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ABSTRACT

Benjamin W. Langworthy: Extensions to Canonical Correlation Analysis and Principal
Components Analysis with Applications to Survival and Brain Imaging Data

(Under the direction of Jianwen Cai and Michael R. Kosorok)

Canonical correlation analysis (CCA) is a method for finding a low dimension representation

of the linear associations between two sets of variables. Likewise principal components analysis

(PCA) is a tool for finding a low dimensional representation of a single set of variables. The

solution to CCA is an eigendecomposition involving the joint covariance or correlation matrix of

both sets of variables and the solution to PCA is an eigendecomposition involving the covariance

or correlation matrix of the single set of variables. We extend CCA and PCA using robust or

non-standard estimators of the covariance or correlation matrix.

First we extend CCA using a robust correlation estimator based on transformations of

Kendall’s tau rank correlation coefficient. We show that the CCA estimates using this robust

correlation estimator are consistent and asymptotically normal. We also define a bootstrap

based testing procedure for identifying informative canonical directions. Simulations show

that this robust estimator performs better than standard CCA for data from heavy tailed and

skewed distributions. We apply this method to brain white matter structure data from diffusion

tensor imaging (DTI) and executive function (EF) test scores in six-year-old children to show

that lateralization of white matter brain structure is correlated with higher EF scores. Next we

define PCA for the multivariate survival setting where failure time data can be right censored.

We estimate the covariance and correlation matrices of the counting processes defined by the

failure times and their associated martingales. We use eigendecomposition of these covariance

and correlation matrix estimates to obtain principal direction estimates. These estimates are

consistent and asymptotically normal. We apply this method to a data set from a clinical trial for
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patients with pancreatic cancer and are able to define medically relevant groupings of adverse

events. Finally we extend robust CCA to the multi-set and high dimensional setting in which

there are more than two sets of variables and one or more of the sets is high-dimensional.

We use the same robust correlation estimate using transformations of Kendall’s tau. We also

use cross-validation for dimension reduction and testing procedures. Unlike existing methods

this cross-validation testing procedure is valid when data come from a heavy tailed elliptical

distribution. We extend our analysis of DTI and EF data to include brain gray matter volume

data from 88 different brain regions to further investigate the association between brain structure

and EF test scores.
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CHAPTER 1: INTRODUCTION

Many medical or public health data sets have a large number of variables that are collected

across the same subjects. Methods such as canonical correlation analysis (CCA) and principal

components analysis (PCA) are useful for summarizing entire data sets into a small number of

linear combinations of the data. These low dimension representations of the data can make it

easier for medical and scientific researchers to understand the structure of complex data sets

which can lead to new scientific hypotheses or discoveries.

Standard CCA is estimatedwith an eigendecomposition involving the joint sample covariance

or correlation matrix of two sets of variables. This can be shown to work well when the data come

from a multivariate normal distribution. However when data have extreme outliers, or come

from heavy tailed or skewed distributions the sample covariance or correlation matrix may not

be suitable for estimating CCA. We propose using a robust correlation estimator using properties

of Kendall’s tau rank correlation that performs better than the sample correlation matrix for data

coming from heavy-tailed distributions. This estimator also outperforms other robust correlation

estimators, particularly when data come from a skewed distribution. A number of methods have

been proposed to identify informative CCA directions that explain true correlation between the

two sets of variables and not just random noise. All of these methods can be shown to fail when

assumptions related to multivariate normality are not met. For this reason we propose a bootstrap

based method for identifying informative CCA directions that makes minimal distributional

assumptions. Our robust CCA method is studied in a data set with brain imaging data and

executive function (EF) test scores for six-year-old children where many of the variables have

more heavy tailed and skewed distributions than would be expected if the data came from a

multivariate normal distribution.
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Next we consider the multivariate survival setting, where we observe time to event data for

many different types of adverse events across the same subjects. The time to event for all of these

events may be right censored. In the presence of censoring the covariance between the failure

times cannot be estimated without strong parametric assumptions. We instead focus on the

counting processes or martingales defined by the failure times. The full covariance or correlation

matrices of these counting processes and martingales can be estimated non-parametrically. We

use the estimates of the counting process and martingale covariance or correlation matrices to

estimate the corresponding principal directions. We also show how this can be extended to the

semi-competing risk setting where each of the different event types is subject to a competing

risk such as death. We apply our martingale PCA method to data from a clinical trial for patients

with pancreatic cancer and are able to define medically relevant groupings of adverse events.

Finally we extend CCA to the multi-set and high-dimensional setting. In this case there are

more than two sets of variables, and we use multi-set CCA (mCCA) to get a low dimensional

representation of the linear correlation between all the sets of variables. As with standard CCA,

previous methods for mCCA work best when data come from a multivariate normal distribution.

We combine previously developed methods for mCCA in the high-dimensional setting with

our robust correlation techniques to define a robust version of mCCA. We propose a method

based on cross-validation for reducing the dimension of the data and identifying informative

directions for multi-set CCA. This allows us to include additional brain volume measures across

88 different regions in our analysis of brain imaging and EF data for six-year-old children, and

provide added insight for the connection between brain structure and EF ability in children.

The remainder of this document is organized as follows. Chapter 2 gives a review of

the relevant literature, chapter 3 presents our robust version of CCA, chapter 4 defines and

investigates PCA for survival data, and chapter 5 extends robust CCA to the multi-set and high-

dimensional setting, chapter 6 gives concluding remarks and potential areas of future research,

and is followed by technical details and references.
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CHAPTER 2: LITERATURE REVIEW

Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) first introduced by Hotelling (1936) is a useful

technique for summarizing the linear association between two sets of variables. CCA finds

the linear combinations of the two sets of variables that are maximally correlated. Subsequent

canonical directions and correlations are found in the same manner subject to the constraint that

they are uncorrelated with all previous directions. The solution to the canonical correlations and

directions are based on an eigendecomposition involving the joint covariance matrix of the two

sets of variables. This is a powerful data reduction technique that allows researchers to look at a

much smaller set of correlations than all possible pairwise correlations.

Robust CCA

Standard CCA estimates are based on an eigendecomposition of the sample covariance or

correlation matrix. In cases where the sample covariance matrix is inefficient or inconsistent,

robust estimates of the covariance or correlation matrix can be used as a substitute. Examples

of these are the minimum covariance determinant (MCD) (Rousseeuw, 1984) and Tyler’s M-

estimator (Tyler, 1987). Taskinen et al. (2006) and Visuri et al. (2003) study the asymptotic

properties of CCA using robust covariance estimators. Branco et al. (2005) uses simulation

studies to investigate the finite sample performance of robust CCA methods including robust

estimation of the covariance matrix, a robust alternating regression technique and a projection

pursuit approach. Alfons et al. (2017) proposes a projection pursuit approach that directly

searches for the directions that maximize a robust correlation measure such as Kendall’s tau

or Spearman’s correlation. Wilms and Croux (2016) proposed a robust alternating regression

approach to CCA that also works for high-dimensional data. One issue with many of these
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estimators is that they primarily focus on data from heavy tailed distributions and do not work

well for data from skewed distributions.

Kendall’s tau

One alternative to Pearson’s correlation is Kendall’s tau (Kendall, 1938) which uses the

ranks of the data within a sample. For two random variables, X(1) and X(2), Kendall’s tau is

defined as

τ (X(1),X(2)) = E[sign(X(1) − X̃(1))(X(2) − X̃(2))],

where [X̃(1), X̃(2)] is an identically distributed copy of [X(1), X(2)]. If [x
(1)
1 , x

(2)
1 ]T , . . . ,

[x
(1)
n , x

(2)
n ]T are iid realizations of [X1, X2]T then Kendall’s tau can be consistently estimated by

τ̂n(X(1), X(2)) =
1(
n
2

)∑∑
1≤k<l≤n

sign(x
(1)
k − x

(1)
l )sign(x

(2)
k − z

(2)
l )

Consistency and asymptotically normality follow fromU-statistic theoryHoeffding (1961), which

makes minimal distributional assumptions on [X(1), X(2)]T .

Elliptical and transelliptical families of distributions

Any p× 1 dimensional random vector, Z, is elliptically distributed if it has a characteristic

function ΦZ−µ(t) = ψ(tTΣt) where µ is a p-dimensional vector, Σ is a p × p positive semi-

definite matrix and ψ is a function from [0,∞) → R. This family of distributions includes

a number of well known distributions including the multivariate normal and multivariate t

distributions. There are a number of theoretical results that can be extended to the entire family

of elliptical distributions. One such result is the relationship between the population Kendall’s tau,

τ , and Pearson correlation, ρ, for any bivariate elliptical distribution where Pearson correlation

exists. Lindskog et al. (2003) shows the following equivalence holds for all such distributions:

τ =
2

π
arcsin(ρ).
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This relationship is also useful for the transelliptical family of distributions, defined by Liu

et al. (2012), which includes any multivarate distribution created by transforming an elliptical

distribution with a set of univariate monotonic transformations. This is equivalent to the family

of multivariate distributions with an elliptical copula (Embrechts et al., 2002; Klüppelberg and

Kuhn, 2009). Because Kendall’s tau is invariant to monotone increasing marginal transformations

of the data it is very useful for transelliptical distributions. Recent studies have investigated

using transformations of Kendall’s tau to estimate the correlation matrix for elliptical and

transelliptical distributions (Han and Liu, 2012). This estimator has been shown to work well in

high dimensions (Han and Liu, 2013, 2017).

Distribution of canonical correlations and directions

Anderson (2003) shows that CCA estimates corresponding to unique non-zero canonical

correlations are asymptotically normal when using the sample covaraince matrix and the data

come from multivariate normal distribution. Taskinen et al. (2006) extends this result to elliptical

distributions and covariance or correlation estimates that are positive definite functions of the

data.

High dimensional Canonical Correlation Analysis

For many modern data sets the number of variables can be larger than the number of

observations. Standard CCA estimation techniques do not work in this setting. A number of

methods have been proposed for this purpose. One approach for high dimensional CCA is to add

a penalty term to the canonical directions (Suo et al., 2017; Witten et al., 2009; Parkhomenko

et al., 2007; Waaijenborg et al., 2008; Wilms and Croux, 2016). Vinod (1976) proposes applying

a ridge penalty directly to the estimates of the covariance matrix, which can then be decomposed

to get the CCA estimates.

Multiset Canonical Correlation Analysis

If instead of two sets of variables, we are interested in the connections between three or

more sets of variables there are a number of ways to extend CCA. Nielsen (2002) and Kettenring
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(1971) give an overview of the different ways to extend CCA into multiple sets of variables. In

this case we havem sets of variables, X1, . . . , Xm, where Xi is an di × 1 random vector. For

the ith set of variables we can define the jth canonical variate as U (j)
i = a

(j)T
i Xi. Kettenring

(1971) presents five different ways to think of maximizing the correlation between the canonical

variates

1. SUMCOR: Maximize
m∑
i=1

m∑
k=1

Cov(U
(j)
i , U

(j)
k )

2. MAXVAR: Maximize the largest eigenvalue for the covariance matrix of [U
(j)
1 , . . . , U

(j)
m ]T

3. MINVAR: Minimize the smallest eigenvalue for the covariance matrix of [U
(j)
1 , . . . , U

(j)
m ]T

4. SSQCOR: Maximize
m∑
i=1

m∑
k=1

Cov(U
(j)
i , U

(j)
k )2

5. GENVAR: Minimize the determinant of the covariance matrix of [U
(j)
1 , . . . , U

(j)
m ]T

Nielsen (2002) extended this by allowing for four different constraints on the direction vectors,

a
(j)
i .

1. NORM: a(j)T
i a

(j)
i = 1 for i = 1, . . . , d.

2. AVGNORM:
∑d

i=1 a
(j)T
i a

(j)
i = 1

3. VAR: Var(U (j)
1 ) = . . . = Var(U (j)

d ) = 1.

4. AVGVAR:
∑d

i=1 Var(U
(j)
i ) = 1.

This allows for 20 different formulations of the multiset CCA problem. Asendorf (2015) gives a

useful overview of the 20 different formulations and shows which have closed form solutions.

Principal Components Analysis

Principal components analysis (PCA) is a technique for transforming a potentially correlated

set of variables into an uncorrelated set of variables (Pearson, 1901; Hotelling, 1933). The

first principal direction is the unit length linear combination of the variables that explains the

maximum possible variance. All further directions are unit length linear combinations of the
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variables that explain the maximum variance subject to the constraint that they are uncorrelated

with all previous directions. The principal directions can be shown to be the eigenvectors of

the joint covariance matrix of the variables. Estimates of the principal directions are typically

the eigenvectors of the sample covariance matrix of the observed data. PCA can be used for

both dimension reduction and reducing multicollinearity between the variables. Frequently a

large proportion of the variance within a set of variables can be explained by a small number

of principal components. Collinearity among predictors can create instability in estimation for

various statistical methods including linear regression. Principal component regression deals

with this issue by including the uncorrelated principal component scores instead of the original

data. Anderson (2003) shows that if the data come from a multivariate normal distribution the

estimation of the eigenvalues and eigenvectors of the sample covariance matrix are asymptotically

normal when properly standardized.

Estimates of bivariate survival function

Bivariate or multivariate survival data can come in the context of paired or clustered subjects

all with a single survival time, or a single person with multiple non-competing failure times. In

the bivariate case the ith subject or cluster will have two failure times T (1) and T (2) as well as

two censoring times C(1) and C(2). The bivariate survival function for the failure times is

S(1,2)(t, s) = P (T (1) > t, T (2) > s).

If we define X(j) = min(T (j), C(1)) and δ(j) = I(X(j) = C(j)), the observed data will be

{X(1), X(2), δ(1), δ(2)}. The Kaplan-Meier estimator is most commonly used to estimate the

univariate survival function, but it is not straightforward to extend this to the bivariate survival

function. Common estimators for the bivariate survival function include those by Dabrowska

et al. (1988), Lin and Ying (1993) and Prentice and Cai (1992). It was shown in Gill et al.

(1995) that the Dabrowska and Prentice & Cai estimators are consistent and converge weakly to

a Guassian process.
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Survival Analysis with Semi-Competing Risks

In many settings failure times can be subject to both independent censoring and competing

risks. This includes time to event data for certain diseases in which death acts as a competing

risk. This means that once death is observed the disease of interest will never be observed.

This competing risk set up can extend both the univariate and bivariate survival set up. In the

bivariate competing risk set up there are still two failure times of interest, T (1)
1 and T (2)

1 . In

addition, for each failure time of interest there is also a competing risk time, T (1)
2 and T (2)

2 .

Without censoring the observed data is T (j) = T
(j)
1 ∧ T

(j)
2 and ε(j) = 2 − I(T

(j)
2 > T

(j)
1 ) for

j = 1, 2. If we introduce an independent censoring time for each failure time of interest, C(1)

and C(2), the observed data will beX(j) = T (j)∧C(j), δ(j) = I(T (j) ≤ C(j)), and η(j) = δ(j)ε(j)

for j = 1, 2. For this competing risk set up it has been shown that the cause specific cumulative

incidence functions (CIF) can be estimated non-parametrically. The univariate cause specific

CIF is F (j)
k (tj) = P (T (j) ≤ tj, ε̈

(j) = k) for j = 1, 2 and k = 1, 2. Details on estimation of the

univariate cause specific CIF can be found in Kalbfleisch and Prentice (2011). The bivariate

cause specific CIF is defined as F (j,j′)
kl (tj, tj′) = P (T̈ (j) ≤ tj, γ̈

(j) = k, T̈ (j′) ≤ tj′ , γ̈
(j′) = l),

for j, j′ = 1, 2 and k, l = 1, 2. Details on estimation of the bivariate cause specific CIF can be

found in Cheng et al. (2007).

Functional delta method

The delta method is a well known result that can be used to derive the distribution of

functions of random variables. When an estimator is a functional the functional delta method

(Kosorok, 2008) can be used for the same purpose. In order to give the functional delta method

we must first define the concept of Hadamard differentiability. For two complete normed spaces

D and E a map φ : D → E is Hadamard differentiable at h if there exists a map φ′θ : D → E

such that
φ(θ + tnhn)− φ(θ)

tn
→ φ′θ(h)
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then φ is Hadamard differentiable with derivative φ′θ. With this definition we can give the

functional delta method which is theorem 2.8 from Kosorok (2008).

Functional delta method For normed spaces D and E, let φ : Dφ ⊂ D → E be Hadamard

differentiable at θ tangentially to D0 ⊂ D. Assume that rn(Xn − θ) X for some sequence of

constants rn →∞, where Xn takes it’s values in Dφ and X is a tight process taking it’s values

in D0. Then rn(φ(Xn)− φ(θ)) φ′θ(X)
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CHAPTER 3: CANONICAL CORRELATION ANALYSIS FOR ELLIPTICAL COPU-
LAS

3.1 Introduction

Canonical correlation analysis (CCA), first introduced by Hotelling (1936), is a useful

dimension reduction technique for exploring the relationship between two sets of variables.

CCA finds the linear combinations of the two sets of variables that have maximal Pearson

correlation. After the first direction, further directions are defined as the linear combinations that

are maximally correlated subject to the constraint that they are uncorrelated with all previous

directions. Typically a small number of directions may be used to summarize the relationship

between the two sets of variables.

In Section 3.4 we present an example where CCA is useful in understanding the relationship

between the structure of white matter brain tracts and executive function in six-year-old children.

Many of the variables have excess skewness or kurtosis relative to the normal distribution.

This suggests transformations may be needed for CCA using Pearson’s correlation to fully

capture the association between the two sets of variables. However it is not clear how to

optimally transform the data, especially for heavy tailed distributions where transforming may

weaken linear associations. In such settings, standard CCA may be problematic, and alternative

approaches are valuable.

In the finite dimensional setting when all second moments exist, CCA is valid based on an

eigendecomposition involving the sample covariance matrix. In settings where the empirical

covariance estimator is either inconsistent or inefficient, including when second moments do

not exist or when there are outliers contaminating the observed data, the CCA estimates based

on the empirical covariance matrix will also be either inconsistent or inefficient. There is a
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rich literature on robust estimators of the covariance matrix that are insensitive to outliers and

heavy tailed distributions, and may improve the performance of standard CCA based on Pearson

correlation. Examples of these are the minimum covariance determinant (MCD) (Rousseeuw,

1984) and Tyler’s (1987) M-estimator. There have been studies examining the performance of

CCA using robust estimators of the covariance matrix or by maximizing other robust correlation

measures (Taskinen et al., 2006; Visuri et al., 2003; Branco et al., 2005; Alfons et al., 2017).

Many of these robust methods emphasize eigendecompositions employing robust estimates of

the covariance or Pearson correlation matrix, which do not exist in the absence of finite moments.

Further assumptions are needed to interpret robust CCA in these settings.

We explicitly define a version of CCA for data that have a multivariate distribution defined by

an elliptical copula that does not require the existence of moments using properties of Kendall’s

tau for elliptically distributed data. For elliptical distributions there is a known monotone

relationship between Pearson’s correlation and Kendall’s tau rank correlation. We utilize this

relationship to define CCA using Kendall’s tau instead of Pearson correlation such that it is well

defined when moments do not exist and is equivalent to standard CCA for elliptically distributed

data when moments do exist. Perhaps most importantly this definition of CCA does not make

any assumptions about the marginal distributions of the data, so it can be easily extended to a

family of distributions known as transelliptical distributions. The transelliptical family consists

of all multivariate distributions which can be transformed into an elliptical distribution using

monotone marginal transformations, or equivalently all multivariate distributions with a copula

from an elliptical distribution (Embrechts et al., 2002; Klüppelberg and Kuhn, 2009; Liu et al.,

2012). Standard CCA is inadequate to describe the relationship between two sets of variables

which are transelliptically distributed and have potentially non-linear associations. CCA using

Kendall’s tau identifies the linear relationships in the elliptical distribution which characterizes

the transelliptical distribution. This is desirable because within elliptical distributions linear

relationships describe meaningful association between the variables. We show that CCA for

transelliptical distributions can be estimated without transforming the data to an elliptical
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distribution by estimating the scatter matrix based on transformations of Kendall’s tau for

all pairs of variables (Liu et al., 2012). We establish that the resulting estimates for CCA

directions and non-zero correlations are consistent and asymptotically normal. This result is

more general than previous results which require affine equivariant estimators of the scatter

matrix for elliptically distributed data (Anderson, 1999; Taskinen et al., 2006). Interestingly,

the estimate based on transformations of Kendall’s tau for all pairs of variables is not affine

equivariant. Simulations show that these results can be used to construct confidence intervals

with close to the desired coverage.

We also develop a testing procedure to identify non-zero canonical correlations using boot-

strap bias and standard error estimates. This is necessary because although the asymptotic results

for non-zero canonical correlations can be used to construct confidence intervals, asymptotic

results for zero canonical correlations are not as straightforward. However based on previous

results (Anderson, 2003) it can be expected that the zero canonical correlations will converge at

rate n rather than
√
n. Therefore by inverting a normal bootstrap confidence interval we derive a

test that is consistent and conservative for large sample sizes. This testing procedure can be used

for CCA estimated using Kendall’s tau or standard methods. This testing procedure is necessary

because previously derived asymptotic tests assume the data come from a multivariate normal

distribution. Even permutation based tests assume that zero correlation implies independence,

which is not true for non-Gaussian elliptical copulas. Both of these types of tests will have

inflated type I error when their assumptions are not met. Our bootstrap based testing procedure

makes no such assumptions, and is useful even when data do not have an elliptical copula.

The rest of the paper is structured as follows. Section 3.2 overviews the theoretical frame-

work for rank estimation of CCA in the elliptical and transelliptical distributions and provides

theoretical results for consistency and asymptotic normality of the estimates. Section 3.3 reports

the results of simulation studies under elliptical and transelliptical distributions. Section 3.4

provides an analysis of associations between white matter structure and executive function in

six-year-old children. Section 3.5 overviews the paper and concludes with remarks.
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3.2 Rank correlation methodology

Assume X is a p × 1 dimensional random vector and Y is a q × 1 dimensional random

vector. The first canonical directions forX and Y are the p×1 vector, a1, and the q×1 vector, b1,

for which the correlation between U1 = aT1X and V1 = bT1 Y is maximized. The first canonical

correlation is defined as the Pearson’s correlation between U1 and V1. In order to uniquely define

a1 and b1, it is necessary to add the constraints that Var(U1) = Var(V1) = 1 (Hotelling, 1936).

After the first canonical direction and correlation, higher directions are a sequence of p × 1

vectors, aj , and q × 1 vectors, bj , such that Uj = aTj X and Vj = bTj Y are maximally correlated,

subject to the constraints that cor(Uj, Uj′) = cor(Uj, Vj′) = cor(Vj, Uj′) = cor(Vj, Vj′) = 0 for

all j′ < j, and Var(Uj) = Var(V1) = 1 for all j. This uniquely defines the canonical directions

corresponding to a non-zero canonical correlation except for multiplication of both ai and bi by

−1. There are at most min(p, q) non-zero canonical correlations assuming both X and Y are

full rank.

The canonical directions and correlations for X and Y can be shown to be the solutions

to an eigendecomposition based on the covariance matrix between X and Y . Estimates of the

canonical directions and correlations are commonly based on the same eigendecomposition of

the sample covariance matrix. If we define the joint covariance matrix of X and Y as

Cov([XT , Y T ]T ) =

 ΣXX ΣXY

ΣY X ΣY Y


then the canonical correlations and directions may be derived from:

C = Σ
−1/2
XX ΣXY Σ−1

Y Y ΣY XΣ
−1/2
XX , and

D = Σ
−1/2
Y Y ΣY XΣ−1

XXΣXY Σ
−1/2
Y Y .
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The matrices C and D share the same first min(p, q) eigenvalues, which are the square root of

the canonical correlations. If vci is the ith eigenvector of C, then vciΣ−1/2
XX = ai, and if vdi is the

ith eigenvector of D, then vdiΣ−1/2
Y Y = bi.

CCA can be made robust via robust estimation of the covariance matrix. Many robust

estimates of the covariance matrix are consistent under the elliptical family of distributions,

defined as,

Definition 3.1 ( Elliptical Distributions). A d× 1 random vector Z is considered to be elliptical

if for some d × 1 vector µZ , some d × d positive semi-definite matrix ΣZ , and a function

ψZ [0,∞) → R, the characteristic function, Φ, satisfies ΦZ−µZ (t) = ψ(tTΣZt) for all d × 1

vectors t. In this case we would say that Z is a d× 1 dimensional elliptically distributed random

variable, which we can note as Z ∼ EDd(µZ ,ΣZ , ψZ)

We use ΣZ in definition 3.1 because in the elliptical distribution ΣZ can be viewed as a

generalization of the covariance matrix for Z. When second moments exist ΣZ equals the

covariance matrix up to a scaling factor, and ψZ can be chosen such that it is equal to the

covariance matrix. We will refer to ΣZ as the scatter matrix of Z, which exists even if second

moments do not exist. The following proposition shows that for linear combinations of Z,

the scatter matrix, ΣZ behaves in the same way as a covariance matrix. To be precise, linear

combinations of elliptical random variables are also elliptically distributed with a scatter matrix

which is a quadratic form in ΣZ .

Proposition 3.1 (Linear combinations of elliptically distributed random variables). Assume

Z ∼ EDd(µZ ,ΣZ , ψZ). Define B to be a k × d dimensional matrix. ThenW = BZ is a k × 1

dimensional random vector whereW ∼ EDk(BµZ , BΣZB
T , ψW )

Proposition 3.1 can be shown using the form of characteristic functions for elliptical distri-

butions given in definition 3.1.
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Letting Z = [XT , Y T ]T , the scatter matrix of Z can be decomposed as

ΣZ =

 ΣXX ΣXY

ΣY X ΣY Y

 .
Next we introduce the concept of the scale-invariant scatter matrix of Z, PZ , which will be

equivalent to the correlation matrix of Z when second moments exist. Analogously to ΣZ , PZ

may be written as,

PZ =

 PXX PXY

PY X PY Y

 .
The elements of PZ , ρij , are related to the elements of ΣZ , σij , through the following equality,

ρij =
σij√

σii
√
σjj

. In generalΣZ andPZ will be assumed to be positive-definite in order to guarantee

existence of unique solutions for canonical correlation analysis.

A useful extension of elliptical distributions is the transelliptical family of distributions,

whose definition is given below,

Definition 3.2 (Transelliptical distributions). A d × 1 dimensional random vector Z has a

transelliptical distribution if there exists a positive-semidefinite matrix PZ with all ones along the

diagonal, a function ψZ : [0,∞)→ R, and a set of functions hZ1, . . . , hZd where hZi : R→ R

is a monotone increasing function for i = 1, 2, . . . , d such that [hZ1(Z1), . . . , hZd(Zd)]
T ∼

EDd(0, PZ , ψZ). The random variable Z is a d × 1 dimensional transelliptically distributed

random variable, denoted as Z ∼ TEd(hZ , 0, PZ , ψZ).

The elliptical distribution used in Definition 3.2 is scale invariant and has a scatter matrix

with all ones along the diagonal as well as centrality parameter zero in order to uniquely identify

the transformations, hZ . This definition was given by Liu et al. (2012), but an equivalent

definition is any multivariate distribution with continuous marginal distributions and a copula

from an elliptical distribution (Embrechts et al., 2002; Klüppelberg and Kuhn, 2009).
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For the elliptical and transelliptical distributions we propose an alternative definition of CCA

using a rank correlation measure. This version of CCA is equivalent to standard CCA based on

Pearson correlation in the elliptical family when second moments exist and still well defined if

they do not exist. This construction uses properties of the rank correlation measure, Kendall’s

tau. For two univariate random variables Zi and Zj with joint CDF F (Zi, Zj) Kendall’s tau is

τ (Zi,Zj) = E{sign(Zi − Z̃i)(Zj − Z̃j)}

where [Z̃i, Z̃j]
T is an identically distributed copy of [Zi, Zj]

T . This quantity exists for all bivariate

continuous distributions, and does not require the existence of moments. A consistent estimator

of Kendall’s tau based on n iid copies of Zi and Zj , [zi1, zj1]T , . . . , [zin, zjn]T , is

τ̂ (Zi,Zj)
n =

1(
n
2

)∑∑
1≤k<l≤n

sign(zik − zil)sign(zjk − zjl)

This estimator is a U-statistic with consistency and asymptotic normality coming from established

U-statistic theory (Hoeffding, 1961).

Within the transelliptical family the following property gives the correspondence between

Kendall’s tau and the elements of the transelliptical scatter matrix.

Proposition 3.2 (Kendall’s tau for transelliptically distributed random variables). Assume Z ∼

TEd(h, 0, PZ , ψZ). If pij is the i−jth entry of PZ and τ (Zi,Zj) is the Kendall correlation between

the ith and jth entries of Z then τ (Zi,Zj) = 2
π

arcsin(ρij)

The proof for Proposition 3.2 follows from the proof of the same result for elliptical distribu-

tions in Lindskog et al. (2003) and the fact that Kendall’s tau is invariant to monotone increasing

transformations of the data. Because the function connecting Kendall’s tau and the scale invariant

scatter matrix is a monotone increasing function between zero and one that takes the value zero

only at zero, maximizing Pearson’s correlation is equivalent to maximizing Kendall’s tau within

the elliptical family, and constraining Pearson’s correlation to zero is equivalent to constraining

16



Kendall’s tau to zero. Importantly this relationship still holds between elements of the scale

invariant scatter matrix and Kendall’s tau for transelliptical distributions when moments do not

exist.

Given propositions 3.2 and 3.1 we define CCA for transelliptically distributed data as follows,

Definition 3.3 ( Canonical correlation analysis for transelliptical distributions). Assume X is

a p× 1 dimensional random vector and Y is a q × 1 dimensional random vector, and that the

random vector [XT , Y T ]T = Z ∼ TEp+q(hZ , 0, PZ , ψZ). Define hX to be the element-wise

functions of hZ corresponding toX and hY to be the element-wise functions of hZ corresponding

to Y . The first canonical direction vectors, the p × 1 vector, a1, and the q × 1 vector, b1, are

the vectors that maximize τ (U1,V1) where U1 = aT1 hX(X) and V1 = bT1 hY (Y ), subject to the

constraint that U1 and V1 have scale parameter equal to one. The jth canonical direction vectors

are the p × 1 vector aj and the q × 1 vector bj that maximize τ (Uj ,Vj) where Uj = aTj hX(X)

Vj = bTj hY (Y ), subject to the constraints that τ (Uj ,Uj′ ) = τ (Uj ,Vj′ ) = τ (Vj ,Uj′ ) = τ (Vj ,Vj′ ) = 0 for

all j′ < j, and the scale parameter for Uj and Vj are equal to one for all j. The jth canonical

correlation can be defined as sin
(
π
2
τ (Uj ,Vj)

)
.

When second moments exist and [XT , Y T ]T has an elliptical distribution this definition

is equivalent to performing CCA based on the correlation matrix. When data are elliptically

distributed but moments do not exist CCA for the transelliptical family uses the same eigende-

composition of the scatter matrix as standard CCA. A large advantage of this is definition is

when [XT , Y T ]T is transelliptically, but not elliptically distributed. In this setting standard CCA

depends heavily on the marginal distributions of the variables inX and Y , which depends on hX

and hY . In many cases hX and hY can act to obscure potential linear relationships between the

variables. Definition 3.3 is based on PZ , which does not depend on the marginal distributions

of the data. In this sense CCA using Definition 3.3 can be thought of as first transforming the

variables to elliptical symmetry and then performing CCA. As shown in proposition 3.1 linear

combinations of elliptical distributions meaningfully describe the associations within the data.
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An issue with estimating CCA for the transelliptical family is estimation of a scatter matrix

of transformed versions of X and Y . If [XT , Y T ]T = Z is transelliptically distributed and hX ,

hY , and ψZ are all unknown, then all three must be estimated to transform Z to it’s underlying

elliptical distribution. Many methods assume that ψZ is the generating function from a Gaussian

distribution, which can introduce bias if this assumption is not met. In order to avoid estimation

of hX , hY and ψZ we directly estimate the scatter matrix in the transelliptical distribution as

follows (Liu et al., 2012),

Definition 3.4 ( Transelliptical scatter matrix estimate). Assume that Z ∼ TEd(hZ , 0, PZ , ψZ).

Assume that ρij is the element of PZ corresponding to the ith and jth elements of Z. Then we

can estimate ρij as ρ̂n,ij = sin
{
π
2
τ̂

(Zi,Zj)
n

}
, and PZ by estimating all individual entries in this

manner. We will refer to this estimator of the scatter matrix, P̂Zn, as the transformed Kendall’s

scatter matrix estimator.

To obtain estimates for the canonical directions and correlations for the transelliptical family,

we simply decompose the transformed Kendall’s scatter matrix estimator as we would any

correlation matrix estimate when conducting CCA. We note that the transformed Kendall’s

scatter matrix estimator is the only known estimate of the scatter matrix that can be used for

CCA for all members of the transelliptical family, without having to estimate the transformations

hZ , or the generator ψZ .

There are other rank based methods that can be used to estimate the scatter matrix for

transellipticals when ψZ is assumed to be the generating function for the Guassian distribution.

One such estimator uses transformations of Spearman’s correlation. For the bivariate normal

distribution Spearman’s correlation, s, and Pearson correlation, ρ, have the following relationship,

s = 6
π

arcsin
(
ρ
2

)
. This relationship does not extend to other elliptical distributions in the same

way that the relationship between Kendall’s tau and Pearson’s correlation does. Another rank

based method is to transform all marginals to be normal using an inverse CDF transformation

and then using the standard sample Pearson correlation estimator. When data are transelliptically
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distributed and the generating function, ψZ , is from an elliptical distribution other than a Guassian

this method results in biased estimates of the transelliptical scatter matrix.

A potential issue with the transformed Kendall’s scatter matrix estimator is that it is not

guaranteed to be positive-definite even when the true scatter matrix, PZ , is positive-definite.

As discussed by Rousseeuw and Molenberghs (1993) various methods are available to adjust

P̂Zn so that it is positive-definite. For simplicity we define P̃Zn to be the matrix with the same

positive eigenvalues as P̂Zn but with with all negative eigenvalues set set to some small positive

constant. P̃Zn will have the same asymptotic behavior as P̂Zn based on the following theorem:

Theorem 3.1 (Transformed Kendall’s scatter matrix estimator eigenvalues). Assume z1, . . . , zn

are d-dimensional iid realizations of transelliptically distributed vector, Z, with positive-definite

scale invariant scatter matrix PZ . Define the ordered eigenvalues of the transformed Kendall’s

scatter matrix, P̂Zn to be λ̂n1, . . . , λ̂nd, where λ̂nd is the minimum eigenvalue of P̂Zn. Then

Pr(λ̂nd > 0)→p 1

A proof of theorem 3.1 is presented in Appendix A. Theorem 3.1 gives that the probability

of P̃Zn being equal to P̂Zn converges to one for transelliptically distributed Z with positive-

definite PZ . This means for transelliptical Z when PZ is positive-definite
√
n(P̃Zn − PZ)

and
√
n(P̂Zn − PZ) will have the same limiting distribution. The limiting distribution of

√
n(P̂Zn − PZ) can be shown to be asymptotically normal with mean zero and finite variance

based on U-statistic theory and the delta method. Theorem 3.2 establishes conditions under

which the estimates of transelliptical CCA directions and correlations will be consistent and

asymptotically normal.

Theorem 3.2 (Asymptotic results for transelliptical CCA). Assume [xTi , y
T
i ]T for i = 1, . . . , n

are iid realizations of the (p + q) × 1 dimensional random vector [XT , Y T ]T = Z ∼

TEp+q(hZ , 0, PZ , ψZ), with positive-definite PZ . Further assume that p ≥ q and there are

r ≤ q unique non-zero transelliptical canonical correlations for X and Y . Let λ1, . . . , λr

be the non-zero transelliptical canonical correlations with λ1 > . . . > λr > 0. Define
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Λr = diag(λ1, . . . , λr) to be the diagonal matrix with the ordered non-zero canonical cor-

relations on the diagonal. Let Ar = [a1, . . . , ar] be the p× r matrix where the ith column is the

ith transelliptical canonical direction for X , and Br = [b1, . . . , b
T
r ] be the q × r matrix where

the ith column is the ith transelliptical canonical direction for Y . Define Ar+ = [ar+1, . . . , ap]

and Br+ = [ar+1, . . . , bq] to be a solution to the canonical directions corresponding to the zero

canonical correlations. This means for A = [Ar, Ar+ ] and B = [Br, Br+ ], ATPXXA = Ip,

BTPXXB = Iq, and ATPXYB =

 Λq 0

0 0

 . Note that Ar and Br are well defined up to a

sign change and Ar+ and Br+ are well defined up to multiplication by an orthogonal matrix on

the right. Ar+ and Br+ can be made unique by imposing suitable constraints. We will assume

that the estimates of Λr, Ar and Br, which we will denote as Λ∗nr, A∗nr, and B∗nr are based on

the eigendecomposition of a function of a consistent estimate of the scatter matrix, PZ , which is

denoted by P ∗Zn. For an arbitrary matrix,M , define vec(M) to be the column vector made by

stacking the columns ofM on top of each other. The following holds: if P ∗Zn is guaranteed to be

positive-definite and

√
n


vec(P ∗XXn)

vec(P ∗XY n)

vec(P ∗Y Y n)

−

vec(PXX)

vec(PXY )

vec(PY Y )

→d Np3×q3(0,Θ),

then
√
n[vec(Λ∗nr) − vec(Λr)],

√
n[vec(A∗nr) − vec(Ar)] and

√
n[vec(B∗nr) − vec(Br)] jointly

have multivariate normal limiting distributions with mean zero and a finite limiting variance that

is a function of Θ, A, B, and Λq. The form of the limiting variance can be found in Appendix A.

A proof of Theorem 3.2 is presented in Appendix A. This result, and the limiting variance

of the estimates, is more general than previous results from Anderson (1999) and Taskinen et al.

(2006), and requires only that the estimate of the covariance matrix be asymptotically normal

and positive-definite. Anderson (1999) show the asymptotic results for standard CCA directions

and correlations when Z has a multivariate normal distribution and the sample covariance matrix

20



is used. Taskinen et al. (2006) expanded this result to CCA in the elliptical distribution when

using positive-definite and affine equivariant estimators of the covariance matrix. Because we

make minimal assumptions about the form of Θ we do not get a concise form of the limiting

variances as in previous results. Because P̃Zn is not affine equivariant our more general result is

needed. To our knowledge there are no other estimators of the scatter matrix that work for all

transelliptical distributions that do not require the estimation of hZ and ψZ .

We have already shown that P̃Zn is positive-definite, consistent, and asymptotically normal,

which leads directly to corollary 3.1.

Corollary 3.1 (Asymptotic results for transformed Kendall’s scatter matrix estimator). Assume

the same set up as in Theorem 3.2 and that PZ is estimated using P̃Zn. Define Λ̃nr, Ãnr, and B̃nr

as the corresponding estimates for the non-zero transelliptical canonical correlations and their

corresponding transelliptical canonical directions. Then
√
n[vec(Λ̃nr)−vec(Λ)],

√
n[vec(Ãnr)−

vec(A)], and
√
n[vec(B̃nr) − vec(B)] jointly multivariate normal limiting distributions with

mean 0 and finite variances. The form of the variances can be found using methods from the

proof for Theorem 3.2 in Appendix A.

Methods from Rublík (2016) can be used to obtain estimators for the covariance matrix for

all pairwise estimates of Kendall’s tau. An estimate of the variance of P̃Zn can then be found

using the delta method, which allows for estimates of the limiting variances for Λ̃n, Ãn, and B̃n

to be estimated by a "plug-in" estimator using the form of the variance found in Appendix A.

Section 3.3 and Appendix A include simulations studies that compare the coverage of confidence

intervals using this method to bootstrapped confidence intervals.

These results show that the transelliptical CCA estimates using the transformed Kendall’s

scatter matrix are consistent and asymptotically unbiased. For finite samples the estimates of the

transelliptical canonical correlations have a positive bias that is also present in the estimation

of canonical correlations using standard methods. Because of this bias we recommend using

a jackknife bias correction for the estimates of both transelliptical canonical correlations and

standard canonical correlation.
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It is important to note that Theorem 3.2 and Corollary 3.1 only apply to non-zero canonical

correlations and cannot be used for hypothesis testing for zero correlations. Anderson (2003)

gives the asymptotic distribution for the zero canonical correlations for standard CCA when X

and Y are jointly multivariate normal and show that in this case the estimates of the correlations

converge at rate n. In addition Muirhead and Waternaux (1980) shows how test statistics used

to test for a true canonical correlation of zero when X and Y are multivariate normal can be

modified for elliptical distributions. These results exploit special properties of the elliptical

distribution and sample covariance matrix, but it is unclear how to generalize these results to

transelliptical CCA using the transformed Kendall’s scatter matrix estimator. Because of this

we propose a testing procedure based on bootstrapped replicates. To control the type I error

at α simply invert a (1-2α) bootstrapped confidence interval using the normal approximation

with bias correction. A (1-2α) is used because this test is only one sided, so using a (1 − α)

interval will unnecessarily reduce power. Other bootstrap confidence intervals may be used,

although it is important not to use the simple percentile method. This is because as sample size

and dimension increase the probability that for each bootstrap sample the estimated canonical

correlation will be above zero converges to one. This means some type of bias correction is

necessary. Although the asymptotic distribution for true correlations of zero is not normal, the

fact that the correlations converge at rate n as opposed to
√
n implies that this bootstrap will

have conservative type I error as sample size increases. This is shown in simulation results found

in Section 3.3.

Given the conservative nature of this test, particularly as sample size increases, it is important

to point out why it this bootstrapping procedure is preferred to other testing procedures, including

permutation based testing. Permutation or randomization testing assumes that under the null

hypothesis observations are exchangeable. For transelliptical data this assumption is only met

when data have a Gaussian copula where having a true correlation of zero implies independence.

For all other elliptical copulas this is not the case, so permutation tests will lead to inflated

type I error. Even for CCA estimated using the sample correlation or covariance matrix a
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permutation test will lead to inflated type I error if the data do not have a Gaussian copula, and

asymptotic testing procedures assume the data come from a multivariate Gaussian distribution.

Importantly this means that even if all the marginal distributions are Gaussian, permutation and

asymptotic tests will result in inflated type I error if the copula defining the joint distribution is

not a Gaussian copula. For this reason we recommend using the inverted bootstrap procedure if

there is any reason to believe data do not follow a multivariate normal distribution. The inverted

bootstrap procedure does not even need the transelliptical assumption, just the assumption that

the estimated correlation or covariance matrix is asymptotically normal. For the transformed

Kendall’s estimator this only requires that the data from different subjects be independent and

identically distributed, and for the sample correlation or covariance matrix this only requires that

the data be independent and identically distributed and fourth moments exist. When using the

transformed Kendall’s estimator this bootstrap procedure will test the null that for all variables

inX the true pairwise Kendall’s tau coefficient with all variables in Y is 0. Therefore even when

data do not have an elliptical copula this provides a meaningful test for association between the

two sets of variables. Simulation results comparing the bootstrap testing procedures with other

testing procedures are presented in section 3.3.3.

3.3 Simulation Results

3.3.1 Empirical bias and variance of CCA with robust covariance estimation

Simulations are conducted to compare transelliptical CCA using the transformed Kendall’s

estimator and standard CCA under both elliptical and transelliptical settings. In addition CCA

based on two robust covariance matrix estimators are considered, the minimum covariance

determinant (MCD) estimator from the R package robustbase (Todorov and Filzmoser, 2009a)

and the M estimator from the R package rrcov (Todorov and Filzmoser, 2009b). Standard CCA

is calculated using the R package CCA.

The distributions of the simulated data sets are multivariate normal, multivariate Cauchy,

multivariate t with five and ten degrees of freedom, and the multivariate lognormal. The first four

distributions satisfy the elliptical assumptions, while the latter is a member of the transelliptical
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but not elliptical family. The sample size of the simulated data sets are n=200 and n=1,000, and

the dimension of X and Y are p=q=4,8 and 16. Results for p=q=8 and n=200 are presented

below, with the other results given in Appendix A. The true scatter matrix for X and Y is

ΣXX = ΣY Y = Ip, and ΣXY = diag(0.9, 0.5, 0.4, 1/3, 0, . . .). The structure of these scatter

matrices is similar to those in Branco et al. (2005). To define P̃Zn all negative eigenvalues are

set to 0.001. For each simulation setting, at most 0.2% of simulations resulted in P̂Zn not being

positive-definite. The total number of simulated data sets for each simulation setting is 1,000.

Based on the 1,000 simulated data sets the empirical bias and standard deviation is calculated

for the canonical correlations and directions for each of CCA methods. For the canonical

correlation estimates the bias and variance are calculated after a Fisher inverse hyperbolic tangent

transformation. For the ith canonical direction the angle between the true direction forX , ai, and

estimated direction for X for the jth simulation, âji, is calculated as cos−1
(

|âTji,ai|
||âTji,âji||·||aTi ,ai||

)
.

The bias for the canonical directions is estimated as the average angle across all simulated data

sets and the standard deviation is estimated as the empirical standard deviation of the angles

across all simulated data sets. Table 3.1 gives the output for the canonical correlation and

canonical direction. Because ΣXY is symmetric and p = q only the bias and standard deviation

for the X direction are presented, with the results for Y being nearly identical.

Based on results in Table 3.1 standard CCA has the smallest bias and standard deviation

when simulating under the multivariate normal distribution, with transelliptical CCA using the

transformed Kendall’s matrix outperforming the other two robust methods. For simulations from

the Cauchy distribution the transformed Kendall’s scatter matrix estimator performs similarly to

the MCD and M estimators for the first direction and is superior for higher directions. Standard

CCA completely "breaks down" under this setting because of the lack of moments. When data

are generated from a multivariate t distribution with five degrees of freedom transelliptical CCA

using the transformed Kendall’s estimator outperforms all other methods. This shows that even

when standard CCA is well defined, the transformed Kendall’s scatter estimator outperforms

the sample covariance matrix for heavy tailed elliptical distributions. When data come from a
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multivariate t with ten degrees of freedom standard CCA using the sample covariance matrix

and the transformed Kendall’s scatter estimator, both of them outperforming the other two

methods.. Under the lognormal setting the standard estimator, the MCD estimator, and the

M estimator all underestimate the transelliptical canonical correlations, while the transformed

Kendall estimator provides consistent estimates. This is particularly evident for n = 1, 000

presented in Appendix A. These findings illustrate the advantages of the transelliptical CCA with

data that are transelliptically but not elliptically distributed. Evenwithout transforming potentially

skewed marginal distributions the transformed Kendall’s scatter estimator can consistently

estimate the strongest linear relationships based on the underlying copula. As noted previously,

the finite sample bias is positive for both standard and transelliptical canonical correlation

estimates.

3.3.2 Confidence intervals for non-zero canonical correlations

Simulations are run to compare coverages for normal bootstrapped confidence intervals as

well as asymptotic confidence intervals using "plug-in" estimators of the asymptotic variance for

the estimates from Theorem 3.2. Details on the form of the variance estimates are in Appendix

A. The "plug-in" variance estimator is calculated using estimates of transelliptical canonical

correlations, and directions based on the transformed Kendall’s correlation estimate. An estimate

of the variance of the transformed Kendall’s scatter matrix is obtained using methods from

Rublík (2016). For the bootstrap confidence intervals 1,000 bootstrap replicates are used. The

bootstrap confidence intervals for the canonical correlations are constructed from the square

of the estimated canonical correlations, and then transformed using the square root to give the

bounds for the transelliptical canonical correlations. Bounds may be truncated at one or zero as

necessary for both the bootstrap and asymptotic confidence intervals.

The simulation set-ups are the same as Section 3.3.1, but simulations for the multivariate

lognormal distribution are not included because they are similar to results using the multivariate

normal distribution when using the transformed Kendall’s estimator. Tables reporting the

coverages can be found in Appendix A. For the non-zero canonical correlations both the the
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Table 3.1: Bias (SD) of canonical correlation and direction estimates, p=q=8, n=200

Normal Cauchy Lognormal t5 t10
Canonical Correlations

Cor 1 Standard 0.05 (0.07) 1.93 (1.10) -0.13 (0.19) 0.09 (0.10) 0.06 (0.08)
Kendall 0.06 (0.08) 0.17 (0.14) 0.06 (0.08) 0.07 (0.09) 0.06 (0.09)
MCD 0.07 (0.09) 0.14 (0.13) -0.12 (0.15) 0.10 (0.11) 0.08 (0.10)
M 0.06 (0.09) 0.13 (0.12) -0.14 (0.14) 0.09 (0.10) 0.07 (0.09)

Cor 2 Standard 0.08 (0.06) 1.69 (0.63) 0.01 (0.11) 0.17 (0.09) 0.12 (0.07)
Kendall 0.10 (0.07) 0.19 (0.09) 0.10 (0.06) 0.12 (0.07) 0.11 (0.07)
MCD 0.13 (0.08) 0.27 (0.10) 0.09 (0.09) 0.19 (0.08) 0.17 (0.08)
M 0.12 (0.07) 0.25 (0.09) 0.05 (0.08) 0.17 (0.08) 0.15 (0.08)

Cor 3 Standard 0.07 (0.05) 1.21 (0.44) -0.02 (0.07) 0.13 (0.07) 0.09 (0.06)
Kendall 0.08 (0.06) 0.14 (0.07) 0.08 (0.05) 0.09 (0.06) 0.09 (0.06)
MCD 0.10 (0.06) 0.20 (0.08) 0.06 (0.07) 0.15 (0.07) 0.13 (0.07)
M 0.09 (0.06) 0.19 (0.08) 0.02 (0.06) 0.13 (0.07) 0.12 (0.06)

Cor 4 Standard 0.03 (0.05) 0.86 (0.34) -0.05 (0.06) 0.07 (0.06) 0.04 (0.06)
Kendall 0.03 (0.06) 0.08 (0.06) 0.03 (0.05) 0.04 (0.06) 0.04 (0.06)
MCD 0.05 (0.06) 0.13 (0.07) 0.01 (0.06) 0.08 (0.06) 0.07 (0.06)
M 0.04 (0.06) 0.12 (0.07) -0.01 (0.05) 0.07 (0.06) 0.06 (0.06)

Canonical Directions
Dir 1 Standard 0.10 (0.03) 0.65 (0.43) 0.12 (0.07) 0.13 (0.04) 0.11 (0.03)

Kendall 0.11 (0.03) 0.19 (0.06) 0.11 (0.03) 0.13 (0.04) 0.12 (0.03)
MCD 0.12 (0.04) 0.19 (0.06) 0.19 (0.07) 0.15 (0.05) 0.14 (0.04)
M 0.12 (0.04) 0.18 (0.06) 0.17 (0.06) 0.14 (0.04) 0.13 (0.04)

Dir 2 Standard 0.58 (0.30) 1.26 (0.26) 0.83 (0.43) 0.73 (0.34) 0.63 (0.32)
Kendall 0.60 (0.31) 0.75 (0.32) 0.60 (0.31) 0.65 (0.32) 0.63 (0.32)
MCD 0.67 (0.32) 0.88 (0.34) 0.89 (0.35) 0.79 (0.34) 0.76 (0.34)
M 0.64 (0.31) 0.85 (0.33) 0.83 (0.36) 0.74 (0.33) 0.73 (0.33)

Dir 3 Standard 0.83 (0.34) 1.26 (0.25) 1.05 (0.36) 0.97 (0.33) 0.89 (0.35)
Kendall 0.85 (0.34) 0.98 (0.33) 0.85 (0.34) 0.91 (0.34) 0.89 (0.35)
MCD 0.92 (0.33) 1.08 (0.30) 1.12 (0.29) 1.02 (0.32) 0.98 (0.33)
M 0.89 (0.33) 1.05 (0.31) 1.09 (0.32) 0.99 (0.32) 0.96 (0.33)

Dir 4 Standard 0.80 (0.31) 1.27 (0.23) 1.08 (0.33) 0.99 (0.31) 0.89 (0.32)
Kendall 0.84 (0.30) 1.02 (0.31) 0.84 (0.31) 0.89 (0.31) 0.87 (0.31)
MCD 0.92 (0.31) 1.13 (0.28) 1.17 (0.27) 1.05 (0.30) 1.02 (0.31)
M 0.89 (0.31) 1.12 (0.28) 1.16 (0.27) 1.00 (0.31) 0.99 (0.31)
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asymptotic and bootstrap confidence intervals tend show undercoverage when n=200. This is

particularly the case for asymptotic confidence intervals as dimension increases, likely due to

the lack of bias correction. Coverage for both the asymptotic and bootstrap confidence intervals

improves as sample size increases.

For the transelliptical canonical directions bootstrap and asymptotic confidence intervals

are calculated for the loading of each variable in directions corresponding to non-zero canonical

correlations. For each bootstrap replicate the estimates of both transelliptical canonical directions

are flipped if necessary in order to minimize the sum of the angles between the estimated direction

within the bootstrap replicate and the original sample. The coverages are close to 95% for the

first canonical direction, with overcoverage for the variable with a non-zero loading for the

first direction. For both the bootstrap confidence intervals and asymptotic confidence intervals

there is undercoverage for some loadings in the second, third, and fourth directions. This is

likely due to the added complexity of additional constraints for higher order canonical directions.

We recommend interpreting any confidence intervals for higher order directions with caution.

In finite samples it is difficult to fully quantify the uncertainty that arises as the number of

constraints increases.

3.3.3 Testing procedures to identify non-zero canonical correlations

In addition to constructing confidence intervals for the non-zero canonical correlations and

the associated directions, testing the null hypothesis that the true canonical correlation equals

zero is also of interest. As noted in Section 3.2 we propose testing for a true canonical correlation

of zero at the 0.05 significance level by inverting a 90% normal bootstrap confidence interval for

the transelliptical canonical correlation, and rejecting the null hypothesis if the lower bound for

the confidence interval is above zero. We use a 90% confidence interval because the alternative

for this test is one sided. If the test for the ith transelliptical canonical correlation fails to reject

the null hypothesis of a true transelliptical canonical correlation of zero then we will also fail

to reject the null hypothesis for all higher order transelliptical canonical correlations. This

procedure can be done iteratively, starting with the first transelliptical canonical correlation and
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moving on to higher order correlations, stopping when the test fails to reject the null hypothesis

of a true correlation of zero.

We compare the type I error and power for the bootstrapped testing procedure using the

transformed Kendall’s estimator with a permutation test also using the transformed Kendall’s

estimator and the asymptotic Wilk’s Lambda from the R package CCP (Menzel, 2009) using

standard CCA based on the sample correlation matrix. In addition the bootstrap and permutation

testing procedures using the sample correlation matrix estimator are presented in Appendix

A. We consider p = q = 8 and ΣXX = ΣY Y = I where ΣXY has either all zeros or a

single non-zero entry ranging from 0.2 to 0.8 in increments of 0.2. This set up is employed for

multivariate normal, multivariate Cauchy, multivariate t with five and ten degrees of freedom,

and multivariate lognormal distributions for both n = 200 and n = 1, 000. 1,000 data sets are

simulated for each setting. Table 3.2 gives the proportion of simulated data sets for which the

null hypothesis that the first transelliptical canonical correlation is zero is rejected for the for

each testing procedure. The bootstrap test using Kendall’s transformed estimator controls for

type I error, being conservative in all settings when n = 1,000. For n = 200 type I error is not

controlled for the bootstrap method when data come from multivariate Cauchy or multivariate

t distribution with five degrees of freedom, but is closer to the nominal level than asymptotic

or permutation tests tests. For the multivariate Cauchy distribution the transelliptical CCA

bootstrap method is the only procedure that doesn’t have a type I error of one. The permutation

based test only controls for type I error when data come from a normal or lognormal distribution.

This is because permutation based tests for CCA are only valid when zero correlation also

implies independence, which is not true for non-Gaussian elliptical copulas. When the sample

size is 1,000 the type I error rate for the permutation test is even higher than for a sample size of

200 for the multivariate Cauchy and multivariate t distributions. Also as expected the asymptotic

Wilk’s Lambda test only works when the data come from a multivariate normal distribution. The

type I error rate for this test is inflated even for the lognormal, because changes to the marginal
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distributions also affect this testing procedure. Power for the bootstrap method is generally

comparable to the other testing methods, particularly as sample size increases.

Table 3.2: Power and type I error for asymptotic, permutation and bootstrap testing procedures

True correlation 0 0.2 0.4 0.6 0.8

n=200

Normal Kendall Bootstrap 0.05 0.17 0.85 1.00 1.00
Wilk’s Lambda 0.05 0.17 0.80 1.00 1.00
Kendall Perm 0.06 0.16 0.86 1.00 1.00

Cauchy Kendall Bootstrap 0.14 0.19 0.64 0.99 1.00
Wilk’s Lambda 1.00 1.00 1.00 1.00 1.00
Kendall Perm 0.77 0.85 0.98 1.00 1.00

Lognormal Kendall Bootstrap 0.05 0.15 0.87 1.00 1.00
Wilk’s Lambda 0.10 0.17 0.43 0.88 1.00
Kendall Perm 0.05 0.15 0.87 1.00 1.00

t5 Kendall Bootstrap 0.08 0.16 0.78 1.00 1.00
Wilk’s Lambda 0.94 0.96 1.00 1.00 1.00
Kendall Perm 0.17 0.33 0.90 1.00 1.00

t10 Kendall Bootstrap 0.06 0.15 0.84 1.00 1.00
Wilk’s Lambda 0.43 0.65 0.96 1.00 1.00
Kendall Perm 0.10 0.22 0.88 1.00 1.00

n=1,000

Normal Kendall Bootstrap 0.02 0.85 1.00 1.00 1.00
Wilk’s Lambda 0.05 0.88 1.00 1.00 1.00
Kendall Perm 0.06 0.94 1.00 1.00 1.00

Cauchy Kendall Bootstrap 0.02 0.45 1.00 1.00 1.00
Wilk’s Lambda 1.00 1.00 1.00 1.00 1.00
Kendall Perm 0.80 1.00 1.00 1.00 1.00

Lognormal Kendall Bootstrap 0.02 0.84 1.00 1.00 1.00
Wilk’s Lambda 0.10 0.45 0.99 1.00 1.00
Kendall Perm 0.06 0.92 1.00 1.00 1.00

t5 Kendall Bootstrap 0.02 0.67 1.00 1.00 1.00
Wilk’s Lambda 0.98 1.00 1.00 1.00 1.00
Kendall Perm 0.18 0.95 1.00 1.00 1.00

t10 Kendall Bootstrap 0.01 0.79 1.00 1.00 1.00
Wilk’s Lambda 0.48 0.99 1.00 1.00 1.00
Kendall Perm 0.12 0.97 1.00 1.00 1.00

3.4 White matter tractography and executive function in six year old children

We provide a comparison of transelliptical CCA estimated with the transformed Kendall’s

and standard CCA estimated with the sample correlation matrix, using diffusion tensor imaging
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(DTI) and executive function (EF) data from six-year olds. The data come from an ongoing lon-

gitudinal study at the University of North Carolina investigating behavior and brain development

from birth through adolescence (Gilmore et al., 2010; Knickmeyer et al., 2008, 2016). The data

include some sibling and twin pairs in addition to singletons. In our analysis, the data from one

randomly selected child per family is used.

For DTI, we focus on 20 white matter tracts previously associated with cognitive function

(Girault et al., 2019). The 20 tracts included in the analysis can be found in Table 3.3. Imaging

measures of diffusion rate and direction are available on these tracts including fractal anisotropy

(FA), radial diffusivity (RD) and axial diffusivity (AD). We employ a single value for each tract,

calculated by averaging measurements across all locations in the tract. Additional information

on these measures and their interpretations can be found at Alexander et al. (2007). Results for

RD are presented in the main text with those for FA and AD given in Appendix A.

Table 3.3: List of white matter tracts used in CCA analysis

Tract Name Abbreviation

Arcuate fasciculus direct pathway left/right ARC FT Left/Right
Arcuate fasciculus indirect anterior pathway left/right ARC FP Left/Right
Arcuate fasciculus indirect posterior pathway left/right ARC TP Left/Right
Anterior cingulum left/right CGC Left/Right
Corticothalamic prefrontal projections left/right CTPF Left/Right
Inferior fronto-occipital fasciculus left/right IFOF Left/Right
Inferior longitudinal fasciculus left/right ILF Left/Right
Superior longitudinal fasciculus left/right SLF Left/Right
Uncinate Left/Right UNC Left/Right
Splenium of the corpus callosum Splenium
Genu of the corpus callosum Genu

EF measures are an executive composite score from the Behavior Rating Inventory of

Executive Function (BRIEF) (Gioia et al., 2000), Cambridge Neuropsychological Test Automated

Battery (CANTAB) Spatial Span (SSP), CANTAB Stockings of Cambridge (SOC) (CANTAB,

2017) , Stanford-Binet Fluid Reasoning Verbal (SB V FR), and Stanford-Binet Fluid Reasoning

Non-verbal (SB NV FR) (Roid, 2003). The BRIEF is a parent report measure whereas, CANTAB
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and Stanford-Binet are child assessments. For all EF variables except BRIEF a higher score

indicates better EF, while for BRIEF a lower score indicates better EF. A total of 214 children

have data for all EF measures plus all of the white matter tracts, and 216 have data for all EF

measures plus all the bilateral tracts.

For each method p-values testing whether the true canonical correlation is zero are based on

the bootstrap testing procedure using 1,000 replicates. For both methods bootstrap confidence

intervals for the direction loadings are reported using 1,000 bootstrap replicates and the normal

approximation bootstrap method. Confidence intervals base on a "plug-in" variance estimator

for transelliptical CCA directions using the transformed Kendall’s estimator are also reported.

The marginal distributions for each of the variables to be included in the CCA analysis are

tested for violations of normality which would indicate that transelliptical CCA may be more

effective at summarizing the associations between the variables than standard CCA and that the

transformed Kendall’s estimator may be more efficient than the sample correlation estimator.

Specifically all variables are tested for excess kurtosis using the Anscombe test, and skewness

using the Agostino test. The average RD values for a number of white matter tracts shows excess

kurtosis relative to a normal distribution including ARC FT Right, ARC FP Left, ARC TP Right,

CTPF Left, CTPF Right, ILF Left, SLF Left, and Splenium. The ARC FP Left, ARC TP right,

CTPF Left, CTPF Right, and Splenium also have positive skewness. In addition the Stanford

Binet verbal fluid reasoning scores also have excess kurtosis and negative skewness, while the

BRIEF scores show positive skewness.

Transelliptical CCA assumes the data are transelliptically distributed which can be tested

using the methods from Jaser et al. (2017). This test is based on the equivalence between

Kendall’s tau and Blomqvist’s beta for elliptical copulas. Blomqvist’s beta between two variables,

Z1 andZ2, β(Z1,Z2)
B , is defined as, β(Z1,Z2)

B = E[sign(Z1−Z1med)sign(Z2−Z2med)],whereZ1med

andZ2med denote the population medians ofZ1 andZ2. After testing for the equivalence between

Blomqvist’s beta and Kendall’s tau for all pairs of variables and applying a false discovery rate

(FDR) correction there were no significant differences between Blomqvist’s beta and Kendall’s
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tau at the 0.05 level. This suggests that any deviations from the transelliptical assumption are

relatively minor.

Table 3.4 gives the first canonical directions and correlations for both transelliptical CCA and

standard CCA. The jackknife corrected estimate for the first transelliptical canonical correlation

is 0.49, compared to 0.32 for standard CCA. In both cases, the first canonical correlation has

p-value less than 0.05 using the bootstrap testing procedure. No other canonical correlations

are significant. The DTI variable loadings are similar for the two methods, with the largest

differences arising from tracts such as CTPF, ARC FT, and Splenium that show excess kurtosis or

skewness. For all direction loadings the confidence intervals overlap between transelliptical CCA

and standard CCA. The asymptotic confidence intervals for the transelliptical CCA direction

loadings are narrower than the bootstrap confidence intervals for the DTI variables and similar

to the bootstrap confidence intervals for the EF variables. When interpreting the direction

loadings for RD values for the white matter tracts we note that lower RD is indicative of higher

myelination, which would result in faster transmission of electrical impulses through the white

matter tracts.

For all of the bilateral DTI tracts except the CTPF, SLF, and UNC the loading for the left

hemisphere is larger than that for the right hemisphere. This is particularly noticeable in the ARC

FT and IFOF tracts. Further analysis is done to examine the association between lateralization

of RD among the bilateral tracts and EF tests. In order to do this we employ the lateralization

measure from Niogi and McCandliss (2006). For the ith bilateral tract the lateralization measure,

RDLATi, is defined as RDLATi = RDLi−RDRi

(RDLi+RDRi)/2
, where RDLi is the RD measure from the ith

bilateral tract on the left hemisphere and RDRi is the RD measure from the tract on the right

hemisphere. The lateralization measure for CTPF shows both excess kurtosis and positive

skewness as measured by the Anscombe and Agostino tests. The test from Jaser et al. (2017)

is again used to test for potential violations of the transelliptical assumption, and again none

of the pairwise tests show a significant difference at the 0.05 level between Kendall’s tau and

Blomqvist’s beta after an FDR correction.
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Table 3.4: Estimates for first canonical correlation and directions for white matter tract RD
values and EF tests for transelliptical and standard CCA

DTI Vars Transelliptical
CCA Loadings

Boot CI Asymp CI Standard
CCA
Loadings

Boot CI

ARCFT Left 0.93 (0.30, 2.06) (0.39, 1.47) 0.21 (-0.60, 1.09)
ARCFT Right -0.83 (-2.53, 0.45) (-1.87, 0.22) 0.48 (-0.38, 1.77)
ARCFP Left -0.26 (-1.18, 0.47) (-0.84, 0.32) 0.12 (-0.52, 0.86)
ARCFP Right 0.24 (-0.38, 0.98) (-0.32, 0.81) 0.09 (-0.46, 0.67)
ARCTP Left 0.05 (-0.62, 0.79) (-0.45, 0.56) 0.10 (-0.55, 0.85)
ARCTP Right -0.05 (-1.06, 0.95) (-0.76, 0.65) -0.73 (-1.70, -0.27)
CGC Left 0.25 (-0.51, 1.22) (-0.32, 0.82) 0.10 (-0.62, 0.83)
CGC Right -0.02 (-0.84, 0.64) (-0.50, 0.47) -0.21 (-0.85, 0.30)
CTPF Left 0.27 (-0.13, 0.84) (-0.12, 0.66) 0.11 (-0.27, 0.51)
CTPF Right 0.17 (-0.28, 0.83) (-0.21, 0.56) 0.19 (-0.16, 0.69)
Genu 0.02 (-0.64, 0.68) (-0.47, 0.51) -0.01 (-0.56, 0.53)
ILF Left -0.04 (-0.92, 0.80) (-0.65, 0.57) -0.02 (-0.75, 0.68)
ILF Right 0.26 (-0.45, 1.04) (-0.23, 0.76) -0.17 (-0.81, 0.35)
IFOF Left 0.89 (0.12, 2.10) (0.19, 1.58) 0.75 (0.16, 1.84)
IFOF Right -1.31 (-2.73, -0.52) (-1.89, -0.73) -1.10 (-2.27, -0.52)
SLF Left -0.50 (-1.42, 0.26) (-1.06, 0.07) -0.05 (-0.73, 0.62)
SLF Right 0.06 (-0.64, 0.72) (-0.47, 0.60) -0.12 (-0.89, 0.54)
Splenium -0.66 (-1.39, -0.27) (-1.04, -0.28) -0.65 (-1.39, -0.33)
UNC Left -0.26 (-1.09, 0.48) (-0.83, 0.32) -0.02 (-0.75, 0.70)
UNC Right 0.64 (0.01, 1.54) (0.14, 1.14) 0.68 (0.23, 1.50)

EF Vars

SB V FR 1.02 (0.71, 1.77) (0.86, 1.19) 0.87 (0.55, 1.57)
SB NV FR -0.41 (-1.09, 0.22) (-0.94, 0.11) -0.50 (-1.30, 0.08)
Brief -0.26 (-0.77, 0.10) (-0.59, 0.07) -0.54 (-1.18, -0.17)
SOC -0.01 (-0.64, 0.58) (-0.44, 0.41) 0.14 (-0.40, 0.73)
SSP 0.17 (-0.55, 0.91) (-0.24, 0.57) -0.18 (-0.79, 0.31)

Cor 0.63 0.48
Jackknife Cor 0.49 0.32
Pval 4.80E-04 4.138E-03
N 214 214
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Table 3.5 reports the estimated first direction and correlation for transformed Kendall’s

CCA and standard CCA. The jackknife corrected estimate for the first canonical correlation

using transformed Kendall’s CCA is 0.33, compared to 0.23 for standard CCA. In this case only

CCA using the transformed Kendall estimator has a p-value less than 0.05 for the first direction

based on the bootstrap testing procedure. The first direction for the DTI lateralization measures

is driven by positive loadings for the ARC FT and IFOF tracts. The first direction for the EF

test cores is driven by a positive loading for the SB V FR scores. This indicates that higher

lateralization score for the ARC FT and IFOF tracts is associated with higher SB V FR scores.

A higher lateralization score means that RD is lower on the right hemisphere, indicating higher

myelination for the right hemisphere tract. This gives evidence that for ARC FT and IFOF tracts

greater development of the right hemisphere relative to the left hemisphere is associated with

greater fluid reasoning. To the authors’ knowledge, this is a novel finding.

This analysis illustrates the benefits of CCA based on the transformed Kendall’s estimator.

Even with moderate violations of normality as measured by kurtosis and skewness we uncover

stronger associations than with standard CCA.
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Table 3.5: Estimates for first canonical correlation and direction for RD lateralization measure
and EF tests for transformed Kendall’s CCA and standard CCA

Lat Vars Transelliptical
CCA Loadings

Boot CI Asymp CI Standard
CCA
Loadings

Boot CI

ARC FT 0.71 (0.17 ,1.51) (0.14 ,1.29) 0.18 (-0.60, 1.09)
ARC FP -0.36 (-0.92 ,0.05) (-0.81 ,0.08) -0.04 (-0.55, 0.47)
ARC TP -0.13 (-0.74 ,0.49) (-0.65 ,0.40) 0.25 (-0.28, 0.88)
CGC 0.29 (-0.04 ,0.77) (-0.03 ,0.61) 0.40 (0.12, 0.88)
CTPF 0.05 (-0.35 ,0.48) (-0.33 ,0.43) 0.07 (-0.35, 0.54)
ILF -0.09 (-0.54 ,0.36) (-0.49 ,0.32) 0.04 (-0.42, 0.55)
IFOF 0.59 (0.20 ,1.25) (0.17 ,1.01) 0.65 (0.28, 1.34)
SLF 0.28 (-0.18 ,0.87) (-0.16 ,0.71) 0.30 (-0.19, 1.04)
UNC -0.38 (-0.91 ,0.00) (-0.76 ,0.01) -0.35 (-0.94, 0.10)

EF Vars

SB V FR 0.82 (0.39 ,1.58) (0.43 ,1.21) 0.80 (0.41, 1.50)
SB NV FR -0.13 (-0.76 ,0.59) (-0.72 ,0.45) 0.02 (-0.67, 0.80)
Brief -0.28 (-0.75 ,0.06) (-0.60 ,0.04) -0.41 (-1.03, -0.02)
SOC -0.41 (-1.14 ,0.17) (-0.93 ,0.12) -0.10 (-0.88, 0.53)
SSP 0.43 (-0.05 ,1.00) (0.07 ,0.80) 0.20 (-0.24, 0.73)

Cor 0.44 0.35
Jackknife Cor 0.33 0.23
Pval 0.03 0.11
N 216 216
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3.5 Discussion

In this paper we define a version of CCA for transelliptically distributed data using Kendall’s

tau. Consistent estimates of canonical directions and correlations can be obtained using a

transformed Kendall’s scatter matrix estimator. These estimates are shown to be consistent

and asymptotically normal. Simulation studies show that CCA estimates using transformed

Kendall’s tau perform well relative to other robust CCA methods in finite sample settings. The

transformed Kendall’s scatter matrix estimator is the only consistent estimator of CCA for all

transelliptical distributions.

Confidence intervals for the canonical directions and nonzero correlations can be obtained

using bootstrap methods or based on the asymptotic variances of the estimator. The bootstrap

confidence intervals are superior for the canonical correlations when sample size is small, and the

two methods perform similarly for the canonical directions. In addition we propose a bootstrap

procedure for testing if the true canonical correlation is equal to zero based on inverting bootstrap

confidence intervals. This is necessary because both asymptotic and permutation based methods

fail if data do not come from a Gaussian copula. One area for future research is finding an

improved testing procedure based on the asymptotic distribution for canonical correlations with

true value zero using either the sample correlation or transformed Kendall’s estimate when

data do not come from a multivariate normal distribution. These results have been found for

standard CCA under a multivariate normality, but it is not straightforward to extend these results

to general transelliptical distributions.

CCA using the transformed Kendall’s estimator shows promise for use in high dimensions

or for more than two sets of variables. A number of formulations for sparse CCA have been

proposed (Witten and Tibshirani, 2009; Wilms and Croux, 2015; Yoon et al., 2018). The

methods from Yoon et al. (2018) also use Kendall’s tau to estimate the correlation matrix,

however they only considered data generated from a Gaussian copula and neither establish

the large sample properties of their estimators nor consider testing and confidence interval
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construction. Extensions of CCA to more than two sets of variables have been proposed which

can be adapted to the transelliptical setting (Kettenring, 1971; Nielsen, 2002).
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CHAPTER 4: PRINCIPAL COMPONENTS ANALYSIS FOR RIGHT CENSORED
DATA

4.1 Introduction

Principal Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933), transforms a set

of potentially linearly correlated variables into a set of linearly uncorrelated variables called

the principal components. The first principal component is defined to be the unit length linear

combination of the variables with maximum possible variance. All subsequent directions are

the unit length linear combinations of the variables with maximal variance, subject to the

constraint that they are orthogonal to all previous principal components. PCA is frequently

used for dimension reduction and removing collinearity within a set of variables. PCA is

generally estimated using eigendecomposition of the estimated covariance matrix or singular

value decomposition (SVD) of the mean centered data.

PCA is used across many different settings, but to our knowledge one area where PCA

has not been used is multivariate time to event data in the presence of right censoring. In the

multivariate survival setting with p different event times for each subject we can define T (j) to

be the failure time for the jth event time. If we assume that each subject also has an independent

censoring time, C, the observed data for the jth event type consists of Y (j) = T (j) ∧ C as well

as an indicator for whether the observed time is a censoring time or failure time. In the presence

of censoring the full covariance matrix for T = [T (1), . . . , T (p)] cannot be estimated without

strong parametric assumptions. This means that PCA cannot be estimated for T . In order to

overcome this issue we propose two versions of PCA for multivariate survival data and show

how both can be estimated. One version uses the counting processes for each event type, defined

as N (j)(t) = I(T (j) ≤ t). The other version uses the martingales based on the decomposition
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of these counting processes. Even though these counting processes are not observed for all time

points if subjects are censored, we show that the covariance between the counting processes

and martingales for two different event types can both be estimated non-parametrically. This

allows for the principal component directions for the counting processes and martingales to

be estimated consistently even in the presence of independent censoring. The corresponding

component scores can be estimated for each subject up until the time they are censored. In order

to make these methods more flexible we also allow for semi-competing risks, and show how to

extend both survival PCA methods to this setting.

The estimation of the covariance between counting processes and martingales uses existing

methods for estimation of bivariate and univariate survival functions, and univariate hazard

functions. Prentice and Cai (1992) shows that at a fixed timepoint the covariance for the counting

process martingales for two different event types can be written as a function of bivariate and

univariate survival functions, as well as univariate hazard functions. Similarly, the covariance

between the counting processes for two different event types can be written as a function of

the bivariate and univariate survival functions. In this paper we use the Kaplan-Meier and

Nelson-Aalen estimators for the univariate survival and cumulative hazard functions. Estimators

for the bivariate survival function include those by Dabrowska et al. (1988), Prentice and Cai

(1992), van der Laan (1993), and Lin and Ying (1993). If there are more than two event types

estimates of the full covariance and correlation matrices for the martingales or counting processes

are found by estimating all the elements individually using bivariate methods. This allows for

estimation of principal component directions for the martingales and counting processes using

eigendecomposition of their estimated covariance or correlation matrices.

In the presence of competing risks we use previous methods for estimation of bivariate and

univariate cause specific hazard functions and cause specific cumulative incidence functions

(CIFs). Prentice et al. (1978) gives an overview of cause specific hazards and incidence functions

in the univariate setting, andKalbfleisch and Prentice (2011) gives details on estimating univariate

cause specific CIFs. Details on estimating bivariate cause specific hazard functions and CIFs
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can be found in Cheng et al. (2007). In order to extend our methods to the competing risk setting

we use the cause specific counting processes and the martingales based on their decomposition.

We are able to show that the covariance between the cause specific martingales or counting

processes for two different events can be written as a function of the bivariate and univariate

cause specific CIFs as well as the univariate cause specific hazard functions. Using these results

we show that the full covariance matrix for cause specific martingales and counting processes

can be estimated in the presence of competing risks, which makes it possible to estimate the

corresponding principal component directions using eigendecomposition.

Being able to estimate covariance and principal component directions for martingales and

counting processes in the presence of competing risks is of particular interest in sick populations

where death acts as a competing risk for many different adverse events. We present one such

example using data from the MPACT study for subjects with pancreatic cancer. In this study

subjects are followed and have many different types of adverse events due to both cancer and

treatment. Using PCA of the martingales we are able to define medically relevant groupings

of the event types. We also show how the principal component scores can be estimated and

used as predictors in a Cox Proportional Hazards (PH) model. This can be used to remove

multicollinearity among predictors and is analogous to principal component linear regression.

The rest of this paper is structured as follows. Section 4.2 studies estimation of covariance and

correlation matrices for counting processes and martingales. Section 4.3 defines the estimators

for survival PCA and shows that they are consistent and asymptotically normal. Section 4.4

provides results of simulation studies for survival PCA methods. Section 4.5 provides an analysis

of adverse events among subjects in the MPACT pancreatic cancer clinical trial. Proofs for

theorems can be found in Appendix B.
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4.2 Covariance estimation for bivariate counting processes and counting process mar-
tingales

4.2.1 Estimation of covariance in presence of right censoring

As in Section 4.1 assume that for each subject in a population there are p event types of

interest, and let T (j) denote the failure time for the jth event type. We will assume that T (j) is

a continuous random variable. The full vector of failure times for a subject can be written as

T = [T (1), . . . , T (p)]T . If t = [t1, . . . , tp]
T is a vector of fixed timepoints, the joint distribution

for T is defined as FT (t) = P (T (1) ≤ t1, . . . , T
(p) ≤ tp), and the univariate distribution

functions are defined as F (j)(tj) = P (T (j) ≤ tj) for j = 1, . . . , p. We will also assume that

there is an independent censoring time, C, with distribution FC(c) = P (C ≤ c). This censoring

time is the same for all event types. This assumption is reasonable in the case where all event

types are measured for the same subject, and end of study or loss to follow up will make it

impossible to get any additional information from that subject for any of the event types. The

observed data for the jth event type is the observed time, Y (j) = T (j) ∧ C, and the censoring

indicator, η(j) = I(T (j) ≤ C). Define the counting process associated with the jth event

type as N (j)(t) = I(T (j) ≤ t). Note that the value of N (j)(t) is not always observed, unlike

N (j1)(t) = N (j)(t)η(j), which we will use in later sections for deriving asymptotic properties of

estimates.

We can define the cumulative hazard function for the jth event type at time t to be Λ(j)(t) =∫ t
0
λ(j)(s)ds, where

λ(j)(t) = lim
δ→0

1

δ
P (t ≤ T (j) < t+ δ|T (j) ≥ t).

The martingale defined by the decomposition of N (j)(t) isM (j)(t) = N (j)(t)− Λ(j)(t ∧ T (j)).

Define the covariance between N (j)(tj) and N (j′)(tj′) to be CN (j,j′)(tj, tj′), and similarly

the covariance betweenM (j)(tj) andM (j′)(tj′) to be CM (j,j′)(tj, tj′). Because N (j)(t) may not

be observed for every subject in the presence of censoring, CN (j,j′)(tj, tj′) and CM (j,j′)(tj, tj′)

cannot be calculated using standard methods. The following equality can be used to estimate
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CN (j,j′)(tj, tj′) ,

CN (j,j′)(tj, tj′) = S(j,j′)(tj, tj′)− S(j)(tj)S
(j′)(tj′), (4.1)

where S(j,j′)(tj, tj′) = P (T (j) > tj, T
(j′) > tj′) is the bivariate survival function and S(j)(tj) =

P (T (j) > tj) is the univariate survival function. Similarly, the following equality from Prentice

and Cai (1992) is obtained through Stieltjes integration and repeated integration by parts, and

can be used to estimate CM (j,j′)(tj, tj′),

CM (j,j′)(tj, tj′) = S(j,j′)(tj, tj′)− 1 +

∫ tj

0

S(j,j′)(s−j , tj′)λ
(j)(sj)ds+∫ tj′

0

S(j,j′)(tj, s
−
j′)λ

(j′)(sj′)dsj′ +

∫ tj

0

∫ tj′

0

S(s−j , s
−
j′)λ

(j)(sj)λ
(j′)(sj′)dsjdsj′ .

(4.2)

This allows for the consistent estimation of CN (j,j′)(tj, tj′) and CM (j,j′)(tj, tj′) by plugging

in consistent estimates of all of the quantities on the right hand side of Equations (4.1) and

(4.2) respectively. The variance of N (j)(t) andM (j)(t) can also be written as a function of the

univariate survival functions,

CN (j,j)(tj) = S(j)(tj){1− S(j)(tj)} (4.3)

CM (j,j)(tj) = 1− S(j)(tj). (4.4)

We use the Kaplan-Meier estimator for the univariate survival functions and the Nelson-Aalen

estimator for the univariate cumulative hazard function. Potential estimators for the bivariate

survival function are discussed in Section 4.1. We use the estimator from Dabrowska et al.

(1988) because it is shown to converge weakly to a Gaussian process (Gill et al., 1995), and has

good performance in simulations (Cheng et al., 2007).

In many cases the correlation between the counting processes or martingales of two fail-

ure times may be more useful for describing their relationship than the covariance. Define
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RN (j,j′)(tj, tj′) = Cor{N (j)(tj), N
(j′)(tj′)} andRM (j,j′)(tj, tj′) = Cor{M (j)(tj),M

(j′)(tj′)}.

The following equality can be used to estimate RN (j,j′)(tj, tj′),

RN (j,j′)(tj, tj′) =
CN (j,j′)(tj, tj′)√

S(j)(tj){1− S(j)(tj)}
√
S(j′)(tj′){1− S(j′)(tj′)}

. (4.5)

Similarly the following equality can be used to estimate RM (j,j′)(tj, tj′),

RM (j,j′)(tj, tj′) =
CM (j,j′)(tj, tj′)√

1− S(j)(tj)
√

1− S(j′)(tj′)
. (4.6)

Note that Equation (4.5) requires that 0 < S(j)(tj) < 1 for all j and Equation (4.6) requires

that S(j)(tj) < 1 for all j in order to be well defined. The right hand side of Equations (4.5)

and (4.6) can both be consistently estimated using the Kaplan-Meier estimator and estimates for

CN (j,j′)(tj, tj′) and CM (j,j′)(tj, tj′) respectively.

For a fixed set of timepoints, t = [t1, . . . , tp]
T we define the full covariance matrix for all p

counting processes as

CN(t) =


CN (1,1)(t1, t1) . . . CN (1,p)(t1, tp)

... . . . ...

CN (p,1)(tp, t1)
... CN (p,p)(tp, tp)

 , (4.7)

and the full correlation matrix as

RN(t) =


RN (1,1)(t1, t1) . . . RN (1,p)(t1, tp)

... . . . ...

RN (p,1)(tp, t1)
... RN (p,p)(tp, tp)

 . (4.8)
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Similarly at t we define the full covariance matrix for the martingales as

CM(t) =


CM (1,1)(t1, t1) . . . CM (1,p)(t1, tp)

... . . . ...

CM (p,1)(tp, t1)
... CM (p,p)(tp, tp)

 , (4.9)

and the full correlation matrix as

RM(t) =


RM (1,1)(t1, t1) . . . RM (1,p)(t1, tp)

... . . . ...

RM (p,1)(tp, t1)
... RM (p,p)(tp, tp)

 . (4.10)

We will denote the estimators of each of these matrices created by using the estimator for each

element of the matrix as ĈN(t), R̂N(t), ĈM(t), and R̂M(t) respectively. Note that these

estimates may not be positive semi-definite. In this case there are a number of methods that can

be used to transform these matrices to be positive semi-definite or positive-definite (Rousseeuw

and Molenberghs, 1993). We define C̃N(t) to be the matrix with the same eigenvectors as

ĈN(t), and all negative eigenvalues set to some small constant. R̃N(t), C̃M(t), and R̃M(t)

are defined analogously. If we assume that the true covariance or correlation matrices are

positive-definite then it can be shown that transforming these matrices to be positive-definite

will not change the limiting behavior at a fixed timepoint using results from Section 4.2.3 and

Weyl’s inequality.

4.2.2 Estimation of covariance in presence of right censoring and competing risks

In this section we will allow for the introduction of a single competing risk for all of the

non-competing event types of interest. As a motivating example consider a study where subjects

are followed over time for a number of non-competing adverse events and death acts as a

competing risk for each of the adverse events. As before we will assume that each subject has

p non-competing failure times, T = [T (1), . . . , T (p)]T . Define T̈ to be the failure time for the

competing risk. In the case where there is more than one competing risk these can be combined
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into a single competing event time. In the absence of censoring for the jth event type we will

observe T̈ (j) = T (j) ∧ T̈ and γ̈(j) = 2 − I(T̈ > T (j)). If we again assume an independent

censoring time, C, we will observe Ÿ (j) = T̈ (j) ∧ C, failure indicator η̈(j) = I(T̈ (j) ≤ C), and

event type indicator ε̈(j) = η̈(j)γ̈(j). The cause specific counting process for the jth event type

and lth cause is defined as N̈ (j)
l (t) = I(T̈ (j) ≤ t, γ̈(j) = l) for j = 1, . . . , p and l = 1, 2. Similar

to the previous section N̈ (j)
l is not always observed, so we will also define N̈ (j1)

l (t) = N̈
(j)
l (t)η̈(j)

to be used for estimation purposes. The cumulative cause specific hazard for the jth event type

and lth cause evaluated at time t is Λ̈
(j)
l (t) =

∫ t
0
λ̈

(j)
l (s)ds where

λ̈
(j)
l (t) = lim

δ→0

1

δ
P (t ≤ T̈ (j) < t+ δ, γ̈(j) = l|T̈ (j) ≥ t).

The martingale based on the decomposition of N̈ (j)
l (t) is M̈ (j)

l (t) = N̈
(j)
l (t)− Λ̈

(j)
l (t ∧ T̈ (j)).

We will focus on the covariance between counting processes and martingales for the

non-competing adverse events. That is C̈N (j,j′)
(tj, tj′) = Cov{N̈ (j)

1 (tj), N̈
(j′)
1 (tj′)} and

¨CM
(j,j′)

(tj, tj′) = Cov{M̈ (j)
1 (tj), M̈

(j′)
1 (tj′)}. These quantities cannot be estimated using

standard methods in the presence of censoring. The following equality can be used to estimate

C̈N
(j,j′)

(tj, tj′),

C̈N
(j,j′)

(tj, tj′) = F
(j,j′)
11 (tj, tj′)− F (j)

1 (tj)F
(j′)
1 (tj′ , (4.11)

where F (j,j′)
kl (tj, tj′) = P (T̈ (j) ≤ tj, γ̈

(j) = k, T̈ (j′) ≤ tj′ , γ̈
(j′) = l) is the bivariate cause

specific CIF and F (j)
k (tj) = P (T̈ (j) ≤ tj, γ̈

(j) = k) is the univariate cause specific CIF. For

notational purposes, for a bivariate function, G(ti, t2) define

G(dt1, dt2) = G(1,1)(t1, t2)dt1dt2

G(dt1, t2) = G(1,0)(t1, t2)dt1

G(t1, dt2) = G(0,1)(t1, t2)dt2
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where G(1,1)(t1, t2) is the second partial derivative of G(t1, t2) with respect to t1 and t2,

G(1,0)(t1, t2) is the first partial derivative of G(t1, t2) with respect to t1, and G(0,1)(t1, t2) is

the first partial derivative of G(t1, t2) with respect to t2. Using the fact that

P (T̈j ≤ s, γ̈j = k, T̈j′ > t) = F
(j)
k (s)− F (j,j′)

k,1 (s, t)− F (j,j′)
k,2 (s, t),

the following result is obtained and can be used to estimate ¨CM
(j,j′)

(t, t),

¨CM
(j,j′)

(t, t) = Λ̈
(j)
1 (t)Λ̈

(j′)
1 (t)S̈(j,j′)(t, t) +

∫ t

0

Λ̈
(j)
1 (s)Λ̈

(j′)
1 (s)F

(j,j′)
22 (ds)

+

∫ t

0

∫ t

0

{1− Λ̈
(j)
1 (s1)}{1− Λ̈

(j′)
1 (s2)}F (j,j′)

11 (ds1, ds2)

+

∫ t

0

{1− Λ̈
(j)
1 (s)}{−Λ̈

(j′)
1 (t)}{F (j)

1 (ds)− F (j,j′)
11 (ds, t)− F (j,j′)

12 (ds, t)}

+

∫ t

0

{1− Λ̈
(j′)
1 (s)}{−Λ̈

(j)
1 (t)}{F (j′)

1 (ds)− F (j,j′)
11 (t, ds)− F (j,j′)

21 (t, ds)}

+

∫ t

0

∫ t

s1

{1− Λ̈
(j)
1 (s1)}{−Λ̈

(j′)
1 (s2)}F (j,j′)

12 (ds1, ds2)

+

∫ t

0

∫ t

s1

{1− Λ̈
(j′)
1 (s1)}{−Λ̈

(j)
1 (s2)}F (j′,j)

12 (ds1, ds2),

(4.12)

where S̈(j,j′)(tj, tj′) = P (T̈ (j) > tj, T̈
(j′) > tj′). The bivariate cause specific CIFs can be

estimated using methods from Cheng et al. (2007), while the univariate cause specific CIFs

and cumulative hazards can be estimated using methods from Kalbfleisch and Prentice (2011).

Therefore estimators for C̈N (j,j′)
(tj, tj′) and ¨CM

(j,j′)
(t, t) are obtained by consistently estimat-

ing all the elements on the right hand side of Equations (4.11) and (4.12) respectively. The

variance of N̈ (j)(tj) and M̈ (j)(tj) can also be written as functions of the bivariate and univariate

cause specific CIFs,

C̈N
(j,j)

(tj) = F
(j)
1 (tj){1− F (j)

1 (tj)} (4.13)

¨CM
(j,j)

(tj) = F
(j)
1 (tj). (4.14)
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As in the previous section we can extend these methods to estimate the correlation between

the counting processes or martingales. Define R̈N (j,j)
(tj, tj′) = Cor{N̈ (j)

1 (tj), N̈
(j′)
1 (tj′)}

and ¨RM
(j,j)

(tj, tj′) = Cor}M̈ (j)
1 (tj), M̈

(j′)
1 (tj′)}. The following equality is used to estimate

R̈N
(j,j)

(tj, tj′),

R̈N
(j,j)

(tj, tj′) =
C̈N

(j,j′)
(tj, tj′)√

F
(j)
1 (tj)}1− F (j)

1 (tj)}
√
F

(j′)
1 (tj′){1− F (j′)

1 (tj′)}
, (4.15)

and

¨RM
(j,j)

(t) =
¨CM

(j,j′)
(t)√

F
(j)
1 (t)

√
F

(j′)
1 (t)

(4.16)

can be used to estimate ¨RM
(j,j)

(tj, tj′). Equation (4.15) requires 0 < F
(j)
1 (tj) < 1 for all j and

Equation (4.16) requires 0 < F
(j)
1 (t) for all j in order to be well defined. The full covariance

and correlation matrices at the vector of timepoints t, C̈N(t), R̈N(t), ¨CM(t), and ¨RM(t) can

all be defined analogously to CN(t), RN(t), CM(t), and RM(t) from the previous section.

The estimators of these matrices created by estimating each element of the matrix are defined aŝ̈CN(t), ̂̈RN(t), ̂̈CM(t), and ̂̈RM(t). These matrix estimates may not be positive-definite. In

this case we can define ˜̈CN(t), ˜̈RN(t), ˜̈CM(t), and ˜̈RM(t) using the same techniques as in

Section 4.2.1.

4.2.3 Weak convergence of covariance and correlation estimates

In this section we show weak convergence properties for the estimates of the covariance and

correlation matrices for martingales and counting processes. Define PF to be the expectation of

a random function, F, and H(j)(t) = I(Y (j) ≥ t). Further define PnN (j1)(t) = 1
n

n∑
i=1

I(Y
(j)
i ≤

t, η
(j)
i = 1) and PnH(j)(t) = 1

n

n∑
i=1

I(Y
(j)
i ≥ t), and for an arbitrary q × r matrixM define the

function Vec(M) to be the column vector created by stacking the columns ofM on top of each

other. In general we will assume that Λ(j) is estimated with the Nelson-Aalen estimator and S(j)

is estimated with the Kaplan-Meier estimator. Theorem 4.3 shows the weak convergence of the

estimates of the elements of CM , CN , RM and RN :
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Theorem 4.3. Assume that the estimator of S(j,j′) converges weakly such that

√
n



PnN (11) − PN (11)

...

PnN (p1) − PN (p1)

PnH(1) − PH(1)

...

PnH(p) − PH(p)

Ŝ(1,2) − S(1,2)

...

Ŝ(p−1,p) − S(p−1,p)



 



ZN1

...

ZNp

ZH1

...

ZHp

ZS12

...

ZSp−1,p


inD[0, τ1]2×. . .×D[0, τp]

2×D[0, τ12]×. . .×D[0, τp−1,p], where τjj′ = (τj, τj′), (D[0, τj], ||·||∞)

is the space of univariate cadlag functions of bounded variation in [0, τj] equipped with uniform

norm, (D[0, τjj′ ], ||·||∞) is the space of bivariate cadlag functions of bounded variation in [0, τjj′ ]

equipped with uniform norm, and [ZN1 , . . . , ZNp , ZH1 , . . . , ZHp , ZS12 , . . . , ZSp−1,p ]T is a mean

zero tight Gaussian process. Assume that P (Y (j) > τj, Y
(j′) > τj′) > 0 for all 1 ≤ j, j′ ≤ p

and Λ(j) <∞ for j = 1, . . . , p, then for any [0, t] ⊂ [0, τ ] where τ = [τ1, . . . , τp],

√
n[Vec(ĈM)− Vec(CM)](t) ZCM (4.17)
√
n[Vec(ĈN)− Vec(CN)](t) ZCN , (4.18)

where ZCM and ZCN are p2 dimensional mean zero Gaussian processes. Further if ω =

[ω1, . . . , ωp], where ωj < τj for j = 1, . . . , p and P (Y (j) ≤ ωj, Y
(j′) ≤ ωj′) > 0 for all

1 ≤ j, j′ ≤ p, then for any [ω, t] ⊂ [ω, τ ]

√
n[Vec(R̂M)− Vec(RM)](t) ZRM (4.19)
√
n[Vec(R̂N)− Vec(RN)](t) ZRN , (4.20)
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where ZRM and ZRN are p2 dimensional mean zero Gaussian processes.

The proof for this theorem is presented in Appendix B, and is done by showing that the right

hand sides of Equations (4.18) and (4.17) are Hadamard differentiable mappings and applying the

functional delta method (Theorem 2.8 in Kosorok (2008)). The additional assumption required

for Equations (4.19) and (4.20) is needed to ensure that RM (j,j) and RN (j,j′) are well defined.

In addition the assumption of joint weak convergence can be shown for the Nelson-Aalen,

Kaplan-Meier and Dabrowska estimators using methods similar to Lemma A.6 in the appendix

of Cheng et al. (2007). Next we will show weak convergence properties for the martingale and

counting process covariance and correlation matrices in the presence of competing risks. Define

Ḧ(j)(t) = I(Ÿ (j) ≥ t). Further let PnN̈ (j1)
l and PnḦ(j) be defined analogously to PnN (j1) and

PnH(j). We will assume that Λ̈1 is estimated using a Nelson-Aalen style estimator and F (j)
1 is

estimated using methods from Kalbfleisch and Prentice (2011), and F (j,j′)
kl is estimated using

methods from Cheng et al. (2007). This leads to Theorem 4.4 which shows weak convergence

for the estimates of the elements of ¨CM , C̈N , ¨RM , and R̈N :

Theorem 4.4. Assume that the estimator of S̈(j,j′) converges weakly such that

√
n



PnN̈ (11)
1 − PN̈ (11)

1

...

PnN̈ (p1)
1 − PN̈ (p1)

1

PnḦ(1) − PḦ(1)

...

PnḦ(p) − PḦ(p)

ˆ̈S(1,2) − S̈(1,2)

...
ˆ̈S(p−1,p) − S̈(p−1,p)



 



ZN̈1

...

ZN̈p

ZḦ1

...

ZḦp

ZS̈12

...

ZS̈p−1,p


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inD[0, τ̈1]2×. . .×D[0, τ̈p]
2×D[0, τ̈12]×. . .×D[0, τ̈p−1,p], where τ̈jj′ = (τ̈j, τ̈j′), (D[0, τ̈j], ||·||∞)

is the space of univariate cadlag functions of bounded variation in [0, τ̈j] equipped with uniform

norm, (D[0, τ̈jj′ ], ||·||∞) is the space of bivariate cadlag functions of bounded variation in [0, τ̈jj′ ]

equipped with uniform norm, and [ZN̈1
, . . . , ZN̈p

, ZḦ1
, . . . , ZḦp

, ZS̈12
, . . . , ZS̈p−1,p

]T is a mean

zero tight Gaussian process. Assume that P (Ÿ (j) > τj, Ÿ
(j′) > τj′) > 0 for all 1 ≤ j, j′ ≤ p

and Λ̈
(j)
k <∞ for j = 1, . . . , p and k = 1, 2, then for any [0, ẗ] ⊂ [0, τ̈ ] where τ̈ = [τ̈1, . . . , τ̈p],

√
n[Vec(̂̈CM)− Vec( ¨CM)](t) Z ¨CM (4.21)
√
n[Vec(̂̈CN)− Vec(C̈N)](t) ZC̈N , (4.22)

where Z ¨CM and ZC̈N are p2 dimensional mean zero Gaussian processes. Further if ω̈ =

[ω̈1, . . . , ω̈p], where ω̈j < τ̈j for j = 1, . . . , p and P (Ÿ (j) ≤ ω̈j, Ÿ
(j′) ≤ ω̈j′) > 0 for all

1 ≤ j, j′ ≤ p, then for any [ω̈, ẗ] ⊂ [ω̈, τ̈ ]

√
n[Vec(̂̈RM)− Vec( ¨RM)](t) Z ¨RM (4.23)
√
n[Vec(̂̈RN)− Vec(R̈N)](t) ZR̈N , (4.24)

where Z ¨RM and ZR̈N are p2 dimensional mean zero Gaussian processes.

The proof of Theorem 4.4 is provided in Appendix B, and uses similar methods as the proof

for Theorem 4.3.

4.3 PCA methods for right censored data

PCA transforms a set of variables into linearly uncorrelated variables. For a p×1 dimensional

random vector X the first principal component direction, v1, is the p × 1 vector for which

Var(vT1 X) is maximized subject to the constraint ||v1||2 = 1. The jth principal component

direction is the p×1 vector for whichVar(vTj X) is maximized subject to the constraints ||vj||2 = 1

and vTj vj′ = 0 for j′ < j. The principal components can be shown to be the eigenvectors of the

covariance matrix of X . The solutions will not be unique if there are repeated eigenvalues. The
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principal components, vTj X , are linearly uncorrelated. The proportion of the variance of the

data explained by the jth principal component is equal to λj
p∑

i=1
λi

, where λi is the ith eigenvalue

of the covariance matrix of X . Estimates PCA are found through eigendecomposition of the

sample covariance matrix or SVD of the mean centered data.

In the presence of right censoring it is not possible to non-parametrically estimate the

principal components for T , the p× 1 dimensional vector of failure times. This is because it is

not possible to estimate the covariance matrix using standard methods without making strong

assumptions on the form of the joint distribution. This is the case with or without the presence

of competing risks. When there are no competing risks, instead of estimating the principal

components for T we consider the principal components for N(t) = [N (1)(t1), . . . , N (p)(tp)]
T

orM(t) = [M (1)(t1), . . . ,M (p)(tp)]
T . The principal directions of N(t) are the eigenvectors of

CN(t) and the principal directions ofM(t) are the eigenvectors of CM(t). Similarly in the

presence of competing risks we consider N̈(t) = [N̈
(1)
1 (t1), . . . , N̈

(p)
1 (tp)]

T , which has principal

directions equal to the eigenvectors of C̈N(t) and M̈(t) = [M̈
(1)
1 (t1), . . . , M̈

(p)
1 (tp)]

T which

has principal directions equal to the eigenvectors of ¨CM(t). In all cases the correlation matrix

can be used instead of the covariance matrix to get a scaled version PCA.

We obtain estimates for principal directions for N(t),M(t), N̈(t), and M̈(t) using the

eigenvectors of consistent estimates of the relevant covariance or correlationmatrices, whichwere

derived in Section 4.2. Consistent estimates of the proportion of variance explained are based on

the corresponding eigenvalues. If we assume that the eigenvalues of CM(t), CN(t), ¨CM(t),

or C̈N(t) are unique then the estimates of the corresponding principal components will be

consistent and asymptotically normal based on the results from Theorem 4.5. This is also true if

we use the correlation matrices instead of the covariance matrices.

Theorem 4.5. Assume that t1, . . . , tn are iid realizations of the p × 1 random vector T , with

joint distribution FT . Assume that Σ is a p×p positive-definite function of FT and that Σ̂n

is a positive-definite function of (t1, . . . , tn). Define vΣi to be the ith eigenvector of Σ and

ξΣi to be the ith eigenvalue of Σ, and likewise v̂Σ̂in to be the ith eigenvector of Σ̂n and ξ̂Σ̂in
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to be the ith eigenvalue of Σ̂n. Assume that
√
n[Vec(Σ̂n) − Vec(Σ)] →d N(0,ΨΣ), where

ΨΣ is some positive definite matrix. If Ξ = diag(ξΣ1, . . . , ξΣp), Ξ̂n = diag(ξ̂Σ1n, . . . , ξ̂Σpn),

V = [vΣ1, . . . , vΣp, and V̂ = [v̂Σ̂1n, . . . , v̂Σ̂pn]. Then
√
n[Vec(V̂ )− Vec(V )]→d N(0,ΨV ) and

√
n[Vec(Ξ̂)− Vec(Ξ)]→d N(0,ΨΞ), where ΨV and ΨΞ are positive-semidefinite matrices

The proof for Theorem 4.5 can be found in Appendix B. When combined with results

from Section 4.2 this shows that estimates for the principal component vectors based on

C̃M(t), C̃N(t), ˜̈CM(t), ˜̈CN(t), or the corresponding correlation matrix estimates are consis-

tent and asymptotically normal.

The principal component scores can also be estimated for those subjects who have not been

censored by time point t. In order for this to be the case it must be that either C > tj , or η(j) = 1

for j = 1, . . . , p. In this case N(t) = [N (1)(t1), . . . , N (p)(tp)]
T , the entire vector of failure

counting processes at time point t will be observed. Define v̂cnj(t) to be the jth eigenvector of

ĈN(t). Then the estimate of the jth principal component score is v̂cnj(t)TN(t). In the presence

of a competing risk a similar estimate can be made using N̈1(t) = [N̈
(1)
1 (t1), . . . , N̈

(p)
1 (tp)]

T

and the jth eigenvector of ̂̈CN(t), v̂c̈nj . In the case where a subject is not censored by time

point t, the entire vector of martingales,M(t) = [M (1)(t1), . . . ,M (p)(tp)]
T can be consistently

estimated by plugging in a consistent estimate of Λ(j)(tj ∧ T (j)) for j = 1, . . . , p. If v̂cmj(t)

is the jth eigenvector of ĈM(t), then the estimate of the jth principal component score is

v̂cmj(t)
TM̂(t). Similar calculations can be done in the case of a competing risk. In this case the

full vector of martingales, M̈1(t) = [M̈
(1)
1 (t1), . . . , M̈

(p)
1 (tp)]

T , can be estimated by plugging

in consistent estimates of Λ̈
(j)
1 (tj ∧ T (j)), for j = 1, . . . , p. The jth eigenvector of ̂̈CM(t) is

defined as v̂ ¨cmj
(t), and the estimate of the jth principal component score is v̂ĉmj(t)TM̂1(t).

All of the estimates for principal component scores based on the scaled counting processes or

martingales can be estimated in the same way using the eigenvectors of the correlation matrices.

In Section 4.5 we show an example where the principal component scores estimates can be used

as covariates in a Cox PH model. This is possible because the form of the partial likelihood

for the Cox PH model only requires the covariate values for those subjects who have not been
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censored by a given timepoint. This allows for principal component scores for censored time to

event variables to be used as covariates in a Cox PH model similar to how principal component

scores are used for principal component regression.

4.4 Simulation results

Simulations were conducted to examine the estimation of principal components of

M(t), N(t), M̈1(t), N̈1(t) focusing on results using correlation matrices. Data sets were simu-

lated with p = 4 and p = 8. First we simulateW = [W (1), . . . ,W (p)] with a multivariate normal

distribution wereW (j) has mean zero and standard deviation one for j = 1, . . . , p. When p = 4

W has covariance matrix

Σ =



1 0.6 0.4 0.2

0.6 1 0.6 0.4

0.4 0.6 1 0.6

0.2 0.4 0.6 1


, (4.25)

and when p = 8,W has covariance matrix

Σ =



1 0.6 0.4 0.2 0 0 0 0

0.6 1 0.6 0.4 0.2 0 0 0

0.4 0.6 1 0.6 0.4 0.2 0 0

0.2 0.4 0.6 1 0.6 0.4 0.2 0

0 0.2 0.4 0.6 1 0.6 0.4 0.2

0 0 0.2 0.4 0.6 1 0.6 0.4

0 0 0 0.2 0.4 0.6 1 0.6

0 0 0 0 0.2 0.4 0.6 1



. (4.26)

T = [T (1), . . . , T (p)] is defined to be a transformation ofW , such that T (j) ∼ Exponential(1).

Specifically T (j) = −ln(1−Φ(W (j))), where Φ(·) is the CDF of a standard normal distribution.
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The competing risk setting has a similar set up. W has the same distribution as above and

[W T , Ẅ ]T has a multivariate normal distribution and the correlation between Ẅ andW (j) is 0.1

for j = 1, . . . , p. T is still defined as the same transformation ofW and T̈ = −ln(1− Φ(Ẅ )).

In all settings two different censoring distributions are considered. The first is C1 ∼

Uniform(0, 4), and the second is [1/4 · C2] ∼ Beta(1.5, 6.5). For all settings a sample size

of n = 200 and n = 1000 are simulated. In the setting without competing risks the average

censoring rate for each event was 25% for both p = 4 and p = 8 when using C1 and 47% for

when using C2. In the semi-competing risk setting the censoring rate was 13% when using

C1 and 34% when using C2. For both censoring schemes in the competing risk setting the

competing and non-competing events were equally likely to be observed. The lower censoring

rate in the competing risk setting is due to the fact that the censoring time must come before

both the non-competing event time and the competing event time in order for the subject to be

censored.

For each data set R̃N(t), R̃M(t), ˜̈RN(t), and ˜̈RM(t) were estimated using the Dabrowska

estimator for bivariate survival functions, the Kaplan-Meier estimator for univariate survival

functions, and the Nelson-Aalen estimator for all cumulative hazard functions. In order to ensure

all estimated covariance and correlation matrices are positive-definite a minimum eigenvalue

of 0.001 is used. Matrices are estimated at t = [1, 1, 1, 1, . . .]T and t = [2, 2, 2, 2, . . .]T . The

true covariance matrices are calculated empirically by simulating a single data set with 500,000

subjects and no censoring which allows for standard correlation and covariance estimation

methods to be used. In the competing risk setting the cumulative hazard necessary to calculate

the martingales is estimated using the Nelson-Aalen estimator based on the 500,000 simulated

subjects. In the setting without competing risks the cumulative hazard is known based on the

distribution of T (j). The true principal component directions are calculated as the eigenvectors of

the true correlation and covariance matrices. More information on the true correlation matrices

can be found in Appendix B.
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For the ith simulated data and jth principal component direction the angle in radians

between the estimated direction, v̂ij and the true direction, vj , and is calculated as

Angle(v̂ij, vj) = cos−1

[
|v̂Tijvj|

||v̂ij||2 · ||vj||2

]
.

For each setting the bias and standard deviation for the jth principal direction is calculated as

the empirical mean and standard deviation of the angle between the estimated direction and true

direction for all 1000 simulated data sets. Table 4.6 reports the the average angle and standard

deviation for the principal component directions using eigendecomposition of R̃N(t) and R̃M(t)

for both censoring distributions and t = [1, 1, 1, 1, . . .]T . Results for t = [2, 2, 2, 2, . . .]T are

reported in Appendix B. As expected the average angle is larger in higher dimensions. For

both p = 4 and p = 8 the sample size increases the mean and standard deviation of the angles

between the estimated direction and true direction across all 1,000 simulated data sets decreases.

Specifically for n = 1000 the average angle between the estimated first direction and true first

direction is less than 0.10 radians, which is just under six degrees, except for when using the

counting process correlation matrix when p = 8 and using C2 as the censoring distribution.

Unsurprisingly the average angle across all sample sizes and dimensions is higher for C2 which

has a higher censoring rate. However even for this higher censoring rate performance is still

reasonable. Even 0.36 radians which is the highest average angle between the true and estimated

first principal direction at n = 200 is just over 20 degrees. At t = [1, 1, 1, 1, . . .]T the estimates

using the martingale correlation matrix outperform the estimates using the estimates using

the counting process correlation matrix across all sample sizes, censoring distributions and

dimensions. This is also true for when t = [2, 2, 2, 2, . . .]T as shown in Appendix B. Table

4.7 reports the average angle and standard deviation for the principal component directions

using eigendecomposition of ˜̈RN(t) and ˜̈RM(t) for both censoring distributions when t =

[1, 1, 1, 1, . . .]T . Results for t = [2, 2, 2, 2, . . .]T are presented in Appendix B. The average angle

between the true direction and estimated direction in the competing risk setting tends to be
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higher than the average angle for between the estimated and true direction in the setting with

no competing risks. In addition the relative effect of increases in dimension, sample size, or

censoring rate is similar between the competing risk and no competing risk settings. Simulations

based on estimates of the martingale and counting process covariance matrices for both the

non-competing risk and competing risk setting shown similar results and are not included.

One difference between the competing risk and no competing risk settings is that the average

angle for first direction is lower for counting process PCA than martingale PCA when p = 8

in the competing risk setting. This is because N̈ (j)
1 (t) and N̈ (j′)

1 (t) will tend to be correlated

even when T (j) and T (j′) are uncorrelated. Consider the fact that in order for N̈ (j)
1 (t) to equal

one it must be the case that both T (j) ≤ t and T (j) ≤ T̈ . If T (j) and T (j′) are independent

and uncorrelated P (T (j′) ≤ T̈ |T (j) ≤ T̈ ) will be higher than P (T (j′) ≤ T̈ ). This in turn

means that when T (j) and T (j′) are independent P (N̈
(j′)
1 (t) = 1|P (N̈

(j)
1 (t) = 1) will be larger

than P (N̈
(j′)
1 (t) = 1), leading to a positive correlation between N̈ (j)

1 (t) and N̈ (j′)
1 (t). The

effect on M̈ (j)
1 (t) and M̈ (j′)

1 (t) is not as large because it will not introduce correlation between

Λ̈
(j)
1 (t ∧ T̈ (j)) and Λ̈

(j′)
1 (t ∧ T̈ (j′)) to the same degree. Because of this in our simulation set up

the separation between the first and second eigenvalues for R̈N(t) is larger than for ¨RM(t),

which leads to more precise estimates of the first principal direction. More information on this

issue, and specifically the correlation between N̈ (j)(t) and N̈ (j′)(t), even when T (j) and T (j′)

are uncorrelated can be found in Appendix B.
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4.5 MPACT trial

The MPACT trial was a clinical trial that ran from 2009 to 2013 in which 861 patients with

metastatic pancreatic cancer were cancer were randomized to be treated with either the standard

of care, gemcitabine, or a novel medication, paclitaxel. The data for the 430 patients randomized

to standard of care is available through Project Data Sphere®. Further details on the MPACT

trial have been published at Von Hoff et al. (2013).

During the course of this trial, there were nine adverse events that occurred in at least

50 of the patients: abdominal pain, anemia, constipation, decreased appetite, fatigue, nausea,

neutropenia, thrombocytopenia, and vomiting. For each adverse event the failure time is the time

from beginning of observation to the first occurrence of that event. Patients who left the study

before having a given adverse event due to death or progression of disease were considered to

have a competing event. Patients who left the study before having a given adverse event for any

other reason were considered to be censored. Overall the censoring percentage for each event

type ranged between 28% for neutropenia and 35% for constipation. The percentage of patients

who had the event of interest ranged from 13% for constipation to 26% for anemia.

We used the martingale correlation matrix because the martingales contain information on

when an event occurred in addition to whether it occurred by a given time. ¨RM(t) was estimated

between t = [30, 30, . . .]T and t = [360, 360, . . .]T in the increment of one day. Day 360 was

chosen as a final time point because by that time 420 of the 430 patients had left the study. The

principal component loadings based on ¨RM(t) at t = [360, 360, . . .]T are presented in Table 4.8.

Figure 4.1 shows the directions for the first two principal components plotted over time between

day 30 and 360. The line type is based on the following grouping of event types. Constitutional

(C): Fatigue; Gastrointestinal (G): Abdominal pain, constipation, decreased appetite, nausea,

vomiting; Hematologic (H): Anemia, neutropenia, thrombocytopenia.

Based on Figure 4.1 it is apparent that the largest loadings in the first principal component

are gastrointestinal and constitutional events, and the loadings for these events all go in the same

direction. The largest loadings for the second principal component are the hematologic events
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Table 4.8: Principal component directions at day 360 and proportion of variance explained for
each principal component using estimates based on martingale covariance matrix

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Abdominal pain 0.38 -0.21 -0.18 0.03 0.05 0.73 -0.41 -0.26 -0.04
Anemia 0.09 0.42 0.56 0.51 -0.39 0.26 -0.02 0.15 -0.05
Constipation 0.25 0.26 0.36 -0.16 0.80 0.10 0.09 0.21 -0.11
Decreased appetite 0.42 -0.16 -0.42 0.33 -0.03 -0.09 0.11 0.68 -0.16
Fatigue 0.43 0.00 -0.06 0.47 0.17 -0.28 0.28 -0.53 0.34
Nausea 0.46 0.14 0.06 -0.35 -0.29 -0.21 0.12 -0.27 -0.65
Neutropenia -0.10 0.55 -0.45 -0.14 -0.06 0.40 0.54 -0.04 0.09
Thrombocytopenia -0.01 0.60 -0.34 0.09 0.10 -0.30 -0.65 -0.04 -0.01
Vomiting 0.44 0.10 0.14 -0.48 -0.27 -0.07 -0.09 0.22 0.64

Proportion Variance 0.26 0.15 0.11 0.10 0.10 0.08 0.08 0.06 0.05

Figure 4.1: Principal component direction loadings from day 30 to 360 for first two principal
components using martingale correlation matrix estimates. Line types indicate constitutional,

gastrointestinal and hematologic event types.
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which also all go in the same direction. Therefore the first principal component is driven by

the occurrence of gastrointestinal events and fatigue, and the second principal component is

driven by the occurrence of hematologic events. This shows that martingales for gastrointestinal

and constitutional events tend to be correlated with martingales for other gastrointestinal and

constitutional events, while martingales for hematologic events tend to be correlated with

martingales for other hematologic events. Together the first two principal components explain

close to 40% of the total variance, which is consistent over time.

Unlike the first two principal components, the third through ninth principal components

do not have a straightforward interpretation. In addition, as can be seen in the proportion of

variance explained in Table 4.8, the proportion of variance explained for the third through

seventh principal components are similar. This is true for all the time points estimated, and

caused issues with potentially crossing eigenvalues. In order to make them comparable over

time, instead of ordering the principal directions based on proportion of variance explained

the order was chosen to minimize the sum of the angles between principal directions across

time. First day 360 was chosen as a reference date, and all the principal directions were ordered

in descending order of the associated eigenvalues. We can define v̂jt to be the jth principal

direction for t = [t, t, . . .]T . For all days other than 360 the ordering of the principal directions

was chosen in order to minimize
9∑
i=1

Angle(v̂jt, v̂j360). This meant for some days the ordering of

the principal directions would be changed. A figure of the principal directions using this method

for ordering can be found in the Appendix B.

In addition to simple analysis of the principal component loadings we used the first two

principal component scores in a Cox PH model with death or progression of disease as the

outcome. Because of the changing principal component loadings and difficulty of interpreting

coefficients for time varying covariates we used a landmark analysis, with landmark times at 30,

60, 90 and 120 days. At each of the landmark times the martingales for each of the nine events

were estimated as an indicator of whether the adverse event had happened by the landmark time

minus the estimated cumulative hazard evaluated at the minimum of the observed event time
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and the landmark time. The cumulative hazard for each of the adverse event types was estimated

using the Nelson-Aalen estimator. The principal component scores were calculated as the inner

product of the martingale scores and the principal component loadings at the landmark time. The

principal component scores for the first two principal components were then used as covariates

in a Cox PH model with time until death or progression of disease past the landmark time as the

outcome of interest. In addition to the principal component scores, the age in years, sex, and

Karnofsky score were included as covariates. The Karnofsky score is a numeric measure of the

general well being of cancer patients, and ranged from 70 to 100 within the sample (Karnofsky

et al., 1948). One subject was dropped from the model for day 30 due to a missing Karnofsky

score.

The estimated hazard ratio for the first principal component score is greater than one,

although the associated p-values are greater than 0.05 for all four landmark times. Recall that the

major loadings onto the first principal component are gastrointestinal and constitutional events.

This implies that among patients who survive up to a given landmark time, those who have

experienced more and earlier gastrointestinal and constitutional events have a higher estimated

hazard of death or progression of disease after the landmark, holding all other covariates constant.

However given that the p-values for the PC 1 coefficients are all above 0.05 further study is

necessary to see if this result holds across a larger population or is just due to random variation

in the MPACT trial sample.

Similarly the estimated hazard ratio for the second principal component score is below

one for all landmark times after day 30, although the associated p-values are greater than 0.05

for all three of these landmark times. Using the same logic as above, this implies that among

patients who have survived to day 60, 90 or 120, those patients who have experienced more

and earlier hematologic events have a lower hazard for death or progression of disease after the

landmark time, holding all other covariates constant. As above, given the p-values for the PC 2

score regression coefficients further study is necessary to see if this result holds across a larger

population.
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These results are consistent with the idea that many gastrointestinal and constitutional

adverse are the result of cancer itself and may be a precursor to progression of disease, while

hematologic adverse events are toxicities of the treatment and may indicate either a greater

exposure to drug (due to increased absorption or decreased degradation) or a greater sensitivity

to its effects.

One potential issue with this analysis is that the principal component loadings are calculated

using the entire sample, while the landmark analysis considers only those patients who are still

in the study at the landmark date. As a sensitivity analysis the principal component loadings and

corresponding scores were estimated at each landmark time using only those patients still in the

study at the time. For both the first and second principal component the correlation between

the principal component scores using the loadings from the full sample and landmark sample

had a correlation above 0.92 and landmark days 30, 60, 90, and 120. Therefore we believe it is

reasonable to use the principal loadings using the full sample. In particular at the later times

this may give more precise estimates since the sample size for the landmark analysis is less than

half the full sample.

Table 4.9: Estimated hazard ratios for landmarked Cox PH models using PC score estimates as
covariates

Day 30 Day 60 Day 90 Day 120

HR P-Value HR P-Value HR P-Value HR P-Value

PC 1 1.12 0.42 1.08 0.61 1.29 0.11 1.20 0.34
PC 2 1.05 0.79 0.79 0.19 0.72 0.07 0.74 0.14
Age 0.99 0.11 0.99 0.21 0.99 0.22 0.99 0.46
SEX:Male 1.00 1.00 1.02 0.90 0.95 0.76 0.94 0.78
Karnofsky Index 0.99 0.09 1.00 0.63 1.00 0.95 1.01 0.58

n 355 249 201 139

Although landmarked analysis makes the interpretation of the coefficients from the Cox PH

model more straightforward, it only analyzes those patients who survived up to the landmark

time. For this reason at each landmark time we compared the average PC 1 and PC 2 scores for

patients who survived up to the landmark time, and those who died or had their disease progress
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before the landmark time. The martingale PC scores were estimated as described in Section 4.3,

and the PC loadings used to calculate the PC scores were estimated at the specified landmark

time. Patients who were censored before the landmark date were not included in the analysis.

We also tested for differences in the distribution of the scores for those who died or progressed

before the landmark time and those still alive at the landmark time using a Wilcoxon rank-sum

test.

We found that the patients who died or progressed before day 30 have a higher average

score on PC 1 than those who are still alive after day 30 (β = 0.73, p=6.43E-8), Table 4.10).

The direction of this difference stays the same for the other three landmark times, although

the magnitude of the difference is not as large for days 60 (β = 0.36, p=7.39E-8), 90 (β =

0.28,p=1.11E-7) or 120 (β = 0.26,p=1.33E-7). That patients who die earlier have a higher PC 1

score is consistent with the notion that gastrointestinal events and fatigue, the main drivers of PC

1, are caused by cancer per se and are early indicators of death or progression of disease. At day

30 (β = 0.04,p=0.10), 60 (β = 0.09, p = 1.73E-3) and 90 (β = 0.06, p = 4.80E-3) the average

PC 2 score of patients who died before the given landmark time is higher than the patients who

survived past the landmark time. However the difference between the two groups is not as large

as it is for PC 1 at the same landmark times. The direction of the differences changes at day 120,

although it is not statistically significant (β = −0.02, p = 017). The smaller difference between

patients who died before the given landmark times and those who survived up to the landmark

times for PC 2 scores relative to PC 1 scores is consistent with hematologic adverse events being

at least in part reactions to toxicities of the treatment and are therefore not early indicators of

death or progression of disease in the same way as gastrointestinal events or fatigue.
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Table 4.10: Comparison of average PC 1 scores and PC 2 scores for patients who
died/progressed before landmark date compared to those who survived up to landmark date

Day 30 Day 60

PC 1 PC 2 N PC 1 PC 2 N

Died/Progressed 0.69 0.03 21 0.26 0.06 89
Survived -0.04 -0.01 356 -0.10 -0.03 249
P-value 6.43E-08 0.10 7.39E-08 1.73E-03

Day 90 Day 120

PC 1 PC 2 N PC 1 PC 2 N

Died/Progressed 0.18 0.03 120 0.12 -0.01 170
Survived -0.10 -0.03 201 -0.14 0.01 139
P-value 1.11E-07 4.80E-03 1.33E-07 0.17

4.6 Discussion

In this paper we show how PCA can be defined for multivariate survival data in the presence

of censoring by using either the counting processes or the corresponding martingales defined by

each event type. We build on previous results for bivariate survival data to show how to estimate

the full covariance and correlation matrices for either the counting processes or martingales

at a given time point. In addition we are able to extend this to the semi-competing risk setting

where each of the different event types are subject to a competing risk as well as an independent

censoring time. For both the standard censoring only setting and the semi-competing risk setting

we are able to show that the estimators for the martingale and counting process covariance or

correlation matrices converge to a mean zero Gaussian process when properly normalized.

We also show that the loadings for the principal components based on the martingales and

counting processes can be consistently estimated through eigendecomposition of the correspond-

ing covariance or correlation matrix. The corresponding estimates are shown to be consistent

and asymptotically normal. A subject’s principal component score can only be estimated up to

the time they are censored, however this still allows for principal component scores to be used

as coefficients in Cox PH regression.
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The usefulness of this method is shown using data from the comparator arm of the MPACT

trial for patients with pancreatic cancer. We estimate the principal components based on the

martingale correlation matrix for nine different adverse events experienced by patients in the

trial, and are able to define medically relevant groupings of these events. One area for future

research is to further consider ordering and potential changing of principal components over

time. In the case where two or more principal components have similar eigenvalues the ordering

may change over time due to random noise. It may be of interest to investigate how to identify

when changes in principal component loadings and eigenvalues over time are due to random

noise or an actual change in true underlying covariance or correlation matrix.
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CHAPTER5: ROBUSTESTIMATIONOFMULTISETCANONICALCORRELATION
ANALYSIS

5.1 Introduction

Many modern data sets have many different modalities or sets of variables all measured

across the same subjects. Because of this many methods have been developed to concisely

summarize the associations between these different modalities. One of the oldest methods for

summarizing the associations between two sets of variables is canonical correlation analysis

(CCA) (Hotelling, 1936). CCA finds the linear combinations of each of the two sets of variables,

called canonical directions, with maximal Pearson correlation. Estimation of CCA using the

sample covariance or correlation matrix typically works well in the low dimension high sample

size setting. When there are more than two sets of variables there are a number of ways to

extend CCA to multiset CCA (mCCA) (Kettenring, 1971; Nielsen, 2002). Recently a number of

extensions of mCCA to the high-dimensional setting have been proposed (Witten and Tibshirani,

2009; Asendorf, 2015; Xu et al., 2012; Fu et al., 2017). There are also a number of methods

that try to summarize both the associations between the different sets of variables, as well as

the independent structure within each set of variables (Lock et al., 2013; Feng et al., 2018;

Gaynanova and Li, 2019). Many of these methods have similarities to different formulations of

the mCCA problem.

One drawback to these methods is that they are not robust to extreme outliers or data

coming from heavy tailed or skewed distributions. We propose a version of high-dimensional

mCCA for these settings that is more robust than existing methods. In order to do this we build

on existing mCCA methods by using robust correlation estimation techniques. To make our

correlation estimation robust we use properties of Kendall’s tau estimator in the transelliptical
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family of distributions (Embrechts et al., 2002; Klüppelberg and Kuhn, 2009; Liu et al., 2012). A

transformation of Kendall’s tau can be used to estimate the correlation matrix for this family of

distributions. This estimator has been shown to have good performance in the high-dimensional

setting (Han and Liu, 2017). We show that using this correlation estimator to estimate mCCA

directions can lead to better performance than the sample Pearson correlation estimator when data

come from heavy tailed elliptical or transelliptical distributions. Another advantage is that it is

invariant to monotone transformations of the data, so if data have a skewed marginal distributions

it is not necessary to transform the data in order to find meaningful linear associations. We also

show that if the data do not come from a multivariate normal distribution existing methods to

test for informative canonical directions, including permutation testing, do not control for type I

error. Because of this we propose a cross-validation based technique for identifying informative

mCCA directions.

The rest of this paper is structured as follows. Section 5.2 gives an in-depth review of mCCA

techniques. Section 5.3 reviews high-dimensional mCCA and proposes our high-dimensional

robust mCCA method. Section 5.4 compares performance of our method to existing methods

in simulation studies. Section 5.5 gives an example of how our method can be applied using

executive function (EF) test scores and brain imaging data in six-year-old children. Section 5.6

gives concluding remarks.

5.2 Multi-set Canonical Correlation Analysis

CCA is a common technique for looking at the association between two sets of vari-

ables. For a p1 × 1 random vector X1 = [X11, . . . , X1p1 ]
T and a p2 × 1 random vector

X2 = [X21, . . . , X2p2 ]
T the first canonical variables, U (1)

1 = a
(1)T
1 X1 and U (1)

2 = a
(1)T
2 X2,

are the linear combinations of X1 and X2 where Cor(U (1)
1 , U

(1)
2 ) is maximized. The canonical

directions are the p1× 1 vector a(1)
1 and the p2× 1 vector a(1)

2 , which can be made unique up to a

change in sign of both vectors by requiring that Var(U (1)
1 ) = Var(U (1)

2 ) = 1. Further canonical

variables and directions are defined with the additional constraint that they are uncorrelated with

all previous canonical variables. It can be shown that the population canonical directions are
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solutions to an eigendecomposition based on a function of the joint covariance matrix ofX1 and

X2 (Hotelling, 1936), and estimates of the canonical directions are typically based on the same

eigendecomposition based on a consistent estimate of the joint covariance matrix of X1 and X2.

Many modern data sets include more than two sets of variables, modalities, or views. For

this reason it is desirable to define mCCA for more than two sets of variables. There are a number

of ways to extend CCA to more than two sets of variables, both in terms of the optimization

and constraint functions. In order to define mCCA we will use the following notation. Define

Xi = [Xi1, . . . , Xipi ]
T to be a pi×1 dimensional random vector for i = 1, . . . , d. The covariance

matrix for X = [XT
1 , . . . , X

T
d ]T can be defined as

ΣX =


Σ11 . . . Σ1d

... . . . ...

Σd1 . . . Σdd

 ,

where Σii is the covariance matrix forXi. The jth canonical variable for the ith set of variables

can be defined as U (j)
i = a

(j)T
i Xi where a(j)

i is a pi × 1 vector. There are a number of mCCA

formulations based on maximizing a function of the covariance matrix ofU (j) = [U
(j)
1 , . . . , U

(j)
d ],

ΣU(j) =


a

(j)T
1 Σ11a

(j)
1 . . . a

(j)T
1 Σ1da

(j)
d

... . . . ...

a
(j)T
d Σd1a

(j)
1 . . . a

(j)T
d Σdda

(j)
d

 .

The five most common objective functions for mCCA were first summarized by Kettenring

(1971) and are:

1. SUMCOR: Maximize
∑d

i=1

∑d
k=1 a

(j)T
i Σika

(j)
k .

2. SSQCOR: Maximize
∑d

i=1

∑d
k=1(a

(j)T
i Σika

(j)
k )2.

3. MAXVAR: Maximize the largest eigenvalue of ΣU(j) .

4. MINVAR: Minimize the smallest eigenvalue of ΣU(j) .
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5. GENVAR: Minimize the determinant of ΣU(j) .

In general it is assumed that all elements of U (j) are uncorrelated with all elements of U (j′) for

j > j′. In order to make the a(j)
i ’s unique up to a sign change additional constraints are needed.

The most obvious extension from standard two set CCA is Var(U (j)
1 ) = . . . = Var(U (j)

d ) = 1.

However other constraints are possible and sometimes desirable. Nielsen (2002) considers the

following constraints:

1. NORM: a(j)T
i a

(j)
i = 1 for i = 1, . . . , d.

2. AVGNORM:
∑d

i=1 a
(j)T
i a

(j)
i = 1

3. VAR: Var(U (j)
1 ) = . . . = Var(U (j)

d ) = 1.

4. AVGVAR:
∑d

i=1 Var(U
(j)
i ) = 1.

The combination of objective functions and constraints results in 20 possible combinations that

can be used for mCCA. Asendorf (2015) gives a useful overview of the 20 different combinations

and shows which have well defined solutions, which of these have closed form solutions, and

which need to be solved numerically. The two most commonly used formulations are the

SUMCOR objective function subject to the AVGVAR constraint and the MAXVAR objective

function subject to the VAR constraint. In both of these cases the canonical directions can be

shown to be solutions to a generalized eigensystem. If we define the matrix

ΣD =


Σ11 . . . 0

... . . . ...

0 . . . Σdd

 ,

and assume ΣD is invertible, then the solutions for the canonical directions using the SUM-

COR/AVGVAR formulation can be shown to be related to the solutions for the generalized

eigensystem,

Σ−1
D ΣXa = λa. (5.27)
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If we define λ(j) to be the jth eigenvalue for this system, then the corresponding generalized

eigenvector, a(j) = [a
(j)T
1 , . . . , a

(j)T
d ]T , is equal to the jth canonical direction vector when

properly normalized (Nielsen, 2002; Asendorf, 2015; Parra, 2018). In order to properly normalize

this vector it is helpful to consider the transformation ã(j) = Σ
(1/2)
D a(j) which makes Equation

(5.27) equal to

Σ
−1/2
D ΣXΣ

−1/2
D ã = λã. (5.28)

If ||ã(j)||2 = 1 then a(j)
S = Σ

−1/2
D ã(j) will be the solution to the SUMCOR/AVGVAR formulation

of mCCA. a(j)
S can be written as a(j)

S = [a
(j)T
S1 , . . . , a

(j)T
Sd ]T where a(j)

Si is the pi × 1 vector

corresponding to the ith set of variables, Xi. λ(j) will also be the SUMCOR value for the jth

canonical direction for this formulation of mCCA.

The solution to the MAXVAR/VAR formulation of mCCA can also be shown to be based

on the solution to Equation (5.28). Define ã(j)
i to be a pi × 1 vector for i = 1, . . . , d such that

ã(j) = [ã
(j)T
1 , . . . , ã

(j)T
d ]. Then

a
(j)
M = Λ−1

ã(j)
Σ
−1/2
D ã(j),

where Λã(j) = blkdiag(||a(j)
i ||2Ipi), is the solution to the MAXVAR/VAR formulation of mCCA

(Kettenring, 1971; Asendorf, 2015). As with a(j)
S , a(j)

M can be written as a(j)
M = [a

(j)T
M1 , . . . , a

(j)T
Md ]T

where a(j)
Mi is the pi×1 vector corresponding to the ith set of variables,Xi. The MAXVAR value

for the jth canonical direction is equal to λ(j) for the MAXVAR/VAR formulation of mCCA.

The covariance matrix for the SUMCOR/AVGVAR canonical variates can be written as

Σ
(j)
US =


a

(j)T
S1 Σ11a

(j)
S1 . . . a

(j)T
S1 Σ1da

(j)
Sd

... . . . ...

a
(j)T
Sd Σd1a

(j)
S1 . . . a

(j)T
Sd Σdda

(j)
Sd

 .
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The covariance matrix for the MAXVAR/VAR canonical variates can be written as

Σ
(j)
UM =


a

(j)T
M1 Σ11a

(j)
M1 . . . a

(j)T
M1 Σ1da

(j)
Md

... . . . ...

a
(j)T
Md Σd1a

(j)
M1 . . . a

(j)T
Md Σdda

(j)
Md

 .

As noted previously the sum of the elements of Σ
(j)
US and the maximum eigenvalue of Σ

(j)
UM

are both equal to λ(j), which is the jth eigenvalue for the generalized eigensystem in Equation

(5.28). In both cases a value of λ(j) > 1 indicates linear association between the canonical

variates, and an informative canonical direction. This means that there are the same number

of informative canonical directions using either the SUMCOR/AVGVAR or MAXVAR/VAR

formulations of mCCA. This relationship can be very useful because there are instances where

the SUMCOR/AVGVAR formulation may be more useful, and other instances where the MAX-

VAR/VAR solution may be more useful. We will see one example of this in Section 5.3.4 where

the SUMCOR/AVGVAR is more useful for identifying informative canonical directions in the

high dimensional setting using cross-validation.

5.3 High dimensional robust mCCA

5.3.1 High-dimensional CCA methods

Although both the SUMCOR/AVGVAR and MAXVAR/VAR have simple closed form

solutions when the estimate of ΣD is invertible, in the case where one or more of the sets

of variables is of high dimension this may not be the case. Further, even if the estimate of

ΣD is invertible, in the high dimensional setting the solution may be very unstable and lead

to imprecise estimates. Further as dimension of the sets of variables increases the estimated

canonical correlations will tend to increase due to random noise. For this reason additional

methods are needed to estimate mCCA directions in the high-dimensional setting, and to ensure

that the correlations in the estimated directions are not due to random noise.
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There are a number of methods that can be used for mCCA in the high-dimensional setting,

we will highlight two of them. One is to add a penalty term to the entries of the canonical

directions, a(j)
i . This technique has been well studied in the standard CCA setting with two sets

of variables (Parkhomenko et al., 2009; Witten et al., 2009; Wilms and Croux, 2015, 2016; Yoon

et al., 2018). Extensions to the mCCA setting using this technique are less common, with Witten

and Tibshirani (2009) being the primary example. Two of the drawbacks to the penalized mCCA

proposed by Witten and Tibshirani (2009) are that it does not account for correlation within the

sets of variables, and it only uses the SUMCOR/NORM formulation.

Another method for high-dimensional mCCA is to first reduce the dimension of each of the

sets of variables using principal components analysis (PCA) or equivalently the singular value

decomposition (SVD) and then using the closed form solutions from the low dimensional setting.

Asendorf (2015) uses this method with the MAXVAR/VAR formulation of mCCA. Another

closely related method is angle-based joint and individual variation explained (Feng et al., 2018).

This is very closely related to using the SUMCOR/AVGVAR formulation of mCCA after using

PCA/SVD to reduce the dimension of each of the sets of variables. Other examples include

Xu et al. (2012) and Fu et al. (2017) which combine reducing the rank of each set of variables

using SVD and adding a penalty or regularization term to the CCA directions. As noted in

Section 5.1, an issue with existing methods is that they are not robust if the data have extreme

outliers, or come from heavy tailed or skewed marginal distribution. In addition methods such

as Asendorf (2015) and Feng et al. (2018) assume a model in which the random error term for

every variable within a set has the same variance. For data sets in which the variables within a

set have variances that differ by an order of magnitude or all variables are standardized to have

variance equal to one, such an assumption is not reasonable.

In Section 5.5 we analyze data from the Early Brain Development Study (EBDS) in which

all of these issues are present. We look at the relationship between cognitive test scores, average

radial diffusivity (RD) in 20 white matter tracts using Diffusion Tensor Imaging (DTI), and

grey matter (GM) volume for 88 different brain regions as defined by the Automated Anatomic
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Labelling (AAL) atlas using structural Magnetic Resonance Imaging. Across all three of these

modalites there are variables which show excess skewness or kurtosis relative to a normal

distribution. The cognitive tests are not all measured on the same scale so they have different

variances unless standardized and the brain regions are different sizes so the GM volume by

region also has different variances, sometimes by an order of magnitude. For this reason a robust

version of high-dimensional mCCA using the correlation matrix instead of the covariance matrix

is necessary. In order to make our method robust we use properties of Kendall’s tau in a family

of distributions known as the transelliptical distribution (Embrechts et al., 2002; Klüppelberg

and Kuhn, 2009; Liu et al., 2012) to estimate a version of the correlation matrix that is robust to

both skewness and heavy tailed distributions. For such distributions additional techniques for

selecting the number of principal components and identifying informative mCCA directions are

also necessary.

5.3.2 Robust correlation estimation in transelliptical family

Using properties of the transelliptical family of distributions we will define a robust estimator

for high dimensional mCCA. In order to define the transelliptical family of distributions it is

necessary to first define the elliptical family of distributions:

Definition 5.5 ( Elliptical Distributions). A p× 1 random vector Y is considered to be elliptical

if for some p × 1 vector µY , some p × p positive semi-definite matrix ΣY , and a function

ψY [0,∞) → R, the characteristic function, Φ, satisfies ΦY−µY (t) = ψ(tTΣY t) for all p × 1

vectors t. In this case we would say that Y is a p× 1 dimensional elliptically distributed random

variable, which we can note as Y ∼ EDp(µY ,ΣY , ψY )

Common elliptical distributions include multivariate normal, multivariate t, and multivariate

logistic distributions. This family of distributions is useful for CCA because all linear combina-

tions of elliptically distributed random variables are still elliptically distributed, and ΣY which

is equal to the covariance matrix of Y up to a scalar when second moments exist. Even when

moments do not exist ΣY defines the linear associations between the elements of Y . A useful

extension of the elliptical family of distributions is the transelliptical family of distributions
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(Embrechts et al., 2002; Klüppelberg and Kuhn, 2009; Liu et al., 2012). A definition of the

transelliptical family of distributions is given below:

Definition 5.6 ( Transelliptical distributions). A p × 1 dimensional random vector Z has

a transelliptical distribution if there exists a positive-semidefinite matrix ΣhZ with all ones

along the diagonal, a function ψhZ : [0,∞) → R, and a set of functions hZ1, . . . , hZp where

hZi : R → R is a monotone increasing function for i = 1, 2, . . . , p such that hZ(Z) =

[hZ1(Z1), . . . , hZp(Zp)]
T ∼ EDp(0,ΣhZ , ψhZ). The random variable Z is a p× 1 dimensional

transelliptically distributed random variable, denoted as Z ∼ TEp(hZ , 0,ΣhZ , ψZ).

An equivalent definition is any multivariate distribution with continuous marginal distribu-

tions and a copula that comes from a multivariate elliptical distribution. Because transelliptical

distributions allow for monotonic marginal transformations of elliptical distributions this can

include heavily skewed marginal distributions. When considering methods such as CCA and

Z is transelliptically distributed, it can be more useful to consider the elliptically distributed

W = hZ(Z) rather than Z itself. This is because as mentioned above linear combinations of

elliptically distributed random variables are still elliptically distributed. Further the parameter

ΣhZ describes the linear associations betweenW , and not Z, if the transformation functions hZ

are nonlinear. In fact the correlation or covariance matrix of Z itself may not be fully informative

of the relationship between the elements of Z if the marginal distributions are heavily skewed or

otherwise non-elliptical.

For this reason it is desirable to estimate ΣhZ rather than the correlation matrix of Z. As

shown in Liu et al. (2012) a consistent estimate of every element of ΣhZ can be obtained through

transformations of consistent estimates of Kendall’s tau for all pairs of variables in Z. Assume

that Z = [ZT
1 , . . . , Z

T
d ]T is a

d∑
i=1

pi × 1 dimensional transelliptically distributed random vector

where Zi = [Zi1, . . . , Zipi ]
T , is a pi × 1 random vector, and Z̃ is an identically distributed

copy of Z. Then the Kendall’s tau between Zij for i = 1, . . . , d and j = 1, . . . , pi and Zkl for
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k = 1 . . . , d and l = 1, . . . , pd is equal to

τ (Zij ,Zkl) = E[sign(Zij − Z̃ij)(Zkl − Z̃kl)]

For n iid copies of Z, z1, . . . , zn a consistent and asymptotically normal estimate of τ (Zij ,Zkl) is

τ̂ (Zij ,Zkl)
n =

1(
n
2

) ∑∑
1≤r<s≤n

sign(zrij − zsij)sign(zrkl − zskl),

where zrij is the rth copy of Zij . Within the transelliptical family there is a known correspon-

dence between the, σij,kl, the entry of ΣhZ corresponding to Zij and Zkl and the Kendall’s tau

coefficient between Zij and Zkl. Specifically σij,kl = 2
π

arcsin
(
τ (Zij ,Zkl)

)
. This is a straightfor-

ward extension of the same result from Lindskog et al. (2003) for elliptical distributions. Based

on this a consistent estimate of σij,kl is

σ̂ij,kl =
2

π
arcsin

(
τ̂ (Zij ,Zkl)
n

)
.

As shown by Liu et al. (2012) an estimate of ΣhZ , Σ̂hZ , can be obtained by estimating all the

elements in this fashion. Importantly this estimator does not require the estimation of hZ or φhZ

because Kendall’s tau is invariant to monotone increasing transformations of the data. Other

techniques for estimating ΣhZ will require estimation or assumptions for the form of hZ and

φhZ . Because Σ̂hZ is not guaranteed to be positive semidefinite it is sometimes necessary to map

Σ̂hZ to a positive semidefinite matrix which we will denote as Σ̃hZ . In the case where d > 2

and pi is large for some i in 1, . . . , d we can use Σ̃Z to get robust estimates of high-dimensional

mCCA directions. This can be considered to be a latent version of high-dimensional mCCA

where we look for the most meaningful relationships between hZ(Z) = W , rather than Z itself.

5.3.3 Latent high-dimensional mCCA in the transelliptical family

We will assume that the observed data, Z = [ZT
1 , . . . , Z

T
d ]T is a

∑d
i=1 pi × 1 dimensional

transelliptically distributed random vector. This means that there is a set of
∑d

i=1 pi monotonic
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transformations, hZ(·), such that hZ(Z) = W is a
∑d

i=1 pi×1 dimensional elliptically distributed

random vector with scatter matrix that has all 1’s along the diagonal. W can be written as

W = [W T
1 , . . . ,W

T
d ]T whereWi is a pi × 1 dimensional elliptically distributed random vector.

The scatter matrix forW can be written as

ΣW =


ΣW11 . . . ΣW1d

... . . . ...

ΣWd1 . . . ΣWdd

 ,

and is equivalent to ΣhZ . Note that each element of ΣW can be consistently estimated using

transformations of Kendall’s tau between all pairs of variables in Z as described in the previous

section. Define Bij to be the eigenvector corresponding to the jth eigenvalue of ΣWii and

B
(ri)
i = [Bi1, . . . , Biri ] to be the pi × ri matrix that has the first ri eigenvectors of ΣWii along

the columns. We can then define Vij = BT
ijWi to be the jth principal component score forWi

and V (ri)
i = B

(ri)T
i Wi to be the ri × 1 vector of principal component scores for Wi. Define

V (r) = [V
(r1)T

1 , . . . , V
(rd)T
d ]T , then the covariance matrix for V (r) can be defined as

ΣV (r) =


B

(r1)T
1 ΣW11B

(r1)
1 . . . B

(r1)T
1 ΣW1dB

(rd)T
d

... . . . ...

B
(rd)T
d ΣWd1B

(r1)
1 . . . B

(rd)T
d ΣWddB

(rd)
d


and

ΣV (r)D =


B

(r1)T
1 ΣW11B

(r1)
1 . . . 0

... . . . ...

0 . . . B
(rd)T
d ΣWddB

(rd)
d

 ,

It is not possible to get estimates of V (r) without knowing or estimating hZ , but B(ri)
i , ΣV (r) ,

and ΣV (r)D can all be estimated using eigendecomposition of the estimate of ΣW , which can be

estimated using transformations of pairwise Kendall’s tau estimates of Z.
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If ri is sufficiently small for i = 1, . . . , d then it is reasonable to assume that Σ−1
V (r)D

exists.

Therefore we can solve for the SUMCOR/AVGVAR and MAXVAR/VAR canonical directions

of V (r) through the generalized eigensystem

Σ
−1/2

V (r)D
ΣV (r)Σ

−1/2

V (r)D
ãV (r) = λãV (r) . (5.29)

The jth SUMCOR/AVGVAR canonical direction for V (r) is a(j)

SV (r) = Σ
−1/2

V (r)D
ã

(j)

V (r) and the jth

MAXVAR/VAR canonical direction for V (r) is a(j)

MV (r) = Λ
ã
(j)

V (r)

Σ
−1/2

V (r)D
ã

(j)

V (r) . These can all by

estimated using the transformed Kendall’s tau matrix estimator for ΣW .

If we assume that ri is large enough for i = 1, . . . , d such that Cov(Vij, Vi′j′) = 0 where

ri < j ≤ pi, 1 ≤ j′ ≤ pi′ , 1 ≤ i, i′ ≤ d and i 6= i′, then the SUMCOR/AVGVAR and

MAXVAR/VAR canonical directions of W can be solved from the canonical directions for

V . Define a(j)

SV (r) = [a
(j)T

SV (r)1
, . . . , a

(j)T

SV (r)d
]T where a(j)T

SV (r)i
is ri × 1 vector corresponding to

V
(ri)
i . a(j)T

MV (r)i
can be defined analogously. In this case the jth SUMCOR/AVGVAR canonical

direction forWi is a(j)
SWi = B

(ri)
i a

(j)

SV (r)i
, and the jthMAXVAR/VAR canonical direction forWi

is a(j)
MWi = B

(ri)
i a

(j)

MV (r)i
. These equalities can be used to obtain estimates of a(j)

SW and a(j)
MW , by

plugging in estimates of B(ri)
1 , a(j)

SV , and a
(j)
MV .

5.3.4 Selecting number of principal directions for each set and identifying informative
canonical correlation vectors

One of the primary challenges in estimating high dimensional mCCA for the transelliptical

family is selecting the appropriate dimension of B(r1)
i for i = 1, . . . , d. If the estimated rank is

too small, then the assumption that all principal components greater than ri in the ith set are

uncorrelated with all other sets will not be reasonable. This means that the estimated canonical

correlations and vectors for W will not use all the correlations between the different sets of

variables. Alternatively if ri is too large then estimates will be very unstable and have a high

variance. The optimal selection would be the smallest possible ri for i = 1, . . . , d such that

the assumption Cov(Vij, Vi′j′) = 0 where ri < j ≤ pi, 1 ≤ j′ ≤ pi′ , 1 ≤ i, i′ ≤ d, and i 6= i′

is met. However, finding the optimal ri is not a straightforward task. This is related to the
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more general problem of selecting the number of principal components when using PCA for

dimension reduction. As mentioned previously there are a number of methods for selecting a

number of principal components, however these tend to be either heuristic methods such as

looking for an "elbow" in the Scree plot, or make assumptions that are not reasonable for all

transelliptical distributions. Specifically methods such as those in Choi et al. (2017) and Lock

et al. (2020) assume that each variable within a set has an random error term with the same

variance. As noted in Section 5.3.1 this assumption is not reasonable for many data sets.

Because of these challenges we recommend a data driven approach to selecting ri using cross-

validation. Rather than focusing on finding some optimal low rank approximation of each data set

based, we focus on finding the number of principal components to maximize the cross-validated

SUMCOR value based on the SUMCOR/AVGVAR mCCA formulation. Cross-validation is

necessary because increasing the number of principal components for each set can only increase

the estimated SUMCOR value. Cross-validation allows us to help determine if this is due to

increased signal or just added noise due to adding more directions. As a first step a lower bound,

li, and upper bound, ui, of possible values for ri should be chosen for i = 1, . . . , d. This means

we will consider all values of ri such that li ≤ ri ≤ ui. Each set li and ui can be chosen by looking

at scree plots, eigenvalues, and the cumulative percentage of variance explained by each principal

component. Define R =: {(r1, . . . , rd) ∈ N× . . .× N|l1 ≤ r1 ≤ u1, . . . , ld ≤ rd ≤ ud}. This

means there will be (u1−l1+1)×. . .×(ud−ld+1) possible combinations inR. For every r ∈ R

the k-fold cross-validated SUMCOR value using the SUMCOR/AVGVAR canonical direction

can be calculated. For a given r, define â(jr)
SWik to be the jth estimated SUMCOR/AVGVAR

direction for the ith set of variables for the kth training fold. Define Σ̃Wii′k to be the estimated

correlation matrix between the ith and i′th sets of variables using the kth test set. Note that

Σ̃Wii′k depends only on the split of the data and not r. The cross-validated covariance matrix for
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the SUMCOR canonical variates is

Σ
(jr)
USk =


â

(jr)T
SW1kΣ̃W11kâ

(jr)
SW1k . . . â

(jr)T
SW1kΣ̃W1dkâ

(jr)
SWdk

... . . . ...

â
(jr)T
SWdkΣ̃Wd1kâ

(jr)
SW1k . . . â

(jr)T
SWdkΣ̃Wddkâ

(jr)
SWdk

× 1
d∑
l=1

â
(jr)T
SWlkΣ̃Wllkâ

(jr)
SWlk

(5.30)

The extra scaling term on the right hand side of Equation (5.30) is to ensure that the AVGVAR

constraint is exactly met for the kth test set. The cross-validated SUMCOR value for the jth

SUMCOR/AVGVAR canonical correlation for the kth test set is

CV
(jr)
Sk =

d∑
i=1

d∑
i′=1

â
(jr)T
SWikΣ̃Wii′kâ

(jr)
SWi′k

d∑
l=1

â
(jr)T
SWlkΣ̃Wllkâ

(jr)
SWlk

. (5.31)

The average cross-validation SUMCOR value can then be calculated as

CV
(jr)
S =

K∑
k=1

CV
(jr)
Sk

. (5.32)

The cross-validated SUMCOR values can be used to select the optimal r ∈ R by finding the

value of r that maximizes the sum of the first J SUMCOR values. Define CV (Jr)
S =

J∑
j=1

CV
(jr)
S ,

to be the sum of the first J cross-validated SUMCOR values for r. In general we recommend

focusing on a small number of directions. This is because the goal is to find the best possible

low rank representation of the correlations between data sets, which are driven by the first few

directions. A simple way to choose the optimal r would simply be argmaxr∈RCV
(Jr)
S . However

this will largely depend on the particular split of the data for the chosen r. A way to get around this

is to use a locally weighted regression technique such as locally estimated scatterplot smoothing

(LOESS) (Cleveland, 1979), and find the r that maximizes the expected value of CV (Jr)
S . For

LOESS regression or any similar technique the expected value of CV (Jr)
S , E(CV

(Jr)
S ), can be

written as a function of r. Using this we will choose the optimal r as r̂ = argmaxrE(CV
(Jr)
S ).

It is important to note that this method is used to try and find the best canonical directions, and
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not give the most efficient low-rank approximation of each set of variables. Not including an

important principal component for one of the variables will likely cause a bigger drop-off in

performance than including an extra principal component that is not correlated with any of

the other sets of variables. For this reason the cross-validation technique may tend to slightly

overestimate the optimal ri for each set.

These cross-validated values can also be used to identify the informative canonical directions.

The informative canonical directions are those with a SUMCOR value greater than one for the

SUMCOR/AVGVAR formulation. One useful property of CV (jr)
Sk is that it is not bounded below

by one. This is because even though the diagonals of Equation (5.30) are guaranteed to sum to

one, the off diagonals may be positive or negative. This is in contrast to performing an analogous

cross-validation technique for the MAXVAR/VAR formulation. In this case if we ensure that

the diagonal terms are all equal to one, even if the off diagonal terms are negative the maximum

eigenvalue will be greater than one. This means even when the true direction is uninformative if

we use the MAXVAR/VAR form for cross-validation the cross-validated MAXVAR values will

all be above one, which indicates an informative direction, except on a set of measure zero. This

is related to a problem in standard CCA in which the estimated canonical correlation will always

be above zero except on a set of measure zero, even when the true canonical correlation is zero.

However as noted above there are the same number of true informative directions for both the

MAXVAR/VAR and SUMCOR/AVGVAR formulations, which means we can use the SUMCOR

cross-validation procedure to identify the informative directions for both formulations of the

mCCA problem.

There are a number of previous methods to identify informative canonical directions that

do not work across all transelliptical distributions. Among these is permutation based testing,

which does not work for non-Gaussian elliptical distributions. This is because permutation

testing creates a reference distribution assuming that the sets of variables are all independent.

However for non-Gaussian elliptical distributions such as the multivariate t distribution having

zero Pearson or Kendall’s tau correlation does not imply independence. This leads to inflated
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type I error for permutation tests if the data are distributed according to one of these distributions,

as shown in Section 5.4. The same issue will arise in transelliptical distributions with a non-

Gaussian copula.

cross-validation, and specifically using the SUMCOR/AVGVAR formulation of cross-

validation, helps to get around both of these issues. cross-validation does not create a null

distribution assuming all variables are independent, and instead tries to create a test and training

set with the same underlying distribution. Further as mentioned previously the values for CV (jr)
SK

are not bounded below by one, since the sum of the off diagonals can be less than one. This

means that under the null where λ(j) = 1, E(CV
(jr)
S ) = 1. This is the primary reason that we

use the cross-validated SUMCOR value, rather than the cross-validated MAXVAR value.

This also allows for a testing procedure based on the sample mean and standard deviation of

the cross-validated SUMCOR values. If we define m = (u1 − l1 + 1) × . . . × (ud − ld + 1),

then we can enumerate CV (jr)
S for all r ∈ R as CV (j)

S = [CV
(j1)
S , . . . , CV

(jm)
S ]. A test statistic

based on CV (j)
S is

T
(j)
S =

Mean(CV
(j)
S )− 1

SD(CV
(j)
S )

, (5.33)

whereMean(·) is the sample mean of a vector and SD(·) is the sample standard deviation. We can

get an approximate level α test for the null that the true SUMCOR value, λ(j) ≤ 1, by rejecting

the null if T (j)
S > z1−α where z1−α is the 1 − α percentile of a standard normal distribution.

This test can be done in a step down procedure, starting with T (1)
S , and moving through all the

test statistics for all higher order canonical correlations in a sequential order. Once we fail to

reject the null that λ(j) ≤ 1 then we would also reject the null that λ(j′) ≤ 1 for all j′ > j.

Even though the values CV (j)
S are not independent, simulation studies suggest that this works

reasonably well and is slightly conservative. Further this does not depend on the selection of

R, so long asm is reasonably large. However the power under the alternative will depend on

the selection of R. This is because if ui and li are set to be too low then the cross-validated

SUMCOR values will tend to be lower than the true value of λ(j). Alternatively if ui and li are

set to be too high, then the cross-validated SUMCOR values will have a high variance, making
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it tougher to detect true signal. Even when selection of the number of principal components is

fixed before any cross-validation procedures, a similar testing procedure can be done by doing

repeated cross-validation for the fixed value of r. However if cross-validation is used to both

select the optimal value of r, only using repeated cross-validation on this selection of r may

lead to inflated type I error. This is related to common multiple testing problems. For a given

data set, even if there is no correlation between the sets of variables one or more of the many

possible choices of r will be likely to have an unusually high SUMCOR value due to random

chance. If r is chosen to maximize the cross-validated SUMCOR value it is very likely that one

such value of r will be chosen and lead to potential inflated type I error. This is why we focus

on a test statistic averaging many different possible values of r. However if r is chosen using

another technique that does not focus on maximizing cross-validated SUMCOR values the same

multiple comparison type issues may not be an issue. Simulations that investigate identifying

informative directions and choosing the optimal number of principal components for each set

are presented in Section 5.4.

5.4 Simulations Results

Simulation studies were conducted to study estimation of high-dimensional mCCA for

elliptical distributions using the transformed Kendall’s tau correlation estimator. In addition

we investigate the performance of cross-validation and other testing procedures for identifying

informative canonical directions. For simulations studying the estimation of the mCCA directions

a correlation structure that has three informative canonical directions was considered. For

simulations studying the identification of informative directions the same correlation structure

was considered, as well as one that has zero informative directions. For both set ups there are

three sets of variables, each with a dimension of 100. For both correlation structures within each

set the first 10 variables in the same block are all correlated with each other with a correlation

coefficient of 0.47, variables 11 through 20 in the same block are all correlated with each other

with a correlation coefficient of 0.41, variables 21 through 30 in the same block are all correlated

with each other with a correlation coefficient of 0.33, and variables 31 through 40 in the same
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block are all correlated with each other with a correlation coefficient of 0.23. All other within

set correlations are zero. For the first correlation structure the first 10 variables of each set are

correlated with the first 10 variables of every other set, with a correlation coefficient of 0.11,

variables 11 through 20 of one set are correlated with variables 11 through 20 of every other set

with a correlation coefficient of 0.06, and variables 21 through 30 of one set are correlated with

variables 21 through 30 in every other set with a correlation coefficient of 0.2. All other between

set correlations for the first correlation structure are zero. For the second correlation structure all

between set correlations are zero. A heatmap of the two correlation structures are presented in

Figure 5.2, with the first 100 rows/columns representing the first set, the next 100 rows/columns

representing the second set, and the final 100 rows/columns representing the third set. For the

first correlation structure the three informative MAXVAR/VAR and SUMCOR/AVGVAR values

are equal to 2, 1.43, and 1.27.

For both correlation structure one and two data sets were simulated assuming a multivariate

normal distribution and multivariate t distribution with three and 10 degrees of freedom. Sample

sizes of n=200 and n=1000 were considered. A total of 1000 data sets were simulated for each

setting. For each simulated data set the high dimensional mCCA directions and correlations

were estimated as described in Section 5.3.3 using both the transformed Kendall’s correlation

matrix estimator and the sample correlation matrix. In order to select the optimal r1 for each

set the cross-validation procedure using LOESS regression described in Section 5.3.4 was used

with li = 3, ui = 9 and K = 5. The sum of the cross-validated SUMCOR values for the first

four directions for each combination of r1, r2, and r3 was used as the outcome, and the values of

r1, r2, and r3 as the predictors. The smoothing parameter was set to 0.5. Smoothing parameters

of 0.25 and 0.75 were also considered and gave similar results. The optimal values r1, r2, and r3

were selected to be the values that gave the highest expected cross-validated SUMCOR value

summed over the first four directions.
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Figure 5.2: Correlation structure one on the left and correlation structure two on the right

5.4.1 Estimation of canonical directions

First we look at how well the directions are estimated using both transformed Kendall’s

tau and the sample Pearson correlation matrix to estimate the true correlation matrix. Due to

the large dimension of each of the sets of variables the angle between the true direction and

the estimated direction will tend to be large even when estimation procedures are reasonable.

Instead we calculate the "true" SUMCOR and MAXVAR values of the estimated directions â(j)
S

and â(j)
M using the true underlying correlation matrix, which is only possible in simulations when

the true correlation matrix is known. Define Σ
(j)

ÛS
such that the entry for the ith row and lth

column is
â

(j)T
Si Σilâ

(j)
Sl

d∑
i=1

â
(j)T
Si Σiiâ

(j)
Si

.

Similarly define Σ
(j)

ÛM
such that the entry for the ith row and lth column is

â
(j)T
Mi Σilâ

(j)
Ml√

â
(j)T
Mi Σiiâ

(j)
Mi

√
â

(j)T
Ml Σllâ

(j)
Ml

.

The sum of the entries of Σ
(j)

ÛS
is the SUMCOR value in the direction of â(j)

S , and the maximum

eigenvalue of Σ
(j)

ÛM
is the MAXVAR value in the direction of â(j)

M . Because this uses the true

correlation matrix instead of the estimated correlation matrix this gives an indicator of how

well the estimated directions are able to find true associations between the sets of variables. We
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can compare these values to the theoretical maximum in order to examine how well the mCCA

directions are estimated.

Table 5.11 reports the estimated bias and standard deviation for these estimated MAXVAR

and SUMCOR values relative to the theoretical maximum from 1,000 simulations. For the first

three directions the bias is negative, but decreasing in absolute value as sample size increases.

This negative bias is to be expected because the estimated directions SUMCOR and MAXVAR

values are being compared to the optimal directions. For the first direction the bias can only be

negative or zero because there are no directions with a SUMCOR or MAXVAR value better

than the optimal direction. Also note that for the fourth direction, which is an uninformative

direction with a true MAXVAR and SUMCOR value of one, the bias for the MAXVAR is

always positive. This is because the maximum eigenvalue of Σ
(j)

ÛM
is bounded below by one.

This is related to the reason that SUMCOR is preferred over MAXVAR during cross-validation

procedures. The sum of all entries for Σ
(j)

ÛS
does not have the same issue, because even though

the diagonal will sum to one, the sum of the off diagonal elements may be positive or negative.

When data come from a multivariate normal distribution the sample Pearson correlation matrix

and transformed Kendall’s tau estimator perform nearly identically. For both estimators the bias

for the first three directions is between -0.10 and -0.05 for both the SUMCOR and MAXVAR

formulations when n=200 and is equal to -0.02 for all three directions when n=1000. For heavier

tailed distributions such as a multivariate t with three or 10 degrees of freedom the transformed

Kendall’s tau estimate performs much better than the sample Pearson correlation matrix. This is

particularly noticeable for the first direction when n=200 and for n=1000 when the multivariate

t has three degrees of freedom. In addition for the multivariate t with three degrees of freedom

the bias when using the sample Pearson correlation matrix is positive for the third direction

when n=1000. This is due to imprecision in the estimation of the first two directions which

changes the constraints and allows for the average correlation in the direction of the estimated

third direction to be higher than the true third direction. This still shows that mCCA using the

sample Pearson correlation matrix does not meaningfully summarize the associations between
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the three sets of variables as desired due to imprecision in estimating the first two directions. In

contrast the mCCA directions using the transformed Kendall’s tau estimator perform almost

as well when data come from a multivariate t distribution compared to when data come from a

multivariate normal distribution. This highlights the robustness of the transformed Kendall’s tau

estimator for heavy tailed elliptical distributions. Table 5.12 reports the average and standard

deviation of the absolute value of the Pearson correlation between a(j)
M and â(j)

M as well as a(j)
S and

â
(j)
S over all 1000 simulated data sets. This is an alternative way of looking at the performance

of the estimated MAXVAR and SUMCOR directions. This is only reported for the first three

directions because only the first three directions are well defined. The absolute value of the

Pearson correlation is used because aM and âS are only defined up to a sign change. This table

also shows that using the transformed Kendall’s tau estimator outperforms the sample Pearson

correlation matrix when data come from a multivariate t distribution with three or 10 degrees of

freedom, and performs similarly when data come from a multivariate normal distribution. This

shows more clearly that estimates of the first direction are better than estimates of higher order

directions across all settings.

5.4.2 Identifying informative canonical directions

As noted in Section 5.3.4, identifying informative mCCA directions is of interest so that

purely random mCCA directions are not interpreted as representing meaningful associations

between the different sets of variables. For both the SUMCOR/AVGVAR and MAXVAR/VAR

formulations this corresponds to directions with a SUMCOR or MAXVAR value greater than

one. We compare the CV testing procedure from Section 5.3.4 with two different permutation

procedures. In all cases the type I error rate for each test, α, is set to 0.05. For the cross-validation

procedure we calculate T (j)
S for j = 1, 2, . . . , 4. We set li = 3 and ui = 9 for i = 1, 2, 3. For

the permutation testing procedures the subject labeling is randomly permuted independently

for each of the three sets of variables and the estimated SUMCOR values are calculated using

this new permuted data set. This is repeated 1,000 times to create a permutation distribution of

SUMCOR values when all sets of variables are independent. For the first permutation procedure,
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Table 5.11: Bias (SD) of estimated MAXVAR/VAR direction MAXVAR value compared to true
direction MAXVAR value and estimated SUMCOR/AVGVAR direction compared to true
direction SUMCOR value, selecting between three and nine principal components per set

n=200 n=1000

Transformed Pearson Transformed Pearson
Kendall’s tau Correlation Kendall’s tau Correlation

MAXVAR

Normal Dir 1 -0.10 (0.03) -0.09 (0.03) -0.02 (0.01) -0.02 (0.01)
Dir 2 -0.09 (0.06) -0.09 (0.06) -0.02 (0.02) -0.02 (0.02)
Dir 3 -0.06 (0.08) -0.06 (0.08) -0.02 (0.02) -0.02 (0.02)
Dir 4 0.12 (0.07) 0.11 (0.07) 0.05 (0.05) 0.05 (0.05)

t3 Dir 1 -0.13 (0.05) -0.83 (0.16) -0.02 (0.01) -0.74 (0.28)
Dir 2 -0.13 (0.09) -0.22 (0.17) -0.03 (0.02) -0.05 (0.28)
Dir 3 -0.08 (0.09) -0.03 (0.17) -0.02 (0.03) 0.08 (0.22)
Dir 4 0.13 (0.07) 0.22 (0.14) 0.06 (0.05) 0.28 (0.17)

t10 Dir 1 -0.11 (0.04) -0.25 (0.21) -0.02 (0.01) -0.03 (0.03)
Dir 2 -0.11 (0.07) -0.10 (0.18) -0.02 (0.02) -0.05 (0.07)
Dir 3 -0.07 (0.08) -0.05 (0.11) -0.02 (0.02) -0.04 (0.07)
Dir 4 0.12 (0.06) 0.16 (0.09) 0.05 (0.05) 0.10 (0.08)

SUMCOR

Normal Dir 1 -0.10 (0.03) -0.10 (0.03) -0.02 (0.01) -0.02 (0.01)
Dir 2 -0.10 (0.06) -0.10 (0.06) -0.02 (0.02) -0.02 (0.02)
Dir 3 -0.08 (0.09) -0.08 (0.09) -0.02 (0.02) -0.02 (0.02)
Dir 4 0.01 (0.08) 0.01 (0.07) -0.01 (0.02) -0.01 (0.02)

t3 Dir 1 -0.14 (0.05) -0.85 (0.17) -0.02 (0.01) -0.74 (0.28)
Dir 2 -0.14 (0.09) -0.24 (0.18) -0.03 (0.02) -0.06 (0.28)
Dir 3 -0.10 (0.10) -0.06 (0.19) -0.02 (0.03) 0.07 (0.23)
Dir 4 0.04 (0.09) 0.16 (0.16) 0.00 (0.03) 0.26 (0.18)

t10 Dir 1 -0.11 (0.04) -0.26 (0.21) -0.02 (0.01) -0.03 (0.03)
Dir 2 -0.11 (0.07) -0.10 (0.19) -0.02 (0.02) -0.05 (0.07)
Dir 3 -0.09 (0.09) -0.06 (0.12) -0.02 (0.02) -0.04 (0.07)
Dir 4 0.02 (0.09) 0.11 (0.11) -0.01 (0.02) 0.06 (0.09)

88



Table 5.12: Average (SD) of the correlation between estimated and true MAXVAR/VAR
directions and SUMCOR/AVGVAR directions, selecting between three and nine principal

components per set

n=200 n=1000

Transformed Pearson Transformed Pearson
Kendall’s tau Correlation Kendall’s tau Correlation

MAXVAR

Normal Dir 1 0.87 (0.03) 0.87 (0.02) 0.97 (0.01) 0.97 (0.01)
Dir 2 0.67 (0.19) 0.68 (0.19) 0.91 (0.06) 0.91 (0.06)
Dir 3 0.54 (0.23) 0.54 (0.22) 0.86 (0.09) 0.86 (0.08)

t3 Dir 1 0.82 (0.04) 0.19 (0.15) 0.96 (0.01) 0.28 (0.25)
Dir 2 0.57 (0.22) 0.15 (0.13) 0.89 (0.07) 0.15 (0.14)
Dir 3 0.42 (0.23) 0.15 (0.12) 0.82 (0.11) 0.18 (0.16)

t10 Dir 1 0.85 (0.03) 0.71 (0.19) 0.97 (0.01) 0.95 (0.04)
Dir 2 0.64 (0.19) 0.37 (0.25) 0.91 (0.06) 0.80 (0.20)
Dir 3 0.49 (0.22) 0.32 (0.22) 0.85 (0.09) 0.66 (0.25)

SUMCOR

Normal Dir 1 0.87 (0.03) 0.87 (0.02) 0.97 (0.01) 0.97 (0.01)
Dir 2 0.67 (0.19) 0.67 (0.19) 0.91 (0.06) 0.91 (0.06)
Dir 3 0.53 (0.22) 0.53 (0.22) 0.85 (0.09) 0.86 (0.08)

t3 Dir 1 0.82 (0.04) 0.19 (0.15) 0.96 (0.01) 0.28 (0.25)
Dir 2 0.57 (0.22) 0.15 (0.12) 0.89 (0.07) 0.15 (0.14)
Dir 3 0.41 (0.23) 0.15 (0.12) 0.82 (0.11) 0.18 (0.15)

t10 Dir 1 0.85 (0.03) 0.70 (0.19) 0.97 (0.01) 0.95 (0.04)
Dir 2 0.63 (0.19) 0.37 (0.25) 0.90 (0.06) 0.79 (0.21)
Dir 3 0.48 (0.22) 0.31 (0.22) 0.84 (0.09) 0.65 (0.25)
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PERM1, the null of an uninformative direction is rejected if the estimated jth SUMCOR value

for the original data set is greater than the (1-α) percentile of the permutation distribution for

the jth direction. For the second permutation procedure, PERM2, the null of an uninformative

direction is rejected if the estimated jth SUMCOR value for the original data set is greater

than the (1-α) percentile of the permutation distribution for the first direction. Similar to the

cross-validation procedure both PERM1 and PERM2 are done using a step down procedure, in

which the null of a true SUMCOR value of one for higher order directions can only be rejected

if it has also been rejected for all previous directions.

Table 5.13 gives the type I error for simulations done using correlation structure two using

the transformed Kendall’s tau correlation estimator and sample Pearson correlation estimator. In

all cases the reported values are the proportion of simulations where the null of a true SUMCOR

value of one is rejected. The cross-validation procedure controls for type I error for the first

direction across all distributions and sample sizes when using transformed Kendall’s correlation

estimator. It is in fact slightly conservative, with type the type I error ranging between 0.02 and

0.04. The cross-validation procedure also controls for type I error using the sample Pearson

correlation estimator when data come from a multivariate normal distribution. When data come

from a t distribution with three degrees of freedom and correlation is estimated using the sample

Pearson correlation matrix the cross-validation procedure results in slightly inflated type I error

of 0.08 for the first direction when n=200. The low type I error across all settings for the second

direction using the cross-validation procedure is not surprising due to the step down procedure

of the test. In order for the null to be rejected for the second direction it must also be rejected for

the first direction.

For both permutation testing procedures type I error is only controlled when data come from

a multivariate normal distribution. When data come from a t distribution with either three or 10

degrees of freedom the type I error is above 0.05. This is true when using the sample Pearson

correlation matrix estimator or the transformed Kendall’s correlation estimator. However the type

I error is particularly large when using the sample Pearson correlation estimator. The inflated
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type I error for data with a multivariate t distribution is because permutation testing generates a

distribution for the SUMCOR values assuming the sets of variables are all independent of each

other, which is is a more strict assumption than the sets of variables being uncorrelated when

the data has a multivariate t distribution.

Table 5.13: Type I error for CV and permutation testing procedures using correlation structure
two

n=200 n=1000

CV PERM1 PERM2 CV PERM1 PERM2

Transformed Kendall’s tau

Normal
Dir 1 0.03 0.05 0.05 0.04 0.06 0.06
Dir 2 0.00 0.01 0.00 0.00 0.01 0.00

t3
Dir 1 0.02 0.35 0.35 0.03 0.23 0.23
Dir 2 0.00 0.17 0.00 0.00 0.08 0.00

t10
Dir 1 0.03 0.12 0.12 0.03 0.11 0.11
Dir 2 0.00 0.04 0.00 0.00 0.03 0.00

Pearson Correlation

Normal
Dir 1 0.03 0.04 0.04 0.04 0.06 0.06
Dir 2 0.00 0.00 0.00 0.00 0.01 0.00

t3
Dir 1 0.08 1.00 1.00 0.05 1.00 1.00
Dir 2 0.00 1.00 0.99 0.00 1.00 1.00

t10
Dir 1 0.05 0.72 0.72 0.01 0.43 0.43
Dir 2 0.00 0.52 0.10 0.00 0.23 0.01

Table 5.14 gives the power and type I error for the cross-validation and permutation testing

procedures using correlation structure one and simulating data with a multivariate normal

distribution. Table 5.15 gives the same results for the cross-validation testing procedure when

data come from a multivariate t distribution. In both cases the first three directions the reported

values are the estimated power and the reported values for the fourth direction this are type I

error. Based on results from Table 5.13 we do not present the power for permutation testing

procedures when data come from a multivariate t distribution because the permutation testing

procedures do not control for type I error. For the cross-validation testing procedure when using
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the transformed Kendall’s tau estimator the type I error is less than 0.01 for all distribution

and sample size settings. When using the sample Pearson correlation estimator this is also true

when data come from a multivariate normal distribution. The conservative nature of the CV

procedure for the fourth direction is likely due to additional constraints when estimating the

fourth direction. As a check we performed simulations for a correlation structure that had one

true informative direction. In the proportion of simulations where the null was rejected for the

second direction was between 0.02 and 0.04, similar to what we see for the first direction in

Table 5.13. As the number of constraints increases the cross-validated SUMCOR values may

tend to decrease leading to more conservative tests for higher directions.

There is one setting where the cross-validation procedure is not conservative. This is when

using the sample Pearson correlation estimator for data with a multivariate t distribution with

three degrees of freedom and n=1000. In this case the type I error rate is not controlled and the

proportion of simulations where the null is rejected is 0.2. This is because of how poorly the

directions based on the sample Pearson correlation matrix estimate the true directions in this

setting. Based on Table 5.11 the average "true" SUMCOR value of the estimated fourth direction

in this setting is 1.26. In comparison when data come from a multivariate normal distribution or

the transformed Kendall’s tau estimator is used the average "true" SUMCOR value is between

0.99 and 1.04. It is in the setting where there is a large positive bias in the SUMCOR value of

the fourth direction that type I error is inflated.

When data come from a multivariate normal distribution both correlation estimation proce-

dures have similar power for the cross-validation testing procedure for the first three directions,

with the sample Pearson correlation matrix having slightly higher power. When data come from

a multivariate t distribution with three or 10 degrees of freedom the transformed Kendall’s tau

estimator has higher power for the first three directions for the cross-validation testing procedure.

This difference is largest for a multivariate t with three degrees of freedom. This corresponds to

the distributions where the transformed Kendall’s tau estimator more efficiently estimates the

true mCCA directions.
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Correlation matrix structure one is when the difference between the two permutation testing

procedures is most noticeable. PERM1 has higher power than PERM2 for the second and third

directions, but PERM1 has a rejection proportion above 0.05 for the fourth direction, even

when data come from a multivariate normal distribution. This inflated type I error for higher

directions using the PERM1 procedure is also present for standard two set CCA (Winkler et al.,

2020). Even though the true fourth direction is uninformative for correlation structure one, the

estimated SUMCOR value for the fourth direction may tend to be higher than the SUMCOR

value for the fourth direction in a data set where all sets of variables are independent. This is

because of imprecision in estimating the first three directions, and the corresponding constraints

they put on the fourth direction. Alternatively the PERM2 procedure has lower power because it

is comparing the second and third directions to the first direction from the permutation sample.

Even though the permutation sample is constructed to have no correlation between the sets, the

SUMCOR value for the first direction will tend to be reasonably large due to random noise and

the fact that there are no constraints on the direction. This makes it harder to reject the null for

higher order directions even when they are informative.

Table 5.14: Power and type I error for cross-validation and permutation testing procedures for
correlation structure one

n=200 n=1000

CV PERM1 PERM2 CV PERM1 PERM2

Transformed Kendall’s tau

Normal

Dir 1 1.00 1.00 1.00 1.00 1.00 1.00
Dir 2 0.90 0.99 0.78 1.00 1.00 1.00
Dir 3 0.44 0.81 0.03 1.00 1.00 0.99
Dir 4 0.00 0.19 0.00 0.00 0.17 0.00

Pearson Correlation

Normal

Dir 1 1.00 1.00 1.00 1.00 1.00 1.00
Dir 2 0.92 0.99 0.80 1.00 1.00 1.00
Dir 3 0.47 0.82 0.03 0.99 1.00 0.99
Dir 4 0.00 0.16 0.00 0.00 0.16 0.00
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Table 5.15: Power and type I error for cross-validation testing procedure for correlation
structure one when data come from multivariate t distribution

Dir 1 Dir 2 Dir 3 Dir 4

Transformed Kendall’s tau

t3
n=200 1.00 0.74 0.28 0.00
n=1000 1.00 1.00 0.99 0.00

t10
n=200 1.00 0.86 0.36 0.00
n=1000 1.00 1.00 1.00 0.00

Pearson Correlation

t3
n=200 0.34 0.15 0.05 0.01
n=1000 0.52 0.40 0.33 0.20

t10
n=200 0.95 0.70 0.38 0.06
n=1000 1.00 0.99 0.95 0.05

5.5 mCCA estimates for executive function and brain structure in six-year-old children

We study the performance of latent high-dimensional multiset CCA using data from the

Early Brain Development Study (EBDS) at University of North Carolina (Gilmore et al., 2010;

Knickmeyer et al., 2008, 2016). The EBDS is a longitudinal study of children that collects data

from birth through early adolescence. We include three sets of variables in our analysis: EF test

scores, brain GM volume, and white matter structure as measured using DTI. For this project

we use data collected at age six. The primary reason for using this age is that it is the oldest age

at which data has been collected for a majority of subjects in the EBDS, and the EF tests are

more reliable at age six than at earlier ages.

We include four different EF test scores. These include both the Stanford-Binet intelligence

scales verbal fluid reasoning (SBV FR) and non-verbal fluid reasoning (SBNVFR) section scores

(Roid, 2003). These both measure fluid reasoning which is known to be associated with working

memory and executive function. We also include the Behavior Rating Inventory of Executive

Function (BRIEF) (Gioia et al., 2000) composite score, which is a parent reported measure

of executive function. Finally we include the executive function scale from the Behavioral

Assessment System for Children (BASC) (Reynolds and Kamphaus, 2010).
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The white matter structure variables include RD measured using DTI for 20 different white

matter tracts. For each tract we used the average of the RD values for all voxels in the tract. RD

is primarily driven by myelination in the white matter tracts, with lower RD indicating more

myelination. Myelin is a substance that surrounds the white matter axons and increases the speed

of electrical impulses through the brain tract. For more information see Alexander et al. (2007).

The 20 tracts were chosen based on previous research from Girault et al. (2019). The list of

the tracts used can be found in Table 5.16. For each subject the RD values were centered. This

was shown to be able to find a stronger canonical correlation signal than using the RD values

without centering.

Table 5.16: List of white matter tracts used in CCA analysis

Tract Name Abbreviation

Arcuate fasciculus direct pathway left/right ARC FT Left/Right
Arcuate fasciculus indirect anterior pathway left/right ARC FP Left/Right
Arcuate fasciculus indirect posterior pathway lef/right ARC TP Left/Right
Anterior cingulum left/right CGC Left/Right
Corticothalamic prefrontal projections left/right CTPF Left/Right
Inferior fronto-occipital fasciculus left/right IFOF Left/Right
Inferior longitudinal fasciculus left/right ILF Left/Right
Superior longitudinal fasciculus left/right SLF Left/Right
Uncinate Left/Right UNC Left/Right
Splenium of the corpus callosum Splenium
Genu of the corpus callosum Genu

The brain volume variables included total GM volume in 88 of the 90 regions defined by

the AAL brain parcellation (Tzourio-Mazoyer et al., 2002). Many subjects had no observed GM

in the left and right pallidum so those two regions were not included in the analysis. For each

subject we reported the GM volume as a proportion of overall intracranial volume. This was

done to control for overall brain/head size for each subject.

The latent high-dimensional multiset canonical correlation directions and cross-validated

correlations for the MAXVAR/VAR formulation are presented below. The first step was to

identify the optimal number of principal directions for EF test scores, RD values for the DTI
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tracts, and GM volume for the AAL regions. We used the cross-validated methods described

in Section 5.3.4. We considered between two and four directions (out of four total possible)

for the EF, between four and 20 directions (out of 20 total possible) for the DTI variables, and

between two and 30 directions (out of 88 total possible) for the GM variables. This was because

there was a noticeable drop in cross-validated performance after 30 directions for the GM

volume measures. For each of the 1479 possible combinations the cross-validated SUMCOR

value was calculated using five fold cross-validation. A LOESS regression was then fit with the

cross-validated SUMCOR values for the first canonical direction as the outcome, the number of

principal directions for each of the three sets of variables as the predictors, and a smoothing

parameter of 0.5. The combination with the highest predicted value for cross-validated SUMCOR

was chosen as the optimal number of principal components for each set of variables. A total of

three principal directions were chosen for the EF/cognitive variables, 16 principal directions for

the DTI variables, and seven principal directions for the GM variables. A smoothing parameter

of 0.25 was also considered and selected the same number of principal components.

Based on the cross-validation testing procedure presented in Section 5.3.4 there are two

significant canonical directions. In order to look at the strength of the associations for the first

two directions five fold cross-validation was repeated 50 times at the chosen number of principal

directions for each set of variables. The average MAXVAR/VAR correlation matrices from

all 250 cross-validation test sets are presented in Table 5.17. We focus on the MAXVAR/VAR

matrices because of the easier interpretability of correlation matrices relative to covariance

matrices that has diagonals summing to one. For the first direction all three sets of variables are

correlated with each other in similar magnitudes, between 0.29 and 0.35, but for the second and

third direction the correlation between GM and DTI is the strongest at 0.28 and 0.18, compared

to less than 0.1 for the other two correlations. For both the second and third direction the cross-

validated correlation between GM and the EF/cognitive variables is in fact negative. Figure 5.3

shows the first direction loadings for the GM and DTI variables using BrainNet Viewer for the

GM variables (Xia et al., 2013) and 3D slicer for the DTI variables (Kikinis et al., 2014). A full
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Table 5.17: Cross-validated correlation matrices for MAXVAR/VAR mCCA directions

Direction 1 Direction 2

EF DTI GM EF DTI GM

EF 1.00 0.33 0.29 EF 1.00 0.07 -0.08
DTI 0.33 1.00 0.35 DTI 0.07 1.00 0.28
GM 0.29 0.35 1.00 GM -0.08 0.28 1.00

Direction 3

EF DTI GM

EF 1.00 0.09 -0.04
DTI 0.09 1.00 0.18
GM -0.04 0.18 1.00

listing of the mCCA loadings for the EF, GM, and DTI variables can be found in Appendix C.

For the first direction the SB V FR had a positive loading that is more than twice the magnitude

of the other three EF test scores for the first direction. For the DTI white matter tracts seven of

the nine bilateral tracts (all but ARC FP and SLF) have loadings with the opposite signs between

the left and right hemisphere. For the ARC FT, ARC TP, IFOF and ILF the tract on the right

hemisphere has a negative loading while the tract on the left has a positive loadings. For the

CGC, CTPF, and UNC this pattern is reversed. In contrast only six of the 44 pair of bilateral

regions have loadings with opposite signs between the left and right hand side of the brain. Of

these only two regions, the supramarginal gyrus and putamen have a loading above 0.02 on

either the right or left. The putamen has a loading of -0.09 on the left and 0.03 on the right. The

supramarginal has a loading of 0.01 on the left and -0.05 on the right.

For the GM regions one of the most notable variable loadings is for the caudate which has a

loading of -0.12 on the left and -0.10 on the right. Of all the GM regions these are two of the

three negative loadings with the largest absolute value. Previous research has shown that the

caudate is negatively associated with working memory, which is known to be closely associated

with fluid reasoning, among subjects at risk of psychosis or with schizotypal personality disorder

(Levitt et al., 2002; Hannan et al., 2010). Given that the first direction for the EF variables is

largely driven by a fluid reasoning test, the large negative loadings for the caudate gives further
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Figure 5.3: GM and DTI loadings for first canonical direction using MAXVAR/VAR
formulation

evidence that lower grey matter volume in the caudate is associated with lower working memory

and fluid reasoning.

The second direction MAXVAR/VAR loadings for GM and DTI are in Figure 5.4. A full

table with the loading values can be found in Appendix C. The second direction loadings for

EF/Cognitive variables are not reported because the second direction for EF/Cognitive variables

is not strongly correlated with either GM or DTI based on Table 5.17. All of the GM regions

with negative loadings with a large absolute value are located near the back of the brain. Late

in childhood gray matter starts to decrease, starting with the posterior of the brain (Bray et al.,

2015). This indicates that those children with a high score for the second canonical direction for

the GM are those who have started this process and may be further along in the development

process than those children with low scores. RD in white matter tracts tends to decrease as

myelin increases which happens when children mature. This indicates that the DTI tracts with

negative loadings for the second directions are those that have relatively more myelin for children

further along in the maturation process. This include the Splenium, UNC and ARC FP. Previous

research has shown that development of the white matter does not happen in the same posterior

to anterior order, but rather based on the fiber orientation of white matter (Bray et al., 2015).
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Figure 5.4: GM and DTI loadings for second canonical direction using MAXVAR/VAR
formulation

5.6 Discussion

mCCA is a powerful extension of CCA that can find a low rank summary of the associations

between multiple sets of variables. There are a number of potential formulations for mCCA, but

we have shown how the MAXVAR/VAR and SUMCOR/AVGVAR formulations from Kettenring

(1971) andNielsen (2002) have similar closed form estimates and can be used in tandemwith each

other. In the high dimensional setting the closed form estimates for both of these formulations

can still be useful after first reducing the dimension of each set of variables using PCA, similar

to Asendorf (2015) and Feng et al. (2018). We introduce a cross-validation procedure that

can be used to select the optimal number of principal components for each set of variables. In

this high dimensional setting we show that estimation of the mCCA directions can be greatly

improved by using robust estimation of the correlation or covariance matrix. In particular using

the transformed Kendall’s tau correlation estimator can improve performance when data come

from heavy tailed or skewed distributions.

Careful consideration of testing procedures to identify informative mCCA directions is

also needed when data do not come from a multivariate normal distribution. In particular

permutation testing may lead to inflated type I error regardless of the technique used to estimate

the correlation matrix and mCCA directions. For this reason we develop a cross-validation based

testing procedure for identifying informative mCCA directions. However future research on both

testing procedures and ways to select the optimal number of principal components would be of
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value, particularly if they can cut down on computational time. In addition a computationally

feasible robust version of penalized mCCA would be useful for high dimensional data sets.
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CHAPTER 6: SUMMARY AND FUTURE RESEARCH

In this document we investigate extensions to CCA and PCA. Both CCA and PCA can give

useful low rank summaries of high dimensional data sets. The estimates of CCA and PCA

typically employ eigendecomposition involving the sample covariance or correlation matrices of

the data. For data sets with independent censoring it is not possible to use standard covariance

or correlation estimators. For other data sets with extreme outliers or when the data come from

heavy tailed or skewed distributions the sample covariance and correlation matrices may not be

an efficient estimator of the true covariance and correlation matrices. We investigate alternative

ways to estimate covariance and correlation matrices for such data sets in order to improve

performance of CCA and PCA.

In Chapters 3 and 5 we extend CCA and mCCA using a robust correlation estimator based

on Kendall’s tau rank correlation coefficient. In chapter 3 we are able to show that CCA

estimates using this robust correlation estimator are consistent and asymptotically normal.

Simulation studies show that this robust CCA method using Kendall’s tau outperforms standard

CCA estimation methods when data come from heavy tailed elliptical or skewed transelliptical

distributions. In chapter 5 we show that the same robust correlation estimator can be used

in high dimensional and multi-set settings, and improves performance for data coming from

heavy tailed elliptical distributions. We also show the need for new methods for testing for

informative CCA and mCCA directions for non-Gaussian elliptical copulas. In chapter 3 we use

a bootstrap based testing procedure that outperforms existing asymptotic and permutation based

testing procedures for heavy tailed elliptical distributions. In chapter 5 we use cross-validation

to identify informative directions. Unlike permutation testing this controls for type I error even

when the data come from a heavy tailed elliptical distribution.
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In chapter 4we define covariance and correlationmeasures in themultivariate survival setting

with independent censoring, using counting processes and martingales. We show that these

covariance and correlation measures can be estimated non-parametrically and these estimates

converge to a tight Gaussian process. Both of these covariance and correlation measures can

also be extended to the semi-competing risk setting. We show that eigendecomposition of these

covariance and correlation matrices can be used to estimate PCA for multivariate survival data.

These PCA estimates are consistent and asymptotically normal and perform well in finite sample

simulation studies.

For each of the methods proposed in this document there are a number of areas for potential

future research. The robust CCA methods in chapter 3 can be extended to the high-dimensional

setting by adding a penalty term to the loadings for the canonical directions. A number of studies

have shown how this can be done in a computationally efficient way (Wilms and Croux, 2016,

2015; Yoon et al., 2018). Another potential area of research is developing a more powerful

method for testing for informative CCA directions when data do not come from a multivariate

normal distribution. Many procedures that test for a true canonical correlation of zero assume

the data come from multivariate normal distribution. Permutation testing does not make the

same assumptions about the true underlying marginal distributions, but still requires a Gaussian

copula. An asymptotic test based on the transformed Kendall’s tau correlation matrix estimator

may be more powerful than the bootstrap testing technique proposed in Chapter 3 and more

robust than other existing testing procedures.

In chapter 4 we focus on estimating the martingale and counting process covariance between

two failure times that share the same censoring and competing risk times. It may also be

of interest to estimate martingale and counting process covariance between two failure times

with different censoring or competing risk times. Another potential area of future research is

changing of principal components over time. It would be of interest to identify when changes in

the estimates of principal components over time are due to random noise or a true change in

the underlying martingale or counting process covariance or correlation matrix. Additionally,
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although principal component loadings are estimated at the population level and are shared

between censored and uncensored subjects, the principal component scores can only be estimated

for subjects who are not yet censored. These principal component scores may be of use for

clustering or grouping the subjects. It would useful to define an imputation scheme that can

be used to help classify or group censored as well as uncensored subjects. In particular, for

those subjects censored later in the study there may be enough observed data to get reasonable

estimates of principal component scores even after their censoring time.

In chapter 5 we use cross-validation to identify the informative directions, but potential

improvements using asymptotic properties of Kendall’s tau estimator may be possible and

desirable. In addition high dimensional mCCA has also been estimated by adding a penalty

term to the canonical direction loadings (Witten and Tibshirani, 2009). To our knowledge no

similar methods have been applied using robust covariance or correlation estimation techniques

for mCCA with more than two sets of variables.
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APPENDIX A: TECHNICALDETAILS ANDADDITIONAL SIMULATIONRESULTS
FOR CHAPTER 2

A.1 Proof of theorems

Proof of Theorem 2.1 Define λd to be the minimum eigenvalue of PZ . By assumption

λd > 0. Given that τ̂ (Zi,Zj) →p τ
(Zi,Zj) for all 1 ≤ i, j ≤ d, by continuous mapping theorem

ρ̂n,ij →p ρij . Define δn,ij = ρ̂n,ij − ρij . Then for every γ > 0 there exists an Nγ such that for

every n > Nγ ,

Pr

( ∑
1≤i,j≤d

|δn,ij| ≥
λd
2

)
≤ γ (A.34)

Define ∆n = P̂Zn−PZ , and ωnii to be the ith eigenvalue of ∆n. Because |ωni| ≤
∑

1≤i,j≤n
|δn,ij|,

Equation (A.34) implies that for 1 ≤ i ≤ d and n > Nγ

Pr

(
|ωni| ≥

λd
2

)
≤ γ (A.35)

Because P̂n = PZ + ∆n Weyl’s inequality is used to put a bound on λ̂nd. Specifically λ̂nd ≥

λd + ωnd. Combining this with Equation (A.35) the result Pr(λ̂nd > 0)→p 1 is obtained.

Proof of Theorem 2.2

Using work similar to Anderson (1999), the true canonical directions, ai and bi, correspond-

ing to the canonical correlation λi are solutions to the system of equations

 −λiPXX PXY

PY X −λiPY Y


 ai

bi

 =

 0

0

 . (A.36)

The r non-zero canonical correlations, λ1 > λ2 > . . . > λr > 0, are the non-zero values such

that ∣∣∣∣∣∣∣
−λiPXX PXY

PY X −λiPY Y

∣∣∣∣∣∣∣ = 0. (A.37)
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Ar = [a1, . . . , ar] and Br = [b1, . . . , br] will be uniquely determined up to a change in sign. In

order to uniquely define Ar and Br it is possible to order the rows ofX such that aii > 0. Define

Ar+ = [ar+1, . . . , ap] and Br+ = [br+1, . . . , aq] to be solutions such that for A = [Ar, Ar+ ] and

B = [Br, Br+ ], ATPXXA = Ip, BTPXXB = Iq, and ATPXYB =

 Λr 0

0 0

. The solutions
for Ar+ and Br+ are only unique up to multiplication by an orthogonal matrix on the right

hand side, but the following results will hold for any unique value of Ar+ and Br+ obtained by

imposing suitable constraints. For simplicity the subscript n will be dropped from the notation

for the estimates of canonical correlations and directions. The estimates of ai and bi, a∗i and b∗i ,

are solutions to the system of equations

 −λ∗iP ∗XX P ∗XY

P ∗Y X λ∗iP
∗
Y Y


 a∗i

b∗i

 =

 0

0

 . (A.38)

The estimate of λi, λ∗i , is the ith solution to

∣∣∣∣∣∣∣
−λ∗iP ∗XX P ∗XY

P ∗Y X −λ∗iP ∗Y Y

∣∣∣∣∣∣∣ = 0. (A.39)

Consider the transformations P ∗UU = ATP ∗XXA, P ∗V V = BTP ∗Y YB, P ∗UV = ATP ∗XYB, and

P ∗V U = P ∗TV U . Define Λr,m1m2 to be anm1×m2 matrix withm1,m2 ≥ r and the upper left hand

corner equal to Λr and all other entries equal to zero. Combining the Delta method with the

assumption for the asymptotic distribution of P ∗XX , P ∗XY , andP ∗Y Y gives the result,

√
n


vec(P ∗UU)

vec(P ∗UV )

vec(P ∗V V )

−

vec(Ip)

vec(Λr,pq)

vec(Iq)

→d Np3×q3(0, JZΘJTZ ), (A.40)
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where JZ is the (p3 × q3)× (p3 × q3) block matrix,

JZ =


AT ⊗ AT 0 0

0 BT ⊗ AT 0

0 0 BT ⊗BT

 .

Consider the system of equations

 −λ∗iP ∗UU P ∗UV

P ∗V U λ∗iP
∗
V V


 gi

hi

 =

 0

0

 . (A.41)

where ∣∣∣∣∣∣∣
−λ∗iP ∗UU P ∗UV

P ∗V U −λ∗iP ∗V V

∣∣∣∣∣∣∣ = 0, (A.42)

Because the determinant of the product of two square matrices equals product of the determinants,

if λ∗i is a solution to (A.42) it is also a solution to (A.39). The solutions to (A.38) and (A.41) are

related through the identitiesAgi = a∗i andBhi = b∗i . DefineG = [g1, . . . , gr],H = [h1, . . . , hr]

and Λ∗r = diag(λ∗1, . . . , λ
∗
r). Equation (A.41) implies

P ∗UVH = P ∗UUGΛ∗r (A.43)

P ∗V UG = P ∗V VHΛ∗r. (A.44)

In order to uniquely define G and H we will assume that

GTP ∗UUG = Ir (A.45)

HTP ∗V VH = Ir, (A.46)

and gii > 0. Define the matrix Ir,m1m2 to be them1×m2 matrix withm1,m2 ≥ r and the upper

left hand corner equal to Ir and all other entries equal to zero. Based on (A.40) PUU →p Ip,
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PV V →p Iq, and PUV →p Λr,pq. It follows that G→p Ir,pr and H →p Ir,qr. Because G, H , and

Λ∗r are single valued functions of P ∗UU , P ∗UV , and P ∗V V that are differentiable in the neighborhood

of Ir,pr and Λr, by the Delta method the quantities, G̃ =
√
n[G− Ir,pr], H̃ =

√
n[H− Ir,qr], and

Λ̃r =
√
n[Λ∗r − Λr] all have a normal limiting distribution with mean zero and finite variances.

Note the following equalities obtained by expanding and rearranging the terms of (A.43) and

(A.44),

√
n[(P ∗UV Ir,qr − Λr,pr)− (P ∗UU − Ip)Λr,pr] = G̃Λr + Λ̃r,pr − Λr,pqH̃ + op(1) (A.47)
√
n[(P ∗V UIr,pr − Λr,qr)− (P ∗V V − Iq)Λr,qr] = H̃Λr + Λ̃r,qr − Λr,qpG̃+ op(1). (A.48)

Multiplying (A.47) by Λr on the right hand side and (A.48) by Λr,pq on the left hand side and

taking the sum, and then multiplying (A.47) by Λr,qp on the left hand side and (A.48) by Λr on

the right hand side and taking the sum results in the following two equalities

√
n[(P ∗UV Ir,qr − Λr,pr)Λr + Λr,pq(P

∗
V UIr,pr − Λr,qr)− Λr,pq(P

∗
V V − Iq)Λr,qr−

(P ∗UU − Ip)Λr,prΛr] = 2Λr,prΛ̃r + G̃Λ2
r,pr − Λ2

r,ppG̃+ op(1). (A.49)
√
n[(P ∗V UIr,pr − Λr,qr)Λr + Λr,qp(P

∗
UV Ir,qr − Λr,pr)− Λr,qp(P

∗
UU − Ip)Λr,pr−

(P ∗V V − Iq)Λr,qrΛr] = 2Λr,qrΛ̃r + H̃Λ2
r,qr − Λ2

r,qqH̃ + op(1) (A.50)

The ith diagonal term where 1 ≤ i ≤ r of the right hand side of both (A.49) and (A.50) will be

equal to 2λiλ̃i + op(1). The ith row and jth column where 1 ≤ i ≤ p, 1 ≤ j ≤ r and j 6= i of

the right hand side of (A.49) is equal to g̃ij(λ2
j − λ2

i ), while the ith row and jth column where

1 ≤ i ≤ q, 1 ≤ j ≤ r and i 6= j from the right hand side of (A.50) is equal to h̃ij(λ2
j − λ2

i ).

This is used to solve for the variance and covariances of λ̃i, g̃ij and h̃ij . In order to solve for the

variances and covariances of g̃ii and h̃ii the following equalities are obtained by substituting G̃

107



and H̃ into (A.45) and (A.46)

√
n[Ir,rpP

∗
UUIr,pr − Ir] = −[G̃T Ir,pr + Ir,rpG̃] + op(1) (A.51)

√
n[Ir,rqP

∗
V V Ir,qr − Ir] = −[H̃T Ir,qr + Ir,rqG̃] + op(1) (A.52)

The ith diagonal term for 1 ≤ i ≤ r of the right hand side of (A.51) is −2g̃ii + op(1) and the

ith diagonal term for 1 ≤ i ≤ r of the right hand side of (A.52) is −2h̃ii + op(1). The variances

and covariances for each term on the left hand side of (A.49), (A.50), (A.51), and (A.52) can be

solved for using (A.40). Given the variances of G̃ and H̃ the asymptotic variances of
√
n[a∗j−aj]

and
√
n[b∗j − bj] for 1 ≤ j ≤ r are solved for using the following equalities,

√
n[a∗j − aj] =

√
nA[gj − ιpj] =

p∑
i=1

aig̃ij + op(1) (A.53)

√
n[b∗j − bj] =

√
nB[hj − ιqj] =

q∑
i=1

bih̃ij + op(1) (A.54)

where ιpj is a p × 1 vector where the jth element is one and the rest are zero. Therefore the

limiting covariances on the left hand side of Equations (A.51) and (A.52) can be found by solving

for the covariances of the right hand side. Consistent estimates for for the covariance matrix

for
√
n[A∗r − Ar],

√
n[B∗r − Br], and

√
n[Λ∗r − Λr] can be obtained by plugging in consistent

estimates of Θ, A, B, and Λ.

A.2 Additional Simulation Results

A.2.1 Empirical bias and standard deviation of CCA with robust covariance estimation

Tables A1 through A5 report bias and standard deviation for estimates for transelliptical

CCA estimated using the transformed Kendall’s estimator, standard CCA using the sample

covariance estimate, and robust CCA based on the MCD estimator and Tyler’s M estimator.

The simulation set-ups can be found in section 3.1 of the main text, along with details on

how the bias and standard deviation are calculated. The results for p=q=8 and n=200 can be

found in Table 1 of the main text. In all cases only the bias and standard deviation for the four
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non-zero canonical correlations and the associated directions are reported. As in Table 1 of

the main text only the bias and standard deviation for the X direction are reported with the

results for the Y direction being nearly identical. When data are multivariate normal CCA based

using the standard covariance matrix estimator performs the best, followed by transelliptical

CCA. When data are simulated from a multivariate Cauchy distribution transelliptical CCA and

the two robust CCA methods based on the MCD and Tyler’s M estimator are consistent and

perform similarly. Standard CCA estimates are not consistent due to the lack of moments. When

data come from a multivariate lognormal distribution only the transelliptical CCA estimator

is consistent for canonical correlations and directions. All other estimators underestimate the

strength of the canonical correlations due to the non-linear transformation of the marginal

distributions. When the data come from a t distribution with 5 degrees of freedom transelliptical

CCA using the transformed Kendall’s estimator outperforms all other methods. When data come

from a t distribution with 10 degrees of freedom the CCA using the standard covariance matrix

estimate performs the best, followed by transelliptical CCA using the transformed Kendall’s

estimator. This shows that the transformed Kendall’s estimator tends to be preferred to other

robust correlation or covariance estimators for the simulation settings considered. It is also

preferred to the standard covariance or correlation estimator for heavier tailed ellipticals. For a

fixed sample size as dimension increases the bias and standard deviation of both the correlation

and direction estimates increases for all estimators. In particular for the first canonical correlation

the positive finite sample bias increases as dimension increases.
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Table A1: Bias (SD) of canonical correlation and direction estimates, p=q=4, n=200

Normal Cauchy Lognormal t5 t10

Canonical Correlations

Cor 1 Standard 0.02 (0.07) 1.38 (1.04) -0.14 (0.18) 0.04 (0.10) 0.03 (0.08)
Kendall 0.03 (0.08) 0.07 (0.13) 0.02 (0.08) 0.03 (0.09) 0.03 (0.09)
MCD 0.03 (0.09) 0.07 (0.13) -0.21 (0.14) 0.04 (0.10) 0.04 (0.10)
M 0.03 (0.08) 0.06 (0.12) -0.21 (0.14) 0.04 (0.10) 0.04 (0.10)

Cor 2 Standard 0.05 (0.07) 1.04 (0.58) -0.05 (0.13) 0.09 (0.09) 0.06 (0.07)
Kendall 0.05 (0.07) 0.09 (0.09) 0.05 (0.06) 0.06 (0.07) 0.06 (0.07)
MCD 0.07 (0.08) 0.13 (0.11) -0.05 (0.10) 0.09 (0.09) 0.08 (0.08)
M 0.06 (0.08) 0.12 (0.10) -0.06 (0.09) 0.08 (0.08) 0.08 (0.08)

Cor 3 Standard 0.02 (0.06) 0.42 (0.36) -0.09 (0.08) 0.03 (0.07) 0.02 (0.06)
Kendall 0.02 (0.06) 0.03 (0.08) 0.02 (0.06) 0.02 (0.06) 0.02 (0.06)
MCD 0.02 (0.07) 0.04 (0.10) -0.10 (0.08) 0.03 (0.07) 0.03 (0.07)
M 0.02 (0.06) 0.04 (0.09) -0.10 (0.08) 0.03 (0.07) 0.03 (0.07)

Cor 4 Standard -0.04 (0.06) -0.10 (0.20) -0.16 (0.07) -0.06 (0.08) -0.05 (0.07)
Kendall -0.04 (0.06) -0.07 (0.08) -0.04 (0.07) -0.05 (0.07) -0.05 (0.06)
MCD -0.06 (0.07) -0.09 (0.10) -0.20 (0.08) -0.07 (0.08) -0.07 (0.08)
M -0.05 (0.07) -0.09 (0.10) -0.19 (0.08) -0.06 (0.08) -0.06 (0.08)

Canonical Directions

Dir 1 Standard 0.07 (0.03) 0.57 (0.44) 0.08 (0.05) 0.09 (0.05) 0.08 (0.03)
Kendall 0.08 (0.03) 0.13 (0.06) 0.08 (0.03) 0.09 (0.04) 0.08 (0.04)
MCD 0.08 (0.04) 0.13 (0.06) 0.12 (0.06) 0.10 (0.04) 0.09 (0.04)
M 0.08 (0.04) 0.12 (0.05) 0.11 (0.06) 0.09 (0.04) 0.09 (0.04)

Dir 2 Standard 0.46 (0.30) 1.09 (0.34) 0.67 (0.46) 0.61 (0.36) 0.53 (0.35)
Kendall 0.50 (0.33) 0.63 (0.37) 0.49 (0.32) 0.53 (0.33) 0.51 (0.34)
MCD 0.55 (0.34) 0.72 (0.37) 0.74 (0.41) 0.60 (0.36) 0.58 (0.34)
M 0.53 (0.35) 0.71 (0.38) 0.69 (0.40) 0.58 (0.35) 0.57 (0.34)

Dir 3 Standard 0.70 (0.38) 1.08 (0.31) 0.90 (0.44) 0.83 (0.39) 0.78 (0.39)
Kendall 0.73 (0.39) 0.84 (0.40) 0.75 (0.38) 0.78 (0.38) 0.76 (0.39)
MCD 0.76 (0.38) 0.90 (0.38) 0.93 (0.39) 0.82 (0.38) 0.81 (0.39)
M 0.76 (0.39) 0.92 (0.38) 0.89 (0.39) 0.82 (0.38) 0.79 (0.38)

Dir 4 Standard 0.59 (0.36) 1.03 (0.30) 0.75 (0.46) 0.70 (0.38) 0.64 (0.37)
Kendall 0.61 (0.37) 0.71 (0.38) 0.63 (0.38) 0.65 (0.38) 0.63 (0.38)
MCD 0.64 (0.37) 0.79 (0.38) 0.80 (0.40) 0.70 (0.37) 0.67 (0.38)
M 0.63 (0.37) 0.79 (0.38) 0.77 (0.40) 0.69 (0.37) 0.66 (0.37)

110



Table A2: Bias (SD) of canonical correlation and direction estimates, p=q=4, n=1000

Normal Cauchy Lognormal t5 t10

Canonical Correlations

Cor 1 Standard 3.9E-03 (0.03) 1.46 (1.17) -0.20 (0.10) 0.01 (0.05) 0.01 (0.04)
Kendall 4.6E-03 (0.03) 0.02 (0.06) 0.00 (0.03) 0.01 (0.04) 0.01 (0.04)
MCD 4.9E-03 (0.03) 0.02 (0.06) -0.26 (0.06) 0.01 (0.04) 0.01 (0.04)
M 0.01 (0.04) 0.01 (0.06) -0.24 (0.06) 0.01 (0.04) 0.01 (0.04)

Cor 2 Standard 0.01 (0.03) 1.04 (0.62) -0.12 (0.06) 0.02 (0.05) 0.01 (0.04)
Kendall 0.01 (0.03) 0.02 (0.04) 0.01 (0.03) 0.01 (0.04) 0.01 (0.04)
MCD 0.01 (0.03) 0.03 (0.05) -0.14 (0.05) 0.01 (0.04) 0.01 (0.04)
M 0.01 (0.04) 0.02 (0.05) -0.13 (0.05) 0.01 (0.04) 0.01 (0.04)

Cor 3 Standard 0.00 (0.03) 0.41 (0.37) -0.11 (0.05) 0.01 (0.04) 0.00 (0.03)
Kendall 0.01 (0.03) 0.01 (0.04) 0.01 (0.03) 0.01 (0.03) 0.00 (0.03)
MCD 0.01 (0.03) 0.01 (0.05) -0.13 (0.04) 0.01 (0.04) 0.01 (0.04)
M 0.01 (0.03) 0.01 (0.04) -0.12 (0.04) 0.01 (0.04) 0.01 (0.04)

Cor 4 Standard -0.01 (0.03) -0.09 (0.21) -0.13 (0.04) -0.02 (0.04) -0.01 (0.03)
Kendall -0.01 (0.03) -0.02 (0.04) -0.01 (0.03) -0.01 (0.03) -0.01 (0.03)
MCD -0.01 (0.03) -0.03 (0.05) -0.16 (0.04) -0.01 (0.04) -0.02 (0.04)
M -0.01 (0.03) -0.03 (0.05) -0.14 (0.04) -0.02 (0.04) -0.02 (0.04)

Canonical Directions

Dir 1 Standard 0.03 (0.01) 0.53 (0.44) 0.03 (0.02) 0.05 (0.02) 0.03 (0.01)
Kendall 0.03 (0.01) 0.06 (0.02) 0.03 (0.01) 0.04 (0.02) 0.03 (0.01)
MCD 0.03 (0.01) 0.05 (0.02) 0.05 (0.02) 0.04 (0.02) 0.04 (0.02)
M 0.03 (0.01) 0.05 (0.02) 0.05 (0.02) 0.04 (0.02) 0.04 (0.02)

Dir 2 Standard 0.20 (0.12) 1.08 (0.34) 0.36 (0.36) 0.33 (0.22) 0.23 (0.15)
Kendall 0.21 (0.14) 0.30 (0.20) 0.22 (0.14) 0.23 (0.14) 0.23 (0.14)
MCD 0.23 (0.15) 0.38 (0.26) 0.43 (0.28) 0.29 (0.20) 0.26 (0.18)
M 0.22 (0.15) 0.38 (0.28) 0.39 (0.27) 0.29 (0.20) 0.27 (0.19)

Dir 3 Standard 0.34 (0.23) 1.07 (0.30) 0.64 (0.46) 0.53 (0.32) 0.40 (0.26)
Kendall 0.36 (0.24) 0.51 (0.33) 0.37 (0.24) 0.41 (0.27) 0.40 (0.26)
MCD 0.39 (0.25) 0.61 (0.36) 0.67 (0.35) 0.50 (0.33) 0.46 (0.31)
M 0.40 (0.27) 0.61 (0.36) 0.65 (0.36) 0.50 (0.32) 0.46 (0.30)

Dir 4 Standard 0.31 (0.22) 1.01 (0.31) 0.51 (0.45) 0.46 (0.32) 0.35 (0.26)
Kendall 0.32 (0.23) 0.44 (0.33) 0.32 (0.23) 0.36 (0.27) 0.35 (0.26)
MCD 0.35 (0.25) 0.52 (0.34) 0.58 (0.33) 0.43 (0.32) 0.41 (0.30)
M 0.36 (0.26) 0.51 (0.34) 0.55 (0.35) 0.43 (0.31) 0.40 (0.29)
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Table A3: Bias (SD) of canonical correlation and direction estimates, p=q=8, n=1000

Normal Cauchy Lognormal t5 t10

Canonical Correlations

Cor 1 Standard 0.01 (0.03) 1.87 (1.16) -0.19 (0.11) 0.02 (0.05) 0.01 (0.04)
Kendall 0.01 (0.03) 0.03 (0.06) 0.01 (0.04) 0.01 (0.04) 0.01 (0.04)
MCD 0.01 (0.03) 0.03 (0.06) -0.22 (0.07) 0.02 (0.05) 0.01 (0.04)
M 0.01 (0.03) 0.03 (0.06) -0.22 (0.07) 0.01 (0.04) 0.01 (0.04)

Cor 2 Standard 0.02 (0.03) 1.65 (0.66) -0.11 (0.06) 0.04 (0.05) 0.02 (0.03)
Kendall 0.02 (0.03) 0.04 (0.05) 0.02 (0.03) 0.02 (0.04) 0.02 (0.03)
MCD 0.02 (0.03) 0.05 (0.05) -0.11 (0.05) 0.03 (0.04) 0.03 (0.04)
M 0.02 (0.03) 0.05 (0.05) -0.11 (0.04) 0.03 (0.04) 0.02 (0.04)

Cor 3 Standard 0.01 (0.03) 1.17 (0.47) -0.10 (0.05) 0.03 (0.04) 0.02 (0.03)
Kendall 0.02 (0.03) 0.03 (0.04) 0.02 (0.03) 0.02 (0.03) 0.02 (0.03)
MCD 0.02 (0.03) 0.05 (0.05) -0.09 (0.04) 0.03 (0.04) 0.03 (0.04)
M 0.02 (0.03) 0.04 (0.04) -0.09 (0.04) 0.03 (0.04) 0.03 (0.04)

Cor 4 Standard 4.1E-03 (0.03) 0.83 (0.35) -0.11 (0.04) 0.01 (0.04) 3.2E-03 (0.03)
Kendall 4.3E-03 (0.03) 0.01 (0.04) 0.00 (0.03) 0.00 (0.03) 3.5E-03 (0.03)
MCD 4.2E-03 (0.03) 0.01 (0.05) -0.10 (0.04) 0.01 (0.04) 4.8E-03 (0.04)
M 4.5E-03 (0.03) 0.01 (0.05) -0.10 (0.04) 0.01 (0.04) 4.4E-03 (0.04)

Canonical Directions

Dir 1 Standard 0.04 (0.01) 0.66 (0.44) 0.05 (0.02) 0.06 (0.02) 0.05 (0.01)
Kendall 0.05 (0.01) 0.08 (0.02) 0.05 (0.01) 0.05 (0.02) 0.05 (0.01)
MCD 0.05 (0.01) 0.08 (0.02) 0.08 (0.02) 0.06 (0.02) 0.05 (0.01)
M 0.05 (0.01) 0.07 (0.02) 0.07 (0.02) 0.06 (0.02) 0.05 (0.02)

Dir 2 Standard 0.23 (0.10) 1.26 (0.27) 0.43 (0.37) 0.37 (0.21) 0.27 (0.15)
Kendall 0.25 (0.12) 0.35 (0.17) 0.25 (0.13) 0.26 (0.12) 0.26 (0.13)
MCD 0.25 (0.12) 0.46 (0.28) 0.49 (0.29) 0.34 (0.18) 0.31 (0.18)
M 0.26 (0.12) 0.42 (0.23) 0.44 (0.27) 0.33 (0.18) 0.30 (0.16)

Dir 3 Standard 0.39 (0.21) 1.27 (0.24) 0.70 (0.42) 0.58 (0.32) 0.44 (0.26)
Kendall 0.41 (0.23) 0.56 (0.29) 0.40 (0.23) 0.45 (0.27) 0.42 (0.25)
MCD 0.42 (0.23) 0.69 (0.33) 0.74 (0.35) 0.56 (0.31) 0.50 (0.29)
M 0.42 (0.24) 0.66 (0.32) 0.70 (0.35) 0.55 (0.30) 0.48 (0.27)

Dir 4 Standard 0.38 (0.21) 1.26 (0.24) 0.61 (0.37) 0.55 (0.30) 0.43 (0.24)
Kendall 0.39 (0.22) 0.53 (0.27) 0.39 (0.22) 0.44 (0.26) 0.41 (0.24)
MCD 0.40 (0.22) 0.65 (0.29) 0.73 (0.32) 0.53 (0.29) 0.48 (0.26)
M 0.41 (0.23) 0.62 (0.29) 0.67 (0.31) 0.52 (0.28) 0.46 (0.26)
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Table A4: Bias (SD) of canonical correlation and direction estimates, p=q=16, n=200

Normal Cauchy Lognormal t5 t10

Canonical Correlations

Cor 1 Standard 0.10 (0.08) 2.47 (1.13) -0.07 (0.19) 0.17 (0.10) 0.12 (0.08)
Kendall 0.13 (0.08) 0.42 (0.20) 0.12 (0.08) 0.16 (0.09) 0.14 (0.09)
MCD 0.18 (0.10) 0.29 (0.12) -0.01 (0.15) 0.22 (0.11) 0.21 (0.11)
M 0.17 (0.10) 0.31 (0.13) -0.03 (0.15) 0.20 (0.11) 0.18 (0.10)

Cor 2 Standard 0.18 (0.06) 2.36 (0.67) 0.13 (0.10) 0.33 (0.11) 0.23 (0.06)
Kendall 0.21 (0.06) 0.43 (0.09) 0.21 (0.06) 0.25 (0.07) 0.23 (0.06)
MCD 0.33 (0.08) 0.50 (0.09) 0.31 (0.08) 0.41 (0.08) 0.39 (0.08)
M 0.31 (0.08) 0.54 (0.10) 0.26 (0.08) 0.36 (0.08) 0.35 (0.08)

Cor 3 Standard 0.18 (0.05) 1.95 (0.52) 0.13 (0.06) 0.31 (0.07) 0.23 (0.05)
Kendall 0.21 (0.05) 0.39 (0.07) 0.21 (0.05) 0.25 (0.05) 0.23 (0.05)
MCD 0.31 (0.06) 0.49 (0.07) 0.31 (0.06) 0.40 (0.06) 0.37 (0.06)
M 0.30 (0.06) 0.51 (0.08) 0.27 (0.06) 0.36 (0.06) 0.34 (0.06)

Cor 4 Standard 0.17 (0.04) 1.65 (0.41) 0.13 (0.04) 0.29 (0.05) 0.21 (0.04)
Kendall 0.19 (0.04) 0.36 (0.06) 0.19 (0.04) 0.23 (0.04) 0.21 (0.04)
MCD 0.29 (0.05) 0.46 (0.06) 0.29 (0.05) 0.37 (0.05) 0.35 (0.05)
M 0.28 (0.05) 0.48 (0.07) 0.26 (0.05) 0.34 (0.05) 0.32 (0.05)

Canonical Directions

Dir 1 Standard 0.15 (0.03) 0.81 (0.44) 0.19 (0.08) 0.19 (0.06) 0.16 (0.03)
Kendall 0.17 (0.04) 0.29 (0.07) 0.17 (0.04) 0.19 (0.04) 0.18 (0.04)
MCD 0.21 (0.05) 0.26 (0.06) 0.28 (0.08) 0.24 (0.06) 0.23 (0.06)
M 0.21 (0.05) 0.26 (0.07) 0.26 (0.07) 0.22 (0.05) 0.22 (0.05)

Dir 2 Standard 0.73 (0.29) 1.34 (0.20) 0.98 (0.38) 0.93 (0.31) 0.79 (0.28)
Kendall 0.78 (0.29) 0.97 (0.27) 0.77 (0.28) 0.84 (0.29) 0.80 (0.27)
MCD 0.96 (0.29) 1.07 (0.28) 1.13 (0.29) 1.02 (0.28) 0.99 (0.28)
M 0.95 (0.29) 1.08 (0.28) 1.07 (0.31) 0.96 (0.27) 0.95 (0.28)

Dir 3 Standard 1.01 (0.29) 1.37 (0.18) 1.23 (0.25) 1.17 (0.25) 1.07 (0.27)
Kendall 1.05 (0.28) 1.19 (0.24) 1.05 (0.29) 1.11 (0.27) 1.08 (0.26)
MCD 1.20 (0.24) 1.24 (0.21) 1.29 (0.20) 1.23 (0.22) 1.21 (0.23)
M 1.18 (0.25) 1.26 (0.22) 1.26 (0.21) 1.21 (0.23) 1.19 (0.24)

Dir 4 Standard 1.12 (0.26) 1.38 (0.17) 1.29 (0.21) 1.25 (0.22) 1.19 (0.24)
Kendall 1.16 (0.25) 1.27 (0.21) 1.16 (0.25) 1.20 (0.24) 1.18 (0.24)
MCD 1.26 (0.22) 1.31 (0.19) 1.33 (0.18) 1.28 (0.20) 1.29 (0.20)
M 1.25 (0.22) 1.31 (0.19) 1.32 (0.19) 1.28 (0.20) 1.27 (0.21)
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Table A5: Bias (SD) of canonical correlation and direction estimates, p=q=16, n=1000

Normal Cauchy Lognormal t5 t10

Canonical Correlations

Cor 1 Standard 0.02 (0.03) 2.44 (1.25) -0.18 (0.11) 0.04 (0.05) 0.02 (0.04)
Kendall 0.02 (0.03) 0.06 (0.06) 0.02 (0.04) 0.03 (0.04) 0.02 (0.04)
MCD 0.02 (0.03) 0.05 (0.06) -0.19 (0.07) 0.04 (0.05) 0.03 (0.04)
M 0.02 (0.03) 0.05 (0.05) -0.19 (0.07) 0.03 (0.04) 0.03 (0.04)

Cor 2 Standard 0.03 (0.03) 2.31 (0.76) -0.09 (0.06) 0.08 (0.06) 0.04 (0.03)
Kendall 0.04 (0.03) 0.07 (0.05) 0.04 (0.03) 0.05 (0.03) 0.04 (0.03)
MCD 0.04 (0.03) 0.10 (0.05) -0.05 (0.05) 0.07 (0.04) 0.06 (0.04)
M 0.04 (0.03) 0.09 (0.05) -0.07 (0.05) 0.06 (0.04) 0.05 (0.04)

Cor 3 Standard 0.04 (0.03) 1.85 (0.51) -0.07 (0.04) 0.08 (0.04) 0.05 (0.03)
Kendall 0.04 (0.03) 0.07 (0.04) 0.04 (0.03) 0.05 (0.03) 0.04 (0.03)
MCD 0.04 (0.03) 0.11 (0.04) -0.03 (0.03) 0.08 (0.04) 0.07 (0.03)
M 0.04 (0.03) 0.09 (0.04) -0.04 (0.04) 0.06 (0.03) 0.06 (0.03)

Cor 4 Standard 0.03 (0.03) 1.54 (0.39) -0.07 (0.03) 0.06 (0.04) 0.04 (0.03)
Kendall 0.03 (0.03) 0.06 (0.04) 0.03 (0.03) 0.04 (0.03) 0.03 (0.03)
MCD 0.03 (0.03) 0.09 (0.04) -0.02 (0.03) 0.06 (0.04) 0.05 (0.03)
M 0.03 (0.03) 0.08 (0.04) -0.04 (0.03) 0.05 (0.04) 0.05 (0.03)

Canonical Directions

Dir 1 Standard 0.06 (0.01) 0.77 (0.44) 0.08 (0.02) 0.09 (0.02) 0.07 (0.01)
Kendall 0.07 (0.01) 0.11 (0.02) 0.07 (0.01) 0.08 (0.01) 0.07 (0.01)
MCD 0.07 (0.01) 0.11 (0.02) 0.11 (0.02) 0.09 (0.02) 0.08 (0.02)
M 0.07 (0.01) 0.10 (0.02) 0.10 (0.02) 0.08 (0.02) 0.08 (0.02)

Dir 2 Standard 0.29 (0.11) 1.36 (0.20) 0.51 (0.35) 0.47 (0.24) 0.33 (0.12)
Kendall 0.31 (0.11) 0.44 (0.19) 0.31 (0.12) 0.34 (0.13) 0.32 (0.13)
MCD 0.31 (0.12) 0.54 (0.23) 0.62 (0.29) 0.46 (0.20) 0.40 (0.16)
M 0.32 (0.12) 0.50 (0.22) 0.54 (0.27) 0.41 (0.18) 0.37 (0.15)

Dir 3 Standard 0.46 (0.21) 1.37 (0.18) 0.80 (0.39) 0.71 (0.30) 0.51 (0.24)
Kendall 0.49 (0.22) 0.66 (0.28) 0.48 (0.22) 0.54 (0.24) 0.51 (0.24)
MCD 0.49 (0.22) 0.81 (0.30) 0.91 (0.32) 0.70 (0.28) 0.62 (0.27)
M 0.50 (0.22) 0.76 (0.31) 0.83 (0.31) 0.64 (0.27) 0.59 (0.26)

Dir 4 Standard 0.47 (0.20) 1.37 (0.17) 0.81 (0.34) 0.73 (0.28) 0.55 (0.22)
Kendall 0.50 (0.21) 0.68 (0.24) 0.50 (0.20) 0.55 (0.22) 0.53 (0.22)
MCD 0.51 (0.21) 0.87 (0.28) 1.00 (0.29) 0.72 (0.26) 0.65 (0.24)
M 0.51 (0.20) 0.82 (0.27) 0.89 (0.28) 0.66 (0.24) 0.61 (0.24)
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A.2.2 Confidence intervals for canonical correlations and canonical direction loadings

This section reports confidence interval coverages for transelliptical CCA correlations and

direction loadings. The simulation set-ups are the same as section 3.1 of the main text but

results or simulations using the multivariate lognormal distribution are not included because

they are similar to results using the multivariate normal distribution for transelliptical CCA.

Tables A6, A7, and A8 report the coverages for bootstrap and asymptotic confidence intervals

for the canonical correlations. For Table A6 p=q=4, for Table A7 p=q=8, and for Table A8

p=q=16. When p=q=4 the asymptotic confidence intervals perform comparably the bootstrap

confidence intervals, while when p=q=8 and p=q=16 the asymptotic confidence intervals perform

poorly, particularly when n=200. This poor performance in the higher dimension setting is due

to the finite sample bias increasing as dimension increases. Normal approximation bootstrap

confidence intervals are able to help control for this bias. Tables A9 through A14 report the

bootstrap and asymptotic confidence interval coverages for canonical direction loadings. Only

the coverages for the X direction are reported with the coverages for the Y direction being

nearly identical. In addition results for t distribution with 5 and 10 degrees of freedom are

not reported, and are similar to results for the multivariate Cauchy and multivariate normal

distribution. Table A9 reports coverages when p=q=4 and data are simulated from a multivariate

normal distribution, and Table A10 reports coverages when p=q=4 and data are simulated from a

multivariate Cauchy distribution. In both cases there is undercoverage for loadings higher order

directions, which improves as sample size increases. Table A11 reports coverages when p=q=8

and data are simulated from a multivariate normal distribution, and Table A12 reports coverages

when p=q=8 and data are simulated from a multivariate Cauchy distribution. Table A13 reports

coverages when p=q=16 and data are simulated from a multivariate normal distribution, and

Table A14 reports coverages when p=q=16 and data are simulated from a multivariate Cauchy

distribution. An increase in dimension does not have a large effect on the confidence interval

coverages for the direction loadings, unlike the confidence interval coverages for the canonical

correlations which get much worse when p=q=16.
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Table A6: Bootstrap and asymptotic confidence interval coverages for transelliptical canonical
correlations, p=q=4

Bootstrap Coverages Asymptotic Coverages

Normal Cauchy t5 t10 Normal Cauchy t5 t10

n=200

Cor 1 0.94 0.88 0.91 0.93 0.94 0.83 0.89 0.90
Cor 2 0.92 0.92 0.91 0.91 0.89 0.86 0.88 0.90
Cor 3 0.90 0.92 0.91 0.91 0.97 0.98 0.97 0.97
Cor 4 0.84 0.76 0.80 0.81 0.94 0.95 0.96 0.95

n=1000

Cor 1 0.94 0.94 0.95 0.95 0.95 0.92 0.92 0.95
Cor 2 0.93 0.91 0.93 0.92 0.95 0.94 0.94 0.92
Cor 3 0.90 0.90 0.92 0.90 0.96 0.97 0.97 0.96
Cor 4 0.90 0.90 0.90 0.90 0.96 0.96 0.96 0.96

Table A7: Bootstrap and asymptotic confidence interval coverages for transelliptical canonical
correlations, p=q=8

Bootstrap Coverages Asymptotic Coverages

Normal Cauchy t5 t10 Normal Cauchy t5 t10

n=200

Cor 1 0.90 0.81 0.88 0.90 0.84 0.60 0.79 0.82
Cor 2 0.90 0.90 0.91 0.89 0.73 0.51 0.70 0.70
Cor 3 0.87 0.88 0.86 0.88 0.85 0.75 0.82 0.83
Cor 4 0.85 0.86 0.84 0.81 0.97 0.96 0.97 0.98

n=1000

Cor 1 0.94 0.90 0.93 0.92 0.93 0.89 0.93 0.93
Cor 2 0.93 0.92 0.91 0.94 0.93 0.89 0.90 0.91
Cor 3 0.89 0.89 0.91 0.90 0.94 0.93 0.93 0.93
Cor 4 0.91 0.91 0.89 0.93 0.98 0.97 0.96 0.97
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Table A8: Bootstrap and asymptotic confidence interval coverages for transelliptical canonical
correlations, p=q=16

Bootstrap Coverages Asymptotic Coverages

Normal Cauchy t5 t10 Normal Cauchy t5 t10

n=200

Cor 1 0.86 0.53 0.80 0.83 0.56 0.18 0.47 0.53
Cor 2 0.84 0.81 0.83 0.82 0.14 0.00 0.05 0.08
Cor 3 0.82 0.87 0.88 0.84 0.07 0.00 0.03 0.06
Cor 4 0.86 0.91 0.90 0.87 0.11 0.00 0.04 0.06

n=1000

Cor 1 0.92 0.89 0.92 0.93 0.87 0.73 0.86 0.86
Cor 2 0.90 0.90 0.91 0.91 0.79 0.62 0.77 0.77
Cor 3 0.89 0.86 0.89 0.89 0.77 0.64 0.76 0.78
Cor 4 0.87 0.82 0.88 0.88 0.88 0.79 0.84 0.86

Table A9: Bootstrap and asymptotic confidence interval coverages for transelliptical canonical
directions for data with multivariate normal distribution, p=q=4

Bootstrap Coverages Asymptotic Coverages

Dir 1 Dir 2 Dir 3 Dir 4 Dir 1 Dir 2 Dir 3 Dir 4

n=200

Variable 1 1.00 0.95 0.93 0.95 1.00 0.94 0.95 0.95
Variable 2 0.96 0.98 0.80 0.89 0.95 0.96 0.90 0.79
Variable 3 0.96 0.78 0.97 0.69 0.97 0.89 0.94 0.68
Variable 4 0.96 0.89 0.72 0.97 0.97 0.84 0.75 0.94

n=1000

Variable 1 1.00 0.95 0.95 0.95 1.00 0.95 0.94 0.95
Variable 2 0.94 1.00 0.92 0.95 0.95 1.00 0.94 0.92
Variable 3 0.96 0.92 0.99 0.85 0.97 0.93 0.99 0.86
Variable 4 0.96 0.94 0.86 0.99 0.97 0.93 0.87 0.99
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Table A10: Bootstrap and asymptotic confidence interval coverages for transelliptical canonical
directions for data with multivariate Cauchy distribution, p=q=4

Bootstrap Coverages Asymptotic Coverages

Dir 1 Dir 2 Dir 3 Dir 4 Dir 1 Dir 2 Dir 3 Dir 4

n=200

Variable 1 1.00 0.96 0.96 0.96 1.00 0.94 0.94 0.94
Variable 2 0.96 0.96 0.73 0.85 0.97 0.94 0.83 0.77
Variable 3 0.95 0.71 0.95 0.62 0.95 0.88 0.92 0.66
Variable 4 0.95 0.81 0.65 0.95 0.96 0.81 0.76 0.94

n=1000

Variable 1 1.00 0.96 0.95 0.94 1.00 0.94 0.94 0.94
Variable 2 0.95 1.00 0.88 0.93 0.96 0.99 0.94 0.89
Variable 3 0.95 0.88 0.99 0.77 0.95 0.94 0.98 0.79
Variable 4 0.95 0.92 0.80 0.98 0.96 0.90 0.83 0.98

Table A11: Bootstrap and asymptotic confidence interval coverages for transelliptical canonical
directions for data with multivariate normal distribution, p=q=8

Bootstrap Coverages Asymptotic Coverages

Dir 1 Dir 2 Dir 3 Dir 4 Dir 1 Dir 2 Dir 3 Dir 4

n=200

Variable 1 1.00 0.96 0.95 0.94 0.99 0.94 0.95 0.95
Variable 2 0.97 0.98 0.76 0.86 0.96 0.94 0.88 0.80
Variable 3 0.96 0.76 0.94 0.65 0.99 0.92 0.94 0.77
Variable 4 0.96 0.85 0.67 0.95 0.98 0.86 0.78 0.93
Variable 5 0.96 0.94 0.92 0.91 0.99 0.99 0.97 0.99
Variable 6 0.96 0.92 0.92 0.92 0.99 0.99 0.99 0.99
Variable 7 0.96 0.93 0.92 0.91 0.99 0.99 0.99 0.99
Variable 8 0.97 0.94 0.93 0.91 0.99 0.99 0.98 0.98

n=1000

Variable 1 1.00 0.94 0.96 0.94 1.00 0.99 1.00 1.00
Variable 2 0.94 1.00 0.92 0.94 0.94 0.99 0.95 0.93
Variable 3 0.94 0.92 0.99 0.86 0.96 0.95 0.98 0.86
Variable 4 0.95 0.94 0.85 0.99 0.95 0.94 0.87 0.98
Variable 5 0.94 0.94 0.94 0.96 0.98 0.98 0.99 0.99
Variable 6 0.96 0.95 0.95 0.96 0.99 1.00 0.99 0.99
Variable 7 0.94 0.94 0.95 0.94 0.99 1.00 0.99 0.99
Variable 8 0.96 0.95 0.95 0.96 0.99 0.99 0.99 0.99
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Table A12: Bootstrap and asymptotic confidence interval coverages for transelliptical canonical
directions for data with multivariate Cauchy distribution, p=q=8

Bootstrap Coverages Asymptotic Coverages

Dir 1 Dir 2 Dir 3 Dir 4 Dir 1 Dir 2 Dir 3 Dir 4

n=200

Variable 1 1.00 0.95 0.94 0.91 1.00 0.93 0.93 0.95
Variable 2 0.97 0.93 0.70 0.82 0.97 0.89 0.84 0.74
Variable 3 0.97 0.66 0.89 0.60 0.99 0.93 0.92 0.85
Variable 4 0.97 0.80 0.61 0.90 0.98 0.84 0.81 0.89
Variable 5 0.96 0.92 0.87 0.81 0.99 0.98 0.96 0.97
Variable 6 0.96 0.92 0.86 0.84 0.99 0.99 0.98 0.99
Variable 7 0.96 0.91 0.88 0.85 1.00 0.99 0.98 0.98
Variable 8 0.96 0.89 0.88 0.82 0.99 0.99 0.97 0.97

n=1000

Variable 1 1.00 0.94 0.95 0.95 1.00 0.95 0.95 0.94
Variable 2 0.95 1.00 0.89 0.89 0.96 0.99 0.93 0.89
Variable 3 0.94 0.88 0.99 0.77 0.97 0.93 0.98 0.80
Variable 4 0.95 0.90 0.78 0.99 0.98 0.92 0.82 0.98
Variable 5 0.95 0.95 0.93 0.96 0.99 0.99 0.99 0.99
Variable 6 0.96 0.95 0.94 0.96 0.99 0.99 0.99 1.00
Variable 7 0.95 0.95 0.95 0.95 0.99 1.00 0.99 1.00
Variable 8 0.94 0.94 0.95 0.96 0.99 0.99 0.99 0.99
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Table A13: Bootstrap and asymptotic confidence interval coverages for transelliptical canonical
directions for data with multivariate normal distribution, p=q=16

Bootstrap Coverages Asymptotic Coverages

Dir 1 Dir 2 Dir 3 Dir 4 Dir 1 Dir 2 Dir 3 Dir 4

n=200

Variable 1 1.00 0.96 0.94 0.91 0.98 0.94 0.93 0.94
Variable 2 0.98 0.93 0.69 0.83 0.98 0.83 0.88 0.76
Variable 3 0.97 0.67 0.80 0.65 0.99 0.98 0.85 0.90
Variable 4 0.98 0.79 0.59 0.71 0.99 0.87 0.83 0.83
Variable 5 0.98 0.91 0.86 0.80 1.00 0.99 0.97 0.99
Variable 6 0.98 0.92 0.87 0.79 1.00 1.00 0.99 1.00
Variable 7 0.98 0.92 0.84 0.79 1.00 1.00 1.00 1.00
Variable 8 0.97 0.92 0.84 0.80 1.00 1.00 1.00 1.00
Variable 9 0.98 0.94 0.89 0.77 1.00 1.00 1.00 1.00
Variable 10 0.97 0.92 0.86 0.80 1.00 1.00 1.00 1.00
Variable 11 0.98 0.92 0.88 0.78 1.00 1.00 1.00 1.00
Variable 12 0.98 0.93 0.88 0.77 1.00 1.00 1.00 1.00
Variable 13 0.98 0.91 0.87 0.75 1.00 1.00 1.00 1.00
Variable 14 0.97 0.93 0.85 0.80 1.00 1.00 1.00 1.00
Variable 15 0.98 0.92 0.88 0.80 1.00 1.00 1.00 1.00
Variable 16 0.98 0.93 0.87 0.79 1.00 1.00 1.00 1.00

n=1000

Variable 1 1.00 0.96 0.95 0.95 0.99 0.95 0.95 0.94
Variable 2 0.96 1.00 0.92 0.93 0.96 0.96 0.96 0.92
Variable 3 0.96 0.92 0.99 0.86 0.96 0.95 0.87 0.97
Variable 4 0.95 0.95 0.85 0.99 0.97 0.96 0.94 0.86
Variable 5 0.95 0.94 0.94 0.95 0.99 0.99 1.00 1.00
Variable 6 0.96 0.95 0.95 0.96 1.00 1.00 1.00 1.00
Variable 7 0.95 0.94 0.95 0.96 1.00 1.00 1.00 1.00
Variable 8 0.95 0.94 0.95 0.94 1.00 1.00 1.00 1.00
Variable 9 0.95 0.95 0.95 0.95 1.00 1.00 1.00 1.00
Variable 10 0.96 0.95 0.95 0.95 1.00 1.00 1.00 1.00
Variable 11 0.95 0.96 0.95 0.95 1.00 1.00 1.00 1.00
Variable 12 0.96 0.95 0.94 0.96 1.00 1.00 1.00 1.00
Variable 13 0.96 0.96 0.94 0.94 1.00 1.00 1.00 1.00
Variable 14 0.95 0.95 0.94 0.95 1.00 1.00 1.00 1.00
Variable 15 0.95 0.95 0.95 0.95 1.00 1.00 1.00 1.00
Variable 16 0.96 0.94 0.96 0.95 1.00 1.00 1.00 1.00
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Table A14: Bootstrap and asymptotic confidence interval coverages for transelliptical canonical
directions for data with multivariate Cauchy distribution, p=q=16

Bootstrap Coverages Asymptotic Coverages

Dir 1 Dir 2 Dir 3 Dir 4 Dir 1 Dir 2 Dir 3 Dir 4

n=200

Variable 1 1.00 0.99 0.96 0.93 0.98 0.91 0.91 0.91
Variable 2 0.99 0.86 0.66 0.78 0.97 0.68 0.81 0.74
Variable 3 1.00 0.64 0.73 0.66 1.00 0.97 0.77 0.94
Variable 4 1.00 0.72 0.65 0.58 0.99 0.89 0.88 0.77
Variable 5 1.00 0.88 0.82 0.76 1.00 0.99 0.98 0.99
Variable 6 1.00 0.86 0.82 0.77 1.00 1.00 0.98 0.99
Variable 7 1.00 0.89 0.81 0.77 1.00 1.00 0.99 1.00
Variable 8 1.00 0.87 0.84 0.77 1.00 1.00 1.00 1.00
Variable 9 0.99 0.88 0.82 0.78 1.00 1.00 1.00 1.00
Variable 10 1.00 0.90 0.84 0.76 1.00 1.00 1.00 1.00
Variable 11 1.00 0.89 0.82 0.76 1.00 1.00 1.00 1.00
Variable 12 0.99 0.89 0.83 0.77 1.00 1.00 1.00 1.00
Variable 13 1.00 0.88 0.83 0.76 1.00 1.00 1.00 1.00
Variable 14 0.99 0.89 0.83 0.80 1.00 1.00 1.00 1.00
Variable 15 1.00 0.91 0.82 0.77 1.00 1.00 1.00 1.00
Variable 16 1.00 0.88 0.82 0.76 1.00 1.00 1.00 1.00

n=1000

Variable 1 1.00 0.95 0.93 0.94 1.00 0.94 0.94 0.93
Variable 2 0.97 0.99 0.87 0.90 0.96 0.96 0.93 0.89
Variable 3 0.95 0.86 0.98 0.71 0.98 0.95 0.92 0.84
Variable 4 0.95 0.92 0.74 0.98 0.98 0.92 0.84 0.94
Variable 5 0.95 0.95 0.92 0.94 0.99 1.00 0.99 1.00
Variable 6 0.94 0.95 0.94 0.93 1.00 1.00 1.00 1.00
Variable 7 0.96 0.94 0.92 0.94 1.00 1.00 1.00 1.00
Variable 8 0.95 0.94 0.93 0.94 1.00 1.00 1.00 1.00
Variable 9 0.95 0.94 0.93 0.94 1.00 1.00 1.00 1.00
Variable 10 0.94 0.94 0.92 0.94 1.00 1.00 1.00 1.00
Variable 11 0.94 0.94 0.94 0.93 1.00 1.00 1.00 1.00
Variable 12 0.93 0.94 0.93 0.92 1.00 1.00 1.00 1.00
Variable 13 0.94 0.94 0.93 0.93 1.00 1.00 1.00 1.00
Variable 14 0.96 0.93 0.95 0.93 1.00 1.00 1.00 1.00
Variable 15 0.95 0.94 0.93 0.93 1.00 1.00 1.00 1.00
Variable 16 0.96 0.93 0.91 0.95 1.00 1.00 1.00 1.00
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A.2.3 Testing for non-zero canonical correlations

Table A15 reports the type I error and power of the permutation and bootstrap testing

procedures described in Section 3.3 of the main text when using standard covariance matrix

estimates. This is in contrast to Table 3.2 in the text where the permutation and bootstrap testing

procedure were used with the transformed Kendall’s estimator. The simulation set-ups are the

same as Section 3.3 of the main text. Just as in Table 3.2 of the main text the permutation

test only controls type I error at the desired 0.05 level when data are multivariate normal or

multivariate lognormal. For both permutation an bootstrap based testing procedures using the

standard covariance matrix estimator results in higher power than the transformed Kendall’s

estimator when data are multivariate normal. However when data come from a multivariate t

distribution with five or ten degrees of freedom this relationship is reversed, with the transformed

Kendall’s estimator resulting in higher power when n=1000. When n=200 using the standard

covariance matrix estimate results in inflated type I error for both multivariate t distributions.

Also, unsurprisingly even the bootstrap testing procedure breaks down when data are multivariate

Cauchy and the standard covariance matrix estimator is used, with a type I error of 1 for both

sample sizes.
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Table A15: Power and type I error for permutation and bootstrap testing procedures using
standard correlation estimates

True correlation 0 0.2 0.4 0.6 0.8

n=200

Normal Standard Bootstrap 0.06 0.19 0.92 1.00 1.00
Standard Perm 0.05 0.17 0.90 1.00 1.00

Cauchy Standard Bootstrap 1.00 1.00 1.00 1.00 1.00
Standard Perm 1.00 1.00 1.00 1.00 1.00

Lognormal Standard Bootstrap 0.03 0.06 0.30 0.87 0.99
Standard Perm 0.05 0.08 0.30 0.83 1.00

t5 Standard Bootstrap 0.30 0.40 0.84 1.00 1.00
Standard Perm 0.76 0.85 0.99 1.00 1.00

t10 Standard Bootstrap 0.11 0.23 0.86 1.00 1.00
Standard Perm 0.28 0.45 0.96 1.00 1.00

n=1000

Normal Standard Bootstrap 0.02 0.91 1.00 1.00 1.00
Standard Perm 0.05 0.97 1.00 1.00 1.00

Cauchy Standard Bootstrap 1.00 1.00 1.00 1.00 1.00
Standard Perm 1.00 1.00 1.00 1.00 1.00

Lognormal Standard Bootstrap 0.00 0.09 0.92 0.99 1.00
Standard Perm 0.06 0.29 0.99 1.00 1.00

t5 Standard Bootstrap 0.01 0.28 0.99 1.00 1.00
Standard Perm 0.94 1.00 1.00 1.00 1.00

t10 Standard Bootstrap 0.01 0.70 1.00 1.00 1.00
Standard Perm 0.37 0.99 1.00 1.00 1.00
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A.3 Additional results for White matter tractography data and executive function in six
year old children

This section reports additional results using transelliptical CCA and standard CCA to

investigate the relationship between white matter structure and executive function in six year

old children. A description of the data set and the white matter tracts and executive function

(EF) tests that are used can be found in Section 5 of the main text. Table A16 reports the first

canonical direction and correlation using average fractal anisotropy (FA) for each of the white

matter tracts. Analysis methods are the same to the results reported in the main text using

average radial diffusivity (RD) instead of average FA. The results for transelliptical CCA using

average RD values can be found in Table 7 of the main text. The sign of the direction loadings

for all of the EF tests except CANTAB Stockings of Cambridge (SOC) are the same between

transelliptical CCA using average FA values for the white matter tracts and average RD values.

In both cases the Stanford Binet Verbal Fluid Reasoning Score (SB V) has the loading with the

highest absolute value. The transelliptical CCA direction loadings for average FA values have

the opposite sign of the first direction loadings for average RD values in 11 of the 16 tracts.

This is to be expected because RD tends to decrease as myelination increases, while FA tends

to increase as myelination increases, so we would expect the effects of FA and RD to go in

opposite directions. The loadings for the EF variables and average FA values are similar between

transelliptical CCA and standard CCA, and the jackknife corrected correlation for both is close

to 0.35. Table A17 reports the results for the first canonical correlation and direction using

average AD for each of the white matter tracts. The same methods are used as the analysis using

average RD and average FA. Transelliptical CCA did not find a significant direction, and the

first direction using standard CCA is only marginally significant (p=0.05).
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Table A16: Estimates for first canonical correlation and directions for white matter tract FA
values and EF tests for transelliptical and standard CCA

DTI Vars Transelliptical
CCA Loadings

Boot CI Asymp CI Standard
CCA
Loadings

Boot CI

ARC FT Left -0.57 (-1.50, 0.03) (-1.15, 0.00) -0.11 (-0.74, 0.47)
ARC FT Right -0.05 (-1.04, 0.95) (-0.99, 0.89) -0.08 (-0.80, 0.59)
ARC FP Left 0.13 (-0.42, 0.72) (-0.36, 0.63) -0.08 (-0.64, 0.42)
ARC FP Right -0.27 (-1.07, 0.27) (-0.89, 0.35) -0.38 (-0.94, -0.08)
ARC TP Left 0.15 (-0.28, 0.64) (-0.25, 0.55) -0.10 (-0.57, 0.26)
ARC TP Right 0.10 (-0.41, 0.71) (-0.39, 0.58) 0.14 (-0.23, 0.61)
CGC Left -0.09 (-0.84, 0.51) (-0.71, 0.53) -0.44 (-1.30, 0.11)
CGC Right 0.05 (-0.50, 0.68) (-0.44, 0.55) 0.36 (-0.10, 1.07)
CTPF Left 0.01 (-0.62, 0.57) (-0.50, 0.52) -0.23 (-0.79, 0.17)
CTPF Right -0.29 (-1.02, 0.29) (-0.81, 0.23) -0.25 (-0.82, 0.16)
Genu 0.16 (-0.55, 1.00) (-0.50, 0.81) 0.42 (-0.07, 1.26)
ILF Left -0.06 (-1.01, 0.79) (-0.85, 0.74) 0.18 (-0.40, 0.86)
ILF Right 1.02 (0.41, 2.26) (0.28, 1.76) 0.51 (-0.03, 1.36)
IFOF Left -0.09 (-1.02, 0.76) (-0.90, 0.71) -0.52 (-1.38, -0.01)
IFOF Right -0.55 (-1.79, 0.53) (-1.66, 0.57) 0.10 (-0.70, 0.91)
SLF Left 0.10 (-0.42, 0.70) (-0.38, 0.57) 0.06 (-0.39, 0.55)
SLF Right 0.09 (-0.52, 0.85) (-0.59, 0.77) 0.24 (-0.29, 0.99)
Splenium 0.68 (0.38, 1.51) (0.29, 1.08) 0.72 (0.47, 1.43)
UNC Left -0.22 (-0.99, 0.39) (-0.76, 0.32) 0.07 (-0.48, 0.65)
UNC Right 0.04 (-0.83, 0.78) (-0.74, 0.81) -0.25 (-0.89, 0.28)

EF Vars

SB V 0.98 (0.64, 1.87) (0.74, 1.22) 0.85 (0.48, 1.55)
SB NV -0.70 (-1.43, -0.28) (-1.08, -0.31) -0.38 (-1.05, 0.15)
Brief -0.38 (-0.96, -0.05) (-0.72, -0.04) -0.52 (-1.19, -0.14)
SOC 0.09 (-0.51, 0.73) (-0.39, 0.57) 0.27 (-0.22, 0.92)
SSP -0.17 (-1.05, 0.74) (-0.95, 0.61) -0.21 (-0.90, 0.40)

Cor 0.55 0.47
Jackknife Cor 0.34 0.31
Pval 0.04 0.01
N 214 214

125



Table A17: Estimates for first canonical correlation and directions for white matter tract AD
values and EF tests for transelliptical and standard CCA

DTI Vars Transelliptical
CCA Loadings

Boot CI Asymp CI Standard
CCA
Loadings

Boot CI

ARC FT Left 0.33 (-0.45, 1.34) (-0.42, 1.08) 0.14 (-0.40, 0.77)
ARC FT Right 0.22 (-0.79, 1.56) (-0.89, 1.33) 0.00 (-0.67, 0.68)
ARC FP Left -0.42 (-1.76, 0.35) (-1.50, 0.66) -0.11 (-0.74, 0.42)
ARC FP Right -0.29 (-1.29, 0.25) (-0.88, 0.29) -0.40 (-1.12, 0.02)
ARC TP Left 0.19 (-0.44, 1.09) (-0.38, 0.75) 0.11 (-0.27, 0.59)
ARC TP Right -0.16 (-1.04, 0.46) (-0.60, 0.28) -0.24 (-0.73, 0.02)
CGC Left -0.50 (-1.54, 0.28) (-1.26, 0.27) -0.62 (-1.45, -0.33)
CGC Right 0.21 (-0.49, 1.06) (-0.62, 1.03) 0.42 (0.02, 1.20)
CTPF Left -0.01 (-0.72, 0.91) (-0.65, 0.63) 0.22 (-0.13, 0.75)
CTPF Right 0.32 (-0.93, 1.57) (-0.71, 1.35) -0.15 (-0.71, 0.33)
Genu 0.45 (-0.43, 1.95) (-0.77, 1.68) 0.72 (0.43, 1.59)
ILF Left -0.47 (-2.13, 1.76) (-1.26, 0.33) 0.05 (-0.51, 0.63)
ILF Right 0.75 (-1.19, 2.54) (-0.46, 1.97) 0.33 (-0.07, 0.99)
IFOF Left 0.55 (-1.70, 2.29) (-0.25, 1.36) -0.08 (-0.69, 0.49)
IFOF Right -1.23 (-3.44, 0.68) (-2.42, -0.05) -0.66 (-1.49, -0.39)
SLF Left -0.18 (-1.12, 0.59) (-0.95, 0.59) -0.30 (-0.85, 0.00)
SLF Right 0.49 (0.12, 1.44) (-0.06, 1.05) 0.59 (0.39, 1.27)
Splenium 0.03 (-0.69, 0.83) (-0.74, 0.80) 0.00 (-0.42, 0.42)
UNC Left -0.42 (-1.36, 0.67) (-1.05, 0.22) 0.26 (-0.21, 0.94)
UNC Right 0.26 (-1.08, 1.39) (-0.46, 0.98) 0.07 (-0.40, 0.58)

EF Vars

SB V 0.42 (-0.30, 1.35) (-0.45, 1.29) 0.40 (-0.13, 1.13)
SB NV -0.34 (-1.14, 0.37) (-1.00, 0.33) -0.13 (-0.87, 0.54)
Brief -0.38 (-1.27, 0.20) (-1.49, 0.73) -0.78 (-1.70, -0.39)
SOC 0.22 (-0.32, 1.05) (-0.43, 0.86) 0.14 (-0.38, 0.76)
SSP 0.73 (0.08, 2.01) (-0.08, 1.54) 0.30 (-0.41, 1.21)

Cor 0.53 0.44
Jackknife Cor 0.00 0.22
Pval 0.60 0.06
N 214 214
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APPENDIX B: TECHNICAL DETAILS AND ADDITIONAL SIMULATION RESULTS
FOR CHAPTER 3

B.1 Proof of Theorems

Proof of Theorem 4.3

Proof. Define θC = [S(1), . . . , S(p),Λ(1), . . . ,Λ(p), S(1,2), . . . , S(p−1,p)]T and θ̂C =

[Ŝ(1), . . . , Ŝ(p), Λ̂(1), . . . , Λ̂(p), Ŝ(1,2), . . . , Ŝ(p−1,p)]T where Ŝ(j) is the Kaplan-Meier estimator,

Λ̂(j) is the Nelson-Aalen estimator, and Ŝ(j,j′) is the Dabrowska estimator. Based previously

shown results for the Kaplan-Meier, Nelson-Aalen estimator and Dabrowska, (see Kosorok

(2008) for further details on the Kaplan-Meier and Nelson-Aalen estimators and Cheng et al.

(2007) for further details on the Dabrowska estimator)

√
n[θ̂C − θC ]→ ZθC ,

where ZθC = [ZS1 , . . . , ZSp , ZΛ1 , . . . , ZΛp , ZS1,2 , . . . , ZSp−1,p ]T is a 2p+(p2−p)/2 dimensional

mean 0 Gaussian process. Using this set up we can show the results for ĈN and ĈM

1. ĈN : Consider the mapping

φCNjj′(θC) = S(j,j′) − S(j)S(j′).

Using this mapping

√
n[Vec(ĈN)− Vec(CN)] =

√
n



φCN11(θ̂C)− φCN11(θC)

φCN12(θ̂C)− φCN12(θC)

...

φCNp−1p(θ̂C)− φCNp−1p(θC)

φCNpp(θ̂C)− φCNpp(θC)


.
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The Hadamard derivative of φCNjj′(θC) in the direction of ZθC is

φ′θCCNjj′(Z) = S(j)ZS′j + S(j′)ZSj
− ZSj,j′

.

Therefore by the functional delta method, Theorem 2.8 in Kosorok (2008),
√
n[Vec(ĈN)−

Vec(CN)] ZCN where ZCN is a p2 dimensional mean 0 Gaussian process.

2. ĈM : Consider the mapping

φCMjj′(θC)(tj, tj′) = S(jj′)(tj, tj′)− 1 +

∫ tj

0

S(j,j′)(s−j , tj′)λ
(j)(sj)dsj+∫ tj′

0

S(j,j′)(tj, s
−
j′)λ

(j′)(sj′)dsj′+∫ tj

0

∫ tj′

0

S(j,j′)(s−j , s
−
j′)λ

(j)(sj)λ
(j′)(sj′)dsjdsj′ . (B.55)

Using this mapping

√
n[Vec(ĈM)− Vec(CM)] =

√
n



φCM11(θ̂C)− φCM11(θC)

φCM12(θ̂C)− φCM12(θC)

...

φCMp−1p(θ̂C)− φCMp−1p(θC)

φCMpp(θ̂C)− φCMpp(θC)


.

As with the results for ĈN , the desired result will follow if it can be shown that

φCMjj′(θC)(tj, tj′) is Hadamard differentiable in the direction of ZθC . In order to do

this we can consider each of the five parts on the right hand side of Equation (B.55)

separately. It is straightforward to show that S(j,j′)(tj, tj′) and −1 are Hadamard dif-

ferentiable.
∫ tj

0
S(j,j′)(s−j , tj′)λ

(j)(sj)dsj and
∫ tj′

0
S(j,j′)(tj, s

−
j′)λ

(j′)(sj′)dsj′ can both be

shown to be Hadamard differentiable through Lemma 12.3 from Kosorok (2008), and∫ tj
0

∫ tj′
0
S(j,j′)(s−j , s

−
j′)λ

(j)(sj)λ
(j′)(sj′)dsjdsj′ can be shown to beHadamard differentiable
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through Lemma A5 from Cheng et al. (2007). Therefore by the functional delta method
√
n[Vec(ĈM)− Vec(CM)] ZCM where ZCM is a p2 dimensional mean 0 Gaussian

process.

In order to show the results for R̂N and R̂M we define θR =

[S(1), . . . , S(p), CN (1,1), CN (1,2), . . . , CN (p,p), CM (1,1), CM (1,2), . . . , CM (p,p)]T and

θ̂R = [Ŝ(1), . . . , Ŝ(p), ĈN
(1,1)

, ĈN
(1,2)

, . . . , ĈN
(p,p)

, ĈM
(1,1)

, ĈM
(1,2)

, . . . , ĈM
(p,p)

]T .

Then using results from above
√
n[θ̂R − θR] ZθR ,

where ZθR = [ZS1 , . . . , ZSp , ZCN1,1 , ZCN1,2 , . . . , ZCNp,p , ZCM1,1 , ZCM1,2 , . . . , ZCMp,p ]T is a p+

2p2 dimensional mean 0 Gaussian process. From here we can show the results for R̂N and R̂M

using the functional delta method as above.

1. R̂N Define

φRNjj′(θR) =
CN (j,j′)√

S(j)(1− S(j))
√
S(j′)(1− S(j′))

.

Using this mapping

√
n[Vec(R̂N)− Vec(RN)] =

√
n



φRN11(θ̂R)− φRN11(θR)

φRN12(θ̂R)− φRN12(θR)

...

φRNp−1p(θ̂R)− φRNp−1p(θR)

φRNpp(θ̂R)− φRNpp(θR)


.

The Hadamard differentiability of φRNjj′(θR) in the direction ofZθR can be shown through

repeated application of the chain rule and the following results,

• If φ1(A) = A2 then φ′A1(α) = 2Aα.

• If φ2(A) =
√
A then φ′A2(α) = α

2
√
A
.

• If φ3(A,B) = A
B
then φ′AB3(α, β) = Bα−Aβ

B2 .
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Therefore by the functional delta method
√
n[Vec(R̂N)−Vec(RN)] ZRN where ZRN

is a p2 dimensional mean 0 Gaussian process.

2. R̂M Results are similar to those for R̂N if we consider the mapping

φRMjj′(θR) =
CM (j,j′)

√
1− S(j)

√
1− Sj′

Proof of Theorem 4.4

Proof. Similar to the proof of Theorem 4.3 we define θ̈C = [F
(1)
1 , . . . , F

(p)
1 , F

(1,1)
11 , F

(1,2)
11 ,

. . . , F
(p,p)
11 , F

(1,1)
12 , F

(1,2)
12 , . . . , F

(p,p)
12 , F

(1,1)
21 , F

(1,2)
21 , . . . , F

(p,p)
21 , F

(1,1)
22 , F

(1,2)
22 , . . . , F

(p,p)
22 , Λ̈

(1)
1 ,

. . . , Λ̈
(j)
1 ]T and ̂̈θC = [F̂

(1)
1 , . . . , F̂

(p)
1 , F̂

(1,1)
11 , F̂

(1,2)
11 , . . . , F̂

(p,p)
11 , F̂

(1,1)
12 , F̂

(1,2)
12 , . . .

, F̂
(p,p)
12 , F̂

(1,1)
21 , F̂

(1,2)
21 , . . . , F̂

(p,p)
21 , F̂

(1,1)
22 , F̂

(1,2)
22 , . . . , F̂

(p,p)
22 , ˆ̈Λ

(1)
1 , . . . , ˆ̈Λ

(j)
1 ]T . Using results

from Cheng et al. (2007) it can be shown that

√
n[ ˆ̈θC − θ̈C ] Zθ̈C ,

where Zθ̈C = [ZF11 , . . . , ZF1p , ZF1111 , ZF1112 , . . . , ZF11pp , ZF1211 , ZF1212 , . . .

, ZF12pp , ZF2111 , ZF2112 , . . . , ZF21pp , ZF2211 , ZF2212 , . . . , ZF22pp , ZΛ1 , . . . , ZΛp ]T is a 2p + 3p2

dimensional mean 0 Gaussian process. The proofs for ̂̈CN and ̂̈CM follow in a similar manner

to ĈN and ĈM .

1. ̂̈CN : The relevant mapping is for ̂̈CN
φC̈Njj′(θ̈C) = F

(j,j′)
11 − F (j)

1 F
(j′)
1

Using this mapping the desired results can be shown using similar methods to ĈN in the

proof of Theorem 4.3 above.
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2. ̂̈CM : The relevant mapping for ̂̈CM is

φ ¨CMjj′(θ̈C)(t) = Λ̈
(j)
1 (t)Λ̈

(j′)
1 (t)S̈(j,j′)(t, t) +

∫ t

0

Λ̈
(j)
1 (s)Λ̈

(j′)
1 (s)F

(j,j′)
22 (ds)

+

∫ t

0

∫ t

0

{1− Λ̈
(j)
1 (s1)}{1− Λ̈

(j′)
1 (s2)}F (j,j′)

11 (ds1, ds2)

+

∫ t

0

{1− Λ̈
(j)
1 (s)}{−Λ̈

(j′)
1 (t)}{F (j)

1 (ds)− F (j,j′)
11 (ds, t)− F (j,j′)

12 (ds, t)}

+

∫ t

0

{1− Λ̈
(j′)
1 (s)}{−Λ̈

(j)
1 (t)}{F (j′)

1 (ds)− F (j,j′)
11 (t, ds)− F (j,j′)

21 (t, ds)}

+

∫ t

0

∫ t

s1

{1− Λ̈
(j)
1 (s1)}{−Λ̈

(j′)
1 (s2)}F (j,j′)

12 (ds1, ds2)

+

∫ t

0

∫ t

s1

{1− Λ̈
(j′)
1 (s1)}{−Λ̈

(j)
1 (s2)}F (j′,j)

12 (ds1, ds2),

This mapping can be shown to be Hadamard differentiable in the direction of Zθ̈C through

repeated application of Lemma 12.3 from Kosorok (2008) and Lemma A5 from Cheng

et al. (2007). The results then follow using similar methods to the proof for ĈM in

Theorem 4.3 above.

The results for ̂̈RN and ̂̈RM can be obtained by defining θ̈R =

[F
(1)
1 , . . . , F

(p)
1 , C̈N

(1,1)
, C̈N

(1,2)
, . . . , C̈N

(p,p)
, ¨CM

(1,1)
, ¨CM

(1,2)
, . . . , ¨CM

(p,p)
]T and

ˆ̈θR = [F̂
(1)
1 , . . . , F̂

(p)
1 , ̂̈CN (1,1)

, ̂̈CN (1,2)

, . . . , ̂̈CN (p,p)

, ̂̈CM (1,1)

, ̂̈CM (1,2)

, . . . , ̂̈CM (p,p)

]T .

Using the results from above
√
n[ ˆ̈θR − θ̈R] Zθ̈R ,

where Zθ̈R = [ZF11, . . . , ZF1p, ZC̈N11, ZC̈N12, . . . , ZC̈Npp, Z ¨CM11, Z ¨CM12, . . . , Z ¨CMpp]
T is a p+

2p2 dimensional mean 0 Gaussian process. The results for ̂̈RN and and ̂̈RM can be shown using

similar methods to R̂N and R̂M above using the two mappings below.
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1. ̂̈RN : The relevant mapping is

φR̈Njj′(θ̈R) =
C̈N

(j,j′)√
F

(j)
1 (1− F (j)

1

√
F

(j′)
1 (1− F (j′)

1

.

2. ̂̈RM : The relevant mapping is

φ ¨RMjj′(θ̈R) =
¨CM

(j,j′)√
F

(j)
1

√
F

(j′)
1

.

Proof of Theorem 4.5

Proof. The consistency of V̂ can be established through a straightforward application of the

Davis-Kahan Theorem, and the consistency of Ξ̂ can be established through Weyl’s inequality.

From here asymptotic normality can be established using steps similar to Theorem 13.5.1 in

Anderson (2003), which derives the asymptotic variances of the eigenvectors and eigenvalues for

the sample covariance matrix when data come from a multivariate normal distribution and the

sample covariance matrix has Wishart distribution. However the steps can be straightforwardly

extended to any asymptotically normal positive definite estimate of the covariance or correlation

matrix as shown below.

Consider the transformation Q = V T Σ̂V . Then by the Delta method
√
n(Q − Ξ) →d

N(0, JV ΨΣJ
T
V ) where JV = V T ⊗ V T . It can be shown that Σ̂ and Q have the same singular

values so Q can be represented as

Q = GΞ̂GT , (B.56)

for orthogonal G. G can be uniquely defined with the constraint gii ≥ 0. Note that Ξ̂ = V̂ T Σ̂V̂ ,

which together with the fact that V T V̂ is orthogonal implies that every column of G is equal

to ± the corresponding column of V T V̂ . Because V̂ → V the constraint that gii ≥ 0 implies

132



that G → I where I the identity matrix. Define U =
√
n(Q − Ξ), D =

√
n(Ξ̂ − Ξ) and

W =
√
n(Y − I). When we combine Equation (B.56) with GGT = I , and the conditions

gii > 0 and ξ̂1, > . . . , > ξ̂p, we get a set of one to one functions from Q to G and Ξ̂ except on a

set of measure zero which are continuously differentiable and have well defined inverses in the

neighborhood of Ξ̂ = Ξ and G = I . Therefore by the fact that U is asymptotically normal with

mean zero, from the delta methodW and D are also asymptotically normal with mean zero.

Further because the column of V̂ is equal to ± the corresponding column of V G and G→ I ,
√
n(V̂ − V ) has the same limiting distribution as

√
n(V G− V ) which is asymptotically normal

with mean zero by the delta method.

In order to show that the limiting variances are functions of ΨΣ, V , and Λ, using similar

algebra from Theorem 13.5.1 in (Anderson, 2003) we get the following equalities

U = WΛ +D + ΛW T + op(1) (B.57)

0 = W +W T + op(1) (B.58)

By combining results from Equations (B.57) and (B.58) and ignoring the op(1) terms we obtain

wii = 0 (B.59)

dii = uii (B.60)

wij =
uij

λj − λi
for i 6= j (B.61)

This allows the limiting distribution forW andD to be solved for using the limiting distribution

of U . In turn the limiting distribution of W can be used to find the limiting distribution of
√
n(V̂ − V ).
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B.2 Additional Simulation Results

B.2.1 True correlation matrices for martingales and counting processes

Below are the true values for RM(t), RN(t), ¨RM(t), and R̈N(t), for t = [1, 1, . . .]T and

t = [2, 2, . . .]T in the simulation settings described in Chapter 4 of the main text. These are all

based off of a single simulation of 500,000 subjects with no censoring. We present the matrices

for p = 8, because based on our simulation structure the the matrices for p = 4 are equal to the

upper left or bottom right portion of the p = 8 matrices.

RM([1, 1, . . .]T ) =



1 0.49 0.32 0.16 0.00 0.00 0.00 0.00

0.49 1 0.50 0.32 0.16 0.00 0.00 0.00

0.32 0.50 1 0.50 0.32 0.16 0.00 0.00

0.16 0.32 0.50 1 0.49 0.32 0.16 0.00

0.00 0.16 0.32 0.49 1 0.50 0.32 0.16

0.00 0.00 0.16 0.32 0.50 1 0.50 0.32

0.00 0.00 0.00 0.16 0.32 0.50 1 0.50

0.00 0.00 0.00 0.00 0.16 0.32 0.50 1



RM([2, 2, . . .]T ) =



1 0.53 0.35 0.17 0.00 0.00 0.00 0.00

0.53 1 0.53 0.34 0.17 0.00 0.00 0.00

0.35 0.53 1 0.53 0.35 0.17 0.00 0.00

0.17 0.34 0.53 1 0.53 0.35 0.17 0.00

0.00 0.17 0.35 0.53 1 0.53 0.35 0.17

0.00 0.00 0.17 0.35 0.53 1 0.53 0.35

0.00 0.00 0.00 0.17 0.35 0.53 1 0.53

0.00 0.00 0.00 0.00 0.17 0.35 0.53 1


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RN([1, 1, . . .]T ) =



1 0.40 0.26 0.12 0.00 0.00 0.00 0.00

0.40 1 0.40 0.26 0.12 0.00 0.00 0.00

0.26 0.40 1 0.40 0.26 0.12 0.00 0.00

0.12 0.26 0.40 1 0.40 0.25 0.12 0.00

0.00 0.12 0.26 0.40 1 0.40 0.26 0.12

0.00 0.00 0.12 0.25 0.40 1 0.40 0.26

0.00 0.00 0.00 0.12 0.26 0.40 1 0.41

0.00 0.00 0.00 0.00 0.12 0.26 0.41 1



RN([2, 2, . . .]T ) =



1 0.34 0.20 0.09 0.00 0.00 0.00 0.00

0.34 1 0.34 0.20 0.09 0.00 0.00 0.00

0.20 0.34 1 0.34 0.20 0.09 0.00 0.00

0.09 0.20 0.34 1 0.34 0.21 0.09 0.00

0.00 0.09 0.20 0.34 1 0.35 0.20 0.09

0.00 0.00 0.09 0.21 0.35 1 0.34 0.21

0.00 0.00 0.00 0.09 0.20 0.34 1 0.34

0.00 0.00 0.00 0.00 0.09 0.21 0.34 1



¨RM([1, 1, . . .]T ) =



1 0.47 0.30 0.15 0.00 −0.01 0.00 0.00

0.47 1 0.47 0.30 0.14 −0.01 −0.01 −0.01

0.30 0.47 1 0.47 0.30 0.15 0.00 0.00

0.15 0.30 0.47 1 0.47 0.30 0.15 0.00

0.00 0.14 0.30 0.47 1 0.47 0.30 0.15

−0.01 −0.01 0.15 0.30 0.47 1 0.47 0.30

0.00 −0.01 0.00 0.15 0.30 0.47 1 0.47

0.00 −0.01 0.00 0.00 0.15 0.30 0.47 1


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¨RM([2, 2, . . .]T ) =



1 0.49 0.31 0.15 0.00 0.00 0.00 0.00

0.49 1 0.49 0.31 0.15 −0.01 −0.01 −0.01

0.31 0.49 1 0.49 0.31 0.15 0.00 0.00

0.15 0.31 0.49 1 0.49 0.31 0.15 0.00

0.00 0.15 0.31 0.49 1 0.49 0.32 0.15

0.00 −0.01 0.15 0.31 0.49 1 0.49 0.32

0.00 −0.01 0.00 0.15 0.32 0.49 1 0.49

0.00 −0.01 0.00 0.00 0.15 0.32 0.49 1



R̈N([1, 1, . . .]T ) =



1 0.48 0.36 0.25 0.14 0.14 0.14 0.14

0.48 1 0.48 0.36 0.25 0.14 0.14 0.14

0.36 0.48 1 0.48 0.36 0.25 0.14 0.14

0.25 0.36 0.48 1 0.49 0.36 0.25 0.14

0.14 0.25 0.36 0.49 1 0.49 0.36 0.25

0.14 0.14 0.25 0.36 0.49 1 0.48 0.36

0.14 0.14 0.14 0.25 0.36 0.48 1 0.48

0.14 0.14 0.14 0.14 0.25 0.36 0.48 1



R̈N([2, 2, . . .]T ) =



1 0.55 0.44 0.34 0.26 0.26 0.26 0.26

0.55 1 0.55 0.44 0.34 0.26 0.26 0.26

0.44 0.55 1 0.54 0.44 0.34 0.26 0.26

0.34 0.44 0.54 1 0.55 0.44 0.34 0.26

0.26 0.34 0.44 0.55 1 0.55 0.44 0.35

0.26 0.26 0.34 0.44 0.55 1 0.55 0.44

0.26 0.26 0.26 0.34 0.44 0.55 1 0.55

0.26 0.26 0.26 0.26 0.35 0.44 0.55 1


Note that all entries for R̈N(t) are greater than zero for t = [1, 1 . . .]T and t = [2, 2 . . .]T , even

for the entries corresponding to zero correlation for T . As noted in Section 4 of the text this is
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due to the competing event creating correlation between N̈ (j)(t) and N̈ (j′)(t) even when T (j)

and T (j′) are uncorrelated. Alternatively ¨RM does not have the same issue and is more similar

to RM . Also note that in the non-competing risk setting the correlations for RN are much lower

than for RM .

Because R̈N has a higher overall level of correlation than the other correlation matrices

it has a higher first eigenvalue and larger separation between the first and second eigenvalues.

Because of this the first average angle between the estimated and true first principal direction

for R̈N is smaller than for ¨RM . However, because the first direction is partially driven by

correlation induced by T̃ and not correlation between elements of T , using ¨RM instead of R̈N

may still be preferred.

B.2.2 Additional simulation results

Tables B18 and B19 give additional simulation results for PCA using the counting process

and martingale correlation matrices. Simulation set ups are the same as described in Section 4.4

of the main text. The principal components are estimated at t = [2, 2, 2, 2, . . .]T . All reported

values are the average (SD) angle between the true and estimated principal directions over all

1,000 simulated data sets, except for the counting process in the non-competing risk set up

using C2 as the censoring distribution. In this case there are simulations Ŝ(j)(2) = 0 for some

of the variables. This results in the counting process correlation not being well defined. The

estimated counting process correlation not being defined at t = [2, 2, 2, 2, . . .]T happens in 31

of the simulated data sets when p = 4 and n = 200, one of the simulated data sets when p = 4

and n = 1000, 86 of the data sets when p = 8 and n = 200, and 15 of the data sets when p = 8

and n = 1000.

When t = [2, 2, 2, 2, . . .]T impact of sample size, dimension and censoring rate are similar

to t = [2, 2, 2, 2, . . .]T . For t = [2, 2, 2, 2, . . .]T the average angles between the estimated and

true principal directions are higher than they are at t = [1, 1, 1, 1, . . .]T for both martingale and

counting process PCA. This is likely due to unstable estimation as there are fewer subjects still in

the risk set near t = 2. For both the Kaplan-Meier and Nelson-Aalen estimator this can lead to
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large jumps based on just one failure. This is particularly true for counting process PCA when C2

is the censoring distribution. This is likely due to the fact that even when the estimated survival

curve doesn’t go all the way to zero by time point two, the estimate still has a high variance.
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B.3 Principal component Loadings for MPACT data

Figure B.3.5 gives the principal component loadings from day 30 to 360 for the third through

ninth principal components. The loadings for each specific adverse event at day 360 can be

found in Table 3 of the main text. The 3rd through 9th principal component loadings do not have

as clear of a scientific interpretation as the first two principal component loading and are not as

stable over time.
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Figure B.3.5: Principal component direction loadings from day 30 to 360 for first two principal
components using martingale correlation matrix estimates. Line types indicate constitutional,

gastrointestinal and hematologic event types.
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APPENDIX C: ADDITIONAL RESULTS FOR CHAPTER 4

C.1 Multi-set Canonical Directions for Executive Function and Brain Structure Data

Tables C20 through C24 give the first three latent mCCA directions using the MAXVAR/-

VAR formulation for the four EF test scores, 20 DTI white matter tracts, and 88 GM brain regions.

As noted in the main text the latent mCCA directions were estimated using the transformed

Kendall’s scatter matrix and three principal components for the EF variables, 16 principal

components for the DTI variables, and seven for the GM brain regions.

Table C20: MAXVAR/VAR multi-set canonical correlation analysis direction loadings for
executive function variables

Dir 1 Dir 2 Dir 3

BASC -0.16 -0.05 0.44
BRIEF -0.06 -0.10 0.36
SB NV FR -0.44 0.74 0.70
SB V FR 1.03 0.42 0.06
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Table C21: MAXVAR/VAR multi-set canonical correlation analysis direction loadings for
diffusion tensor imaging white matter tracts

Dir 1 Dir 2 Dir 3

ARC FP Left 0.09 -0.16 0.42
ARC FP Right 0.23 -0.29 -0.09
ARC FT Left 0.18 0.22 -0.36
ARC FT Right -0.03 -0.08 -0.14
ARC TP Left 0.07 -0.22 -0.01
ARC TP Right -0.23 0.17 0.11
CGC Left -0.17 0.46 0.21
CGC Right 0.22 0.04 -0.13
CTPF Left -0.15 0.34 -0.07
CTPF Right 0.51 0.01 0.14
IFOF Left 0.19 -0.07 -0.36
IFOF Right -0.23 -0.13 0.18
ILF Left 0.20 0.16 0.13
ILF Right -0.22 0.21 0.19
SLF Left -0.22 0.10 -0.17
SLF Right -0.17 -0.18 -0.28
UNC Left -0.11 -0.11 -0.63
UNC Right 0.16 -0.39 0.28
Genu 0.22 -0.23 0.26
Splenium -0.45 -0.33 0.15
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Table C22: MAXVAR/VAR multi-set canonical correlation analysis direction loadings for grey
matter volume regions

Dir 1 Dir 2 Dir 3

Precentral Gyrus Left 0.01 0.06 0.05
Precentral Gyrus Right -0.01 0.02 0.08
Superial Frontal Gyrus Left 0.00 0.04 0.03
Superial Frontal Gyrus Right 0.02 0.07 0.01
Superial Frontal Gyrus Orbital Left -0.01 0.04 0.02
Superial Frontal Gyrus Orbita Right -0.03 0.03 -0.02
Middle Front Gyrus Left -0.01 0.05 0.04
Middle Front Gyrus Right -0.01 0.04 0.03
Middle Front Gyrus Orbital Left 0.00 0.06 0.01
Middle Front Gyrus Orbital Right -0.02 0.03 0.01
Inferior Frontal Gyrus Opercular Left 0.02 0.03 -0.02
Inferior Frontal Gyrus Opercular Right 0.00 0.02 0.00
Inferior Frontal Gyrus Triangular Left 0.04 0.02 -0.04
Inferior Frontal Gyrus Triangular Right -0.01 0.01 -0.05
Inferior Frontal Gyrus Orbigal Left 0.02 0.06 -0.04
Inferior Frontal Gyrus Orbital Right 0.04 0.06 -0.01
Rolandic Operulum Left 0.07 0.01 -0.06
Rolandic Operulum Right 0.04 0.00 -0.04
Supplementary Motor Area Left 0.03 0.02 0.04
Supplementary Motor Area Right 0.05 0.03 0.04
Olfactory Cortex Left -0.02 0.05 -0.11
Olfactory Cortex Right -0.02 0.05 -0.11
Superior Frontal Gyrus Medial Left -0.04 0.08 -0.04
Superior Frontal Gyrus Medial Right -0.04 0.08 -0.05
Superior Frontal Gyrus Medial Orbital Left 0.00 -0.01 -0.02
Superior Frontal Gyrus Medial Orbital Right -0.03 -0.02 -0.09
Gyrus Rectus Left -0.03 0.01 0.02
Gyrus Rectus Right -0.02 0.00 -0.02
Insula Left 0.06 0.05 -0.09
Insula Right 0.10 0.05 -0.07
Anterior Cingulate and Paracingulate Gyrus Left -0.05 0.05 -0.08
Anterior Cingulate and Paracingulate Gyrus Right -0.02 0.04 -0.02
Median Cingulate and Paracingulate Gyrus Left 0.03 0.07 -0.08
Median Cingulate and Paracingulate Gyrus Right 0.05 0.05 -0.07
Posterior Cingulum Gyrus Left 0.01 0.05 -0.08
Posterior Cingulum Gyrus Right 0.02 0.03 -0.08
Hippocampus Left 0.05 0.03 0.00
Hippocampus Right 0.05 0.02 0.01
Parahippocampal Gyrus Left 0.05 0.01 0.02
Parahippocampal Gyrus Right 0.05 0.01 0.01
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Table C23: MAXVAR/VAR multi-set canonical correlation analysis direction loadings for grey
matter volume regions

Dir 1 Dir 2 Dir 3

Amygdala Left -0.07 0.01 -0.04
Amygdala Right -0.04 -0.01 -0.01
Calcarine Fissure and Surrounding Cortex Left 0.02 -0.10 -0.06
Calcarine Fissure and Surrounding Cortex Right 0.02 -0.09 -0.05
Cuneus Left 0.04 -0.11 -0.04
Cuneus Right 0.05 -0.13 -0.03
Lingual Gyrus Left 0.00 -0.09 -0.02
Lingual Gyrus Right 0.03 -0.06 -0.01
Superior Occipital Gyrus Left 0.01 -0.13 0.00
Superior Occipital Gyrus Right 0.01 -0.07 0.02
Middle Occipital Gyrus Left 0.00 -0.10 -0.06
Middle Occipital Gyrus Right -0.01 -0.06 0.05
Inferior Occipital Gyrus Left -0.03 -0.03 -0.09
Inferior Occipital Gyrus Right -0.03 -0.03 -0.05
Fusiform Gyrus Left 0.08 0.03 0.03
Fusiform Gyrus Right 0.09 0.02 0.04
Postcentral Gyrus Left -0.09 0.05 -0.02
Postcentral Gyrus Right -0.11 0.04 -0.05
Superior Parietal Gyrus Left -0.09 0.04 -0.03
Superior Parietal Gyrus Right -0.10 0.05 0.00
Inferior Parietal, but Supramarginal and Angular Gyrus Left -0.03 0.04 0.01
Inferior Parietal, but Supramarginal and Angular Gyrus Right -0.02 0.05 -0.07
Supramarginal Gyrus Left 0.01 0.01 -0.04
Supramarginal Gyrus Right -0.05 0.02 -0.06
Angular Gyrus Left 0.05 0.08 0.01
Angular Gyrus Right 0.04 0.08 -0.03
Precuneus Left -0.07 0.01 -0.09
Precuneus Right -0.04 0.01 -0.09
Paracentral Lobule Left -0.04 0.04 0.05
Paracentral Lobule Right -0.01 0.05 0.02
Caudate Nucleus Left -0.12 0.04 -0.09
Caudate Nucleus Right -0.10 0.04 -0.09
Lenticular Nucleus Putamen Left -0.09 -0.02 -0.04
Lenticular Nucleus Putamen Right 0.03 -0.02 -0.03
Thalamus Left 0.03 0.08 -0.03
Thalamus Right 0.03 0.07 -0.03
Heschl Gyrus Left 0.08 0.02 -0.09
Heschl Gyrus Right 0.05 0.00 -0.07
Superior Temporal Gyrus Left 0.07 -0.01 0.01
Superior Temporal Gyrus Right 0.01 0.03 -0.05
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Table C24: MAXVAR/VAR multi-set canonical correlation analysis direction loadings for grey
matter volume regions

Dir 1 Dir 2 Dir 3

Temporal Pole: Superior Temporal Gyrus Left -0.07 0.03 0.04
Temporal Pole: Superior Temporal Gyrus Right -0.09 -0.04 0.02
Middle Temporal Gyrus Left 0.03 0.05 0.04
Middle Temporal Gyrus Right 0.05 0.03 0.05
Temporal Pole: Middle Temporal Gyrus Left -0.04 0.00 0.08
Temporal Pole: Middle Temporal Gyrus Right -0.05 -0.02 0.07
Inferior Temporal Gyrus Left 0.03 0.01 0.11
Inferior Temporal Gyrus Right 0.05 -0.03 0.08
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