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ABSTRACT

Reuben Adatorwovor : Relaxing the Independence Assumption in Relative Survival Analysis
(Under the direction of Jason P. Fine)

Quantifying credible cancer survival in competing risk population-based studies is generally done
by disease-specific survival analysis when reliable cause of death information is available. Relative
survival analysis may be used to estimate disease-specific survival when cause of death is missing
and or subject to misspecification and not reliable for practical usage. This method is popular
for population-based cancer survival studies using registry data and does not require cause of
death information. The standard estimator under the independence assumption is the ratio of
all-cause survival in the cancer cohort group to the known expected survival from a healthy reference
population. Disease-specific death competes with other causes of mortality, potentially creating
dependence among the causes of death. The standard ratio estimate is only valid when death from
disease and death from other causes are independent. To relax the independence assumption, we
formulate dependence using a copula-based model. Likelihood-based, nonparametric and parametric
regression methods are implemented to fit a parametric, a nonparametric and a regression model to
the distribution of disease-specific death respectively without the need for cause of death information.
We assumed that the copula is known and the distribution of other cause of mortality is derived
from the reference population. Since the dependence structure for disease related and other-cause
mortality is nonidentifiable and unverifiable from the observed data, we propose a sensitivity analysis,
where the analysis is conducted across a range of assumed dependence structures. We demonstrate
the practical utility of our method through simulation studies and an application to French breast

cancer data.

iii



This work has being dedicated to my family especially Dayana, Solomon, Shalom, and Shaina.

v



ACKNOWLEDGEMENTS

I am thankful to Dr. Jason P. Fine for his insight and helpful suggestions and the rest of my
advising committee members for reading of the original version of this paper and providing very
useful comments that improved the presentation of this manuscript. I am also grateful to the UNC
CH graduate school for providing funds for me through the dissertation completion fellowship which

enabled me to have undivided attention during my last couple of months of dissertation work.



TABLE OF CONTENTS

LIST OF TABLES ... e e
LIST OF FIGURES .. e e e e e
LIST OF ABBREVIATTION S . e e e e

CHAPTER 1: INtroductiOn .. ...ttt e e e,

1.1 IntroducCtion. . ..ottt e e e

CHAPTER 2: Relaxing the Independence Assumption in Relative Survival Analysis:
A Parametric Approah. ... ...

2.1 Introduction . .. ..o e
2.2 Data and Model . ... ...
2.3 Likelihood Estimation and Inference ........ ... ... . i i i,
2.4 Numerical Tustrations ............ i e

2.4.1  Simulation Studies ........ ..o

2.4.2 Application to French Breast Cancer Data................. ... ...,
2.5 Discussion and Conclusion . ....... ... e e

CHAPTER 3: A Nonparametric Method for Dependent Competing Risk in Relative

Survival Analysis .. ..o
3.1 Introduction. .. ....o e
3.2 Data and Model Formulation .............. i
3.2.1  MoONOtONICIEY . . e e
3.3 St (t) Estimation and Inference ......... ... . .
3.4 Numerical Ilustrations and Applications . .............. i
3.4.1 Simulation Procedure ........... ..
342 BIgUIES oottt

vi



3.4.3 Application to French Breast Cancer Data............. ... ... ... ... ..., 37

3.4.4  Extracting St,(X) from the Background Population ......................... 37

3.5 Discussion and ConcluSSIOn .. ... ...t 40

CHAPTER 4: Covariate Effect for Dependence Competing Risk in Relative Survival Analysis 41

4.1 IntroduUCtiOn. ... ..ot 41
4.2 Data and Model . . ... 45
4.3 Likelihood Estimation and Inference ..... ... 46
4.4 Numerical THUStrations ... ...t 49
4.4.1  Simulation STUdIEs . ....ootn i 49

4.4.2 Application to French Breast Cancer Data ................ ... .. ... ........ 50

4.5 Discussion and ConclusSIONn . . . ...ttt e 54
CHAPTER 5: CONCLUSION « o vt oottt e e e e e e e e e e e, 56
5.1 ConCIUSION . oottt 56
APPENDIX 1: Results from Clayton Copula ......... ... i, 58
APPENDIX 2: Estimating Equation ......... ... 63
APPENDIX 3: Covariate Model Derivation ............ooouiiii i 67
REFERENCES . . 69

vii



LIST OF TABLES

Table 2.1 Estimated parameters of the model for 77 across samples sizes (N),
dependence levels (1) and levels of censoring (C) treating T as a competing
event and VICE VEISA. ... ...ttt e 14

Table 2.2 Continuation: Estimated parameters of the model for T} across samples
sizes (N), dependence levels (1) and levels of censoring (C) treating T» as a
competing event and VICE VETISA. .. .. ...ttt e 15

Table 2.3 2, 5, 10 and 15-yr overall relative survival for French women diagnosed
with breast cancer between 1980 and 2011. ... ... . i 17

Table 2.4 2, 5, 10 and 15-yr age group specific relative survival for French women
diagnosed with breast cancer between 1980 and 2011........ ... ... ..., 19

Table 3.5 Estimated parameters of the model for 77 across samples sizes (N),
dependence levels (73) with 20% censoring (C) treating 75 as a competing event
AN VICE VEISA. ..ottt 31

Table 3.6 Estimated parameters of the model for T; across samples sizes (N),
dependence levels (73) with 20% censoring (C) treating 75 as a competing event
ANA VICE VETSA. .+ttt vttt ittt ettt et e e e e ettt e 32

Table 3.7 2, 5, 10 and 15-yr overall relative survival for French women diagnosed
with breast cancer between 1980 and 2011. ... .. ..o i 38

Table 3.8 2, 5, 10 and 15-yr age group specific relative survival for French women
diagnosed with breast cancer between 1980 and 2011........... ... ...ttt 39

Table 4.9 Estimated parameters of the model for T} across samples sizes (N), and
dependence levels (75) with 15% censoring treating 75 as a competing event. ............ 51

Table 4.10 Estimated parameters of the model for 77 across samples sizes (N), and
dependence levels (73) with 15% censoring treating 75 as a competing event. ............ 52

Table 4.11 Estimated parameters of the model for T} across samples sizes (N), and
dependence levels (73) with 15% censoring treating T, as a competing event. ............ 53

Table A.12 Estimated parameters of the model for T} across samples sizes (N),
dependence levels (73) and levels of censoring (C) treating 75 as a competing
EVENE ANA VICE VETSA. « ettt ettt ettt et e ettt e 62

viii



LIST OF FIGURES

Figure 2.1 Although the graphics looks like a straight line, these are actually
survival curves spanning the spectrum of dependence structures (0-0.9) each
representing the levels of competing mortality........... ... ... o i 18

Figure 3.2 Comparison of the estimated event survival probability and the truth
for 1000 samples with 15% censoring for 0% dependence structure for Gumbel copula ... 33

Figure 3.3 Comparison of the estimated event survival probability and the truth
for 1000 samples with 15% censoring for 25% dependence structure for Gumbel copula .. 34

Figure 3.4 Comparison of the estimated event survival probability and the truth
for 1000 samples with 15% censoring for 50% dependence structure for Gumbel copula .. 35

Figure 3.5 Comparison of the estimated event survival probability and the truth
for 1000 samples with 15% censoring for 75% dependence structure for Gumbel copula .. 36

Figure A.6 A simulated breast cancer data with moderate dependence (50%) through
the use of Clayton copula. ....... ... e e 58

Figure A.7 A plot showing the PDF, CDF and contour plots for the Gumbel copula
which exhibit upper tail dependency. ...... ... 59

Figure A.8 A plot showing the PDF, CDF and contour plots for the Clayton copula
which exhibit lower tail dependency.......... ... . i 60

X



AFT

b — Gumbel
C — Copula
Sty (t)
EMP

EST

G — Gumbel
ModB
Mod — B
T

K-M

SE

Skr(t)

LIST OF ABBREVIATIONS

Accelerated Failure Time
Bivariate Gumbel
Clayton copula
Disease-specific survival
Empirical

Estimate

Gumbel copula

Model Based

Model Based

Latent Failure time j
Kaplan-Meier

Standard Error

Relative Survival



CHAPTER 1: Introduction

1.1 Introduction

Cancer patient survival in competing risk settings is a fundamental problem for cancer researchers
and physicians. Improvement in cancer therapeutics comes with understanding of cancer prognostic
measures which is seemingly simple but often lacking and or confusing. Additionally, understanding
the underlying underpinnings of the current estimators for these prognostic measures is complicated
especially without complete and accurate cause of event information. Appropriate estimators
under reasonable assumptions are nonexistent for disease-specific survival estimation. Quantifying
cancer survival in population-based cancer registries not only provides information to patients and
their families to understand prognosis and make decisions on the type of treatment to seek but
also provides useful guidance to their physicians in making decisions about the type of treatment
regimen to deploy. This dissertation delves into the constraints of the existing estimators for
disease-specific survival analysis. In particular, three estimators were proposed to mitigate against
unsubstantiated assumptions for the current estimators that assume that time to disease-specific
mortality is independent of time to competing mortality for disease-specific survival when cause of
event is either missing or subject to misspecification.

In Chapter 2, we propose a parametric method for modelling disease-specific survival for
competing risk registry data. We formulate the dependence between the latent failure times
distributions for death from disease and death from competing causes using copula models. The
copula model captures the nonlinear scale invariant dependence inherent in competing risk data.
It takes as input the marginal distribution of the minimum event time where the distribution of
other cause mortality is assumed known and extracted from the reference population with the
usual assumption that disease-specific death is negligible in this reference population. Due to the

nonlinearity of the mortality trends observed in the cancer registry data, two Archimedean copulas:



the Gumbel and the Clayton copulas have been discussed and implemented. The usual maximum
likelihood estimation procedure was implemented.

Chapter 3 relaxes the parametric assumption introduced earlier in chapter 2. Instead of relying
on traditional endpoints such as the disease-specific hazard and disease-specific cumulative incidence
functions for disease-specific survival estimation, we employ a function of the Kaplan-Meier estimator.
First, we formulate the dependence by using the Gumbel copula. The all-cause mortality is estimated
using the Kaplan-Meier estimator which is a function of the disease-specific survival and the excess
survival. Next, the nonlinear function is inverted and solved for disease-specific survival using a
variant of Newton-Raphson algorithm. The usual regularity conditions hold.

We discuss the risk factors that influence cancer survival in chapter 4. These factors may include
but are not limited to age, sex, calendar period using the competing risk dependence regression
method. Assuming a similar formulation in chapter 2 above, we incorporate the covariates using the
Accelerated Failure Time (AFT) model. In this case, a transformation of the latent failure time is
implemented to obtain an Extreme Value Distribution (EVD) for the minimum of the event times.
As usual, the distribution of the competing mortality iss derived from the background reference
population and together with the distribution of the latent failure times modelled using the Gumbel
copula. Likelihood inference and interpretation is proposed.

Extensive simulations were implemented to assess the performance of our methodologies. Due
to the identifiability constraints and the unverifiable nature of the dependence between the latent
failure times in the observed registry data, a sensitivity analysis was proposed where we estimated
disease-specific survival across a spectrum of dependence structures. We demonstrated the utility
of our methods through an application to French breast cancer data obtained from Institut Curie
breast cancer database, France.

Chapter 5 concludes the dissertation. In that we proposed three novel methods for estimating
relative survival for cancer registries. These methods are the first step in incorporating dependence in
relative survival analysis. The key measures are the so called "net survival” under the independence
assumption and “crude survival” or ”"crude probability of death” under the dependence assumption.
These prognostic measures for cancer-specific survival are not only of great interest to patients

and their love ones for end of life decision making, or for clinicians for clinical decision making, or



for researchers in understanding therapeutics, but also for policy makers in making decisions that

impact us all.



CHAPTER 2: Relaxing the Independence Assumption in Relative Survival Analysis:
A Parametric Approah

2.1 Introduction

Cancer patients including breast, prostate, endometrial and thyroid cancer are at higher risk
of dying from heart disease and stroke than the general population. As the number of cancer
survivors increases, so is the rate of cardiovascular deaths (Sturgeon et al., 2019). Such medical
research frequently yields multiple event times which may consist of a terminal and or a non-terminal
event, including landmarks of the disease process. The practical concern for physicians is patient
survival, suggesting an analysis based on the distribution of these event times or the disease-specific
hazard and or cumulative incidence function. There is often scientific interest in understanding
disease-specific mortality in the absence of failure types other than the disease of interest, a quantity
which is sometimes controversial but meaningful to many practitioners or researchers. Other
researchers prefer the latter quantity in understanding disease-specific mortality in the presence of
other competing causes. Understanding these quantities helps inform researchers in the analysis of
the biological efficacy of treatment regimen rendered to patients to assess patient survival.

Survival probability is an important measure not only for clinicians in determining prognosis and
treatment regimen but also for patients and their families for decision making. With improvement
in medical treatment and long follow-up in population-based disease registries, there is a potential
for lost to follow-up during which patients may either experience disease-specific death or death
from non-disease related causes (Brinkhof et al., 2010). In such competing risk settings where one
death type precludes the occurrence of other types, standard methodology assumes that cause of
death is known (Gichangi and Vach, 2005).

In the analysis of competing risks events from registry data, accurate documentation of death
is essential (Percy et al., 1981; Welch and Black, 2002; Mieno et al., 2016). A challenge is that

documentation either may not be available, or may be incomplete or incorrect for cause of death, re-



sulting in problems distinguishing disease and non-disease related mortality. The issue is pronounced
in Europe, where comparison of disease-specific survival across countries is of interest. The World
Health Organization (Organization et al., 1977) defines cause of death as "the disease or injury which
initiated the train of morbid events leading directly to death”. However, population-based disease
registries may not be harmonized across countries, leading to imprecise cause of death definitions
and different levels of documentation of cause of death information. Often, the underlying cause of
death may be unclear as hospital coding of cancer death may not agree with the death certificate
coding. As an example, (Welch and Black, 2002) reported that 41% of deaths that occurred (within
one month diagnosis and cancer directed surgery) were not attributable to the coded cancer in
the registry. When reliable cause of death information is available, it is often located in separate
databases, which may be costly to obtain and difficult to link with registry data.

Suppose that "= min{T} : k=1,2,3,---, K} is the potentially observable failure time and
e = {k : T = Ty} the failure type where T7,--- , Tk, with K € N are the latent failure times
associated with the K failure types. In registry data, K = 2 and € = 1 implies death from cancer
and ¢ = 2 implies death from other competing causes. Standard methods for independently right
censored survival data without competing risks cannot generally be used to make inference about
disease-specific survival. Under dependent competing risks, where 77 and T5 are dependent, the
Kaplan-Meier (Kaplan and Meier, 1958) curve estimates a function of the cause-specific hazard
function, defined in Section 2.2. The logrank test (Bland and Altman, 2004) assesses group differences
between the cause-specific hazard function, while the standard proportional hazards model (Cox,
1972) formulates the effects of covariates on the cause-specific hazard function. The cumulative
incidence function, defined in Section 2.2, gives disease-specific survival in the presence of competing
events. This quantity has been widely adopted in applications, with the Aalen-Johanson estimator
(Aalen and Johansen, 1978), Gray’s test (Gray et al., 1988), and the Fine-Gray model (Fine and
Gray, 1999), providing analogs to the Kaplan-Meier curve, the logrank test, and the proportional
hazards model for the cumulative incidence function. Without cause of death information, these
methods are not applicable.

To address disease-specific survival without cause of death information, relative survival methods
have been proposed. Relative survival, Sg(t) is the ratio of the observed survival rate in a group

of cancer patients, during a specified period, to the expected survival rate in a healthy reference



population (Ederer, 1961). Mathematically,

Salt) = o) (2.1)

where at time t, So(t) is the survival probability for an individual in the registry and Sp(t)
is the expected survival from mortality tables. Existing literature has focused exclusively on
the estimation of Sg(t) under the independence assumption, 77 L T5. Under independence,
So(t) = S, (t) - Sty (t), Sp(t) = S, (t) which implies Sg(t) = S, (t) where S, (t) and Sp,(t) are
the survival probabilities corresponding to T} and T5 respectively. The relationship (2.1) can be
rewritten in terms of hazard functions as Ao (t) = Ag(t) + Ap(t) (Cronin and Feuer, 2000), where
Ao(t) is the hazard in the disease registry, Ag(t) is the so called excess hazard among the cancer
cohort, and Ap(t) is the hazard from mortality tables. Under independence, Ag(t) = Ar, (¢) and
Ap(t) = Ay (t), where Ar, () = _dl#f%(t), j = 1,2, are the net hazard functions for cancer and other
cause mortality. The disease-specific survival probability Sz, (¢) under the independence assumption
is the target of relative survival analysis and corresponds to a hypothetical population in which
death from competing causes does not exist. It differs from the cumulative incidence function which
is commonly used to quantify disease-specific survival in analyses with cause of death information.
Sr(t) has an excess hazard (Suissa, 1999) interpretation and is no longer a survival probability
when formulated as in 2.1.

Relative survival based on independence methods was pioneered by Berkson and Gage (1950),
and Ederer (1961) for nonparametric estimation of S7, (¢). A variant of this method was proposed by
Hakulinen (1982) to address the bias due to heterogeneity of patient withdrawal within subgroups.
Perme et al. (2012) demonstrated that these classical methods may be biased under certain censoring
patterns. For example, in population comparisons, such bias may arise from unmeasured covariates
affecting the cancer cohort group and the reference population from which rates of expected mortality
are drawn. Rebolj Kodre and Pohar Perme (2013) studied biases associated with censoring and
age distribution (at the time of cancer diagnosis) and proposed weighting corrections. Nixon et al.
(1994) documented that event times and censoring times are dependent on the age of the patients
in a cancer study. Stratified methods Sasieni and Brentnall (2017) based on age standardization

of relative survival ratios may reduce such biases. Hakulinen et al. (2011) and Perme et al. (2012)



developed alternative estimators valid under weaker assumption. However, the above estimation
methods for Sg(t) all require independence of death from cancer and death from competing causes
(Hakulinen et al., 2011; Perme et al., 2012).

To relax the independence assumption (de Lacerda et al., 2019; Makkar et al., 2018), we
formulate the dependence between the latent failure times distributions for death from disease
and death from competing causes using copula models (Deheuvels, 1978). The copula function
generates a joint distribution for the two event times, taking as input their marginal distributions.
Copulas allow a broad range of dependence structures and have been employed widely in survival
analysis, including bivariate event times (Oakes, 1982), competing risks with known cause of failure
(Heckman and Honoré, 1989), and semi-competing risks where one event time censors the other but
not vice versa (Fine et al., 2001). We employ such models with competing risks data from disease
registries where cause of death information is either not reliable or not available. Because the joint
distribution of the latent failure times is nonparametrically nonidentifiable (Tsiatis, 1975), we treat
the copula function as known. The marginal distribution of the time to disease-specific death is
modelled parametrically with the distribution of death from other causes drawn from the reference
population. Likelihood-based inference is proposed. Because the joint distribution is unidentifiable
nonparametrically and unverifiable from the observed registry data, a sensitivity analysis is suggested
in which disease-specific survival is estimated across a range of rich dependence structures, specified
via the copula function. To our knowledge, this is the first attempt in accommodating dependence
in relative survival analysis.

The rest of this paper proceeds as follows. In section 2.2, we present the data and copula model
formulation for competing risks data. Section 2.3 describes the likelihood estimation and inference
procedure without cause of death information, as well as the proposed sensitivity analysis. In section
2.4, we present the numerical illustrations including simulation results and application to French

breast cancer data. Section 2.5 discusses and concludes the paper.

2.2 Data and Model

We begin by defining traditional endpoints for competing risk data with known cause of death.

The cause-specific hazard, A\;(t) is the instantaneous failure rate for occurrence of event € = k at



time t (Prentice et al., 1978),

Pt<T<t+0t,K=FkT>t)
5t—0 ot

(2.2)

and the cumulative incidence function C(t) is the proportion of patients who died from cause k
by time t in the presence of patients who might die from other causes. The disease-specific failure
probability can be expressed as Cy(t) = P(T <t: e=k) = fg Ai(s)-S(s)ds where S(t) = P(T > t)
is the overall survival probability. Standard competing risks methods with known cause of failure
focus on estimation of A\;(¢) and Cy(t).

Without cause of death information, the registry data is simply time to death from any cause,
T, which may be right censored by lost to follow up. Let C be the time to right censoring,
with the common assumption being that T and C are independent. The observed data consist
of X; = min(T;,C;) and 6; = I(T; < C;), where T; and C; are the failure and censoring times
on individual ¢ = 1,2,3,--- ,n. Relative survival methods employing such data do not focus on
the traditional competing risks endpoints A\ (¢) and Cg(t) but rather on the latent failure time
distributions with the corresponding survival functions S, (¢) and St (¢).

To capture the dependence between 77 and T35, we employ copula models, which completely
describe the dependence structure and provide scale invariant measures of association (Venter, 2002;
Miiller, 1996; Béuerle and Miiller, 1998; Denuit et al., 1999). Suppose v is a function defined such
that ¢ : [0,1] — [0, +-00] with independent marginal distributions, u; = P(T; < t;) = Fr,(t;) =
1 — S7;(tj) Vj € (1,2). Then, the copula model for distributions of 77 and Ty (Cherubini et al.,
2004; Joe, 1997; McNeil et al., 2009) is:

Clur,ug) = P(Ty < t1, Ty < to) = (™ (u1) + ¥~ (u)) = Fry 13 (1, 12)

where 1! is the inverse of 1 and 1 satisfies the Laplace-Stiltjes transform and Bernstein et al.
(1929) theorem. McNeil et al. (2009) showed that the generator function 9 is completely monotone
for non-negative random variables with ¢ (0) =1, ¢'(-) < 0 and ¢"(-) < 0.

The most widely used scale invariant measures of association to characterize dependence are

Spearman’s rho (ps) and Kendall’s tau (73) correlation coefficients. The connection between the



latter and the copula generator function was shown by Genest and MacKay (1986) as:

_ D) 1 Oou uN2du
Tk—1+4/0 Q/J*I(u)’du_l 4/0 (Y(u))°d

with ¢~V being the derivative of ¢»y~!. While in theory, any copula may be used to link the marginal
distributions of 77 and 75, in this paper, we focus on two popular Archimedean copulas, indexed by

a single dependence parameter 6 having simple interpretations. The Gumbel copula:
Clun, u2) = exp [~{(~log(w))’ + (~log(uz))"}¥ (23)
with 6 € (1,+00) and the Clayton copula:
Clug,ug) = (up® +uy? —1)7s (2.4)

with 6 € (0,4+00). A special case of product copula model: C(u1,u2) = u; - u2 is obtained when
f# = 1 and when 6 — 0 for Gumbel and Clayton copulas respectively, which gives independence of T
and Ty. When 6 > 0, the Clayton copula is bounded by: C(u1,u2) < 6(1 —uy — uz) + (1 + 0)ujus.
As dependence increases, that is § — +o0o, the Clayton copula approximates the Fréchet-Hoeffding

(Fréchet, 1951; Hoeffding, 1940) upper bound, giving perfect positive dependence.

2.3 Likelihood Estimation and Inference

We first formulate our model without covariates for the potentially dependent latent failure

times 77 and T5. The survival function for all-cause mortality time, 7' = min(7},T>) at time t, is:

ST(t) = ST1 (t) + STz (t) -1+ FT1,T2 (tv t)

= 1-Fpn(t)— Fr(t) + Fry, (t,t) (2.5)
with the corresponding density function of T' equalling

fT(t) = fn (t) + fr, (t) - fTLTQ (t7t) (26)



dFr.
where fr, (1) = 50 and fr, g,(t) = Znpats),

If censoring of T' by C' is noninformative, then the likelihood contribution for individual i is:
Li = fx,a,(Xi,0:) = [fr(X))” [Sp(X3)]) '~ (2.7)

From equation (2.7), the full log-likelihood function based on independent observations is:

n

(X, A) = Y (6ixlog fr(X:) + (1 —6;) xlog Sr(X;))

=1
= > dixlog [, (X0) + [ (Xi) = fry 1y (X, X))
i=1
+> (1= 06;) xlog [Sr, (Xi) + S15(Xi) — 1+ Fry 1, (Xi, X3)] (2.8)
i=1

where (X, A) = (X;,A;,1=1,2,3,--- ,n). We specify a parametric model for Frr, (), with parameter
of interest 7.

The general form of the probability density function of 77 at time t is fr, (t|n) with survival
probability St (tln) = 1 — Fr(tln) = [ fr,(s|n)ds. The distribution of T3 is assumed known
and extracted from the reference population with the usual assumption that disease-specific death
is negligible in this reference population (Ederer, et al. 1961). This is illustrated in the French
breast cancer data analysis in section 4.2. The copula distribution linking Fr, (¢) and Frp,(t) may be
specified using simple parametric copula models such as the Archemedean copulas. The parameters
in the copula model may be chosen for a pre-specified dependence between 77 and 15, for example,
Kendall’s tau (7). In the numerical illustrations, T was assumed to follow a Weibull distribution
with parameter = (), «) and probability density function fr,(t|n) = § (%)a_l exp {— (%)a}
because of its versatility to accommodate a wide range of hazard shapes. We consider the Gumbel
and the Clayton copulas in sections 2.3 and 2.4 for the joint distribution of 77 and T, as both
copulas exhibit tail behaviours that mimic the mortality trend observed in the cancer registry data.

The bivariate joint distribution and density functions for the Gumbel copula are:

10



Fro,(t.th) = exp { ((*109 (1))’ + (*log(uz))(;) é}

frm(tthy) = FTl,Tz(t,t\n).((_log(ul)e)+(_log(u2)9))g_1
<<_ log ()"~ - le(tm)) + <—log (u)’~t- fTa(t’”))) C 29)

X

Uq U2

while under the Clayton copula, the bivariate joint distribution and density functions are:

_1
Fra(tthn) = (w’+u’=1) "
Fry m,(t, tn) fri(tn) | fr(tn)
le,TQ(tvt’n) = 791 s o : 19+1 + 29+1 (210)
(ul + u, —1) Uy Uy

where u1 = Frp, (t|n),us = Fp,(t).

The maximum likelihood estimator (MLE) of 1 can be obtained by maximizing the log-likelihood
function in (2.8) using Nelder-Mead algorithm (Nelder and Mead, 1965). Parameter estimation was
sensitive to the choice of initial parameter values when 7, € (0.6,0.9) for small sample sizes with
larger (> 50%) censoring proportions. Because the model is highly nonlinear, computing may be
unstable, particularly with small sample sizes and high censoring proportions. We suggest using
multiple starting values wherever possible and taking the MLE to be the maximizer giving the
largest value of the log likelihood across all starting values. The usual regularity conditions for the
MLE hold, given that the estimator converges in probability, that is / Lif n and is asymptotically
normal, 7] ~ N (1, Io(n)™') with variance estimated using the inverse of the observed information

matrix (Ip(n)~!) evaluated at the MLE, 7. The observed information matrix is:

11



O*1(n|X, A)

Io(n) = anonT
& G (X0l {a%fT(Xi)}T {a% [fT(Xi)]}
> (X[ (X0)] "

n (s {n
2 [()][()J

(2.11)

Since the dependence structure for time to disease mortality (77) and time to other competing
mortality (7%) is nonidentifiable and unverifiable from the observed registry data, we propose a
sensitivity analysis, where the analysis is conducted across a range of assumed dependence structures.
The levels of dependence represent the varying levels of dependent competing mortality possible in
the observed registry data. For each copula dependence structure, we estimate n with ) and compute
Fr, (t|)) to estimate relative survival. The corresponding standard errors are obtained as the square
root of the Delta method variance: Var(S?l(})) = g(SE(})) To(n)~t -gT(Sﬁ)) where g(n) is
the derivative of St (¢t|n) with respect to 1. Due to the complex nature of the likelihood, numerical
approximation is used to estimate the information matrix in the numerical illustrations in Section
2.4.

In the presence of informative censorship where T and C are dependent, we propose conditioning
on additional covariates Z in Fr,, (Sasieni and Brentnall, 2017; Perme et al., 2012), where Fr, (t|2)
is the conditional distribution of 75 given Z. Such covariates might include age, sex, period, as well
as other relevant demographic variables. Let Z; be the covariate observed on individual ¢ = 1,--- ,n.
The log-likelihood function (2.8) is easily modified, where the likelihood contribution for individual
i(=1,---,n)is (2.7) with Fr,(t|Z;) replacing Fr,(t) in fr(X;) and Sp(X;). Here, we estimate 7 in
Fr, (t|n) unconditionally on Z to mitigate against the bias associated with these covariates (Sasieni
and Brentnall, 2017; Perme et al., 2012). The usual likelihood regularity conditions continue to
hold, with the resulting estimator 7 being consistent and asymptotically normal with variance which

may be estimated using the inverse of the observed information matrix evaluated at 7.
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2.4 Numerical Illustrations

2.4.1 Simulation Studies

To evaluate the performance of our proposed method, we simulated data to mimic the French
breast cancer data set for sample sizes; 1000, 2500 and 5000 with 500 replications. The latent failure
times for T; ~ Weibull(aj, A;) with probability density function defined above in section 2.3. The
parameters for the Weibull distribution for 77 were A1 = 0.182 and o = 1.609, while those for T5
were Ao = 0.742 and as = 0.693. In the estimation of A1, aj for 17, A9, g are assumed known for
T and vice versa for estimation of Ao and as. Noninformative censoring times were generated from
a uniform distribution (0, ), where v was chosen for 10, 30 and 50% censoring. We consider the
Gumbel copula with Kendall’s tau, 7, =1 — % =0, 0.25, 0.50, and 0.75. Initial parameter values
were randomly chosen from uniform distributions, with multiple starting values wherever possible as
described in section 2.3. We also simulated data from the Clayton copula. The results are similar to
those for the Gumbel copula and are described in the appendix 1, table A.12. Appendix 1 also show
the distribution, density and contour plots for T treating 75 as competing event for both Gumbel
and Clayton copulas for independence and strong dependence structures.

Appendix 1 also shows the dependency level possible in breast cancer registry data. The
simulation reveal the trend observed from time since diagnosis and provide useful insight into
understanding possible informative censorship. These figures: A.6, A.7 and A.8 suggests the levels of
competing mortality during the course of treatment and may also provide information to physicians
as to which time of treatment that may be more potent.

Tables 2.1, and 2.2 show the results for estimation of the model for T; treating 75 as a competing
event and for T5 treating T as a competing event. The bias is small decreasing to zero as the sample
size increases for each of the censoring levels. The empirical variance and the model based variance
tend to agree and the coverage is close to the nominal 0.95 level, particularly at larger sample sizes.

The empirical variance decreases as the sample size increases at roughly the expected root n rate.
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2.4.2 Application to French Breast Cancer Data

In this section we analyze data from women between the ages of 18 and 96 years surviving breast
cancer in France from 1980 to 2011. The data were obtained from the Institut Curie breast cancer
database. This database contains records from 24, 458 nonmetastatic breast cancer patients treated
at the Institut Curie. Out of the 24,458 breast cancer patients, 9,885 (40.4%) died while 14,573
were alive and administratively censored on December 31%¢ 2011. Five age group categories were
considered for the estimation of relative survival. 3,970 were between the ages of 15 — 44, 6,895
between the ages of 45 — 54, 6,420 between the ages of 55 — 64, 4,675 between the ages of 65 — 74
and 2,498 were in the 75 — 99 age group category. We individually matched the observed death
or censoring time in the disease cohort group with a corresponding time in the healthy reference
population on age, sex, and year (date of diagnosis and the date of death or censored) for each
participant and for each follow-up period. The background mortality data from the Human Mortality
Database (https://www.mortality.org) was last modified on June 28, 2018. Within each follow-up
year, we assumed that A\p(t) is piecewise constant (Dickman, et al., 2004) for each period up to time
X. The cumulative hazard for each period based on Ap(t) is calculated from the background survival
function at the beginning and end of the period. The cumulative hazard is then used to obtain
Ap(t) under the piecewise constant assumption. The goal of matching in determining Ay, = Ap is
to mitigate the impact of age and calendar year on potentially dependent censoring by C (Perme
et al., 2012). We estimate 2,5, 10, and 15—year relative survival assuming a Weibull distribution for
T1 and a Gumbel copula model with differing levels of dependence to specify the joint distribution
for the distributions of 77 and T>. We compared estimates from our parametric estimator to the
estimates of the estimator of Perme et al. (2012), which require independence of T} and T and
employ St,(t) from the same reference population.

Tables 2.3 and 2.4 show the estimates of St, (t) for cancer mortality both overall and stratified
by age. The parametric estimates under independence are similar to those from the Pohar-Perme
method suggesting that the Weibull assumption is a reasonable fit to the data. One observes that
as dependence increases, cancer survival generally decreases. For a fixed dependence level, younger
women tend to have higher cancer survival rates than do older women, with marked reductions

for the 65-74 and 75-99 age groups. There is some instability in survival estimates at 15 years,
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especially for the older age groups, as evidenced by the large standard errors. Perhaps, this may be
due to small numbers of patients at risk at longer follow-up times.

The relative survival function under the independence assumption corresponds to an ideal
world where the only cause of death is breast cancer. This quantity can only be estimated under
unverifiable dependence assumptions between 17 and 75 using disease registry data. To account
for uncertainty in dependence, we recommend reporting a range of probabilities corresponding
to differing levels of dependence. For example, using results from table 2.3, the overall 5 year
breast cancer survival from 1980 — 2011 is estimated to be between 84.0-87.4% under dependence
ranging from Kendall’s tau equal to 0 (independence) to 0.75 (strong dependence). These cancer
survival probabilities may be meaningfully compared with those in other populations having different
background mortality rates and different dependence levels between 77 and 75.

Table 2.3: 2, 5, 10 and 15-yr overall relative survival for French women diagnosed with breast cancer

between 1980 and 2011.
Th 0.00 0.25 0.50 0.75

Year PP® Sp(t)* SE* Sp(t)* SE* Sp(t)* SE* Sp(t)* SE°
2 956 960 699 958  6.96 954 7.23 947  7.74
5 848 874 901 8.6 910 8.5 931 8.0  9.53
10 710 728 11.01 714 1099 69.8 1091 68.0  10.67
15 59.5 595 1222 57.9 1208 56.3 11.74 549  11.19

a: ><10_2, b: ><10_3, Tk: dependence, PP: Pohar-Perme, ST1 (t)®: parametric relative survival estimate at year t, SE: standard error for the
relative survival estimate.

The results of a sensitivity analysis was conducted across different levels of dependence structures
each representing different competing mortality observed in the registry data. Figure 2.4.2 shows
the 2,5,10 and 15-yr overall breast survival plots across a spectrum of dependence structures for

women between the ages of 18 and 96-yr living in France during 2008 and 2011.
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2, 5,10 and 15-year Overall Breast Cancer Survival in France (1980-2011)
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Figure 2.1: Although the graphics looks like a straight line, these are actually survival curves
spanning the spectrum of dependence structures (0-0.9) each representing the levels of competing
mortality.
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Table 2.4: 2, 5, 10 and 15-yr age group specific relative survival for French women diagnosed with
breast cancer between 1980 and 2011.

T 0.00 0.25 0.50 0.75

Year Agegp PP® Sr(t)* SE* Sp(t)* SE® Sp(t)* SE* Sp(t)* SE?

2 15-44  95.8 949 2090 949 20.73 948 20.73 948  20.68

45-54  97.1 96.6 16.44  96.5 16.13  96.3 16.27  96.2 16.40

55-64  95.7 96.1 13.72  96.0 13.49  95.7 13.70  95.3 14.12

65-74  95.1 97.0 0850 96.8 0854 96.2  09.61 95.1 11.60

75-99  91.5 96.5 07.94 95.6 08.93 934 12.44  89.9 17.16

5 15-44  85.1 86.9 23.70 86.8 23.64 86.7 23.62 86.7 23.35

45-54  88.6 90.4 19.39  90.1 19.36  89.8 19.45  89.7  19.28

55-64  85.8 88.1 17.72  87.6 17.71 86.9 17.87  86.6 17.66

65-74 84.1 86.9 16.71 85.8 17.01 84.2 17.71 82.5 18.09

75-99 723 77.1 24.21 727 2485  67.1 25.08 61.7  24.00

10 15-44 71.9 744 2688 742  26.84 74.0 26.75 74.1 26.62

45-54  78.3 80.1 2283 79.6 2280 79.2 2273 79.2 2234

55-64 73.4 745 2203 735 2197 727 21.74 727  21.08

65-74 68.4 67.2 2538 65.0 2532 63.0 2472 623  23.20

75-99  44.6 43.1 34.83 37.0 3255 330 28.61 31.1 24.35

15 15-44  62.5 63.2 29.03 63.0 2896 629 28.83 63.0 28.72

45-54  70.8 70.5  25.31 69.8 2524 694 25.00 69.6 24.51

55-64  63.5 61.9 24.81 60.7  24.62 59.9  24.11 60.3  23.20

65-74  50.3 487  30.06  46.2  29.46 447 27.92 453 2547

75-99 19.9  20.27 35.56 15.9  32.33 14.5 2798 154  23.33

a: ><1072, b: ><1073, T1: dependence, Agegp: Age group, PP: Pohar-Perme, STl (t)*: parametric relative survival estimate at year t, SE:
standard error for the relative survival estimate.
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2.5 Discussion and Conclusion

Our model formulation for competing risk data without cause of failure information is general,
permitting arbitrary but known copula functions. The distribution of other cause mortality is
obtained from external reference data (Sarfati et al., 2010; Perme et al., 2012; Sasieni and Brentnall,
2017). We have undertaken preliminary investigations of simultaneous estimation of the dependence
parameter and the parameter in the disease-specific survival distribution. There is evidence of
instability, with care needed in the model specification to aid identifiability. This is expected, as there
are similar identifability issues even when the cause of failure is known. The proposed sensitivity
analysis is a practical solution to this issue, providing a range of estimates across different dependence
levels not requiring simultaneous estimation of the dependence parameter. The parametric model
for disease-specific mortality is restrictive but may be flexible enough for applications where the
hazard is smooth over time, which is the case in cancer registry data. To relax the parametric
assumption, nonparametric techniques are currently being developed which should be valuable in
settings with more complex failure patterns.

The focus of relative survival analysis is the distribution of the latent event time for death from
disease. This endpoint has been advocated by many practitioners (Slud et al., 1988; Reason, 1990;
Louzada et al., 2015), as it removes the impact of other cause mortality on the risk of disease-specific
mortality, permitting comparisons across populations with different background mortality. As an
alternative, other work has considered estimation of the crude disease-specific survival, Ci(t), using
the relative survival estimates and the known reference hazard for other cause mortality (Cronin
and Feuer, 2000). An analogous procedure could be implemented using our copula based estimate
of the distribution of 77 and would provide an assessment of the sensitivity of the estimator of Cj
under independence of 77 and T5. Such procedure would be of interest to individuals who prefer
crude disease-specific mortality to net disease-specific mortality. This is a topic for future research.

In conclusion, and unlike the Perme et al. (2012) and Cronin and Feuer (2000) methods which
focused exclusively on the estimators for net survival and crude survival or crude probability of death
measures respectively under the independence of competing mortality, our estimator provide both

estimates for net and crude survival measures regardless of the independent competing mortality.
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CHAPTER 3: A Nonparametric Method for Dependent Competing Risk in Relative
Survival Analysis

3.1 Introduction

Missing data is a common problem in most biomedical studies including population-based cancer
registries with competing events where the occurrence of one event type impedes other event types
(Putter et al., 2007; Lau et al., 2009; Austin et al., 2016). In such registries, the cause of event is one
of the most important variables documented for disease-specific survival estimation, which is used
in comparison of disease-specific survival among groups or populations under different competing
risk setting and is often of great interest to physicians for determining prognosis and effectiveness
of treatment regimen. The standard assumption in such competing risk studies is that cause of
disease-specific event is known (Gichangi and Vach, 2005).

Credible disease-specific analysis for competing risk data require accurate documentation of
cause of death (Percy et al., 1981; Welch and Black, 2002; Mieno et al., 2016; Tan et al., 2019).
A challenge is that cause of death information may be missing or subject to misspecification
(James and Bull, 1996; Maudsley and Williams, 1996; Platell and Semmens, 2004; Lambert et al.,
2010) in the registries making it impossible to distinguish disease and non-disease related events.
For example, Welch and Black (2002) raised concern that cancer death rates are systematically
misclassified, in that 41% of cancer patients who died as a result of cancer directed surgery (within
one month of diagnosis) do not have cancer recorded as the underlying cause of death. Without
reliable cause of death information, disease-specific analysis using classical methods is difficult and
practically impossible (Percy, 1989; Hoel et al., 1993; Ederer et al., 1999; Begg and Schrag, 2002).
With imprecise definitions and different levels of cause of death documentations, the World Health
Organization (Organization et al., 1977) defines cause of death as "the disease or injury which
initiated the train of morbid events leading directly to death”. This was to aid harmony in cause of

death definition across countries.
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However, substantial disharmony in registries still exists not only in Europe but also in the
United States of America. Sometimes, the underlying cause of death may be unclear as hospital
cancer coding may not agree with the death certificate coding. Even when reliable cause of death
information is available, it is often inaccessible and located in separate databases, which may be costly
to obtain and difficult to link with registry data. Although much effort has been directed to link vital
statistics with cancer registries in the United States of America (German et al., 2011), substantial
disharmony (for example; with varying levels across all 79 sites for the Surveillance Epidemiology,
and End Results (SEER) program in the United States of America) exists in determining cause of
death information.

In competing risk studies with known cause of death information, standard methodologies
for disease-specific survival assumes that time to disease-specific event is independent of time to
non-disease-specific event (Fermanian, 2003; Gichangi and Vach, 2005; Austin et al., 2016). It is
not uncommon to find competing risk studies where this assumption is grossly violated as most
clinical research (Austin and Fine, 2017; D’Amico et al., 2018), often have competing causes (Austin
et al., 2020). Austin et al. (2016) showed that majority (> 77%) of randomized control trials with
potential competing risks were ignored during statistical analyses.

In analyzing competing risk data with missing or unreliable cause of death information, classical
methods like Kaplan-Meier method (Kaplan and Meier, 1958), logrank test (Bland and Altman, 2004)
and standard proportional hazard model (Cox, 1972) are inapplicable for estimating disease-specific
survival. Without competing events, these methods are useful for estimating disease-specific survival,
comparing survival among groups and assessing the effect of covariates respectively. In the presence
of competing risks with reliably known cause of death information, the analog of these methods
(Aalen-Johanson estimator, Grey’s test, and Fine-Gray model) are applicable. Ignoring the issues
of missingness and or unreliable cause of death in competing risk setting, disease-specific survival
analysis using the above methods are inadmissible (Austin et al., 2016) and (Adatorwovor et al.,
2020) as they may introduce unintended biases, distort the accuracy of statistical inference and
provoke misleading results.

While models based on independent timings of event and competing event are ubiquitous when
analysing registry data without missing cause of death information, dependent models are relegated

and not available for disease-specific survival analysis (Tan et al., 2019; de Lacerda et al., 2019). To
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address this knowledge gap, we consider dependence models for estimating disease-specific survival
via copula for registry data without the need for missing and or unreliable cause of death information.
Earlier attempt has being made to model the dependence in competing risk studies under parametric
assumption (Adatorwovor et al., 2020).

Suppose the time to potential unobservable failure time 7' = min{7} : k£ =1,2,3,--- , K} and
failure type e = {k : T = Ty} with Th,--- , Tk, K € N being the latent failure times associated
with the K failure types. With £ > 2 implying competing risk setting (Dignam et al., 2012). In
the absence of reliable cause of death information, relative survival methods have being proposed.
Relative survival, Sg(t) is the ratio of the observed survival rate in a group of cancer patients,
during a specified period, to the expected survival rate in a healthy reference population (Ederer,

1961). At time t,

Sg(t) = (3.12)

where So(t) is the survival probability for an individual in the registry and Sp(t) is the expected
survival from mortality tables. Existing methods focused exclusively on the estimation of Sg(t)
under the independence of 71 and Ty where So(t) = St,(t) - S1,(t), Sp(t) = St,(t) which implies
Sr(t) = St,(t) with St,(t) and S7,(¢) being the survival probabilities corresponding to 7} and
T; respectively. Equation (3.12) can be rewritten in terms of disease-specific hazard function as
Ao(t) = Ag(t) + Ap(t) (Cronin and Feuer, 2000), where Ap(t) is the hazard in the disease registry,

Ap(t) is the so called excess hazard among the cancer cohort, and Ap(t) is the hazard from mortality
—dlogSTj (t)

tables. Under independence, Ag(t) = A, (t) and Ap(t) = Ap,(t), where Ar, (t) = =

J =12,
are the net hazard functions for cancer and other cause mortality. When T} is independent of
T5, the disease-specific survival probability St () which is the target of relative survival analysis
corresponds to a hypothetical population in which competing mortality is non-exist and differs from
the cumulative incidence function which is commonly used to quantify disease-specific survival in
competing risk analyses without missing cause of death information. Under dependence of T; and
T, ST, (t) is of interest to some practitioners who prefer crude survival (survival experienced in a

real world where competing mortality exist simultaneously with disease-specific mortality) or crude

probability death for disease-specific mortality rates to net probability of death.
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Berkson and Gage (1950), Ederer and Heise (1959) and (Ederer, 1961) pioneered nonparametric
relative survival method under the independence of 77 and 7. The Ederer II method (Ederer
and Heise, 1959) was recommended (Hakulinen, Seppé, and Lambert, 2011) as the gold standard
for estimating relative survival because its estimates are approximately close to the estimates of
age-standardised relative survival ratio. Hakulinen (1982) proposed a variant of this method to
address the bias due to heterogeneity of patient withdrawal within subgroups. A modification
of Hakulinen (1982) method was proposed by Nixon et al. (1994) to address issues related to
the dependence of patients’ age on event occurrence or censorship. Stratified method based on
age standardization of relative survival ratios was proposed to reduce biases associated with age
(Corazziari et al., 2004). Perme et al. (2012) demonstrated that these classical methods may be
biased under certain censoring patterns in population comparisons. Such bias may originate from
unmeasured covariates affecting the cancer cohort group and the reference population from which
rates of expected mortality are drawn. Rebolj Kodre and Pohar Perme (2013) proposed weighting
corrections to address biases associated with censoring and age distribution (at the time of cancer
diagnosis). Hakulinen, Seppé and Lambert (2011) and (Perme et al., 2012) developed estimators
which are only valid under questionable assumption of independence of competing causes of event.
However, the above estimation methods for St (¢) all require independence of T1 and T, which
cannot be substantiated in practical application settings.

We relaxed the independence assumption by formulating the dependence between the latent
failure times for death from disease and mortality due to competing causes using copula (Deheuvels,
1978). A bivariate copula distribution for the latent failure times T}, (with k = 2) was generated
taking as input their marginal distributions with a single dependence structure. Dependence models
with copula have been widely utilized in survival analysis, including bivariate event times (Oakes,
1982), competing risks with known cause of failure (Heckman and Honoré, 1989), and semi-competing
risks where one event time censors the other but not vice versa (Fine et al., 2001).

We employ such models for competing risk disease registry data with missing or unreliable cause
of death information. Due to identifiability constraint of dependence for the joint distribution (Tsiatis,
1975), for the observed registry data, we treat the copula function as known. We nonparametrically
modelled the marginal distribution of the time to disease-specific death with the distribution of other

cause mortality drawn from the reference population. A variant of the Newton-Raphson procedure
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is used to solve the nonlinear function for disease-specific survival. Because the joint distribution
is unidentifiable nonparametrically and unverifiable from the observed registry data, a sensitivity
analysis is proposed where disease-specific survival is estimated across varying dependence structures,
specified via the copula function. To our knowledge, this is the first attempt in accommodating
dependence nonparametrically through the use of copula functions in estimating relative survival.

The rest of this paper proceeds as follows. In section 3.2, we present the data and copula
model formulation for competing risks data. Section 3.3 describes the nonparametric estimation
and inference procedure with missing cause of death information, bootstrap variance estimation
as well as the proposed sensitivity analysis. In section 3.4, we present the numerical illustrations
including simulation results and application to French breast cancer data. Section 3.5 discusses and

concludes the paper.

3.2 Data and Model Formulation

Unlike the traditional endpoints, A;(t) and Ci(t) defined in Adatorwovor et al. (2020) for
competing risk data with known cause of death, we focus on a function of the Kaplan-Meier (K-M)
estimator (Kaplan and Meier, 1958) defined in (3.13) for all-cause survival probability estimation.
Relative survival methods with missing or unreliable cause of death information focuses on the
distribution of the latent failure times, 77 = min(7}) and T3 (distribution derived from background
population). With missing cause of death information, the observed data is simply time to event
from any disease, T, which may be right censored by time to lost to follow up C. Under the
standard assumption that T is independent of C, and for an individual i, the observed data consist
of X; = min(T;, C;) and 6; = I(T; < C;), where T; and C; are the unobservable failure and censoring

times respectively. The conventional representation of Kaplan-Meier estimator is:

sx)= ][ <1—Zi> (3.13)

i X<z

where for an individual i, d is the number of participants who died up until the mininmum time X,
and n is the number of individuals known to have survived at time X.
We utilize copula models to capture the dependence between the distributions of 77 and T5.

Copulas completely describe the dependence structure and provide scale invariant measures of
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association (Miiller, 1996; Bauerle and Miiller, 1998; Denuit et al., 1999; Venter, 2002). Suppose
¥ is a function defined such that v : [0,1] — [0, +00] with independent marginal distributions,
uj = P(T; <t;) = Fr;(t;) =1 — S71;(t;) Vj € (1,2). Then, the copula model for the distributions

corresponding to 77 and 75 (Cherubini et al., 2004; Joe, 1997; McNeil et al., 2009) is:
Clut,ug) = P(Ty < t, Ty < t) =t (¥ Hw) + ¥~ H(u2)) = Fry 1 (¢, t)

where 1~! is the inverse of ¢ and 1 satisfies the Laplace-Stiltjes transform and (Bernstein et al.,
1929) theorem, and Fr, 1,(t,t) is the bivariate copula distribution function for the latent times
T7 and T5 at time t. The generator function ¥ is completely monotone for non-negative random
variables with ¢(0) = 1, ¢'(-) < 0 and 9" (-) < 0 (McNeil et al., 2009).

In theory, any scale invariant measure of association can be used to characterize dependence
between the distributions of 7} and T5. The connection between Kendall’s tau (1) correlation

coefficients and the generator function ¢ has being shown (Genest and MacKay, 1986) as:

1
Tk_1+4/
0

with ¢! being the derivative of )~ and 73, can be simplified to 1 — é for Gumbel. In this paper,

(v,

-1 o
:/1/]—1(11) u=1-— 4/0 u(y(u))*du

we present our proposed method based on the Gumbel copula (G-copula) indexed by a single
dependence parameter 6 (having simple interpretations) to link the marginal distributions of 77 and

T5. Thus:

Clun,u2) = exp [—{(~log(un)’ + (~log(uz))’} (3.14)

with ¢ € (1,+00) and u; = Fr,(X) = 1 — S7,(X) being the distribution function corresponding
T and T, respectively. When # = 1, T} and T are independent implying that C(u1,us) <
0(1 —uy —u2) + (1 + 0)ujug but with 6 > 1 implying that 77 and T are dependent. The general

bivariate survival function at time t for any copula function is:

Sr(t,t) = Sp(t)+Snt) —14+¢ (¥~ (1= S (1) + ¢~ (1= Sp,(1)))

= STl (t) + ST2 (t) -1+ C’(ul, UQ) (3.15)
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where S7(t,t) is the all-cause survival probability, Sz, (t) and St,(t) are the corresponding survival
distribution functions for 77 and T3 respectively. Under the independence of 77 and Tb, (3.15)
becomes St (t,t) = St,(t) - S1,(t). Estimation of St (¢) is achieved by inversion of the survival

function defined in (3.15) as:
St(t,t)™t = Sp(t) — Srp(t) + 1 — Cluy, us) (3.16)

Unlike the upper tail dependence exhibited by the G-copula, the Clayton copula (C-copula) in
contrast exhibit lower tail behaviour which also mimics the mortality trend in the observed registry
data. The bivariate joint distribution function at the time X for the C-copula for distributions of T}

and T5 is:

Fri 1, (X, X) = (Pr,(X)™ + Fr,(X)™ - 1) (3.17)

=

When 77 and T3 are dependent (6 > 0) the bivariate dependence survival function is:

=

Sr(X,X) = S, (X) + 81 (X) — 1+ (FTl (X))~ + Fr, (X)) — 1)* (3.18)

with the inversion formula as:

STHX,X) = S1,(X) = S, (X) + 1 = (Pr (X) ™ + Pry(X) ™ 1) (3.19)

=

3.2.1 Monotonicity

The derivative of the estimating equation defined in 3.20 can be established for
9(51,(t)) = S, (t) = Sy (£) = S, (1) +1 — Cua, uz) =0 (3:20)

is:

g’(S’Tl (t)) =—-1- C/(ul,uQ) = —(1 + C/(ul,uQ)) <0 (3.21)

where C’(uy,uz) = ' (1~ (ur) + ¥~ (uz)) - (l/)fll(ul) + ¢71,(U2)>
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3.3 Sy, (t) Estimation and Inference

Relative survival under the independence of T} and T is given by S7,(X) = SgT()g)?()) Under
2

dependence, relative survival estimates are based on the inversion formula in (3.16). In section 3.4,

T, was assumed to follow a Weibull distribution with parameter n = (A, «) and probability density

function fr, (t|n) = § (%)a_l exp {— (%)a} because of its versatility to accommodate varying hazard

shapes while the distribution of 75 is derived from the background population using the piecewise

exponential constant function; which rely on the cumulative hazard function defined for the Nelson-

Aalen (N-A) estimator (Nelson, 1972; Aalen and Johansen, 1978). The N-A estimator A(X), is an
d;

estimator used to estimate the cumulative number of expected event(s) and is A(X) = Z —. The

n;g
X<z

relationship between K-M estimator and N-A estimators can be established as A(X;) = —log(S(X;)),
where S(X;) is defined in (3.13).

In the estimation of disease-specific survival Sgr(t) which is S, (t), we rely on a function of
the Kaplan-Meier estimator for all-cause survival probability for an individual i surviving beyond
the time point X. From equation (3.13), we estimate the all-cause survival probability at time X

o —

and denote it by S7(X, X). In order to estimate S, (X), we replaced the estimator Sz (X, X) in
equation (3.15) with ST&,\X ). S1,(X) is derived from a healthy reference background population
and together with ST(/)?X ) is substituted into the inversion formula in (3.16) for the estimation of
Sty (X).

Due to the complex nature of the nonlinear equation (3.16), a variant of Newton-Raphson
algorithm (Hasselman, 2009) was implemented to obtain a numerical solution for St,(X). The
Kaplan-Meier (K-M) estimator for all-cause survival S7,(X;) may be subject to monotonicity
constraint (Fine et al., 2001) especially for C-copula. In such scenarios, the estimate for the
estimator S, (X;) for an individual i is 5@) = )r(r111<ri (Sﬁ), STl(/Xi\— 1)) wherever possible
with S7, (X; — 1) being the survival probability corre;ponding to the previous time point. While
estimating S, (X) in the presence of a fixed dependence parameter 6, appropriate choice of the
initial values for the parameters escapes the monotonicity constraints for the G-copula.

In assessing the performance of our method, we estimated the bias of the estimator at time X

for each of the simulation studies presented in section 3.4. We showed that the estimator presented

in equation (3.22) was unbiased for St (X;) for each individual i surviving at time X. The estimator
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for Sty (X) is;
S1,(X) = g | (S1(X.2)) . (Sr,(20))| (3.22)

where STl/()_(TX ) is given in equation (3.13) and is the K-M estimator for the bivariate copula
survival function and ¢ is a monotone function define for the distribution functions of 77 and 15
respectively.

Under the usual regularity conditions, SZ(}) is asymptotically normal and consistent. As
n — oo, n%]ST/l(}) — S7,(X)| converges to a Gaussian process with mean zero and variance,
Var <SE(})) that was deduced using a nonparametric bootstrap variance estimation method,
vV X > 0. Nonparametric bootstrap procedure (describe below) is implemeted for variance estimation
corresponding to the estimated quartile time X. A consistent estimator for the variance of STT)?X )
is given by Greenwood formula described in the appendix 2. The variance estimation of Sz, (X)

was achieved by the bootstrap method implemented using the following procedure where B = 500

bootstrapped samples:
1. Draw B samples of size n with replacement from the original data set.
2. Calculate 7 for each of the samples from step 1. That is, we now have S'Tll o ,S’TlB

3. We calculate the standard error from the B estimates of STI by using the standard formulas

B B
N 1 ~ = = 1 ~
for standard errors, se(St,) = 51 Z(STML — S7,)?, with Sp, = B Z STy
i=1 i=1
Clarke et al. (2009) showed that

1<~ 4 »

=3 " 5u(X) B S(X) (3.23)

n

i=1

where S‘n =1- Fn and Fn being the enpirical CDF and F'(X) is the true distribution of the estimate.
In the simulation study, we showed the estimation of the variance at each of the quartile times X
for the model for each sample size and for 15% censoring level. The corresponding 95% coverage

probability was computed based on the estimated bootstrap variance.
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3.4 Numerical Illustrations and Applications

3.4.1 Simulation Procedure

We generate competing risk data that mimicked the French breast cancer data set to evaluate
our proposed method. Sample sizes; 2500, 5000 and 10000 were simulated each with 500 replications.
The unobservable latent failure time 7} was allowed to follow Weibull distribution with a;, A; as
parameters with the probability density function defined in section 3.3. The parameters for the
Weibull distribution for 77 were Ay = 0.182 and a7 = 1.609, while those for T, were Ay = 0.742
and ag = 0.693. In the estimation of A1, «ay for T1, Ao, ag are assumed known for T and vice
versa for estimation of Ay and as. Noninformative censoring times were generated from a uniform
distribution (0,+), where v was chosen for 15% censoring. G-copula dependence was chosen with
Kendall’s tau, 7, = 0, 0.25, 0.50, and 0.75. Initial parameter values were randomly chosen from
uniform distributions, with multiple starting values wherever possible as described in section 3.3.

Clayton copula data could be simulated based on the description in section 3.2.

3.4.2 Figures

Figures 3.4.2 and 3.4.2 show the nonparametric survival probability function for 77 under the
G-copula for both zero and moderate dependence (73 = 0.5) and for 1000 sample size. The step
function for the nonparametric estimate S/Tl(\t) for Ty is close to the truth, St (t) at the time point
t. The survival probability corresponding to the lower, median and upper quartiles is presented
in tables 3.7 and 3.8 of the model for 77 treating 7> as a competing mortality, and for 75 treating
Ty as a competing event. We observed that bias is small decreasing to zero for increasing sample
size across each level of dependence. The empirical variance and the model based variance tend to
agree and the coverage is close to the nominal 0.95 level, particularly at larger sample sizes. The
empirical variance decreases as the sample size increases at roughly the expected root n rate.

The following figures 3.4.2, 3.4.2, 3.4.2 and 3.4.2 compare the true estimator Sz, (X;) to the

estimate S, (X;) with zero (independence of T7 and T%), 25, 50, and 75% dependence while applying

15% right censoring for the G-copula model (3.27). The figures 3.4.2 and 3.4.2 also reveal that the
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Table 3.5: Estimated parameters of the model for T} across samples sizes (N), dependence levels
(1) with 20% censoring (C) treating 75 as a competing event and vice versa.
Tk N X Sr(X) Sn(X) Bias® Sf(X) B-Var* EMP* CP
0.00 2500 0.706 0.932 0.932 39.75 0.932 2.930 2.700  0.962
0.965 0.715 0.714 87.78 0.715 3.240 3.260 0.952
1.173  0.409 0.409 1.67 0.409 1.820 1.800  0.956

5000 0.716  0.927 0.927 20.11 0.927 1.860 1.74  0.956
0.989  0.683 0.683  46.510  0.683 1.830 1.730  0.946
1.206  0.359 0.359  -17.270  0.339 8.20 7.800  0.952

10000 0.705  0.932 0.932 -1.630  0.932 0.730 0.700  0.956
0.965 0.715 0.715  -13.740 0.715 0.800 0.810  0.950
1.173  0.409 0.409 0.470 0.409 0.450 0.450  0.950
2500 0.706  0.894 0.893  44.220 0.893 3.660 3.500  0.962
0.965 0.810 0.810 49930 0.810 14.660 15.650 0.936
1.174  0.733 0.732 132440 0.733  47.250 48.800 0.948

5000 0.705  0.893 0.893 13.590  0.894 1.810 1.660  0.960
0.965 0.810 0.810  46.880  0.810 7.270 7.450 0.944
1.173  0.732 0.732 4.990 0.732  23.350 21.990 0.952

10000 0.705  0.893 0.893 -2.080  0.893 8.900 8.000  0.952
0.965 0.810 0.810 -8.200  0.810 3.640 3.310  0.956

1.173  0.732 0.732  -20.360 0.732  11.430 10.740 0.944

0.25 2500 0.716 0.927 0.927 6.55 0.927 3.74 3.60  0.954
0.989  0.683 0.683 -8.02 0.683 3.73 3.43  0.950

1.206  0.359 0.359 -42.89  0.359 1.66 1.59  0.942

5000 0.716  0.927 0.927  20.110  0.927 1.860 1.740  0.956
0.989  0.683 0.683  46.510  0.683 1.830 1.730  0.946
1.206  0.359 0.359  -17.270  0.359 0.820 0.780  0.952

10000 0.717  0.927 0.927 14.000  0.927 9.200 8.400 0.972
0.989  0.683 0.683 25.150  0.683 9.100 8.900 0.952
1.206  0.358 0.359 -7.000  0.358 4.100 3.900 0.954
2500 0.716  0.927 0.927 6.550 0.927 3.740 3.650  0.954
0.989  0.683 0.683 -8.020  0.683 3.730 3.430  0.950
1.206  0.359 0.359  -42.890 0.359 1.660 1.590  0.942

5000 0.716  0.890 0.890 17.010  0.890 2.090 1.880  0.956
0.989  0.802 0.801 56.930 0.801  12.450 12.60  0.956
1.206  0.720 0.719 70.460 0.719 72970 77.240 0.946

10000 0.717  0.890 0.890 22.240  0.890 1.040 9.300 0.954
0.990 0.802 0.801 73.300  0.801 6.110 6.170  0.946
1.206  0.720 0.719 61.010 0.719  36.140 35.680 0.954

7): estimated parameters, ModB: model-based variance, EMP: empirical variance, CP: 95% coverage probability. ¢ : x1075,
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Table 3.6: Estimated parameters of the model for T} across samples sizes (N), dependence levels
(%) with 20% censoring (C) treating T as a competing event and vice versa.
Tk N X St (X) Sp(X) Bias* S7(X) B-Var¢ EMP? CP
0.50 2500 0.738 0.916 0.916 58.980 0.916 5.540 5.060 0.960
1.021  0.639 0.640 -68.590  0.640 3.760 3.670 0.954
1.232 0.319 0.320 -27.760  0.319 1.310 1.350 0.942

5000 0.738 0.916 0.916 11.440 0.916 2.730 2.440 0.972
1.022  0.639 0.639 9.270 0.634 1.860 1.710 0.956
1.232  0.319 0.319 2.600 0.319 0.640 0.640 0.950

10000 0.738  0.916 0.916 -13.120  0.916 1.340 1.240 0.948
1.021  0.639 0.639 1.980 0.639 0.920 0.850 0.946
1.232  0.319 0.319 -6.310 0.319 0.320 0.340 0.944
2500 0.737  0.884 0.884 4.680 0.884 5.320 5.280 0.952
1.021  0.791 0.789 135.630  0.789 71.850 66.320  0.964
1.232  0.730 0.709  2151.670 0.708 1096.580 1257.780 0.966

5000 0.738 0.884 0.884 18.660 0.884 2.600 2.370 0.964
1.022  0.791 0.789 172.070  0.789 33.060 30.790  0.960
1.232  0.722 0.709  1348.090 0.709  670.130  598.940 0.926

10000 0.738  0.884 0.884 -28.360  0.884 1.270 1.140 0.948
1.022  0.790 0.789 41.610 0.789 15.670 14.460  0.960

1.232  0.717 0.709  812.370  0.709  332.050  300.850 0.956

0.75 2500 0.776  0.893 0.893 -35.280  0.892 9.620 8.720 0.972
1.050  0.598 0.598 -21.080  0.598 2.990 2.890 0.952

1.242  0.304 0.305 -72.520  0.304 1.050 1.060 0.928

5000 0.777  0.893 0.893 18.880 0.893 4.630 3.970 0.966
1.061  0.597 0.597 35.440 0.597 1.470 1.320 0.954
1.243  0.304 0.304 -6.910 0.304 0.052 0.049 0.950

10000 0.776  0.892 0.893 -39.260  0.892 2.240 2.010 0.962
1.0561  0.597 0.597 19.520 0.597 0.730 0.680 0.956
1.243  0.304 0.304 -0.450 0.304 0.260 0.270 0.948

e x107°

7): estimated parameters, ModB: model-based variance, EMP: empirical variance, CP: 95% coverage probability.
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estimator for S, (X) at time X closely approximate the disease-specific survival curve for both zero

and 50% dependence for the G-copula model with 1000 sample sizes.

Estimated Survival Probability from 1000 Samples with 0 Dependence
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Figure 3.2: Comparison of the estimated event survival probability and the truth for 1000 samples
with 15% censoring for 0% dependence structure for Gumbel copula
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Estimated Survival Probability from 1000 Samples with 0.25 Dependence
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Figure 3.3: Comparison of the estimated event survival probability and the truth for 1000 samples
with 15% censoring for 25% dependence structure for Gumbel copula
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Estimated Survival Probability from 1000 Samples with 0.50 Dependence
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Figure 3.4: Comparison of the estimated event survival probability and the truth for 1000 samples
with 15% censoring for 50% dependence structure for Gumbel copula
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Estimated Survival Probability from 1000 Samples with 0.75 Dependence
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Figure 3.5: Comparison of the estimated event survival probability and the truth for 1000 samples
with 15% censoring for 75% dependence structure for Gumbel copula
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3.4.3 Application to French Breast Cancer Data

We analyze 24,458 nonmetastatic breast cancer patients from Institut Curie database. These
women were between the ages of 18 and 96 years surviving breast cancer in France during 1980 to
2011. Out of the 24,458 breast cancer patients, 9,885 (40.4%) died while 14,573 were alive and
administratively censored on December 315¢ 2011. Five age-specific subgroups were considered for
the estimation of relative survival. 3,970 were between the ages of 15— 44, 6,895 between the ages of
45 — 54, 6,420 between the ages of 55 — 64, 4,675 between the ages of 65 — 74 and 2,498 were in the
75 — 99 age subgroup category. For each participant, we matched the observed death or censoring
time in the disease cohort group with a corresponding time in the healthy reference population on
age, sex, and year (date of diagnosis and the date of death or censored) within each follow-up period.
The background mortality data from the Human Mortality Database (https://www.mortality.org)
was last modified on June 28, 2018. Within each follow-up year, we assumed that Ap(t) is piecewise
constant (Dickman, et al., 2004) for each period up to time X. The cumulative hazard for each
period based on A\p(t) is calculated from the background survival function at the beginning and end
of the period. The cumulative hazard is then used to obtain Ap(t) under the piecewise constant
assumption. To mitigate the impact of age and calendar year on potentially dependent censoring by
C (Perme et al., 2012), we set Ap,(t) to Ap(t). 2,5,10, and 15—year relative survival were estimated
nonparametrically for 77 using a G-copula model with differing levels of dependence specified for
the joint distribution of 77 and T5. We compared our results with Perme et al. (2012) estimator

under the independence of 77 and T5.

—

3.4.4 Extracting Sr,(X) from the Background Population

The distribution of T was extracted from the background population matching in age, dates of
diagnosis and death/censored for each participant during each follow-up period. Yearly background
data was last modified on June 28" 2018. We assumed that the probability of death within a year
is piecewise constant. Sg(}) = exp{—m = exp (— fOX @) The results for the overall and
age group-specific estimates in the following tables.

Tables 3.7 and 3.8 show the estimates of St (t) for cancer mortality both overall and age

group specific. The nonparametric estimates under independence are similar to those from the
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Pohar-Perme method. This suggests that our estimator is reasonable even under the independence
of T1 and T5. Cancer survival increases with decreasing dependence. One observes that for a fixed
dependence level, younger women tend to have higher cancer survival rates than do older women,
with marked reductions for the 65-74 and 75-99 age group categories. There is some instability in
survival estimates at 15 years, especially for the older age groups, as evidenced by the large standard

errors. This may be due to small numbers of patients at risk at longer follow-up times.

Table 3.7: 2, 5, 10 and 15-yr overall relative survival for French women diagnosed with breast cancer

between 1980 and 2011.
Tk 0.00 0.25 0.50 0.75

Year PP® Sr(t)* SE® Sp(t)* SE* Sp(t)* SE® Sp(t)* SE°
2 956 986 1583 985 1559 982 1511 97.2  13.49
5 848 875 17.06 87.0 2420 86.1 1507 851  15.41
10 710 733 5837 726 4867 716 3583 71.0  13.09
15 595 514 0761 50.0 06.30 48.8 0457 59.5  03.62

a: ><1072, b: ><10737 Tk : dependence, PP: Pohar-Perme, Sg(t): nonparametric relative survival estimate at year t, SE: standard error for the
relative survival estimate.
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Table 3.8: 2, 5, 10 and 15-yr age group specific relative survival for French women diagnosed with
breast cancer between 1980 and 2011.
Tk 0.00 0.25 0.50 0.75
Year Agegp PP® Sp,(t)* SE® Sp,(t)* SE® Sp(t)* SE® Sp(t)* SEP
2 15-44 958 963 03.40 96.3 03.23  96.1 03.34 959  03.41
45-54 971 974 0297 973 0298 973 0272 972  02.23
55-64 95.7 97.1 03.21 97.0 03.32 96.7 03.07 96.1 02.85
65-74 95.1 982  07.71 98.0 08.45 97.6  09.08 96.5  09.46
75-99 91.5 97.8 134.89 97.5 140.56 96.6 145.69 94.4  151.40

5 15-44 815 8.5 0576 8.4 0561 852 0583 851 05.95
45-54 88.6 893 0476 892 04.73 839 0428 88.7  03.92
55-64 85.8 885 07.23 8.0 06.67v 871 0577 86.1 04.74
65-74 84.1  88.9 1756  88.1 16.85  86.6 14.71 84.7  08.13
75-99 723 833 6v.7r 810 7273 774 728 734 101.83

10 1544 719 7277 07.82 72.4  07.35 72.1 07.67 719 07.42
45-54 783 81.0 06.29 80.3 06.41 79.3 0554 785  05.20
95-64 T34 772 7.98 76.1 7.43 74.7  06.68 73.6  05.87
65-74 684  76.8 15.04 746 12.59 71.5 10.26  68.8  07.36
75-99 446  56.1 78.25 51.4  56.39  47.0 29.79 449 12.58

15 15-44 625 633 0858 63.0 0865 627 0842 626  08.13
44-54 70.8 720 09.06 716 O7.17 711 06.22 70.8  05.91
95-64 63.5 71.0 06.22  65.1 13.15 64.1 8.42 63.6  06.55
65-74 50.3 64.8 5341 59.7  36.39  54.2 18.38  50.7  09.16
75-99 199 22,6 4447  20.8 21.50  20.0 12.47  19.9 10.73

a: ><10727 b: ><1073, T: dependence, Agegp: Age group, PP: Pohar-Perme, Sg(t)®: nonparametric relative survival estimate at year t, SE:
standard error for the relative survival estimate.
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3.5 Discussion and Conclussion

We investigated the precision of our estimator under different dependence structures and
proposed sensitivity analysis as a practical solution to identifiability constraints of dependence. The
nonparametric model for disease-specific mortality is reasonable for complex failure patterns and
flexible dependence levels as is the case in competing risk setting. Our nonparametric estimator
has a dual meaning of net survival probability under independence assumption and crude survival
probability or crude probability of death under the dependence assumption. This estimator is
useful to both practitioners who prefer either net survival probability or crude survival and or crude
probability of death for determining prognosis. The case for covariate effects is currently being
developed to understand the contribution of other risk factors in relative survival analysis.

The key point in this paper is the estimation of the distribution of latent failure time for a
specific disease. This endpoint under the independence of 77 and 75 has been advocated by many
practitioners, as it eliminates the impact of other cause mortality on the risk of disease-specific
mortality assumed in a hypothetical world where mortality is due to disease of interest. It is also
useful in comparison of survival across groups or populations with different background mortality.
In contrast to net survival, some practitioners prefer crude probability of survival to net survival
because it accommodates deaths from other causes and presents cancer survival in the real world,
where the patient may experience mortality in the presence of competing causes. Our estimator
not only provides a practical alternative to Perme et al. (2012) method under the independence
assumption but also a useful estimator under the dependence assumption for practitioners who

prefer crude survival to net survival.

40



CHAPTER 4: Covariate Effect for Dependence Competing Risk in Relative Survival
Analysis

4.1 Introduction

Biomedical research often have competing risks where one event type censors other mutually
exclusive events. Patients can potentially experience an event from any of the multiple failures
particularly in cancer registry data. For example, in following patients after cancer diagnosis, a
patient may commit suicide or die from the cancer under study or may die from other causes. In
such competing risk setting, standard disease-specific statistical analysis and interpretation differ
from survival analysis with only a single cause of failure (Dignam et al., 2012).

In determining credible prognosis for disease-specific mortality in cancer studies using registry
data, accurate documentation of cause of death (Percy et al., 1981; Welch and Black, 2002; Mieno
et al., 2016) and appropriate statistical methodology (Caplan et al., 1994; Gooley et al., 1999;
Williamson et al., 2007; Dignam and Kocherginsky, 2008) underpinning the analysis are required
when comparing groups under different populations. A challenge to the disease-specific analysis
based on standard methods is that cause of death information may be missing and or unreliable
for meaningful conclusions to be drawn. As a result, several modeling approaches are available to
evaluate the relationship between the covariates and disease-specific failures.

The standard hazard or the cumulative incidence function for a specific failure type in competing
risks analysis is used to evaluate the influence of covariate in disease-specific survival under the
independence assumption (net survival or crude survival probability). Such models are unviable
for competing risk analysis data without cause of death information. Existing methods for disease-
specific survival analysis employing different competing risks models on the same data for hazard
ratios estimation, can differ substantially and may lead to different or even seemingly contradictory

inferential conclusions (Dignam et al., 2012). These methods according to (Denham et al., 1996;
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Chappell, 2012) may only illuminate one important aspect of the data while possibly obscuring
others.

The issue is more complicated and renders current perspective on estimated disease-specific
survival probabilities useless under the current methodologies for registry data when cause of
death information is missing and or unreliable because of difficulty associated with distinguishing
disease-specific mortality from other cause mortality. Even within one month of cancer diagnosis
and cancer directed surgery, 41% of all deaths that occurred were missclassified and not attributable
to the coded cancer in the registry Welch and Black (2002). Sometimes, when reliable cause of
death information is available, it is often located in separate databases, which may be costly to
obtain and difficult to link with registry data.

Suppose that "= min{7T} : k=1,2,3,---, K} is the potentially unobservable failure time and
e ={k:T =Ty} the failure type with 71, -+ , Tk, K € N being the latent failure times associated
with the K failure types. When K = 2 and € = 1 implies death from cancer and ¢ = 2 implies
death from other competing causes. Under dependent competing risks, where 71 and 75 are not
independent, standard methods for independently right censored survival data without competing
risks cannot be used to make inference about disease-specific survival. Thus, the Kaplan-Meier
(Kaplan and Meier, 1958) estimator estimates a function of the disease-specific hazard function,
defined in section 4.2. The logrank test (Bland and Altman, 2004) assesses group differences between
the disease-specific hazard function, while the standard proportional hazards model (Cox, 1972)
formulates the effects of covariates on the disease-specific hazard function. The cumulative incidence
function, defined in section 4.2, gives disease-specific survival in the presence of competing events.
This quantity has been widely adopted in applications, with the Aalen-Johanson estimator (Aalen
and Johansen, 1978), Gray’s test (Gray et al., 1988), and the Fine-Gray model (Fine and Gray,
1999), providing analogs to the Kaplan-Meier curve, the logrank test, and the proportional hazards
model for the cumulative incidence function. Without cause of death information, these methods are
inapplicable. This paper focused on estimating the effect of covariates on disease-specific survival
analysis under both independence and dependence assumption relating to 77 and T5 respectively.

Without reliable cause of death information for disease-specific survival, relative survival methods
have being proposed. Relative survival, Sp(¢) is the ratio of the observed survival rate in a group

of cancer patients, during a specified period, to the expected survival rate in a healthy reference
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population (Ederer, 1961). Mathematically and at time t,

Sa(t) = ?ﬁﬁg (4.24)

with So(t) being the survival probability associated with an individual in the registry and Sp(t)
the expected survival probability derived from mortality tables. Existing literature has focused
exclusively on the estimation of Sr(t) under the independence of T} and T, which implies that
So(t) = St,(t) - S1,(t), Sp(t) = S, (t) and Sg(t) = S, (t) where St (t) and Sp,(t) are the survival
probabilities corresponding to 77 and T5 respectively. The relationship (2.1) can be rewritten in
terms of hazard functions as Ao (t) = Ag(t) + Ap(t) (Cronin and Feuer, 2000), where \p(¢) is the
hazard in the disease registry, Ag(t) is the so called excess hazard among the cancer cohort, and
Ap(t) is the hazard from mortality tables. Under independence, Ag(t) = Ap, (t) and Ap(t) = Ap, (2),
where Ar, (t) = _Cﬂ#f%(t), j = 1,2, are the net hazard functions for cancer and other cause mortality.
The disease-specific survival probability St () under the independence assumption is the target of
standard relative survival analysis and corresponds to a hypothetical population in which death from
competing causes does not exist. This quantity differs from the cumulative incidence function which
is commonly used to quantify disease-specific survival in analyses with cause of death information.
Under the dependence assumption, St (t) is relative survival in the real world where competing
risks exist simultaneously with the disease. Some authors called this estimator crude survival or
crude probability of death.

Relative survival is employed extensively for the comparison of cancer survival in cohort groups
or populations, or for evaluating changes in survival over time and for exploring potential risk
factors for disease-specific mortality. Relative survival methods under the independence assumption
was pioneered by Berkson and Gage (1950) and (Ederer, 1961) for nonparametric estimation of
St,(t). Variants of these earlier methods were introduced by Hakulinen (1982) with the aim of
addressing the bias due to heterogeneity of patient withdrawal within subgroups. Perme et al. (2012)
demonstrated that these classical methods may be biased under certain censoring patterns. For
example, in population comparisons, such bias may arise from unmeasured covariates affecting the

cancer cohort group and the reference population from which rates of expected mortality are drawn.
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In order to understand the contribution of the risk factors in registry data, (Hakulinen and
Tenkanen, 1987) adapted the standard proportional hazard regression model to estimate relative
survival rates via generalized linear models (GLIM). While in comparing groups under different
populations, (Dickman et al., 2004) investigated the covariate effects by comparing four standard
regression methods. They asserted that excess hazard estimated from the underlying population
depends on characteristics such as age, sex, (supported by (Hakulinen and Tenkanen, 1987) ) and
period but not on other covariates such as stage or histology of the cancer. All the above methods
are valid only under the independence of T7 and T5.

We relaxed the independence assumption (de Lacerda et al., 2019) and formulate the dependence
between the distributions of the latent failure times for death from disease and death from competing
causes using copula models (Deheuvels, 1978). In particular, we proposed assessing prognostic
factors for disease-specific mortality via dependence competing risk regression model for estimating
disease-specific survival. The standard copula function generates a joint distribution for the two
event times, taking as input their marginal distributions. Copulas generally allow a spectrum of
dependence structures and have been employed widely in survival analysis, including bivariate event
times (Oakes, 1982), competing risks with known cause of failure (Heckman and Honoré, 1989), and
semi-competing risks where one event time censors the other but not vice versa (Fine et al., 2001).

In this paper, we characterized the dependence model for competing risks data from disease
registries without reliant on cause of death information which is either missing or unreliable.
Because the joint distribution of the distributions of the latent failure times is nonparametrically
nonidentifiable (Tsiatis, 1975), we treat the copula function as known. The marginal distribution of
the time to disease-specific death is modelled via the disease-specific hazard parametrically with
the distribution of other cause mortality drawn from the reference population. Likelihood-based
inference and interpretation is proposed. Due to identifiability constraints and the unverifiable
nature of the joint distribution of the distribution of the latent failure times, a sensitivity analysis is
suggested in which disease-specific survival is estimated across a spectrum of dependence structures
specified via the copula function. To our knowledge, this is the first attempt in accommodating
dependence in competing risk regression model in relative survival analysis.

The rest of this paper proceeds as follows. In section 4.2, we present the data and copula model

formulation for competing risks data. Section 4.3 describes the likelihood parametric regression
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estimation and inference procedure without cause of death information, as well as the proposed
sensitivity analysis. In section 4.4, we present the numerical illustrations including simulation results

and application to French breast cancer data. Section 4.5 discusses and concludes the paper.

4.2 Data and Model

In competing risk studies, the standard endpoints for disease-specific survival are the disease-
specific hazard and the disease-specific cumulative function. The disease-specific hazard, \;(t) is
the instantaneous failure rate for occurrence of mutually exclusive events € = k at time t (Prentice

et al., 1978).

Pt<T<t+dt,K=FkKT>t)
5t—0 ot

(4.25)

While the cumulative incidence function Cy(t) is the proportion of patients who died from cause k
by time t in the presence of patients who might die from other causes. The disease-specific failure
probability can be expressed as Ci(t) = P(T' <t: e =k) = fg Ai(8)-S(s)ds = fg Ai(s)-exp {—A(t)}
where S(t) = P(T > t) is the overall survival probability. Standard competing risks methods with
known cause of failure focus on estimation of A\ (¢) and Cj(t).

In the absence of cause of death information, the registry data is simply time to event data
from any cause, T, which may be right censored by loss to follow-up. Suppose C is the time to right
censoring, with the usual assumption being that T and C are independent, then the observed data
consist of (X;, ;) where X; = min(T;, C;) and 6; = I[(T; < C;) with T; and C; being the failure and
censoring times on individual ¢ = 1,2,3,--- ,n. Relative survival methods employing such data do
not focus on the traditional competing risks endpoints A, (t) and Ck(t) but rather on the latent
failure time distributions S, (¢) and St (¢).

The dependence between the distributions of T and 75 was modelled using copula function as
it completely describe the dependence structure and provide scale invariant measures of association
(Venter, 2002; Miiller, 1996; Biuerle and Miiller, 1998; Denuit et al., 1999).

To formulate this dependence, suppose v is a generator function defined such that ¢ : [0,1] —

[0, +o0] with independent marginal distributions, u; = P(Tj < t;) = Fr;(t;) = 1—57,(t;) Vj € (1,2).
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Then, the copula model for the distributions of 77 and 75 is:
Clur,ug) = P(Ty < t1,Th < t2) = (™ (w) + ¥~ N (u2)) = Pry 1y (t1, ta)

where 17! is the inverse of ¢ and 1 satisfies the Laplace-Stiltjes transform and Bernstein, (1929)
theorem. McNeil and Neslehovd, (2009) showed that the generator function 1) is monotone for
non-negative random variables with ¢(0) =1, ¢¥/(-) < 0 and ¢”(-) < 0. We characterize dependence
between the distribution of the latent failure times using Kendall’s tau (73) correlation coefficient.
Genest and MacKay (1986) estabished the connection between Kendall’s tau and the generator

function v as:

_ Yotiw) B Oou W 2du
Tk_1+4/0 =1 4/0 (0 (u))2d

with ¢~V being the derivative of 1»~'. While in theory, any copula and dependence measure may
be used to link the marginal distributions of 77 and 75, in this paper, we focus on a popular
Archimedean copula, indexed by a single dependence parameter # having simple interpretations.

The Gumbel copula is:
Cur,uz) = exp [—{(~log(w))’ + (~log(uz))"}? (4.26)

with 6 € (1,+00). A special case of independence copula model: C(uj,u2) = uy - ua is obtained

when 6 = 1 for Gumbel copula with 7, =1 — %.

4.3 Likelihood Estimation and Inference

In this section, we formulate our model using the disease-specific hazard while incorporating the
covariate effects via the accelerated failure time model for any potentially dependent latent failure
times 77 and T5. The all-cause survival function (observed survival So(t)), T’ = min(77, T>) at time

t without covariates is:

So (t) = ST(t) = St (t) + St, (t) -1+ Fprm (t, t) (4.27)
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The conventional observed additive hazard model defined in section 4.1 for the estimation of relative
survival can be adapted to include covariates. Dickman et al. (2004) introduced the covariate effect
through the hazard model using an exponential form: A\o(t,Z) = Ag(t) + exp{5Z}. In this study,
we introduced covariates into our model through the Accelerated Failure Time (AFT) model format.
Thus, X = Z - 5+ € where Z is the set of covariates such as (age, sex, calandar/period), 8 the
parameters to be estimated and € is the randomness associated with the covariates. The above

model in equation 4.27 can be written to accommodate the stratifying covariate Z as:
So(t,Z)=5r(t,2) = Sn(t,Z)+ Sn,(t,Z2) — 1+ FTl,TQ(t; Zt,7) (4.28)
Under the independence of T and T, the above equation degenerates to:

Syt Z) = STl(t,Z)-STQ(t,z):exp{/ot)\o(s,Z)}ds

— eap {/Ot M (s, Z)} ds - eap {/Ot A (s, Z)} ds (4.29)

The additive hazard model is generally biologically more plausible for population-based cancer
survival studies and provide a better estimate to the data than multiplicative models (Bolard, et

al.,2001). The corresponding density function for T is:

fO(tv Z) = fT(t7 Z) = le(t7 Z) + fTQ(t? Z) - le,TQ (t7 Z7t7 Z) (430)
dFr,(t,
where fr,(t,2) = Fdeit Z), and fr, 1,(t,2) = %(Z’Z’t’z). If censoring of T' by C' is noninforma-

tive, then the likelihood contribution for an individual i is:

L; = in,Zi,Ai (Xla Zia 52) = [fT(XZ? Zl)]dl [ST(XZ? Zi)]l_(si (431)
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In specifying parametric model for Fr, (¢, Z) with parameter of interest n = (A, «, 51, B2, B3), and

from equation (4.30), the full log-likelihood function based on n independent observations is:

n

(X, Z,Al) = Y (6 log fr(Xi, Z;) + (1 — &) * log Sp(Xi, Zi))

=1
= > dixlog[fr (X, Zi) + fro(Xiy Zi) — frimy (X, Xil Z0)] +

i=1
n

> (1= 6) x1og [Sty (Xi, Zi) + S1y(Xi, Zi) — 1+ Pry 1y (X3, X Z3)]
i=1
(4.32)

where (X,Z,A) = (X;, Z;, Ay, i = 1,2,3,- -+ ,n) with Sp, (¢, Z|n) = [ fr,(s|n)ds and the distribu-
tion of T5 is extracted from the reference population and assumed known with the usual assumption
that disease-specific death is negligible in the reference population as illustrated in the French breast
cancer data analysis in section 4.2.

For a pre-specified dependence structure, the copula distribution linking Fr, (¢, Z) and Fr,(t, Z)
may be specified using simple parametric copula models such as the Gumbel copula with Kendall’s tau
(1 = 1— %) The Gumbel copula exhibit tail behaviour that mimic the mortality trend observed in the
cancer registry data. In the numerical illustrations, T was assumed to follow a transformed Weibull
distribution. The standard Weibull distribution with parameter w; = ()\;, ;) has a probability
density function fr, (t|w;) = % ( /\% )0‘1—1 exp {— (/\t])j} and is versatile by accommodating a wide
range of hazard shapes. The bivariate joint distribution and density functions for the Gumbel copula

incoporating the covariate Z are:

Fron,(t,t,Zn) = exp{— ((—log(m))e—l-(—log(ug))9>é}

FrnttZln) = Pt Zh)- ((~log(a)”) + (tog (u)?)) "™
<<_ log(uy)?~! - le(t,Zn)> n <—log ()01 - sz(t,Z\n)>> (4.33)

U1 U2

X

with wiy = Fr,(t,Z|n),us = Fr, z(t,Z). The maximum likelihood estimator (MLE) for n was
implemented using Nelder-Mead algorithm (Nelder and Mead, 1965). There is evidence of instability

for small sample sizes and larger censoring proportion (Adatorwovor et al., 2020). The usual
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regularity conditions for the MLE holds. The estimator converges in probability, in that 7 il n
and is asymptotically normal, 77 ~ N (77, Io(n)_l) with variance estimated using the inverse of the
observed information matrix (Ip(n)~!) evaluated at the MLE, 7). The observed information matrix
is:
2?l(n|X, A, Z)

Onon™
w6 e 20 {2 e 20} {2 e 20))
— [fr (X, Z)T [ fr(Xs, Zi)

—

7

=1

(4.34)

A sensitivity analysis is conducted across spectrum of assumed dependence structures to address
the nonidentifiability and unverifiable constraints of the dependence structure observed in the
registry data between the distributions of 77 and 7. Each level of dependence represent the
varying levels of dependent competing mortality possibly observed in registry data. For each
dependence structure, we estimate n with 7 and compute Fr, (t, Z|7) to estimate relative survival.
The corresponding standard errors are obtained as the square root of the Delta method variance:
Var(STl/()?Z)) = g(STT)ZZ)) Io(n) 1 -gT(STEZ)) where g(n) is the derivative of St, (¢, Z|n)
with respect to 1. Due to the complex nature of the likelihood, numerical approximation is used to

estimate the information matrix in the numerical illustrations in section 4.4.

4.4 Numerical Illustrations

4.4.1 Simulation Studies

We present simulation studies to illustrate covariate effects both under the independence (net
survival) and dependence assumptions (crude probability). To incorporate covariates in the model
using AFT, a transformation was required (see appendix) to facilitate interpretaion where a form of
an extreme value distribution (EVD) was implemented. For example, when the shape parameter

is zero, then the resulting distribution is the Gumbel extreme value distribution. We employ this
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technique to evaluate the performance of our covariate method based on simulated data that mimic
the French breast cancer data set for sample sizes; 1000, 2500 and 5000 with 500 replications.
The latent failure times were generated from the Weibull distribution (T; ~ Weibull(c;, A;)) with
probability density function defined above in section 4.3. The parameters for the transformed Weibull
(Gumbel) distribution for 77 were A\; = 1.200, «; = 3.000, 51 = 2.000, 82 = 3.000, 53 = 4.000 while
those for Ty were Ao = 2.100 and ag = 5.00. We estimated A1, a1, B1, B2, B3 for 11, while A9, o
are assumed known for 7T5. Noninformative right censoring times were generated from a uniform
distribution (0,~), where v was chosen for 15% censoring. The dependence was chosen for the
Gumbel copula with Kendall’s tau, 7, = 0, 0.25, 0.50, 0.80, and 0.90. Whenever possible, initial
starting parameter values were randomly chosen from uniform distributions, with multiple starting
values wherever possible as described in section 4.3.

Tables 4.9, 4.10 and 4.11 show the results for estimation of the model for T} treating 75 as a
competing event. We observe small bias decreasing to zero for increasing sample size across each of
the dependence levels for 15% censoring. The empirical variance and the model based variance were
similar and the coverage is close to the nominal 0.95 level, particularly at larger sample sizes. The

empirical variance decreases as the sample size increases at roughly the expected root n rate.

4.4.2 Application to French Breast Cancer Data

Data were obtained from Institue Curie breast cancer database in France for cancer registrations
between 1980 and 2011. This database contains records from 24,458 non metastatic breast cancer
patients between the ages of 18 and 96 years and treated at the Institut Curie. Out of the 24,458
breast cancer patients, 9,885 (40.4%) died while 14,573 were alive and administratively censored on
December 31t 2011. Five age group categories were considered for the estimation of relative survival.
3,970 were between the ages of 15 — 44, 6,895 between the ages of 45 — 54, 6,420 between the ages
of 55 — 64, 4,675 between the ages of 65 — 74 and 2,498 were in the 75 — 99 age group category. We
matched the observed death or censoring time in the disease cohort group with a corresponding
time in the healthy reference population on age, sex, and year (date of diagnosis and the date of
death or censored) for each participant and for each follow-up period. The background mortality
data from the Human Mortality Database (https://www.mortality.org) was last modified on June

28, 2018. Within each follow-up year, we assumed that Ap(t) is piecewise constant (Dickman, et

50



Table 4.9: Estimated parameters of the model for 77 across samples sizes (N), and dependence levels
(%) with 15% censoring treating T5 as a competing event.

m N 7 Est. Bias® Mod-B® EMP® CP
0.00 1000 X 1.195 -5.338 1479  1.469 0.933
& 3.000 -0.746 12.073  9.927 0.980

B 2.001 1310 22.131 19.218 0.961

By 3.000 0.441  1.855  1.969 0.935

3; 4.000 -0.340 8.808 8392 0.955

2500 A 1.197 -3.227  0.592  0.578 0.955

& 2998 -2.047 4.820 5.011 0.941

Bi 2.005 5.020 8.846  8.753 0.967

By 3.000 -0.153  0.742  0.793  0.945

3; 3.998 -1.522 3512  3.845 0.934

5000 A 1.198 -2.204  0.297  0.307 0.941

& 3.002 2211 2407 2419 0.949

Bi 1.998 -1.556  4.427  4.473  0.947

By 3.001 1.110  0.369  0.350 0.953

By 4.000 -0.349 1756  1.976 0.934

0.25 1000 A 1.194 -5.858 1.365  1.320 0.949
& 3.002 2414 12179 11.157 0.965

B 2.001 1.225 22.468 20.507 0.959

3, 3.001 0.839 1.879  1.800 0.963

3, 3.997 -3.404 8919  7.741 0.971

2500 A 1.198 -1.940 0.550  0.564 0.947

a 2999 -0.633 4.888  4.233  0.961

By 2000 -0.354 9.031  8.405 0.955

B 3.001 1.145 0.754  0.781 0.949

3; 4.003 2.842  3.579  3.581 0.955

5000 A 1.201 1.320 0.276  0.263  0.963

& 3.002 2406 2456  2.012 0.982

By 2.000 0.071  4.526  4.178  0.965

By 3.000 0.037 0.376  0.357 0.963

,3\3 3.997 -2.871 1.795 1.569  0.967

Est.: Estimated parameter value, Mod-B: Model-based variance, EMP: Empirical variance, CP: 95% Coverage, ¢ : x1073
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Table 4.10: Estimated parameters of the model for T} across samples sizes (N), and dependence
levels (7%) with 15% censoring treating 75 as a competing event.
Th N n  Est. Bias® Mod-B* EMP* CP
0.50 1000 X 1.195 -5.156 1.172 1.190 0.945
a 3.016 5.696 11.730 10.969 0.961
f1 1.998 -1.914 21.809 19.788 0.955
Bo  2.999 -0.716 1.825 1.964 0.945
Bs  3.996 -3.771 8.670 7.539  0.963

2500 A 1.198 -1.748  0.471  0.497 0.943
X 3.000 -0.144  4.697  4.272  0.961

By 1.998 -1.818 8759 8511 0.953

By 3.001  0.553 0.730  0.771 0.943

33 4.003  3.065 3.469  3.566  0.951

5000 A 1.202  1.618 0.236 0239 0.953
& 3.002 1.858 2.361  1.910 0.973

By 2.002 1.838 0.004.387 3.965 0.959

By 3.000 -0.162 0365  0.348 0.961

By 3.997 -3.346  1.740  1.545 0.955

0.75 1000 X 1.190 -10.061  1.057  8.958 0.939
a 3.017 17474  10.610  31.997 0.953

By 2.017 17248  19.743  88.790 0.939

By 3.002  1.750 1.656 5472  0.943

3, 4.001 1.357 7.852  46.490 0.959

2500 A 1.198 -1.571 0425  0.446  0.949
N 2999 -1.424 4241 4285 0.961

By 2.000 -0.168  7.933  8.348 0.949

By 3.000 0.121 0.662  0.710 0.943

B, 4.003  2.847 3.141  3.430 0.951

5000 A 1.194 -6.115 0212  9.103 0.934
a 3021 21.821 2119  66.091 0.962

By 2.006 6.022 3.949 18767 0.951

By 2.994 -5800  0.328  12.658 0.944

By 4.001  1.448 1.566  8.702 0.955

Est.: Estimated parameter value, Mod-B: Model-based variance, EMP: Empirical variance, CP: 95% Coverage, ¢ : x1073
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Table 4.11: Estimated parameters of the model for T} across samples sizes (N), and dependence
levels (7%) with 15% censoring treating T, as a competing event.

7 N 7 Est. Bias® ModB® EMP? CP
0.80 1000 A 1.194 -6.077  1.402  1.332 0.949
a 3.004 4.121 12194 11.843 0.957

By 2.000 -0.024 22445 21.955 0.959

By 3.001 1.221  1.877  1.756 0.967

3, 3.995 -4.870 8914  7.954 0.969

2500 A 1.198 -1.946  0.564  0.559 0.949

a 2999 -1.250  4.891  4.120 0.961

By 2.000 -0.0917 9.021 8304 0.955

By 3.001 1.236  0.754  0.771 0.953

3, 4.003 3.013 3575  3.522  0.957

5000 A 1.201  1.202  0.283  0.268 0.965

a 3.003 3.054 2457  1.892 0.983

By 1.999 -0.813 4522  4.053 0.967

By 3.000 0017  0.376  0.361 0.958

By 4.000 -3.017 1.793  1.567 0.963

0.0 1000 A 1.195 -5.3751 1.459  1.337 0.955
a 3.003 2612 12146  9.395 0.993

By 2.002 1.581  22.313  19.594 0.977

3, 3.001 1914  1.867 1.668 0.966

3, 3.995 -5.226  8.860  7.394 0.960

2500 A 1.198 -1.812  0.587  0.555 0.946

a 2999 -1.062  4.871  3.626 0.994

By 2.000 -0.256 8963  7.764 0.965

By 3.001 1.122  0.748  0.768 0.948

3, 4.002 2547  3.552  3.427 0.956

5000 1.201 1.089  0.294 0277 0.956

3.002  2.291 2.444 1.696  0.992
1.999 -0.598 4.493 3.788  0.979
3.000 0.335 0.374 0.378  0.941
5\3 3.997  -2.614 1.780 1.556  0.962

Est.: Estimated parameter value, Mod-B: Model-based variance, EMP: Empirical variance, CP: 95% Coverage, ¢ : x1073
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al., 2004) for each period up to time X. The cumulative hazard for each period based on Ap(t)
is calculated from the background survival function at the beginning and end of the period. The
cumulative hazard is then used to obtain A\p(t) under the piecewise constant assumption. The goal
of matching in determining Ay, = Ap is to mitigate the impact of age and time since diagnosis
(calendar year) on potentially dependent censoring by C (Perme et al., 2012). We estimate 2, 5, 10,
and 15—year relative survival assuming a Gumbel distribution for 77 and a Gumbel copula model
with differing levels of dependence to specify the joint distribution of 77 and 75. Unlike the standard
independence competing methods, the results of our estimator compares favorably with the standard
nonparametric estimator of Perme et al. (2012), which require independence of T} and T5. Besides,
our estimates also provide credible estimates (crude survival or crude probability of death) under

the dependence of T and T5.

4.5 Discussion and Conclussion

We proposed dependence competing risk regression model to determine the effect of the risk
factors on disease-specific survival analysis. Our model formulation was arbitrary but permitting
but known copula function and any form of transformation required for incorporating covariates.
We extracted the distribution of other cause mortality from external acturial reference data as is
required by the underpinning of relative survival method. Due to the identifiability and unveriable
nature of dependence between competing mortality, we proposed sensitivity analysis as a practical
solution to this issue. The effect of the risk factors is useful not only for determining treatment
regimen for elderly cancer patients but also for the physicians in determining plausible prognostic
measures.

The dependent competing risk regression model for disease-specific mortality may in part be
restrictive but flexible enough for applications where the disease-specific hazard is smooth over
time, which is the case in cancer registry data. It also permit evaluation of the covariates in the
model which lend to simple interpretation of disease-specific survival. The purpose of this paper
is to evaluate covariate effect both under the independence and dependence of 77 and Tb. We
acknowledged that ignoring dependence in competing risk in survival processes may be regarded

as modifying the research question to satisfy existing methods. The effect of covariates under
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independence assumption for competing risks is useful for practitioners who prefer net survival to

crude survival probability of death which is achieved under the dependence assumption.
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CHAPTER 5: Conclusion

5.1 Conclusion

This dissertation focused on the development of dependence models for disease-specific survival
analysis using registry data. In such competing risk settings where interest lies in comparison of
different cohort groups and or populations, our motivation stem from the sheer lack of appropriate
disease-specific survival estimators for this type of registries. As a result, we proposed three novel
estimators for disease-specific survival analysis without the need for cause of death information
whether reliable or not. Our estimators were shown to be consistent and asymptotically normal
in simulation studies satisfying all the usual regularity conditions. The estimators were applied to
the French breast cancer data for estimating both the overall and age-specific survival under both
independence and dependent assumptions. Our estimators across the levels of dependence may be
interpreted as representing personalized prognostic measures.

First, we proposed a parametric dependence model for disease-specific survival in relative survival
analysis via a copula function. Copula models capture scale invariance dependence between the
unobservable failure times for disease-specific mortality and other cause mortality. A bivariate
dependence competing risk model was formulated via copula taking as inputs the distribution of
the minimum latent failure times where the distribution of the competing latent failure time was
extracted from a healthy reference population. Likelihood-based estimation inference was proposed.
We investigated theoretical properties such as Fisher consistency for the dependent parametric
model under both Gumbel and Clayton copulas.

We relaxed the parametric assumption for relative survival analysis where we proposed a
nonparametric estimator for disease-specific survival. We modelled a function of the standard
Kaplan-Meier estimator in a form of estimation equation where the inversion of the nonlinear
function was required for disease-specific survival estimation. Nonparametric bootstrap procedure

was implemented for variance estimation under the usual regularity conditions.
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Whereas for the last estimator, we assessed the effects of disease-specific risk factors via a
dependence competing regression model. The covariates were incorporated in the regression model
using the standard Accelerated Failure Time procedure.

The dependence between disease-specific death and other cause mortality is nonidentifiable
and unverifiable from the observed registry data. As such, sensitivity analysis was proposed where
disease-specific mortality is estimated across a range of rich dependence levels. Our methods
performed well in both simulation studies and real-world data.

In conclusion, it is important to warn readers that prognostic measures (net survival, crude
survival or crude probability of death) for disease-specific survival are lagging resulting in unrealistic
clinician and or patient prognostic expectations that may lead to inappropriate therapeutic goals.
Net survival is valid for use in a hypothetical world where the disease is the only cause of death and
use for comparison of prognosis among different groups and or populations. The crude survival or
crude probability of death is a valid measure in the real world where competing mortality exists
simultaneously with the disease-specific under study and can be regarded as the analog for competing
risk estimator when cause of death is known. Some practitioners prefer one prognostic measure over
the other. The issue of predictive prognostic measures and time-dependent covariate models for

relative survival analysis has being deferred for later.
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APPENDIX 1: Results from Clayton Copula

Distribution of Death and Competing Causes of Death

The following figures: A.6, A.7 and A.8 show the distributions of time to disease-specific death
and death due to competing mortality possible in breast cancer registry data. The simulation reveal

the different levels of dependency that is typically observed from time since diagnosis.

Margin][, 1]
1.5

1.0

0.5

Other competing causes of death (yrs)

0.5 10 15
Breast cancer death (yrs)

Figure A.6: A simulated breast cancer data with moderate dependence (50%) through the use of
Clayton copula.
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Figure A.7: A plot showing the PDF, CDF and contour plots for the Gumbel copula which exhibit
upper tail dependency.
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Clayton Probability Density Function Clayton Cummulative Density Function
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Figure A.8: A plot showing the PDF, CDF and contour plots for the Clayton copula which exhibit
lower tail dependency.
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Parameter Estimates for the Clayton Copula

We simulated data to mimic the French breast cancer data set for sample sizes; 1000, 2500
and 5000 with 500 replications. The latent failure times for T; ~ Weibull(a;, A;) with probability
density function defined in section 2.3. The parameters for the Weibull distribution for 77 were
A1 = 0.182 and a1 = 1.609, while those for To were Ao = 0.742 and as = 0.693. In the estimation of
A1, aq for T, Ao, a9 are assumed known for 7T5. Noninformative censoring times were generated
from a uniform distribution (0,~), where v was chosen for 10, 30 and 50% censoring. We consider
the Clayton copula with Kendall’s tau, 7, = % =0, 0.25, 0.50, 0.75. Initial parameter values
were randomly chosen from uniform distributions, with multiple starting values wherever possible
as described in section 2.3. The simulation results based on the Clayton copula is presented in the

table below:
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APPENDIX 2: Estimating Equation

Relative survival is used extensively in population-based cancer studies to measure patient
survival correcting for causes of death not related to the disease of interest. For many years, the
gold standard for nonparametric estimation of survival curves has been the Hakulinen estimator
Hakulinen and Tenkanen (1987), but recently, Pokhrel and Hakulinen (2009) and Hakulinen et al.
(2011) had shown that this estimator does not have the expected properties. In their work, they
employ restricted cubic splines for the baseline cumulative excess hazard and for any time-dependent
effects. All the attempts to correct for these bias still require correct classification of cause of death,

and an assumption of independence between event and competing events.

Variance Estimation for Sz, (X)

The estimation of the variance of the model was achieved by using the first order Delta method
which is in the broad spectrum of the usual estimating equations. The Greenwood formula for

estimating the variance of all-causes survival function is:

(H.35)

Var (ST&,\X)) = STE(’\X)2 Z n(ndl_d)
Xog T 7

The variance estimation follows from Delta method or the application of the first Taylor series

expansion.

Estimating Equation

The variance estimation for the nonlinear function is achieved by the use of generalized estimating

equation. We define the estimating equation for 3.20 for a guumbel copula as;

—

9(51,(X)) = Sr(X,X) = 51,(X) = 51, (X) + 1+ (H.36)

X
exp {— ((=1og(1 = S5, (X))" + (~ log(1 — Sz, (X))’ } =0  (H37)

=
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From the Taylor series expansion around the S, (X),

g(9n(X) = g(Sn(X) +g (Sr,(X)) - (Sr.(X) - 57,(X))

+9”(ST21(X)) : (SZ(?) — S, (X))2 +R (H.38)
So the variance of Sm) is:
Var(Sr (X)) = [¢ (Sn(X)]" - Var (¢(9n(X)) ) - [¢/ (Sn.(X)] (H.39)

9 (91.(X)) = =Sr,(X) +exp {— [(~log(1 = 1, (X))’ + (~log(1 — 51, (X))’

5 (%) - S () = - 4 ¢

(
— g( -

= Vn(S1,(X) = 57,(X)) = —v/n

()
— /n(S1, (X) = Sy (X)) ~ N (0’”‘”' (ﬁg}q’(( : )))>

Using Delta method, we can compute the variance as

vor (Vi 55) = g ver (ot )

Here, per the definition of the g( - ), the first derivative is given by

i) PilaX)
T =1 gy a3 (4.6)
OXOa 2%
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Our model was too complicated for the calculation of the derivatives. We approximated the
Hessian matrix by the use of numerical methods. The negative of the Hessian matrix give the
covariance. The diagonal of the covariance matrix is the variance.

The variance estimation follows from Delta method or the application of the first Taylor

series expansion. Thus, we suppose g(t) = ¢ (v™1(S(t)) — 1 (S2(t))) The first order moment

is given by g(T )+ Z g:(6 ) + Remainder. The expectation is given by Eg(T") ~
k
g(0) + Zg{(ﬁ)E(Tz —0;) = g(0). The variance can be derived as
i=1

Var(g9(T)) = E(9(Ti) - g(6:))*

k 2 k 2
= E <9(9) +> g1 (0)(T; — 6;) — 9(9)> =K (Z 9:(0)(T; — 91))

i=1 i=1
k

:Z 1(0)2Var(T; +QZQZ )95 (8)cov(T;, Tj)

=1 i>7

The Delta method for estimates the variance of S (x) is given bys;

—_—\ ) —

Var (g(sc\)) = 4 (S(x,x), SQ(:E),0> -Var (S(x,m)) g (S(SE,CC),SQ(JU%Q)T (H.40)

— 2 —

=4 (S’(x, x), Sa(z), 0) -Var (S(:U,x)) (A.8)

where ¢(.) is a monotone transformation function of Si(z). The derivative of ¢(.) is given in the
next appendix.

1
0

9(S(z,2), So(x),0) = (S(x,m)1*9—s2(x)1*9+1)1‘
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{9(S(z,2), S2(),0)}’ - S(a,2)~"
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APPENDIX 3: Covariate Model Derivation

AFT Model formulation

Emphasis is placed on the estimates of the regression coefficients. If T; « Weibull(t; :
ki, o5), ¥V j € (1,2) is a random variable, then log(T;) follows an extreme value distribution,
W; « Gumbel(wj : o, Aj) with a the mode (location) and A the scale parameters. The Gumbel
distribution is generally used for modelling the exceedance above a threshold such as time to death.
The survival probability for people living beyond this threshold time is important for clinicians. A
model without covariate is represented as log(7;) = o + If\/—]] while a model with covariates Z is

given by:

W‘
X; =log(Ty) = ZB + A—J (1.42)

J
where 8 is the parameters of the model associated with the location. The random variable T;
is non-negative and is expressed as T = exp{Z 5+ %} It is clear from appendix A.3 that
X; ~ Gumbel(xj; oy, Aj). The domain of the parameters is (o, A\) = (R x (0,00)). Extensions to
Gumbel valued functions over continuous spaces have being extensively explored in random choice

theory, (Malmberg, 2013).

B=2(Z'2)"'X (1.43)

where X is the dependent(response) variable representing X = min(7', C') where T' = min(7}, T»)
and C is the right censoring time, Z is the set of covariates, and 3 is the regression coefficients for

the risk factors. The cumulative distribution function is given by

Wi — O
ij(wj]aj,)\j) :exp{—exp{—y}} (1.44)
J
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and its probability density function is given by

1 w; — o w; — o
fw, ( j):Aj*eXP{]/\j]eXP{jAj]}}

1 Wi — Wi — O
o (03) = 5w { fep { —o { -2

1 Wi — O
fw,( j):)\j*eXp{_ J)\j ]}'ij(wﬂaj,)\j)

The corresponding survival function is given by

SWj (wj]ozj, )\j) =1- FWj (wj|aja )‘j)
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