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ABSTRACT

Reuben Adatorwovor : Relaxing the Independence Assumption in Relative Survival Analysis
(Under the direction of Jason P. Fine)

Quantifying credible cancer survival in competing risk population-based studies is generally done

by disease-specific survival analysis when reliable cause of death information is available. Relative

survival analysis may be used to estimate disease-specific survival when cause of death is missing

and or subject to misspecification and not reliable for practical usage. This method is popular

for population-based cancer survival studies using registry data and does not require cause of

death information. The standard estimator under the independence assumption is the ratio of

all-cause survival in the cancer cohort group to the known expected survival from a healthy reference

population. Disease-specific death competes with other causes of mortality, potentially creating

dependence among the causes of death. The standard ratio estimate is only valid when death from

disease and death from other causes are independent. To relax the independence assumption, we

formulate dependence using a copula-based model. Likelihood-based, nonparametric and parametric

regression methods are implemented to fit a parametric, a nonparametric and a regression model to

the distribution of disease-specific death respectively without the need for cause of death information.

We assumed that the copula is known and the distribution of other cause of mortality is derived

from the reference population. Since the dependence structure for disease related and other-cause

mortality is nonidentifiable and unverifiable from the observed data, we propose a sensitivity analysis,

where the analysis is conducted across a range of assumed dependence structures. We demonstrate

the practical utility of our method through simulation studies and an application to French breast

cancer data.
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CHAPTER 1: Introduction

1.1 Introduction

Cancer patient survival in competing risk settings is a fundamental problem for cancer researchers

and physicians. Improvement in cancer therapeutics comes with understanding of cancer prognostic

measures which is seemingly simple but often lacking and or confusing. Additionally, understanding

the underlying underpinnings of the current estimators for these prognostic measures is complicated

especially without complete and accurate cause of event information. Appropriate estimators

under reasonable assumptions are nonexistent for disease-specific survival estimation. Quantifying

cancer survival in population-based cancer registries not only provides information to patients and

their families to understand prognosis and make decisions on the type of treatment to seek but

also provides useful guidance to their physicians in making decisions about the type of treatment

regimen to deploy. This dissertation delves into the constraints of the existing estimators for

disease-specific survival analysis. In particular, three estimators were proposed to mitigate against

unsubstantiated assumptions for the current estimators that assume that time to disease-specific

mortality is independent of time to competing mortality for disease-specific survival when cause of

event is either missing or subject to misspecification.

In Chapter 2, we propose a parametric method for modelling disease-specific survival for

competing risk registry data. We formulate the dependence between the latent failure times

distributions for death from disease and death from competing causes using copula models. The

copula model captures the nonlinear scale invariant dependence inherent in competing risk data.

It takes as input the marginal distribution of the minimum event time where the distribution of

other cause mortality is assumed known and extracted from the reference population with the

usual assumption that disease-specific death is negligible in this reference population. Due to the

nonlinearity of the mortality trends observed in the cancer registry data, two Archimedean copulas:
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the Gumbel and the Clayton copulas have been discussed and implemented. The usual maximum

likelihood estimation procedure was implemented.

Chapter 3 relaxes the parametric assumption introduced earlier in chapter 2. Instead of relying

on traditional endpoints such as the disease-specific hazard and disease-specific cumulative incidence

functions for disease-specific survival estimation, we employ a function of the Kaplan-Meier estimator.

First, we formulate the dependence by using the Gumbel copula. The all-cause mortality is estimated

using the Kaplan-Meier estimator which is a function of the disease-specific survival and the excess

survival. Next, the nonlinear function is inverted and solved for disease-specific survival using a

variant of Newton-Raphson algorithm. The usual regularity conditions hold.

We discuss the risk factors that influence cancer survival in chapter 4. These factors may include

but are not limited to age, sex, calendar period using the competing risk dependence regression

method. Assuming a similar formulation in chapter 2 above, we incorporate the covariates using the

Accelerated Failure Time (AFT) model. In this case, a transformation of the latent failure time is

implemented to obtain an Extreme Value Distribution (EVD) for the minimum of the event times.

As usual, the distribution of the competing mortality iss derived from the background reference

population and together with the distribution of the latent failure times modelled using the Gumbel

copula. Likelihood inference and interpretation is proposed.

Extensive simulations were implemented to assess the performance of our methodologies. Due

to the identifiability constraints and the unverifiable nature of the dependence between the latent

failure times in the observed registry data, a sensitivity analysis was proposed where we estimated

disease-specific survival across a spectrum of dependence structures. We demonstrated the utility

of our methods through an application to French breast cancer data obtained from Institut Curie

breast cancer database, France.

Chapter 5 concludes the dissertation. In that we proposed three novel methods for estimating

relative survival for cancer registries. These methods are the first step in incorporating dependence in

relative survival analysis. The key measures are the so called ”net survival” under the independence

assumption and ”crude survival” or ”crude probability of death” under the dependence assumption.

These prognostic measures for cancer-specific survival are not only of great interest to patients

and their love ones for end of life decision making, or for clinicians for clinical decision making, or

2



for researchers in understanding therapeutics, but also for policy makers in making decisions that

impact us all.
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CHAPTER 2: Relaxing the Independence Assumption in Relative Survival Analysis:
A Parametric Approah

2.1 Introduction

Cancer patients including breast, prostate, endometrial and thyroid cancer are at higher risk

of dying from heart disease and stroke than the general population. As the number of cancer

survivors increases, so is the rate of cardiovascular deaths (Sturgeon et al., 2019). Such medical

research frequently yields multiple event times which may consist of a terminal and or a non-terminal

event, including landmarks of the disease process. The practical concern for physicians is patient

survival, suggesting an analysis based on the distribution of these event times or the disease-specific

hazard and or cumulative incidence function. There is often scientific interest in understanding

disease-specific mortality in the absence of failure types other than the disease of interest, a quantity

which is sometimes controversial but meaningful to many practitioners or researchers. Other

researchers prefer the latter quantity in understanding disease-specific mortality in the presence of

other competing causes. Understanding these quantities helps inform researchers in the analysis of

the biological efficacy of treatment regimen rendered to patients to assess patient survival.

Survival probability is an important measure not only for clinicians in determining prognosis and

treatment regimen but also for patients and their families for decision making. With improvement

in medical treatment and long follow-up in population-based disease registries, there is a potential

for lost to follow-up during which patients may either experience disease-specific death or death

from non-disease related causes (Brinkhof et al., 2010). In such competing risk settings where one

death type precludes the occurrence of other types, standard methodology assumes that cause of

death is known (Gichangi and Vach, 2005).

In the analysis of competing risks events from registry data, accurate documentation of death

is essential (Percy et al., 1981; Welch and Black, 2002; Mieno et al., 2016). A challenge is that

documentation either may not be available, or may be incomplete or incorrect for cause of death, re-
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sulting in problems distinguishing disease and non-disease related mortality. The issue is pronounced

in Europe, where comparison of disease-specific survival across countries is of interest. The World

Health Organization (Organization et al., 1977) defines cause of death as ”the disease or injury which

initiated the train of morbid events leading directly to death”. However, population-based disease

registries may not be harmonized across countries, leading to imprecise cause of death definitions

and different levels of documentation of cause of death information. Often, the underlying cause of

death may be unclear as hospital coding of cancer death may not agree with the death certificate

coding. As an example, (Welch and Black, 2002) reported that 41% of deaths that occurred (within

one month diagnosis and cancer directed surgery) were not attributable to the coded cancer in

the registry. When reliable cause of death information is available, it is often located in separate

databases, which may be costly to obtain and difficult to link with registry data.

Suppose that T = min{Tk : k = 1, 2, 3, · · · ,K} is the potentially observable failure time and

ε = {k : T = Tk} the failure type where T1, · · · , TK , with K ∈ N are the latent failure times

associated with the K failure types. In registry data, K = 2 and ε = 1 implies death from cancer

and ε = 2 implies death from other competing causes. Standard methods for independently right

censored survival data without competing risks cannot generally be used to make inference about

disease-specific survival. Under dependent competing risks, where T1 and T2 are dependent, the

Kaplan-Meier (Kaplan and Meier, 1958) curve estimates a function of the cause-specific hazard

function, defined in Section 2.2. The logrank test (Bland and Altman, 2004) assesses group differences

between the cause-specific hazard function, while the standard proportional hazards model (Cox,

1972) formulates the effects of covariates on the cause-specific hazard function. The cumulative

incidence function, defined in Section 2.2, gives disease-specific survival in the presence of competing

events. This quantity has been widely adopted in applications, with the Aalen-Johanson estimator

(Aalen and Johansen, 1978), Gray’s test (Gray et al., 1988), and the Fine-Gray model (Fine and

Gray, 1999), providing analogs to the Kaplan-Meier curve, the logrank test, and the proportional

hazards model for the cumulative incidence function. Without cause of death information, these

methods are not applicable.

To address disease-specific survival without cause of death information, relative survival methods

have been proposed. Relative survival, SR(t) is the ratio of the observed survival rate in a group

of cancer patients, during a specified period, to the expected survival rate in a healthy reference

5



population (Ederer, 1961). Mathematically,

SR(t) =
SO(t)

SP (t)
(2.1)

where at time t, SO(t) is the survival probability for an individual in the registry and SP (t)

is the expected survival from mortality tables. Existing literature has focused exclusively on

the estimation of SR(t) under the independence assumption, T1 ⊥ T2. Under independence,

SO(t) = ST1(t) · ST2(t), SP (t) = ST2(t) which implies SR(t) = ST1(t) where ST1(t) and ST2(t) are

the survival probabilities corresponding to T1 and T2 respectively. The relationship (2.1) can be

rewritten in terms of hazard functions as λO(t) = λE(t) + λP (t) (Cronin and Feuer, 2000), where

λO(t) is the hazard in the disease registry, λE(t) is the so called excess hazard among the cancer

cohort, and λP (t) is the hazard from mortality tables. Under independence, λE(t) = λT1(t) and

λP (t) = λT2(t), where λTj (t) =
−dlogSTj (t)

dt , j = 1, 2, are the net hazard functions for cancer and other

cause mortality. The disease-specific survival probability ST1(t) under the independence assumption

is the target of relative survival analysis and corresponds to a hypothetical population in which

death from competing causes does not exist. It differs from the cumulative incidence function which

is commonly used to quantify disease-specific survival in analyses with cause of death information.

SR(t) has an excess hazard (Suissa, 1999) interpretation and is no longer a survival probability

when formulated as in 2.1.

Relative survival based on independence methods was pioneered by Berkson and Gage (1950),

and Ederer (1961) for nonparametric estimation of ST1(t). A variant of this method was proposed by

Hakulinen (1982) to address the bias due to heterogeneity of patient withdrawal within subgroups.

Perme et al. (2012) demonstrated that these classical methods may be biased under certain censoring

patterns. For example, in population comparisons, such bias may arise from unmeasured covariates

affecting the cancer cohort group and the reference population from which rates of expected mortality

are drawn. Rebolj Kodre and Pohar Perme (2013) studied biases associated with censoring and

age distribution (at the time of cancer diagnosis) and proposed weighting corrections. Nixon et al.

(1994) documented that event times and censoring times are dependent on the age of the patients

in a cancer study. Stratified methods Sasieni and Brentnall (2017) based on age standardization

of relative survival ratios may reduce such biases. Hakulinen et al. (2011) and Perme et al. (2012)
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developed alternative estimators valid under weaker assumption. However, the above estimation

methods for SR(t) all require independence of death from cancer and death from competing causes

(Hakulinen et al., 2011; Perme et al., 2012).

To relax the independence assumption (de Lacerda et al., 2019; Makkar et al., 2018), we

formulate the dependence between the latent failure times distributions for death from disease

and death from competing causes using copula models (Deheuvels, 1978). The copula function

generates a joint distribution for the two event times, taking as input their marginal distributions.

Copulas allow a broad range of dependence structures and have been employed widely in survival

analysis, including bivariate event times (Oakes, 1982), competing risks with known cause of failure

(Heckman and Honoré, 1989), and semi-competing risks where one event time censors the other but

not vice versa (Fine et al., 2001). We employ such models with competing risks data from disease

registries where cause of death information is either not reliable or not available. Because the joint

distribution of the latent failure times is nonparametrically nonidentifiable (Tsiatis, 1975), we treat

the copula function as known. The marginal distribution of the time to disease-specific death is

modelled parametrically with the distribution of death from other causes drawn from the reference

population. Likelihood-based inference is proposed. Because the joint distribution is unidentifiable

nonparametrically and unverifiable from the observed registry data, a sensitivity analysis is suggested

in which disease-specific survival is estimated across a range of rich dependence structures, specified

via the copula function. To our knowledge, this is the first attempt in accommodating dependence

in relative survival analysis.

The rest of this paper proceeds as follows. In section 2.2, we present the data and copula model

formulation for competing risks data. Section 2.3 describes the likelihood estimation and inference

procedure without cause of death information, as well as the proposed sensitivity analysis. In section

2.4, we present the numerical illustrations including simulation results and application to French

breast cancer data. Section 2.5 discusses and concludes the paper.

2.2 Data and Model

We begin by defining traditional endpoints for competing risk data with known cause of death.

The cause-specific hazard, λk(t) is the instantaneous failure rate for occurrence of event ε = k at

7



time t (Prentice et al., 1978),

λk(t) = lim
δt→0

P (t ≤ T < t+ δt,K = k|T > t)

δt
(2.2)

and the cumulative incidence function Ck(t) is the proportion of patients who died from cause k

by time t in the presence of patients who might die from other causes. The disease-specific failure

probability can be expressed as Ck(t) = P (T ≤ t : ε = k) =
∫ t

0 λk(s) ·S(s)ds where S(t) = P (T > t)

is the overall survival probability. Standard competing risks methods with known cause of failure

focus on estimation of λk(t) and Ck(t).

Without cause of death information, the registry data is simply time to death from any cause,

T, which may be right censored by lost to follow up. Let C be the time to right censoring,

with the common assumption being that T and C are independent. The observed data consist

of Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci), where Ti and Ci are the failure and censoring times

on individual i = 1, 2, 3, · · · , n. Relative survival methods employing such data do not focus on

the traditional competing risks endpoints λk(t) and Ck(t) but rather on the latent failure time

distributions with the corresponding survival functions ST1(t) and ST2(t).

To capture the dependence between T1 and T2, we employ copula models, which completely

describe the dependence structure and provide scale invariant measures of association (Venter, 2002;

Müller, 1996; Bäuerle and Müller, 1998; Denuit et al., 1999). Suppose ψ is a function defined such

that ψ : [0, 1] → [0,+∞] with independent marginal distributions, uj = P (Tj ≤ tj) = FTj (tj) =

1 − STj (tj) ∀j ∈ (1, 2). Then, the copula model for distributions of T1 and T2 (Cherubini et al.,

2004; Joe, 1997; McNeil et al., 2009) is:

C(u1, u2) = P (T1 ≤ t1, T2 ≤ t2) = ψ
(
ψ−1(u1) + ψ−1(u2)

)
= FT1,T2(t1, t2)

where ψ−1 is the inverse of ψ and ψ satisfies the Laplace-Stiltjes transform and Bernstein et al.

(1929) theorem. McNeil et al. (2009) showed that the generator function ψ is completely monotone

for non-negative random variables with ψ(0) = 1, ψ′(·) < 0 and ψ′′(·) < 0.

The most widely used scale invariant measures of association to characterize dependence are

Spearman’s rho (ρS) and Kendall’s tau (τk) correlation coefficients. The connection between the

8



latter and the copula generator function was shown by Genest and MacKay (1986) as:

τk = 1 + 4

∫ 1

0

ψ−1(u)

ψ−1(u)′
du = 1− 4

∫ ∞
0

u(ψ(u))2du

with ψ−1′ being the derivative of ψ−1. While in theory, any copula may be used to link the marginal

distributions of T1 and T2, in this paper, we focus on two popular Archimedean copulas, indexed by

a single dependence parameter θ having simple interpretations. The Gumbel copula:

C(u1, u2) = exp
[
−{(−log(u1))θ + (−log(u2))θ}

1
θ

]
(2.3)

with θ ∈ (1,+∞) and the Clayton copula:

C(u1, u2) = (u−θ1 + u−θ2 − 1)−
1
θ (2.4)

with θ ∈ (0,+∞). A special case of product copula model: C(u1, u2) = u1 · u2 is obtained when

θ = 1 and when θ → 0 for Gumbel and Clayton copulas respectively, which gives independence of T1

and T2. When θ > 0, the Clayton copula is bounded by: C(u1, u2) ≤ θ(1− u1 − u2) + (1 + θ)u1u2.

As dependence increases, that is θ → +∞, the Clayton copula approximates the Fréchet-Hoeffding

(Fréchet, 1951; Hoeffding, 1940) upper bound, giving perfect positive dependence.

2.3 Likelihood Estimation and Inference

We first formulate our model without covariates for the potentially dependent latent failure

times T1 and T2. The survival function for all-cause mortality time, T = min(T1, T2) at time t, is:

ST (t) = ST1(t) + ST2(t)− 1 + FT1,T2(t, t)

= 1− FT1(t)− FT2(t) + FT1,T2(t, t) (2.5)

with the corresponding density function of T equalling

fT (t) = fT1(t) + fT2(t)− fT1,T2 (t, t) (2.6)
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where fTj (t) =
dFTj (t)

dt , and fT1,T2(t) =
dFT1,T2 (t,t)

dt .

If censoring of T by C is noninformative, then the likelihood contribution for individual i is:

Li = fXi,∆i(Xi, δi) = [fT (Xi)]
δi [ST (Xi)]

1−δi (2.7)

From equation (2.7), the full log-likelihood function based on independent observations is:

l(X,∆) =
n∑
i=1

(δi ∗ log fT (Xi) + (1− δi) ∗ logST (Xi))

=
n∑
i=1

δi ∗ log [fT1(Xi) + fT2(Xi)− fT1,T2 (Xi, Xi)]

+
n∑
i=1

(1− δi) ∗ log [ST1(Xi) + ST2(Xi)− 1 + FT1,T2(Xi, Xi)] (2.8)

where (X,∆) = (Xi,∆i, i = 1, 2, 3, · · · , n). We specify a parametric model for FT1(t), with parameter

of interest η.

The general form of the probability density function of T1 at time t is fT1(t|η) with survival

probability ST1(t|η) = 1 − FT1(t|η) =
∫∞
t fT1(s|η)ds. The distribution of T2 is assumed known

and extracted from the reference population with the usual assumption that disease-specific death

is negligible in this reference population (Ederer, et al. 1961). This is illustrated in the French

breast cancer data analysis in section 4.2. The copula distribution linking FT1(t) and FT2(t) may be

specified using simple parametric copula models such as the Archemedean copulas. The parameters

in the copula model may be chosen for a pre-specified dependence between T1 and T2, for example,

Kendall’s tau (τk). In the numerical illustrations, T1 was assumed to follow a Weibull distribution

with parameter η = (λ, α) and probability density function fT1(t|η) = α
λ

(
t
λ

)α−1
exp

{
−
(
t
λ

)α}
because of its versatility to accommodate a wide range of hazard shapes. We consider the Gumbel

and the Clayton copulas in sections 2.3 and 2.4 for the joint distribution of T1 and T2 as both

copulas exhibit tail behaviours that mimic the mortality trend observed in the cancer registry data.

The bivariate joint distribution and density functions for the Gumbel copula are:

10



FT1,T2(t, t|η) = exp

{
−
(

(−log (u1))θ + (−log(u2))θ
) 1
θ

}
fT1,T2(t, t|η) = FT1,T2(t, t|η) ·

((
− log (u1)θ

)
+
(
−log (u2)θ

)) 1
θ
−1

×
((
− log(u1)θ−1 · fT1(t|η)

u1

)
+

(
−log (u2)θ−1 · fT2(t|η)

u2

))
, (2.9)

while under the Clayton copula, the bivariate joint distribution and density functions are:

FT1,T2(t, t|η) =
(
u−θ1 + u−θ2 − 1

)− 1
θ

fT1,T2(t, t|η) =
FT1,T2(t, t|η)(
u−θ1 + u−θ2 − 1

) ·(fT1(t|η)

uθ+1
1

+
fT2(t|η)

uθ+1
2

)
(2.10)

where u1 = FT1(t|η), u2 = FT2(t).

The maximum likelihood estimator (MLE) of η can be obtained by maximizing the log-likelihood

function in (2.8) using Nelder-Mead algorithm (Nelder and Mead, 1965). Parameter estimation was

sensitive to the choice of initial parameter values when τk ∈ (0.6, 0.9) for small sample sizes with

larger (> 50%) censoring proportions. Because the model is highly nonlinear, computing may be

unstable, particularly with small sample sizes and high censoring proportions. We suggest using

multiple starting values wherever possible and taking the MLE to be the maximizer giving the

largest value of the log likelihood across all starting values. The usual regularity conditions for the

MLE hold, given that the estimator converges in probability, that is η̂
P−→ η and is asymptotically

normal, η̂ ∼ N
(
η, IO(η)−1

)
with variance estimated using the inverse of the observed information

matrix (IO(η)−1) evaluated at the MLE, η̂. The observed information matrix is:
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IO(η) =
∂2l(η|X,∆)

∂η∂ηT

=

n∑
i=1


δi · [fT (Xi)] ·

{
∂
∂ηfT (Xi)

}T {
∂
∂η [fT (Xi)]

}
[fT (Xi)]T [fT (Xi)]

+

n∑
i=1


(1− δi) · [ST (Xi)] ·

{
∂
∂η [ST (Xi)]

}T {
∂
∂η [ST (Xi)]

}
[ST (Xi)]T [ST (Xi)]


(2.11)

Since the dependence structure for time to disease mortality (T1) and time to other competing

mortality (T2) is nonidentifiable and unverifiable from the observed registry data, we propose a

sensitivity analysis, where the analysis is conducted across a range of assumed dependence structures.

The levels of dependence represent the varying levels of dependent competing mortality possible in

the observed registry data. For each copula dependence structure, we estimate η with η̂ and compute

FT1(t|η̂) to estimate relative survival. The corresponding standard errors are obtained as the square

root of the Delta method variance: V ar(ŜT1(X)) = g(ŜT1(X)) · IO(η̂)−1 · gT (ŜT1(X)) where g(η) is

the derivative of ST1(t|η) with respect to η. Due to the complex nature of the likelihood, numerical

approximation is used to estimate the information matrix in the numerical illustrations in Section

2.4.

In the presence of informative censorship where T and C are dependent, we propose conditioning

on additional covariates Z in FT2 , (Sasieni and Brentnall, 2017; Perme et al., 2012), where FT2(t|Z)

is the conditional distribution of T2 given Z. Such covariates might include age, sex, period, as well

as other relevant demographic variables. Let Zi be the covariate observed on individual i = 1, · · · , n.

The log-likelihood function (2.8) is easily modified, where the likelihood contribution for individual

i (= 1, · · · , n) is (2.7) with FT2(t|Zi) replacing FT2(t) in fT (Xi) and ST (Xi). Here, we estimate η in

FT1(t|η) unconditionally on Z to mitigate against the bias associated with these covariates (Sasieni

and Brentnall, 2017; Perme et al., 2012). The usual likelihood regularity conditions continue to

hold, with the resulting estimator η̂ being consistent and asymptotically normal with variance which

may be estimated using the inverse of the observed information matrix evaluated at η̂.
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2.4 Numerical Illustrations

2.4.1 Simulation Studies

To evaluate the performance of our proposed method, we simulated data to mimic the French

breast cancer data set for sample sizes; 1000, 2500 and 5000 with 500 replications. The latent failure

times for Tj ∼Weibull(αj , λj) with probability density function defined above in section 2.3. The

parameters for the Weibull distribution for T1 were λ1 = 0.182 and α1 = 1.609, while those for T2

were λ2 = 0.742 and α2 = 0.693. In the estimation of λ1, α1 for T1, λ2, α2 are assumed known for

T2 and vice versa for estimation of λ2 and α2. Noninformative censoring times were generated from

a uniform distribution (0, γ), where γ was chosen for 10, 30 and 50% censoring. We consider the

Gumbel copula with Kendall’s tau, τk = 1− 1
θ = 0, 0.25, 0.50, and 0.75. Initial parameter values

were randomly chosen from uniform distributions, with multiple starting values wherever possible as

described in section 2.3. We also simulated data from the Clayton copula. The results are similar to

those for the Gumbel copula and are described in the appendix 1, table A.12. Appendix 1 also show

the distribution, density and contour plots for T1 treating T2 as competing event for both Gumbel

and Clayton copulas for independence and strong dependence structures.

Appendix 1 also shows the dependency level possible in breast cancer registry data. The

simulation reveal the trend observed from time since diagnosis and provide useful insight into

understanding possible informative censorship. These figures: A.6, A.7 and A.8 suggests the levels of

competing mortality during the course of treatment and may also provide information to physicians

as to which time of treatment that may be more potent.

Tables 2.1, and 2.2 show the results for estimation of the model for T1 treating T2 as a competing

event and for T2 treating T1 as a competing event. The bias is small decreasing to zero as the sample

size increases for each of the censoring levels. The empirical variance and the model based variance

tend to agree and the coverage is close to the nominal 0.95 level, particularly at larger sample sizes.

The empirical variance decreases as the sample size increases at roughly the expected root n rate.
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2.4.2 Application to French Breast Cancer Data

In this section we analyze data from women between the ages of 18 and 96 years surviving breast

cancer in France from 1980 to 2011. The data were obtained from the Institut Curie breast cancer

database. This database contains records from 24, 458 nonmetastatic breast cancer patients treated

at the Institut Curie. Out of the 24, 458 breast cancer patients, 9, 885 (40.4%) died while 14, 573

were alive and administratively censored on December 31st 2011. Five age group categories were

considered for the estimation of relative survival. 3, 970 were between the ages of 15− 44, 6, 895

between the ages of 45− 54, 6, 420 between the ages of 55− 64, 4, 675 between the ages of 65− 74

and 2, 498 were in the 75− 99 age group category. We individually matched the observed death

or censoring time in the disease cohort group with a corresponding time in the healthy reference

population on age, sex, and year (date of diagnosis and the date of death or censored) for each

participant and for each follow-up period. The background mortality data from the Human Mortality

Database (https://www.mortality.org) was last modified on June 28, 2018. Within each follow-up

year, we assumed that λP (t) is piecewise constant (Dickman, et al., 2004) for each period up to time

X. The cumulative hazard for each period based on λP (t) is calculated from the background survival

function at the beginning and end of the period. The cumulative hazard is then used to obtain

λP (t) under the piecewise constant assumption. The goal of matching in determining λT2 = λP is

to mitigate the impact of age and calendar year on potentially dependent censoring by C (Perme

et al., 2012). We estimate 2, 5, 10, and 15−year relative survival assuming a Weibull distribution for

T1 and a Gumbel copula model with differing levels of dependence to specify the joint distribution

for the distributions of T1 and T2. We compared estimates from our parametric estimator to the

estimates of the estimator of Perme et al. (2012), which require independence of T1 and T2 and

employ ST2(t) from the same reference population.

Tables 2.3 and 2.4 show the estimates of ST1(t) for cancer mortality both overall and stratified

by age. The parametric estimates under independence are similar to those from the Pohar-Perme

method suggesting that the Weibull assumption is a reasonable fit to the data. One observes that

as dependence increases, cancer survival generally decreases. For a fixed dependence level, younger

women tend to have higher cancer survival rates than do older women, with marked reductions

for the 65-74 and 75-99 age groups. There is some instability in survival estimates at 15 years,
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especially for the older age groups, as evidenced by the large standard errors. Perhaps, this may be

due to small numbers of patients at risk at longer follow-up times.

The relative survival function under the independence assumption corresponds to an ideal

world where the only cause of death is breast cancer. This quantity can only be estimated under

unverifiable dependence assumptions between T1 and T2 using disease registry data. To account

for uncertainty in dependence, we recommend reporting a range of probabilities corresponding

to differing levels of dependence. For example, using results from table 2.3, the overall 5 year

breast cancer survival from 1980− 2011 is estimated to be between 84.0-87.4% under dependence

ranging from Kendall’s tau equal to 0 (independence) to 0.75 (strong dependence). These cancer

survival probabilities may be meaningfully compared with those in other populations having different

background mortality rates and different dependence levels between T1 and T2.

Table 2.3: 2, 5, 10 and 15-yr overall relative survival for French women diagnosed with breast cancer
between 1980 and 2011.

τk 0.00 0.25 0.50 0.75

Year PP a ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb

2 95.6 96.0 6.99 95.8 6.96 95.4 7.23 94.7 7.74
5 84.8 87.4 9.01 86.6 9.10 85.5 9.31 84.0 9.53
10 71.0 72.8 11.01 71.4 10.99 69.8 10.91 68.0 10.67
15 59.5 59.5 12.22 57.9 12.08 56.3 11.74 54.9 11.19

a : ×10−2, b : ×10−3, τk: dependence, PP: Pohar-Perme, ST1
(t)a: parametric relative survival estimate at year t, SE: standard error for the

relative survival estimate.

The results of a sensitivity analysis was conducted across different levels of dependence structures

each representing different competing mortality observed in the registry data. Figure 2.4.2 shows

the 2,5,10 and 15-yr overall breast survival plots across a spectrum of dependence structures for

women between the ages of 18 and 96-yr living in France during 2008 and 2011.
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Table 2.4: 2, 5, 10 and 15-yr age group specific relative survival for French women diagnosed with
breast cancer between 1980 and 2011.

τk 0.00 0.25 0.50 0.75

Year Agegp PP a ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb

2 15-44 95.8 94.9 20.90 94.9 20.73 94.8 20.73 94.8 20.68
45-54 97.1 96.6 16.44 96.5 16.13 96.3 16.27 96.2 16.40
55-64 95.7 96.1 13.72 96.0 13.49 95.7 13.70 95.3 14.12
65-74 95.1 97.0 08.50 96.8 08.54 96.2 09.61 95.1 11.60
75-99 91.5 96.5 07.94 95.6 08.93 93.4 12.44 89.9 17.16

5 15-44 85.1 86.9 23.70 86.8 23.64 86.7 23.62 86.7 23.35
45-54 88.6 90.4 19.39 90.1 19.36 89.8 19.45 89.7 19.28
55-64 85.8 88.1 17.72 87.6 17.71 86.9 17.87 86.6 17.66
65-74 84.1 86.9 16.71 85.8 17.01 84.2 17.71 82.5 18.09
75-99 72.3 77.1 24.21 72.7 24.85 67.1 25.08 61.7 24.00

10 15-44 71.9 74.4 26.88 74.2 26.84 74.0 26.75 74.1 26.62
45-54 78.3 80.1 22.83 79.6 22.80 79.2 22.73 79.2 22.34
55-64 73.4 74.5 22.03 73.5 21.97 72.7 21.74 72.7 21.08
65-74 68.4 67.2 25.38 65.0 25.32 63.0 24.72 62.3 23.20
75-99 44.6 43.1 34.83 37.0 32.55 33.0 28.61 31.1 24.35

15 15-44 62.5 63.2 29.03 63.0 28.96 62.9 28.83 63.0 28.72
45-54 70.8 70.5 25.31 69.8 25.24 69.4 25.00 69.6 24.51
55-64 63.5 61.9 24.81 60.7 24.62 59.9 24.11 60.3 23.20
65-74 50.3 48.7 30.06 46.2 29.46 44.7 27.92 45.3 25.47
75-99 19.9 20.27 35.56 15.9 32.33 14.5 27.98 15.4 23.33

a : ×10−2, b : ×10−3, τk: dependence, Agegp: Age group, PP: Pohar-Perme, ST1
(t)a: parametric relative survival estimate at year t, SE:

standard error for the relative survival estimate.
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2.5 Discussion and Conclusion

Our model formulation for competing risk data without cause of failure information is general,

permitting arbitrary but known copula functions. The distribution of other cause mortality is

obtained from external reference data (Sarfati et al., 2010; Perme et al., 2012; Sasieni and Brentnall,

2017). We have undertaken preliminary investigations of simultaneous estimation of the dependence

parameter and the parameter in the disease-specific survival distribution. There is evidence of

instability, with care needed in the model specification to aid identifiability. This is expected, as there

are similar identifability issues even when the cause of failure is known. The proposed sensitivity

analysis is a practical solution to this issue, providing a range of estimates across different dependence

levels not requiring simultaneous estimation of the dependence parameter. The parametric model

for disease-specific mortality is restrictive but may be flexible enough for applications where the

hazard is smooth over time, which is the case in cancer registry data. To relax the parametric

assumption, nonparametric techniques are currently being developed which should be valuable in

settings with more complex failure patterns.

The focus of relative survival analysis is the distribution of the latent event time for death from

disease. This endpoint has been advocated by many practitioners (Slud et al., 1988; Reason, 1990;

Louzada et al., 2015), as it removes the impact of other cause mortality on the risk of disease-specific

mortality, permitting comparisons across populations with different background mortality. As an

alternative, other work has considered estimation of the crude disease-specific survival, Ck(t), using

the relative survival estimates and the known reference hazard for other cause mortality (Cronin

and Feuer, 2000). An analogous procedure could be implemented using our copula based estimate

of the distribution of T1 and would provide an assessment of the sensitivity of the estimator of Ck

under independence of T1 and T2. Such procedure would be of interest to individuals who prefer

crude disease-specific mortality to net disease-specific mortality. This is a topic for future research.

In conclusion, and unlike the Perme et al. (2012) and Cronin and Feuer (2000) methods which

focused exclusively on the estimators for net survival and crude survival or crude probability of death

measures respectively under the independence of competing mortality, our estimator provide both

estimates for net and crude survival measures regardless of the independent competing mortality.
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CHAPTER 3: A Nonparametric Method for Dependent Competing Risk in Relative
Survival Analysis

3.1 Introduction

Missing data is a common problem in most biomedical studies including population-based cancer

registries with competing events where the occurrence of one event type impedes other event types

(Putter et al., 2007; Lau et al., 2009; Austin et al., 2016). In such registries, the cause of event is one

of the most important variables documented for disease-specific survival estimation, which is used

in comparison of disease-specific survival among groups or populations under different competing

risk setting and is often of great interest to physicians for determining prognosis and effectiveness

of treatment regimen. The standard assumption in such competing risk studies is that cause of

disease-specific event is known (Gichangi and Vach, 2005).

Credible disease-specific analysis for competing risk data require accurate documentation of

cause of death (Percy et al., 1981; Welch and Black, 2002; Mieno et al., 2016; Tan et al., 2019).

A challenge is that cause of death information may be missing or subject to misspecification

(James and Bull, 1996; Maudsley and Williams, 1996; Platell and Semmens, 2004; Lambert et al.,

2010) in the registries making it impossible to distinguish disease and non-disease related events.

For example, Welch and Black (2002) raised concern that cancer death rates are systematically

misclassified, in that 41% of cancer patients who died as a result of cancer directed surgery (within

one month of diagnosis) do not have cancer recorded as the underlying cause of death. Without

reliable cause of death information, disease-specific analysis using classical methods is difficult and

practically impossible (Percy, 1989; Hoel et al., 1993; Ederer et al., 1999; Begg and Schrag, 2002).

With imprecise definitions and different levels of cause of death documentations, the World Health

Organization (Organization et al., 1977) defines cause of death as ”the disease or injury which

initiated the train of morbid events leading directly to death”. This was to aid harmony in cause of

death definition across countries.
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However, substantial disharmony in registries still exists not only in Europe but also in the

United States of America. Sometimes, the underlying cause of death may be unclear as hospital

cancer coding may not agree with the death certificate coding. Even when reliable cause of death

information is available, it is often inaccessible and located in separate databases, which may be costly

to obtain and difficult to link with registry data. Although much effort has been directed to link vital

statistics with cancer registries in the United States of America (German et al., 2011), substantial

disharmony (for example; with varying levels across all 79 sites for the Surveillance Epidemiology,

and End Results (SEER) program in the United States of America) exists in determining cause of

death information.

In competing risk studies with known cause of death information, standard methodologies

for disease-specific survival assumes that time to disease-specific event is independent of time to

non-disease-specific event (Fermanian, 2003; Gichangi and Vach, 2005; Austin et al., 2016). It is

not uncommon to find competing risk studies where this assumption is grossly violated as most

clinical research (Austin and Fine, 2017; D’Amico et al., 2018), often have competing causes (Austin

et al., 2020). Austin et al. (2016) showed that majority (> 77%) of randomized control trials with

potential competing risks were ignored during statistical analyses.

In analyzing competing risk data with missing or unreliable cause of death information, classical

methods like Kaplan-Meier method (Kaplan and Meier, 1958), logrank test (Bland and Altman, 2004)

and standard proportional hazard model (Cox, 1972) are inapplicable for estimating disease-specific

survival. Without competing events, these methods are useful for estimating disease-specific survival,

comparing survival among groups and assessing the effect of covariates respectively. In the presence

of competing risks with reliably known cause of death information, the analog of these methods

(Aalen-Johanson estimator, Grey’s test, and Fine-Gray model) are applicable. Ignoring the issues

of missingness and or unreliable cause of death in competing risk setting, disease-specific survival

analysis using the above methods are inadmissible (Austin et al., 2016) and (Adatorwovor et al.,

2020) as they may introduce unintended biases, distort the accuracy of statistical inference and

provoke misleading results.

While models based on independent timings of event and competing event are ubiquitous when

analysing registry data without missing cause of death information, dependent models are relegated

and not available for disease-specific survival analysis (Tan et al., 2019; de Lacerda et al., 2019). To
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address this knowledge gap, we consider dependence models for estimating disease-specific survival

via copula for registry data without the need for missing and or unreliable cause of death information.

Earlier attempt has being made to model the dependence in competing risk studies under parametric

assumption (Adatorwovor et al., 2020).

Suppose the time to potential unobservable failure time T = min{Tk : k = 1, 2, 3, · · · ,K} and

failure type ε = {k : T = Tk} with T1, · · · , TK , K ∈ N being the latent failure times associated

with the K failure types. With ε ≥ 2 implying competing risk setting (Dignam et al., 2012). In

the absence of reliable cause of death information, relative survival methods have being proposed.

Relative survival, SR(t) is the ratio of the observed survival rate in a group of cancer patients,

during a specified period, to the expected survival rate in a healthy reference population (Ederer,

1961). At time t,

SR(t) =
SO(t)

SP (t)
(3.12)

where SO(t) is the survival probability for an individual in the registry and SP (t) is the expected

survival from mortality tables. Existing methods focused exclusively on the estimation of SR(t)

under the independence of T1 and T2 where SO(t) = ST1(t) · ST2(t), SP (t) = ST2(t) which implies

SR(t) = ST1(t) with ST1(t) and ST2(t) being the survival probabilities corresponding to T1 and

T2 respectively. Equation (3.12) can be rewritten in terms of disease-specific hazard function as

λO(t) = λE(t) + λP (t) (Cronin and Feuer, 2000), where λO(t) is the hazard in the disease registry,

λE(t) is the so called excess hazard among the cancer cohort, and λP (t) is the hazard from mortality

tables. Under independence, λE(t) = λT1(t) and λP (t) = λT2(t), where λTj (t) =
−dlogSTj (t)

dt , j = 1, 2,

are the net hazard functions for cancer and other cause mortality. When T1 is independent of

T2, the disease-specific survival probability ST1(t) which is the target of relative survival analysis

corresponds to a hypothetical population in which competing mortality is non-exist and differs from

the cumulative incidence function which is commonly used to quantify disease-specific survival in

competing risk analyses without missing cause of death information. Under dependence of T1 and

T2, ST1(t) is of interest to some practitioners who prefer crude survival (survival experienced in a

real world where competing mortality exist simultaneously with disease-specific mortality) or crude

probability death for disease-specific mortality rates to net probability of death.
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Berkson and Gage (1950), Ederer and Heise (1959) and (Ederer, 1961) pioneered nonparametric

relative survival method under the independence of T1 and T2. The Ederer II method (Ederer

and Heise, 1959) was recommended (Hakulinen, Seppä, and Lambert, 2011) as the gold standard

for estimating relative survival because its estimates are approximately close to the estimates of

age-standardised relative survival ratio. Hakulinen (1982) proposed a variant of this method to

address the bias due to heterogeneity of patient withdrawal within subgroups. A modification

of Hakulinen (1982) method was proposed by Nixon et al. (1994) to address issues related to

the dependence of patients’ age on event occurrence or censorship. Stratified method based on

age standardization of relative survival ratios was proposed to reduce biases associated with age

(Corazziari et al., 2004). Perme et al. (2012) demonstrated that these classical methods may be

biased under certain censoring patterns in population comparisons. Such bias may originate from

unmeasured covariates affecting the cancer cohort group and the reference population from which

rates of expected mortality are drawn. Rebolj Kodre and Pohar Perme (2013) proposed weighting

corrections to address biases associated with censoring and age distribution (at the time of cancer

diagnosis). Hakulinen, Seppä and Lambert (2011) and (Perme et al., 2012) developed estimators

which are only valid under questionable assumption of independence of competing causes of event.

However, the above estimation methods for ST1(t) all require independence of T1 and T2 which

cannot be substantiated in practical application settings.

We relaxed the independence assumption by formulating the dependence between the latent

failure times for death from disease and mortality due to competing causes using copula (Deheuvels,

1978). A bivariate copula distribution for the latent failure times Tk (with k = 2) was generated

taking as input their marginal distributions with a single dependence structure. Dependence models

with copula have been widely utilized in survival analysis, including bivariate event times (Oakes,

1982), competing risks with known cause of failure (Heckman and Honoré, 1989), and semi-competing

risks where one event time censors the other but not vice versa (Fine et al., 2001).

We employ such models for competing risk disease registry data with missing or unreliable cause

of death information. Due to identifiability constraint of dependence for the joint distribution (Tsiatis,

1975), for the observed registry data, we treat the copula function as known. We nonparametrically

modelled the marginal distribution of the time to disease-specific death with the distribution of other

cause mortality drawn from the reference population. A variant of the Newton-Raphson procedure
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is used to solve the nonlinear function for disease-specific survival. Because the joint distribution

is unidentifiable nonparametrically and unverifiable from the observed registry data, a sensitivity

analysis is proposed where disease-specific survival is estimated across varying dependence structures,

specified via the copula function. To our knowledge, this is the first attempt in accommodating

dependence nonparametrically through the use of copula functions in estimating relative survival.

The rest of this paper proceeds as follows. In section 3.2, we present the data and copula

model formulation for competing risks data. Section 3.3 describes the nonparametric estimation

and inference procedure with missing cause of death information, bootstrap variance estimation

as well as the proposed sensitivity analysis. In section 3.4, we present the numerical illustrations

including simulation results and application to French breast cancer data. Section 3.5 discusses and

concludes the paper.

3.2 Data and Model Formulation

Unlike the traditional endpoints, λk(t) and Ck(t) defined in Adatorwovor et al. (2020) for

competing risk data with known cause of death, we focus on a function of the Kaplan-Meier (K-M)

estimator (Kaplan and Meier, 1958) defined in (3.13) for all-cause survival probability estimation.

Relative survival methods with missing or unreliable cause of death information focuses on the

distribution of the latent failure times, T1 = min(Tk) and T2 (distribution derived from background

population). With missing cause of death information, the observed data is simply time to event

from any disease, T, which may be right censored by time to lost to follow up C. Under the

standard assumption that T is independent of C, and for an individual i, the observed data consist

of Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci), where Ti and Ci are the unobservable failure and censoring

times respectively. The conventional representation of Kaplan-Meier estimator is:

S(Xi) =
∏

i: Xi≤x

(
1− di

ni

)
(3.13)

where for an individual i, d is the number of participants who died up until the mininmum time X,

and n is the number of individuals known to have survived at time X.

We utilize copula models to capture the dependence between the distributions of T1 and T2.

Copulas completely describe the dependence structure and provide scale invariant measures of
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association (Müller, 1996; Bäuerle and Müller, 1998; Denuit et al., 1999; Venter, 2002). Suppose

ψ is a function defined such that ψ : [0, 1] → [0,+∞] with independent marginal distributions,

uj = P (Tj ≤ tj) = FTj (tj) = 1− STj (tj) ∀j ∈ (1, 2). Then, the copula model for the distributions

corresponding to T1 and T2 (Cherubini et al., 2004; Joe, 1997; McNeil et al., 2009) is:

C(u1, u2) = P (T1 ≤ t, T2 ≤ t) = ψ
(
ψ−1(u1) + ψ−1(u2)

)
= FT1,T2(t, t)

where ψ−1 is the inverse of ψ and ψ satisfies the Laplace-Stiltjes transform and (Bernstein et al.,

1929) theorem, and FT1,T2(t, t) is the bivariate copula distribution function for the latent times

T1 and T2 at time t. The generator function ψ is completely monotone for non-negative random

variables with ψ(0) = 1, ψ′(·) < 0 and ψ′′(·) < 0 (McNeil et al., 2009).

In theory, any scale invariant measure of association can be used to characterize dependence

between the distributions of T1 and T2. The connection between Kendall’s tau (τk) correlation

coefficients and the generator function ψ has being shown (Genest and MacKay, 1986) as:

τk = 1 + 4

∫ 1

0

ψ−1(u)

ψ−1(u)′
du = 1− 4

∫ ∞
0

u(ψ(u))2du

with ψ−1′ being the derivative of ψ−1 and τk can be simplified to 1− 1
θ for Gumbel. In this paper,

we present our proposed method based on the Gumbel copula (G-copula) indexed by a single

dependence parameter θ (having simple interpretations) to link the marginal distributions of T1 and

T2. Thus:

C(u1, u2) = exp
[
−{(−log(u1))θ + (−log(u2))θ}

1
θ

]
(3.14)

with θ ∈ (1,+∞) and uj = FTj (X) = 1 − STj (X) being the distribution function corresponding

T1 and T2 respectively. When θ = 1, T1 and T2 are independent implying that C(u1, u2) ≤

θ(1− u1 − u2) + (1 + θ)u1u2 but with θ > 1 implying that T1 and T2 are dependent. The general

bivariate survival function at time t for any copula function is:

ST (t, t) = ST1(t) + ST2(t)− 1 + ψ
(
ψ−1 (1− ST1(t)) + ψ−1(1− ST2(t))

)
= ST1(t) + ST2(t)− 1 + C(u1, u2) (3.15)
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where ST (t, t) is the all-cause survival probability, ST1(t) and ST2(t) are the corresponding survival

distribution functions for T1 and T2 respectively. Under the independence of T1 and T2, (3.15)

becomes ST (t, t) = ST1(t) · ST2(t). Estimation of ST1(t) is achieved by inversion of the survival

function defined in (3.15) as:

ST (t, t)−1 = ST1(t)− ST2(t) + 1− C(u1, u2) (3.16)

Unlike the upper tail dependence exhibited by the G-copula, the Clayton copula (C-copula) in

contrast exhibit lower tail behaviour which also mimics the mortality trend in the observed registry

data. The bivariate joint distribution function at the time X for the C-copula for distributions of T1

and T2 is:

FT1,T2(X,X) =
(
FT1(X)−θ + FT2(X)−θ − 1

)− 1
θ

(3.17)

When T1 and T2 are dependent (θ > 0) the bivariate dependence survival function is:

ST (X,X) = ST1(X) + ST2(X)− 1 +
(
FT1(Xi)

−θ + FT2(Xi)
−θ − 1

)− 1
θ

(3.18)

with the inversion formula as:

S−1
T (X,X) = ST1(X)− ST2(X) + 1−

(
FT1(X)−θ + FT2(X)−θ − 1

)− 1
θ

(3.19)

3.2.1 Monotonicity

The derivative of the estimating equation defined in 3.20 can be established for

g(ST1(t)) = ST1(t)− ST1(t)− ST2(t) + 1− C(u1, u2) = 0 (3.20)

is:

g′(ST1(t)) = −1− C ′(u1, u2) = −(1 + C ′(u1, u2)) < 0 (3.21)

where C ′(u1, u2) = ψ′(ψ−1(u1) + ψ−1(u2)) ·
(
ψ−1′(u1) + ψ−1′(u2)

)
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3.3 ST1(t) Estimation and Inference

Relative survival under the independence of T1 and T2 is given by ST1(X) = ST (X,X)
ST2 (X) . Under

dependence, relative survival estimates are based on the inversion formula in (3.16). In section 3.4,

T1 was assumed to follow a Weibull distribution with parameter η = (λ, α) and probability density

function fT1(t|η) = α
λ

(
t
λ

)α−1
exp

{
−
(
t
λ

)α}
because of its versatility to accommodate varying hazard

shapes while the distribution of T2 is derived from the background population using the piecewise

exponential constant function; which rely on the cumulative hazard function defined for the Nelson-

Aalen (N-A) estimator (Nelson, 1972; Aalen and Johansen, 1978). The N-A estimator Λ(X), is an

estimator used to estimate the cumulative number of expected event(s) and is Λ(X) =
∑
X≤x

di
ni

. The

relationship between K-M estimator and N-A estimators can be established as Λ(Xi) = − log(S(Xi)),

where S(Xi) is defined in (3.13).

In the estimation of disease-specific survival SR(t) which is ST1(t), we rely on a function of

the Kaplan-Meier estimator for all-cause survival probability for an individual i surviving beyond

the time point X. From equation (3.13), we estimate the all-cause survival probability at time X

and denote it by ̂ST (X,X). In order to estimate ST1(X), we replaced the estimator ST (X,X) in

equation (3.15) with ̂ST (X,X). ST2(X) is derived from a healthy reference background population

and together with ̂ST (X,X) is substituted into the inversion formula in (3.16) for the estimation of

ST1(X).

Due to the complex nature of the nonlinear equation (3.16), a variant of Newton-Raphson

algorithm (Hasselman, 2009) was implemented to obtain a numerical solution for ST1(X). The

Kaplan-Meier (K-M) estimator for all-cause survival ST1(Xi) may be subject to monotonicity

constraint (Fine et al., 2001) especially for C-copula. In such scenarios, the estimate for the

estimator ST1(Xi) for an individual i is ̂S∗T1(Xi) = min
Xi≤x

(
̂ST1(Xi), ̂ST1(Xi − 1)

)
wherever possible

with ST1(Xi − 1) being the survival probability corresponding to the previous time point. While

estimating ST1(X) in the presence of a fixed dependence parameter θ, appropriate choice of the

initial values for the parameters escapes the monotonicity constraints for the G-copula.

In assessing the performance of our method, we estimated the bias of the estimator at time X

for each of the simulation studies presented in section 3.4. We showed that the estimator presented

in equation (3.22) was unbiased for ST1(Xi) for each individual i surviving at time X. The estimator
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for ST1(X) is;

ŜT1(X) = g
[(

̂ST (X,X)
)
, (ST2(X))

]
(3.22)

where ̂ST1(X,X) is given in equation (3.13) and is the K-M estimator for the bivariate copula

survival function and g is a monotone function define for the distribution functions of T1 and T2

respectively.

Under the usual regularity conditions, ŜT1(X) is asymptotically normal and consistent. As

n → ∞, n
1
2 |ŜT1(X) − ST1(X)| converges to a Gaussian process with mean zero and variance,

V̂ ar
(
ŜT1(X)

)
that was deduced using a nonparametric bootstrap variance estimation method,

∀ X ≥ 0. Nonparametric bootstrap procedure (describe below) is implemeted for variance estimation

corresponding to the estimated quartile time X. A consistent estimator for the variance of ̂ST (X,X)

is given by Greenwood formula described in the appendix 2. The variance estimation of ST1(X)

was achieved by the bootstrap method implemented using the following procedure where B = 500

bootstrapped samples:

1. Draw B samples of size n with replacement from the original data set.

2. Calculate η̂ for each of the samples from step 1. That is, we now have ŜT11 , · · · , ŜT1B

3. We calculate the standard error from the B estimates of ŜT1 by using the standard formulas

for standard errors, se(ŜT1) =

√√√√ 1

B − 1

B∑
i=1

(ŜT1 i −
¯̂
ST1)2, with

¯̂
ST1 =

1

B

B∑
i=1

ŜT1 i.

Clarke et al. (2009) showed that

1

n

n∑
i=1

Ŝn(X)
p→ S(X) (3.23)

where Ŝn = 1− F̂n and F̂n being the enpirical CDF and F (X) is the true distribution of the estimate.

In the simulation study, we showed the estimation of the variance at each of the quartile times X

for the model for each sample size and for 15% censoring level. The corresponding 95% coverage

probability was computed based on the estimated bootstrap variance.
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3.4 Numerical Illustrations and Applications

3.4.1 Simulation Procedure

We generate competing risk data that mimicked the French breast cancer data set to evaluate

our proposed method. Sample sizes; 2500, 5000 and 10000 were simulated each with 500 replications.

The unobservable latent failure time Tj was allowed to follow Weibull distribution with αj , λj as

parameters with the probability density function defined in section 3.3. The parameters for the

Weibull distribution for T1 were λ1 = 0.182 and α1 = 1.609, while those for T2 were λ2 = 0.742

and α2 = 0.693. In the estimation of λ1, α1 for T1, λ2, α2 are assumed known for T2 and vice

versa for estimation of λ2 and α2. Noninformative censoring times were generated from a uniform

distribution (0, γ), where γ was chosen for 15% censoring. G-copula dependence was chosen with

Kendall’s tau, τk = 0, 0.25, 0.50, and 0.75. Initial parameter values were randomly chosen from

uniform distributions, with multiple starting values wherever possible as described in section 3.3.

Clayton copula data could be simulated based on the description in section 3.2.

3.4.2 Figures

Figures 3.4.2 and 3.4.2 show the nonparametric survival probability function for T1 under the

G-copula for both zero and moderate dependence (τk = 0.5) and for 1000 sample size. The step

function for the nonparametric estimate ŜT1(t) for T1 is close to the truth, ST1(t) at the time point

t. The survival probability corresponding to the lower, median and upper quartiles is presented

in tables 3.7 and 3.8 of the model for T1 treating T2 as a competing mortality, and for T2 treating

T1 as a competing event. We observed that bias is small decreasing to zero for increasing sample

size across each level of dependence. The empirical variance and the model based variance tend to

agree and the coverage is close to the nominal 0.95 level, particularly at larger sample sizes. The

empirical variance decreases as the sample size increases at roughly the expected root n rate.

The following figures 3.4.2, 3.4.2, 3.4.2 and 3.4.2 compare the true estimator ST1(Xi) to the

estimate ̂ST1(Xi) with zero (independence of T1 and T2), 25, 50, and 75% dependence while applying

15% right censoring for the G-copula model (3.27). The figures 3.4.2 and 3.4.2 also reveal that the
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Table 3.5: Estimated parameters of the model for T1 across samples sizes (N), dependence levels
(τk) with 20% censoring (C) treating T2 as a competing event and vice versa.

τk N X ŜT1(X) ST1(X) Bias a S∗1(X) B-Var a EMP a CP

0.00 2500 0.706 0.932 0.932 39.75 0.932 2.930 2.700 0.962
0.965 0.715 0.714 87.78 0.715 3.240 3.260 0.952
1.173 0.409 0.409 1.67 0.409 1.820 1.800 0.956

5000 0.716 0.927 0.927 20.11 0.927 1.860 1.74 0.956
0.989 0.683 0.683 46.510 0.683 1.830 1.730 0.946
1.206 0.359 0.359 -17.270 0.359 8.20 7.800 0.952

10000 0.705 0.932 0.932 -1.630 0.932 0.730 0.700 0.956
0.965 0.715 0.715 -13.740 0.715 0.800 0.810 0.950
1.173 0.409 0.409 0.470 0.409 0.450 0.450 0.950

2500 0.706 0.894 0.893 44.220 0.893 3.660 3.500 0.962
0.965 0.810 0.810 49.930 0.810 14.660 15.650 0.936
1.174 0.733 0.732 132.440 0.733 47.250 48.800 0.948

5000 0.705 0.893 0.893 13.590 0.894 1.810 1.660 0.960
0.965 0.810 0.810 46.880 0.810 7.270 7.450 0.944
1.173 0.732 0.732 4.990 0.732 23.350 21.990 0.952

10000 0.705 0.893 0.893 -2.080 0.893 8.900 8.000 0.952
0.965 0.810 0.810 -8.200 0.810 3.640 3.310 0.956
1.173 0.732 0.732 -20.360 0.732 11.430 10.740 0.944

0.25 2500 0.716 0.927 0.927 6.55 0.927 3.74 3.65 0.954
0.989 0.683 0.683 -8.02 0.683 3.73 3.43 0.950
1.206 0.359 0.359 -42.89 0.359 1.66 1.59 0.942

5000 0.716 0.927 0.927 20.110 0.927 1.860 1.740 0.956
0.989 0.683 0.683 46.510 0.683 1.830 1.730 0.946
1.206 0.359 0.359 -17.270 0.359 0.820 0.780 0.952

10000 0.717 0.927 0.927 14.000 0.927 9.200 8.400 0.972
0.989 0.683 0.683 25.150 0.683 9.100 8.900 0.952
1.206 0.358 0.359 -7.000 0.358 4.100 3.900 0.954

2500 0.716 0.927 0.927 6.550 0.927 3.740 3.650 0.954
0.989 0.683 0.683 -8.020 0.683 3.730 3.430 0.950
1.206 0.359 0.359 -42.890 0.359 1.660 1.590 0.942

5000 0.716 0.890 0.890 17.010 0.890 2.090 1.880 0.956
0.989 0.802 0.801 56.930 0.801 12.450 12.60 0.956
1.206 0.720 0.719 70.460 0.719 72.970 77.240 0.946

10000 0.717 0.890 0.890 22.240 0.890 1.040 9.300 0.954
0.990 0.802 0.801 73.300 0.801 6.110 6.170 0.946
1.206 0.720 0.719 61.010 0.719 36.140 35.680 0.954

η̂: estimated parameters, ModB: model-based variance, EMP: empirical variance, CP: 95% coverage probability. a : ×10−5.
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Table 3.6: Estimated parameters of the model for T1 across samples sizes (N), dependence levels
(τk) with 20% censoring (C) treating T2 as a competing event and vice versa.

τk N X ŜT1(X) ST1(X) Bias a S∗1(X) B-Var a EMP a CP

0.50 2500 0.738 0.916 0.916 58.980 0.916 5.540 5.060 0.960
1.021 0.639 0.640 -68.590 0.640 3.760 3.670 0.954
1.232 0.319 0.320 -27.760 0.319 1.310 1.350 0.942

5000 0.738 0.916 0.916 11.440 0.916 2.730 2.440 0.972
1.022 0.639 0.639 9.270 0.634 1.860 1.710 0.956
1.232 0.319 0.319 2.600 0.319 0.640 0.640 0.950

10000 0.738 0.916 0.916 -13.120 0.916 1.340 1.240 0.948
1.021 0.639 0.639 1.980 0.639 0.920 0.850 0.946
1.232 0.319 0.319 -6.310 0.319 0.320 0.340 0.944

2500 0.737 0.884 0.884 4.680 0.884 5.320 5.280 0.952
1.021 0.791 0.789 135.630 0.789 71.850 66.320 0.964
1.232 0.730 0.709 2151.670 0.708 1096.580 1257.780 0.966

5000 0.738 0.884 0.884 18.660 0.884 2.600 2.370 0.964
1.022 0.791 0.789 172.070 0.789 33.060 30.790 0.960
1.232 0.722 0.709 1348.090 0.709 670.130 598.940 0.926

10000 0.738 0.884 0.884 -28.360 0.884 1.270 1.140 0.948
1.022 0.790 0.789 41.610 0.789 15.670 14.460 0.960
1.232 0.717 0.709 812.370 0.709 332.050 300.850 0.956

0.75 2500 0.776 0.893 0.893 -35.280 0.892 9.620 8.720 0.972
1.050 0.598 0.598 -21.080 0.598 2.990 2.890 0.952
1.242 0.304 0.305 -72.520 0.304 1.050 1.060 0.928

5000 0.777 0.893 0.893 18.880 0.893 4.630 3.970 0.966
1.051 0.597 0.597 35.440 0.597 1.470 1.320 0.954
1.243 0.304 0.304 -6.910 0.304 0.052 0.049 0.950

10000 0.776 0.892 0.893 -39.260 0.892 2.240 2.010 0.962
1.051 0.597 0.597 19.520 0.597 0.730 0.680 0.956
1.243 0.304 0.304 -0.450 0.304 0.260 0.270 0.948

η̂: estimated parameters, ModB: model-based variance, EMP: empirical variance, CP: 95% coverage probability. a : ×10−5
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estimator for ST1(X) at time X closely approximate the disease-specific survival curve for both zero

and 50% dependence for the G-copula model with 1000 sample sizes.
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Figure 3.2: Comparison of the estimated event survival probability and the truth for 1000 samples
with 15% censoring for 0% dependence structure for Gumbel copula
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Figure 3.3: Comparison of the estimated event survival probability and the truth for 1000 samples
with 15% censoring for 25% dependence structure for Gumbel copula
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Figure 3.4: Comparison of the estimated event survival probability and the truth for 1000 samples
with 15% censoring for 50% dependence structure for Gumbel copula
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Figure 3.5: Comparison of the estimated event survival probability and the truth for 1000 samples
with 15% censoring for 75% dependence structure for Gumbel copula
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3.4.3 Application to French Breast Cancer Data

We analyze 24, 458 nonmetastatic breast cancer patients from Institut Curie database. These

women were between the ages of 18 and 96 years surviving breast cancer in France during 1980 to

2011. Out of the 24, 458 breast cancer patients, 9, 885 (40.4%) died while 14, 573 were alive and

administratively censored on December 31st 2011. Five age-specific subgroups were considered for

the estimation of relative survival. 3, 970 were between the ages of 15−44, 6, 895 between the ages of

45− 54, 6, 420 between the ages of 55− 64, 4, 675 between the ages of 65− 74 and 2, 498 were in the

75− 99 age subgroup category. For each participant, we matched the observed death or censoring

time in the disease cohort group with a corresponding time in the healthy reference population on

age, sex, and year (date of diagnosis and the date of death or censored) within each follow-up period.

The background mortality data from the Human Mortality Database (https://www.mortality.org)

was last modified on June 28, 2018. Within each follow-up year, we assumed that λP (t) is piecewise

constant (Dickman, et al., 2004) for each period up to time X. The cumulative hazard for each

period based on λP (t) is calculated from the background survival function at the beginning and end

of the period. The cumulative hazard is then used to obtain λP (t) under the piecewise constant

assumption. To mitigate the impact of age and calendar year on potentially dependent censoring by

C (Perme et al., 2012), we set λT2(t) to λP (t). 2, 5, 10, and 15−year relative survival were estimated

nonparametrically for T1 using a G-copula model with differing levels of dependence specified for

the joint distribution of T1 and T2. We compared our results with Perme et al. (2012) estimator

under the independence of T1 and T2.

3.4.4 Extracting ŜT2(X) from the Background Population

The distribution of T2 was extracted from the background population matching in age, dates of

diagnosis and death/censored for each participant during each follow-up period. Yearly background

data was last modified on June 28th 2018. We assumed that the probability of death within a year

is piecewise constant. ŜT2(X) = exp{−Λ̂(X)} = exp
(
−
∫ X

0 λ̂(s)ds
)

. The results for the overall and

age group-specific estimates in the following tables.

Tables 3.7 and 3.8 show the estimates of ST1(t) for cancer mortality both overall and age

group specific. The nonparametric estimates under independence are similar to those from the
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Pohar-Perme method. This suggests that our estimator is reasonable even under the independence

of T1 and T2. Cancer survival increases with decreasing dependence. One observes that for a fixed

dependence level, younger women tend to have higher cancer survival rates than do older women,

with marked reductions for the 65-74 and 75-99 age group categories. There is some instability in

survival estimates at 15 years, especially for the older age groups, as evidenced by the large standard

errors. This may be due to small numbers of patients at risk at longer follow-up times.

Table 3.7: 2, 5, 10 and 15-yr overall relative survival for French women diagnosed with breast cancer
between 1980 and 2011.

τk 0.00 0.25 0.50 0.75

Year PP a ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb

2 95.6 98.6 15.83 98.5 15.59 98.2 15.11 97.2 13.49
5 84.8 87.5 17.06 87.0 24.20 86.1 15.07 85.1 15.41
10 71.0 73.3 58.37 72.6 48.67 71.6 35.83 71.0 13.09
15 59.5 51.4 07.61 50.0 06.30 48.8 04.57 59.5 03.62

a : ×10−2, b : ×10−3, τk: dependence, PP: Pohar-Perme, SR(t): nonparametric relative survival estimate at year t, SE: standard error for the
relative survival estimate.
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Table 3.8: 2, 5, 10 and 15-yr age group specific relative survival for French women diagnosed with
breast cancer between 1980 and 2011.

τk 0.00 0.25 0.50 0.75

Year Agegp PP a ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb

2 15-44 95.8 96.3 03.40 96.3 03.23 96.1 03.34 95.9 03.41
45-54 97.1 97.4 02.97 97.3 02.98 97.3 02.72 97.2 02.23
55-64 95.7 97.1 03.21 97.0 03.32 96.7 03.07 96.1 02.85
65-74 95.1 98.2 07.71 98.0 08.45 97.6 09.08 96.5 09.46
75-99 91.5 97.8 134.89 97.5 140.56 96.6 145.69 94.4 151.40

5 15-44 81.5 85.5 05.76 85.4 05.61 85.2 05.83 85.1 05.95
45-54 88.6 89.3 04.76 89.2 04.73 88.9 04.28 88.7 03.92
55-64 85.8 88.5 07.23 88.0 06.67 87.1 05.77 86.1 04.74
65-74 84.1 88.9 17.56 88.1 16.85 86.6 14.71 84.7 08.13
75-99 72.3 83.3 67.77 81.0 72.73 77.4 72.85 73.4 101.83

10 15-44 71.9 72.7 07.82 72.4 07.35 72.1 07.67 71.9 07.42
45-54 78.3 81.0 06.29 80.3 06.41 79.3 05.54 78.5 05.20
55-64 73.4 77.2 7.98 76.1 7.43 74.7 06.68 73.6 05.87
65-74 68.4 76.8 15.04 74.6 12.59 71.5 10.26 68.8 07.36
75-99 44.6 56.1 78.25 51.4 56.39 47.0 29.79 44.9 12.58

15 15-44 62.5 63.3 08.58 63.0 08.65 62.7 08.42 62.6 08.13
44-54 70.8 72.0 09.06 71.6 07.17 71.1 06.22 70.8 05.91
55-64 63.5 71.0 06.22 65.1 13.15 64.1 8.42 63.6 06.55
65-74 50.3 64.8 53.41 59.7 36.39 54.2 18.38 50.7 09.16
75-99 19.9 22.6 44.47 20.8 21.50 20.0 12.47 19.9 10.73

a : ×10−2, b : ×10−3, τk: dependence, Agegp: Age group, PP: Pohar-Perme, SR(t)a: nonparametric relative survival estimate at year t, SE:
standard error for the relative survival estimate.
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3.5 Discussion and Conclussion

We investigated the precision of our estimator under different dependence structures and

proposed sensitivity analysis as a practical solution to identifiability constraints of dependence. The

nonparametric model for disease-specific mortality is reasonable for complex failure patterns and

flexible dependence levels as is the case in competing risk setting. Our nonparametric estimator

has a dual meaning of net survival probability under independence assumption and crude survival

probability or crude probability of death under the dependence assumption. This estimator is

useful to both practitioners who prefer either net survival probability or crude survival and or crude

probability of death for determining prognosis. The case for covariate effects is currently being

developed to understand the contribution of other risk factors in relative survival analysis.

The key point in this paper is the estimation of the distribution of latent failure time for a

specific disease. This endpoint under the independence of T1 and T2 has been advocated by many

practitioners, as it eliminates the impact of other cause mortality on the risk of disease-specific

mortality assumed in a hypothetical world where mortality is due to disease of interest. It is also

useful in comparison of survival across groups or populations with different background mortality.

In contrast to net survival, some practitioners prefer crude probability of survival to net survival

because it accommodates deaths from other causes and presents cancer survival in the real world,

where the patient may experience mortality in the presence of competing causes. Our estimator

not only provides a practical alternative to Perme et al. (2012) method under the independence

assumption but also a useful estimator under the dependence assumption for practitioners who

prefer crude survival to net survival.
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CHAPTER 4: Covariate Effect for Dependence Competing Risk in Relative Survival
Analysis

4.1 Introduction

Biomedical research often have competing risks where one event type censors other mutually

exclusive events. Patients can potentially experience an event from any of the multiple failures

particularly in cancer registry data. For example, in following patients after cancer diagnosis, a

patient may commit suicide or die from the cancer under study or may die from other causes. In

such competing risk setting, standard disease-specific statistical analysis and interpretation differ

from survival analysis with only a single cause of failure (Dignam et al., 2012).

In determining credible prognosis for disease-specific mortality in cancer studies using registry

data, accurate documentation of cause of death (Percy et al., 1981; Welch and Black, 2002; Mieno

et al., 2016) and appropriate statistical methodology (Caplan et al., 1994; Gooley et al., 1999;

Williamson et al., 2007; Dignam and Kocherginsky, 2008) underpinning the analysis are required

when comparing groups under different populations. A challenge to the disease-specific analysis

based on standard methods is that cause of death information may be missing and or unreliable

for meaningful conclusions to be drawn. As a result, several modeling approaches are available to

evaluate the relationship between the covariates and disease-specific failures.

The standard hazard or the cumulative incidence function for a specific failure type in competing

risks analysis is used to evaluate the influence of covariate in disease-specific survival under the

independence assumption (net survival or crude survival probability). Such models are unviable

for competing risk analysis data without cause of death information. Existing methods for disease-

specific survival analysis employing different competing risks models on the same data for hazard

ratios estimation, can differ substantially and may lead to different or even seemingly contradictory

inferential conclusions (Dignam et al., 2012). These methods according to (Denham et al., 1996;
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Chappell, 2012) may only illuminate one important aspect of the data while possibly obscuring

others.

The issue is more complicated and renders current perspective on estimated disease-specific

survival probabilities useless under the current methodologies for registry data when cause of

death information is missing and or unreliable because of difficulty associated with distinguishing

disease-specific mortality from other cause mortality. Even within one month of cancer diagnosis

and cancer directed surgery, 41% of all deaths that occurred were missclassified and not attributable

to the coded cancer in the registry Welch and Black (2002). Sometimes, when reliable cause of

death information is available, it is often located in separate databases, which may be costly to

obtain and difficult to link with registry data.

Suppose that T = min{Tk : k = 1, 2, 3, · · · ,K} is the potentially unobservable failure time and

ε = {k : T = Tk} the failure type with T1, · · · , TK , K ∈ N being the latent failure times associated

with the K failure types. When K = 2 and ε = 1 implies death from cancer and ε = 2 implies

death from other competing causes. Under dependent competing risks, where T1 and T2 are not

independent, standard methods for independently right censored survival data without competing

risks cannot be used to make inference about disease-specific survival. Thus, the Kaplan-Meier

(Kaplan and Meier, 1958) estimator estimates a function of the disease-specific hazard function,

defined in section 4.2. The logrank test (Bland and Altman, 2004) assesses group differences between

the disease-specific hazard function, while the standard proportional hazards model (Cox, 1972)

formulates the effects of covariates on the disease-specific hazard function. The cumulative incidence

function, defined in section 4.2, gives disease-specific survival in the presence of competing events.

This quantity has been widely adopted in applications, with the Aalen-Johanson estimator (Aalen

and Johansen, 1978), Gray’s test (Gray et al., 1988), and the Fine-Gray model (Fine and Gray,

1999), providing analogs to the Kaplan-Meier curve, the logrank test, and the proportional hazards

model for the cumulative incidence function. Without cause of death information, these methods are

inapplicable. This paper focused on estimating the effect of covariates on disease-specific survival

analysis under both independence and dependence assumption relating to T1 and T2 respectively.

Without reliable cause of death information for disease-specific survival, relative survival methods

have being proposed. Relative survival, SR(t) is the ratio of the observed survival rate in a group

of cancer patients, during a specified period, to the expected survival rate in a healthy reference
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population (Ederer, 1961). Mathematically and at time t,

SR(t) =
SO(t)

SP (t)
(4.24)

with SO(t) being the survival probability associated with an individual in the registry and SP (t)

the expected survival probability derived from mortality tables. Existing literature has focused

exclusively on the estimation of SR(t) under the independence of T1 and T2, which implies that

SO(t) = ST1(t) · ST2(t), SP (t) = ST2(t) and SR(t) = ST1(t) where ST1(t) and ST2(t) are the survival

probabilities corresponding to T1 and T2 respectively. The relationship (2.1) can be rewritten in

terms of hazard functions as λO(t) = λE(t) + λP (t) (Cronin and Feuer, 2000), where λO(t) is the

hazard in the disease registry, λE(t) is the so called excess hazard among the cancer cohort, and

λP (t) is the hazard from mortality tables. Under independence, λE(t) = λT1(t) and λP (t) = λT2(t),

where λTj (t) =
−dlogSTj (t)

dt , j = 1, 2, are the net hazard functions for cancer and other cause mortality.

The disease-specific survival probability ST1(t) under the independence assumption is the target of

standard relative survival analysis and corresponds to a hypothetical population in which death from

competing causes does not exist. This quantity differs from the cumulative incidence function which

is commonly used to quantify disease-specific survival in analyses with cause of death information.

Under the dependence assumption, ST1(t) is relative survival in the real world where competing

risks exist simultaneously with the disease. Some authors called this estimator crude survival or

crude probability of death.

Relative survival is employed extensively for the comparison of cancer survival in cohort groups

or populations, or for evaluating changes in survival over time and for exploring potential risk

factors for disease-specific mortality. Relative survival methods under the independence assumption

was pioneered by Berkson and Gage (1950) and (Ederer, 1961) for nonparametric estimation of

ST1(t). Variants of these earlier methods were introduced by Hakulinen (1982) with the aim of

addressing the bias due to heterogeneity of patient withdrawal within subgroups. Perme et al. (2012)

demonstrated that these classical methods may be biased under certain censoring patterns. For

example, in population comparisons, such bias may arise from unmeasured covariates affecting the

cancer cohort group and the reference population from which rates of expected mortality are drawn.
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In order to understand the contribution of the risk factors in registry data, (Hakulinen and

Tenkanen, 1987) adapted the standard proportional hazard regression model to estimate relative

survival rates via generalized linear models (GLIM). While in comparing groups under different

populations, (Dickman et al., 2004) investigated the covariate effects by comparing four standard

regression methods. They asserted that excess hazard estimated from the underlying population

depends on characteristics such as age, sex, (supported by (Hakulinen and Tenkanen, 1987) ) and

period but not on other covariates such as stage or histology of the cancer. All the above methods

are valid only under the independence of T1 and T2.

We relaxed the independence assumption (de Lacerda et al., 2019) and formulate the dependence

between the distributions of the latent failure times for death from disease and death from competing

causes using copula models (Deheuvels, 1978). In particular, we proposed assessing prognostic

factors for disease-specific mortality via dependence competing risk regression model for estimating

disease-specific survival. The standard copula function generates a joint distribution for the two

event times, taking as input their marginal distributions. Copulas generally allow a spectrum of

dependence structures and have been employed widely in survival analysis, including bivariate event

times (Oakes, 1982), competing risks with known cause of failure (Heckman and Honoré, 1989), and

semi-competing risks where one event time censors the other but not vice versa (Fine et al., 2001).

In this paper, we characterized the dependence model for competing risks data from disease

registries without reliant on cause of death information which is either missing or unreliable.

Because the joint distribution of the distributions of the latent failure times is nonparametrically

nonidentifiable (Tsiatis, 1975), we treat the copula function as known. The marginal distribution of

the time to disease-specific death is modelled via the disease-specific hazard parametrically with

the distribution of other cause mortality drawn from the reference population. Likelihood-based

inference and interpretation is proposed. Due to identifiability constraints and the unverifiable

nature of the joint distribution of the distribution of the latent failure times, a sensitivity analysis is

suggested in which disease-specific survival is estimated across a spectrum of dependence structures

specified via the copula function. To our knowledge, this is the first attempt in accommodating

dependence in competing risk regression model in relative survival analysis.

The rest of this paper proceeds as follows. In section 4.2, we present the data and copula model

formulation for competing risks data. Section 4.3 describes the likelihood parametric regression
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estimation and inference procedure without cause of death information, as well as the proposed

sensitivity analysis. In section 4.4, we present the numerical illustrations including simulation results

and application to French breast cancer data. Section 4.5 discusses and concludes the paper.

4.2 Data and Model

In competing risk studies, the standard endpoints for disease-specific survival are the disease-

specific hazard and the disease-specific cumulative function. The disease-specific hazard, λk(t) is

the instantaneous failure rate for occurrence of mutually exclusive events ε = k at time t (Prentice

et al., 1978).

λk(t) = lim
δt→0

P (t ≤ T < t+ δt,K = k|T > t)

δt
(4.25)

While the cumulative incidence function Ck(t) is the proportion of patients who died from cause k

by time t in the presence of patients who might die from other causes. The disease-specific failure

probability can be expressed as Ck(t) = P (T ≤ t : ε = k) =
∫ t

0 λk(s)·S(s)ds =
∫ t

0 λk(s)·exp {−Λ(t)}

where S(t) = P (T > t) is the overall survival probability. Standard competing risks methods with

known cause of failure focus on estimation of λk(t) and Ck(t).

In the absence of cause of death information, the registry data is simply time to event data

from any cause, T, which may be right censored by loss to follow-up. Suppose C is the time to right

censoring, with the usual assumption being that T and C are independent, then the observed data

consist of (Xi, δi) where Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci) with Ti and Ci being the failure and

censoring times on individual i = 1, 2, 3, · · · , n. Relative survival methods employing such data do

not focus on the traditional competing risks endpoints λk(t) and Ck(t) but rather on the latent

failure time distributions ST1(t) and ST2(t).

The dependence between the distributions of T1 and T2 was modelled using copula function as

it completely describe the dependence structure and provide scale invariant measures of association

(Venter, 2002; Müller, 1996; Bäuerle and Müller, 1998; Denuit et al., 1999).

To formulate this dependence, suppose ψ is a generator function defined such that ψ : [0, 1]→

[0,+∞] with independent marginal distributions, uj = P (Tj ≤ tj) = FTj (tj) = 1−STj (tj) ∀j ∈ (1, 2).
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Then, the copula model for the distributions of T1 and T2 is:

C(u1, u2) = P (T1 ≤ t1, T2 ≤ t2) = ψ
(
ψ−1(u1) + ψ−1(u2)

)
= FT1,T2(t1, t2)

where ψ−1 is the inverse of ψ and ψ satisfies the Laplace-Stiltjes transform and Bernstein, (1929)

theorem. McNeil and Nešlehová, (2009) showed that the generator function ψ is monotone for

non-negative random variables with ψ(0) = 1, ψ′(·) < 0 and ψ′′(·) < 0. We characterize dependence

between the distribution of the latent failure times using Kendall’s tau (τk) correlation coefficient.

Genest and MacKay (1986) estabished the connection between Kendall’s tau and the generator

function ψ as:

τk = 1 + 4

∫ 1

0

ψ−1(u)

ψ−1(u)′
du = 1− 4

∫ ∞
0

u(ψ(u))2du

with ψ−1′ being the derivative of ψ−1. While in theory, any copula and dependence measure may

be used to link the marginal distributions of T1 and T2, in this paper, we focus on a popular

Archimedean copula, indexed by a single dependence parameter θ having simple interpretations.

The Gumbel copula is:

C(u1, u2) = exp
[
−{(−log(u1))θ + (−log(u2))θ}

1
θ

]
(4.26)

with θ ∈ (1,+∞). A special case of independence copula model: C(u1, u2) = u1 · u2 is obtained

when θ = 1 for Gumbel copula with τk = 1− 1
θ .

4.3 Likelihood Estimation and Inference

In this section, we formulate our model using the disease-specific hazard while incorporating the

covariate effects via the accelerated failure time model for any potentially dependent latent failure

times T1 and T2. The all-cause survival function (observed survival SO(t)), T = min(T1, T2) at time

t without covariates is:

SO(t) = ST (t) = ST1(t) + ST2(t)− 1 + FT1,T2(t, t) (4.27)
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The conventional observed additive hazard model defined in section 4.1 for the estimation of relative

survival can be adapted to include covariates. Dickman et al. (2004) introduced the covariate effect

through the hazard model using an exponential form: λO(t, Z) = λE(t) + exp{βZ}. In this study,

we introduced covariates into our model through the Accelerated Failure Time (AFT) model format.

Thus, X = Z · β + ε where Z is the set of covariates such as (age, sex, calandar/period), β the

parameters to be estimated and ε is the randomness associated with the covariates. The above

model in equation 4.27 can be written to accommodate the stratifying covariate Z as:

SO(t, Z) = ST (t, Z) = ST1(t, Z) + ST2(t, Z)− 1 + FT1,T2(t, Z, t, Z) (4.28)

Under the independence of T1 and T2 the above equation degenerates to:

ST (t, Z) = ST1(t, Z) · ST2(t, z) = exp

{∫ t

0
λO(s, Z)

}
ds

= exp

{∫ t

0
λT1(s, Z)

}
ds · exp

{∫ t

0
λT2(s, Z)

}
ds (4.29)

The additive hazard model is generally biologically more plausible for population-based cancer

survival studies and provide a better estimate to the data than multiplicative models (Bolard, et

al.,2001). The corresponding density function for T is:

fO(t, Z) = fT (t, Z) = fT1(t, Z) + fT2(t, Z)− fT1,T2 (t, Z, t, Z) (4.30)

where fTj (t, Z) =
dFTj (t,Z)

dt , and fT1,T2(t, Z) =
dFT1,T2 (t,Z,t,Z)

dt . If censoring of T by C is noninforma-

tive, then the likelihood contribution for an individual i is:

Li = fXi,Zi,∆i(Xi, Zi, δi) = [fT (Xi, Zi)]
δi [ST (Xi, Zi)]

1−δi (4.31)
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In specifying parametric model for FT1(t, Z) with parameter of interest η = (λ, α, β1, β2, β3), and

from equation (4.30), the full log-likelihood function based on n independent observations is:

l(X,Z,∆|η) =
n∑
i=1

(δi ∗ log fT (Xi, Zi) + (1− δi) ∗ logST (Xi, Zi))

=
n∑
i=1

δi ∗ log [fT1(Xi, Zi) + fT2(Xi, Zi)− fT1,T2 (Xi, Xi|Zi)] +

n∑
i=1

(1− δi) ∗ log [ST1(Xi, Zi) + ST2(Xi, Zi)− 1 + FT1,T2(Xi, Xi|Zi)]

(4.32)

where (X,Z,∆) = (Xi, Zi,∆i, i = 1, 2, 3, · · · , n) with ST1(t, Z|η) =
∫∞
t fT1(s|η)ds and the distribu-

tion of T2 is extracted from the reference population and assumed known with the usual assumption

that disease-specific death is negligible in the reference population as illustrated in the French breast

cancer data analysis in section 4.2.

For a pre-specified dependence structure, the copula distribution linking FT1(t, Z) and FT2(t, Z)

may be specified using simple parametric copula models such as the Gumbel copula with Kendall’s tau

(τk = 1− 1
θ ). The Gumbel copula exhibit tail behaviour that mimic the mortality trend observed in the

cancer registry data. In the numerical illustrations, T1 was assumed to follow a transformed Weibull

distribution. The standard Weibull distribution with parameter wj = (λj , αj) has a probability

density function fTj (t|wj) =
αj
λj

(
t
λj

)αj−1
exp

{
−
(
t
λj

)α
j

}
and is versatile by accommodating a wide

range of hazard shapes. The bivariate joint distribution and density functions for the Gumbel copula

incoporating the covariate Z are:

FT1,T2(t, t, Z|η) = exp

{
−
(

(−log (u1))θ + (−log(u2))θ
) 1
θ

}
fT1,T2(t, t, Z|η) = FT1,T2(t, t, Z|η) ·

((
− log (u1)θ

)
+
(
−log (u2)θ

)) 1
θ
−1

×
((
− log(u1)θ−1 · fT1(t, Z|η)

u1

)
+

(
−log (u2)θ−1 · fT2(t, Z|η)

u2

))
(4.33)

with u1 = FT1(t, Z|η), u2 = FT2,Z(t, Z). The maximum likelihood estimator (MLE) for η was

implemented using Nelder-Mead algorithm (Nelder and Mead, 1965). There is evidence of instability

for small sample sizes and larger censoring proportion (Adatorwovor et al., 2020). The usual
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regularity conditions for the MLE holds. The estimator converges in probability, in that η̂
P−→ η

and is asymptotically normal, η̂ ∼ N
(
η, IO(η)−1

)
with variance estimated using the inverse of the

observed information matrix (IO(η)−1) evaluated at the MLE, η̂. The observed information matrix

is:

IO(η) =
∂2l(η|X,∆,Z)

∂η∂ηT

=

n∑
i=1


δi · [fT (Xi, Zi)] ·

{
∂
∂ηfT (Xi, Zi)

}T {
∂
∂η [fT (Xi, Zi)]

}
[fT (Xi, Zi)]T [fT (Xi, Zi)]

+

n∑
i=1


(1− δi) · [ST (Xi, Zi)] ·

{
∂
∂η [ST (Xi, Zi)]

}T {
∂
∂η [ST (Xi, Zi)]

}
[ST (Xi, Zi)]T [ST (Xi, Zi)]


(4.34)

A sensitivity analysis is conducted across spectrum of assumed dependence structures to address

the nonidentifiability and unverifiable constraints of the dependence structure observed in the

registry data between the distributions of T1 and T2. Each level of dependence represent the

varying levels of dependent competing mortality possibly observed in registry data. For each

dependence structure, we estimate η with η̂ and compute FT1(t, Z|η̂) to estimate relative survival.

The corresponding standard errors are obtained as the square root of the Delta method variance:

V ar( ̂ST1(X,Z)) = g( ̂ST1(X,Z)) · IO(η̂)−1 · gT ( ̂ST1(X,Z)) where g(η) is the derivative of ST1(t, Z|η)

with respect to η. Due to the complex nature of the likelihood, numerical approximation is used to

estimate the information matrix in the numerical illustrations in section 4.4.

4.4 Numerical Illustrations

4.4.1 Simulation Studies

We present simulation studies to illustrate covariate effects both under the independence (net

survival) and dependence assumptions (crude probability). To incorporate covariates in the model

using AFT, a transformation was required (see appendix) to facilitate interpretaion where a form of

an extreme value distribution (EVD) was implemented. For example, when the shape parameter

is zero, then the resulting distribution is the Gumbel extreme value distribution. We employ this
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technique to evaluate the performance of our covariate method based on simulated data that mimic

the French breast cancer data set for sample sizes; 1000, 2500 and 5000 with 500 replications.

The latent failure times were generated from the Weibull distribution (Tj ∼Weibull(αj , λj)) with

probability density function defined above in section 4.3. The parameters for the transformed Weibull

(Gumbel) distribution for T1 were λ1 = 1.200, α1 = 3.000, β1 = 2.000, β2 = 3.000, β3 = 4.000 while

those for T2 were λ2 = 2.100 and α2 = 5.00. We estimated λ1, α1, β1, β2, β3 for T1, while λ2, α2

are assumed known for T2. Noninformative right censoring times were generated from a uniform

distribution (0, γ), where γ was chosen for 15% censoring. The dependence was chosen for the

Gumbel copula with Kendall’s tau, τk = 0, 0.25, 0.50, 0.80, and 0.90. Whenever possible, initial

starting parameter values were randomly chosen from uniform distributions, with multiple starting

values wherever possible as described in section 4.3.

Tables 4.9, 4.10 and 4.11 show the results for estimation of the model for T1 treating T2 as a

competing event. We observe small bias decreasing to zero for increasing sample size across each of

the dependence levels for 15% censoring. The empirical variance and the model based variance were

similar and the coverage is close to the nominal 0.95 level, particularly at larger sample sizes. The

empirical variance decreases as the sample size increases at roughly the expected root n rate.

4.4.2 Application to French Breast Cancer Data

Data were obtained from Institue Curie breast cancer database in France for cancer registrations

between 1980 and 2011. This database contains records from 24, 458 non metastatic breast cancer

patients between the ages of 18 and 96 years and treated at the Institut Curie. Out of the 24, 458

breast cancer patients, 9, 885 (40.4%) died while 14, 573 were alive and administratively censored on

December 31st 2011. Five age group categories were considered for the estimation of relative survival.

3, 970 were between the ages of 15− 44, 6, 895 between the ages of 45− 54, 6, 420 between the ages

of 55− 64, 4, 675 between the ages of 65− 74 and 2, 498 were in the 75− 99 age group category. We

matched the observed death or censoring time in the disease cohort group with a corresponding

time in the healthy reference population on age, sex, and year (date of diagnosis and the date of

death or censored) for each participant and for each follow-up period. The background mortality

data from the Human Mortality Database (https://www.mortality.org) was last modified on June

28, 2018. Within each follow-up year, we assumed that λP (t) is piecewise constant (Dickman, et
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Table 4.9: Estimated parameters of the model for T1 across samples sizes (N), and dependence levels
(τk) with 15% censoring treating T2 as a competing event.

τk N η̂ Est. Biasa Mod-Ba EMPa CP

0.00 1000 λ̂ 1.195 -5.338 1.479 1.469 0.933
α̂ 3.000 -0.746 12.073 9.927 0.980

β̂1 2.001 1.310 22.131 19.218 0.961

β̂2 3.000 0.441 1.855 1.969 0.935

β̂3 4.000 -0.340 8.808 8.392 0.955

2500 λ̂ 1.197 -3.227 0.592 0.578 0.955
α̂ 2.998 -2.047 4.820 5.011 0.941

β̂1 2.005 5.020 8.846 8.753 0.967

β̂2 3.000 -0.153 0.742 0.793 0.945

β̂3 3.998 -1.522 3.512 3.845 0.934

5000 λ̂ 1.198 -2.204 0.297 0.307 0.941
α̂ 3.002 2.211 2.407 2.419 0.949

β̂1 1.998 -1.556 4.427 4.473 0.947

β̂2 3.001 1.110 0.369 0.350 0.953

β̂3 4.000 -0.349 1.756 1.976 0.934

0.25 1000 λ̂ 1.194 -5.858 1.365 1.320 0.949
α̂ 3.002 2.414 12.179 11.157 0.965

β̂1 2.001 1.225 22.468 20.507 0.959

β̂2 3.001 0.839 1.879 1.800 0.963

β̂3 3.997 -3.404 8.919 7.741 0.971

2500 λ̂ 1.198 -1.940 0.550 0.564 0.947
α̂ 2.999 -0.633 4.888 4.233 0.961

β̂2 2.000 -0.354 9.031 8.405 0.955

β̂2 3.001 1.145 0.754 0.781 0.949

β̂3 4.003 2.842 3.579 3.581 0.955

5000 λ̂ 1.201 1.320 0.276 0.263 0.963
α̂ 3.002 2.406 2.456 2.012 0.982

β̂1 2.000 0.071 4.526 4.178 0.965

β̂2 3.000 0.037 0.376 0.357 0.963

β̂3 3.997 -2.871 1.795 1.569 0.967
Est.: Estimated parameter value, Mod-B: Model-based variance, EMP: Empirical variance, CP: 95% Coverage, a : ×10−3
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Table 4.10: Estimated parameters of the model for T1 across samples sizes (N), and dependence
levels (τk) with 15% censoring treating T2 as a competing event.

τk N η̂ Est. Biasa Mod-Ba EMPa CP

0.50 1000 λ̂ 1.195 -5.156 1.172 1.190 0.945
α̂ 3.016 5.696 11.730 10.969 0.961

β̂1 1.998 -1.914 21.809 19.788 0.955

β̂2 2.999 -0.716 1.825 1.964 0.945

β̂3 3.996 -3.771 8.670 7.539 0.963

2500 λ̂ 1.198 -1.748 0.471 0.497 0.943

λ̂ 3.000 -0.144 4.697 4.272 0.961

β̂1 1.998 -1.818 8.759 8.511 0.953

β̂2 3.001 0.553 0.730 0.771 0.943

β̂3 4.003 3.065 3.469 3.566 0.951

5000 λ̂ 1.202 1.618 0.236 0.239 0.953
α̂ 3.002 1.858 2.361 1.910 0.973

β̂1 2.002 1.838 0.004.387 3.965 0.959

β̂2 3.000 -0.162 0.365 0.348 0.961

β̂3 3.997 -3.346 1.740 1.545 0.955

0.75 1000 λ̂ 1.190 -10.061 1.057 8.958 0.939
α̂ 3.017 17.474 10.610 31.997 0.953

β̂1 2.017 17.248 19.743 88.790 0.939

β̂2 3.002 1.750 1.656 5.472 0.943

β̂3 4.001 1.357 7.852 46.490 0.959

2500 λ̂ 1.198 -1.571 0.425 0.446 0.949

λ̂ 2.999 -1.424 4.241 4.285 0.961

β̂1 2.000 -0.168 7.933 8.348 0.949

β̂2 3.000 0.121 0.662 0.710 0.943

β̂3 4.003 2.847 3.141 3.430 0.951

5000 λ̂ 1.194 -6.115 0.212 9.103 0.934
α̂ 3.021 21.821 2.119 66.091 0.962

β̂1 2.006 6.022 3.949 18.767 0.951

β̂2 2.994 -5.800 0.328 12.658 0.944

β̂3 4.001 1.448 1.566 8.702 0.955
Est.: Estimated parameter value, Mod-B: Model-based variance, EMP: Empirical variance, CP: 95% Coverage, a : ×10−3
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Table 4.11: Estimated parameters of the model for T1 across samples sizes (N), and dependence
levels (τk) with 15% censoring treating T2 as a competing event.

τk N η̂ Est. Biasa Mod-Ba EMPa CP

0.80 1000 λ̂ 1.194 -6.077 1.402 1.332 0.949
α̂ 3.004 4.121 12.194 11.843 0.957

β̂1 2.000 -0.024 22.445 21.955 0.959

β̂2 3.001 1.221 1.877 1.756 0.967

β̂3 3.995 -4.870 8.914 7.954 0.969

2500 λ̂ 1.198 -1.946 0.564 0.559 0.949
α̂ 2.999 -1.250 4.891 4.120 0.961

β̂3 2.000 -0.0917 9.021 8.304 0.955

β̂3 3.001 1.236 0.754 0.771 0.953

β̂3 4.003 3.013 3.575 3.522 0.957

5000 λ̂ 1.201 1.202 0.283 0.268 0.965
α̂ 3.003 3.054 2.457 1.892 0.983

β̂1 1.999 -0.813 4.522 4.053 0.967

β̂2 3.000 0.017 0.376 0.361 0.958

β̂3 4.000 -3.017 1.793 1.567 0.963

0.90 1000 λ̂ 1.195 -5.3751 1.459 1.337 0.955
α̂ 3.003 2.612 12.146 9.395 0.993

β̂1 2.002 1.581 22.313 19.594 0.977

β̂2 3.001 1.914 1.867 1.668 0.966

β̂3 3.995 -5.226 8.860 7.394 0.960

2500 λ̂ 1.198 -1.812 0.587 0.555 0.946
α̂ 2.999 -1.062 4.871 3.626 0.994

β̂3 2.000 -0.256 8.963 7.764 0.965

β̂3 3.001 1.122 0.748 0.768 0.948

β̂3 4.002 2.547 3.552 3.427 0.956

5000 λ̂ 1.201 1.089 0.294 0.277 0.956
α̂ 3.002 2.291 2.444 1.696 0.992

β̂1 1.999 -0.598 4.493 3.788 0.979

β̂2 3.000 0.335 0.374 0.378 0.941

β̂3 3.997 -2.614 1.780 1.556 0.962
Est.: Estimated parameter value, Mod-B: Model-based variance, EMP: Empirical variance, CP: 95% Coverage, a : ×10−3
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al., 2004) for each period up to time X. The cumulative hazard for each period based on λP (t)

is calculated from the background survival function at the beginning and end of the period. The

cumulative hazard is then used to obtain λP (t) under the piecewise constant assumption. The goal

of matching in determining λT2 = λP is to mitigate the impact of age and time since diagnosis

(calendar year) on potentially dependent censoring by C (Perme et al., 2012). We estimate 2, 5, 10,

and 15−year relative survival assuming a Gumbel distribution for T1 and a Gumbel copula model

with differing levels of dependence to specify the joint distribution of T1 and T2. Unlike the standard

independence competing methods, the results of our estimator compares favorably with the standard

nonparametric estimator of Perme et al. (2012), which require independence of T1 and T2. Besides,

our estimates also provide credible estimates (crude survival or crude probability of death) under

the dependence of T1 and T2.

4.5 Discussion and Conclussion

We proposed dependence competing risk regression model to determine the effect of the risk

factors on disease-specific survival analysis. Our model formulation was arbitrary but permitting

but known copula function and any form of transformation required for incorporating covariates.

We extracted the distribution of other cause mortality from external acturial reference data as is

required by the underpinning of relative survival method. Due to the identifiability and unveriable

nature of dependence between competing mortality, we proposed sensitivity analysis as a practical

solution to this issue. The effect of the risk factors is useful not only for determining treatment

regimen for elderly cancer patients but also for the physicians in determining plausible prognostic

measures.

The dependent competing risk regression model for disease-specific mortality may in part be

restrictive but flexible enough for applications where the disease-specific hazard is smooth over

time, which is the case in cancer registry data. It also permit evaluation of the covariates in the

model which lend to simple interpretation of disease-specific survival. The purpose of this paper

is to evaluate covariate effect both under the independence and dependence of T1 and T2. We

acknowledged that ignoring dependence in competing risk in survival processes may be regarded

as modifying the research question to satisfy existing methods. The effect of covariates under
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independence assumption for competing risks is useful for practitioners who prefer net survival to

crude survival probability of death which is achieved under the dependence assumption.
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CHAPTER 5: Conclusion

5.1 Conclusion

This dissertation focused on the development of dependence models for disease-specific survival

analysis using registry data. In such competing risk settings where interest lies in comparison of

different cohort groups and or populations, our motivation stem from the sheer lack of appropriate

disease-specific survival estimators for this type of registries. As a result, we proposed three novel

estimators for disease-specific survival analysis without the need for cause of death information

whether reliable or not. Our estimators were shown to be consistent and asymptotically normal

in simulation studies satisfying all the usual regularity conditions. The estimators were applied to

the French breast cancer data for estimating both the overall and age-specific survival under both

independence and dependent assumptions. Our estimators across the levels of dependence may be

interpreted as representing personalized prognostic measures.

First, we proposed a parametric dependence model for disease-specific survival in relative survival

analysis via a copula function. Copula models capture scale invariance dependence between the

unobservable failure times for disease-specific mortality and other cause mortality. A bivariate

dependence competing risk model was formulated via copula taking as inputs the distribution of

the minimum latent failure times where the distribution of the competing latent failure time was

extracted from a healthy reference population. Likelihood-based estimation inference was proposed.

We investigated theoretical properties such as Fisher consistency for the dependent parametric

model under both Gumbel and Clayton copulas.

We relaxed the parametric assumption for relative survival analysis where we proposed a

nonparametric estimator for disease-specific survival. We modelled a function of the standard

Kaplan-Meier estimator in a form of estimation equation where the inversion of the nonlinear

function was required for disease-specific survival estimation. Nonparametric bootstrap procedure

was implemented for variance estimation under the usual regularity conditions.
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Whereas for the last estimator, we assessed the effects of disease-specific risk factors via a

dependence competing regression model. The covariates were incorporated in the regression model

using the standard Accelerated Failure Time procedure.

The dependence between disease-specific death and other cause mortality is nonidentifiable

and unverifiable from the observed registry data. As such, sensitivity analysis was proposed where

disease-specific mortality is estimated across a range of rich dependence levels. Our methods

performed well in both simulation studies and real-world data.

In conclusion, it is important to warn readers that prognostic measures (net survival, crude

survival or crude probability of death) for disease-specific survival are lagging resulting in unrealistic

clinician and or patient prognostic expectations that may lead to inappropriate therapeutic goals.

Net survival is valid for use in a hypothetical world where the disease is the only cause of death and

use for comparison of prognosis among different groups and or populations. The crude survival or

crude probability of death is a valid measure in the real world where competing mortality exists

simultaneously with the disease-specific under study and can be regarded as the analog for competing

risk estimator when cause of death is known. Some practitioners prefer one prognostic measure over

the other. The issue of predictive prognostic measures and time-dependent covariate models for

relative survival analysis has being deferred for later.
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APPENDIX 1: Results from Clayton Copula

Distribution of Death and Competing Causes of Death

The following figures: A.6, A.7 and A.8 show the distributions of time to disease-specific death

and death due to competing mortality possible in breast cancer registry data. The simulation reveal

the different levels of dependency that is typically observed from time since diagnosis.
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Figure A.6: A simulated breast cancer data with moderate dependence (50%) through the use of
Clayton copula.
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Gumbel Probability Density Function
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Figure A.7: A plot showing the PDF, CDF and contour plots for the Gumbel copula which exhibit
upper tail dependency.
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Clayton Probability Density Function
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Figure A.8: A plot showing the PDF, CDF and contour plots for the Clayton copula which exhibit
lower tail dependency.
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Parameter Estimates for the Clayton Copula

We simulated data to mimic the French breast cancer data set for sample sizes; 1000, 2500

and 5000 with 500 replications. The latent failure times for Tj ∼Weibull(αj , λj) with probability

density function defined in section 2.3. The parameters for the Weibull distribution for T1 were

λ1 = 0.182 and α1 = 1.609, while those for T2 were λ2 = 0.742 and α2 = 0.693. In the estimation of

λ1, α1 for T1, λ2, α2 are assumed known for T2. Noninformative censoring times were generated

from a uniform distribution (0, γ), where γ was chosen for 10, 30 and 50% censoring. We consider

the Clayton copula with Kendall’s tau, τk = θ
θ+2 = 0, 0.25, 0.50, 0.75. Initial parameter values

were randomly chosen from uniform distributions, with multiple starting values wherever possible

as described in section 2.3. The simulation results based on the Clayton copula is presented in the

table below:
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APPENDIX 2: Estimating Equation

Relative survival is used extensively in population-based cancer studies to measure patient

survival correcting for causes of death not related to the disease of interest. For many years, the

gold standard for nonparametric estimation of survival curves has been the Hakulinen estimator

Hakulinen and Tenkanen (1987), but recently, Pokhrel and Hakulinen (2009) and Hakulinen et al.

(2011) had shown that this estimator does not have the expected properties. In their work, they

employ restricted cubic splines for the baseline cumulative excess hazard and for any time-dependent

effects. All the attempts to correct for these bias still require correct classification of cause of death,

and an assumption of independence between event and competing events.

Variance Estimation for ST1(X)

The estimation of the variance of the model was achieved by using the first order Delta method

which is in the broad spectrum of the usual estimating equations. The Greenwood formula for

estimating the variance of all-causes survival function is:

V ar
(

̂ST (X,X)
)

= ̂ST (X,X)
2 ∑
Xi≤x

di
ni(ni − di)

(H.35)

The variance estimation follows from Delta method or the application of the first Taylor series

expansion.

Estimating Equation

The variance estimation for the nonlinear function is achieved by the use of generalized estimating

equation. We define the estimating equation for 3.20 for a guumbel copula as;

g(ST1(X)) = ̂ST (X,X)− ST1(X)− ST2(X) + 1 + (H.36)

exp

{
−
(

(− log(1− ST1(X))θ + (− log(1− ST2(X))θ
) 1
θ

}
= 0 (H.37)
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From the Taylor series expansion around the ST1(X),

g
(
ŜT1(X)

)
= g (ST1(X)) + g′ (ST1(X)) ·

(
ŜT1(X)− ST1(X)

)
+
g′′ (ST1(X))

2
·
(
ŜT1(X)− ST1(X)

)2
+R (H.38)

So the variance of ŜT1(X) is:

V ar(ŜT1(X)) =
[
g′ (ST1(X))

]T · V ar (g (ŜT1(X)
))
·
[
g′ (ST1(X))

]
(H.39)

g
(
ŜT1(X)

)
= −ŜT1(X) + exp

{
−
[
(−log(1− ŜT1(X)))θ + (−log(1− ST2(X)))θ

] 1
θ

}

g( · ) +
∂

∂ST1(X)
g( · ) · (ŜT1(X)− ST1(X)) +

∂2

∂ST1(X)2
g( · ) · (ŜT1(X)− ST1(X))2 + · · · = 0

and

ŜT1(X)− ST1(X) = − g( · )

g′( · )
+ ε

=⇒
√
n(ŜT1(X)− ST1(X))→ −

√
n
g( · )

g′( · )
+ ε

=⇒
√
n(ŜT1(X)− ST1(X)) v N

(
0, var

(√
n
g( · )

g′( · )

))

Using Delta method, we can compute the variance as

var

(√
n
g( · )

g′( · )

)
=

1

g′( · )2
· var

(√
ng( · )

)
Here, per the definition of the g( · ), the first derivative is given by

I(η) =

 ∂2l(η|X)
∂α2

∂2l(η|X)
∂α∂λ

∂2l(η|X)
∂λ∂α

∂2l(η|X)
∂λ2

 (A.6)
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Our model was too complicated for the calculation of the derivatives. We approximated the

Hessian matrix by the use of numerical methods. The negative of the Hessian matrix give the

covariance. The diagonal of the covariance matrix is the variance.

The variance estimation follows from Delta method or the application of the first Taylor

series expansion. Thus, we suppose g(t) = ψ
(
ψ−1(S(t))− ψ−1(S2(t))

)
The first order moment

is given by g(T ) ≈ g(θ) +

k∑
i=1

gi(θ)(Ti − θi) + Remainder. The expectation is given by Eg(T ) ≈

g(θ) +
k∑
i=1

g′i(θ)E(Ti − θi) = g(θ). The variance can be derived as

V ar(g(T )) = E (g(Ti)− g(θi))
2

= E

(
g(θ) +

k∑
i=1

g′i(θ)(Ti − θi)− g(θ)

)2

= E

(
k∑
i=1

g′i(θ)(Ti − θi)

)2

=
k∑
i=1

g′i(θ)
2V ar(Ti) + 2

k∑
i>j

g′i(θ)g
′
j(θ)cov(Ti, Tj)

(A.7)

The Delta method for estimates the variance of Ŝ1(x) is given by;

V̂ ar
(
Ŝ1(x)

)
= g′

(
Ŝ(x, x), S2(x), θ

)
· V ar

(
Ŝ(x, x)

)
· g′
(
Ŝ(x, x), S2(x), θ

)T
(H.40)

= g′
(
Ŝ(x, x), S2(x), θ

)2
· V ar

(
Ŝ(x, x)

)
(A.8)

where g(.) is a monotone transformation function of S1(x). The derivative of g(.) is given in the

next appendix.

g (S(x, x), S2(x), θ) =
(
S(x, x)1−θ − S2(x)1−θ + 1

) 1
1−θ
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g′(·) =
∂g(·)

∂S(x, x)
=
(
S(x, x)1−θ − S2(x)1−θ + 1

) θ
1−θ · S(x, x)−θ

= {g (S(x, x), S2(x), θ)}θ · S(x, x)−θ (H.41)
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APPENDIX 3: Covariate Model Derivation

AFT Model formulation

Emphasis is placed on the estimates of the regression coefficients. If Tj v Weibull(tj :

µj , σj), ∀ j ∈ (1, 2) is a random variable, then log(Tj) follows an extreme value distribution,

Wj v Gumbel(wj : αj , λj) with α the mode (location) and λ the scale parameters. The Gumbel

distribution is generally used for modelling the exceedance above a threshold such as time to death.

The survival probability for people living beyond this threshold time is important for clinicians. A

model without covariate is represented as log(Tj) = αj +
Wj

λj
while a model with covariates Z is

given by:

Xj = log(Tj) = Zβ +
Wj

λj
(I.42)

where β is the parameters of the model associated with the location. The random variable Tj

is non-negative and is expressed as T = exp
{
Zβ + W

λ

}
. It is clear from appendix A.3 that

Xj ∼ Gumbel(xj ;αj , λj). The domain of the parameters is (α, λ) → (R× (0,∞)). Extensions to

Gumbel valued functions over continuous spaces have being extensively explored in random choice

theory, (Malmberg, 2013).

β̂ = Z(Z ′Z)−1X (I.43)

where X is the dependent(response) variable representing X = min(T,C) where T = min(T1, T2)

and C is the right censoring time, Z is the set of covariates, and β is the regression coefficients for

the risk factors. The cumulative distribution function is given by

FWj (wj |αj , λj) = exp

{
− exp

{
−wj − αj

λj

}}
(I.44)
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and its probability density function is given by

fWj (wj) =
1

λj
∗ exp

{
−wj − αj

λj
− exp

{
−wj − αj

λj

}}

fWj (wj) =
1

λj
∗ exp

{
−wj − αj

λj

}
· exp

{
− exp

{
−wj − αj

λj

}}

fWj (wj) =
1

λj
∗ exp

{
−wj − αj

λj

}
· FWj (wj |αj , λj)

The corresponding survival function is given by

SWj (wj |αj , λj) = 1− FWj (wj |αj , λj)
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