014.

[183] L. Zhang, H. Yuan, L. M. Burk, C. R. Inscoe, M. J. Hadsell, P. Chtcheprov, Y. Z.
Lee, J. Lu, S. Chang, and O. Zhou, “Image-guided microbeam irradiation to brain
tumour bearing mice using a carbon nanotube x-ray source array,” Physics in
Medicine and Biology, vol. 59, no. 5, pp. 1283–1303, Mar. 2014, issn: 0031-9155,
1361-6560. doi: 10.1088/0031-9155/59/5/1283.

[184] H. Yuan, L. Zhang, J. E. Frank, C. R. Inscoe, L. M. Burk, M. Hadsell, Y. Z. Lee,
J. Lu, S. Chang, and O. Zhou, “Treating Brain Tumor with Microbeam Radiation
Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation
Efficacy Study,” en, Radiation Research, vol. 184, no. 3, pp. 322–333, Sep. 2015,
issn: 0033-7587, 1938-5404. doi: 10.1667/RR13919.1.

[185] S. Bazyar, C. R. Inscoe, T. Benefield, L. Zhang, J. Lu, O. Zhou, and Y. Z. Lee,
“Neurocognitive sparing of desktop microbeam irradiation,” Radiation Oncology,
vol. 12, p. 127, Aug. 2017, issn: 1748-717X. doi: 10.1186/s13014-017-0864-2.

[186] Y. Prezado, M. Dos Santos, W. Gonzalez, G. Jouvion, C. Guardiola, S. Heinrich,
D. Labiod, M. Juchaux, L. Jourdain, C. Sebrie, and F. Pouzoulet, “Transfer of
Minibeam Radiation Therapy into a cost-effective equipment for radiobiological
studies: A proof of concept,” Scientific Reports, vol. 7, Dec. 2017, issn: 2045-2322.
doi: 10.1038/s41598-017-17543-3.

[187] F. M. Khan and J. P. Gibbons (Jr.), Khan’s The Physics of Radiation Therapy, en.
Lippincott Williams & Wilkins, 2014, isbn: 978-1-4511-8245-3.

[188] NIST: X-Ray Mass Attenuation Coefficients - Section 2,
https://physics.nist.gov/PhysRefData/XrayMassCoef/chap2.html.

186



[189] Report IAEA-NDS-195, XMuDat,
https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm.

[190] J. Shultis and R. Faw, Radiation Shielding. American Nuclear Society, 2000, isbn:
978-0-89448-456-8.

[191] 80/20 T-slot Aluminum Building System, https://8020.net/.

[192] K. Hohlbaum, B. Bert, S. Dietze, R. Palme, H. Fink, and C. Thöne-Reineke,
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