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ABSTRACT

Zachary Nasipak: Numerical and analytical models of self-force effects in Kerr extreme-mass-ratio inspirals
(Under the direction of Charles R. Evans)

Ground-based detectors now regularly observe the merger of stellar-mass compact objects and their

gravitational waves. Building on this success, ESA, in partnership with NASA, will launch the space-based

LISA observatory to detect milli-Hertz gravitational wave signals. Extreme-mass-ratio inspirals (EMRIs)—

binaries composed of a stellar-mass compact object orbiting a massive black hole—are ideal gravitational

wave sources for LISA. Because of their unique properties, EMRIs can provide new insights concerning the

growth of massive black holes (and their host galaxies) and enable the most precise tests of general relativity.

To achieve this science, LISA will rely on accurate EMRI models to search for and analyze gravitational

wave signals. The most accurate EMRI models rely on a mechanism known as the gravitational self-force

to calculate an EMRI inspiral and the resulting gravitational waveform. For EMRIs with rotating (Kerr)

massive black holes, current gravitational self-force calculations are too computationally demanding to be

incorporated into full EMRI models. For my dissertation, I built a developmental scalar self-force code

to devise and implement new numerical and analytical techniques for calculating self-force effects in Kerr

spacetime. I introduce spectral techniques for numerically evaluating Kerr geodesics and the sources of scalar

perturbations. I discuss how these methods can be extended to gravitational self-force calculations. With

this code, I produced the first calculations of the scalar self-force along resonant and non-resonant inclined,

eccentric orbits in Kerr spacetime. With these new resonant calculations I provided one of the first tests of

the integrability conjecture, which holds for these scalar self-force results. I also uncovered the existence of a

physical effect in EMRI waveforms, now referred to as quasinormal bursts. Quasinormal bursts are periodic

high-frequency oscillations in EMRI waveforms which may aid in the characterization of EMRI gravitational

wave sources.
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CHAPTER 1: Introduction

Science progresses best when observations force us to alter our preconceptions.

— Vera Rubin

Section 1.1: A new era of astronomy

The recent emergence of gravitational wave astronomy has ushered in a new age of observational science.

For centuries astronomy relied on light—the electromagnetic waves emitted by charged particles—to map

and understand the universe. Now, ultra-precise gravitational observatories, such as LIGO [4] and Virgo [8],

regularly measure gravitational waves—small ripples in the fabric of space and time. The primary sources

of these gravitational waves are energetic binaries composed of stellar-mass compact objects, such as black

holes and neutron stars. As these gravitationally-bound compact objects orbit one another, their motion

warps space and time, producing gravitational waves that carry away energy and momentum. Over time, the

objects sink into more tightly bound orbits, inspiraling towards one another as they reach orbital velocities

near the speed of light. Eventually the compact objects will merge, releasing a dramatic burst of gravitational

radiation and forming a new black hole.

Theoretical models of these compact object binaries are essential to detecting their gravitational waves.

Despite the immense amount of energy released by compact mergers, gravitational wave signals are incred-

ibly faint and dominated by external noise. Gravitational models aid detectors in filtering gravitational

wave signals from noisy measurements and extracting the characteristics of their sources. Gravitational

wave observations, assisted by these models, have provided novel strong-field tests of general relativity and

revealed new insights into the nature of binary black hole and neutron star systems, affirming and altering

our preconceptions of the universe. Building on this success, the European Space Agency (ESA), with the

support of NASA, is constructing the Laser Interferometer Space Antenna (LISA) [5], a space-based gravi-

tational wave detector that will launch in 2034. The focus of this dissertation is to develop new methods for

modeling optimal LISA sources—known as extreme-mass-ratio inspirals (EMRIs)—to aid the detection and

characterization of gravitational waves by LISA.

1



1.1.1: History of gravitational waves and gravitational wave astronomy

Gravitational waves are oscillations in the curvature of spacetime, predicted by general relativity and

produced by the motion of mass and energy. The existence of gravitational waves was originally proposed

by Einstein in 1916 [95], though he doubted that gravitational waves, even if they were real, could ever be

observed [96]. Other researchers were similarly skeptical and for decades relativists debated their existence.

Eddington [94] suggested that gravitational waves were merely a coordinate effect in general relativity and,

thus, not physically observable. Even Einstein, in his work with Rosen, famously denied that gravitational

radiation was measurable [98]. Tides shifted at the 1957 Chapel Hill Conference on the Role of Gravitation

in Physics [45], in part due to Feynman’s renowned “sticky-bead” argument [196]. Inspired by the work of

Pirani [196], Feynman argued that a passing gravitational wave would cause sticky beads on a rod to oscillate

towards and away from one another, generating heat due to the friction between the beads and the rod.

Because this heat can be measured, so can gravitational waves. This reasoning would eventually convince

many researchers that the energy carried by gravitational radiation could, theoretically, be transferred to an

experimental apparatus, enabling the measurement of passing gravitational waves.

While relativists became increasingly convinced of the detectability of gravitational waves, it would still

take decades for researchers to observe the physical effects of gravitational radiation. The first observational

evidence came after Hulse and Taylor [136], in 1975, discovered a rapidly-rotating, radiating neutron star—

known as a pulsar—bound in orbit with another neutron star. The Hulse-Taylor binary pulsar, referred

to as PSR B1913+16, emits “pulsing” radio signals with precise arrival times. By recording the arrival

times of these pulses, Hulse and Taylor calculated various properties of the binary, such as its eccentricity,

inclination, and orbital period [136]. Due to the compact nature of the binary, researchers realized that PSR

B1913+16 radiated enough energy through gravitational waves that its orbital period would decay by about

76 microseconds each year [208]. Taylor and Weisberg [208], after tracking the orbital period of the binary

over seven years, found that the orbit was decaying at exactly this predicted rate, thus providing indirect

evidence for the existence of gravitational waves. Repeated observations of PSR B1913+16 over the last

several decades have continued to support these results, making the Hulse-Taylor binary the longest-serving

astrophysical laboratory for gravitational wave science [244].

The success of the Hulse-Taylor measurements spurred on efforts to directly detect gravitational wave

signals. Gravitational waves, however, are challenging to measure because they are incredibly weak. (In

fact gravity is generally very weak compared to the other fundamental forces of nature. Spacetime does not

bend easily.) As gravitational waves pass through objects, they will stretch and compress the objects in the

transverse directions, but only to one part in 1021 [4]. Therefore kilometer-sized gravitational wave detectors
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must be able to measure changes in distance that are 10 thousand times smaller than the width of a proton.

This required the construction of a new class of ultra-precise ground-based observatories: namely, the Laser

Interferometer Gravitational-wave Observatory (LIGO) [4], the largest and most expensive experiment ever

funded by the National Science Foundation, and its European counterpart Virgo [8]. While the construction

of LIGO was completed in 1999, it would take 16 years of empty searches for LIGO to finally measure

gravitational waves.

1.1.2: The birth and future of gravitational wave detections

On September 4, 2015, LIGO recorded its first detection as the gravitational waves emitted by two

merging black holes—located nearly 1.3 billion lightyears away—finally passed through the Earth [11]. The

measurement of this gravitational signal, named GW150914, was a groundbreaking moment for astronomy.

With GW150914, researchers not only affirmed the existence of black holes and their gravitational waves,

but also deduced the properties of its source, leading to novel measurements of the masses and spins of

stellar-mass black holes [11]. Since this first detection, there has been a proliferation of gravitational wave

observations. LIGO, assisted by Virgo, detected at least ten more gravitational wave events during its O1 and

O2 observing runs [22], with tens of more potential detections found during its most recent O3 observations

[4].

Theoretical models have played a vital role in detecting these gravitational waves and characterizing their

sources. Despite the incredible precision of current detectors, gravitational measurements are still dominated

by numerous sources of noise (e.g., thermal, seismic, quantum, laser, electronic) [4, 11]. Accurate models of

gravitational waves, known as waveform templates, aid detectors by guiding searches for signals, typically

through a method known as matched filtering [11, 152]. Waveform templates are also essential for parameter

estimation: approximations of gravitational wave source characteristics, such as the masses, spins, distances,

and locations of merging black holes.

Together, gravitational wave models and detections are reshaping our understanding of the universe.

Observations of compact object mergers have led to the discovery of a new class of heavy stellar-mass black

holes [11, 12, 16, 17, 19, 18], provided evidence for the existence of uncharacteristically massive neutron star

binaries [23], and placed constraints on the astrophysical environments of compact objects [10]. Detections

have also set new limits on our understanding of gravity and the universe by enabling strong-field tests of

general relativity [13] and new measurements of the Hubble constant [14].

The advent of gravitational wave astronomy has also precipitated novel multi-messenger observations of

the universe. Astronomers, armed with the location of recent gravitational wave sources, are now providing
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follow-up observations of gravitational events with traditional telescopes. By capturing the electromagnetic

radiation that accompanies some gravitational wave events, observers are measuring astrophysical systems

through multiple windows. This field of multi-messenger astrophysics has already provided the first obser-

vation of a kilonova explosion due to the merger of two neutron stars [20, 15], confirmed the primary site of

the r-process for creation of heavy elements [13], and constrained the neutron star equation of state [21].

These new scientific advances will continue as gravitational wave detections and multi-messenger follow-

ups continue in the years to come. Detection rates have already increased within the last year due to the

recent sensitivity enhancements of LIGO and Virgo. Though the current observing runs have been cut short

due to the COVID-19 pandemic, the recent inauguration of the new ground-based observatory KAGRA [3]

in Japan and the continuing development of LIGO-India [219] promise a fruitful future for ground-based

gravitational wave science.

These ground-based detectors will be complemented by the space-based LISA mission [25, 6, 9, 28],

which was recently approved by ESA for its L3 mission. LISA will be sensitive to gravitational waves with

frequencies of 10−4 − 10−1 Hz. Because this range of frequencies is invisible to ground-based detectors,

LISA will detect tens of thousands of new gravitational wave sources, from white dwarf binaries in the local

Milky Way to merging massive black holes in the distant and early universe [28]. While white dwarf and

massive black hole binaries evolve in a similar manner to the stellar-mass compact object binaries observed

by LIGO and Virgo, their unique astrophysical environments will allow LISA to study the birth and growth

of massive black holes, galaxies, and the universe [28]. Another promising candidate for LISA will be

stellar-mass compact objects inspiraling into massive black holes, also known as extreme-mass-ratio inspirals

(EMRIs). Unlike the similar-mass binaries observed by ground-based observatories, EMRIs will produce

long-lived and intricate gravitational wave signals, making them an exciting new source for observing the

universe with gravitational wave astronomy.

1.1.3: Extreme-mass-ratio inspirals

EMRIs are compact object binaries composed of a stellar-mass compact object with mass µ ' 1− 60M�

in orbit around a massive black hole (MBH) with mass M ' 104− 107M�.1 They are characterized by their

small mass-ratio ε ≡ µ/M ∼ 10−7− 10−4. They primarily reside in galactic cores, where MBHs can capture

stellar-mass compact objects that form in the surrounding stellar cusp [27]. Once captured, the stellar

1They are also closely connected to intermediate-mass-ratio inspirals (IMRIs), which consist of stellar-mass black holes inspiral-
ing into an intermediate-mass black hole with mass M ∼ 103 − 104M�, and are potential LIGO sources. The recent detection
by LIGO and Virgo of an asymmetric mass-ratio stellar-mass black hole binary [211] is a promising sign that IMRIs may be
observed in future observing runs by ground-based detectors.
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Figure 1.1: Several orbits for an EMRI. The lines trace the path of a small compact object as it orbits around
a rotating MBH. On short timescales, this path is well described by a geodesic.

compact object undergoes a gradual inspiral around the MBH, completing approximately ε−1 ∼ 104 − 107

orbits while it radiates gravitational waves that are visible to LISA [26]. Several orbits of a typical EMRI

are shown in Fig. 1.1. Due to their long duration, EMRI signals will have cumulative signal-to-noise ratios

of several tens to several hundreds, allowing for high-precision measurements that exceed the capabilities of

optical telescopes or current gravitational wave detectors [47].

For example, LISA will measure the spins and masses of MBHs in EMRIs to a fractional precision of

∼ 10−5, providing precise data for understanding the MBH mass function and the astrophysical channels

that lead to MBH growth [26, 27, 47]. With LISA, astronomers will also learn about the astrophysical

environments and stellar populations of galactic nuclei—along with the evolutionary histories of MBHs and

their host galaxies—by identifying the processes that drive EMRI formation [47, 27]. EMRIs composed of

white dwarfs or surrounded by accretion disks may even produce electromagnetic counterparts, enabling

multi-messenger observations of EMRI mergers [27, 47]. Cosmologists will also be able to calculate the

Hubble constant by measuring the redshift of EMRI sources to a fractional error < 10%, out to redshifts

z ∼ 4.5 [47]. Furthermore, as an EMRI evolves, its GW signal will effectively ‘map’ the spacetime of

the MBH, allowing LISA to measure fractional deviations in the quadrupole moment of the MBH (which

describes the degree to which the MBH deviates from being a perfect sphere) on the order ∼ 10−4 [32, 26, 27].

Because the quadrupole moment of a black hole is precisely determined by the rotation of the black hole,

these measurements will provide an unprecedented test of general relativity and a probe for alternate theories

of gravity. LISA, like current ground-based detectors, will rely on simulated waveforms to guide gravitational

wave observations and allow detailed parameter fits that extract the characteristics of these sources (e.g.,

masses, spins) [27]. Accurate models of EMRIs are, therefore, vital to unlocking the scientific potential of

LISA observations.
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Section 1.2: The two-body problem

Modeling the motion and evolution of two interacting objects is known as the two-body problem in physics.

While this problem sounds deceptively simple, methods for solving the two-body problem can significantly

vary depending on the types of interactions that guide the bodies’ motions. One of the most famous two-

body problems is the case of two astrophysical bodies interacting according to Newton’s law of gravitation.

This, of course, is referred to as the Kepler problem. As is well known, the Kepler problem possesses exact

solutions, known as Keplerian orbits, for the motion of the binary. Given the initial positions and velocities

of the two astrophysical bodies, one can exactly solve for their Keplerian orbital motion. For most of the

planets in our solar system, Keplerian orbits provide a reasonable approximation of their motion around the

Sun (on short timescales).

Compact object binaries, on the other hand, are not well-approximated by Newtonian gravity. They

interact according to Einstein’s field equations of general relativity. Unfortunately, the two-body problem

in general relativity has no exact, closed-form solutions. This is due to the non-linearity of Einstein’s

equations and the fact that the relativistic gravitational field is dynamical. Researchers must rely, instead,

on approximation frameworks to model the motion of compact object binaries. Post-Newtonian (PN) theory,

numerical relativity (NR), and black hole perturbation theory (BHPT) form the three leading approximation

methods for modeling compact binaries. The PN and BHPT formalisms make use of iterative schemes to
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solve Einstein’s field equations, while NR recasts the field equations so that they can be solved via numerical

routines on a computer. Each approximation method is best suited for different physical regimes, as shown

in Fig. 1.2. Widely-separated, slow-moving binaries are best approximated by PN theory; similar-mass, close

binaries by NR; and disparate-mass binaries by BHPT. The EMRI two-body problem, therefore, is naturally

approached by the methods of BHPT.

To better understand these methods, I first provide a brief review of the general two-body problem in

general relativity to establish the notation and conventions that will be used in this dissertation. Following

this review, I will outline how the PN and NR frameworks have been used to model compact object binaries

in aid of recent gravitational wave detections. Building on this discussion I will present the BHPT formalism

and how it has been used to model EMRIs. I will then conclude by summarizing some of the outstanding

questions and unresolved issues in BHPT research.

1.2.1: Brief review of gravity and general relativity

In this section I give a brief overview of the basic principles and equations of general relativity to provide

some background for the introductory reader and to set notation for the expert. (For a more in depth review

of general relativity, I refer the reader to Ref. [63].) To make this discussion more concrete, consider the

two-body problem of an astronaut and the Earth. Since the Earth is much more massive than the astronaut,

the Earth is effectively stationary while the astronaut orbits around it. In Newtonian gravity, the Earth

possesses a gravitational potential U⊕, which satisfies Poisson’s equation

∇2U⊕ ≡
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
U⊕ = 4πGρ⊕, (1.1)

where ∇ is the standard gradient operator, G is Newton’s gravitational constant, and ρ⊕ is the (mass)

density of the Earth. Outside of the Earth, U⊕ takes the form

U⊕(x) = − GM⊕
|x− x⊕|

, (1.2)

where M⊕ is the gravitational mass of the Earth and x⊕ is the position of the Earth’s center of mass. The

astronaut, due to their own gravitational mass µ, interacts with the Earth’s gravitational field, −∇U⊕, via

Newton’s universal law of gravitation

Fast = −µ∇U⊕ = −GµM⊕
r3

r, (1.3)
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where Fast is the gravitational force experienced by the astronaut, r ≡ |r| ≡ |xast − x⊕|, and xast is the

position of the astronaut. The astronaut’s motion around the Earth is then given by Newton’s second law,

Fast = µ′aast, where aast is the astronaut’s acceleration and µ′ is its inertial mass. An unique property of

gravity is that an object’s intertial mass is equivalent to its gravitational mass, i.e., µ′ = µ. The equivalence

of the inertial and gravitational masses is known as the weak equivalence principle.2. Consequently, the

astronaut’s acceleration only depends on the Earth’s gravitational field,

aast ≡
d2x⊕
dt2

= −∇U⊕ = −GM⊕
r3

r. (1.4)

Furthermore, any object, regardless of its mass or composition, experiences the exact same acceleration due

to the Earth’s gravitational field.

While this result may appear innocuous, imagine if the astronaut lets go of a hammer (without giving it

any additional velocity) as they orbit the Earth. Because the astronaut and the hammer have the exact same

acceleration, the hammer will appear to remain at rest in the astronaut’s reference frame. Because everything

immediately around the astronaut (i.e., the hammer) is effectively stationary, the astronaut cannot measure

the presence of any external forces. (This type of reference frame—in which there are no external, non-

gravitational forces—is known as a locally inertial frame.) An interesting consequence is that, even though

the astronaut is supposedly orbiting the Earth due to a gravitational force, the astronaut cannot actually

measure this force of gravity. Therefore, they can claim that there is no gravity in their locally inertial frame.

This is an example of the Einstein equivalence principle:

No measurement carried out in a suitably small laboratory moving freely in a gravitational field

can reveal the existence of gravity locally, within the confines of the laboratory,

as succinctly stated by Poisson and Will [181]. The Einstein equivalence principle provides the foundation

for general relativity. If freely-moving observers cannot measure the existence of gravity, then gravitational

fields and gravitational forces do not exist. Instead, in general relativity, the gravitational “field” and “force”

that one measures are instead the result of the curvature of spacetime produced by the nearby presence of

mass and energy. On small-enough scales spacetime appears flat (just like how, on small scales, the Earth

appears to be flat), and an observer can construct a locally inertial frame where they do not measure any

effects due to gravity, just like the astronaut with their hammer. But on larger scales, the curvature of

spacetime will curve the paths of freely moving observers. For example, the astronaut orbits the Earth,

because the Earth curves spacetime, and the astronaut follows a curved path through this curved space.

2Newtonian gravity does not provide an explanation as to why this occurs.
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Mathematically, the structure of curved spacetime is represented by a differentiable manifold, M, which

is described by a metric tensor gµν , where Greek indices range from 0 to 3. The metric is real and symmetric

(gµν = gνµ), and measures (four-dimensional) lengths in spacetime. For example, the proper distance s is

given by the infinitesimal line element

ds2 = gµνdx
µdxν =

3∑
µ=0

3∑
ν=0

gµνdx
µdxν , (1.5)

where the second equality defines the Einstein summation convention, in which repeated indices are summed

over. I will use this convention throughout the rest of this work. Equation (1.5) is the non-Euclidian

generalization of the Pythagorean theorem.

Therefore, in general relativity the metric describes the “gravitational field” and small objects move

along the extremal paths, or geodesics, through the curved “gravitational” space defined by the metric. If

the astronaut follows a geodesic around the Earth, then their (four-)position xµast is given by the geodesic

equation

uα∇αuβ = 0, (1.6)

where uα ≡ dxαast/dτ is the astronaut’s four-velocity, τ is the proper time (dτ2 = −ds2), and ∇α is the

covariant derivative, which is defined with respect to the metric gαβ . The covariant derivative is the curved-

space generalization of the standard partial differential operator ∂µ ≡ ∂/∂xµ. It is connected to the partial

differential operator by the Christoffel symbols (more generally known as the connection coefficients) Γµαβ ,

Γµαβ =
1

2
gµν(∂αgνβ + ∂βgνα − ∂νgαβ). (1.7)

and operates on vectors and other low-order tensors in the following manner,

∇µvα = ∂µv
α + Γαµνv

ν , ∇µV αβ = ∂µV
αβ + ΓαµνV

νβ + ΓβµνV
αν , (1.8)

∇µwα = ∂µwα − Γνµαwν , ∇µWαβ = ∂µWαβ − ΓνµαWνβ − ΓνµβWαν . (1.9)

Consequently, the geodesic equations for the astronaut can also be written in the more detailed form

d2xαast

dτ2
+ Γαµν

dxµast

dτ

dxνast

dτ
= 0. (1.10)

In flat spacetime, the metric is given by the Minkowski metric ηµν = diag(−1, 1, 1, 1), so that Γαµν = 0. The

geodesic equation, therefore, reduces to the equation for a straight line d2xast/dt
2 = 0, just as expected. In
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curved spacetime the Christoffel symbols do not vanish globally. A particle’s path, will therefore, deviate

from a straight line due to the presence of spacetime curvature.

Geodesics, however, only describe the paths of small objects, or test bodies. Extended, massive bodies,

like stars or white dwarfs, are described by a stress-energy tensor Tµν , which evolves due to the curved-space

generalization of the conservation of energy and momentum

∇νTµν = ∂νT
µν + ΓµναT

αν + ΓνναT
µα = 0. (1.11)

These conservation-like equations, much like the geodesic equations, are influenced by spacetime curvature

through their dependence on the metric. Equation (1.11), therefore, describes how a stress-energy source,

such as a white dwarf, evolves through curved spacetime. The metric, in turn, evolves according Einstein’s

field equations

Gµν [g] ≡ Rµν [g]− 1

2
gµνR[g] =

8πG

c4
Tµν , (1.12)

where c is the speed of light, Gµν is the Einstein tensor (which depends on gµν), R ≡ Rαα is the Ricci scalar,

Rαβ ≡ Rµαµβ is the Ricci tensor, and

Rαβγδ ≡ ∂δΓαβγ − ∂γΓαβδ + ΓαµγΓµβδ − ΓαµδΓ
µ
βγ , (1.13)

is the Riemann curvature tensor. Equation 1.12 represents a set of 10 coupled, nonlinear partial differential

equations for the 10 independent components of gµν . This is in contrast to Newtonian gravity, which has a

single field equation, Eq. (1.1), for the single component of the gravitational potential field, U . Therefore,

there are few known analytical solutions to Eq. 1.12. For black hole spacetimes, the field equations slightly

simplify to the vacuum field equation, Rµν = 0, and thus are more amenable to solution. Leveraging

this vacuum condition and multiple symmetries, researchers have found analytic, closed-form solutions for

isolated black holes, such as the spherically-symmetric Schwarzschild spacetime of a non-spinning black hole

and the axisymmetric Kerr spacetime of a rotating black hole. For general two-body system, however, there

is no known way to exactly calculate gµν . Hence, researchers must turn towards approximate methods for

solving Eqs. (1.11) and (1.12).

1.2.2: Post-Newtonian theory and numerical relativity

PN theory has been one of the longest-serving approximation tools for general relativity [96, 150, 97, 102].

In the PN formalism, one assumes that a gravitational system is weakly bound and slowly moving, compared

to the speed of light c. Then one can expand Einstein’s field equations and the stress-energy constraint in
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powers of 1/c, and iteratively solve for the equations of motion for a gravitational system. This formalism

was employed by Einstein to derive the famous quadrupole formula [96] soon after formulating his theory

of general relativity. Lorentz and Droste [150]; Einstein, Infeld, and Hoffman [97]; and Fock [102] would

later develop the first-order (1PN) corrections to the equations of motion. At higher-orders, calculations

at first diverge, because the PN approximation only makes assumption about spacetime near the source, in

the region known as the near zone. These divergences are tamed by introducing additional, sophisticated

expansions near the boundaries in the wave zone and finding solutions that match in the regions where the

near and wave zones overlap. Through various methods, PN researchers have calculated the equations of

motion to 4PN order [77, 46, 78, 155, 104, 103], with 5PN results now emerging [51]. (For an in depth review

on PN theory, I refer the reader to Refs. [52, 181].)

In NR, Einstein’s field equations are recast in the form of an initial value problem so that they are

more amenable to solution via numerical integration. Using a 3+1 decomposition, the field equations are

separated into slices, or foliations, of three-dimensional space, with each slice acting as a different snapshot

in time. First the initial data are solved on the first time slice. Data are then pushed from one time slice

to another by numerically solving Einstein’s field equations using finite-differencing or spectral algorithms.

Though some of the first NR simulations were attempted by Hahn and Lindquist in 1964 [120], it took over

four decades for numerical relativists to successfully simulate the merger of two inspiraling, equal-mass black

holes [190, 61, 29]. While NR simulations are still computationally intensive, highly-developed codes, such

as the Einstein Toolkit [2] and SpEC [7], are well advanced, making NR simulations and routines much more

accessible to researchers. (For more discussion on NR, I refer the reader to Refs. [24, 116, 44, 99].)

Full inspiral waveforms of stellar-mass compact binaries are now constructed by combining PN results

with NR simulations. PN theory provides a powerful approximation for computing the early inspiral of the

compact objects, while NR captures their behavior as they merge and ring down spacetime to form a new

black hole. By calibrating phenomenological and physically-motivated effective-one-body models against PN

and NR calculations, researchers have generated libraries of gravitational waveform templates for LIGO and

Virgo [11]. Thus, PN theory and NR have been the two leading approximations for studying black hole

binaries in the era of gravitational wave astronomy. Unfortunately, neither approximation method is well

suited for modeling the strong-field dynamics of EMRIs. PN theory eventually breaks down in an EMRI due

to the large orbital velocity of the stellar-mass compact object,3 while NR has a difficult time numerically

handling the disparate length scales set by the small compact object and the MBH. EMRIs are, therefore,

more naturally understood using BHPT.

3As shown in Fig. 1.2, there exists an overlap region where the PN and BHPT approximations are equally valid. This occurs
when two bodies have disparate masses but are also widely separated.
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1.2.3: Black hole perturbation theory and the gravitational self-force

BHPT is best suited for astrophysical systems with a small mass µ orbiting a much more massive black

hole with mass M , (e.g., an EMRI or IMRI). The equations of motion for the system are generated by

expanding the metric tensor for the entire spacetime gµν in powers of the mass ratio ε ≡ µ/M ,

gµν = gµν + εh(1)
µν + ε2h(2)

µν +O(ε3), (1.14)

where gµν is the ‘background’ spacetime defined by the MBH (e.g., Schwarzschild, Kerr metrics), h
(1)
µν is the

first-order metric perturbation due to the presence of the small mass, h
(2)
µν is the second-order perturbation,

and so on. Similar to PN theory, the field equations, stress-energy constraint, and gauge conditions are

expanded in powers of ε and iteratively solved to find field equations for the metric perturbations h
(n)
µν and

equations of motion for the small mass.

In the limit ε → 0, all of the h
(n)
µν terms vanish and the stellar-mass compact object follows a geodesic

in the ‘background’ spacetime defined by the MBH (e.g., Schwarzschild, Kerr metrics). At higher orders,

this small body has its own radiative field (metric perturbation) that carries away gravitational waves. For

example, the first-order metric perturbation is given by the linearized Einstein equation,

∇α∇αh̄µν + gµν∇α∇βh̄αβ −∇α∇µh̄αν −∇α∇ν h̄αµ + 2Rαµβν h̄
αβ = −16πTµν , (1.15)

where h̄µν ≡ h
(1)
µν − 1

2gµνh
(1)µ
µ and Tµν is the stress-energy tensor for the small perturbing object. The

body interacts with this perturbing field, giving rise to a gravitational self-force (GSF) that drives its motion

according to

µuα∇αuβ = εF βGSF,1 + ε2F βGSF,2 +O(ε3), (1.16)

where uα is the four-velocity of the small mass, F βGSF,1 is the first-order gravitational self-force (which

depends on h
(1)
µν ), F βGSF,2 is the second-order gravitational self-force (which depends on h

(1)
µν and h

(2)
µν ), and

higher-order terms are neglected. While, in theory, additional self-force terms can be included, for practical

purposes in modeling EMRIs only the first few orders are necessary [125, 180]. Hinderer and Flanagan [125]

found that the phase of an EMRI waveform, via a two-timescale expansion, can also be expressed as a series

in ε,

φEMRI = κ−1ε
−1 + κ−1/2ε

−1/2 + κ0ε
0 +O(ε1/2), (1.17)

where the adiabatic term κ−1 depends on the orbit-averaged first-order gravitational self-force, the post-1/2

adiabatic term κ−1/2 depends on the effect of special orbital resonances, and the post-1 adiabatic term κ0
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depends on the instantaneous value of the first-order gravitational self-force and the orbit-averaged second-

order gravitational self-force. To maximize the precision of LISA gravitational wave measurements, models

will need to be phase accurate within ∼ 0.1 radians over the entire inspiral, requiring calculations of both

the first-order and the orbit-averaged second-order gravitational self-force.

An implicit assumption in Eq. (1.16) is that, in some suitable limit, the small perturbing body can

be treated as a “point-like” particle with a well-defined worldline xµp (τ) and four-velocity uα = dxαp /dτ .

However, a point-particle source in Eq. (1.15) results in a retarded metric perturbation, h
(1)
µν , that will

diverge at the location of the particle. Because the self-force acts on the particle exactly at this point, a

naive calculation of the self-force using this singular field gives an unphysical result. Therefore, to obtain

the regular metric perturbation that is solely responsible for the self-force one must either abandon the

point-particle approximation or find a suitable procedure for “regularizing” the divergent field.

Mino, Sasaki, and Tanaka [166] provided a (non-divergent) expression for the gravitational self-force by

treating the small body as an extended object and employing the method of matched asymptotic expansions.

(See Sec. 3.3 for an extended discussion of this method.) Far from the small body, the mass µ can be treated

as a point particle with a timelike worldline xµp (τ), so that at first-order Eq. (1.16) is given by

µuµ∇µuα = εFαGSF,1 = − ε
2

(
gαβ + uαuβ

)
uµuν

(
2∇µhtail

νβ −∇βhtail
µν

)
, (1.18)

where htail
µν is the tail contribution of the first-order metric perturbation h

(1)
µν . (I define htail

µν more precisely

later in Eq. (3.61).) While h
(1)
µν is still divergent, htail

µν is regular at the location of the particle. The results

of Mino, Sasaki, and Tagoshi were quickly confirmed by Quinn and Wald [192]. Therefore, Eq. (1.18) is

commonly referred to as the (first-order) MiSaTaQuWa equations of motion.

Detweiler and Whiting [82] provided an elegant modification to the MiSaTaQuWa equations by decompos-

ing h
(1)
µν into a regular contribution hR

µν , which satisfies the homogeneous form of Eq. (1.15), and a singular

contribution hS
µν , which satisfies the sourced form of Eq. (1.15) (but with acausal boundary conditions).

They found that the regular field and tail field are closely related, and that hR
µν can simply replace htail

µν in

Eq. (1.18),

FαGSF,1 = −1

2

(
gαβ + uαuβ

)
uµuν

(
2∇µhR

νβ −∇βhR
µν

)
. (1.19)

In the Detweiler-Whiting formalism, the particle’s self-forced motion in the background gµν can be equiva-

lently expressed as geodesic motion in the effective background gµν +hR
µν , providing a clever reinterpretation

of the self-force problem. (For a more in depth review of BHPT, I refer the reader to Refs. [30, 180, 41].)

In practice, it is challenging to self-consistently evolve Eq. (1.18). The motion of the small body—
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captured by Tµν in Eq. (1.15)—sources the metric perturbation, which, in turn, produces a self-force that

reacts back on the small body and changes its motion (Eq. (1.18)). Either new approximations must be

introduced to separate this interdependence, or Eqs. (1.15) and (1.18) must be solved “all-at-once,” akin to

NR.

The two-timescale expansion provides an approximate framework for evolving an EMRI. This method

expands the equations of motion for an EMRI in terms of two fundamental time periods: the orbital timescale

Torb ∼ M (i.e., the time it takes the small mass to complete an orbit around the MBH) and the adiabatic

or radiation-reaction timescale Trr ∼Mε−1 (i.e., the time it takes the small mass to inspiral into the MBH)

[125]. This expansion naturally separates how the short-term orbital motion gives rise to gravitational waves

(and a gravitational self-force), and how the long-term radiation of gravitational waves drives the stellar-

mass compact object on a decaying inspiral into the MBH. While the two-timescale expansion is a promising

formalism for modeling EMRIs, the general form of this expansion is still in development and breaks down

at large distances, near the horizon of the MBH, and during resonances [41].

Consequently, EMRI waveforms are typically modeled with a method closely-related to the two-timescale

expansion, known as osculating geodesics [187, 112]. On orbital timescales the small body’s motion is well

approximated by a bound geodesic and can be parameterized in terms of orbital ‘constants,’ such as the

semi-latus rectum, orbital eccentricity, and orbital inclination. (See Chapter 2 for further discussion of

geodesics and bound motion.) In the osculating geodesics approach, these constants are allowed to evolve

due to the effects of the gravitational self-force. This motivates an additional approximation: to calculate

the self-force, one assumes that the entire past motion of the stellar-mass compact object s described by a

geodesic, then calculates the first-order gravitational self-force produced by this geodesic motion. Because

the gravitational self-force mostly depends on the small body’s geodesic-like motion on orbital timescales,

this approximation is relatively accurate and only produces an O(ε) error in the self-force. (Therefore, this

assumption is equivalent to neglecting the second-order self-force.) To model the long-term evolution of an

EMRI, an osculating geodesics code (1) assigns the small body to a geodesic, (2) calculates the resulting

gravitational self-force produced by this geodesic motion, and then (3) uses this gravitational self-force result

to effectively ‘push’ the small mass to a new geodesic. The process is then repeated, driving the body from

one geodesic to another until it is eventually pushed onto a plunging orbit into the MBH. The EMRI’s

waveform is then constructed by ‘stitching’ together the gravitational wave signals produced along each

geodesic in the evolution.

Long-term, self-forced inspiral calculations of Schwarzschild EMRIs via osculating geodesics are well

advanced [235, 177, 239, 226], tracking the accumulated orbital or gravitational wave phase to accuracies

better than φEMRI ' 0.1 due to all first-order-in-the-mass-ratio effects at post-1-adiabatic order. [125] These
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Figure 1.3: Two trajectories for stellar-mass compact objects with the exact same rθ-resonant frequencies.
These two compact objects, however, entered resonance with different initial positions and velocities, resulting
in these two different trajectories.

calculations, however, lack only the orbit-averaged dissipative part of the second-order self-force. Progress

is still being made on understanding and calculating the second-order gravitational self-force [183, 182, 186,

243, 161, 184, 170, 188]. In the case of Kerr EMRIs, steady developments have been made in gravitational

self-force calculations for circular and bound equatorial orbits [206, 138, 225, 222, 160, 110, 33], with progress

recently reported [224] in calculating the gravitational self-force on generic Kerr orbits. In principle this latest

self-force result could serve as the basis for long-term inspiral models of astrophysically relevant EMRIs, but

prospects are dimmed at present by high computational costs of these gravitational self-force calculations.

The exploration of orbital resonances and their impact on EMRI gravitational waves has also been limited.

Researchers expect that the vast majority of EMRIs observed by LISA will experience at least one strong rθ-

resonance [200]. These resonances occur when the frequencies associated with the librating radial and polar

motion of an EMRI’s smaller body form a rational-number ratio. (The lower the integers in the numerator

and denominator of the rational number, the stronger the resonance.) During these resonances, EMRIs

will evolve either slower or faster than the non-resonant prediction, depending on their phase when they

enter the resonance. Resonant moments thus drive significant ‘kicks’ in the amount of energy and angular

momentum that EMRIs radiate through gravitational waves [100, 200]. The structure of the resonant motion

and the nature of the kick is quite sensitive to the orbital phase, varying significantly as a function of the

initial position and velocity at which the small mass enters resonance, as shown in Fig. 1.3. This sensitivity

to initial conditions during resonant kicks can enhance errors in EMRI waveform models by a factor of

ε−1/2 and thus contribute to κ−1/2 in Eq. (1.17). Previous research on these resonant effects have relied on

approximate adiabatic flux codes and weak-field PN results [100, 200, 48]. To date, the relationship between

rθ-resonances and the behavior of the full gravitational self-force remains unexplored. The focus of this work

is to test new techniques for calculating the self-force in Kerr spacetime and to provide the first numerical
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calculations of the self-force during rθ-resonances.

Section 1.3: A developmental scalar model

Waveform templates produced from self-force calculations will be useful in aiding signal detection of

EMRIs and will be essential for parameter estimation of LISA sources [27]. Calculations of the gravita-

tional self-force in Kerr spacetime, however, still require significant refinement and development in order

to contribute to full inspiral models of EMRIs. In the past, the scalar field self-force analogue [191] has

frequently been used as a simplified model to develop new insights and tools for use in the gravitational

case. In the scalar model, the stellar-mass compact object is given a scalar charge. Consequently, the object

possesses a perturbing scalar field and radiates scalar waves, which interact with the charge to produce a

scalar self-force (SSF). The SSF has been computed in Schwarzschild spacetime [56, 245, 57, 31, 81, 84,

118, 227, 228, 66, 60, 62, 242, 85, 229, 241] and in Kerr spacetime using frequency-domain [236, 237, 234]

and time-domain calculations [214]. For my dissertation, I consider a scalar model and produce the first

scalar self-force calculations for generic (inclined, eccentric) orbits to develop new methods for tackling the

gravitational self-force problem in Kerr spacetime.

1.3.1: Summary of scalar self-force formalism

The SSF model I consider assumes a point particle of mass µ and scalar-charge q in bound motion about a

Kerr black hole of mass M and spin parameter a. Perturbations in the gravitational field and the associated

gravitational self-force are neglected. Instead the particle’s motion generates a scalar field Φ, whose local

behavior acts back on the scalar charge to produce the SSF. Absent the SSF, the motion of the particle is a

geodesic in the Kerr spacetime. The scalar field satisfies the curved-space Klein-Gordon equation (i.e., the

spin-0 Teukolsky equation [209])

gαβ∇α∇βΦ = −4πρscalar, (1.20)

where ρscalar is the scalar (point) charge density, gαβ is the (inverse) Kerr metric, and ∇α is the covariant

derivative with respect to the Kerr metric. Causal boundary conditions are selected, making the resulting

solution the retarded field Φret. The particle’s timelike worldline is xαp (τ) and its four-velocity is uα = dxαp /dτ ,

where τ is proper time. Formally, the SSF will make the motion non-geodesic and the SSF will in principle

depend upon the entire past inspiral. However, if q is sufficiently small and the SSF weak, the inspiral will

be adiabatic, mimicking the gravitational self-force case with EMRIs. Making this assumption here, I take

the past worldline as some (arbitrary) bound geodesic and calculate the SSF along that fixed motion, the
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result being the (approximate) geodesic self-force.

The retarded field diverges at the point charge, necessitating a regularization procedure [191] to compute

the SSF. Detweiler and Whiting [82], much like in the gravitational case, gave one particular separation of

the retarded field into regular and singular pieces Φret = ΦR+ΦS, where ΦS satisfies the same inhomogeneous

wave equation (1.20) as Φret but with (different) boundary conditions, such that ΦR not only satisfies the

source-free wave equation but is the part of the field solely responsible for the SSF

uβ∇β(µuα) = Fα = lim
x→xp

q∇αΦR. (1.21)

Because the SSF is not orthogonal to the four-velocity [191], all four components of Fα must be determined.

Substitution of Φret or ΦS in Eq. (1.21) in place of ΦR produces corresponding forces, F ret
α and F S, both of

which are divergent on the particle worldline. Thus even though one might write

Fα = F ret
α − F S

α , (1.22)

the expression is not immediately useful given the divergences. Instead, one practical procedure is mode-sum

regularization [37, 39], wherein the retarded, singular, and regular fields (as well as their associated forces)

are decomposed into angular harmonic multipoles (typically using scalar spherical harmonics Ylm). The

individual mode amplitudes are finite and if the subtraction in (1.22) is taken before summing (over l), the

finite SSF is recovered

Fα =

+∞∑
l=0

(
F ret,l
α − F S,l

α

)
. (1.23)

The singular part F S,l
α can be obtained by local analytic expansion in an l-dependent series with l-independent

regularization parameters. The lower-order parameters are known [39]. The structure of higher-order terms is

also understood [81] and analytic expressions have been given for certain restricted motions on Schwarzschild

[121, 123] and Kerr [122] backgrounds.

With an assumed fixed background geodesic, the SSF can be further decomposed into dissipative (F diss
α )

and conservative (F cons
α ) pieces [162, 125]

Fα = F diss
α + F cons

α . (1.24)

The dissipative part F diss
α is responsible for the secular orbital decay producing the inspiral, while F cons

α

serves to perturb the orbital parameters. The dissipative self-force does not require regularization, as it is
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derived from the difference between retarded and advanced fields, Φdiss = 1
2 (Φret−Φadv). The regularization

procedure is still necessary to determine F cons
α .

Calculating the SSF is, therefore summarized by the following five-step process:

1. calculate the background geodesic motion of the scalar charge,

2. solve for the retarded scalar field, Φret, produced by the moving charge,

3. evaluate the retarded multipole contributions to the SSF, F ret,l
α ,

4. separate F ret,l
α into its conservative and dissipative components, and

5. regularize the conservative contributions via the mode-sum regularization of Eq. (1.23).

1.3.2: Summary of dissertation work

For my dissertation work, I built a Mathematica code that generalizes previous frequency-domain SSF

calculations to arbitrary eccentric, inclined geodesics in Kerr spacetime [172]. The code serves as a test bed

for developing more advanced physical and numerical techniques to aid downstream work in making generic

Kerr gravitational self-force calculations more practical. It also allows for the rapid exploration of physical

parameter spaces that are less accessable to gravitational self-force codes.

In building this code, I adapted spectral source integration to the Kerr generic-orbit, scalar-source prob-

lem, significantly optimizing computation of the self-force calculations by several orders of magnitude com-

pared to traditional numerical methods [172]. Spectral integration routines were also designed to calculate

Kerr geodesics numerically and I have implemented these spectral integrators in the open-source Ker-

rGeodesics Mathematica package in the Black Hole Perturbation Toolkit [1]. Through this work, I also

discovered methods for optimizing the numerical implementation of the Mano-Suzuki-Takasugi (MST) func-

tion expansion formalism [154].

Upon completing this code, I produced the first calculations of the SSF due to a scalar source on an

inclined, eccentric geodesic [172]. My results validated previous SSF calculations in the Kerr spacetime, and

shared similar features to the recent Kerr gravitational self-force calculations produced by van de Meent

[224]. I followed this work by then exploring the SSF sourced by rθ-resonances. Prior to this investigation,

strong-field self-force calculations had not yet been performed in this area of parameter space. My resonant

SSF results, therefore, provide the first insights into the behavior of self-forces during rθ-resonances. One

important outcome from this exploration was the discovery that the orbit-averaged conservative self-force is

negligible along resonances, supporting the “integrability conjecture” proposed by Flanagan and Hinderer

[100].
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With my SSF code, I also uncovered the existence of high-frequency ringing that repeatedly appears

in the measurable waveforms of highly-eccentric and rapidly-rotating EMRIs. These excitations were first

observed in the self-force itself by Thornburg in time-domain SSF simulations of highly-eccentric Kerr orbits,

which were discussed in a series of talks [212, 213, 215] by Thornburg and reported in a paper by Thornburg

and Wardell [214]. I confirmed these oscillations in the SSF with my frequency-domain SSF code and then

found that these periodic high-frequency oscillations also appear in the asymptotically-accessible signals of

EMRIs. These oscillations, named quasinormal bursts (QNBs), can be mapped to the quasinormal mode

spectrum of Kerr MBHs and arise in an EMRI when the close periapsis passage of the stellar-mass compact

object ‘rings’ the MBH. The presence of QNB features in EMRI waveforms, though faint, may aid in the

characterization of EMRI GW sources. These results have already sparked follow-up research by other

authors on this phenomena [197, 216, 74].

Section 1.4: Dissertation overview

The rest of my dissertation is outlined as follows. In Chapter 2, I begin with the zeroth-order approxi-

mation of EMRI motion: geodesics. I review current techniques for analyzing geodesics in Kerr spacetime,

then present several methods for numerically solving Kerr geodesics. In Chapter 3, I review the basic prin-

ciples of radiation, radiation-reaction, and self-forces and how they are used to evaluate the evolution of a

two-body system, such as EMRIs. In Chapter 4, I present the analytical framework for calculating gravita-

tional perturbations of Kerr black holes and the resulting gravitational self-force. In Chapter 5, I introduce

an analogous but more tractable scalar perturbation model that I implemented for my dissertation. I first

discuss how gravitational self-force calculations can be extended from this scalar model and then outline the

methods that I use to numerically calculate the scalar self-force in Kerr spacetime. In Chapter 6, I present

novel scalar self-force results for a small scalar-charged particle orbiting a Kerr black hole. I also confirm the

accuracy of my code and these results with a series of validation tests. In Chapter 7, I discuss how the ex-

ploration of the scalar self-force led to the discovery of quasinormal bursts in EMRI waveforms and consider

how their presence in EMRI waveforms may impact observations by LISA. In Chapter 8, I report the first

(scalar) self-force results for a perturbing particle encountering an rθ-resonant orbit around a Kerr black

hole and discuss new findings on the behavior of the conservative self-force during resonances. I conclude

with a summary of my dissertation work in Chapter 9. Throughout this work, unless stated otherwise, I use

units such that G = c = 1, the metric signature (−+ + +), and the sign conventions set by Misner, Thorne,

and Wheeler [168].
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CHAPTER 2: Bound orbits in Kerr spacetime

Section 2.1: Chapter overview

For a small mass orbiting a much more massive rotating black hole, its zeroth-order motion can be

given by a bound timelike geodesic in Kerr spacetime. Unlike geodesics in Schwarzschild spacetime, bound

geodesics around Kerr black holes can librate both radially and in the polar direction at different frequencies

due to the axisymmetry of Kerr spacetime, as shown in Fig. 2.1. Generally, the periods of a body’s radial and

polar motion are incommensurate. In these cases, geodesics are ergodic: given an infinite amount of time, a

geodesic passes through every point in a finite, bounded region of space. For certain orbital configurations,

however, these radial and polar periods will form a rational number ratio. These geodesics are referred to as

rθ-resonances. They are distinctly not ergodic and have a different structure from non-resonant geodesics.

This is highlighted in the second panel in Fig. 2.1.

To better understand these different behaviors, and to establish notation, I review the analytic framework

for studying bound geodesics in the Kerr spacetime, primarily following the work of Refs. [64, 168, 205, 91, 93,

101], though I have consolidated and adapted notation for consistency. I also discuss various prescriptions for

parameterizing geodesics and how those parameterizations must be handled when describing rθ-resonances.

I then conclude this chapter by presenting original methods for calculating Kerr geodesics numerically.

Section 2.2: Separation of the geodesic equations and chosen parameters

Consider a point particle with mass µ on a bound geodesic xµp (τ) in a Kerr background. Its geodesic is

parameterized in terms of proper time τ and the background, described by the metric gαβ , is parametrized

by the black hole spin a and mass M . Adopting Boyer-Lindquist coordinates (t, r, θ, ϕ), the Kerr line element

reads

ds2 = −
(

1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 − 4Mar sin2 θ

Σ
dtdϕ+ Σdθ2 +

sin2 θ

Σ
($4 − a2∆ sin2 θ)dϕ2, (2.1)

where

Σ ≡ r2 + a2 cos2 θ, ∆ ≡ r2 − 2Mr + a2, $ ≡
√
r2 + a2.
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Figure 2.1: Inclined, eccentric geodesics around a Kerr black hole with spin a/M = 0.9 and M = 1. The
plot on the left is a non-resonant geodesic with orbital parameters (p, e, xinc) = (4.700, 0.5, cosπ/4). The
motion is fairly complicated, with no obvious periodicity. The plot on the right, in contrast, is a 1:2 rθ-
resonant geodesic with orbital parameters (p, e, xinc) ≈ (4.607, 0.5, cosπ/4), where the semi-latus rectum p is
truncated at four significant digits. The value of p is specifically chosen so that the periods of the particle’s
radial and polar motion form the ratio 1:2, one radial period for every two polar periods. The blue solid
lines trace out the geodesics’ three-dimensional evolution through Boyer-Lindquist coordinate space (r, θ, ϕ).
The grey solid lines show various two-dimensional projections of the three-dimensional orbit.

In the limit that a→ 0 the Kerr metric in Boyer-Lindquist coordinates reduces to the Schwarzschild metric

in Schwarzschild coordinates, i.e.,

ds2 = −fSchw(r)dt2 + f−1
Schw(r)dr2 + r2dθ2 + r2 sin2 θdϕ2, (2.2)

where

fSchw(r) ≡ ∆

$2

∣∣∣∣
a=0

= 1− 2M

r
, (2.3)

and where I have used the same notation for Schwarzschild coordinates as Boyer-Lindquist coordinates (i.e.,

(t, r, θ, ϕ)), because these coordinate systems agree for a = 0.

Geodesic motion in Kerr spacetime is completely integrable, leading to three constants of motion—the

specific energy E , the z-component of the specific angular momentum Lz, and the (scaled) Carter constant

Q [64]—all of which can be related to the Killing symmetries that satisfy Killing’s equation (and its tensorial

generalization)

∇µξν +∇µξν = 0, ∇µKαβ +∇αKβµ +∇βKµα = 0. (2.4)
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The energy and angular momentum correspond to the Killing vectors ξµ(t) and ξµ(ϕ),

E ≡ −ξµ(t)uµ = −ut, (2.5)

Lz ≡ ξµ(ϕ)uµ = uϕ, (2.6)

while the Carter constant is associated with the Killing tensor Kµν [233],

Q ≡ Kµνuµuν − (Lz − aE)2. (2.7)

The Killing tensor can be expressed in terms of the Kinnersley null tetrad,

Kµν = 2Σm(µm∗ν) − a2 cos2 θgµν , (2.8)

= 2Σ l(µnν) + r2gµν , (2.9)

where the Kinnersley null tetrad basis vectors are given by

lµ
.
=

1

∆
($2,∆, 0, a), nµ

.
=

1

2Σ
($2,−∆, 0, a), (2.10)

mµ .
=

1√
2(r + ia cos θ)

(ia sin θ, 0, 1, i csc θ), (2.11)

and m∗µ is the complex conjugate of mµ. The origin and utility of the Kinnersley tetrad is further discussed

in Sec. 4.4.3.

The geodesic equations then take the form

Σp
dtp
dτ

= Vtr(rp) + Vtθ(θp), (2.12)

Σp
drp
dτ

= ±
√
Vr(rp), (2.13)

Σp
dθp
dτ

= ±
√
Vθ(θp), (2.14)

Σp
dϕp
dτ

= Vϕr(rp) + Vϕθ(θp), (2.15)

where the radial and polar potentials are given by

Vr(r) ≡
(
E$2 − aLz

)2 −∆
(
r2 + (Lz − aE)2 +Q

)
, (2.16)

Vθ(θ) ≡ Q− L2
z cot2 θ − a2(1− E2) cos2 θ, (2.17)
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while the time and azimuthal potentials are separated into their radial and polar dependencies

Vtr(r) ≡ E
$4

∆
+ aLz

(
1− $2

∆

)
, Vtθ(θ) ≡ −a2E sin2 θ, (2.18)

Vϕr(r) ≡ aE
(
$2

∆
− 1

)
− a2Lz

∆
, Vϕθ(θ) ≡ Lz csc2 θ. (2.19)

The subscript p means that a function is evaluated on the worldline.

Rather than parameterizing a geodesic in terms of E , Lz, and Q, it is often preferable to choose constants

of motion that are more closely tied to the geometry of the orbit, such as its size, shape, and orientation.

The radial potential in Eq. (2.16) is a quartic polynomial in r and has four roots: r1 ≥ r2 ≥ r3 ≥ r4. For a

bound, stable orbit the two largest roots are finite and represent the extrema of the radial motion, such that

rmax ≡ r1 and rmin ≡ r2. Analogous to Keplerian orbits, these extrema can be used to define the semi-latus

rectum p and orbital eccentricity e,

rmax ≡
pM

1− e
, rmin ≡

pM

1 + e
. (2.20)

On the other hand, the polar potential in Eq. (2.17) can be re-expressed as a quadratic polynomial in

z2 ≡ cos2 θ,1 with roots

z2
± ≡

L2
z +Q+ β ±

√
(L2

z +Q+ β)2 − 4Qβ
2β

, (2.21)

where β ≡ a2(1− E2). In the case of a Schwarzschild black hole, this reduces to a single (degenerate) root

z2
− ≡

Q

L2
z +Q

. (2.22)

For bound, stable orbits z2
− corresponds to the extrema of the polar motion, cos θmin ≡ z− and cos θmax ≡

−z−. These extrema then define the projection of the orbital inclination,

xinc ≡ ±
√

1− z2
− = ± cos

(π
2
− θmin

)
, (2.23)

where a positive value specifies a prograde orbit and a negative value specifies a retrograde orbit. Other

authors use an alternative inclination parameter that is defined from Lz and Q [134]

cos ι ≡

√
L2
z

L2
z +Q

. (2.24)

1Note that this definition of z matches the definition used in Refs. [222, 224], but differs from the definition used in Refs. [92, 93],
z ≡ cos2 θ.
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In Schwarzschild spacetime xinc and cos ι are identical, which can be shown by combining Eqs. (2.22) and

(2.23). I will make use of both parameters in this work. Once p, e, and xinc are specified for an orbit, it is

straightforward to determine E , Lz, and Q [205, 92].

The presence of Σp on the lefthand-side of Eq. (2.12)-(2.15) couples the radial and polar motion. Intro-

ducing the (Carter-)Mino time parameter λ [64, 168, 162, 91], defined by

dλ ≡ Σ−1
p dτ, (2.25)

separates the radial and polar motions

drp
dλ

= ±
√
Vr(rp),

dθp
dλ

= ±
√
Vθ(θp), (2.26)

yielding solutions that are functions of Mino time rather than proper time, i.e., rp(λ). One can then solve

Eqs. (2.12)-(2.15) using spectral integration methods [130, 172], analytic special functions [92, 108], or a

“hybrid” scheme combining both approaches (Sec. 2.7.2). I will review methods for numerically solving

Eqs. (2.12)-(2.15) in Sec. 2.7.

Section 2.3: Frequencies of generic bound motion

For inclined eccentric bound geodesics, the particle librates in r and θ with radial and polar Mino time

periods

Λr ≡ 2

∫ rmax

rmin

dr√
Vr(r)

, Λθ ≡ 2

∫ π−θmin

θmin

dθ√
Vθ(θ)

, (2.27)

and corresponding Mino time frequencies

Υr =
2π

Λr
Υθ =

2π

Λθ
. (2.28)

In Kerr spacetime, Υθ is always greater than Υr for bound geodesics. The time and azimuthal coordinates,

which depend on the radial and polar motions, accumulate at the average rates in λ

Γ =
1

Λr

∫ Λr

0

dλVtr +
1

Λθ

∫ Λθ

0

dλVtθ, (2.29)

Υϕ =
1

Λr

∫ Λr

0

dλVϕr +
1

Λθ

∫ Λθ

0

dλVϕθ, (2.30)
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respectively. Together, these form the complete set of Mino time frequencies Υα = (Γ,Υr,Υθ,Υϕ). They

are related to the fundamental coordinate time frequencies

Ωr =
Υr

Γ
, Ωθ =

Υθ

Γ
, Ωθ =

Υϕ

Γ
, (2.31)

which define the discrete frequency spectrum for a non-resonant geodesic

ωmkn ≡ mΩϕ + kΩθ + nΩr. (2.32)

Note that these coordinate frequencies do not uniquely define a geodesic due to the existence of isofre-

quency pairings [238], though it has been well-argued that geodesics are uniquely defined by their Mino time

frequencies, Υα [220].

Section 2.4: Mino time representation of geodesic solutions

To understand the impact of initial conditions on geodesics, first consider an inclined, eccentric geodesic

x̂µp with the initial conditions

x̂µp (λ = 0) = (0, rmin, θmin, 0), ûr(λ = 0) = ûθ(λ = 0) = 0. (2.33)

Following the nomenclature of Ref. [91], I refer to a geodesic with these initial conditions as a fiducial geodesic.

Integrating Eqs. (2.12)-(2.15) and enforcing these fiducial conditions, one finds solutions of the form

t̂p(λ) = Γλ+ ∆t̂(r)(Υrλ) + ∆t̂(θ)(Υθλ), (2.34)

r̂p(λ) = rmin + ∆r̂(r)(Υrλ), (2.35)

θ̂p(λ) = θmin + ∆θ̂(θ)(Υθλ), (2.36)

ϕ̂p(λ) = Υϕλ+ ∆ϕ̂(r)(Υrλ) + ∆ϕ̂(θ)(Υθλ), (2.37)

where the ∆x̂ terms are oscillatory, periodic functions. Here I use ∆x̂ to represent ∆t̂, ∆r̂, ∆θ̂, and ∆ϕ̂.

These periodic functions have the properties

∆x̂(r)(2π + Υrλ) = ∆x̂(r)(Υrλ), ∆x̂(r)(0) = 0, (2.38)

∆x̂(θ)(2π + Υθλ) = ∆x̂(θ)(Υθλ), ∆x̂(θ)(0) = 0, (2.39)
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While the ∆x̂ functions share the same periodic behavior, ∆t̂ and ∆ϕ̂ are anti-symmetric (odd) functions,

while ∆r̂(r) and ∆θ̂(θ) are symmetric (even) functions. Exact definitions of these geodesic functions are

provided in Refs. [91, 108]. I will discuss different methods for constructing these functions in Sec. 2.7.

Next, I consider a generic inclined eccentric geodesic xµp with arbitrary initial conditions

xµp (λ = 0) = (t0, r0, θ0, ϕ0), ur(λ = 0) = ur0, uθ(λ = 0) = uθ0. (2.40)

Retaining the notation that fiducial geodesic functions are represented with a hat (e.g., x̂µp ), the arbitrary

geodesic can be expressed in terms of the fiducial solutions

tp(λ; t0, λ
(r)
0 , λ

(θ)
0 ) = t0 + Γλ+ ∆t̂(Υrλ+ Υrλ

(r)
0 ,Υθλ+ Υθλ

(θ)
0 )−∆t̂(Υrλ

(r)
0 ,Υθλ

(θ)
0 ), (2.41)

rp(λ;λ
(r)
0 ) = rmin + ∆r̂(r)(Υrλ+ Υrλ

(r)
0 ), (2.42)

θp(λ;λ
(θ)
0 ) = θmin + ∆θ̂(θ)(Υθλ+ Υθλ

(θ)
0 ), (2.43)

ϕp(λ;ϕ0, λ
(r)
0 , λ

(θ)
0 ) = ϕ0 + Υϕλ+ ∆ϕ̂(Υrλ+ Υrλ

(r)
0 ,Υθλ+ Υθλ

(θ)
0 )−∆ϕ̂(Υrλ

(r)
0 ,Υθλ

(θ)
0 ), (2.44)

where

∆t̂(Υrλ,Υθλ̃) ≡ ∆t̂(r)(Υrλ) + ∆t̂(θ)(Υθλ̃), (2.45)

∆ϕ̂(Υrλ,Υθλ̃) ≡ ∆ϕ̂(r)(Υrλ) + ∆ϕ̂(θ)(Υθλ̃), (2.46)

are the sums of the radial and polar dependencies of the time and azimuthal components, and the initial

orbital offsets λ
(r/θ)
0 are defined such that

∆r̂(r)(Υrλ
(r)
0 ) = r0 − rmin, sgn

(
sin Υrλ

(r)
0

)
= sgn (ur0) ,

∆θ̂(θ)(Υθλ
(θ)
0 ) = θ0 − θmin, sgn

(
sin Υθλ

(θ)
0

)
= sgn

(
uθ0
)
.

Here, sgn represents the sign function. The fiducial case is recovered by setting t0 = ϕ0 = λ
(r)
0 = λ

(θ)
0 = 0.

All bound geodesics can be described by Eqs. (2.41)-(2.44), though any geodesic that passes through a

simultaneous minimum in the radial and polar motion (i.e., rp = rmin and θp = θmin) can be mapped to a

fiducial geodesic with trivial offsets in t0 and ϕ0. As long as there exist integers k and n such that

λ
(θ)
0 − λ

(r)
0 = nΛr − kΛθ, (2.47)
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Figure 2.2: The projected radial and polar motion (solid blue lines) of three fiducial geodesics about a
Kerr black hole with spin a/M = 0.9 and M = 1. All three plots share the orbital parameters (e, xinc) =
(0.5, cosπ/4) but differ in their semi-latus rectum, which from left to right are given by p = 4.700, p = 4.630,
and p ≈ 4.607. The last (right) plot has a semi-latus rectum chosen exactly to produce a 1:2 resonance. The
dashed (red) lines outline the region rmin ≤ r ≤ rmax and θmin ≤ θ ≤ π− θmin. The motion for each geodesic
is plotted from λ = 0 to λ = 94. The non-resonant orbits (the left and center plots) gradually sample the
entire rθ-space, while the resonant orbit (right plot) follows a closed track through the poloidal plane.

is satisfied, then a simultaneous turning point will occur. Because non-resonant, eccentric, inclined geodesics

are ergodic, this simultaneous turning point always exists, and, therefore, non-resonant geodesics can be

described by the fiducial expressions in Eqs. (2.34)-(2.37), without loss of generality.

Section 2.5: Resonant geodesics

A geodesic is called a rθ-resonance when its radial and polar frequencies form a rational number ratio,

Ωr
Ωθ
≡ βr
βθ
, (2.48)

where βr and βθ are integers. Low-integer ratios (e.g., βr:βθ = 1:2, 2:3) are referred to as strong resonances,

while high-integer ratios (e.g., 10:11, 1:20) are known as weak resonances. Because the radial and polar

frequencies become commensurate during an rθ-resonance, the discrete frequency spectrum of rθ-resonant

geodesics reduces to

ωmN ≡ mΩϕ +NΩ, (2.49)

where Ω ≡ Ωr/βr = Ωθ/βθ and N ≡ kβθ + nβr.
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Figure 2.3: Projected motion for two 1:2 rθ-resonant geodesics around a Kerr black hole with spin a/M = 0.9
and mass M = 1. The left plots, like Fig. 2.2, depict the radial and polar motion of both geodesics in
the poloidal plane. The three-dimensional motion of these two geodesics are mapped separately in the
right-most plots. Both of the top and bottom plots depict orbits that share the same orbital parameters
(p, e, x) ≈ (4.607, 0.5, cosπ/4) and rθ-resonant frequencies. While they both start at rp(0) = rmin, they differ
in their initial polar positions and polar velocities. The solid (blue) lines in the top plots trace out a geodesic

with the initial offset λ
(θ)
0 = 0 (qθ0 = q0 = 0), while the solid (green) lines in the bottom plots represent a

geodesic with the initial offset λ
(θ)
0 = −3Λθ/8 (qθ0 = βθq0 = −3π/4). The motion for each plot is shown for

λ = 0 to λ = 47.
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Like non-resonant geodesics, resonant geodesics can also be described by Eqs. (2.41)-(2.44). However,

as shown in Figures 2.1 and 2.2, resonant and non-resonant geodesics are recognizably different. While

non-resonant geodesics are ergodic, rθ-resonances follow restricted paths through the poloidal plane. Fur-

thermore, these paths are sensitive to the initial conditions λ
(r)
0 and λ

(θ)
0 , as shown in Fig. 2.3. For a

resonance, the radial and polar motions oscillate with the shared Mino time frequency and period

Υ ≡ Υr

βr
=

Υθ

βθ
, Λ ≡ βrΛr = βθΛθ. (2.50)

For a simultaneous turning point to occur during a resonance, Eq. (2.47) reduces to the more stringent

restriction that λ
(θ)
0 −λ

(r)
0 = N ′Λ, for some integer N ′. This relationship does not hold true for most choices

of λ
(r)
0 and λ

(θ)
0 . Resonances, therefore, cannot always be mapped to a fiducial geodesic.

One can still simplify the geodesic equations for rθ-resonances by defining the initial resonant offset

λ0 ≡ λ(θ)
0 −λ

(r)
0 . Any two rθ-resonances that share the same value of λ0 (module Λ) can be mapped onto one

another. Taking advantage of this mapping, one can simplify the description of geodesic orbits by setting

λ
(r)
0 or λ

(θ)
0 to 0. In this work, I choose λ

(r)
0 = 0 so that λ0 = λ

(θ)
0 . Resonant orbits can then be described by

tp(λ;λ0) = Γλ+ ∆t̂(βrΥλ, βθΥλ+ βθΥλ0)−∆t̂(0, βθΥλ0) (2.51)

rp(λ;λ0) = rmin + ∆r̂(r)(βrΥλ), (2.52)

θp(λ;λ0) = θmin + ∆θ̂(θ)(βθΥλ+ βθΥλ0), (2.53)

ϕp(λ;λ0) = Υϕλ+ ∆ϕ̂(βrΥλ, βθΥλ+ βθΥλ0)−∆ϕ̂(0, βθΥλ0), (2.54)

without loss of generality. By varying the value of the initial resonant phase in the range 0 ≤ λ0 < Λ, one

can generate unique paths through the poloidal plane that are characterized by the same orbital parameters

and frequencies but that have different initial positions, as demonstrated in Fig. 2.3.

Section 2.6: Alternative parameterizations

While the Mino time parameterization is particularly useful for separating the radial and polar motions,

other parameterizations may be more elegant, such as the angle variable parameterization, or numerically

practical, such as the Darwin [79] variable parameterization. These two parameterizations have also been

used by a number of other authors [125, 93, 222, 224], and I will make use of both parameterizations in

this work. In the following section, I introduce both of these alternative choices for parameterizing geodesic

motion.
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2.6.1: Angle variable representation

Motion in Kerr spacetime is completely integrable and therefore can be represented within the action-

angle formalism. This formalism forms the basis for the two-timescale description of EMRI dynamics [125].

While in this work I am not focused on evolving EMRIs with a two-timescale expansion, the angle variables

still provide natural parameterizations for functions that depend on the librating radial and polar motion

of the particle. Other authors have also made use of this angle variable parameterization for presenting

gravitational self-force results [224] and I adopt a similar parameterization in this work.

For non-resonant motion, I define the angle variables

qr ≡ Υrλ, qθ ≡ Υθλ, (2.55)

and the initial orbital phases

qt0 ≡ t0, qr0 ≡ Υrλ
(r)
0 , qθ0 ≡ Υθλ

(θ)
0 , qϕ0 ≡ ϕ0. (2.56)

Functions that are periodic with respect to the Mino time periods, Λr and Λθ, can then be parameterized

in terms of the corresponding angle variables, qr and qθ, e.g.,

∆r̂(r)(Υrλ+ Υrλ
(r)
0 )→ ∆r̂(r)(qr + qr0), ∆θ̂(θ)(Υθλ+ Υθλ

(θ)
0 )→ ∆θ̂(θ)(qθ + qθ0), (2.57)

∆t̂(Υrλ+ Υrλ
(r)
0 ,Υθλ+ Υθλ

(θ)
0 )→ ∆t̂(qr + qr0, qθ + qθ0), (2.58)

∆ϕ̂(Υrλ+ Υrλ
(r)
0 ,Υθλ+ Υθλ

(θ)
0 )→ ∆ϕ̂(qr + qr0, qθ + qθ0). (2.59)

By parameterizing geodesic functions in terms of the angle variables, they now map to an invariant

two-torus, which I will refer to as T 2
rθ. This torus forms a section of configuration space for the radial and

polar motion of a particle on a generic geodesic. The geodesic flow on T 2
rθ then describes the evolution of

the particle through this configuration space, as discussed in Ref. [54]. Possible paths traced by this flow

are shown in Fig. 2.4. Starting these paths at different points on the torus is equivalent to choosing different

initial conditions for the particle’s geodesic motion. Given an infinite amount of Mino time, a particle

following a non-resonant geodesic will sample each point in T 2
rθ.

For rθ-resonant geodesics, the particle evolves through T 2
rθ on closed tracks, as seen in Fig. 2.5. Choosing

different initial positions on the torus can generate unique paths on T 2
rθ that never intersect. To sample all

of the points in T 2
rθ, one cannot follow the geodesic flow of a single geodesic orbit. One must consider an

infinite number of resonant orbits that share the same frequencies Υα but different initial offsets λ0.
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Figure 2.4: A geodesic with orbital parameters (a/M, p, e, x) = (0.9, 6, 0.5, cosπ/4) mapped to the two-torus
T 2
rθ spanned by qr + qr0 and qθ + qθ0. The solid (blue) line follows the path of a geodesic with fiducial initial

conditions (t0, qr0, qθ0, ϕ0) = (0, 0, 0, 0) on the Mino time interval λ ∈ [0, 4]. The dashed (red) line follows
the path of an geodesic with initial conditions (t0, qr0, qθ0, ϕ0) = (0, π, π/2, 0) on the Mino time interval
λ ∈ [0, 4]. Both orbits have radial and polar frequencies, Υr ' 1.879 and Υθ ' 2.997, and thus their tracks
have slope ' 1.595.

To better distinguish between different resonant geodesic orbits, or paths on the torus, I define an alternate

set of angle variables for resonances: the resonant angle variable q̄ and the initial resonant phase q̄0,

q̄ ≡ Υλ =
qr
βr

=
qθ
βθ
, q̄0 ≡ Υλ0 =

qθ0
βθ
− qr0
βr
, (2.60)

which better emphasize the coupled nature of the radial and polar periods and the sensitivity of resonant

orbits to the initial phase λ0.2 Functions that are parameterized in terms of these resonant variables provide

alternative maps to T 2
rθ, which is illustrated in Fig. 2.5. Through this new mapping, particles evolve on flows

of constant q̄0 in T 2
rθ.

I will denote functions that are re-parameterized in terms of these resonant variables with a bar, so that

∆r̂(r)(Υrλ) → ∆r̄(r)(q̄) ≡ ∆r̂(r)(βr q̄), (2.61)

θ̂(θ)(Υθλ+ Υθλ
(θ)
0 ) → ∆θ̄(θ)(q̄ + q̄0) ≡ ∆θ̂(θ)(βθ q̄ + βθ q̄0), (2.62)

∆t̂(Υrλ,Υθλ+ Υθλ0) → ∆t̄(q̄, q̄ + q̄0) ≡ ∆t̂(βr q̄, βθ q̄ + βθ q̄0), (2.63)

∆ϕ̂(Υrλ,Υθλ+ Υθλ0) → ∆ϕ̄(q̄, q̄ + q̄0) ≡ ∆ϕ̂(βr q̄, βθ q̄ + βθ q̄0). (2.64)

2Note that q̄0 is similar to the resonant phase parameter q⊥ defined in Ref. [220].
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Figure 2.5: The left panel plots geodesics with orbital parameters (a/M, p, e, x) = (0.9, 4.607, 0.5, cosπ/4)
on the two-torus T 2

rθ spanned by qr + qr0 and qθ + qθ0, like in Fig. 2.4. The orbital parameters are chosen
to generate a 1:2 rθ-resonance, i.e., Υr/Υθ = 1/2. The solid (blue) line follows the path of a geodesic with
the initial resonant phase q0 = 0 on the Mino time interval λ ∈ [0,Λ], where Λ = 4.494 is the resonant Mino
time period. The dashed (red) line follows the path of a geodesic with the initial resonant phase q̄0 = π/2
(θp(λ = 0) = π − θmin) on the Mino time interval λ ∈ [0,Λ]. One can see that each orbit samples a unique
but limited track of points on the two-torus. The right panel plots the same orbits shown on the left, but
now these orbits are mapped to the two-torus using the resonant angle variables q̄ and q̄0. Each unique orbit
forms a different horizontal line on the plot.

These angle variable descriptions will be particularly useful for calculating and visualizing the scalar self-force

in later chapters.

2.6.2: Darwin variable parameterization

Rather than using angle variables based on an action-angle formalism, one can instead introduce the

Darwin-like [79] angular coordinates ψ and χ [205, 92]

řp(ψ) =
pM

1 + e cosψ
, cos θ̌p(χ) = z− cosχ. (2.65)

Equations (2.26) and (2.65) may be combined to find differential equations relating ψ and χ to λ, or vice

versa with functions λ = λ(r)(ψ) and λ = λ(θ)(χ) satisfying

dλ(r)

dψ
=
a(1− e2) [(p− p4) + e(p− p4 cosψ)]

−1/2

Mβ1/2 [(p− p3)− e(p+ p3 cosψ)]
1/2

≡ P (r)(ψ), (2.66)

dλ(θ)

dχ
=
[
β(z2

+ − z2
− cos2 χ)

]−1/2 ≡ P (θ)(χ). (2.67)
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Figure 2.6: A geodesic with orbital parameters (a/M, p, e, ι) = (0.95, 5, 0.6, 1.04954) mapped to the two-torus
T 2
rθ now spanned by the rotational coordinates ψ and χ. The solid (blue) line traces an orbit that begins at

Mino time λ = 0 with initial position (rp, θp) = (rmin, 1.7409) and is terminated at λ = 6. This orbit follows

from choosing λ
(r)
0 = 0 and λ

(θ)
0 = 0.587813 in Eqs. (2.68) and (2.69). Note by choosing these coordinates for

the radial and polar section of configuration space, geodesic flow along the torus no longer follows straight
lines.

The definitions of ψ and χ in (2.65) are made to improve the behavior of the differential equations for the

geodesics at what would otherwise be turning points for r and θ. The solutions for λ(r) and λ(θ) can be

expressed as integrals

λ = λ(r)(ψ) =

∫ ψ

0

P (r)(ψ′) dψ′ + λ
(r)
0 , (2.68)

λ = λ(θ)(χ) =

∫ χ

0

P (θ)(χ′) dχ′ + λ
(θ)
0 , (2.69)

where λ
(r)
0 and λ

(θ)
0 are integration constants, with λ

(r)
0 −λ

(θ)
0 6= 0 providing initial conditions for orbits that

do not simultaneously pass through r = rmin and θ = θmax. The effect of choosing a non-zero value for λ
(θ)
0 ,

for example, is demonstrated in Fig. 2.6. The periods of motion in r and θ measured in Mino time are then

given by

Λr = λ(r)(2π)− λ(r)
0 , Λθ = λ(θ)(2π)− λ(θ)

0 . (2.70)

The integrals in Eqs. (2.68) and (2.69) may be re-expressed in terms of elliptic integrals [92, 108] and thereby

regarded as solved.

While these Darwin-like parameters provide simple parameterizations of the radial and polar motion,
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these variables do not possess a simple, linear relation during resonances, as opposed to the angle variables.

This becomes particularly clear in Fig. 2.6, which maps geodesics to T 2
rθ with the Darwin variables. With

ψ and χ as coordinates for the two-torus, the geodesic flow no longer has constant slope, but oscillates

due to the nontrivial interdependence of ψ, χ, and λ. While these are still valid parameters to use during

resonances, I will rely on the Mino time or angle variable parameterizations when exploring the impact

of resonances on perturbations in Kerr spacetime. The Darwin parameters, on the other hand, provide a

convenient parameterization for numerically integrating the geodesic equations, and will be essential to the

methods outlined in the next section.

Section 2.7: Solving Kerr geodesics numerically

As an alternative to using initial value integration, or special functions [92, 108], I present a spectral

(Fourier) integration technique to find Kerr geodesics numerically. These methods are based on the spectral

methods developed in Ref. [130] for calculations in Schwarzschild spacetime. The following work was first

started by Osburn [175], then published by myself, Osburn, and Evans in Ref. [172]. I have subsequently

incorporated the methods outlined below into the KerrGeodesics package of the Black Hole Perturbation

Toolkit [1].

2.7.1: Spectral integration methods

First consider the dependence of λ on Darwin angles ψ and χ. The integration for λ(r)(ψ) is given as

an example, but the same approach applies to λ(θ)(χ). The function P (r)(ψ), given by Eq. (2.66), can be

written as a cosine series because it is smooth, even, and periodic

P (r)(ψ) =

∞∑
n=0

P̃(r)
n cos(nψ). (2.71)

Because P (r) is C∞, Eq. (2.71) converges exponentially with the number of harmonics, and for a given

accuracy may be truncated at some n = Nr − 1.

Fourier series coefficients like P̃(r)
n are derived from integrals, so computing many of these by, for example,

adaptive stepsize integration is no improvement over simply integrating Eq. (2.66) itself. Instead, an efficient

alternative is to use the discrete Fourier transform (DFT). To do so, one uses Eq. (2.66) to sample P (r)(ψ) at

Nr evenly-spaced points ψj . The Nr sampled values, P (r)(ψj), are the DFT of Nr Fourier coefficients, P(r)
n .

Up to a normalization factor, the DFT coefficients (with no tilde) converge exponentially to the Fourier

series coefficients (with tilde) as the sample number Nr increases. Since P (r) is even, one can discretely
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sample the arc of half the radial motion and represent the function with the type-I discrete cosine transform

(DCT-I)

ψı ≡
ıπ

Nr − 1
, ı ∈ 0, 1, . . . , Nr − 1, (2.72)

P(r)
n =

2

Nr − 1

[
1

2
P (r)(0) +

1

2
(−1)nP (r)(π) +

Nr−2∑
ı=1

P (r)(ψı) cos (nψı)

]
, (2.73)

P (r)(ψ) =
1

2
P(r)

0 +
1

2
P(r)
Nr−1 cos [(Nr − 1)ψ] +

Nr−2∑
n=1

P(r)
n cos (nψ) . (2.74)

The DFT (or in this case DCT) may be computed numerically using a fast Fourier transform (FFT) algo-

rithm, efficiently finding all of the Fourier coefficients P(r)
n . The angular sampling of P (θ)(χ) is made over

Nθ equally-spaced points. The required radial and angular sample numbers are independent and subject

only to desired numerical accuracy goals.

Returning to the radial motion example, once P (r)(ψ) is adequately represented, then λ(r) is found by

substituting (2.74) into (2.68) and integrating term-by-term

λ(r)(ψ;λ
(r)
0 ) =

1

2
ψP(r)

0 +
1

2
P(r)
Nr−1

sin [(Nr − 1)ψ]

(Nr − 1)
+

Nr−2∑
n=1

P(r)
n

sin (nψ)

n
+ λ

(r)
0 , (2.75)

thus obtaining an expression that can be evaluated at any ψ. A similar result is found for λ(θ),

λ(θ)(χ;λ
(θ)
0 ) =

1

2
χP(θ)

0 +
1

2
P(θ)
Nθ−1

sin [(Nθ − 1)χ]

(Nθ − 1)
+

Nθ−2∑
k=1

P(θ)
k

sin (kχ)

n
+ λ

(θ)
0 , (2.76)

where

P(θ)
k =

2

Nθ − 1

[
1

2
P (θ)(0) +

1

2
(−1)nP (θ)(π) +

Nθ−2∑
=1

P (θ)(χ) cos (nχ)]

]
. (2.77)

The integration constants λ
(r)
0 and λ

(θ)
0 are identical to the offsets defined in Eqs. (2.68) and (2.69). I,

therefore, define the fiducial Mino time functions λ̂(r)(ψ) ≡ λ(r)(ψ; 0) and λ̂(θ)(χ) ≡ λ(θ)(χ; 0) for later

convenience. The Mino time periods, Λr and Λθ, are related to the leading Fourier coefficients

Λr = πP(r)
0 , Λθ = πP(θ)

0 . (2.78)

Taken all together, these solutions for λ(r)(ψ) and λ(θ)(χ) end up accurately relating motion in r and θ with

λ. This approach models that found in Sec. II of Ref. [130].

Next consider the motion in t and ϕ. With Eqs. (2.12) and (2.15) re-expressed in terms of Mino time,
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the periodicity of Eqs. (2.18)-(2.19), and the ability to express those functions in terms of λ, suggests a

Mino-time Fourier decomposition of Vtr, Vtθ, Vϕr, and Vϕθ [92]

Vϕr(rp(λ)) =

+∞∑
n=−∞

℘(r)
n e−inΥrλ, Vϕθ(θp(λ)) =

+∞∑
k=−∞

℘
(θ)
k e−ikΥθλ, (2.79)

Vtr(rp(λ)) =

+∞∑
n=−∞

T (r)
n e−inΥrλ, Vtθ(θp(λ)) =

+∞∑
k=−∞

T (θ)
k e−ikΥθλ, (2.80)

where, in keeping with the lefthand sides being real functions, the coefficients will satisfy crossing relations

(e.g., T (r)
−n = T (r)∗

n ). As before, the series might be truncated (here with some upper and lower bounds on n

and k). The Fourier coefficients are found from integrals over λ,

T (r)
n =

1

Λr

∫ Λr

0

Vtr e
inΥrλ dλ, T (θ)

k =
1

Λθ

∫ Λθ

0

Vtθ e
ikΥθλ dλ, (2.81)

℘(r)
n =

1

Λr

∫ Λr

0

Vϕr e
inΥrλ dλ, ℘

(θ)
k =

1

Λθ

∫ Λθ

0

Vϕθ e
ikΥθλ dλ. (2.82)

If one introduces sufficiently-fine, evenly-spaced divisions of the respective periods in λ, each of the

Fourier coefficient integrals, like Eq. (2.81), could be accurately replaced with a finite sum. Unfortunately,

the functions being integrated depend on rp or θp (e.g., T (r)(r) above), which are known from the previous

analysis as functions sampled on evenly-spaced grids in ψ or χ. To construct radial and polar functions that

are evenly sampled in Mino time, one must first solve for ψ and χ as functions of λ. One straightforward

method is to numerically invert Eqs. (2.75) and (2.76) via root-finding methods. This method grows increas-

ingly inefficient, however, as the number of summands in Eqs. (2.75) and (2.76) grows. Instead, one can

solve for ψ and χ as functions of λ using a discrete Fourier sum.

For example, ψ(λ) can be constructed by integrating the reciprocal of Eq. (2.66),

ψ(λ;λ
(r)
0 ) =

∫ λ

λ
(r)
0

dλ′

P (r)′
. (2.83)

Because P (r) and its reciprocal are periodic with respect to ψ, then P (r) and its reciprocal must also be

periodic with respect to λ, based on the form of Eq. (2.75). The reciprocal of P (r) is then well-represented

by the Fourier series

(
P (r)

)−1

=

∞∑
n=−∞

p(r)
n e−inΥrλ, p(r)

n =
1

Λr

∫ Λr

0

(
P (r)

)−1

einΥrλdλ. (2.84)

Of course, P (r) is only known as a function of ψ. With a change of coordinates the Fourier coefficients take
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the more amenable form,

p(r)
n (λ

(r)
0 ) =

1

Λr

∫ 2π

0

einΥrλ
(r)(ψ;λ

(r)
0 ) dψ, (2.85)

where I have made the dependence on the offset λ
(r)
0 explicit. Recognizing, based on Eq. (2.75), that

p
(r)
n (λ

(r)
0 ) = p

(r)
n (0)e−inΥλ

(r)
0 , I can proceed using just the fiducial values p̂

(r)
n ≡ p

(r)
n (0). As argued in

Sec. III.B.3 of Ref. [130], exponentially-convergent approximations can still be made for this sort of smooth

reparameterization, and the integral can be replaced with a finite sum on an evenly-spaced grid in ψ,

ψı ≡
2ıπ

Nr
, ı ∈ 0, 1, . . . , Nr − 1, (2.86)

p̂(r)
n '

Υr

Nr

Nr−1∑
ı=0

einΥrλ̂
(r)(ψı). (2.87)

The coefficients p̂
(r)
n turn out to be purely real, because λ̂(r)(ψ) is odd, reducing Eq. (2.87) to a discrete

cosine series

p̂(r)
n '

2Υr

Nr

1

2
+ (−1)n

1

2
+

Nr/2−1∑
ı=1

cos
(
nΥrλ̂

(r)(ψı)
) . (2.88)

Because Eq. (2.87) is not evaluated on an evenly-spaced, periodic grid in λ, it does not represent a DCT

sum (the argument of the cosine is nonlinear in ψ). Accordingly, the coefficients cannot be computed with

the O(N logN) FFT algorithm, but instead are evaluated directly, which is an O(N2) process. As before,

by combining Eqs. (2.83) and (2.84), and integrating term-by-term, one arrives at a discrete representation

for ψ(λ),

ψ(λ;λ
(r)
0 ) = ψ̂

(
λ− λ(r)

0

)
, (2.89)

ψ̂(λ) ' Υrλ+ 2

Nr/2∑
n=1

p̂
(r)
n

nΥr
sin (nΥrλ) , (2.90)

where I have used the fact that p̂
(r)
0 = Υr and p̂

(r)
n are real. The Mino time dependence of χ can be found

through an analogous process. A hat (e.g., ψ̂) implies fiducial initial conditions λ
(r)
0 = λ

(θ)
0 = 0.

With new sampling in terms of λ, Eqs. (2.81)-(2.82) can then be replaced by exponentially-convergent

sums

λj =
Λr/θ

Nr/θ
, j ∈ 0, 1, . . . , Nr/θ − 1, (2.91)
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T̂ (r)
n =

Υr

Nr

Nr−1∑
ı=0

Vtr

[
řp(ψ̂(λı))

]
einΥrλı , T̂ (θ)

k =
Υθ

Nθ

Nθ−1∑
=0

Vtθ
[
θ̌p(χ(λ))

]
eikΥθλ , (2.92)

℘̂(r)
n =

Υr

Nr

Nr−1∑
ı=0

Vϕr [řp(ψ(λı))] e
inΥrλı , ℘̂

(θ)
k =

Υθ

Nθ

Nθ−1∑
=0

Vϕθ
[
θ̌p(χ(λ))

]
eikΥθλ . (2.93)

Once the Fourier coefficients are known, the average λ accumulation rates, Γ and Υϕ, are found from the

leading coefficients

Γ = T̂ (r)
0 + T̂ (θ)

0 , Υϕ = ℘̂
(r)
0 + ℘̂

(θ)
0 . (2.94)

Alternatively, rather than resampling to produce to an evenly-spaced grid in λ, one can instead convert

the integrals in Eqs. (2.81) and (2.82) and integrate over ψ or χ. For example,

T̂ (r)
n =

1

Λr

∫ 2π

0

T (r) P (r) einΥrλ̂
(r)(ψ) dψ, (2.95)

T̂ (θ)
k =

1

Λθ

∫ 2π

0

T (θ) P (θ) eikΥθλ̂
(θ)(χ) dχ, (2.96)

with similar expressions for ℘̂
(r)
n and ℘̂

(θ)
k . Once again, I assume fiducial initial conditions. Despite the

transformations, all of these integrands are still C∞ periodic functions of (now) ψ or χ. As discussed above,

these integrals can be replaced with a finite, exponentially-convergent sum over an evenly-sampled grid in

the new coordinate (either ψ or χ),

ψı ≡
2ıπ

Nr
, ı ∈ 0, 1, . . . , Nr − 1, (2.97)

T̂ (r)
n ' Υr

Nr

Nr−1∑
ı=0

T (r)(ψı)P
(r)(ψı) e

inΥrλ̂
(r)(ψı), (2.98)

χ ≡
2π

Nθ
,  ∈ 0, 1, . . . , Nθ − 1, (2.99)

T̂ (θ)
k ' Υθ

Nθ

Nθ−1∑
=0

T (θ)(χ)P
(θ)(χ) e

ikΥθλ̂
(θ)(χ). (2.100)

Similar expressions hold for ℘̂
(r)
n and ℘̂

(θ)
k . The remaining parts that determine the advance of t and ϕ in

Eqs. (2.34) and (2.37), the periodic functions ∆t̂p and ∆ϕ̂p, may be expressed as functions of λ by integrating

Eqs. (2.79)-(2.80) term-by-term

∆t̂(r)(Υrλ) ' 2 Re

Nr/2∑
n=1

iT̂ (r)
n

nΥr
e−inΥrλ

 , ∆t̂(θ)(Υθλ) ' 2 Re

Nθ/2∑
k=1

iT̂ (θ)
k

kΥθ
e−ikΥθλ

 , (2.101)
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∆ϕ̂(r)(Υrλ) ' 2 Re

Nr/2∑
n=1

i℘̂
(r)
n

nΥr
e−inΥrλ

 , ∆ϕ̂(θ)(Υθλ) ' 2 Re

Nθ/2∑
k=1

i℘̂
(θ)
k

kΥθ
e−ikΥθλ

 . (2.102)

Here Nr and Nθ are assumed to be even and the restricted range of the sums reflects use of the crossing

relations. Lastly, the periodic functions ∆r̂ and ∆θ̂ in Eqs. (2.35) and (2.36) take the form

∆r̂(Υrλ) = řp(ψ̂(λ))− rmin, ∆θ̂(Υθλ) = θ̌p(χ̂(λ))− θmin, (2.103)

and the the geodesic equations are considered solved.

2.7.2: Hybrid method

The spectral methods outlined above are best for numerical calculations performed at double precision.

For higher precision calculations performed in Mathematica, the sampling density and number of Fourier

coefficients can dramatically increase. With a number of the spectral calculations scaling as N2, these addi-

tional terms will reduce the efficiency of spectral integration. It is advantageous to instead use Mathematica’s

own built-in special functions library to evaluate the analytic expressions for the geodesic equations in terms

of Elliptic and Jacobi functions [108]. The drawback, however, of using these special functions is that they

take longer to evaluate than a Fourier sum with a modest number of terms, which particularly becomes an

issue if one plans on repeatedly sampling these functions throughout the course of a calculation. Thereforem

I introduce a “hybrid” approach, where one initially samples the geodesic functions using analytic special

functions, then stores this data using either discrete cosine or discrete sine transforms. For orbits with

lower eccentricities and inclinations, Fourier interpolations of these discrete transforms can be much faster

to evaluate than Mathematica’s special functions.

It is relatively straightforward to construct discrete Fourier approximations of ∆t̂, ∆r̂, ∆θ̂, and ∆ϕ̂, if

one is given their analytic forms. First consider the radial and polar motion. The oscillatory components

∆r̂ and ∆θ̂ are even functions of λ and well represented by the DCT-I

λj =
Λr/θ

2(Nr/θ − 1)
, j ∈ 0, 1, . . . , Nr/θ − 1, (2.104)

∆r̂(Υrλ) =
1

2
p

(r)
0 +

1

2
p

(r)
Nr−1 cos [(Nr − 1)Υrλ] +

Nr−2∑
n=1

p(r)
n cos(nΥrλ), (2.105)

p(r)
n =

2

Nr − 1

[
1

2
∆r̂(0) +

1

2
(−1)n∆r̂(π) +

Nr−2∑
ı=1

∆r̂(Υrλı) cos(nΥrλı)

]
, (2.106)

∆θ̂(Υθλ) =
1

2
p

(θ)
0 +

1

2
p

(θ)
Nθ−1 cos [(Nθ − 1)Υθλ] +

Nθ−2∑
k=1

p
(θ)
k cos(kΥθλ), (2.107)
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Figure 2.7: Plots of the time it takes to evaluate geodesic solutions with two different numerical algorithms.
The plot on the left evaluates solutions (tp(λ), rp(λ), θp(λ), ϕp(λ)) for a fiducial geodesic with orbital pa-
rameters (a/M, p, e, xinc) = (0.9, 10, 0.4, 0.5). The right plot evaluates solutions for a fiducial geodesic with
orbital parameters (a/M, p, e, xinc) = (0.9, 10, 0.8, 0.5). The (black) dots refer to the time it takes to evaluate
the geodesic solutions using the special function methods of Ref. [108]. The (red) triangles refer to the time
it takes to evaluate the solutions using the DFT methods described in this section. All of the evaluation
times Teval are normalized by the shortest evaluation time Tmin.

p
(θ)
k =

2

Nθ − 1

[
1

2
∆θ̂(0) +

1

2
(−1)k∆θ̂(π) +

Nθ−2∑
=1

∆θ̂(Υθλ) cos(kΥθλ)

]
. (2.108)

On the other hand, the oscillatory functions ∆t̂ and ∆ϕ̂ are odd, and well represented by the discrete sine

transform of type I (DST-I). For example,

λj =
Λr/θ

2(Nr/θ − 1)
, j ∈ 0, 1, . . . , Nr/θ − 1, (2.109)

∆t̂(r)(Υrλ) =

Nr−1∑
n=1

t(r)n sin(nΥrλ), t(r)n =
2

Nr

Nr−1∑
ı=1

∆t̂(r)(λı) sin(nΥrλı), (2.110)

∆t̂(θ)(Υθλ) =

Nθ−1∑
k=1

t
(θ)
k sin(kΥθλ), t

(θ)
k =

2

Nθ

Nθ−1∑
=1

∆t̂(θ)(λ) sin(kΥθλ), (2.111)

and similarly for ∆ϕ̂(r) and ∆ϕ̂(θ).

To demonstrate the advantage of using these discrete transforms, consider a fiducial geodesic with pa-

rameters (a/M, p, e, xinc) = (0.9, 10, 0.4, 0.5). I first evaluate the geodesic functions tp(λ), rp(λ), θp(λ), and

ϕp(λ) at 256 different values of Mino time using Mathematica’s library of special functions. I repeat this

process at various levels of numerical precision. The time it takes to perform these evaluations is given by

the (black) dots in the left plot of Fig. 2.7. I then repeat these evaluations, but instead sample tp(λ), rp(λ),

θp(λ), and ϕp(λ) using their discrete Fourier representations, provided above. The time it takes to complete

this second set of evaluations is given by the (red) triangles in the left plot of Fig. 2.7. Comparing these two
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processes, the discrete Fourier transforms evaluate more rapidly than the special functions, though it appears

that at higher precisions the efficiency of the Fourier transforms over the special functions diminishes. This

is because, at higher precisions, the Fourier series require a growing amount of summands and, consequently,

take more time to evaluate.

This can also be seen if one considers a geodesic with a higher eccentricity, which will require more terms

in the Fourier representations of the radial motion. In right plot of Fig. 2.7, I repeat the previous analysis

for a new fiducial geodesic with orbital parameters (a/M, p, e, xinc) = (0.9, 10, 0.8, 0.5). Once again, the

(black) dots refer to the evaluation time using the Mathematica library of special functions, while the (red)

dot triangles refer to the evaluation time using discrete Fourier transforms. When performing evaluations

with numerical precisions & 175, the special functions become more efficient to evaluate. Decreasing p

and increasing xinc also reduces the efficiency of this “hybrid” approach. Nonetheless, for moderate orbital

parameters, the hybrid scheme is another useful tool for numerically storing and evaluating geodesic.
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CHAPTER 3: Radiation, radiation-reaction, and self-forces

Section 3.1: Chapter overview

While geodesics provide an adequate approximation for the short-term motion of an EMRI, gravitational

radiation must be taken into account to model an EMRI’s long-term evolution. As discussed in Sec. 1.2.3, as

an EMRI evolves, it radiates gravitational waves that act back on the small body, producing a gravitational

self-force that perturbs the small body’s motion and drives its gradual inspiral. For this dissertation work,

I consider the analogous scalar self-force problem to develop and test new methods for modeling these

radiation effects, specifically for EMRIs with Kerr primaries. However, before introducing this scalar model,

it is important to first review the gravitational problem that motivates it.

Gravitational radiation—waves propagating through the ever-evolving metrical properties of space and

time—is a complicated and, for many, unintuitive phenomenon. Even Einstein and his contemporaries were

skeptical that gravitational waves were a measurable, physical effect. But radiation is an essential attribute

of other dynamical fields. The radiation of light by electromagnetic fields has been studied and measured

for over 150 years [159]. From this perspective, the appearance of gravitational radiation in the classical

theory of general relativity is actually quite natural. Nonetheless, describing the gravitational radiation of

two-body systems in general relativity remains a formidable task.

It is, therefore, instructive to turn towards classical electrodynamics, one of physics’ most mature and

successful classical field theories, to develop some intuition for radiative systems. By considering different

electromagnetic examples, I will review the source of radiative behavior in classical fields and how this

radiation affects the dynamics of radiative systems, particularly through the concepts of radiation-reaction

and self-forces. Using the tools and intuition developed for electromagnetism, I will then discuss the role of

gravitational radiation for EMRI dynamics, particularly through a mechanism known as the gravitational

self-force. For more detailed discussions of radiation, radiation-reaction, and self-forces, particularly in the

case of EMRIs, I refer the reader to Refs. [30, 180, 41].

Section 3.2: Electromagnetic radiation, radiation-reaction, and self-force

Classic examples of electromagnetic radiation include the Bremsstrahlung radiation produced by braking

electrons approaching atomic nuclei or accelerating charged particles traveling in cyclotrons (leading to what

42



is also known as cyclotron radiation). Assuming these charges are moving at non-relativistic speeds, the

power P radiated by these systems is given by the Larmor formula (in units c = 1),

P =
2

3
|d̈|2, (3.1)

where d is the electric dipole moment of the system and d̈ ≡ d2d/dt2. Simplifying to the case of a single

electron with charge e, position xe, and dipole moment d = exe,

P =
2

3
e2|a|2, (3.2)

where a = ẍe is the charge’s acceleration. For students of electrodynamics, the simple take-away of the

Larmor formula is that accelerating charges radiate, while inertial charges do not.

But this radiation also has a subtle secondary consequence that is often ignored in introductory studies.

As the charge emits electromagnetic waves, these waves will carry energy and momentum away from the

system. For energy to be conserved, this energy must come at the expense of the kinetic energy of the

charge, thus altering its motion. This process, in which an object’s motion is affected by its own radiation,

is known as radiation-reaction. A famous consequence of radiation-reaction is that the two-body problem in

classical electrodynamics is unstable.1 An electron orbiting an atomic nucleus will radiate away its orbital

energy and eventually “fall” into the nucleus.

But what if the electron, rather than orbiting an atomic nucleus, is orbiting a black hole? Do these

same concepts of radiation and radiation-reaction apply in curved spacetime? As discussed in Sec. 1.2,

according to general relativity and the equivalence principle, in the electron’s local frame spacetime appears

flat and the charge will not measure any acceleration due to gravity. If only external forces and fields source

radiation, like in a globally flat spacetime, then the electron will not radiate. On the other hand, a distant

observer will notice that the electron’s motion deviates from a straight line and will deduce that the electron

is accelerating. If Eq. (3.2) holds true in their reference frame, then the particle should be radiating. DeWitt

and Brehme investigated this supposed conflict in 1960 [83] and found that the electron will in fact emit

a type of “gravito-bremsstrahlung” radiation. While spacetime appears “flat” in the local neighborhood of

the electron, the global electromagnetic field, much like a distant observer, “sees” the curvature of spacetime

and its effect on the electron’s motion.

To better understand this radiative behavior in curved spacetime, I will first review the source of electro-

1Of course, many atoms are stable and the instability predicted by the Larmor formula emphasizes the breakdown of classical
mechanics in atomic models and the need for quantum mechanics at small scales. At large scales, however, this radiative
behavior holds.
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magnetic radiation in flat spacetime, and how one can calculate the resulting radiation-reaction effects and

self-forces experienced by a charge due to its own radiation. I will then review how these results generalize

to curved spacetime.

3.2.1: Electromagnetic radiation in flat-space

Consider an electron with charge e moving through a flat spacetime with Minkowski metric ηµν . The

electron moves along its worldline xµe (τ) with four-velocity uµ ≡ dxµe /dτ , where τ is its proper time. Its

electromagnetic field is encoded in its four-potential AµEM, which in Lorenz gauge (∂µA
µ
EM = 0) satisfies

∂α∂αA
µ
EM = −4πjµ, (3.3)

where jµ is the current density of the particle

jµ(x) = e

∫
uµ(τ ′)δ(4) (x, xe(τ

′)) dτ ′, (3.4)

and δ(4) (x, x′) is the invariant four-dimensional Dirac function. Note that in a generic spacetime with

metric gµν , δ(4)(x, x′) = [−det(g)]
−1/2

δ(4)(x − x′), where det(g) is the determinant of the metric gµν , and

δ(4)(x− x′) = δ(x0 − x′0)δ(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3). Importantly, δ(4) (x, x′) differs from δ(4) (x− x′)

if det(g) 6= −1. In Minkowski spacetime det(η) = −1. In its non-covariant form, Eq. (3.4) reduces to

jµ(t,x) = e
uµ

u0
δ(3)(x− xe(t)), (3.5)

where xα = (t,x). While there are many solutions to Eq. (3.3), the physically relevant solution is found by

integrating the source jµ over the retarded Green’s function Gα+β′ , which, in Minkowski spacetime, satisfies

the inhomogeneous wave equation

∂α∂αG
µ
+ ν′(x, x

′) = −4πδµν′ δ
(4)(x, x′), (3.6)

where δµν′ is the Kronecker delta. Once again relying on non-covariant notation, the retarded Green’s

function in Minkowski spacetime takes the form

Gµ
+ ν′(x, x

′) = δµν′
δ(t− t′+)

|x− x′|
, (3.7)
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where t± ≡ t ∓ |x − x′| is the retarded/advanced time coordinate. Consequently, when one evaluates the

electromagnetic four-potential

Aµret(x) =

∫
Gµ

+ ν′(x, x
′)jµ

′
(x′) d4x′, (3.8)

=

[
euα(t)

ηαβuβ(xα − xαe (t))

]
t=t+

, (3.9)

all functions of time are evaluated at the retarded time t+. Thus, Eq. (3.9) reduces to the classical Liénard-

Wiechert potential

A0
ret(x

α) ≡ Φ+(t,x) =

[
e

(1− v · n)r

]
t=t+

, (3.10)

Airet(x
α) ≡ A+(t,x) =

[
ev

(1− v · n)r

]
t=t+

, (3.11)

where v ≡ dxe/dt, r ≡ x− xe, r ≡ |r|, n ≡ r/r, and Latin indices are spatial and run from 1 to 3.

The associated electromagnetic field is captured by the retarded field-strength tensor

Fαβret = ∂αAβret − ∂βAαret =

{
e

uµ(xµ − xµe )

d

dτ

[
(xα − xαe )uβ − (xβ − xβe )uα

uµ(xµ − xµe )

]}
t=t+

, (3.12)

which is related to the electric field Ei = F 0i
ret and magnetic field Bi = − 1

2εijkF
jk
ret, where εijk is the standard

Levi-Cevita symbol. If the charge is moving with a constant velocity v, then one can Lorentz boost to a

frame where v = 0. In this frame, the particle produces a static Coulomb electric field

E(t,x) = −∇Φ+(t,x)− ∂tA+(t,x) =
e

r2
n, (3.13)

and vanishing magnetic field

B(t,x) = ∇×A+(t,x) = 0. (3.14)

An inertial observer, therefore, will not measure any radiation from the system. Thus, if one can construct

a global inertial frame where the particle and its field are not accelerating, then the system will not radiate.

When the particle does accelerate, its field experiences a delay as it responds to the change in the

particle’s motion. This ‘delay,’ which is encoded in the potential through the retarded time t+, gives rise to

an additional r−1 term that depends on the particle’s acceleration v̇ ≡ dv/dt

E(t,x) = e

[
n− v

γ2(1− v · n)3r2

]
t=t+

+ e

[
n× [(n− v)× v̇]

(1− v · n)3r

]
t=t+

, (3.15)
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B(t,x) = [n×E]t=t+ , (3.16)

where the Lorentz factor γ ≡ u0. A Lorentz boost can, once again, reduce the first term in Eq. 3.15 to the

static r−2 Coulomb field. The r−1 term, however, does not vanish. Since this term does not exist in the

static case, it must constitute the radiative contribution to the field, which is clear from the r−1 dependence.

A similar result is found for the magnetic field of the charged particle based on Eq. 3.16. The radiative

terms are direct consequences of the field’s dependence on the retarded time. Hence, radiation results from

a particle’s electromagnetic field responding to changes in the particle’s motion.

3.2.2: Electromagnetic self-force in flat-space

Now assume that the electron is accelerated by an external electromagnetic field Fαβext , which interacts

with the charge through the Lorentz force Fαext = eFαβextuβ . As discussed at the beginning of this section, a

distant observer will measure the radiative power of the accelerating electron and deduce that it must be

losing energy. While this radiation can only be observed far away from the electron, the electron still reacts to

these radiative losses and its accelerated motion will deviate from its Lorentz-forced trajectory. Because the

electron is already interacting with the external electromagnetic field via the Lorentz force, this additional

acceleration must be sourced by a type of self-force as the electron interacts with its own (radiative) field.

The equation of motion for the electron can, then, be described by

µuα∇αuβ = F βext + F βESF, (3.17)

where FµESF is the particle’s own electromagnetic self-force. One might expect that FµESF should be similar in

form to the Lorentz force, with the external field replaced by the particle’s interaction with its own retarded

electromagnetic field

FµESF = Fµret = eFµνretuν , (3.18)

where F ret
µν ≡ ∂µA

ret
ν − ∂νAret

µ and Aµret is the charge’s retarded four-potential, given by Eq. (3.9). The self-

force, however, must be evaluated at the location of the particle xαe , where the retarded potential diverges

to due to the r−2 and r−1 terms, given by Eqs. (3.15) and (3.16). Using the retarded field thus gives a

physically meaningless result.

While these divergences may seem disconcerting, this problem is not new. Even the static Coulomb field

diverges at the location of the electron. In classical electrostatics, this suggests that the electron possesses in-

finite electrostatic self-energy, which is clearly not true because the electron possesses a measurable and finite
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mass. This divergence is ultimately an artifact of approximating charges as point-particles and describing

their structure with the Dirac-delta source term in Eqs. (3.3) and (3.4). One approach for curing these diver-

gences is to give the electron some extended structure. This leads to the definition for the classical electron

radius re ≡ e2/(mc2). Adding additional structure, however, just adds another layer of approximation, since

the internal composition of an electron is not actually known and in a classical, non-quantum description is

inherently flawed. Even in quantum field theory, which more appropriately describes electromagnetic effects

on scales ∼ O(re), the self-energy of the electron is only made finite through the delicate process of mass

renormalization.

Consequently, these divergences are not related to the radiation field of the electron, but the mathematical

framework used to model the particle’s internal structure. For instance, the leading-order r−2 divergence

is produced by the static field and should not contribute to the self-force, because static particles do not

radiate. One can, therefore, separate the electron’s electromagnetic potential into two different components:

a singular field AαS tied to the fundamental, static structure of the particle and a regular field AαR that

encodes its radiative nature and is solely responsible for the electromagnetic self-force.

Researchers typically make this separation using the mathematics of Green’s functions. Green’s functions

not only serve as elementary mathematical objects for solving differential equations, but also, in the analysis

of wave equations, communicate how waves and information propagate through spacetime. For instance, in

flat spacetime the retarded Green’s function Gµ
+ ν′(x, x

′), given in Eq. (3.7), is only non-zero if the point x′β

lies on the past light-cone of the point xα. This means that waves emanating from a point x′β propagate

into the future at the speed of light. The flat-space retarded Green’s function essentially enforces Huygen’s

principle. As a consequence, the value of the retarded potential at the point xα, i.e. Aµret(x), does not depend

on the behavior of the electron at the current moment of time t = x0, but on the time when its wordline x′µe

intersected the past light-cone of xα. This is what defines the retarded time t+ = t− |x− xe|.

The first step in constructing the regular field is to identify the singular Green’s function Gµ
S ν′(x, x

′),

which captures the non-radiative behavior of the divergent potential. Because the singular behavior of

the retarded Green’s function arises from the Dirac delta source term in Eq. (3.6), Gµ
S ν′(x, x

′) must be a

solution of the inhomogeneous wave equation, as well. Additionally, the singular Green’s function should

be symmetric, i.e., GS
µν′(x, x

′) = GS
ν′µ(x′, x), with no distinction between past and future, so that it has

no impact on causal processes like radiation. Incorporating this symmetry requires the use of the advanced

Green’s function Gµ
− ν′(x, x

′), which also satisfies Eq. (3.6) and produces an advanced potential Aµadv(x) =∫
Gµ
− ν′(x, x

′)jν
′
(x′)d4x′. In flat spacetime it takes the form

Gµ
− ν′(x, x

′) = δµν′
δ(t− t′−)

r
. (3.19)
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While Gµ
+ ν′(x, x

′) connects the source position x′β that intersects the past null rays emanating from the

field point xα, Gµ
− ν′(x, x

′) connects points x′β that intersect the future null rays of xα. As a result, the Aµret

is interpreted as the causal solution that emits outgoing waves at infinity, while Aµadv gives the time-reversed

scenario with ingoing waves from the distant past and from infinity. Thus, the two Green’s functions are

connected via the reciprocity relation G−µν′(x, x
′) = G+

ν′µ(x′, x). A symmetric solution is then constructed

from the average of these two Green’s functions,

Gµ
S ν′(x, x

′) =
1

2

[
Gµ

+ ν′(x, x
′) +Gµ

− ν′(x, x
′)
]
. (3.20)

This results in a singular Green’s function that is not only symmetric, but also satisfies Eq. (3.6). One can

then think of the resulting singular potential AµS(x) =
∫
Gµ

S ν′(x, x
′)jν

′
(x′)d4x′ as the relativistic generaliza-

tion of the Coulomb field [41]. The regular solution is formed by subtracting the singular structure from the

retarded Green’s function, giving the regular two-point function

Gµ
R ν′(x, x

′) = Gµ
+ ν′(x, x

′)−Gµ
S ν′(x, x

′) =
1

2

[
Gµ

+ ν′(x, x
′)−Gµ

− ν′(x, x
′)
]
. (3.21)

Note that Gµ
R ν′(x, x

′) is typically not referred to as a Green’s function, because it satisfies the source-free

form of Eq. (3.6) and, therefore, is free of the divergences possessed by Gµ
± ν′ .

Finally, the regular potential is constructed by replacing the retarded Green’s function with Gµ
R ν′ in

Eq. (3.8),

AµR(x) =

∫
Gµ

R ν′(x, x
′)jν

′
(x′)d4x′, (3.22)

which provides a radiative solution to the homogeneous wave-equation ∂α∂αA
µ
R = 0. As shown by Dirac

[86], this regular potential is exactly the potential one needs to construct the electromagnetic self-force. Not

only is it regular at the location of the particle, but the total retarded field AµR +AµS is still a valid solution

of Eq. (3.3). As a further check, one can consider the case where there is no external field and the particle

is static or moving with constant velocity. In this case, the retarded and advanced solutions are identical,

so that AµR = 0, while AµS is given by a static Coulomb field and captures the full singular structure of the

retarded field. (For a more complete explanation of why AµR is the radiative solution responsible for the

self-force, I refer the reader to Dirac’s original work [86].)

Interestingly, AµR and the two-point function Gµ
R ν′(x, x

′) (along with AµS and Gµ
S ν′(x, x

′)) are acausal. The

field’s dependence on both the retarded and advanced times means that the behavior of the potential field

at some point xα depends on the behavior of the particle in both the past and the future. Causal structure

48



is restored, however, when AµR and Gµ
R ν′ (and AµS and Gµ

S ν′(x, x
′)) are examined solely along the worldline

of the particle, where the retarded and advanced times are equivalent. Therefore, AµR is not interpreted as

a global, physical potential field, but as a contribution to the effective potential Aµeff = Aµext + AµR that the

particle measures in its local neighborhood. The force exerted by this effective potential is still simply the

net Lorentz force, so that

µuα∇αuβ = eF βνeff uν = eF βνextuν + eF βνR uν , (3.23)

where F eff
αβ = ∂αA

eff
β − ∂βAeff

α and FR
µν = ∂µA

R
ν − ∂µAR

ν . Comparing with Eq. (3.17), one finds that the

electromagnetic self-force (in flat spacetime) takes the form

FαESF = eFανR uν . (3.24)

As shown by Dirac [86], and verified in more recent work [115, 180], Eq. (3.23) simplifies to the more

commonly recognized Abraham-Lorentz-Dirac force law

µuα∇αuβ = F βext +
2

3
e2(δβν + uβuν)

daν

dτ
. (3.25)

While the presence of aβ and its time derivative can lead to spurious physical solutions to the equations of

motion, these problematic pathologies are avoided by recasting Eq. (3.25) in the reduced-order form

µuα∇αuβ = F βext +
2

3

e2

µ
(δβν + uβuν)

dF νext

dτ
, (3.26)

which are valid as long as the radiation reaction effects are small compared to the external force.

To verify that this electromagnetic self-force is actually responsible for the radiation predicted by the

Larmor formula, consider the non-relativistic form of Eq. (3.25),

µa = Fext +
2

3
e2 da

dt
, (3.27)

where aµ = (a0,a) and Fµext = (F 0
ext,Fext). The power P radiated by the electron’s field will be balanced by

the work done on the electron by its own self-force

∫
Pdt = −2

3
e2

∫
da

dt
· dx. (3.28)
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Performing integration by parts,

∫
Pdt =

2

3
e2

∫
dv

dt
·
(
dv

dt
dt

)
. (3.29)

By equating both integrands, one sees that the electromagnetic self-force reproduces the (non-relativistic)

Larmor formula

P =
2

3
e2|a|2, (3.30)

just as expected.

So why is the electromagnetic self-force so often ignored when calculating the motion of radiating charged

particles? For many charged systems, radiation-reaction effects are quite small compared to the accelerations

produced by the external field. For example, consider an electron that constantly accelerates with acceleration

aext for some time interval Trad.2 The energy radiated by the electron over this period is roughly given by

Erad ∼ PTrad ∼
2

3
e2a2

extTrad, (3.31)

where P is the power given by the Larmor formula. If one compares this to the change in the kinetic energy

of the electron (neglecting radiation-reaction effects)

Ekinetic ∼ µa2
extT

2
rad, (3.32)

then Erad/Ekinetic � 1 as long as

Trad � Te ≡
2

3

e2

µ
. (3.33)

For an electron, this characteristic timescale is given by Te = 6.3×10−24 s and, therefore, is closely related to

the light-crossing time of the classical electron radius (re/c). Consequently, in common radiative processes,

such as Bremsstrahlung radiation, electromagnetic radiation-reaction and the electromagnetic self-force are

negligible perturbative effects to the particle’s motion. Of course, neglecting radiation-reaction effects only

gives the leading-order behavior of the system. If one desires results with precisions ∼ O(Te/Trad), then

radiation-reaction effects and self-forces must be included. In curved spacetime, these effects are more

important to include, because, as I will show in the next section, no external force is needed for the particle

to experience a self-force. Radiation and the self-force arise from spacetime curvature itself, accelerating the

particle and altering its otherwise geodesic motion.

2This example originates from the last chapter of Jackson’s book Classical Electrodynamics[141]
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3.2.3: Electromagnetic self-force in curved-space

Now consider an electron in orbit around a compact object with metric gµν . For generality, I will

also assume that there may be some external electromagnetic field Fµνext present. In curved spacetime, the

electromagnetic four-potential AµEM (in Lorenz gauge) is given by the curved-space wave equation

∇α∇αAµEM −R
µ
νA

ν
EM = −4πjµ, (3.34)

where ∇α is the covariant derivative and Rµν is the Ricci tensor, both of which are defined with respect to

the background metric gµν . The covariant form of the current density jµ is given in Eq. (3.4). Just as in

Minkowski spacetime, the causal solution to Eq. (3.34) is given by the retarded potential

Aµret(x) =

∫
Gµ

+ ν′(x, x
′)jν

′
(x′)

√
−g(x′) d4x′ (3.35)

where g = det(gµν) is the metric determinant and Gµ
+ ν′ is still the retarded Green’s function, which in

curved spacetime satisfies the inhomogeneous equation

∇α∇αGµ
+ ν′(x, x

′)−Rµβ(x)G β
+ ν′ = −4πδµν′ δ

(4)(x, x′). (3.36)

Note than in flat-space gµν = ηµν , ∇α = ∂α, and Rµν = 0, so that Eqs. (3.34), (3.35), and (3.36) simplify to

Eqs. (3.3), (3.6), and (3.8), as expected. Also, even in curved spacetime, Rµν vanishes in vacuum regions.

Recall that G β
± ν′ vanishes in Minkowski spacetime unless xα and x′β are connected by null rays. The

retarded Green’s function Gµ
+ ν′(x, x

′) only has support on the past light-cone of xα. In curved spacetime,

Green’s functions take on a much more complicated structure due to the failure of Huygen’s principle: waves

scatter off of the surrounding curvature, causing them to propagate at all speeds less than and equal to the

speed of light [180]. As a result, the retarded Green’s function has support both on and within the past

light-cone, producing a retarded potential that not only depends on the position of the electron at t+ but

at all times t ≤ t+. Similarly, the advanced potential depends on the position of the particle at all times

t ≥ t−.

This additional structure complicates the construction of the singular Green’s function. In Minkowski

space, Gµ′

S ν′ is constructed solely from the average of the advanced and retarded Green’s functions, as shown

in Eq. (3.20). If, in curved spacetime, one constructed AµS and AµR using this same form of the singular

Green’s function, then both AµS and AµR would depend on the entire history of the particle’s motion. While

AµR might be regular everywhere, its acausal structure, particularly along the wordline, leads to an unphysical
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solution for the self-force.

This problem is avoided, however, by adding an additional two-point function Hµ
ν′ (x, x

′) to the singular

Green’s function,

Gµ
S ν′(x, x

′) =
1

2

[
Gµ

+ ν′(x, x
′) +Gµ

− ν′(x, x
′)−Hµ

ν′ (x, x
′)
]
. (3.37)

The new two-point function Hµ
ν′ (x, x

′) is chosen so that

(H1) Hµ
ν′ (x, x

′) = Gµ
− ν(x, x′) for points x′α that are in or on the future light-cone of point xβ ;

(H2) Hµ
ν′ (x, x

′) = Gµ
+ ν(x, x′) for points x′α that are in or on the past light-cone of point xβ ;

(H3) Hµ
ν′ is symmetric, i.e. Hµν′ (x, x

′) = Hν′µ (x′, x); and

(H4) Hµ
ν′ is a homogeneous solution of Eq. (3.36).

Conditions (H1) and (H2) remove the dependence of the singular potential on the past and future history

of the particle; (H3) ensures that Gµ
S ν′(x, x

′) is symmetric; and (H4) guarantees that Gµ
S ν′(x, x

′) is still a

solution to Eq. (3.36). As before, the regular two-point function is then constructed by removing the singular

structure from the retarded Green’s function

Gµ
R ν′(x, x

′) = Gµ
+ ν′(x, x

′)−Gµ
S ν′(x, x

′) (3.38)

=
1

2

[
Gµ

+ ν′(x, x
′)−Gµ

− ν′(x, x
′) +Hµ

ν′ (x, x
′)
]
, (3.39)

leading to the regular potential

AµR(x) =

∫
Gµ

R ν′(x, x
′)jν

′
(x′)

√
−g(x′) d4x′. (3.40)

Once again AµR provides a radiative solution of the source-free form of Eq. (3.34) that is both regular and

causal along the particle’s wordline. The particle experiences the net Lorentz force due to the effective

electromagnetic field Fµνeff = ∇µAνeff − ∇νA
µ
eff, where Aµeff = Aµext + AµR, leading to the same expression for

the equations of motion as Eq. (3.23). As shown by DeWitt and Brehme [83] (with a correction by Hobbs

[127]), and verified by Quinn and Wald [192], in curved spacetime Eq. (3.23) simplifies to

µuα∇αuβ = F βext +
2

3

e2

µ
(δβν + uβuν)

(
dF νext

dτ
+

1

2
Rνλu

λ + F βtail

)
, (3.41)
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where the additional tail-term is given by

Fµtail(τ) = 3µuν(τ)

∫ τ−

−∞
∇[µ

G
ν]
+λ′ (xe(τ), xe(τ

′))uλ
′
(τ ′) dτ ′, (3.42)

and τ− means that one must cut-off integration right before reaching the location of the particle xαe (τ). The

electromagnetic self-force depends on the time-derivative of the external force, just as in flat spacetime, but

there are additional terms that arise due to the presence of curvature. The tail-term, which involves an

integral over the entire past history of the particle, accounts for the interaction of the electron’s electromag-

netic field with the surrounding curved spacetime. While in flat spacetime radiation results from the field

responding to the particle’s acceleration, in curved spacetime radiation can result from the field responding

to spacetime curvature itself. Hence, even in the absence of an external field, the electron can still experience

an electromagnetic self-force.

As a check, in flat spacetime Rµναβ = 0, while the retarded Green’s function only has support on the

past light-cone of the point xα. Consequently, Fµtail = 0, and one recovers the same expression for the

electromagnetic self-force as in the previous section. While I will not verify it here, Quinn and Wald [193]

also demonstrated that the work done by the electromagnetic self-force given in Eq. (3.41) does in fact

balance the “gravito-bremsstrahlung” radiation produced by the electron, just as one would expect from

conservation of energy and momentum.

Another interesting feature of the electromagnetic self-force in curved spacetime is that it can be separated

into dissipative and conservative components, i.e., FαESF = F
α(diss)
ESF + F

α(cons)
ESF , where

F
α(diss)
ESF ≡ eFανdissuν , F

α(cons)
ESF ≡ eFανconsuν , (3.43)

and, Fανdiss and Fανcons are constructed from the four-potentials

Aµdiss(x) =
1

2

∫ (
Gµ

+ ν′(x, x
′)−Gµ

- ν′(x, x
′)
)
jν
′
(x′)

√
−g(x′) d4x′, (3.44)

Aµcons(x) =
1

2

∫
Hµ

ν′ (x, x
′)jν

′
(x′)

√
−g(x′) d4x′, (3.45)

via F diss
αβ = ∂αA

diss
β − ∂βAdiss

α , F cons
αβ = ∂αA

cons
β − ∂βAcons

α .

For an electron on a bound orbit around the black hole, the dissipative component—due to the anti-

symmetry of the integrand in Eq. (3.44)—provides the reaction to the dissipation of energy and drives the

electron’s decaying inspiral into the black hole. The conservative component, on the other hand, does not

contribute to the decay of the electron’s orbit; it conserves the bound orbit but perturbs its constants of
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motion. This is because Hµ
ν′ (x, x

′) is symmetric and, like the singular Green’s function, does not distinguish

between past and future and thus is not responsible for radiative losses. In flat spacetime, Hµ
ν′ (x, x

′) = 0

and the electromagnetic self-force is purely dissipative.

Section 3.3: Gravitational radiation, radiation-reaction, and the self-force

Many of the principles and concepts developed in the previous electromagnetic examples also apply

when considering gravitational radiation. In fact, an electron orbiting a black hole will not only produce

electromagnetic radiation, but gravitational waves as well. The electron possesses some small mass-energy

which perturbs the “background” spacetime produced by the Earth. If one thinks of this perturbation as

the “gravitational field” of the electron, then the electron’s perturbing field carries away radiation as the

field responds to the electron’s motion through the “background” curvature around the black hole.

For systems where spacetime curvature is relatively weak, the parallels between electromagnetic and

gravitational radiation are particularly strong. Much like a charged particle that radiates as it orbits the

Earth, the Earth will radiate gravitational waves as it orbits the Sun. In constrast to electromagnetic

radiation, however, gravitational radiation does not depend on the change in the dipole moment of a system.

(One can always find a “center-of-mass-like” frame in which the mass dipole moment is zero.) Instead a

massive system radiates due to changes in its next multipole: the quadrupole. For non-relativistic systems,

such as the Earth-Sun system, the power PGW radiated through gravitational waves is [181]

PGW =
1

5

...
Q
ij ...
Qij , (3.46)

where the system’s reduced (Newtonian) quadrupole moment is given by

Qij =

∫
ρm

(
xixj − 1

3
δijxkxk

)
d3x, (3.47)

and where ρm is the mass density of the system, and
...
Q
ij ≡ d3Qij/dt3. In these equations, Latin indices are

spatial and run from 1 to 3. For the simplified case of the Earth on a circular orbit around the Sun, the

gravitational wave power reduces to

P circ
GW '

32

5
M2
⊕rorbita

3
⊕, (3.48)

where M⊕ is the Earth’s mass, rorbit is the radius of its orbit, and a⊕ 'M�/r
2
orbit is its Newtonian orbital

acceleration. Equation (3.48) mirrors the behavior captured by the Larmor formula (3.2): accelerating

masses radiate, while static sources do not.
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The connection between electromagnetic and gravitational radiation becomes more complicated for rel-

ativistic systems and large spacetime curvature. In these systems, gravitational radiation not only has a

significant impact on the dynamics of the system, but is much more challenging to quantify due to the nonlin-

earities of general relativity. Unlike electromagnetic fields, spacetime is self-interacting. Gravitational waves

carry energy and momentum that can source new gravitational waves. I, therefore, restrict this discussion

to the main focus of this work: EMRIs. For EMRIs, these non-linearities are tamed through the framework

of BHPT, though applying perturbation theory rigorously and self-consistently in curved spacetime is still

a challenging task. In the following section I discuss how researchers model the gravitational radiation in

EMRIs using the concepts of radiation-reaction and self-forces discussed in the previous sections.

3.3.1: EMRI equations of motion

Consider the case of a small compact object with mass µ orbiting a MBH with mass M and spin a. (For

simplicity, I assume the smaller object is not spinning.) The system is characterized in terms of its mass

ratio ε ≡ µ/M . Far away from the small mass, the full spacetime metric gµν can be separated into two

components,

gµν(x, ε) = gµν(x) + hµν(x, ε) = gµν(x) +

∞∑
n=1

εnh(n)
µν (x), (3.49)

where gµν is the background metric defined by the MBH and hµν is the metric perturbation due to the

presence of the small body. In the previous sections, much of the analysis was simplified by assuming that

the perturbing body is well-approximated by a point particle. One does not know a priori if the same

assumption provides a suitable approximation for a compact object. The task then is to find well-defined

equations of motion for the small body.

Both the small compact object and the MBH contribute to the full spacetime metric gµν , which is defined

by Einstein’s field equations,

Gµν [g] = 8πTµν , (3.50)

where the stress-energy Tµν depends on the structure of the small body and thus encodes its evolution.

The equations of motion then follow from the constraint on the stress-energy ∇µTµν = 0, where ∇µ is the

covariant derivative with respect to gµν . In the absence of the mass µ, Tµν = 0, and one recovers the vacuum

field equations for an isolated black hole. For higher-orders, the field equations for hµν and the equations of

motion for the small body must be derived by perturbatively solving Einstein’s equations.
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Using the expansion in Eq. (3.49), one can similarly expand the full Einstein tensor Gµν ,

Gµν [g] = Gµν [g] + εδGµν [h(1)] + ε2
(
δ2Gµν [h(1)] + δGµν [h(2)]

)
+O(ε3), (3.51)

where Gµν [g] = 0 is the background Einstein operator, δGµν is the linearized Einstein operator, δ2Gµν is

the second-order operator, and all operators on the righthand side of Eq. (3.51) are defined with respect to

the background metric gµν . One can similarly expand the full stress-energy tensor

Tµν(x, ε) = Tµν(x, ε) =

∞∑
n=1

εnTµν(n)(x), (3.52)

where Tµν is the stress-energy of the perturbations. Note that the “background,” or zero-order, stress-energy

tensor is zero. Only the perturbations contribute to Tµν . Using Eq. (3.52) the stress-energy constraint is

expanded in a similar fashion,

∇µTµν ≡ Dν [T] = εDν [T(1)] + ε2
(
Dν [T(2)] + δDν [h(1), T(1)]

)
+O(ε3), (3.53)

where Dν [T(1)] ≡ ∇µTµν(1) , ∇µ is the covariant derivative with respect to gµν , and all other operators on the

righthand side of Eq. (3.53) are defined with respect to the background gµν .

Combining Eqs. (3.51)-(3.53), one arrives at an iterative scheme for finding the equations of motion for

the evolution of the system (left column) and the field equations for the metric perturbations h
(n)
µν that

correct the motion (right column)

Tµν(0) = 0 =⇒ Gµν [g] = 0, (3.54)

∇µTµν(1) = 0 =⇒ δGµν [h(1)] = 8πT (1)
µν , (3.55)

∇µTµν(2) = −δDν [h(1), T(1)] =⇒ δGµν [h(2)] = 8πT (2)
µν − δ2Gµν [h(1)], (3.56)

... (3.57)

While this provides a formal framework for analyzing the perturbations there are still many limitations to

this approach. (See Ref. [180] for a more in depth discussion of these limitations.) First of all, in order to

actually solve each equation, one must first determine the forms of the stress-energy terms. One possible

approach is to naively approximate the small mass as a point particle. This does not pose an issue at

first-order (i.e., Eq. (3.55)), though once again it leads to metric perturbations that diverge at the location

of the particle, necessitating some type of regularization procedure to calculate any resulting self-forces. At
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second-order (i.e., Eq. (3.56)) this approximation breaks down because δ2Gµν [h(1)] contains products of h
(1)
µν

and its derivatives. Thus the righthand side of the field equations, found in (3.56), essentially acts as a

source term containing products of delta functions and their derivatives. Ultimately this is tied to the fact

that point particles (along with strings) are not valid distributional sources in the full nonlinearity of general

relativity [114]. More rigorous expansion methods are needed to evaluate Eqs. (3.55)-(3.57).

Mino, Sasaki, and Tanaka [142, 166, 165] were the first to evaluate Eqs. (3.55)-(3.57) and derive the

equations of motion for an EMRI by employing a series of different methods, including the method of

matched asymptotic expansions [142, 166, 165]. The method of matched asymptotic expansions relies on two

expansions of the full spacetime: one that is valid in the far zone from the small mass, given by Eq. (3.49),

and one that is valid in the near-zone of the small mass,

gµν(x̃; ε) = g(body)
µν (x̃) + h(body)

µν (x̃, ε), (3.58)

h(body)
µν (x̃, ε) =

∞∑
n=1

εnh(body,n)
µν (x̃).

Outside of the two objects, Tµν = 0, and both expansions satisfy the vacuum Einstein equations (Rµν = 0)

in their respective domains of validity. They can also be matched in some suitable “buffer” region where

they are both valid. Because Tµν = 0, the equations of motion arise, not from stress-energy conservation,

but by imposing the gauge conditions [165, 180]. (In their work, Mino, Sasaki, and Tanaka used Lorenz

gauge.) Soon after, Quinn and Wald [192] devised a similar but more axiomatic approach that confirmed

the results of Mino, Sasaki, and Tanaka. In their derivation, they produced a family of metrics connected

by a shared parameter. From this family they could construct near and far zone metrics analogous to (3.49)

and (3.58), without having to make any assumptions about the structure of the small compact object (unlike

Mino, Sasaki, and Tanaka, who assumed the small compact object was a Schwarzschild black hole.)

This work by Mino, Sasaki, Tanaka, Quinn, and Wald demonstrated that, far from the small compact

object, the small body can be treated as a point particle with a worldline xαp (τ) and four-velocity uα. Its

equations of motion are then given by the famous MiSaTaQuWa formula

µuβ∇βuα = FαGSF,1 +O(ε2) ≡ µ∇αµνhtail
µν +O(ε2), (3.59)

where

∇µαβ ≡ −1

2
(2gµαuβuγ − gµγuαuβ + uµuαuβuγ)∇γ , (3.60)

and htail
µν , like (3.42) in the electromagnetic case, is the tail field found by integrating the derivative of the
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retarded Green’s function over the entire past history of the particle

∇αhtail
µν = 4µ

∫ τ−

−∞
∇α
(
G+µνµ′ν′ (xp(τ), xp(τ

′))− 1

2
gµνG

ρ
+ ρµ′ν′ (xp(τ), xp(τ

′))

)
uµ
′
uν
′
dτ ′. (3.61)

Here, G+µνµ′ν′ is the retarded Green’s function for the linearized Einstein equation (3.55).

Another important consequence of the MiSaTaQuWa derivations is that the stress-energy tensor Tµν

of Eq. (3.50) is accurately approximated by a point-particle distribution at first-order. Because, in this

work, I am concerned with leading-order self-force effects, rather than exploring the more involved method

of matched asymptotic expansions, I will assume this point-particle approximation to outline a derivation of

the field equations for the metric perturbation and the resulting self-force in the following sections.

3.3.2: Point-particle approximation

Because one can treat the small mass µ as a point particle (to first-order in ε), the derivation of the

gravitational self-force follows similarly to the previous electromagnetic examples. I assume the particle has

a timelike wordline xµp . Its stress-energy is given by

Tαβ = εTαβ +O(ε2) = εµ

∫
dxαp
dτ

dxβp
dτ

δ(4)(x, xp(τ ))dτ +O(ε2), (3.62)

where τ is the proper time of the particle in the perturbed spacetime, i.e. dτ =
√
−gµνdx

µ
pdxνp =√

−(gµν + εh
(1)
µν )dxµpdxνp . The equations of motion are then determined by

∇µTµν = 0 = µ

∫
∇µ

(
dxαp
dτ

dxβp
dτ

δ(4)(x, xp(τ ))

)
dτ (3.63)

At leading order τ is equivalent to the proper time of the particle with respect to the background spacetime

dτ =
√
−gµνdxµpdνp and its four-velocity is defined by uα = dxαp /dτ . Thus the equations of motion at leading

order reduce to

∇µTµν = O(ε) = ∂µT
µν + ΓµµαT

αν + ΓνµαT
αµ, (3.64)

= µ

∫
uµuν√
−g

∂µδ
(4)(x− xp)dτ + µ

∫
(Γνµαu

µ + Γµµαu
ν)uαδ(4)(x, xp)dτ, (3.65)

= −µ
∫

uν√
−g

d

dτ
δ(4)(x− xp)dτ + µ

∫
(Γνµαu

µ + Γµµαu
ν)uαδ(4)(x, xp)dτ, (3.66)
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where the sign arises because the derivative now acts on xµp (τ) rather than xα in the Dirac delta. Continuing

with the simplification of this constraint equation,

= µ

∫ [
d

dτ

(
uν√
−g

)
+ (Γνµαu

µ + Γµµαu
ν)

uα√
−g

]
δ(4)(x− xp)dτ, (3.67)

= µ

∫ [
1√
−g

duν

dτ
− uν

−g
d

dτ

√
−g + (Γνµαu

µ + Γµµαu
ν)

uα√
−g

]
δ(4)(x− xp)dτ, (3.68)

where I have used the relation Γµµα = ∂α ln
√
−g,

= µ

∫ [
1√
−g

duν

dτ
− uν√
−g

uαΓµµα + (Γνµαu
µ + Γµµαu

ν)
uα√
−g

]
δ(4)(x− xp)dτ, (3.69)

= µ

∫ [
duν

dτ
+ Γνµαu

µuα
]
δ(4)(x, xp)dτ, (3.70)

and thus the stress-energy constraint implies that the point particle, as expected, will follow a geodesic

uβ∇βuα = duα/dτ + Γαµνu
µuν = 0.

The goal then, much like in the electromagnetic cases considered above, is to (1) find field equations for

the metric perturbation h
(1)
µν , (2) identify the regular part of the perturbation, hR

µν , that contributes to the

system’s radiation, and (3) to determine how the perturbation produces a self-force, FαGSF,1, that acts back

on the particle’s motion. Because I am only concerned with the first-order metric perturbation h
(1)
µν , I will

drop the superscript and denote it as hµν from here on.

Beginning with the first step, the metric perturbation is determined by the linearized Einstein operator

in Eq. (3.55). To find the form of this equation, first consider the Christoffel symbols Γαµν defined with

respect to gµν ,

Γαµν [g] = Γαµν [g + h] = Γαµν [g] + εδΓαµν [g, h], (3.71)

where Γαµν is defined with respect to gµν , and δΓαµν is a functional of gµν and hµν . The perturbation to the

Christoffel symbols takes the form

δΓαµν = ε−1
(
Γαµν − Γαµν

)
, (3.72)

=
1

2
ε−1gαβ(∂µgαν + ∂νgαµ − ∂αgµν)− 1

2
ε−1gαβ(∂µgαν + ∂νgαµ − ∂αgµν), (3.73)

=
1

2
gαβ(∂µhαν + ∂νhαµ − ∂αhµν)− 1

2
hαβ(∂µgαν + ∂νgαµ − ∂αgµν) +O(ε), (3.74)

where the metric inverse gµν = gµν − εhµν so that

gµνgµν = (gµν − εhµν)(gµν + εhµν) = gµνgµν +O(ε2) = 1 +O(ε2). (3.75)
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Note that, to leading order, the indices of the metric perturbation are raised or lowered with the background

metric and its inverse, e.g., gαβhαµ = hαµ +O(ε). Equation (3.74) can be further simplified by recognizing

that the covariant derivative of the metric perturbation is given by

∇αhµν = ∂αhµν − Γβαµhβν − Γβανhβµ, (3.76)

= ∂αhµν −
1

2
hγν(∂µgγα + ∂αgγµ − ∂γgαµ)− 1

2
hγµ(∂νgγα + ∂αgγν − ∂γgαν). (3.77)

Thus the perturbation to the Christoffel symbols reduces to

δΓαµν =
1

2
gαβ(∇µhβν +∇νhβµ −∇αhµν) +O(ε2). (3.78)

The Riemann tensor Rα
βµν can be expanded in a similar fashion

Rα
βµν = Rαβµν + εδRαβµν . (3.79)

The perturbation to the Riemann tensor is then found by expanding Rα
βµν

δRαβµν = ε−1
(
Rα

βµν −Rαβµν
)
, (3.80)

= ε−1
(
∂µΓαβν − ∂νΓαβµ + ΓαµγΓ

γ
βν − ΓανγΓ

γ
βµ − ∂µΓαβν + ∂νΓαβµ − ΓαµγΓγβν + ΓανγΓγβµ

)
, (3.81)

= ∂µδΓ
α
βν − ∂νδΓαβµ + ΓαµγδΓ

γ
βν + δΓαµγΓγβν − ΓανγδΓ

γ
βµ − δΓ

α
νγΓγβµ +O(ε), (3.82)

= ∇µδΓαβν −∇νδΓαβµ +O(ε). (3.83)

Inserting Eq. (3.78), this further expands to

δRαβµν =
1

2

(
∇µ∇νhαβ +∇µ∇βhαν −∇µ∇αhβν −∇ν∇µhαβ −∇ν∇βhαµ +∇ν∇αhβµ

)
. (3.84)

It is then straightforward to construct the perturbation to the Ricci tensor

δRµν = ε−1
(
Rµν −Rµν

)
= ε−1

(
Rα

µαν −Rαµαν
)

= δRαµαν , (3.85)

= −1

2
∇α∇αhµν −

1

2
∇µ∇νhαα +

1

2
∇α∇µhαν +

1

2
∇α∇νhαµ. (3.86)

Einstein’s field equations, when expanded in terms of gµν and hµν then take the form

Rµν + εδRµν −
1

2
εgµνδR+

1

2
(gµν + εhµν)R = 8πεTµν +O(ε2). (3.87)
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For a background metric that satisfies the vacuum field equations Rµν = R = 0, we then have

δRµν −
1

2
gµνδR = 8πTµν +O(ε). (3.88)

Defining the trace-reversed metric perturbation h̄µν = hµν − 1
2gµνh

α
α, the linearized field equations take the

form,

−16πTµν = ∇α∇αh̄µν −∇α∇µh̄αν −∇α∇ν h̄αµ + gµν∇α∇βh̄αβ . (3.89)

For later convenience, one can make use of the identity

∇µ∇ν h̄αβ −∇ν∇µh̄αβ = Rαγµν h̄
γβ +Rβγµν h̄

γα, (3.90)

to re-organize the order of the covariant derivatives

∇α∇αh̄µν + gµν∇α∇βh̄αβ −∇α∇µh̄αν −Rγµh̄γν −Rνγαµh̄γα

−∇α∇ν h̄αµ −Rγν h̄γµ −Rµγαν h̄γα = −16πTµν . (3.91)

Taking into account the interchange and skew symmetries of the Riemann tensor, the symmetry of h̄αβ , and

the fact that gµν represents a vacuum solution to Einstein’s equations (Rµν = 0), the linearized Einstein

equations reduce to one of their most well-known forms

∇α∇αh̄µν + gµν∇α∇βh̄αβ −∇α∇µh̄αν −∇α∇ν h̄αµ + 2Rαµβν h̄
αβ = −16πTµν . (3.92)

Imposing the Lorenz gauge condition ∇ν h̄µν = 0 simplifies Eq. (3.92) to the curved-space wave equation

∇α∇αh̄µν + 2Rαµβν h̄
αβ = −16πTµν . (3.93)

This is the field equation for the first-order perturbation in the metric.

To find the correction to the particle’s motion, one must return to the full stress-energy constraint,

∇µTµν = 0. (3.94)

Because Tµν is still given by a point-particle source, based on the derivation at the beginning of this section

(see Eqs. (3.64)-(3.70)), Eq. (3.94) enforces geodesic motion in the full, perturbed spacetime background gµν
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(ignoring radiation-reaction effects beyond first-order),

µuα∇αuβ =
d2xαp
dτ 2

+ Γαµν
dxµp
dτ

dxνp
dτ

= 0, (3.95)

where uα = dxαp /dτ is the particle’s four-velocity in the full spacetime gµν .

A “fictitious” gravitational force arises if, rather than working in gµν , one continues to work in the

mathematically simpler background gµν [30, 180]. The geodesic equation, then takes the form

µuα∇αuβ =
d2xαp
dτ2

+ Γαµν
dxµp
dτ

dxνp
dτ
≡ F βgrav, (3.96)

where uα = dxp/dτ , τ is now an affine parameter of the background metric gµ, and the covariant derivative

∇α is defined with respect to gµν . The resulting gravitational force F βgrav is then given by the difference of

Eqs. (3.95) and (3.96)

Fαgrav = −µε δΓαµνuµuν − µ
(
dτ

dτ

)2
d2τ

dτ 2
uα +O(ε2), (3.97)

= −µ ε
2
gαβ (2∇µhβν −∇βhµν)uµuν − µ

(
dτ

dτ

)2
d2τ

dτ 2
uα +O(ε2), (3.98)

The second term accounts for the failure of τ as an affine parameter for a geodesic in gµν ,

(
dτ

dτ

)2
d2τ

dτ 2
=

(
dτ

dτ

)
d2τ

dτ2
=

d

dτ
ln
√

1− εhµνuµuν , (3.99)

which can be expanded in powers of the mass ratio,

d

dτ
ln
√

1− εhµνuµuν = − ε
2
uαuµuν∇αhµν − εhµνuαuµ∇αuν +O(ε2). (3.100)

Comparing to Eq. (3.98), the second term is also of O(ε2) and can be neglected. Consequently

uαF
α
grav = −µ ε

2
(2∇µhβν −∇βhµν)uµuνuβ − µ

(
dτ

dτ

)2
d2τ

dτ 2
, (3.101)

= −µ ε
2
∇µhβνuµuνuβ − µ

(
dτ

dτ

)2
d2τ

dτ 2
, (3.102)

= −µ ε
2
∇µhβνuµuνuβ + µ

ε

2
∇αhµνuαuµuν , (3.103)

= 0, (3.104)

ensuring that the gravitational force is orthogonal to the particle’s four-velocity. Thus the expression for
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Fαgrav simplifies to

Fαgrav = −µε
2

(
gαβ + uαuβ

)
(2∇µhβν −∇βhµν)uµuν +O(ε2), (3.105)

= µε∇αµνhµν +O(ε2), (3.106)

where ∇αµν is defined in Eq. (3.60). Comparing to Eq. (3.59), one can see that this has an equivalent form

to the the MiSaTaQuWa result, but it does not specify which part of the metric perturbation contributes to

the particle’s self-force. Just as in the previous electromagnetic cases, Fαgrav diverges at the location of the

particle if one naively uses the retarded solution to the metric perturbation. One must perform a similar

regularization procedure by decomposing the retarded field into singular and regular parts, the latter of

which will be solely responsible for the gravitational self-force.

3.3.3: The retarded, singular, and regular metric perturbations

For simplicity, consider Eq. (3.93), which is Eq. (3.55) (or (3.92)) in Lorenz gauge. Following the pro-

cedures laid out in Sec. 3.2.3, the retarded (trace-reversed) metric perturbation is constructed from the

retarded Green’s function Gαβ
+ µ′ν′

h̄αβret(x) = 4

∫
Gαβ

+ µ′ν′(x, x
′)Tµ

′ν′(x′)
√
−g(x′) d4x′, (3.107)

where

∇γ∇γGαβ
+ µ′ν′(x, x

′) + 2R α β
µ ν (x)Gµν

+ µ′ν′(x, x
′) = −4πδαµ′ δ

β
ν′ δ

(4)(x, x′). (3.108)

The gravitational retarded Green’s function, Gαβ
+ µ′ν′ , and its advanced counterpart, Gαβ

− µ′ν′ , share the same

local causal structure as the electromagnetic Gµ
± ν′(x, x

′) in Sec. 3.2.3. Thus, following the work of Dirac,

DeWitt, and Brehme, one can construct a singular Green’s function

Gαβ
S µ′ν′(x, x

′) ≡ 1

2

[
Gαβ

+ µ′ν′(x, x
′) +Gαβ

− µ′ν′(x, x
′)−Hαβ

µ′ν′ (x, x
′)
]

(3.109)

where Hαβ
µ′ν′ satisfies conditions analogous to (H1)-(H4), just like Hµ

ν′ in Sec. 3.2.3. The regular gravita-

tional two-point function is then given by

Gαβ
R µ′ν′(x, x

′) ≡ Gαβ
+ µ′ν′(x, x

′)−Gαβ
S µ′ν′(x, x

′), (3.110)

=
1

2

[
Gαβ

+ µ′ν′(x, x
′)−Gαβ

− µ′ν′(x, x
′) +Hαβ

µ′ν′ (x, x
′)
]
, (3.111)
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resulting in a regular (trace-reversed) metric perturbation that is a homogeneous solution to Eq. (3.93)

h̄αβR (x) = 4

∫
Gαβ

R µ′ν′(x, x
′)Tµ

′ν′(x′)
√
−g(x′) d4x′, (3.112)

Detweiler and Whiting [82] demonstrated that h̄αβR is related to the MiSaTaQuWa tail field by [180]

∇αhtail
µν = ∇αhR

µν + 2µ (uµRναβγ + uνRµαβγ + 2uαRµβνγ)uβuγ , (3.113)

so that

µuβ∇βuα = FαGSF,1 = µ∇αµνhR
µν , (3.114)

to first-order. Thus, like in the electromagnetic cases, one can interpret the particle as moving on a geodesic

in an effective gravitational field gµν + hR
µν . While this effective field only retains causal structure along the

particle’s wordline, it provides an elegant interpretation of the first-order gravitational self-force problem.

Note that, just like the electromagnetic self-force in curved spacetime, the regular field and the gravita-

tional self-force can be further decomposed into dissipative and conservative components

F
α(diss)
GSF ≡ µ∇αµνhdiss

µν , F
α(cons)
GSF ≡ µ∇αµνhcons

µν , (3.115)

where

h̄αβdiss(x) = 2

∫ (
Gαβ

+ µ′ν′(x, x
′)−Gαβ

− µ′ν′(x, x
′)
)
Tµ
′ν′(x′)

√
−g(x′) d4x′, (3.116)

h̄αβcons(x) = 2

∫
Hαβ

µ′ν′ (x, x
′)Tµ

′ν′(x′)
√
−g(x′) d4x′. (3.117)

The conservative gravitational self-force perturbs the “constants” of motion of the bound particle (e.g., E ,

Lz, and Q from Chapter 2), while the dissipative self-force sources its adiabatic inspiral and the eventual

merger of the two bodies.

3.3.4: Gauge ambiguity

A notable feature of the gravitational (and electromagnetic) self-force is that it is a gauge-dependent

quantity. Performing the gauge transformation xµ → x̃µ = xµ−εξµ alters the form of the metric perturbation

and its regular contribution

h̃R
µν − hR

µν = (∇νξµ +∇µξν), (3.118)
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where h̃µν is the metric perturbation in the new coordinates x̃µ. Using the fact that (∇ν∇µ −∇µ∇ν)ξα =

ξλR
λ
ανµ, one finds that the gravitational self-force in this new gauge F̃αGSF differs from the original value

FαGSF according to

F̃αGSF − FαGSF = −(gαβ + uαuβ)uν∇ν(uµ∇µξβ)−Rαβγδuβξγuδ +O(ε2). (3.119)

This gauge ambiguity means that it is important to identify gauge-invariant quantities, such as the gravita-

tional wave fluxes or the asymptotic gravitational signal, to give self-force results physical meaning.

3.3.5: Gravitational wave fluxes

While up to this point I have focused on the local self-force effects that arise from gravitational radiation,

it is also useful to calculate the fluxes of energy and angular momentum that are radiated away due to

gravitational wave emission. Not only are these fluxes gauge-invariant, but they can also be related to the

gravitational self-force through flux-balance laws [113, 193, 162, 202, 135]. The total energy flux 〈Ė〉tot must

balance the rate of work W done on the mass µ by the gravitational self-force, while the angular momentum

flux 〈L̇z〉tot must balance the torque T applied by the self-force

〈Ė〉tot = −W, 〈L̇z〉tot = −T , (3.120)

where Etot and Ltot
z are the total radiated energy and z-component of the angular momentum, Ė ≡ dE/dt

and L̇z ≡ dLz/dt, and the brackets 〈·〉 denote averages over coordinate time t. The fluxes, therefore, drive

the leading-order evolution of an EMRI, as given in Eq. (1.17). These flux-balance laws also provide an

important tool for validating and comparing gauge-dependent self-force results.

In general, the average local work and torque are calculated by considering the time rate of change of

the specific energy and angular momentum of the small body,

W =

〈
µ
dE
dt

〉
T =

〈
µ
dLz
dt

〉
. (3.121)

As demonstrated by Drasco and Hughes [92], Eq. (3.121) can also be expressed in terms of Mino time λ (see

Sec. 2.2) via the relations

〈
µ
dE
dt

〉
=

1

Γ

〈
µ
dE
dλ

〉
λ

,

〈
µ
dLz
dt

〉
=

1

Γ

〈
µ
dLz
dλ

〉
λ

, (3.122)

where 〈·〉λ denotes an average over Mino time. The work done by the self-force can then be found by taking
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the total Mino time derivative of E ,

dE
dλ

= Σ
dE
dτ

(3.123)

= Σuα∇α
(
gµνξ

µ
(t)u

ν
)
, (3.124)

= Σgµν

(
uνuα∇αξµ(t) + ξµ(t)u

α∇αuν
)
, (3.125)

= Σgµνξ
µ
(t)u

α∇αuν , (3.126)

where uνuα∇αξµ(t) vanishes due to ξµ(t) satisfying Killing’s equation (Eq. (2.4)). Defining the four-acceleration

aµ and perpendicular self-force fµ = µaµ ≡ (gµν +uµuν)F SF
ν —where F SF

ν represents the scalar, electromag-

netic, or gravitational self-force—then

µ
dE
dλ

= −Σft. (3.127)

Therefore,

〈
µ
dE
dt

〉
= − 1

Γ
〈Σft〉λ = − 1

Γ

〈
ΣF SF

t

〉
λ
, (3.128)

Note that for the electromagnetic and gravitational cases, the self-force is orthogonal to the four-velocity and

the second equality is trivial. However, for the scalar case uαFα = −dµ/dτ , where the rest mass of the scalar

particle varies with time, though even in the scalar case the average variation of the rest-mass vanishes, i.e.,

〈Σft〉λ = 〈Σ(Ft + utu
αFα)〉λ = 〈ΣFt〉λ + E

〈
dµ

dλ

〉
λ

= 〈ΣFt〉λ . (3.129)

Following these same steps for Lz, one finds

〈
µ
dLz
dt

〉
=

1

Γ

〈
ΣF SF

ϕ

〉
λ
. (3.130)

The average work and torque can then be rewritten either as averages of the self-force over time or (in the

case of non-resonant sources) as averages over the two-torus,

W = − lim
T→∞

1

T

∫ T

0

F
SF(diss)
t

ut
dt = − 1

Γ

∫ 2π

0

dqr
2π

∫ 2π

0

dqθ
2π

ΣpF
SF(diss)
t , (3.131)

T = lim
T→∞

1

T

∫ T

0

F
SF(diss)
ϕ

ut
dt =

1

Γ

∫ 2π

0

dqr
2π

∫ 2π

0

dqθ
2π

ΣpF
SF(diss)
ϕ , (3.132)

where only the dissipative component contributes, because F
SF(cons)
t and F

SF(cons)
ϕ are time-antisymmetric.
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(This behavior will be further discussed in Sec. 5.2.6.) Therefore the conservative pieces cancel when aver-

aging, which is an essential aspect of deriving a gauge invariant result.

The total radiated energy and angular momentum can be calculated from the energy and angular mo-

mentum flux vectors [179]

εα ≡ −gαβTβµξµ(t), `α ≡ gαβTβµξµ(ϕ), (3.133)

where Tµν is the stress-energy of the field that is carrying away energy and angular momentum. Recall that

ξα(t) and ξα(ϕ) are the time and azimuthal Killing vectors. In the wave zone of an isolated source, Tµν = TGW
µν ,

where TGW
µν is the effective stress-energy tensor that describes the gravitational waves. The gravitational

wave flux through some surface S, Ė ≡ dES/dt and L̇Sz ≡ dLSz /dt, can then be found by projecting the flux

vectors onto the surface’s normal vector nαS and then integrating over the surface,

ĖS = −
∮
S

TGW
tν nνS dS, L̇Sz =

∮
S

TGW
ϕν nνS dS. (3.134)

For an observer measuring gravitational radiation at r → ∞, nµdS → δµr r
2dΩ, where dΩ is the standard

differential solid angle. The measured fluxes are then given by

Ė∞ = − lim
r→∞

r2

∮
TGW
tr dΩ, L̇∞z = lim

r→∞
r2

∮
TGW
ϕr dΩ, (3.135)

At infinity, the stress-energy tensor of the gravitational waves can be related to the metric perturbation

through the Isaacson stress-energy tensor [137],

〈
TGW
αβ (r →∞)

〉
=

1

16π
〈∂αh+∂βh+ + ∂αh×∂βh×〉 , (3.136)

where the polarization amplitudes h+ and h× are defined by the projection of hµν onto the two-polarization

tensors e+
αβ and e×αβ so that the asymptotic behavior of the metric perturbation is [137, 93, 152]

hαβ(r →∞) ' h+e
+
αβ + h×e

×
αβ . (3.137)

(See Chapter 1 of Ref. [152] for further discussion.) Upon calculating the metric perturbation hµν , one can

use Eqs. (3.135), (3.136), and (3.137) to find the time-averaged energy and angular momentum fluxes at

infinity, 〈Ė〉∞ and 〈L̇z〉∞, respectively. Unlike the gravitational self-force, these fluxes are gauge-invariant.

The radiation at infinity does not, however, account for the total flux of energy and angular momentum.

Gravitational waves will not only radiate to infinity, but radiation will also be absorbed by the MBH. There

67



is currently no known expression for Tµν that describes gravitational radiation through the black hole’s

horizon, making it much more difficult to develop an equivalent expression for the flux of energy and angular

momentum absorbed by the black hole. Poisson [178] found integral forms for the horizon fluxes that are

similar to (3.135), but they require a specific gauge choice for solving the metric perturbation. As I will

discuss, in Chapter 4, there are simpler methods for calculating the fluxes at both infinity and the horizon

that avoid solving for the full metric perturbation hµν .

Section 3.4: Relation to scalar radiation, radiation-reaction, and self-force

In this chapter, I discussed the impact of radiation on the dynamics of EMRIs. The EMRI and its

dynamics are understood perturbatively through an expansion in the system’s mass ratio ε. At first-order,

the stellar-mass compact object of mass µ can be treated as a point particle following a worldline xαp in the

background spacetime gαβ defined by the MBH. (In this work, I focus on perturbations of a background Kerr

metric with black hole spin a and black hole massM .) The motion of the stellar-mass body in this background

spacetime is given by the MiSaTaQuWa equation of motion (3.114), which is driven by a gravitational self-

force that arises from the small body interacting with its own (first-order) metric perturbation hµν .

For my dissertation research, rather than calculating the gravitational self-force experienced by an EMRI,

I instead consider an analogous scalar problem by giving the small body µ a scalar charge q (where q2 � µM).

As I will outline in further detail in Chapter 5, the formalisms presented in this chapter (e.g., radiation-

reaction, self-forces, singular and regular Green’s functions, tail fields, fluxes) directly transfer to the scalar

case. The scalar-charged body possesses a scalar field Φ that interacts with the surrounding spacetime

curvature, resulting in a scalar self-force that perturbs the motion of the small-body. The retarded scalar

field—much like the retarded electromagnetic field and metric perturbation considered in this chapter—is

formally divergent at the location of the charge. Therefore, one must identify the regular field ΦR that is

responsible for the scalar self-force that acts back on the perturbing scalar charge. The strong overlap between

the scalar and gravitational cases makes the scalar model a powerful tool for developing new computational

techniques that can be extended to the gravitational problem. Therefore, in the proceeding chapter (Chapter

4) I outline current state-of-the-art methods for calculating the gravitational self-force in Kerr spacetime.

Then in Chapter 5 I demonstrate how these methods are mirrored by solving the scalar self-force problem

and discuss how results in the scalar problem extend to the gravitational case.
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CHAPTER 4: Gravitational perturbations of black holes

Section 4.1: Chapter overview

In this chapter, I outline current state-of-the-art procedures for calculating the gravitational self-force

in Kerr spacetime. This review not only motivates the methods that I use to investigate the closely-related

scalar self-force problem in the next chapter (Chapter 5), but also lays a foundation for future work as I

generalize results from my scalar model to the gravitational case.

Recall from the last chapter that a key result of the MiSaTaQuWa derivations [166, 192], and the sub-

sequent work of Detweiler and Whiting [82], is that the gravitational self-force does not depend on the

full retarded metric perturbation, which is formally divergent, but just a regular component of it, hR
µν .

Consequently, in order to calculate the gravitational self-force, one must be able to construct this regular

contribution. This, however, is not a straightforward task. The global forms of the regular two-point func-

tion (3.38) and singular Green’s function (3.37) are unknown. Additionally, the regular field is acausal and

unphysical far from the particle. Thus it is unclear what boundary conditions would produce the correct

regular solutions. Calculating hR
µν and the resulting gravitational self-force requires a suitable regularization

procedure to circumvent these issues.

In the following sections I review two of the leading regularization methods for calculating the gravita-

tional self-force: mode-sum regularization and the effective source or puncture method. For my dissertation,

I use mode-sum regularization, which requires the construction of the retarded field in order to calculate the

self-force. Therefore, I will then survey important methods for constructing the retarded metric perturba-

tions so that these perturbations are amenable to mode-sum regularization. I will first focus on constructing

solutions in Schwarzschild spacetime (a = 0) before reviewing calculations of the gravitational self-force in

Kerr spacetime.

Section 4.2: Regularization procedures for constructing the gravitational self-force

There are two main approaches for regularizing perturbations in order to calculate the self-force. Both

methods rely on the fact that, though the singular field is also acausal away from the particle, one only needs

to obtain its behavior in a normal neighborhood near the particle to form the regular field. While the global

structure of the singular Green’s function is not known, one can use the Hadamard expansion of the Green’s
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function [119] to construct local analytic expansions of the singular field in the neighborhood of the small

mass. In the first approach one first calculates the metric perturbation then subtracts the singular expansion

to “regularize” the result, while in the second approach one subtracts the singular expansion’s implied source

from the source term before calculating an approximation to the regular metric perturbation. I will begin

by discussing the first approach, which is commonly applied via mode-sum regularization, then conclude by

outlining the second approach, which is commonly called the effective source or puncture method.

4.2.1: Mode-sum regularization

Mode-sum regularization takes advantage of the fact that, while hret
µν and hS

µν are divergent at the location

of the small mass, their multipole contributions are finite if they are decomposed onto a Legendre l-mode

basis, i.e.

hret
µν (t, r, θ, ϕ) =

∞∑
l=0

hret,l
µν (t, r, θ, ϕ) ≡

∞∑
l=0

l∑
m=−l

hret,lm
µν (t, r)Ylm(θ, ϕ), (4.1)

hS
µν(t, r, θ, ϕ) =

∞∑
l=0

hS,l
µν(t, r, θ, ϕ) ≡

∞∑
l=0

l∑
m=−l

hS,lm
µν (t, r)Ylm(θ, ϕ), (4.2)

where Ylm is the standard scalar spherical harmonic. Note that it is traditional to expand components of

vectors and tensors with scalar spherical harmonics. Similarly, one can define analogous self-force quantities

and their multipole contributions

F
α(ret)
GSF ≡ lim

x→xp
µ∇αµνhret

µν =

∞∑
l=0

F
α(ret),l
GSF , F

α(S)
GSF ≡ lim

x→xp
µ∇αµνhS

µν =

∞∑
l=0

F
α(S),l
GSF . (4.3)

By subtracting the regular and singular multipoles one can then construct the gravitational self-force on a

mode-by-mode basis,

FαGSF,1 = lim
x→xp

∞∑
l=0

(
F
α(ret),l
GSF − Fα(S),l

GSF

)
. (4.4)

The singular contributions F
α(S),l
GSF are obtained as a local analytic expansion near the location of the particle.

As discussed in Chapter 3, the structure of the singular Green’s function is now well understood, even if its

global form is not exactly known [82, 180]. Through a Hadamard expansion of the Green’s function, one

can obtain an analytic expression for the singular self-force contributions F
α(S),l
GSF [37, 39, 81, 121, 122] in the

form of a series

F
α(S),l
GSF = Aα (l + 1/2) +Bα +

Cα

l + 1/2
+

∞∑
n=1

Dα,n∏n
k=1(2l + 1 + 2k)(2l + 1− 2k)

, (4.5)
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where the higher-order terms fall-off as ∼ l−4. While generating analytic expansions of the singular force

is tedious, only the first few terms of this expansion are needed to eliminate the leading divergences of the

singular field. The higher-order parameters have the convenient property that

∞∑
l=0

[
n∏
k=1

(2l + 1 + 2k)(2l + 1− 2k)

]−1

= 0, (4.6)

for n > 1, while for geodesic sources in Kerr spacetime, Cα = 0 in Lorenz gauge [39, 30]. As a result, only

the first two regularization parameters are necessary to formally correct for the divergent result

FαGSF,1 = lim
x→xp

∞∑
l=0

(
F
α(ret),l
GSF −Aα (l + 1/2)−Bα

)
. (4.7)

In practice, however, one can not sum over an infinite number of modes when calculating the self-force. When

truncating the sum in Eq. (4.7), the self-force only convergences as l−2. Thus, higher-order regularization

parameters, while not formally necessary, are still helpful for improving the convergence of gravitational

self-force calculations. To date, Aα and Bα are known for generic geodesic sources in the Kerr spacetime

[39], while higher-order parameters are known for equatorial geodesic sources [122]. Additional numerical

considerations and techniques for applying mode-sum regularization are discussed later in Sec. 5.3.5.

Note that the mode-sum regularization only works if one calculates the Legendre l-mode contributions of

the retarded field, which is particularly cumbersome to achieve in Kerr spacetime (see Sec. 4.4). Furthermore,

the mode-sum regularization does not apply at second-order, because the multipole contributions to the

second-order retarded metric perturbation are not necessarily finite [41].

4.2.2: Effective source

The effective source method, rather than generating regularization parameters that approximate the

singular contribution to the “retarded self-force,” relies on a puncture field, hPµν , that approximates the

singular structure of the retarded field [199, 34, 35, 227]. Like the previous procedure, subtracting the

puncture from the retarded field then provides the residual perturbation, hRµν , which is regular. If the

puncture is a sufficiently accurate approximation of the singular field near the particle, then hRµν provides a

local approximation of the regular field and, therefore, contains all of the information that is necessary to

calculate the gravitational self-force, i.e.,

FαGSF,1 = lim
x→xp

µ∇αµνhRµν . (4.8)

71



The residual field is constructed by solving the inhomogeneous linearized Einstein equation

δGµν [hR] = 8πTµν − δGµν [hP ] ≡ Seff
µν . (4.9)

with an effective source Seff
µν . Unlike the regular field, which is an acausal solution to the homogeneous

linearized Einstein equation (3.55), the residual field retains its causal structure far away from the particle,

while the effective source encodes the behavior of the regular field near the particle. This makes the residual

field more amenable to numerical calculations.

Of course, this method relies on a puncture that sufficiently captures the divergences of the singular field.

The puncture must lead to a singular source term that cancels with the Dirac delta terms of the original

source so that the resulting residual field is at least C1 (once differentiable) at the location of the particle.

These punctures are obtained as a local analytic expansion in the neighborhood of the particle [34, 35, 227] in

a similar manner to the regularization parameters derived for the mode-sum method. Like the regularization

parameters, only the first few orders in this expansion are needed to tame the divergences of the source. One

strong advantage of the puncture method is that this regularization procedure also generalizes to second-

order calculations, making it a promising approach for future computations of the higher-order self-force

terms [41]. At the moment, however, puncture expansions have only been calculated for particular self-force

problems and sources at first order [228, 88, 90, 89, 240, 243, 214], unlike the regularization parameters of

the mode-sum method, whose analytic forms are now widely known for generic sources in Kerr spacetime.

Ultimately, mode-sum regularization is one the most mature frameworks for calculating the self-force, and

is extensively discussed in the literature. Thus, for the purposes of this work, I make use of mode-sum

regularization. In the following sections, I outline how one can construct the retarded contributions that one

regularizes to obtain the self-force.

Section 4.3: Calculating the retarded metric perturbations in Schwarzschild spacetime

In the limit a → 0, the Kerr spacetime reduces to the spherically-symmetric Schwarzschild spacetime.

For Schwarzschild, the full spacetime manifold MSchw can be decomposed into two submanifolds, MSchw =

M2×S2, whereM2 forms the “time-radial plane” and S2 is the two-sphere. The metric is then conveniently

represented by

ds2 = gabdx
adxb + r2ΩABdθ

AdθB , (4.10)

where gab is the two-metric forM2, ΩAB is the metric on the two-sphere, and the coordinates xa and θA span

M2 and S2, respectively. Lowercase Latin indices (e.g., a, b) run over 0 and 1, while uppercase indices (e.g.,
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A, B) run over 2 and 3. In Schwarzschild coordinates, xa
.
= (t, r), θA

.
= (θ, ϕ), gab

.
= diag(−fSchw, f

−1
Schw),

and ΩAB
.
= diag(1, sin2 θ).

One can leverage these symmetries to separate the dependence of hµν on xa and on θA. For scalar

functions, this is traditionally done by decomposition on a scalar-spherical-harmonics basis. For the metric

perturbation, this decomposition is instead performed with tensor spherical harmonics. Tensor spherical

harmonics, as their name implies, are a tensorial generalization of the much more well known scalar spherical

harmonics Y lm(θ, ϕ) and are constructed from the Y lm and their (first and second) derivatives. Following

the notation and definitions of Martel and Poisson [158], the decomposition of hµν on a tensor-spherical-

harmonics basis takes the form

hab =
∑
lm

hlmab (t, r)Y lm(θ, ϕ), (4.11)

haB =
∑
lm

(jlma (t, r)Y lmB (θ, ϕ) + hlma X lm
B (θ, ϕ)), (4.12)

hAB =
∑
lm

(r2Klm(t, r)Y lm(θ, ϕ)ΩAB + r2Glm(t, r)Y lmAB(θ, ϕ) + hlm2 (t, r)X lm
AB(θ, ϕ)), (4.13)

where the even-parity vector harmonics Y lmA , the odd-parity vector harmonics X lm
A , the even-parity tensor

harmonics ΩABY
lm and Y lmAB , and the odd-parity tensor harmonics X lm

AB are all defined in Ref. [158]. Making

use of this decomposition, Eq. (3.92) reduces to 10 coupled partial differential equations that only depend

on the coordinates xa.

4.3.1: Lorenz and Regge-Wheeler gauges

This system of equations can be further reduced by imposing a gauge condition. Lorenz gauge (∇βh̄αβ =

0) is one convenient gauge choice. In Lorenz gauge, the field equations (Eq. (3.93)) form a linear, hyperbolic

set of partial differential equations, and thus have a well-posed initial-value problem. By transforming to

the frequency domain, the field equations can be recast as two sets of ordinary differential equations—six

coupled field equations plus four coupled constraint equations due to the Lorenz gauge condition—which

can be solved via traditional finite-differencing schemes. Additionally, as discussed in Chapter 3, Lorenz

gauge has been a popular gauge for understanding electromagnetic fields and the electromagnetic self-force.

Furthermore, the MiSaTaQuWa equations were first derived in Lorenz gauge and the analytic regularization

parameters used in mode-sum regularization are known in Lorenz gauge [39]. As a result, there is an extensive

literature of mathematical approaches for solving perturbations in this gauge, and, to date, gravitational

self-force calculations in Schwarzschild spacetime have predominantly been performed using the Lorenz gauge
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condition [36, 42, 43, 176].

There are still other useful gauge choices. One alternative is Regge-Wheeler(-Zerilli) gauge [194, 247].

While, in general, the metric amplitudes are gauge-dependent, certain combinations of the amplitudes pro-

duce gauge-invariant quantities

h̃ab ≡ hab −∇aεa −∇bεb, (4.14)

K̃ ≡ K +
1

2
l(l + 1)G− 2

r
raεa, (4.15)

h̃a ≡ ha −
1

2
∇ah2 +

1

r
rah2, (4.16)

where εa ≡ ja − 1
2r

2∇aG, ra ≡ ∂r/∂xa, and the harmonic indices have been dropped to simplify notation.

In Regge-Wheeler gauge, one uses the residual gauge freedom to choose jlma = Glm = h2 = 0 [194, 247]. As a

result, in Regge-Wheeler gauge the metric perturbations are equivalent to these gauge-invariant quantities,

i.e., h̃ab = hab, K̃ = K, and h̃a = ha. If one constructs the metric amplitudes in any other gauge, it is

then straightforward to calculate the metric amplitudes in Regge Wheeler gauge. Transforming from Regge-

Wheeler gauge perturbations to Lorenz gauge, however, is much more challenging and has only been done

for odd-parity perturbations [129], though procedures for transforming the even-parity perturbations have

been proposed [201].

4.3.2: Master functions and equations

Rather than solving for the metric amplitudes hlmab , hlma , and Klm directly, one can instead solve for

two scalar “master functions” which encode all of the information about the metric perturbation. As first

shown by Zerilli in the frequency-domain [247], then generalized to the time-domain by Moncrief [169], the

even-parity amplitudes hlmab and Klm can be reconstructed by performing different operations (i.e, derivatives

and integrals) on an even-parity master function, Ψlm
even, while Cunningham, Price, and Moncrief found that

the odd-parity perturbations ha could be constructed from an analogous master function, Ψlm
odd [156].

Martel and Poisson [158] combined these results to provide a gauge-invariant framework (in M2) for

constructing the master functions and their associated master equations. To summarize their results, the

even-parity perturbation amplitudes are encoded in the Zerilli-Moncrief master function [247, 169]

Ψlm
even ≡

2r

l(l + 1)

[
K̃lm +

2

Λ̃

(
rarbh̃lmab − rra∇aK̃lm

)]
, (4.17)

where ra ≡ ∂r/∂xa and Λ̃ ≡ (l − 1)(l + 2) + 6M/r. The master function is given by the Zerilli master
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equation

(�− Veven) Ψeven = Seven, (4.18)

where � ≡ gab∇a∇b = −∂2
t + fSchw∂r(fSchw∂r) is the wave operator in Schwarzschild coordinates, the

potential takes the form

Veven =
1

Λ̃2

[
(l − 1)2(l + 2)2

(
(l − 1)(l + 2) + 2

r2
+

6M

r

)
+

36M2

r4

(
(l − 1)(l + 2) +

2M

r

)]
, (4.19)

and the source term Seven is given in Eq. (4.27) of Ref. [158]. Likewise, the odd-parity perturbations are

given by the Cunningham-Price-Moncrief master function [75, 158]

Ψlm
odd ≡

2r

(l − 1)(l + 2)
εab
(
∇ah̃lmab −

2

r
rah̃

lm
b

)
, (4.20)

where εab is the Levi-Civita tensor on the submanifold M2. The behavior of Ψlm
odd is determined by the

Regge-Wheeler master equation

(�− Vodd) Ψodd = Sodd, (4.21)

with potential

Vodd ≡
l(l + 1)

r2
=

6M

r3
. (4.22)

The source term Sodd is given by Eq. (5.16) of Ref. [158]. The Cunningham-Price-Moncrief master function

is closely related to the original master function proposed by Regge and Wheeler [194],

Ψlm
RW ≡

1

r
rah̃lma , (4.23)

which also satisfies the Regge-Wheeler equation but with a different source term. While these two master

equations, Eqs. (4.18) and (4.21), are much simpler to solve than the 10 field equations, they do not directly

yield the metric perturbations. One must subsequently reconstruct the metric amplitudes from the master

functions. Current procedures can reconstruct the metric in Regge-Wheeler gauge but not Lorenz gauge

[157, 128]. To calculate Lorenz gauge perturbations, one must either transform the reconstructed metric

from Regge-Wheeler to Lorenz gauge [129] or solve for the metric amplitudes directly from the Lorenz gauge

field equations [176].

While the metric amplitudes are necessary for gravitational self-force calculations, they are not necessary

for calculating the asymptotic behavior of the gravitational radiation field [158]. For example, the time-

averaged energy and angular momentum flux due to gravitational wave emission, 〈Ė〉 and 〈L̇〉 (which were
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first introduced in Sec. 3.3.5), can be calculated directly from the master functions [217, 158],

〈Ė〉 =
1

64π

∑
lm

(l + 2)!

(l − 2)!

〈∣∣∣Ψ̇lm,+
even

∣∣∣2 +
∣∣∣Ψ̇lm,−

even

∣∣∣2 +
∣∣∣Ψ̇lm,+

odd

∣∣∣2 +
∣∣∣Ψ̇lm,−

odd

∣∣∣2〉 , (4.24)

〈L̇〉 =
1

64π

∑
lm

im
(l + 2)!

(l − 2)!

〈
Ψ̇lm,+

even Ψ∗lm,+even + Ψ̇lm,+
odd Ψ∗lm,+odd + Ψ̇lm,−

even Ψ∗lm,−even + Ψ̇lm,−
odd Ψ∗lm,−odd

〉
, (4.25)

where 〈G〉 denotes a long time-average ofG(t), the superscript “+” means functions are evaluated on the outer

boundary r → +∞, while the superscript “−” means functions are evaluated on the inner boundary r → r+,

where r+ represents the radius of the massive black hole’s horizon. (In Schwarzschild spacetime, r+ = 2M .)

Conveniently, no metric reconstruction procedure is needed to calculate these gauge-invariant quantities.

This makes this master function approach, where one solves only two ordinary differential equations, instead

of 10, quite powerful. In the following section I will discuss how a similar set of scalar functions and equations

also exist in Kerr spacetime.

Section 4.4: Calculating the retarded metric perturbations in Kerr spacetime

Due to the axisymmetry of Kerr spacetime, separability of the linear Einstein equations is much more

difficult to achieve. It does not appear that the Kerr manifold can be separated in an equivalently useful way

into two two-dimensional submanifolds like in Schwarzschild spacetime. Consequently, a tensor-spherical-

harmonic decomposition will not separate the angular dependence of the metric perturbation from its de-

pendence on the time and radial coordinates. One can make use of the time and azimuthal symmetries of

Kerr to Fourier expand the perturbation in t and ϕ, i.e.,

h̄µν(t, r, θ, ϕ) =

∞∑
m=0

∫
dω h̄mωµν (r, θ)eimϕe−iωt. (4.26)

Then Eq. (3.93) simplifies to sets of coupled (elliptic) partial differential equations that depend on r and θ and

can be solved upon specifying suitable boundary data. While this decomposition reduces the dimensionality

of the problem, the coupling between r and θ remains. Furthermore, there is still the problem of integrating

the delta source term, which lacks the natural angular harmonic basis for constructing finite multipoles of

the retarded field. This requires Lorenz gauge perturbations to be calculated through an effective source

scheme. To date, there is no known method for separating the radial and polar coupling in the Lorenz-gauge

gravitational field in Kerr spacetime, though promising work by Dolan [87] has shown how this can be done in

the case of electromagnetic perturbations. Despite this lack of separability, there has been preliminary work

on calculating the metric perturbations from the Lorenz-gauge field equations, with some authors solving
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the full linearized Einstein equations through a 3+1 decomposition [228], akin to numerical relativity; others

using the azimuthal symmetry to reduce the problem to a 2+1 decomposition [88, 90, 89, 214]; and yet

others developing an azimuthal and frequency domain decomposition [240, 243], such as Eq. (4.26). Even

with these developments, a full calculation of the metric perturbations in Lorenz gauge in Kerr spacetime

has not yet been made.

Alternatively, much like in Schwarzschild spacetime, it can be convenient to work in a different class of

gauges from Lorenz gauge. One particularly useful set are the radiation gauges. This class includes the

ingoing and outgoing radiation gauges, which are defined by the gauge conditions

lµhµν = 0, hαα = 0, (ingoing) (4.27)

nµhµν = 0, hαα = 0, (outgoing) (4.28)

where lµ is the outgoing null vector and nµ is the ingoing null vector of the Kinnersley tetrad.1 Unfortunately,

much like Lorenz gauge, the field equations do not easily separate as they do in Schwarzschild spacetime. In

these radiation gauges, however, it is possible to calculate hµν by (re)constructing the metric perturbations

from a set of two “master” functions: the Weyl scalars ψ0 and ψ4, which obey the Teukolsky equation [209].

Unlike the linearized Einstein equations, the Teukolsky equation is separable, provided one transforms ψ0

and ψ4 to the frequency domain, then decomposes their transforms onto a basis of (frequency-dependent)

spin-weighted spheroidal harmonics [53, 209]. This greatly simplifies the numerical calculation of the Weyl

scalars.

The Weyl scalar ψ0 and ψ4 possess most of the perturbation information, but not all of it. The additional

metric information must be completed from the global perturbations of the Kerr mass and angular momen-

tum, M and J ≡ aM [231, 223]. This two-step process of metric reconstruction and metric completion is

now well understood in radiation gauge and has been used to calculate the outgoing-radiation-gauge grav-

itational self-force in Kerr spacetime [222, 224]. I, therefore, review the origin of the Weyl scalars and the

Teukolsky equation, and how to solve for them. I then outline how their solutions can be used to reconstruct

and complete the metric perturbations in radiation gauge.

4.4.1: Newman-Penrose formalism

The Newman-Penrose (NP) formalism [173] leverages spinor calculus to examine the structure of different

spacetimes in general relativity. This requires first choosing a special vector basis known as a null tetrad,

1In outgoing radiation gauge the metric perturbation, which encodes the system’s radiation, is orthogonal to the lines of ingoing
radiation nν so that there is only outgoing radiation.
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which is represented by eα(a) ≡ (lα, nα, mα, m∗α), which are constrained by lαnα = −mαm∗α = −1 and all

other inner products vanishing. An asterisk denotes complex conjugation. Note that tetrad components

are labeled by Latin indices with typewriter font (e.g., (a), (b)), while spacetime coordinates are labeled by

Greek indices. Tetrad components can be raised or lowered by

η(a)(b) = η(a)(b) =



0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0


, (4.29)

while the vector and tensor indices are raised and lowered with the metric gαβ = e(a)αe(b)βη
(a)(b) and its

inverse gαβ = eα(a)e
β
(b)η

(a)(b). One can then define a corresponding set of directional covariant derivatives

D̂ ≡ ∇eα
(l)

= lα∇α, ∆̂ ≡ ∇eα
(n)

= nα∇α, δ̂ ≡ ∇eα
(m)

= mα∇α, δ̂∗ ≡ ∇eα
(m∗)

= m∗α∇α. (4.30)

The action of these directional derivatives on the tetrad elements themselves is then encoded in 12 spin

coefficients

κNP ≡ −mαD̂lα, τNP ≡ −mα∆̂lα, σNP ≡ −mαδ̂lα, ρNP ≡ −mαδ̂∗lα, (4.31)

πNP ≡ m∗αD̂nα, νNP ≡ m∗α∆̂nα, µNP ≡ m∗αδ̂nα, λNP ≡ m∗αδ̂∗nα, (4.32)

εNP ≡
1

2

(
m∗αD̂mα − nαD̂lα

)
, γNP ≡

1

2

(
m∗α∆̂mα − nα∆̂lα

)
, (4.33)

βNP ≡
1

2

(
m∗αδ̂mα − nαδ̂lα

)
, αNP ≡

1

2

(
m∗αδ̂∗mα − nαδ̂∗lα

)
. (4.34)

Because ∇
e
(a)
µ
e

(b)
ν = Γαµνe

(b)
α , the spin coefficients represent the tetrad projections of the connection coeffi-

cients.

The next step is to project the curvature tensors that describe spacetime structure onto this tetrad.

Spacetime structure is generally encoded in the Riemann tensor, which can be separated into its trace

components and trace-free components. The trace-free part of the Riemann tensor is the (conformal) Weyl

tensor [168],

Cαβγδ = Rαβγδ −
1

2
(gαγRβδ + gβδRαγ − gβγRαδ − gαδRβγ) +

1

6
(gαγgβδ − gβγgαδ)R, (4.35)

while the trace part depends on the Ricci tensor. In vacuum spacetimes, the Riemann tensor and Weyl tensor

are equivalent. Hence, the Weyl tensor contains all of the information about the intrinsic tidal gravitational
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field. By contracting the Weyl tensor with the null tetrad, Newman and Penrose [173] identified five complex

Weyl scalars that encode the 10 independent components of the Weyl tensor

ψ0 ≡ Cαβγδlαmβlγmδ, ψ1 ≡ Cαβγδlαnβlγmδ,

ψ2 ≡ Cαβγδlαnβ
(
lγnδ − mγm∗δ

)
, (4.36)

ψ3 ≡ Cαβγδlαnβm∗γnδ, ψ4 ≡ Cαβγδnαm∗βnγm∗δ.

Similarly by contracting the Ricci tensor, they identified four real Ricci scalars

ΦNP
00 ≡

1

2
Rαβl

αlβ , ΦNP
11 ≡

1

2
Rαβ

(
lαnβ + mαm∗β

)
, ΦNP

22 ≡
1

2
Rαβn

αnβ , ΛNP ≡ 1

24
R, (4.37)

and three complex Ricci scalars

ΦNP
01 ≡

1

2
Rαβl

αmβ , ΦNP
02 ≡

1

2
Rαβm

αmβ , ΦNP
12 ≡

1

2
Rαβm

αnβ . (4.38)

that encode the 10 independent components of the Ricci tensor [173]. Using the Ricci and Bianchi identities,

i.e.,

(∇α∇β −∇β∇α)e(a)µ = e(a)νR
ν
µαβ , ∇µRαβγδ +∇γRαβδµ +∇δRαβµγ = 0, (4.39)

one can construct the NP field equations, leading to a (large) set of coupled differential equations for the

Weyl and Ricci scalars. The full form of the NP field equations can be found in Refs. [173, 106]. Note that I

have defined the spin coefficients, Weyl scalars, and Ricci scalars to have the opposite signs of the definitions

provided by Newman and Penrose and later used by Teukolsky. This is because they used a metric signature

(+ − −−). By introducing this additional negative sign, but keeping the metric signature (− + + +), the

original forms of the NP equations, and the Teukolsky equations discussed in the proceeding sections, remain

unchanged.

4.4.2: The Teukolsky equation: general framework

Teukolsky [209, 210] used the NP field equations to examine perturbations in the Kerr spacetime. Teukol-

sky introduced perturbations by splitting all quantities into their background components (B superscript)

and perturbed components (P superscript), e.g. ψ0 = ψB
0 + ψP

0 , κNP = κB
NP + κP

NP, D̂ = D̂B + D̂P. He then

used the fact that the Kerr and Schwarzschild geometries are of Petrov-Pirani type D, meaning that the

equation

C̃αβγ[δkµ]k
βkγ = 0 (4.40)
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admits two independent solutions for kα. (There can be up to four solutions; type D spacetimes only have

two and, therefore, are referred to as doubly degenerate.) Here, C̃αβγδ ≡ Cαβγδ + i
2εαβµνC

µν
γδ is the self-

dual Weyl tensor and εαβµν is the standard Levi-Cevita symbol. The solutions kα are referred to as the

principal null directions. Thus if one chooses lα and nα to lie along the principal null directions, then by

the Goldberg-Sachs theorem and the vacuum condition Rαβ = 0, many of the background quantities vanish

[173, 209]

ψB
0 = ψB

1 = ψB
3 = ψB

4 = κB
NP = σB

NP = νB
NP = λB

NP = 0. (4.41)

This results in sets of coupled differential equations for ψP
0 , ψ2, and ψP

4 . The Bianchi identities determine

the form of ψ2

D̂ψ2 = 3ρNPψ2, δ̂ψ2 = 3τNPψ2, ∆̂ψ2 = −3µNPψ2, δ̂∗ψ2 = −3πNPψ2. (4.42)

Teukolsky [209] found, by taking different combinations of the remaining NP field equations, that the equa-

tions for ψP
4 and ψP

0 conveniently separate,

[
(D̂ − 3εNP + ε∗NP − 4ρNP − ρ∗NP)(∆̂− 4γNP + µNP) (4.43)

− (δ̂ + π∗NP − α∗NP − 3βNP − 4τNP)(δ̂∗ + πNP − 4αNP)− 3ψ2

]
ψ0 = 4πT0, (4.44)[

(∆̂ + 3γNP − γ∗NP + 4µNP + µ∗NP)(D̂ + 4εNP − ρNP) (4.45)

− (δ̂∗ − τ∗NP + β∗NP + 3αNP + 4πNP)(δ̂ − τNP + 4βNP)− 3ψ2

]
ψ4 = 4πT4, (4.46)

where I have dropped the perturbation superscript since ψ0 = ψP
0 and ψ4 = ψP

4 . The source terms T0 and

T4 are given by

(
δ̂ + π∗NP − α∗NP − 3βNP − 4τNP

) [(
D̂ − 2εNP − 2ρ∗NP

)
Tlm −

(
δ̂ + π∗NP − 2α∗NP − 2βNP

)
Tll

]
(4.47)

+
(
D̂ − 3εNP + ε∗NP − 4ρNP − ρ∗NP

) [(
δ̂ + 2π∗NP − 2βNP

)
Tlm −

(
D̂ − 2εNP + 2ε∗NP − ρ∗NP

)
Tmm

]
= T0,(

∆̂ + 3γNP − γ∗NP + 4µNP + µ∗NP

) [(
δ̂∗ − 2τ∗NP + 2αNP

)
Tnm̄ −

(
∆̂ + 2γNP − 2γ∗NP + µ∗NP

)
Tm̄m̄

]
(4.48)

+
(
δ̂∗ − τ∗NP + β∗NP + 3αNP + 4πNP

) [(
∆̂ + 2γNP + 2µ∗NP

)
Tnm̄ −

(
δ̂∗ − τ∗NP + 2β∗NP + 2αNP

)
Tnn

]
= T4.

The separation of the field equations for ψ0 and ψ4 drastically reduces the calculation of these gravitational

perturbations. In the next section, I will review how these equations reduce to even more amenable forms

when specialized to the case of Boyer-Lindquist coordinates.
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4.4.3: The Teukolsky equation: Boyer-Lindquist coordinates

The principal null congruences of the Kerr spacetime in Boyer-Lindquist coordinates are given by [168]

kα± =
1

∆

(
r2 + a2,±∆, 0, a

)
, (4.49)

where the ± refer to outgoing/ingoing null rays, respectively. Thus, lα and nα must be chosen to lie along

these congruences, i.e., they must be proportional to kα±. The residual freedom can be used to set certain

spin coefficients to zero. Kinnersley [147] demonstrated that by performing particular null rotations (that

preserve the inner products of the null tetrad vectors) one can restrict εNP = 0. This leads to the Kinnersley

tetrad (Case II.A of “Type D Vacuum Metric” in Ref. [147])2

lα
.
= lα = kα+, (4.50)

nα
.
= nα =

1

2Σ
kα−, (4.51)

mα
.
= mα =

1√
2 (r + ia cos θ)

(ia sin θ, 0, 1, i csc θ) , (4.52)

The associated one-forms are then given by

lα
.
= lα =

1

∆

(
−∆,Σ, 0, a∆ sin2 θ

)
, (4.53)

nα
.
= nα =

∆

2Σ

(
−1,−Σ

∆
, 0, a sin2 θ

)
, (4.54)

mα
.
= mα =

1√
2 (r + ia cos θ)

(
−ia sin θ, 0,Σ, i(r2 + a2) sin θ

)
. (4.55)

From these one can verify that lαnα = nαlα = −1, m∗αmα = mαm∗α = 1, and all other inner products

vanish (are null).

Using these tetrad components, one can insert Eqs. (4.50)-(4.55) into Eqs. (4.31)-(4.33) to find the spin

coefficients in Boyer-Lindquist coordinates

ρNP ≡ ρ = − 1

r − ia cos θ
, τNP = − iaρρ

∗ sin θ√
2

, βNP = −ρ
∗ cot θ

2
√

2
(4.56)

µNP =
ρ2ρ∗∆

2
, πNP =

iaρ2 sin θ√
2

, γNP = µNP +
ρρ∗(r −M)

2
, αNP = πNP − β∗NP, (4.57)

2Kinnersley originally published this tetard in Kerr coordinates x′µ = (u, rK , x, y), which are related to the Boyer-Lindquist

coordinates through the differential relations du = dt− r2+a2

∆
dr, drK = dr, dx = dθ, dy = dϕ− a

∆
dr.
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while κNP = σNP = νNP = λNP = εNP = 0, and the operators are given by

D̂ =
1

∆

[(
r2 + a2

)
∇t + ∆∇r + a∇ϕ

]
, (4.58)

∆̂ =
ρρ∗

2

[(
r2 + a2

)
∇t −∆∇r + a∇ϕ

]
, (4.59)

δ̂ = − ρ∗√
2

[ia sin θ∇t +∇θ + i csc θ∇ϕ] . (4.60)

The partial differential equations for ψ2 then take the form

Ĵ−ψ2 = 3ρψ2, L̂∗0ψ2 = 3ia sin θρψ2, (4.61)

Ĵ+ψ2 = 3ρψ2, L̂0ψ2 = 3ia sin θρψ2, (4.62)

where the differential operators are given by

L̂s ≡ ∂θ −
i

sin θ
∂ϕ − ia sin θ∂t + s cot θ, Ĵ± ≡ ∂r ∓

1

∆

((
r2 + a2

)
∂t + a∂ϕ

)
. (4.63)

Here L̂∗s is the complex conjugate of L̂s. By recognizing that ρ−n∂rρ
n = nρ, ∆−n∂r∆

n = 2n(r −M)/∆,

and ρ−n∂θρ
n = niaρ sin θ, where n ∈ Z, the differential equations for ψ2 reduce to

ρ3Ĵ−
(
ρ−3ψ2

)
= 0, ρ3L̂∗0

(
ρ−3ψ2

)
= 0, (4.64)

ρ3Ĵ+

(
ρ−3ψ2

)
= 0, ρ3L̂0

(
ρ−3ψ2

)
= 0, (4.65)

Therefore, ρ−3ψ2 = ψ0
2 , where ψ0

2 is some constant that does not depend on r or θ. Kinnersley demonstrated

that, based on the tetrad and coordinate choices made earlier, ψ0
2 = M , so that ψ2 = Mρ3 [147]. The

gravitational source terms then take the form

T0 = −ρ
4ρ∗√

2
L̂∗−1

[
ρ−4ρ∗2Ĵ−

(
ρ∗−2T(l)(m)

)
− ρ−4

√
2
L̂∗0
(
ρ∗T(l)(l)

)]
− ρ4ρ∗Ĵ−

[
ρ−4ρ∗2√

2
L̂∗−1

(
ρ∗−2T(l)(m)

)
− ρ−4Ĵ−

(
ρ∗−1T(m)(m)

)]
, (4.66)

T4 = −ρ
8ρ∗∆2

2
Ĵ+

[
ρ−4

2
Ĵ+

(
ρ−2ρ∗T(m∗)(m∗)

)
− ρ−4ρ∗2∆−1

√
2

L̂−1

(
ρ−2ρ∗−2T(n)(m∗)

)]
− ρ8ρ∗√

2
L̂−1

[
ρ−4

√
2
L̂0

(
ρ−2ρ∗−1T(n)(n)

)
− ρ−4ρ∗2∆2

2
Ĵ+

(
ρ−2ρ∗−2∆−1T(n)(m∗)

)]
, (4.67)

where T(a)(b) refer to the projections of the stress-energy tensor onto the tetrad, e.g. T(l)(m) ≡ Tαβlαmα.
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In Boyer-Lindquist coordinates, the differential equation for ψ4 (4.46) simplifies to

(
(r2 + a2)2

∆
− a2 sin2 θ

)
∂2
t Ψ−2 +

4Mar

∆
∂t∂ϕΨ−2 +

(
a2

∆
− 1

sin2 θ

)
∂2
ϕΨ−2

−∆2∂r

(
1

∆
∂rΨ−2

)
− 1

sin θ
∂θ (sin θ∂θΨ−2) + 4

(
M(r2 − a2)

∆
− r − ia cos θ

)
∂tΨ−2

+ 4

(
a(r −M)

∆
+
i cos θ

sin2 θ

)
∂ϕΨ−2 +

(
4 cot2 θ + 2

)
Ψ−2 = 8πΣρ−4T4, (4.68)

where Ψ−2 ≡ ρ−4ψ4. Teukolsky also found a similar partial differential equation for ψ0. Furthermore, by

repeating these calculations for scalar, electromagnetic, and (massless) neutrino perturbations using the NP

formalism, Teukolsky found a series of perturbation equations that all share similar forms to Eq. (4.68). By

defining each field in terms of its spin-weight s, (s = 0 for a perturbing scalar field, s = ± 1
2 for a perturbing

neutrino field, s = ±1 for a perturbing electromagnetic field, and s = ±2 for a perturbing gravitational field)

Teukolsky found a single master equation that governs all of these perturbations [209],

ÔsΨs = 4πΣT ′s, (4.69)

where the field operator Ôs is given by

ÔsΨs ≡

[(
r2 + a2

)2
∆

− a2 sin2 θ

]
∂2
t Ψ +

4Mar

∆
∂t∂ϕΨs +

[
a2

∆
− 1

sin2 θ

]
∂2
ϕΨs

−∆−s∂r
(
∆s+1∂rΨs

)
− 1

sin θ
∂θ (sin θ∂θΨs)− 2s

[
a (r −M)

∆
+
i cos θ

sin2 θ

]
∂ϕΨs

− 2s

[
M
(
r2 − a2

)
∆

− r − ia cos θ

]
∂tΨs + (s2 cot2 θ − s)Ψs. (4.70)

This is known as the Teukolsky master equation. The form of Ψs and T ′s depends on the value of s. For

s = ±2,

Ψ−2 = ρ−4ψ4, T ′−2 = 2ρ−4T4 (s = −2), (4.71)

Ψ2 = ψ0, T ′2 = 2T0 (s = 2), (4.72)

while the forms for s = 0,± 1
2 ,±1 can be found in Table 1 of Ref. [209]. One can verify by plugging in

s = −2, that Eq. (4.69) is equivalent to Eq. (4.68). For scalar perturbations (s = 0), which I will consider

later, Ψ0 = Φ and T ′0 = ρscalar, where Φ is the scalar field of a particle with some scalar charge q and ρscalar

is its scalar charge density.
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4.4.4: Separating the Teukolsky equation

Another remarkable feature of the Teukolsky master equation is that it is amenable to solution via

separation of variables in the frequency domain [53, 209],

Ψs =

∫
dω

∞∑
l̂=0

∞∑
m=l̂

sRl̂mω(r)sS
aω
l̂m

(θ)eimϕe−iωt, (4.73)

−4πΣT ′s =

∫
dω

∞∑
l̂=0

∞∑
m=l̂

sTl̂mω(r)sS
aω
l̂m

(θ)eimϕe−iωt, (4.74)

where sS
aω
l̂m

(θ)eimϕ are the spin-weighted spheroidal harmonics with spheroidicity σ2 = −a2ω2. Like the

spin-weighted spherical harmonics, they form an orthonormal basis,

∫
sS

aω
l̂m

(θ)eimϕsS
∗aω
l′m′(θ)e

−im′ϕdΩ = δl̂l̂′δmm′ . (4.75)

With these decompositions, the radial and polar functions separate in Eq. (4.69),

∆−s

sRl̂mω
∂r
(
∆s+1∂r sRl̂mω

)
− sV

(r)
aω (r)− sTl̂mω

sRl̂mω
=

−
∑
jk

∫
dΩ

(
1

sin θ
∂θ

(
sin θ∂θ sS

aω
l̂m

)
sS
∗aω
jk ei(m−k)ϕ − sV

(θ)
aω (θ) sS

aω
l̂m sS

∗aω
jk ei(m−k)ϕ

)
, (4.76)

where the potentials are given by

sV
(r)
aω (r) = −

(
r2 + a2

)2
ω2 − 4Mramω + a2ω2

∆
− 2is

am(r −M) + ωM
(
r2 − a2

)
∆

− 2iωsr, (4.77)

sV
(θ)
aω (θ) = a2ω2 sin2 θ +

m2

sin2 θ
+

2ms cos θ

sin2 θ
+ 2aωs cos θ + (s2 cot2 θ − s), (4.78)

By equating both sides with the separation constant sλ
aω
l̂m

+2maω, the radial and polar equations completely

decouple into the angular Teukolsky equation for the spin-weighted spheroidal harmonics

1

sin θ

d

dθ

(
sin θ

d sS
aω
l̂m

dθ

)
+

[
− a2ω2 sin2 θ − (m+ s cos θ)

2

sin2 θ

− 2saω cos θ + s+ 2maω

]
sS

aω
l̂m

= −sλaωl̂m sS
aω
l̂m
, (4.79)

and the radial Teukolsky equation for the radial Teukolsky function sRl̂mω

∆−s
d

dr

(
∆s+1 d sRl̂mω

dr

)
− sV

aω
l̂m

(r) sRl̂mω = sTl̂mω, (4.80)
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where

sV
aω
l̂m

(r) ≡ sV
(r)
aω (r) + 2amω + sλ

aω
l̂m

= −K
2 − 2is (r −M)K

∆
− 4isωr + sλ

aω
l̂m
, (4.81)

with K ≡
(
r2 + a2

)
ω −ma. The source term is found from Eq. (4.74),

sTl̂mω(r) = −2

∫
dt dΩ ΣT ′s(t, r, θ, ϕ) sS

∗aω
l̂m

(θ)e−imϕeiωt. (4.82)

The second-order homogeneous radial Teukolsky equation admits two independent homogeneous solu-

tions, sR
h,±
l̂mω

. Physical solutions are chosen based on causal boundary conditions, leading to the “inner”

solutions (with “downgoing” waves) sR
h,−
l̂mω

and “outer” solutions (with “outgoing” waves) sR
h,+

l̂mω
. The

homogeneous solutions have respective asymptotic behaviors [209]

sR
h,−
l̂mω

(r∗ → −∞) ∼ A1∆−se−iγr∗ , sR
h,−
l̂mω

(r∗ →∞) ∼ A2r
−1e−iωr∗ +A3r

−(2s+1)eiωr∗ , (4.83)

sR
h,+

l̂mω
(r∗ → −∞) ∼ B1∆−se−iγr∗ +B2e

iγr∗ , sR
h,+

l̂mω
(r∗ →∞) ∼ B3r

−(2s+1)eiωr∗ ,

where the A and B coefficients are arbitrary constants, γ ≡ ω −mω+, ω+ ≡ a/2Mr+, and the inner and

outer horizons are given by r± ≡M ±
√
M2 − a2 (roots of ∆ = 0). The tortoise coordinate r∗ is defined by

the differential relation

dr∗
dr
≡ $2

∆
. (4.84)

Once homogeneous solutions of Eq. (4.80) are obtained, inhomogeneous solutions can be constructed via

variation of parameters

sRl̂mω(r) = c−
sl̂mω

(r)sR
h−
lmω(r) + c+

sl̂mω
(r)sR

h+
lmω(r), (4.85)

c−
sl̂mω

(r) =

∫ ∞
r

sR
h,+

l̂mω
(r′)sTl̂mω(r′)

∆(r′)Wsl̂mω(r′)
dr′, (4.86)

c+
sl̂mω

(r) =

∫ r

r+

sR
h,−
l̂mω

(r′)sTl̂mω(r′)

∆(r′)Wsl̂mω(r′)
dr′. (4.87)

where

Wsl̂mω(r) ≡ sR
h,−
lmω

d

dr

(
sR

h,+
lmω

)
− sR

h,+
lmω

d

dr

(
sR

h,−
lmω

)
, (4.88)

is the Wronskian. By evaluating the Wronskian at infinity using the asymptotic relations (4.83), one can
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express the Wronskian in terms of the asymptotic amplitudes in (4.83),

Wsl̂mω(r) = ∆−(s+1) lim
r→∞

∆s+1Wsl̂mω(r) = 2iωA3B3∆−(s+1). (4.89)

As discussed in Sec. 2.3 a source that is in bound geodesic motion results in a discrete frequency spectrum

ωmkn. Only these discrete frequency modes contribute to the time-domain reconstruction of the perturbing

field Ψs, i.e.,

c±
sl̂mω

=

∞∑
k=−∞

∞∑
n=−∞

c±
sl̂mωmkn

δ(ω − ωmkn). (4.90)

With only the variation parameters c±
sl̂mkn

≡ c±
sl̂mωmkn

contributing, the decompositions of the field and the

source reduce to mode sums

Ψs =
∑
l̂mkn

sRl̂mkn(r)sSl̂mkn(θ)eimϕe−iωmknt, (4.91)

−4πΣT ′s =
∑
l̂mkn

sTl̂mkn(r)sSl̂mkn(θ)eimϕe−iωmknt, (4.92)

where sRl̂mkn ≡ sRl̂mωmkn , sTl̂mkn ≡ sTl̂mωmkn , sSl̂mkn ≡ sS
aωmkn
l̂m

, and I use a shorthand notation for the

sums, ∑
l̂mkn

≡
∞∑
l̂=0

∞∑
m=l̂

∞∑
k=−∞

∞∑
n=−∞

. (4.93)

Furthermore, because sTl̂mkn only has support in the source region rmin ≤ r ≤ rmax, in the source-free

regions, r < rmin and r > rmax, the c±
sl̂mkn

reduce to constants

C+

sl̂mkn
≡ c+

sl̂mkn
(rmin) =

∫ rmax

rmin

sR
h,+

l̂mkn
(r′)sTl̂mkn(r′)

∆(r′)Wsl̂mkn(r′)
dr′, (4.94)

C−
sl̂mkn

≡ c−
sl̂mkn

(rmax) =

∫ rmax

rmin

sR
h,−
l̂mkn

(r′)sTl̂mkn(r′)

∆(r′)Wsl̂mkn(r′)
dr′. (4.95)

As a result, the asymptotic behavior of the inhomogeneous radial solutions is described by outgoing waves

at infinity and downgoing waves at the horizon

sRl̂mkn(r∗ → −∞) ∼ C−
sl̂mkn

∆−se−iγr∗ , sRl̂mkn(r∗ →∞) ∼ C+

sl̂mkn
r−(s+1)eiωr∗ . (4.96)

For the s = ±2 cases these coefficients are commonly referred to as Teukolsky amplitudes. For the (s = 0)

scalar case I will refer to these coefficients as normalization coefficients or normalization constants.

In the limit that a → 0, Eq. (4.79) reduces to the differential equation for the spin-weighted spherical

86



harmonics, sYlm with eigenvalue λaω=0
lm = l(l + 1) − s(s + 1). Additionally, in the Schwarzschild limit,

the radial Teukolsky equation can be transformed to the Regge-Wheeler equation (4.21) via the Detweiler-

Chandrasekhar transformation [71, 70]

XRW
l̂mω

= r3

(
d

dr
− iω

fSchw

)(
d

dr
+

iω

fSchw

)
−2Rl̂mω

r
. (4.97)

One can similarly make a second transformation to generate a solution of the even-parity Zerilli equation as

well

XZ,±
l̂mω

=
1

λZ(λZ + 1)± 3iωM

{
3MfSchw

dXRW,±
l̂mω

dr
+

[
λZ(λZ + 1) +

9M2fSchw

r(rλZ + 3M)

]
XRW,±
l̂mω

}
, (4.98)

where λZ ≡ 1
2 (l − 1)(l + 2), and ± refers to the asymptotic behavior of the solutions, defined in Eq. (4.83).

Thus one can see that the Weyl scalars, in analogy with the master functions of Schwarzschild spacetime,

serve as “master” functions for Kerr perturbations. Note that many of the results presented in this section

(Sec. 4.4.4) hold for gravitational and scalar sources and thus connects the gravitational and scalar self-force

problems. In Chapter 5, I will review how these results are directly applied to the scalar case (s = 0).

4.4.5: Metric reconstruction and completion

Upon obtaining the Weyl scalars, one still needs to use this information to reconstruct the metric pertur-

bation hµν . Chrzanowski [72] built on the previous work of Cohen and Kegeles [73] and developed a procedure

for reconstructing the metric (in radiation gauge) from homogeneous solutions of the Teukolsky equation.

This is known as the CCK procedure. Wald [232] later showed, however, that the reconstructed metric

hrecon
µν corresponding to the vacuum gravitational perturbations ψ0 and ψ4 is not constructed by applying

the CCK procedure to the Weyl scalars themselves but to some intermediate function. Cohen and Kegeles

[144] then modified the CCK procedure by identifying a suitable Hertz potential, ΨHertz, which is related

but not equivalent to the Weyl scalars, and produces the physically desired vacuum metric perturbation

hrecon
µν . Constructing the Hertz potential from the Weyl scalars requires inverting a fourth-order differential

equation. Lousto and Whiting [151] first found a procedure for constructing ΨHertz from ψ0 and ψ4 in the

time domain for vacuum perturbations (Tµν = 0) of Schwarzschild spacetime. Following their work, Ori

[174] devised a similar procedure for constructing the Hertz potential from ψ0 and ψ4 for both vacuum and

inhomogeneous perturbations (Tµν 6= 0) in Kerr spacetime.

Schematically, the metric reconstruction process can be understood by rewriting the linearized Einstein
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equations and the Teukolsky equations in operator form

Êh = T, (linearized Einstein equation) Ô±ψ± = T ′±, (Teukolsky equation) (4.99)

where Ê is the linearized Einstein operator, Ô± is the Teukolsky operator, h represents the metric pertur-

bation, T the stress-energy source, ψ± the Weyl scalars, T ′± the Teukolsky source, and all prefactors have

been absorbed for convenience. The ± subscripts refer to the s = ±2 cases, e.g., ψ− ≡ Ψ−2 = ρ−4ψ4. I will

denote operators with a calligraphic font and a hat (e.g., Â) and tensors with bold italicized font (e.g., g).

The stress-energy source is related to the Teukolsky source via Eqs. (4.47) and (4.48), which takes the form

Ŝ±T = T ′±, (4.100)

while the relationship between the metric perturbation and the Weyl scalars through the Weyl tensor takes

the from

Ŵ±h = ψ±. (4.101)

Thus these differential operators are related by combining Eqs. (4.99)-(4.101),

Ŝ±Êh = T ′± = Ô±Ŵ±h (4.102)

so that [232]

Ŝ±Ê = Ô±Ŵ±, =⇒ ÊŜ†± = Ŵ†±Ô
†
±, (4.103)

where Â† denotes the adjoint of Â. The linearized Einstein operator is self-adjoint (Ê = Ê†).

Consider the case of purely vacuum perturbations, so that T = 0 = T ′±. One can then use an ansatz for

the reconstructed metric perturbation, namely

hrecon = Ŝ†±ΨHertz
± , (4.104)

where ΨHertz
± are Hertz potentials that satisfy Ô†±ΨHertz

± = 0. Note that the Hertz potential is also a homo-

geneous solution to the Teukolsky equation, because the Teukolsky operator, for gravitational perturbations

in Kerr spacetime, is related to its adjoint by an overall factor. One can see then, by inserting this ansatz

into Eq. (4.99) and using relation (4.103), that

Êh = Ê Ŝ†±ΨHertz
± = Ŵ†±Ô

†
±ΨHertz
± = 0, (4.105)
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confirming that hrecon is a valid vacuum solution. Through the CCK procedure, one can calculate the metric

via Eq. (4.104) using the ingoing and outgoing radiation gauges [232? ]. In the ingoing radiation gauge,

metric perturbations are reconstructed from Hertz potentials that satisfy the s = −2 homogeneous Teukolsky

equation, so that

hIRG
nn = −(δ̂ + α∗NP + 3βNP − τNP)(δ̂ + 4βNP + 3τNP)ΨHertz

IRG + c.c., (4.106)

hIRG
m∗m∗ = −(D̂ − ρNP)(D̂ + 3ρNP)ΨHertz

IRG , (4.107)

hIRG
nm∗ = −1

2

[
(δ̂ − α∗NP + 3βNP − π∗NP − τNP)(D̂ + 3ρNP) (4.108)

+ (D̂ + ρ∗NP − ρNP)(δ̂ + 4βNP + 3τNP)
]
ΨHertz

IRG , (4.109)

where ΨHertz
IRG = ΨHertz

− . In outgoing radiation gauge the metric perturbations are reconstructed from the

Hertz potentials satisfying the s = 2 homogeneous Teukolsky equation,

hORG
ll = −ρ−4

NP(δ̂∗ − 3αNP − β∗NP + 5πNP)(δ∗NP − 4αNP + πNP)ΨHertz
ORG + c.c., (4.110)

hORG
mm = −ρ−4

NP(∆̂ + 5µNP − 3γNP + γ∗NP)(∆̂ + µNP − 4γNP)ΨHertz
ORG , (4.111)

hORG
lm = −

ρ−4
NP

2

[
(δ̂∗ − 3αNP + β∗NP + 5πNP + τ∗NP)(∆̂ + µNP − 4γNP) (4.112)

+ (∆̂ + 5µNP − µ∗NP − 3γNP − γ∗NP)(δ̂∗ − 4αNP + πNP)
]
ΨHertz

ORG , (4.113)

where ΨHertz
ORG = ΨHertz

+ .

The remaining step is to solve for ΨHertz by requiring that the reconstructed metric perturbation repro-

duces the Weyl scalars

Ŵ±hrecon = Ŵ±Ŝ†±ΨHertz
± = ψ±. (4.114)

In the ingoing radiation, this reduces to the conditions [151]

ψ0 = D̂D̂D̂D̂Ψ∗Hertz
IRG , ρ−4ψ4 =

1

4

[
L̂∗−2L̂

∗
−2L̂

∗
−2L̂

∗
−2Ψ∗Hertz

IRG − 12M∂tΨ
Hertz
IRG

]
, (4.115)

while in outgoing radiation gauge

ρ−4ψ4 = ∆2∆̂∆̂∆̂∆̂
(
∆2Ψ∗Hertz

ORG

)
, ψ0 =

1

4

[
L̂2L̂2L̂2L̂2Ψ∗Hertz

ORG − 12M∂tΨ
Hertz
ORG

]
. (4.116)
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Recall that the operator L̂s was defined in Eq. (4.63). Thus ΨHertz
± is found by inverting Eq. (4.114)

ΨHertz
± =

[
Ŵ±Ŝ†±

]−1

ψ±. (4.117)

As stated earlier, a procedure for calculating this inversion of ΨHertz
IRG from ψ0 in Kerr spacetime was first

found by Ori [174]. Keidl et. al [146] then found a similar procedure for calculating ΨHertz
ORG from ψ0, and van

de Meent and Shah [225] outlined a procedure for assembling ΨHertz
ORG from ψ4.

Up to now, these results have all relied on the key assumption that the metric is sourced by vacuum

perturbations. For EMRIs, however, the first-order metric perturbation is sourced by a point particle. Away

from the particle’s wordline the metric perturbation does satisfy the vacuum field equations, allowing one to

use the CCK and Ori procedures to reconstruct the metric in these vacuum regions and then take the limit

of the field as one approaches the particle. Barack and Ori [38, 174] did observe, though, that this produces

“string-like” gauge singularities in the metric that emanate from the particle along null rays towards infinity

and the black hole horizon. These singularities were further studied by Pound, Merlin, and Barack [185] and

are now well understood.

To avoid these singularities Ori decomposed spacetime into two regions: an outer region extending from

the particle to infinity, Σ+, and an inner region extending from the particle to the horizon, Σ−. (This

decomposition is described more precisely in Refs. [174, 222, 224].) One can then reconstruct the metric

through the method of extended homogeneous solutions [174, 40]. In this method one calculates two separate

homogeneous solutions for the metric perturbation, hrecon,+
µν and hrecon,−

µν , in these vacuum regions so that

they are free of these string singularities. The full metric is then formed by stitching together these two

solutions, which are only valid in their respective regions, Σ+ and Σ−. This provides a solution that is valid

in the entire spacetime. These extended homogeneous methods were more fully developed by van de Meent

and Shah [225] to calculate the metric perturbations for geodesic orbits in Kerr spacetime. In Chapter 5

I will discuss how this method of extended homogeneous solutions is also used to tame Gibbs ringing that

occurs in the time-domain reconstruction of frequency-domain solutions.

These extended homogeneous solutions give a full description of the metric perturbation up to and at

the location of the particle, but the reconstructed metric is, consequently, discontinuous in the neighborhood

of the particle source. While this complicates the singular structure of the particle, Pound, Merlin, and

Barack [185] found that mode-sum regularization can still be applied for a particular subset of radiation

gauges and that, by taking the average of the two extended solutions at the source location (leading to a

“no-string” radiation gauge), one can calculate the self-force using the well-known Lorenz-gauge mode-sum
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regularization parameters, i.e.

F
α(rad)
GSF = lim

x→xp

∞∑
l=0

[
F
α(+),l
GSF + F

α(−),l
GSF

2
−BαLor −

CαLor

l + 1/2
−
∞∑
n=1

Dα,n
Lor∏n

k=1(2l + 1 + 2k)(2l + 1− 2k)

]
, (4.118)

where F
α(±)
GSF = µ∇αµνhrecon,±

µν and F
α(±)
GSF are its multipoles, analogous to Eq. (4.4).

As mentioned earlier, this process of metric reconstruction does not provide all of the information about

the metric perturbation. In the context of a multipole expansion, the metric reconstruction procedure

cannot reconstruct the l = 0 and l = 1 modes, which are tied to the perturbations of the mass M and

angular momentum J of the Kerr spacetime. Thus the full metric perturbation can be separated into its

reconstructed and “completion” pieces

h±µν = hrecon,±
µν + hcompl,±

µν , (4.119)

where the metric completion is expressed in terms of the mass and angular momentum perturbations δM±

and δJ±

hcompl,±
µν = δM±

∂gµν
∂M

+ δJ±
∂gµν
∂J

. (4.120)

The derivatives are straightforward to evaluate, making the determination of δM± and δJ± the final step in

completing the metric. Building off the work of Merlin et. al [160], van de Meent [223] found that, for generic

bound sources in Kerr spacetime, δM− = δJ− = 0, δM+ = E , and δJ+ = Lz, where E and Lz are the

specific energy and z-component of the specific angular moment of the bound source, defined in Eq. (2.5).

Together, metric reconstruction and completion, paired with mode-sum regularization, provide a path

towards leveraging the separability of the Teukolsky equations to calculate the gravitational self-force. The

numerical implementation of these methods was first spearheaded by Friedman and collaborators [145, 146,

207]. Expanding their work, van de Meent then produced the first calculations of the gravitational self-force

along eccentric [222] and inclined [224] orbits in Kerr spacetime.

4.4.6: Gravitational fluxes in Kerr spacetime

Much like in Schwarzschild spacetime, in Kerr spacetime the energy and angular momentum fluxes due

to gravitational wave emission can be calculated from ψ4. This avoids the complicated procedure of metric

reconstruction if one is merely interested in the leading-order radiative behavior of the system. As discussed

in Sec. 3.3.5, the fluxes at infinity can be found by integrating over the Isaacson stress-energy tensor, which

is related to the polarization amplitudes h+ and h× of the asymptotic metric perturbation, as given in
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Eqs. (3.135), (3.136), and (3.137). The asymptotic form of the Weyl scalar ψ4 can also be expressed in terms

of h+ and h×

ψ4(r →∞) ∼ 1

2

(
ḧ+ − iḧ×

)
. (4.121)

Because h+ and h× are real, one finds that

h+ =

∫ t

dt′
∫ t′

dt′′(ψ4 + ψ∗4), h× = i

∫ t

dt′
∫ t′

dt′′(ψ4 − ψ∗4). (4.122)

Recalling the asymptotic behavior of ψ4 in terms of the Teukolsky amplitudes, given in Eq. (4.96), for

non-resonant geodesic orbits Eq. (3.135) simplifies to

〈Ė〉∞ =
∑
l̂mkn

1

4πω2
mkn

∣∣∣C+

−2l̂mkn

∣∣∣2 , 〈L̇z〉∞ =
∑
l̂mkn

m

4πω3
mkn

∣∣∣C+

−2l̂mkn

∣∣∣2 , (4.123)

Calculating the fluxes through the black hole horizon is more challenging, because there is no known form

for the stress-energy of the gravitational waves at r+. Instead, using the area of the Kerr horizon, Teukolsky

and Press [210] related the fluxes to changes in the horizon area. The evolution of the horizon area depends

on perturbations in the shear of the horizon generators, which are, in turn, encoded in ψ0. As a result, they

found that the fluxes on the horizon can also be related to the Teukolsky amplitudes via [210, 93]

〈Ė〉H =
∑
l̂mkn

αl̂mkn
4πω2

mkn

∣∣∣C−−2l̂mkn

∣∣∣2 , 〈L̇z〉H =
∑
l̂mkn

mαl̂mkn
4πω3

mkn

∣∣∣C−−2l̂mkn

∣∣∣2 , (4.124)

where

αl̂mkn ≡
256(2Mr+)5γmkn(γ2

mkn + 4ε2T)(γ2
mkn + 16ε2T)ω3

mkn

|Al̂mkn|2
, (4.125)

|Al̂mkn|
2 ≡

[(
−2λl̂mkn + 2

)2
+ 4maωmkn − 4a2ω2

mkn

] (
−2λ

2
l̂mkn

+ 36maωmkn − 36a2ω2
mkn

)
(4.126)

+
(
2−2λl̂mkn + 3

) (
96a2ω2

mkn − 48maωmkn
)

+ 144ω2
mkn(M2 − a2),

and where εT ≡ (r+ −M)/4Mr+ and sλl̂mkn ≡ sλ
aωmkn
l̂m

is the spin-weighted spheroidal eigenvalue. Note

that the amplitudes Al̂mkn are defined such that C2l̂mkn = Al̂mknC−2l̂mkn and ImAl̂mkn = 12Mωmkn.3

Kerr spacetime has a third constant of motion, the Carter constant, which will also evolve due to the

radiation of gravitational waves. While no one has yet identified a physical “flux” quantity related to the

time evolution of Q = µ2Q, one can calculate its time rate-of-change based on radiation-reaction arguments

3Note that Ref. [93] has a small typo in its definition of Al̂mkn. Its factor of 4aωmkn should read 4maωmkn.
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[162, 91, 202, 101],

〈Q̇〉∞ ≡
∑
l̂mkn

Mmkn + kΥθ

2πω3
mkn

∣∣∣C+

−2l̂mkn

∣∣∣2 , 〈Q̇〉H ≡
∑
l̂mkn

Mmkn + kΥθ

2πω3
mkn

αl̂mkn

∣∣∣C−−2l̂mkn

∣∣∣2 , (4.127)

where

Mmkn ≡ m〈cot2 θp〉Lz − a2ωmkn〈cos2 θp〉E. (4.128)

The change in the Carter constant can then be similarly related to the self-force. Taking the proper time

derivative of the Carter constant

dQ
dτ

= uµuνuα∇αKµν + 2uµKµνu
α∇αuν − 2(Lz − aE)

(
dLz
dτ
− adE

dτ

)
. (4.129)

Using the properties of the Killing tensor ∇(αKµν) = 0 and recalling the equations of motion, this expression

reduces to

µ2 dQ
dτ

= 2µKµνu
µF νGSF,1 − 2(Lz − aE)

(
dLz
dτ
− adE

dτ

)
. (4.130)

Defining K ≡
〈
µ2Q̇

〉
, one then finds that

K =
2

Γ

〈
µΣKµνu

µF νGSF,1 − Σ(Lz − aE)
(
FGSF,1
ϕ + aFGSF,1

t

)〉
λ
, (4.131)

= − 2

Γ
(Lz − aE) (T − aW) +

2µ

Γ

∫ 2π

0

dqr
2π

∫ 2π

0

dqθ
2π

ΣKµνu
µF νGSF,1, (4.132)

where W and T are the average work and torque on the particle. As a result, the gravitational balance

formulas are given by

〈Ė〉H + 〈Ė〉∞ = −W, 〈L̇z〉H + 〈L̇z〉∞ = −T , 〈Q̇〉H + 〈Q̇〉∞ = −K (4.133)

Note that Eqs. (4.124) and (4.127) only hold for the case of non-resonant geodesic sources. The effects of

resonances will be taken into consideration in Chapter 8.

Section 4.5: Connection to scalar perturbations of black holes

In the this chapter, I reviewed current methods for calculating the gravitational self-force in Kerr space-

time. As one can see, the computational roadmap is involved. To date, only one researcher has been able to

design a code that computes the gravitational self-force for EMRIs with Kerr primaries [224]. Thus using an
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analogous scalar model is an attractive alternative for developing and testing new approaches to the gravi-

tational self-force problem. Calculating the scalar self-force involves many of the methods reviewed in this

chapter. The perturbing field of the scalar charge obeys the (s = 0) Teukolsky master equation, Eq. (4.69).

The field, therefore, separates in the frequency-domain (Sec. 4.4.4) and can be constructed from the (scalar)

spheroidal harmonics (Eq. (4.79)) and the (s = 0) radial Teukolsky functions (Eq. (4.80)). Like the retarded

metric perturbation, the retarded scalar field diverges at the location of the small body and, consequently,

the SSF is obtained via mode-sum regularization (Sec. 4.2.1). The SSF problem ultimately mirrors the

construction of the Weyl scalars and the regularization of the perturbing field, while avoiding the additional

procedures of metric reconstruction and completion. In the next chapter, I discuss the specific numerical and

analytical methods that I used to approach the SSF problem and discuss how novel procedures developed

for the scalar case can be extended to gravitational self-force calculations.
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CHAPTER 5: Scalar perturbation model

Section 5.1: Chapter overview

For this dissertation, I consider a developmental scalar model for studying perturbations of Kerr space-

time. In this scalar model the perturbing particle is given a scalar charge and sources a scalar field. Conse-

quently, the particle also radiates scalar waves, which act back on the charge to produce a scalar self-force

[191]. The scalar self-force, while similar to the gravitational self-force, is mathematically and computation-

ally more tractable. (Scalar calculations do not require the delicate processes of metric reconstruction and

metric completion, and the gauge is simply set by the choice of coordinates, reducing further ambiguities.)

I built a Mathematica code to construct the scalar self-force and use this code for testing and implementing

new approaches for calculating self-forces. In the following sections I review the scalar self-force formal-

ism used for this work, highlighting how it mirrors gravitational self-force calculations. I then outline the

numerical techniques that I implemented with my Mathematica scalar self-force code.

Section 5.2: Review of scalar perturbation formalism

I consider a particle with scalar charge q1 and bare mass µ0 moving in Kerr spacetime. The Kerr

background is defined by the metric gµν , Kerr mass parameter M , and Kerr spin parameter a. The charge

sources a scalar potential field Φ and scalar vector field ∇αΦ. Henceforth, I will refer to Φ simply as the

scalar field. The scalar-charged body is treated as a point particle with a worldline xαp (τ), four-velocity

uα = dxαp /dτ , and proper time τ . For this work, I use the same scalar model proposed by Quinn [191] and

used by numerous subsequent researchers [56, 245, 57, 31, 81, 84, 118, 227, 228, 66, 60, 62, 242, 85, 229, 241,

91, 236, 180, 88, 90, 237, 234, 214].2 The backreaction of the scalar field on the charge results in a scalar

self-force (SSF) that drives the particle’s motion. For q2/µM � 1, the SSF acts as a perturbation to the

charge’s motion. At leading order the charge follows a geodesic in the Kerr spacetime. At higher-orders

it undergoes a gradual adiabatic inspiral into the MBH. I assume that the SSF is sourced by the leading-

order geodesic motion of the charge. As discussed in Chapter 1, this geodesic approximation is accurate for

1Note that the charge q is not related to the angle variables qr and qθ or the resonant variables q̄ and q̄0.

2This list is not exhaustive.
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first-order calculations. A benefit of making this geodesic approximation is that the source motion is bound

and periodic, and therefore is naturally represented in the frequency domain. In the following sections I

outline the analytical formalism for modeling scalar perturbations and for calculating the geodesic SSF in

the frequency domain.

5.2.1: Scalar field equations and equations of motion

The scalar system is defined by the action

S = − 1

8π

∫
gαβ∇βΦ∇αΦ

√
−g d4x− µ0

∫∫
δ(4)(x, xp)

√
−g dτ d4x+ q

∫∫
Φ δ(4)(x, xp)

√
−g dτ d4x, (5.1)

where the first term accounts for the free scalar field, the second term accounts for the free particle with bare

mass µ0, the third term accounts for the interaction between the particle and the field, and g ≡ det(g) is

the determinant of gµν . As before, δ(4)(x, x′) = δ(4)(x− x′)(−g)−1/2 is the covariant four-dimensional Dirac

distribution, and δ(4)(x−x′) = δ(x0−x′0)δ(x1−x′1)δ(x2−x′2)δ(x3−x′3), where δ(x) is the standard Dirac

delta function. The field equations for the scalar potential are obtained by varying the action with respect

to Φ,

δS =
1

4π

∫ (
gαβ∇α∇βΦ + q

(∫
δ(4)(x, xp(τ))dτ

))
δΦ
√
−g d4x. (5.2)

Demanding that the action is stationary (δS = 0) leads to the standard Klein-Gordon wave equation in

curved spacetime

gαβ∇α∇βΦ =
1√
−g

∂α
(√
−ggαβ∂βΦ

)
= −4πρscalar, (5.3)

where ρscalar is the scalar charge density of the point particle

ρscalar = q

∫
δ(4)(xα, xβp (τ)) dτ. (5.4)

The wave equation (5.3) is equivalent to the spin-weight s = 0 Teukolsky equation (Eq. (4.69)) discussed in

Sec. 4.4.3. The scalar field, therefore, serves as an analogue to the Weyl scalars, ψ0 and ψ4 (which satisfy

the s = +2 and s = −2 Teukolsky equations, respectively).

To obtain the equations of motion, one must vary the action with respect to the worldline. This task is
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slightly simplified by first evaluating the Dirac delta terms in Eq. (5.1) and then varying with respect to xαp

δS = q

∫
∇µΦ(xp) δx

µ
p dτ −

∫
(µ0 − qΦ(xp)) δ

√−gαβ(xp)
dxαp
dλ′

dxβp
dλ′

 dλ′, (5.5)

where the second term comes from fact that the proper time is related to the wordline of the particle

via dτ2 = gµνdx
µ
pdx

ν
p . Defining, similar to previous authors [91, 180], the renormalized rest mass µ(τ) ≡

µ0 − qΦ(xp(τ)), this expression simplifies to

=

∫ [
q∇µΦ(xp)− gµνuα

(
∂α (µuν) + µΓναβu

β
)]
δxµp dτ, (5.6)

Once again demanding the action is stationary under these variations, one arrives at the (self-)forced equation

of motion for the scalar particle

uα∇α (µuν) = lim
x→xp

qgµν∇µΦ. (5.7)

A unique feature of the scalar model is that the scalar charge’s inertial mass is given by its renormalized

mass µ rather than its bare mass µ0. The renormalized mass, which varies with time, is the observable

mass of the scalar charge. This time-varying mass arises because the scalar field has spin-weight s = 0

and, therefore, can emit or absorb monopole (l = 0) waves [180]. Thus there is an interplay between the

energy of the particle and the energy of the field. As the radiation field evolves, so does the particle’s mass.

Consequently, the forcing term on the righthand side is not orthogonal to the four-velocity, i.e., uα∇αΦ 6= 0.

If q2/µM � 1, then at leading-order the renormalized mass is constant, i.e., µ(τ) = µ0 +O(q2/M).

Just like in the electromagnetic and gravitational cases, Eq. (5.7) is ill-defined along the worldline if Φ is

given by the retarded scalar field. Thus, one must find a suitable regular field, ΦR, that is solely responsible

for the forced motion of the scalar charge

µuα∇αuβ = q2(gαβ + uαuβ)Fα,
dµ

dτ
= −q2uαFα, (5.8)

where q2Fα ≡ q∇αΦR(xp) is the SSF. (Fα, on the other hand, is the SSF per unit charge squared.) Quinn

[191], through an axiomatic approach, found that Fα takes the form

q2Fα = q∇αΦin + q2

[
1

3

(
daµ

dτ
− gµνaµaνuα

)
+

1

6

(
Rαβuβ +Rµνu

µuνuα
)
− 1

12
Ruα

]
+ q∇αΦtail, (5.9)

where aµ = uα∇αuµ is the particle’s four-acceleration; Φin is some incident, external scalar field; and the
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tail term is found by integrating the retarded Green’s function over the entire past history of the charge,

∇αΦtail = q

∫ τ−

−∞
∇αG+

(
xp(τ), x′p (τ ′)

)
dτ ′. (5.10)

In the absence of external fields (and assuming q2/µM � 1) the acceleration terms aµ and daµ/dτ can

be neglected. Furthermore, for a background Kerr spacetime Rµν = R = 0. Therefore, for the system’s

considered in this work, the tail integral (5.10) is the only contribution the SSF.

5.2.2: Retarded, regular, and singular scalar fields

To construct the regular contribution to the SSF, one can follow the same methods outlined in Chapter

3 for the electromagnetic and gravitational cases. The retarded scalar field takes the integral form

Φret(x) =

∫
G+(x, x′)ρscalar(x

′)
√
−g(x′)d4x′, (5.11)

where ρscalar is given by Eq. (5.4) and the retarded Green’s function satisfies the curved-space wave equation

gαβ∇α∇βG+(x, x′) = −4πδ(4)(x, x′). (5.12)

The conjugate advanced scalar field solution is similarly formed from the advanced Green’s function,

Φadv(x) =

∫
G−(x, x′)ρscalar(x

′)
√
−g(x′)d4x′, (5.13)

where G−(x, x′) also satisfies Eq. (5.12). Due to the reciprocity relation G+(x, x′) = G−(x′, x), the advanced

field is related to the time-reversed solution of the retarded field. As before, one can remove the singular

structure of the retarded field by identifying a symmetric, singular Green’s function that is formed from

the retarded and advanced Green’s functions and a symmetric two-point function H(x, x′) that satisfies the

conditions (H1)-(H4) provided in Sec. 3.2.3,

GS(x, x′) =
1

2
[G+(x, x′) +G−(x, x′)−H(x, x′)] . (5.14)

The singular Green’s function GS(x, x′) also satisfies Eq. (5.12), capturing the full divergence of the Dirac

delta source. The regular two-point function

GR(x, x′) = G+(x, x′)−GS(x, x′) =
1

2
[G+(x, x′)−G−(x, x′) +H(x, x′)] , (5.15)
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is then used to form the regular field

ΦR(x) =

∫
GR(x, x′)ρscalar(x

′)
√
−g(x′)d4x′. (5.16)

Detweiler and Whiting [82] evaluated Eq. (5.16) by expanding the singular Green’s function via the Hadamard

expansion [119]. As a result, in a generic curved background the regular field takes the form [82, 180]

∇αΦR = − 1

12
qRuα + q(gαβ + uαuβ)

(
1

3

daβ

dτ
+

1

6
Rβµu

µ

)
+∇αΦtail, (5.17)

leading to the same result for the SSF as Quinn.

As discussed in Sec. 4.2, it is challenging to numerically evaluate the tail integral (5.10) or the regular

Green’s function in Eq. (5.16). Instead, researchers typically calculate the self-force through various regular-

ization procedures in which analytic expansions of the singular field are subtracted from retarded solutions

to form regular self-force results. For this scalar perturbation model, I will use mode-sum regularization (see

Sec. 4.2.1) to evaluate the SSF. This regularization process requires one to first calculate the multipoles of

the retarded field, which I outline in the following sections.

5.2.3: Solving for the retarded field

The charge density ρscalar, which acts as the source of the wave equation (1.20), is that of a point charge

following the timelike orbital motion

ρscalar(t, r, θ, ϕ) = q

∫
δ(4)(xα − xαp (τ)) (−g)

−1/2
dτ, (5.18)

= q
δ(r − rp)δ(cos θ − cos θp)δ(ϕ− ϕp)

Vtr(rp) + Vtθ(θp)
,

where
√
−g = Σ sin θ, and Vtr and Vtθ are given by Eq. (2.18). In Boyer-Lindquist coordinates, the wave

equation (5.3) takes the explicit form

(
(r2 + a2)2

∆
− a2 sin2 θ

)
∂2Φ

∂t2
+

4Mar

∆

∂2Φ

∂t∂ϕ
+

(
a2

∆
− 1

sin2 θ

)
∂2Φ

∂ϕ2

− ∂

∂r

(
∆
∂Φ

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
= 4πΣρscalar. (5.19)
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Just like in the gravitational case, Eq. (5.19) is amenable to solution via separation of variables [53, 209]

Φ = q
∑
l̂mkn

Rl̂mkn(r)Sl̂mkn(θ) eimϕ e−iωmknt. (5.20)

Matching the notation of Sec. 4.4.4, Rl̂mkn(r) ≡ 0Rl̂mkn(r) is the spin-0 Teukolsky radial function, and

Sl̂mkn(θ) ≡ 0Sl̂mkn(θ) is the scalar (s = 0) spheroidal Legendre function with l̂ and m multipole indices and

with spheroidicity σ2 = −a2ω2
mkn (hence the l̂mkn subscripts). In the above equation and henceforth, the

following condensed notion is introduced to represent the sum over modes

∑
l̂mkn

≡
+∞∑
l̂=0

l̂∑
m=−l̂

+∞∑
k=−∞

+∞∑
n=−∞

. (5.21)

Following Warburton and Barack [237], I use l̂ for the spheroidal harmonic index and reserve l for the

spherical harmonic index used in the mode-sum regularization. The frequency domain decomposition in

(5.20) assumes bound motion, with a resulting discrete frequency spectrum that allows the field to be

represented by a multiple Fourier series.

I follow Refs. [132, 203, 53] in connecting the Teukolsky function, Rl̂mkn(r), to a new radial function,

Xl̂mkn(r) =
√
r2 + a2Rl̂mkn(r). (5.22)

(Warburton and Barack [236, 237, 234] make a different transformation.) Both Rl̂mkn and Xl̂mkn are used

in what follows. Inserting Eqs. (5.20) and (5.22) into Eq. (5.19), one arrives at two ordinary differential

equations for Xl̂mkn(r) and Sl̂mkn(θ)

[
1

sin θ

d

dθ

(
sin θ

d

dθ

)
− m2

sin2 θ
− a2ω2

mkn sin2 θ − 2amωmkn − λl̂mkn

]
Sl̂mkn(θ) = 0, (5.23)[

d2

dr2
∗
− Ul̂mkn(r)

]
Xl̂mkn(r) = Zl̂mkn(r), (5.24)

where λl̂mkn (which is equivalent to 0λ
aωmkn
l̂m

in Sec. 4.4.4) is the angular eigenvalue. In the radial equation,

r∗ is the tortoise coordinate

r∗ = r +
2Mr+

r+ − r−
ln
r − r+

2M
− 2Mr−
r+ − r−

ln
r − r−

2M
, (5.25)

which follows from integrating dr∗/dr = $2/∆. Recall that r± = M ±
√
M2 − a2 are the outer and inner

horizon radii (roots of ∆(r) = 0). This definition of r∗ agrees with e.g., Refs. [91, 204] but differs from
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Refs. [236, 237, 234]. The radial potential Ul̂mkn(r) in Eq. (5.24) is

Ul̂mkn(r) = $−8
[
2amωmkn$

6 − 6Ma4r − 4Ma2r3 + a2$4(1−m2)

+ 8M2a2r2 − ω2
mkn$

8 + λl̂mkn∆$4 − 4M2r4 + 2Mr5
]
, (5.26)

and Zl̂mkn(r) gives the radial behavior of the source in the frequency domain, which follows from the Fourier

transform of ρscalar

ρscalar = − q$3

4πΣ∆

∑
l̂mkn

Zl̂mkn(r)Sl̂mkn(θ) eimϕ e−iωmknt. (5.27)

Note that, based on Eq. (4.74), Zl̂mkn(r) = ∆ 0Tl̂mkn/(q$
3).

5.2.4: Extended homogeneous solutions

General solution of Eq. (5.24) requires two independent homogeneous solutions, Xh,+

l̂mkn
(r) and Xh,−

l̂mkn
(r),

that hold throughout the region r+ ≤ r ≤ ∞ and have respective asymptotic dependences

Xh,+

l̂mkn
(r) ' e+iωmknr∗ , r →∞, (5.28)

Xh,−
l̂mkn

(r) ' e−iγmknr∗ , r → r+. (5.29)

Recall that γmkn ≡ ωmkn−mω+ is the wavenumber at the horizon, with ω+ = a/2Mr+ denoting the angular

velocity of the event horizon. The solution Xh,+

l̂mkn
is “outgoing” (sometimes called the “up” wave), while the

solution Xh,+

l̂mkn
is “downgoing” (sometimes called the “in” wave). These two can be combined to construct

the causal Green function for the radial equation (5.24), associated ultimately with the retarded solution in

the time domain. The solution of the inhomogeneous version of Eq. (5.24) is then found to be

X inh
l̂mkn

= c+
l̂mkn

(r)Xh,+

l̂mkn
(r) + c−

l̂mkn
(r)Xh,−

l̂mkn
(r), (5.30)

c+
l̂mkn

(r) =

∫ r

rmin

$(r′)2Xh,−
l̂mkn

(r′)Zl̂mkn(r′)

Wl̂mkn∆(r′)
dr′, (5.31)

c−
l̂mkn

(r) =

∫ rmax

r

$(r′)2Xh,+

l̂mkn
(r′)Zl̂mkn(r′)

Wl̂mkn∆(r′)
dr′, (5.32)

where

Wl̂mkn = Xh,−
l̂mkn

dXh,+

l̂mkn

dr∗
−Xh,+

l̂mkn

dXh,−
l̂mkn

dr∗
, (5.33)

is the (constant) Wronskian.

The (time-domain) Fourier reconstruction of the field using X inh
l̂mkn

(r) from Eq. (5.30) in the mode series
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(5.20) is fraught with difficulty for points within the libration region rmin < r < rrmax due to Gibbs oscilla-

tions caused by the Dirac delta source. In this region, at points away from the worldline, the convergence

in k and n is slow, while derivatives (needed for the SSF) may not even converge at the particle. The usual

path around this problem, at least in a background spacetime with spherical symmetry, is the method of

extended homogeneous solutions (EHS) [40]. (Recall that this method was first introduced in Sec. 4.4.5 as

a way to reconstruct the metric from a Hertz potential for non-vacuum sources.) In the case of spherical

symmetry, the four-dimensional wave equation separates into two-dimensional wave equations in t and r for

each spherical harmonic order l, m. Extended homogeneous solutions are found mode by mode, which are

finite at the particle as needed for mode-sum regularization. Unfortunately, in Kerr spacetime the angular

decomposition in spheroidal harmonics is inseparably linked to the transformation into the frequency do-

main. As Warburton and Barack [237] have shown however, it is still possible to define functions on the

spherical harmonic basis that can be extended to the particle location and are finite there.

This procedure begins with determining normalization coefficients, C±
l̂mkn

, which are found by evaluating

c±
l̂mkn

(r) at the limits of the radial libration region

C±
l̂mkn

=

∫ rmax

rmin

$2Xh,∓
l̂mkn

(r)Zl̂mkn(r)

Wl̂mkn∆
dr, (5.34)

and which are used to define the properly normalized extended homogeneous radial modes in the frequency

domain

X±
l̂mkn

(r) = C±
l̂mkn

Xh,±
l̂mkn

(r). (5.35)

These solutions in turn may be used in Eq. (5.20) to define extended solutions in the full time and space

domain

Φ± ≡ q

$

∑
l̂mkn

X±
l̂mkn

(r)Sl̂mkn(θ) eimϕ e−iωmknt, (5.36)

from which the retarded solution to Eq. (5.19), at least off the worldline, can be given as

Φret(t, r, θ, ϕ) = Φ−(t, r, θ, ϕ) Θ(rp(t)− r) + Φ+(t, r, θ, ϕ) Θ(r − rp(t)). (5.37)

While the functions Φ± (5.36) converge exponentially in k and n and their use eliminates the Gibbs behavior

near the particle in the libration region, the full reconstruction (5.37) is not of immediate use in calculating

the SSF. Time-domain reconstruction of Eq. (5.36) provides spheroidal l̂-mode multipoles, but mode-sum

regularization is performed on a spherical l-mode basis.

The spheroidal angular harmonics are, therefore, represented in terms of spherical harmonics Ylm(θ, ϕ)
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[133]

Sl̂mkn(θ) eimϕ =

+∞∑
l=|m|

bl̂lmkn Ylm(θ, ϕ). (5.38)

While the spheroidal harmonics of order l̂ couple to an infinite number of spherical harmonics, the coupling

coefficients bl̂lmkn rapidly decay in size as the difference in orders |l̂− l| grows [236], the rate dependent upon

the spheroidicity a2ω2
mkn. In a numerical calculation, the number of spherical harmonics needed for a given

accuracy can be determined. The coupling coefficients are determined by a three-term recurrence relation

that results from inserting Eq. (5.38) into Eq. (5.23). (See Sec. 5.3.1.)

Substituting Eq. (5.38) into Eq. (5.36), the five-fold summation may be reordered to leave l and m for

last. This allows the extended functions φ±lm(t, r) to be defined,

φ±lm(t, r) =
1

$

∑
l̂kn

bl̂knlm X±
l̂mkn

(r) e−iωmknt, (5.39)

where in a practical numerical calculation the sum over l̂ will be finite in number, as will the sums over k

and n given their exponential convergence. The remaining sums allow Φ± to be recovered

Φ±(t, r, θ, ϕ) = q

+∞∑
l=0

l∑
m=−l

φ±lm(t, r)Ylm(θ, ϕ). (5.40)

The functions φ±lm(t, r) are not modes in the fullest sense, since there are no wave equations in t and r

that they satisfy. However, they do derive from linear combinations of extended (homogeneous) radial

modes in the frequency domain, they provide a decomposition of Φ±, and they are finite at the location

of the particle. These properties are all that is essential for employing mode-sum regularization, as shown

by Refs. [236, 237, 234] and as outlined in the following section. The generalization that I produced here

to eccentric inclined orbits introduces no qualitatively new element in the Kerr SSF regularization, only a

further dimension in the mode calculations.

5.2.5: Mode-sum regularization of the scalar field

Sections 5.2.3 and 5.2.4 provide a roadmap for calculating the retarded field, Φret, including its decom-

position in a spherical harmonic basis, and Sections 1.3.1 and 4.2.1 discuss using the gradient of that field

and the singular field (with the vector components also expanded in the same basis) to yield the mode-sum
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regularized self-force

Fα =

+∞∑
l=0

(
F ret,l
α± − F

S,l
α±

)
. (5.41)

This equation differs from Eq. (1.23) in making clear that individual l-mode self-force components may

differ in value in the limit as r → rp depending upon the direction of approach in r. This ± notation aligns

with that used in the EHS discussion (i.e., Eq. (5.37)) of mode functions. Using the spherical harmonic

decomposition (5.40) of the retarded field, the l-modes of three of the force components are

F ret,l
t± = lim

x→xp

l∑
m=−l

∂tφ
±
lm(t, r)Ylm(θ, ϕ), (5.42)

F ret,l
r± = lim

x→xp

l∑
m=−l

∂rφ
±
lm(t, r)Ylm(θ, ϕ), (5.43)

F ret,l
ϕ± = lim

x→xp

l∑
m=−l

imφ±lm(t, r)Ylm(θ, ϕ). (5.44)

The θ component3 of the self-force is broken down into l-modes, F ret,l
θ± , only after the derivative ∂θYlm is

re-projected onto the Ylm basis.

To effect this change, I use the window function f(θ) devised by Warburton [234] (his Eq. 50)

f(θ) =
3 sin2 θp sin θ − sin3 θ

2 sin3 θp
. (5.45)

This window function f(θ) satisfies the necessary properties fΦ → Φ and ∂θ (fΦ) → ∂θΦ as xµ → xµp ,

ensuring that F ret
α± is unaffected by the transformation Φ→ f Φ. Additionally Warburton’s window function

cleverly avoids wide bandwidth coupling thanks to the compact relationship between f ∂θYjm and Ylm

f ∂θYjm = β
(−3)
jm Yj−3,m + β

(−1)
jm Yj−1,m + β

(+1)
jm Yj+1,m + β

(+3)
jm Yj+3,m. (5.46)

The coefficients β
(±i)
jm are defined as

β
(±1)
lm ≡

(
3δ

(±1)
lm

2 sin θp
−

ζ
(±1)
lm

2 sin3 θp

)
, β

(±3)
lm ≡

(
ζ

(±3)
lm

2 sin3 θp

)
, (5.47)

3In the gravitational self-force case it is sufficient to regularize just three of the four force components because the final
component is fixed by uαFα = 0. In the SSF case the force has a tangential component along uα, leading to variation in mass
[192, 191, 58, 91, 180] and requiring calculation and regularization of Fθ.
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where δlm and ζlm are given in Ref. [43] as

δ
(+1)
lm ≡ lCl+1,m, δ

(−1)
lm ≡ −(l + 1)Clm,

ζ
(+3)
lm ≡ −lCl+1,mCl+2,mCl+3,m, ζ

(−3)
lm ≡ (l + 1)ClmCl−1,mCl−2,m,

ζ
(+1)
lm ≡ Cl+1,m[l(1− C2

l+1,m − C2
l+2,m) + (l + 1)C2

lm], (5.48)

ζ
(−1)
lm ≡ −Clm[(l + 1)(1− C2

l−1,m − C2
lm) + lC2

l+1,m],

Clm ≡
[

l2 −m2

(2l + 1)(2l − 1)

]1/2

.

Under these considerations, efficient calculation of F ret,l
θ± follows from the replacement Φ→ f Φ

F ret
θ± = lim

xµ→xµp

+∞∑
j=0

j∑
m=−j

φ±jm(t, r) f(θ) ∂θYjm(θ, ϕ),

= lim
xµ→xµp

+∞∑
j=0

j∑
m=−j

φ±jm(t, r)
(
β

(−3)
jm Yj−3,m + β

(−1)
jm Yj−1,m + β

(+1)
jm Yj+1,m + β

(+3)
jm Yj+3,m

)
. (5.49)

Refactoring Eq. (5.49), one can define the new functions ψ±lm(t, r) such that

ψ±lm(t, r) = β
(−3)
l+3,m φ

±
l+3,m(t, r) + β

(−1)
l+1,m φ

±
l+1,m(t, r) + β

(+1)
l−1,m φ

±
l−1,m(t, r) + β

(+3)
l−3,m φ

±
l−3,m(t, r). (5.50)

This allows the l-modes of the θ-component to be re-expressed as

F ret,l
θ± = lim

x→xp

l∑
m=−l

ψ±lm(t, r)Ylm(θ, ϕ). (5.51)

These expressions (5.50) and (5.51) are similar to ones found in Ref. [234] with the exception of minor

corrections and the simplification of notation.

To calculate Fα from Eq. (5.41) one requires an expansion of F S,l
α± in terms of regularization parameters

[37, 39, 81]

F S,l
α± = Aα±(l + 1/2) +Bα +

+∞∑
n=1

Dα,2n∏n
k=1(2l + 1− 2k)(2l + 1 + 2k)

, (5.52)

where the parameters Aα±, Bα, andDα,2n are all independent of l. For each n, the higher-order regularization

terms (with coefficients Dα,2n) have the property that the l-dependent terms sum to zero [81]

+∞∑
l=0

[
n∏
k=1

(2l + 1− 2k)(2l + 1 + 2k)

]−1

= 0. (5.53)
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As a consequence only the first two regularization parameters, Aα± and Bα, are necessary to assure a

convergent result and the regularized self-force can be calculated from just

Fα =

+∞∑
l=0

(
F ret,l
α± −Aα±L−Bα

)
≡

+∞∑
l=0

F alg,l
α± , (5.54)

where I have defined F alg,l
α± for later convenience. Altogether, Sections 5.2 presents a formal framework for

calculating the SSF using extended homogeneous frequency domain solutions of the retarded scalar field and

mode-sum regularization.

5.2.6: Conservative and dissipative components of the scalar self-force

It is also convenient to decompose the self-force into its conservative and dissipative components, F cons
α

and F diss
α , as described for the electromagnetic and gravitational self-forces. (See Secs. 3.2.3 and 3.3.3,

respectively.) Not only do these components impact the evolution of EMRIs in different ways [30, 84, 162,

125], but they also converge at different rates in the mode-sum regularization procedure: F diss
α does not

need to be regularized and converges exponentially, while F cons
α does require regularization and converges

algebraically. Decomposing the self-force into these components, therefore, provides a helpful diagnostic for

checking the consistency of my SSF calculations.

Just as I defined the retarded force F ret
α , I similarly define the advanced force F adv

α from the advanced

scalar field solution, along with its l-mode contributions F adv,l
α . Using the mode-sum scheme, the dissi-

pative and conservative components to the self-force are constructed from symmetric and antisymmetric

combinations of F
ret/adv,l
α

F diss
α =

+∞∑
l=0

1

2

(
F ret,l
α − F adv,l

α

)
, (5.55)

F cons
α =

+∞∑
l=0

{
1

2

(
F ret,l
α + F adv,l

α

)
− F S,l

α

}
. (5.56)

As is well known [162, 125], the advanced and retarded forces may both be obtained from the retarded

solution, being related at reflection point pairs in the orbital motion—points where the particle passes through

the same radial and polar positions (rp, θp) but with opposite radial and polar velocities, ur, uθ → −ur,−uθ.

Explicit calculations of the conservative and dissipative components of the self-force have been made by

identifying these reflection points along restricted orbits (i.e., circular, equatorial; eccentric, equatorial; or

inclined, spherical) [30, 237, 234, 214].

For eccentric, inclined orbits these reflection points can be conveniently identified by mapping the parti-
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Figure 5.1: Two orbits with the same orbital parameters (a/M, p, e, ι) = (0.95, 5, 0.6, 1.04954) (see Fig. 2.6)
but different initial positions mapped to the two-torus T 2

rθ now spanned by the rotational coordinates ψ
and χ. The blue (solid) line traces an orbit that begins at Mino time λ = 0 with initial position (rp, θp) =

(rmin, 1.7409) and is terminated at λ = 6. This orbit follows from choosing λ
(r)
0 = 0 and λ

(θ)
0 = 0.587813 in

Eqs. (2.68) and (2.69). The red (dot-dashed) line follows an orbit with the reversed parameters, λ
(r)
0 = 0

and λ
(θ)
0 = −0.587813, backward in time from λ = 0 to λ = −6. The points λ = −6 and λ = 6 are example

reflection points at which we can relate the advanced force F adv
α to the retarded force F ret

α using Eq. (5.57).

cle’s motion to a two-torus, as shown in Fig. 5.1. In this figure I cover the torus using the coordinates ψ and

χ, related to the position in the polar (r, θ) plane by Eq. (2.65). (Alternatively, one can use qr and qθ to cover

the torus, as shown in Figs. 2.4 and 2.5.) The polar motion winds and wraps in this region, either a finite

number of times for a resonant orbit or an infinite number of times for a non-resonant orbit. In the latter

case, the orbit is ergodic and the motion will eventually pass all points arbitrarily closely. All of the field

and self-force information can be projected onto the domain spanned by ψ, χ ∈ [0, 2π) (or qr, qθ ∈ [0, 2π)).

As an example, consider an orbit with geometric parameters (a/M, p, e, ι) = (0.95, 5, 0.6, 1.04954) and

initial position (rp, θp) = (rmin, 1.7409) set by taking λ
(r)
0 = 0 and λ

(θ)
0 = 0.587813. The path of this orbit

on the two-torus from λ = 0 to λ = 6 is traced out by the solid (blue) line in Fig. 5.1. For any point

on this curve, its reflection point is identified by reflecting through the center of the plane at ψ = π and

χ = π (reflections can be made across any corner of the region equally well). The result of reflecting the

entire solid (blue) curve is the dot-dashed (red) curve. This can be verified using Eqs. (2.65)-(2.67). Note

that the dot-dashed (red) curve can also be described by an orbit moving backwards in time from λ = 0 to

λ = −6 with the same geometric parameters as the solid (blue) line, but with opposite offset: λ
(r)
0 = 0 but

λ
(θ)
0 = −0.587813. This is in line with Eq. (2.46) in Ref. [162].

Therefore (up to a factor of ±1) the advanced force can be calculated by reflecting the retarded force
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data on the torus. Explicitly, the retarded and advanced forces are related by

F̌ adv,l
α (ψ, χ) = ε(α)F̌

ret,l
α (2π − ψ, 2π − χ), (5.57)

where ε(α) = (−1, 1, 1,−1) and where there is no summation over α. Eq. (5.57) can be extended to inclined,

spherical; eccentric, equatorial; and resonant orbits as well, though the motions on the torus are severely

restricted for these special orbits. Parameterizing the self-force with respect to the angle variables, qr and

qθ, leads to the equivalent relation

F adv,l
α (qr, qθ) = ε(α)F

ret,l
α (2π − qr, 2π − qθ), (5.58)

where Fα and F̌α are related by the mapping between the Darwin and angle variables,

F̌α(ψ, χ) = Fα

(
Υrλ

(r)(ψ),Υθλ
(θ)(χ)

)
. (5.59)

Consequently, F diss
t , F cons

r , F cons
θ , and F diss

ϕ are symmetric functions on T 2
rθ, while F cons

t , F diss
r , F diss

θ ,

and F cons
ϕ are anti-symmetric. While other authors have provided relationships between the advanced and

retarded solutions for restricted orbits [237, 234, 214], Eq. 5.58 holds for all geodesic sources.

5.2.7: Scalar wave fluxes and balance laws

The scalar field will not only act back on the charge to produce a SSF, but it will also radiate scalar

waves out to infinity and down the black hole horizon. The fluxes of energy and angular momentum carried

by this scalar radiation will balance the rate of the local work and torque done on the particle by the SSF,

similar to the gravitational case (see Secs. 3.3.5 and 4.4.6.)

W = −q2 lim
T→∞

1

T

∫ T

0

F diss
t

ut
dt, (5.60)

T = q2 lim
T→∞

1

T

∫ T

0

F diss
ϕ

ut
dt (5.61)

Note that only the dissipative component of the self-force contributes. This is easier to see for fiducial orbits,

because both F cons
t and F cons

ϕ are (time-)antisymmetric, as discussed in Sec. 5.2.6, and thus cancel when

averaging over the torus or time. It is convenient to transform these time averages to (non-resonant) orbit
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averages over the two-torus using the angle variables qr and qθ [92]

W = −q
2

Γ

∫ 2π

0

dqr
2π

∫ 2π

0

dqθ
2π

ΣpF
diss
t , (5.62)

T =
q2

Γ

∫ 2π

0

dqr
2π

∫ 2π

0

dqθ
2π

ΣpF
diss
ϕ . (5.63)

One can similarly define the local evolution of the Carter constant,

K = 2q2 lim
T→∞

∫ T

0

dt

[
µKµνu

µF ν

ut
− (Lz − aE) (Fϕ + aFt)

]
, (5.64)

which, for non-resonant sources, is equivalent to the orbit average

K = −2(Lz − aE)(T − aW) + 2
µq2

Γ

∫ 2π

0

dqr
2π

∫ 2π

0

dqθ
2π

ΣKµνu
µF νdiss, (5.65)

where µ can treated as a constant and pulled outside of the integral, because its variation with time is a

higher-order correction. For non-resonant orbits, only the dissipative component of the SSF contributes to

K, but it is not yet known whether this is also true for resonant orbits. I will test this open question in more

detail later in Chapter 8.

The radiated energy and angular momentum are calculated from Eq. (3.134). Using the stress-energy for

a scalar field

T scalar
µν =

1

4π

(
∂µΦ∂νΦ− 1

2
gµν∂

αΦ∂αΦ

)
, (5.66)

the energy and angular momentum radiated by the field at infinity is given by

Ė∞ = − lim
r→∞

r2

4π

∫
∂tΦ

ret∂rΦ
ret dΩ, L̇∞z = lim

r→∞

r2

4π

∫
∂ϕΦret∂rΦ

ret dΩ. (5.67)

Based on Eqs. (5.28) and (5.36), the field at infinity has the form

Φret(r →∞) ' q

r

∑
l̂mkn

C+

l̂mkn
Sl̂mkn(θ)eimϕe−iωmkn(t−r∗). (5.68)

Leveraging the orthogonality of the spheroidal harmonics, and the fact that (Φret)∗ = Φret, the time-averaged

energy and angular momentum fluxes at infinity reduce to

〈Ė〉∞ =
q2

4π

∑
l̂mkn

ω2
mkn

∣∣∣C+

l̂mkn

∣∣∣2 , 〈L̇z〉∞ =
q2

4π

∑
l̂mkn

mωmkn

∣∣∣C+

l̂mkn

∣∣∣2 , (5.69)
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assuming that the field is sourced by a non-resonant orbit.

At the horizon, the surface element and accompanying normal vector are instead given by nαSdS =

−δαr ∆dΩ, so that the fluxes through the horizon (r = r+) are given by

ĖH = lim
r→r+

$2

4π

∫
∂tΦ

ret∂r∗Φ
ret dΩ, L̇Hz = − lim

r→r+

$2

4π

∫
∂ϕΦret∂r∗Φ

ret dΩ, (5.70)

where I have used the fact that ∂r = ($2/∆)∂r∗ . Near the horizon, the asymptotic scalar field takes the

form

Φret(r → r+) ' q√
r2 + a2

∑
l̂mkn

C−
l̂mkn

Sl̂mkn(θ)eimϕe−iωmknte−iγmknr∗ . (5.71)

Consequently, the time-averaged energy and angular momentum fluxes at the horizon reduce to

〈Ė〉H =
q2

4π

∑
l̂mkn

ωmknγmkn

∣∣∣C−
l̂mkn

∣∣∣2 , 〈L̇z〉H =
q2

4π

∑
l̂mkn

mγmkn

∣∣∣C−
l̂mkn

∣∣∣2 , (5.72)

where once again I assume that the field is sourced by a non-resonant orbit. The resonant case will be

considered in Chapter 8. Altogether, these results lead to the scalar flux-balance formulae

〈Ė〉tot = 〈Ė〉H + 〈Ė〉∞ = −W, 〈L̇z〉tot = 〈L̇z〉H + 〈L̇z〉∞ = −T . (5.73)

Just like in the gravitational case, these fluxes are much more convenient to calculate than constructing

the full scalar field and the resulting SSF. The fluxes do not require regularization and the sums converge

exponentially. These formulae will be utilized in Chapter 6 to verify SSF results. While K has not been

identified with a physical flux, it does balance with a gauge-invariant quantity 〈Q̇〉tot, which only depends

on the behavior of the radiative field at infinity and the horizon [91], but I do not calculate 〈Q̇〉tot directly in

this work. I will, however, discuss the evolution of the Carter constant in the case of resonances in Chapter

8.

Section 5.3: Numerical methods for calculating the scalar self-force

I wrote a Mathematica code to perform frequency-domain calculations of the SSF experienced by a scalar

charge on a geodesic in Kerr spacetime. The computational roadmap for this code is as follows:

1. After specifying the parameters a, p, e, and xinc (or ι), I solve for the fiducial geodesic motion on

Kerr. From the geodesic, I obtain the fundamental frequencies of the orbit Ωr, Ωθ, and Ωϕ, and

numerical solutions for the geodesic functions r̂p, θ̂p, ∆t̂(r), ∆t̂(θ), ∆ϕ̂(r), ∆ϕ̂(θ), which are sampled
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on equally spaced grids of qr and qθ (or ψ and χ). See Sec. 2.7 for more details.

2. I calculate the radial and polar mode functions for each frequency and multipole. The polar mode

functions (spheroidal harmonics) Sl̂mkn are constructed using Eq. (5.38) and evaluated at the polar

positions given by the sampling of θ̂p. This is discussed in further detail in Sec. 5.3.1.

3. I construct the homogeneous radial mode functions, Xh,±
l̂mkn

, using the Mano-Suzuki-Takasugi (MST)

function expansion formalism [154] and monodromy techniques [68, 69]. The radial functions are

sampled at the radial positions given by the sampling of r̂p. This is discussed in further detail in

Sec. 5.3.2.

4. I then evaluate the normalization constants C±
l̂mkn

, which determine the scalar field via the EHS

method. In the scalar case, it proves possible to decompose the scalar source integration of Eq. (5.34)

into products of one-dimensional integrals. This is discussed in further detail in Sec. 5.3.3.

5. The multipole contributions of the retarded field to the scalar self-force F ret,l
α± are constructed from

the mode solutions. These self-force contributions are purely functions of qr and qθ (or alternatively

ψ and χ). I, therefore, numerically sample each self-force mode on a two-dimensional grid of evenly

spaced points in qr and qθ (ψ and χ). This is discussed in further detail in Sec. 5.3.4.

6. The retarded contributions are then regularized using the known analytic regularization parameters.

I fit for higher-order regularization parameters numerically to accelerate the convergence of the mode-

sum regularization procedure. The final result is the SSF, sampled along a two-dimensional grid of

evenly-spaced points in qr and qθ (or ψ and χ). This is discussed in further detail in Sec. 5.3.5.

The resulting code is very accurate and quick to evaluate for moderate eccentricities and inclinations (low-

frequencies) but slow for highly-eccentric, strong-field (high-frequency) calculations. In the following sections

I outline the numerical implementation of these steps. Because the gravitational self-force may also be

constructed from solutions to the Teukolsky equation, I comment on how some of these methods may be

implemented in a gravitational self-force code.

5.3.1: Spheroidal harmonics

I build on the numerical routines proposed by Press and Teukolsky [189] and Hughes [132] to construct

the spheroidal harmonics (given in Eq. (5.3.1)). Generalizing to an arbitrary spin-weight, Eq. (5.3.1) is

replaced by

sSl̂m(θ;σ)eimϕ =

∞∑
l=|m|

sb
l̂
lm(σ)sYlm(θ, ϕ), (5.74)
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where the sYlm(θ, ϕ) are the spin-weighted spherical harmonics. Recall that σ2 = −a2ω2 is the spheroidicity.

Inserting this expansion into the angular Teukolsky equation, one finds that

∞∑
l=|m|

sb
l̂
lm(σ)

[
1

sin θ

d

dθ

(
sin θ

dsYlm
dθ

)
−
(

m2

sin2 θ
+

2ms cos θ

sin2 θ
+ s2 cot2 θ − s

)
sYlm

]
=

∞∑
l=|m|

sb
l
lm(σ)

[(
2σs cos θ + σ2 sin2 θ − 2mσ − sλl̂m(σ)

)
sYlm

]
. (5.75)

The lefthand side is the differential equation for sYlm with eigenvalue l(l + 1)− s(s+ 1), leading to

∞∑
l=|m|

sb
l̂
lm(σ)

(
σ2 sin2 θ + 2σs cos θ − 2mσ − sλl̂m(σ) + l(l + 1)− s(s+ 1)

)
sYlm = 0. (5.76)

Equation (5.76) can be reduced to a five-term recursion relation for the sb
l̂
lm coefficients by rewriting the

trigonometric functions in terms of spin-weighted harmonics and using the triple product relations for an-

gular harmonics. These operations can be efficiently performed in Dirac notation, where the spin-weighted

spheroidal harmonics are represented by the kets |slm〉. Using the relations [189]

〈sjm| cos θ |slm〉 =

√
2l + 1

2j + 1
〈lm; 10|jm〉 〈l,−s; 10|j,−s〉 , (5.77)

〈sjm| cos2 θ |slm〉 =
1

3
δlj +

2

3

√
2l + 1

2j + 1
〈lm; 20|jm〉 〈l,−s; 20|j,−s〉 , (5.78)

where 〈j1m1; j2m2|JM〉 are the Clebsch-Gordon coefficients, Eq. (5.76) reduces to

∞∑
l=|m|

sb
l̂
lm(σ)

(
σ2δlj − σ2kljm,2 + 2sσkljm,1 − sλl̂m(σ)δlj + l(l + 1)δlj − s(s+ 1)δlj + 2mσδlj

)
= 0, (5.79)

where sk
l
jm,a ≡ 〈sjm|cosa θ|slm〉. Because kljm,a = 0 when |l− j| > a, the summation reduces to a five-term

recurrence relation, which is given by

(
σ2
sk
l−2
lm,2

)
bl̂l−2,m +

(
σ2
sk
l−1
lm,2 − 2sσsk

l−1
lm,1

)
sb
l̂
l−1,m

+
(
σ2
sk
l
lm,2 − 2sσsk

l
lm,1 + sλl̂m − l(l + 1) + s(s+ 1)− σ2 + 2mσ

)
sb
l̂
l,m

+
(
σ2
sk
l+1
lm,2 − 2sσsk

l+1
lm,1

)
sb
l̂
l+1,m +

(
σ2
sk
l+2
lm,2

)
sb
l̂
l+2,m = 0. (5.80)

Note that this recurrence relation can be re-expressed as a matrix equation Kb = λbb, where the matrix K

represents sk
l
jm,a, the vector b represents the coupling coefficients, and the eigenvalue λb gives sλl̂m(σ) −
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l(l+ 1) + s(s+ 1)−σ2 + 2mσ. Thus the coupling coefficients and the spheroidal eigenvalue can be calculated

through standard numerical routines for evaluating sparse matrix equations.

In the scalar case, the recurrence relation for the coupling coefficients reduces to just three terms,

(
σ2

0k
l−2
lm,2

)
0b
l̂
l−2,m +

(
σ2

0k
l
lm,2 + 0λl̂m − l(l + 1)− σ2 + 2mσ

)
0b
l̂
l,m +

(
σ2

0k
l+2
lm,2

)
0b
l̂
l+2,m = 0. (5.81)

Due to this simplification, the scalar spheroidal-spherical coupling coefficients can be calculated via a con-

tinued fraction method. Defining the coefficients

c
(−2)
l ≡ σ2

0k
l−2
lm,2, c

(0)
l ≡ 0k

l
lm,2 + 0λl̂m − l(l + 1)− σ2 + 2mσ, c

(+2)
l ≡ σ2

0k
l+2
lm,2, (5.82)

the recurrence relation simplifies to c
(−2)
l 0b

l̂
l−2,m + c

(0)
l 0b

l̂
l,m + c

(+2)
l 0b

l̂
l+2,m = 0 with asymptotic behavior

1

l3/2
0b
l̂
l−2,m

0bl̂lm
+ 1 +

1

l3/2
0b
l̂
l+2,m

0bl̂lm
≈ 0 (l→∞). (5.83)

Thus one can construct raising and lowering operators for the coupling coefficients from the minimal solutions

of the recurrence relation

Dl̂,+
l ≡ 0b

l̂
lm

0bl̂l−2,m

= −
c
(−2)
l

c
(0)
l + c

(+2)
l Dl̂,+

l+2

, (5.84)

Dl̂,−
l ≡ 0b

l̂
lm

0bl̂l+2,m

= −
c
(+2)
l

c
(0)
l + c

(−2)
l Dl̂,−

l−2

. (5.85)

The continued fraction for the lower operator will eventually terminate, with Dl̂,−
l = 0 if l < |m|. The

raising operator, on the other hand, has a formally infinite continued fraction depth, but converges rapidly.

I use Steed’s algorithm to evaluate the raising operator. Then starting with the initial point 0b
l̂
l̂m

= 1, one

can apply the raising and lowering operators to construct the nearby coupling coefficients, e.g., 0b
l̂
l̂+2,m

=

Dl̂,+
l+2b

l̂
lm. Once all of the coefficients are calculated, within a given accuracy tolerance, one must take the

sum of the squares of the coefficients to properly normalize the results. Note that, in the scalar case, the

coupling coefficients only depend on σ2, not σ, and thus are invariant under the interchange σ → −σ. (Note

that the combination 0λl̂m + 2mσ is also invariant for σ → −σ.)

For high-precision calculations, this method can be substantially faster to evaluate than solving a

large, sparse matrix. However, one must determine the value of the spheroidal eigenvalue sλl̂m prior

to calculating the coupling coefficients with this continued fraction method. For this work, I use the

SpinWeightedSpheroidalEigenvalue function from the Black Hole Perturbation Toolkit’s SpinWeighted-
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SpheroidalHarmonics package [1] to calculate the eigenvalue separately. This function relies on Leaver’s

method [149], which also takes advantage of continued fraction relations to evaluate the eigenvalue numeri-

cally. I do not make use of the SpinWeightedSpheroidalHarmonicS function available through the Toolkit,

however, because, at the time of writing my code, my numerical algorithms for calculating the spheroidal

harmonics were faster and consistently gave the right normalization (there is an ambiguity in the overall

phase factor of the spheroidal harmonics).

5.3.2: Mano-Suzuki-Takasugi expansion of the radial solutions

The function expansion formalism proposed by Mano, Suzuki, and Takasugi (MST) [153, 154] provides a

semi-analytic method for obtaining the radial mode function solutions to Eq. (5.24) subject to the boundary

conditions (5.28) and (5.29), Xh,±
l̂mkn

, by yielding the radial Teukolsky functions sRl̂mω, from which follow

X̂±
l̂mkn

(for s = 0). A comprehensive review of the MST formalism is given in Ref. [204]. The presentation

here primarily focuses on efficient calculation of one set of these solutions. The calculation first starts by

determining the separation constant λl̂mkn. As mentioned in the previous section, I make use of the Black

Hole Perturbation Toolkit’s [1] SpinWeightedSpheroidalHarmonics to evaluate λl̂mkn.

Specializing to s = 0 (spin-weight of the scalar case), the Teukolsky functions 0R
in
l̂mω

and 0R
up

l̂mω
are the

solutions to the (scalar) radial Teukolsky equation with boundary conditions

0R
in
l̂mω

(r → r+) ' Btranse−iγr∗ , (5.86)

0R
up

l̂mω
(r →∞) ' Ctransr−1eiωr∗ , (5.87)

that correspond to the conditions (5.29) and (5.28), respectively, on Xh,±
l̂mkn

. Here Btrans and Ctrans are

asymptotic amplitudes. By introducing the renormalized angular momentum ν and rescaling the radial

coordinate in two convenient ways

x ≡ r+ − r
2Mκ̃

, z ≡ ω(r − r−), (5.88)

the functions Rin
l̂mω

and Rup

l̂mω
are expressed as series of hypergeometric functions,

Rin
l̂mω

= eiε̃κ̃x(−x)−iε̃+(1− x)iε̃−
+∞∑

n=−∞
aνn F

(
n+ ν + 1− iτ̃ ,−n− ν − iτ̃ ; 1− 2iε̃+;x

)
(5.89)

Rup

l̂mω
= eizzν+iε̃+(z − ε̃κ̃)−iε̃+

+∞∑
n=−∞

bνn (2iz)n Ψ (n+ ν + 1− iε̃, 2n+ 2ν + 2;−2iz) , (5.90)
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where I have dropped the s = 0 prescript and will only consider the scalar case henceforth in this section.

Other parameters are given by

ε̃ ≡ 2Mω, κ̃ ≡
√

1− a2

M2
, τ̃ ≡ 1

κ̃

(
ε̃− ma

M

)
, ε̃± ≡

1

2
(ε̃± τ̃). (5.91)

In the expressions above, F (c1, c2; c3;x) is the Gauss hypergeometric function 2F1(c1, c2; c3; x̃) and Ψ(c1, c2; z)

is the irregular confluent hypergeometric function.

The series coefficients aνn are the minimal solution to a three-term recurrence relation

ανna
ν
n+1 + βνna

ν
n + γνna

ν
n−1 = 0, (5.92)

where

ανn ≡
iε̃κ̃(n+ ν + 1 + iε̃)(n+ ν + 1− iε̃)(n+ ν + 1 + iτ̃)

(n+ ν + 1)(2n+ 2ν + 3)
, (5.93)

βνn ≡ −λl̂mkn + (n+ ν)(n+ ν + 1) + ε̃2 + ε̃κ̃τ̃ +
ε̃3κ̃τ̃

(n+ ν)(n+ ν + 1)
, (5.94)

γνn ≡ −
iε̃κ̃(n+ ν + iε̃)(n+ ν − iε̃)(n+ ν − iτ̃)

(n+ ν)(2n+ 2ν − 1)
. (5.95)

The series converges once ν is determined. The second set of coefficients bνn are completely determined by

aνn via

bνn = e−iπ(ν+1−iε̃)2ν
(ν + 1− iε̃)n
(ν + 1 + iε̃)n

aνn, (5.96)

making the “up” series convergent also. Here (µ)n ≡ Γ(µ+n)/Γ(µ) is the Pochhammer symbol. For the first

three terms in the series, n = (−1, 0, 1), I calculate F (c1, c2; c3;x) and Ψ(c1, c2; z) using Mathematica’s built-

in functions Hypergeometric2F1 and HypergeometricU, respectively. For |n| > 1, I construct both types of

hypergeometric functions using their respective three-term recursion relations (provided in Ref. [204]).

The eigenvalue ν is often determined by solving for the root of a complex equation formed from Eq. (5.92)

with coefficients that are built from continued fractions [204]. An alternative method, employed in this work,

relates ν to the eigenvalue of the monodromy matrix defined for the irregular singular point of the Teukolsky

equation at r →∞ [68, 69]. Monodromy matrices describe how a function “runs around” its singular points

in the complex plane. The eigenvalues of the monodromy matrix are, therefore, related to the complex phase

that a function acquires after circling a point. For example, the function f(z) = zα will pick-up a phase

of e2πiα after circling some point z0, i.e., f(z0e
2πi) = e2πiαzα0 . The asymptotic behavior for the Teukolsky
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radial functions at infinity is given by

R(r →∞) ∼ e±iωrr−1r±2iMω. (5.97)

Consequently, the formal monodromy eigenvalues at infinity for the Teukolsky equation are e±4πiMω. How-

ever, because this is an irregular singular point, (5.97) is only an asymptotic relation. The formal monodromy

does not describe the true monodromy of the Teukolsky function, because the exponential functions of the

asymptotic relation (5.97) have a different branching structure from the true Teukolsky solutions.

The true monodromy eigenvalue ν′ is determined by numerically calculating Stokes multipliers A0 and

A1 that connect the formal and true monodromy eigenvalues [198, 69],

1

2

(
e2πiν′ + e−2πiν′

)
= cos 2πν′ = cosπ (λ1 − λ2) +

1

2
A0A1, (5.98)

where e2πiλ1 and e2πiλ2 represent the formal monodromy eigenvalues, e.g., λ1,2 = ±2Mω for the Teukolsky

equation in Boyer-Lindquist coordinates. To the best of my knowledge, there is no formal proof that ν′ = ν,

though this equivalence has been found through numerical experimentation. The hypergeometric function

F (c1, c2, c3;x) provides a promising route to establishing this connection, since its true monodromy eigen-

values at infinity are simply given by e−2πic1 and e−2πic2 . Comparing these eigenvalues with the arguments

in Eq. (5.89) leads to the monodromy eigenvalues e±2πiν for Rin. However, this does not constitute a formal

proof and Eq. (5.89) does not converge for |x| =∞. Still this behavior alludes to the connection between ν

and the true monodromy eigenvalue of the Teukolsky equation. Ultimately, numerical investigations continue

to suggest that ν = ν′, and thus one can determine ν by accurately calculating the Stokes multipliers in

Eq. (5.98).

However, rather than directly working with the Teukolsky equation, I found that it is much more con-

venient to analyze the monodromy eigenvalues and Stokes multipliers using transformed equations, analo-

gous to those presented by Mano, Suzuki, and Takasugi (MST) [154]. Defining the new radial coordinate

ε̃κ̃y = z = ε̃κ̃(1−x) and transforming to the new radial function w(y) via R(y) = eiε̃κ̃(1−y)(y−1)−iε̃−yiε̃+w(y),

the Teukolsky equation can be recast in the form of the confluent Heun equation

d2w

dy2
+

(
γH

y
+

δH
y − 1

+ εH

)
dw

dy
+
αHy − qH

y(y − 1)
w = 0, (5.99)

where the confluent Heun parameters are related to the MST parameters

γH = 1 + iε̃− iτ̃ , δH = 1− iε̃− iτ̃ , εH = −2iε̃κ̃, (5.100)
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αH = −2iε̃κ̃ (1 + iε̃− iτ̃) , (5.101)

qH =
[
iτ̃(1− iτ̃) + λl̂mkn

]
− ε̃(ε̃− iκ̃)− 2iε̃κ̃ (1 + iε̃− iτ̃) . (5.102)

(See Eq. (117) in Ref. [204].) Despite the transformation, w and R share similar monodromy eigenvalues and,

thus, one can still use Eq. (5.98) to determine ν. However, now A0 and A1 represent the Stokes multipliers

for the confluent Heun function, which are constructed from the asymptotic series coefficients of the solutions

to Eq. (5.99).

The two solutions to the confluent Heun equation have the asymptotic behavior

w1(y →∞) ∼ eεHyyαH/εHy−(γH+δH), w2(y →∞) ∼ y−αH/εH (5.103)

and therefore admit asymptotic expansions at infinity of the form

w1 = eεHxxαH/εHx−(γH+δH)
∞∑
n=0

aH
n

(yεH)n
, w2 = x−αH/εH

∞∑
n=0

bHn
(yεH)n

. (5.104)

Thus the formal monodromy of the confluent Heun equation is given by λ1 = αH

εH
− γH − δH and λ2 = −αH

εH
.

The series coefficients aH
n and bHn satisfy the three-term recurrence relations

−nε2H aH
n =

[
α2

H + αHεH(2n− 1− γH − δH + εH)

+ ε2H(n(n− 1 + γH + δH)− εH(n− 1 + δH)− qH)
]
aH
n−1 (5.105)

− εH
[
αH − εH(n− 1 + δH))(αH − εH(n− 2 + γH + δH)

]
aH
n−2,

−nε2H bHn =
[
ε2HqH − (αH + εH(n− 1))(αH + εH(n− γH − δH + εH)

]
bHn−1 (5.106)

+ εH

[
αH + εH(n− 2))(αH + εH(n− 1− γH)

]
bHn−2,

with aH
−1 = bH−1 = 0 and aH

0 = bH0 = 1. One can then use the series coefficients to numerically calculate the

Stokes multipliers A0 and A1 which, as described in Ref. [69, 76], are well estimated by

A0 = 2πbHN

[
P−1∑
n=0

aH
n Γ

(
N + 2

αH

εH
− γH − δH − n

)]−1

+O(N−P ), (5.107)

A1 = 2π(−1)N−1aH
N

[
P−1∑
n=0

(−1)nbHn Γ

(
N − 2

αH

εH
+ γH − δH − n

)]−1

+O(N−P ), (5.108)

where N and P are integers that are chosen to ensure the numerical convergence of these sums. These

results are closely related to those provided in Refs. [198, 69], but I found that the series coefficients are
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Figure 5.2: Plots of the renormalized angular momentum ν as a function of the frequency ω for the (s, l̂,m) =
(0, 2, 2) radial Teukolsky mode (i.e., 0R22ω) that describes perturbations of a Kerr spacetime with a/M = 0.9.
In the left panel, the real part of ν is given by the solid (blue) line, while the imaginary part is given by
the dashed (orange) line. For small frequencies (|ω| . 0.3) ν is purely real, but as |ω| increases ν becomes
complex. The real part of ν assumes an integer or half-integer value as the imaginary part grows. Note,
however, that ν is not a smooth function of ω. In the right panel, the absolute value of cos 2πν is plotted
on a log scale. Though cos 2πν rapidly grows with ω, it is a smooth function of the frequency. The dashed
(black) line refers to the value of | cos 2πν| = 1. When the solid (blue) line falls below this threshold, ν is
real. Because the absolute value of cos 2πν is plotted, the sudden drops represent zero crossings as cos 2πν
oscillates between positive and negative values.

much faster to evaluate using the transformation to the confluent Heun equation compared to the recurrence

relations provided in Ref. [198, 69]. Ottewill and Wardell (private communication) independently knew of this

approach and have incorporated a similar method into the Black Hole Perturbation Toolkit’s [1] Mathematica

package Teukolsky, though to the best of my knowledge, these results have not been published.

Interestingly, the magnitude of cos 2πν can be greater than one, which is evident from combining

Eqs. (5.107) and (5.108) with Eq. (5.98). When this occurs ν will be complex. This was originally ob-

served by Fujita and Tagoshi [111] and is also demonstrated in Fig. 5.2. The left panel plots the real and

imaginary parts of ν as a function of ω (in the case that a/M = 0.9, s = 0, l̂ = 2, and m = 2). For smaller

values of |ω|, ν is completely real. However, as |ω| grows, ν becomes complex with the real component of ν

taking on integer or half-integer values and the imaginary component growing in magnitude as the frequency

grows in magnitude. These sudden ‘jumps’ as ν transitions between different real and complex values makes

it particularly difficult to determine ν through traditional root-finding methods [111, 218]. The magnitude

of cos 2πν, on the other hand, is a smooth and real function of the frequency, as shown in the right panel of

Fig. 5.2. Therefore, the monodromy techniques described above are well-suited for numerically determining

ν when it is complex.

After calculating ν numerically, Eqs. (5.89) and (5.90) can be evaluated. An accuracy goal in determining

the radial functions is met, in part, by terminating the hypergeometric series at a sufficiently large value
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of |n| = nmax (where nmax is not necessarily the same for both series). The MST technique provides

precise, semi-analytic solutions, but it can be computationally expensive, especially when programmed in

Mathematica. As the frequency increases, the hypergeometric series expansions must range over an increasing

number of terms to meet a pre-defined accuracy goal. Computational costs are exacerbated by roundoff errors

from near cancellations in the sums. Roundoff errors are circumvented by making internal Mathematica

calculations at working precisions significantly higher than desired accuracy in final results.

I found empirically that, for the radial positions considered in this work, the series of confluent hyper-

geometric functions Ψ(c1, c2; z) converges more rapidly than the series of Gauss hypergeometric functions

F (c1, c2; c3;x) (used in the “in” solution). Further study showed that computational costs can be mitigated

on the horizon side in calculating Rin by using an alternative expression given in the MST literature (see

Eq. (166) in [204])

Rin = KνR
ν
C +K−ν−1R

−ν−1
C , (5.109)

where RνC is expressed as a series of regular confluent hypergeometric functions M(c1, c2; z),

RνC = e−izzν+iε̃+ (z − ε̃κ̃)
−iε̃+

+∞∑
n=−∞

fνn (−2iz)nM(n+ ν + 1 + iε̃, 2n+ 2ν + 2; 2iz). (5.110)

Here fνn is a new set of series coefficients (given below) and Kν is a (phase) factor that involves summing

over the prior series coefficients aνn and bνn. The exact form of Kν in this case is given by

Kν = eiε̃κ̃(ε̃κ̃)−ν Γ(1− 2iε̃+) Γ(2ν + 1)

(
+∞∑
n=0

(−1)n

n!
gνn

)(
0∑

n=−∞

(−1)n

(−n)!
hνn

)−1

, (5.111)

where the new series coefficients fνn , gνn, and hνn can be expressed in terms of the prior coefficients aνn and bνn

by

fνn = eiπ(ν+1−iε̃) Γ(n+ ν + 1 + iε̃)

Γ(2n+ 2ν + 2)
bνn, (5.112)

gνn = (2ν + 1)n
(ν + 1 + iτ̃)n

Γ(n+ ν + 1− iτ̃)

(ν + 1 + iε̃)n
Γ(n+ ν + 1− iε̃)

aνn (5.113)

hνn = eiπ(ν+1−iε̃) Γ(n+ ν + 1 + iε̃− n)

Γ(2n+ 2ν + 2− n)
bνn. (5.114)

The review by Sasaki and Tagoshi [204] discusses Eq. (5.109) as a complement of Eq. (5.89) that provides

convergent coverage of the entire domain [r+,+∞] but does not mention its computational efficiency. Rapid

convergence was my focus in comparing these expressions and settling on use of Eq. (5.109). While developing

this code, I sought other MST users’ experiences with the potential practical virtues of Eqs. (5.109) and
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(5.110). Casals [59] and Wardell (private communication) were aware of the benefits of Eq. (5.109) and

make use of it in their work, though have not previously discussed this particular issue in detail. Use of both

Eqs. (5.109) and (5.89) are described by Throwe [218], with his observation that both formulae have their

own regions in which they are numerically more suitable. Elsewhere [1] Eq. (5.89) is exclusively used. A side

benefit in this approach is that the series of regular confluent hypergeometric functions M(c1, c2; z) given

in Eq. (5.110) converges with similar rapidness as the series of irregular confluent hypergeometric functions

Ψ(c1, c2; z) given in Eq. (5.90). Thus the same value of nmax can be used to truncate both series.

While use of RC has benefits, it is not straightforward to construct the underlying functions M(c1, c2; z)

numerically. The functions M(c1, c2; z) satisfy a three-term recurrence relation [204] but evaluating the

functions by stepping through the recurrence formula is numerically unstable in the increasing-n direc-

tion. There are several ways to circumvent this problem: increase the code’s internal precision, calculate

M(c1, c2; z) directly using Mathematica’s built-in function Hypergeometric1F1, or translate the three-term

recurrence relation into a continued fraction, which does not suffer from the same cancellation errors in the

increasing-n direction. Alternatively, since the recurrence relation does not suffer the same instability when

moving down in n, one can begin the summation of Eq. (5.110) at n = nmax and evaluate the terms as

n decreases down to n = −nmax. The value of nmax is conveniently determined by evaluating Rup first.

A mixture of these strategies is employed to maximize computational efficiency. Ultimately the improved

convergence of Eqs. (5.109) and (5.110), compared to Eq. (5.89), offsets the computational cost of summing

two series instead of one.

Using these expressions for Rin and Rup, I construct the unit-normalized functions Xh,± by comparing

Eqs. (5.86) and (5.87) with Eqs. (5.22), (5.28), and (5.29)

Xh,− =
$

$+

(
Rin

Btrans

)
, Xh,+ = $

(
Rup

Ctrans

)
, (5.115)

where $+ = (r2
+ + a2)1/2. The asymptotic amplitudes can be found by expanding the solutions near the

horizon and at large r, respectively

Btrans = eiκ̃ε̃+(1+ 2 ln κ̃
1+κ̃ )

+∞∑
n=−∞

aνn, (5.116)

Ctrans = ω−1ei(ε̃ ln ε̃− 1−κ̃
2 ε̃)Aν−, (5.117)

with

Aν− = 2−(ν+1−iε̃)eiπ(ν+1−iε̃)/2
+∞∑

n=−∞
(−1)n bνn. (5.118)
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These normalization choices, ultimately, simplify calculations of the asymptotic energy and angular momen-

tum fluxes at the boundaries (the black hole horizon and infinity).

The MST procedure therefore provides a semi-analytic method for achieving high-precision, numerical

values for the homogeneous radial Teukolsky solutions, Rin and Rup. To construct the SSF, these radial so-

lutions must be evaluated at radial positions along the scalar charge’s worldline, i.e. r̂p. However, evaluating

series of hypergeometric functions at all of these radial points can be computationally expensive. Therefore,

I use the MST method to evaluate Rin, Rup, and their first derivatives at ∼ 16 radial points along the

charge’s bound orbit. I then construct Taylor expansions around these points using the MST results. The

higher-order derivatives of the radial functions (e.g., d3R/dr3) are computed by taking derivatives of the

Teukolsky equation. The resulting expansions are then used to evaluate the remaining radial points. Once

Rin and Rup are sampled along r̂p, I calculate Xh,± via Eq. (5.115). This method is similar to the numerical

approach employed in Ref. [109]. I found that this method was consistently faster than evaluating all of the

radial points with the MST expansions.

5.3.3: Optimized source integration

I now consider the optimized calculation of the normalization coefficients C±
l̂mkn

defined in Eq. (5.34),

which was first approached by Osburn [175]. The reduction begins with a review of the derivation of the

frequency domain source function Zl̂mkn(r), exploiting the orthogonality of the harmonics in t and ϕ, and

the spheroidal Legendre functions found in Eq. (5.27). Integrating the product of Eq. (5.27) and e−imϕ over

azimuth angle and using the delta function in ϕ,

∑
l̂kn

Zl̂mkn(r)Sl̂mkn(θ) e−iωmknt = −2Σ∆ δ(r − rp) δ(cos θ − cos θp)

$3 (Vtr + Vtθ)
e−imϕp . (5.119)

Next, one can remove the linear phase factor e−imΩϕt, which makes the remaining expression

∑
l̂kn

Zl̂mkn(r)Sl̂mkn(θ) e−i(kΩθ+nΩr)t =

− 2
e−im(∆ϕ(r)+∆ϕ(θ)−Ωϕ(∆t(r)+∆t(θ)))

$3
p (Vtr + Vtθ)

Σp ∆pδ(r − rp) δ(cos θ − cos θp), (5.120)

bi-periodic with fundamental frequencies Ωθ and Ωr, since ϕp − Ωϕt = ∆ϕ(r) + ∆ϕ(θ) − Ωϕ(∆t(r) + ∆t(θ))

up to an irrelevant constant.

Equation (5.120) is reduced to a single sum over l̂ by using the orthogonality of the factor e−i(kΩθ+nΩr)t.
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To do so, one can convert to Mino time Fourier series, with e−i(kΥθ+nΥr)λ, using results in Ref. [92]

∑
l̂

Zl̂mkn(r)Sl̂mkn(θ) =
1

ΛθΛr

Λθ∫
0

dλ(θ)

Λr∫
0

dλ(r) ei(kΥθλ
(θ)+nΥrλ

(r))

×Bmkn(rp, θp) δ(r − rp) δ(cos θ − cos θp), (5.121)

where the function Bmkn(rp, θp) is

Bmkn(rp, θp) ≡ −
4πΣp∆p

Γ$3
p

eiωmkn(∆t(r)+∆t(θ)) e−im(∆ϕ(r)+∆ϕ(θ)), (5.122)

which can be thought of as a function of λ(r) and λ(θ). The final step in deriving Zl̂mkn(r) is multiplying

the above expression by Sl̂mkn(θ) and integrating over θ

Zl̂mkn(r) =
1

ΛθΛr

Λθ∫
0

dλ(θ)

Λr∫
0

dλ(r) ei(kΥθλ
(θ)+nΥrλ

(r))Bmkn(rp, θp)Sl̂mkn(θp) δ(r − rp). (5.123)

With the frequency domain source function in hand, one may calculate the normalization constants C±
l̂mkn

by substituting Eq. (5.123) into Eq. (5.34)

C±
l̂mkn

=
1

Wl̂mkn

rmax∫
rmin

dr
$2Xh,∓

l̂mkn
(r)

∆

× 1

ΛθΛr

Λθ∫
0

dλ(θ)

Λr∫
0

dλ(r) ei(kΥθλ
(θ)+nΥrλ

(r))Bmkn(rp, θp)Sl̂mkn(θp) δ(r − rp). (5.124)

The order of integration is exchanged, allowing the r integral to be evaluated first. Making use of the angle

variables qr and qθ (see Sec. 2.6.1), one then finds

C±
l̂mkn

=
1

(2π)2

2π∫
0

dqθ

2π∫
0

dqr e
i(kqθ+nqr)D±

l̂mkn
(rp, θp), (5.125)

where D±
l̂mkn

(rp, θp), implicitly a function of qr and qθ, is given by

D±
l̂mkn

(rp, θp) = −
4πΣpX

h,∓
l̂mkn

(rp)Sl̂mkn(θp)

ΓWl̂mkn$
eiωmkn(∆t(r)+∆t(θ))e−im(∆ϕ(r)+∆ϕ(θ)). (5.126)

The double integral in Eq. (5.125) may be computed directly using adaptive-step-size integration [93].

This method is referred to as the “2D-integral” approach. It will deliver numerical results that converge
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algebraically (i.e., as a power law). Given the number of modes in the Kerr generic-orbit problem, this is

a computationally expensive method that compelled a search for more efficient alternatives in evaluating

Eq. (5.125).

A first alternative is to exploit the integrand’s smoothness and bi-periodicity to make a discrete, evenly-

spaced sampling in two dimensions that is analogous to the approach that was taken with the orbit equations

(Sec. 2.7). Just as in that case, where an equally-spaced sum over samples of a smooth periodic integrand

converged exponentially, one can achieve “spectral” convergence in the two-dimensional integral as well. By

discretely sampling qr and qθ, one finds

qr,ı ≡
2πı

Nr
, ı = 0, 1, . . . , Nr − 1, qθ, ≡

2π

Nθ
,  = 0, 1, . . . , Nθ − 1, (5.127)

C±
l̂mkn

' ΥrΥθ

NrNθ

Nr−1∑
ı=0

Nθ−1∑
=0

einqr,ı eikqθ,D±
l̂mkn

(rp,ı, θp,), (5.128)

where rp,ı ≡ rp(qr,ı/Υr) and θp, ≡ θp(qθ,/Υθ). Alternatively, one can also use the discrete sampling

locations of Eq. (2.97) and (2.99) to calculate

ψı ≡
2πı

Nr
, ı = 0, 1, . . . , Nr − 1, χ ≡

2π

Nθ
,  = 0, 1, . . . , Nθ − 1, (5.129)

C±
l̂mkn

' ΥrΥθ

NrNθ

Nr−1∑
ı=0

Nθ−1∑
=0

einΥrλ
(r)(ψı) eikΥθλ

(θ)(χ)P (r)(ψı)P
(θ)(χ)D

±
l̂mkn

(řp,ı, θ̌p,), (5.130)

where I have changed the integration variables from qr and qθ to ψ and χ and adopted řp,ı ≡ řp(ψı) and

θ̌p, ≡ θ̌p(χ). Note that řp and θ̌p are given by Eq. (2.65) and thus differ from the radial and polar functions

that are parameterized in terms of qr and qθ, i.e., rp and θp.

The integration approach in (5.130) is referred to here as the “2D-SSI” method, i.e., the two-dimensional

generalization of the spectral source integration (SSI) technique [130]. Figure 5.3 demonstrates the increased

efficiency of the 2D-SSI method compared to the 2D-integral scheme. The 2D-SSI method has been inde-

pendently adopted by van de Meent [223] in his gravitational self-force frequency-domain calculations on

inclined eccentric orbits in Kerr spacetime. The code used in Ref. [93] has also been upgraded to use the

2D-SSI method (Hughes, private communication).

The explicit dependence on rp and θp found in (5.126) allows for further optimization. BecauseD±
l̂mkn

(rp, θp)

can be written in the following form

D±
l̂mkn

=
(
r2
p + a2 cos2 θp

)
Jl̂mkn(θp)K

±
l̂mkn

(rp), (5.131)
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Figure 5.3: Computational efficiency in calculating normalization coefficients. An assessment of computa-
tional efficiency is made by measuring the number of integrand evaluations needed to calculate C+

2222 and
C−2222 for orbital parameters (a/M, p, e, ι) = (0.5, 15, 0.5, π/3). The lowest efficiency and slowest convergence
rate is that of the 2D-integral approach (red dotted curve). The effect of switching to products of 1D in-
tegrals is seen in the 1D-integral method (blue dashed curve). The effect of switching from adaptive-step
integration to SSI is seen in the 2D-SSI (purple dot-dashed) and 1D-SSI (black solid) scalings. The adaptive
step-size integrations (both 2D-integral and 1D-integral) converge algebraically at 8th order.

Jl̂mkn(θp) ≡
4π

Γ
Sl̂mkn(θp)e

iωmkn∆t(θ)e−im∆ϕ(θ)

, (5.132)

K±
l̂mkn

(rp) ≡ −
Xh,∓
l̂mkn

(rp)

Wl̂mkn$
eiωmkn∆t(r)e−im∆ϕ(r)

, (5.133)

the double integral in (5.125) can be calculated from products of one-dimensional integrals

C±
l̂mkn

= I
(1)±
l̂mkn

I
(2)

l̂mkn
+ I

(3)±
l̂mkn

I
(4)

l̂mkn
, (5.134)

where

I
(1)±
l̂mkn

≡ 1

2π

∫ 2π

0

dqr e
inqrr2

pK
±
l̂mkn

(rp), (5.135)

I
(2)

l̂mkn
≡ 1

2π

∫ 2π

0

dqθ e
ikqθJl̂mkn(θp), (5.136)

I
(3)±
l̂mkn

≡ 1

2π

∫ 2π

0

dqr e
inqrK±

l̂mkn
(rp), (5.137)

I
(4)

l̂mkn
≡ 1

2π

∫ 2π

0

dqθ e
ikqθ cos2 θpJl̂mkn(θp). (5.138)

Computing the integrals (5.135)-(5.138) with a straightforward adaptive integrator leads to an algebraically

convergent method that I refer to as the “1D-integral” approach. Despite its algebraic convergence, it is

much faster at any required level of accuracy than the 2D-integral approach, by as much as two orders of

124



magnitude at conventional double precision (as seen in Fig. 5.3). At that accuracy level it is also faster than

2D-SSI, though the faster convergence rate of 2D-SSI would ultimately win at higher accuracies.

Finally, the 1D integrals are just as amenable to the SSI method as the double integral in Eqs. (5.128)

and (5.130) and it is possible to make an exponentially convergent discrete representation for (5.135)-(5.138).

Discretizing the angle variables

qrı ≡
2ıπ

N1,3
, ı ∈ 0, 1, . . . , N1,3 − 1,

qθ, ≡
2π

N2,4
,  ∈ 0, 1, . . . , N2,4 − 1,

one can then compute the one-dimensional integrals using discrete, exponentially-convergent sums, given by

I
(1)±
l̂mkn

' 1

N1

N1−1∑
ı=0

einqr,ır2
p,ıK

±
l̂mkn

(rp,ı) , (5.139)

I
(2)

l̂mkn
' 1

N2

N2−1∑
=0

eikqθ, Jl̂mkn (θp,) , (5.140)

I
(3)±
l̂mkn

' 1

N3

N3−1∑
ı=0

einqr,ı K±
l̂mkn

(rp,ı) , (5.141)

I
(4)

l̂mkn
' 1

N4

N4−1∑
=0

eikqθ,a2 cos2 θp, Jl̂mkn (θp,) . (5.142)

Alternatively, these integrals can be evaluated in terms of the Darwin parameters. Then one must evenly

sample ψ and χ

ψı ≡
2ıπ

N1,3
, ı ∈ 0, 1, . . . , N1,3 − 1,

χ ≡
2π

N2,4
,  ∈ 0, 1, . . . , N2,4 − 1,

to then compute

I
(1)±
l̂mkn

' Υr

N1

N1−1∑
ı=0

einΥrλ
(r)(ψı)P (r)(ψı)ř

2
p,ıK

±
l̂mkn

(
řp,ı
)
, (5.143)

I
(2)

l̂mkn
' Υθ

N2

N2−1∑
=0

eikΥθλ
(θ)(χ)P (θ)(χ) Jl̂mkn

(
θ̌p,
)
, (5.144)

I
(3)±
l̂mkn

' Υr

N3

N3−1∑
ı=0

einΥrλ
(r)(ψı)P (r)(ψı)K

±
l̂mkn

(
řp,ı
)
, (5.145)

I
(4)

l̂mkn
' Υθ

N4

N4−1∑
=0

eikΥθλ
(θ)(χ)P (θ)(χ)a

2 cos2 θ̌p, Jl̂mkn
(
θ̌p,
)
. (5.146)
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When Eqs. (5.139)-(5.142) (or (5.143)-(5.146)) are used to evaluate Eq. (5.134), I refer to it as the “1D-SSI”

method. Fig. 5.3 shows that the 1D-SSI method is the most efficient and most rapidly convergent technique.

Switching to 2D-SSI from 2D adaptive-step integration is nearly two orders of magnitude faster at double

precision accuracies. Switching from 2D-SSI to 1D-SSI yields another factor of 30.

The 1D-SSI method is possible because the two-dimensional source integrations decompose as shown in

(5.134) into products of 1D integrals. Unfortunately a similar decomposition does not occur in any obvious

way for gravitational perturbations in Kerr spacetime due to leading factors of 1/Σ. For small spins or large

radial separations, the 1/Σ factor might be expanded using a binomial series with a modest amount of terms,

providing an approximately separable source. It is also conceivable that a transformation might exist that

would bring the source into a separable form. The benefits of the 1D-SSI method seen in the scalar case are

compelling enough to justify a more thorough investigation of the gravitational Teukolsky source integration

problem.

As a final note, recall that the transformation from qr and qθ to ψ and χ is sensitive to the initial conditions

qr0 and qθ0. Thus, Eqs. (5.143)-(5.146) only apply for fiducial geodesic sources (i.e., xµp (0) = (0, rmin, θmin, 0)).

This does not force a loss of generality, though. As noted in Refs. [91, 101], the C±
l̂mkn

for a source with

arbitrary initial conditions can be related to the coefficients for a source with fiducial initial conditions,

Ĉ±
l̂mkn

, which differ by only a phase factor. Transforming to the shifted angle variables q̄r ≡ qr + qr0 and

q̄θ ≡ qθ + qθ0, Eq. (5.125) becomes

C±
l̂mkn

(qµ0 ) =
1

4π2

∫ 2π+qr0

qr0

dq̄r

∫ 2π+qθ0

qθ0

dq̄θ e
i(kq̄θ+nq̄r)D±

l̂mkn
(q̄r − qr0, q̄θ − qθ0; qµ0 )e−i(kqθ0+nqr0), (5.147)

where I have made the dependence on the initial conditions qµ0 = (t0, qr0, qθ0, ϕ0) explicit and where, in a

slight abuse of notation, I write

D±
l̂mkn

(qr, qθ; q
µ
0 ) = D±

l̂mkn
(rp(qr/Υr; qr0), θp(qθ/Υθ; qθ0)) eiωmknt0e−imϕ0 . (5.148)

First note that, because the integrand is periodic on the intervals qr, qθ ∈ [0, 2π), it is straightforward to

shift the limits of integration, e.g.,

∫ 2π+qr0

qr0

=

∫ 2π

0

+

∫ 2π+qr0

2π

−
∫ qr0

0

=

∫ 2π

0

. (5.149)

Recalling Eq. (5.126), one can see that

D±
l̂mkn

(q̄r − qr0, q̄θ − qθ0; qµ0 ) = e−iωmkn(∆t(qr0,qθ0)−t0)eim(∆ϕ(qr0,qθ0)−ϕ0)D±
l̂mkn

(q̄r, q̄θ; 0, 0, 0, 0). (5.150)
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Combining these results and defining the phase

ξmkn(qµ0 ) ≡ −ωmkn∆t(qr0, qθ0) + ωmknt0 +m∆ϕ(qr0, qθ0)−mϕ0 − kqθ0 − nqr0, (5.151)

leads to a relationship between the fiducial normalization Ĉ±
l̂mkn

and the normalization for a source with

arbitrary initial phases qµ0

C±
l̂mkn

(qµ0 ) = eiξmkn(qµ0 )Ĉ±
l̂mkn

. (5.152)

I, therefore, construct all normalization coefficients using the fiducial orbit. Arbitrary conditions are then

included via Eq. (5.152).

5.3.4: Constructing the scalar self-force

To construct the SSF, I evaluate Eqs. (5.42)-(5.44) and (5.51) along a fiducial geodesic x̂αp = (t̂p, r̂p, θ̂p, ϕ̂p)

F̂ ret,l
α± (λ) =

l∑
m=−l

[
D̂lmα φ±lm

]
(t̂p, r̂p)Ylm(θ̂p, ϕ̂p), (5.153)

where the coordinate positions of the particle are understood to be functions of Mino time (e.g., t̂p = t̂p(λ)),

and the operator D̂lmα performs the following operations on the extended homogeneous solutions

D̂lmt φ±lm ≡ ∂tφ
±
lm, (5.154)

D̂lmr φ±lm ≡ ∂rφ
±
lm, (5.155)

D̂lmθ φ±lm ≡ β
(−3)
l+3,mφ

±
l+3,m + β

(−1)
l+1,mφ

±
l+1,m + β

(+1)
l−1,mφ

±
l−1,m + β

(+3)
l−3,mφ

±
l−3,m, (5.156)

D̂lmϕ φ±lm ≡ imφ
±
lm. (5.157)

For generic non-resonant orbits, the SSF is not simply periodic, but varies over the entire interval of −∞ <

λ < ∞. Because one cannot numerically sample the SSF over this infinite domain, I parameterize the SSF

in terms of the angle variables introduced in Sec. 2.6.1,

F̂ ret,l
α± (qr, qθ) =

l∑
m=−l

(D̂lmα φ̂±lm)(qr, qθ)Ŷlm(qr, qθ). (5.158)

where

Ŷlm(qr, qθ) ≡ Ylm(θ̂p(qθ), 0)eim∆ϕ̂(qr,qθ), (5.159)
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φ̂±lm(qr, qθ) ≡
∑
l̂kn

φ̂±
ll̂mkn

(qr)e
−iωmkn∆t̂(qr,qθ)e−i(kqθ+nqr), (5.160)

φ̂±
ll̂mkn

(qr) ≡ $̂−1
p (qr)b

l
l̂mkn

Ĉ±
l̂mkn

X̃±
l̂mkn

(r̂p(qr)), (5.161)

and where $̂p(qr) = (r̂2
p(qr) + a2)1/2, while D̂lmα performs the same operations as before. Recall that this

mapping in terms of qr and qθ results from the ergodic nature of non-resonant geodesic motion in Kerr

spacetime. Given an infinite amount of time, the orbit samples every point in the (qr, qθ)-plane an equal

number of times. Therefore the infinite motion of the scalar charge maps to this finite, two-dimensional

domain. Because the regularization parameters only vary with respect to rp, θp, u
r, and uθ (assuming the

orbital constants are fixed), the singular field can also be translated into this angle-variable parameterization,

ultimately providing a description of the SSF in terms of qr and qθ,

F̂α(qr, qθ) =

∞∑
l=0

(
F̂ ret,l
α± (qr, qθ)− F̂ S,l

α±(qr, qθ)
)
. (5.162)

As a result, the SSF naturally maps to the two-torus spanned by qr and qθ (and visualized in Fig. 2.4).

The angle variables also provide convenient parameters for representing the SSF in terms of a Fourier series,

F̂α(qr, qθ) =

+∞∑
k=−∞

+∞∑
n=−∞

f̃knα e−i(kqθ+nqr), (5.163)

f̃knα =
1

4π2

∫ 2π

0

dqr

∫ 2π

0

dqθ F̂α (qr, qθ) e
i(kqθ+nqr).

By densely sampling the two-torus at the points qr,ı = 2πı/Nr and qθ, = 2π/Nθ, where Nr, Nθ ∈ Z, I

construct discrete Fourier representations of the SSF

F̂α(qr, qθ) =

Nθ−1∑
k=0

Nr−1∑
n=0

fknα e−i(kqθ+nqr), (5.164)

fknα =
1

NrNθ

Nθ−1∑
ı=0

Nr−1∑
=0

F̂α (qr,ı, qθ,) e
i(kqθ,+nqr,ı).

Given that Nr and Nθ are large enough such that max|fknα − f̃knα | < εFS—where εFS is some pre-defined

accuracy goal—the discrete representation will provide an accurate representation of Eq. (5.163) [130, 172].

I found that sample numbers of Nr = Nθ = 28 were typically sufficient for constructing a discrete repre-

sentation that was accurate to about εFS ∼ 10−6 − 10−8. This provides an efficient method for storing and

interpolating SSF data.

While up to this point I have focused on fiducial geodesic sources, one can easily generalize these results to
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arbitrary geodesics with initial phases qµ0 = (t0, qr0, qθ0, ϕ0), as provided in Eqs. (2.41)-(2.44). The retarded

contributions to the self-force for generic initial conditions then takes the form

F ret,l
α± (qr, qθ) =

l∑
m=−l

(D̂lmα φ±lm)(qr, qθ)Ylm(qr, qθ), (5.165)

where

Ylm(qr, qθ; q
µ
0 ) ≡ Ŷlm(qr + qr0, qθ + qθ0)× e−im(∆ϕ̂(qr0,qθ0)−ϕ0), (5.166)

and where

φ±lm(qr, qθ; q
µ
0 ) ≡

∑
l̂kn

φ̂±
ll̂mkn

(qr + qr0)e−i(kqθ+nqr)e−iωmkn∆t̂(qr+qr0,qθ+qθ0)eiωmkn(∆t̂(qr0,qθ0)−t0)eiξmkn(qµ0 ),

=
∑
l̂kn

φ̂±
ll̂mkn

(qr + qr0)e−i(kqθ+nqr)e−i(kqθ0+nqr0)eim(∆ϕ̂(qr0,qθ0)−ϕ0), (5.167)

= φ̂±lm(qr + qr0, qθ + qθ0)eim(∆ϕ̂(qr0,qθ0)−ϕ0). (5.168)

The exponential factor of ξmkn(qµ0 ) comes from the dependence of the normalization coefficient on initial

conditions, Eq. (5.152). This phase is defined in Eq. (5.151). Combining Eqs. (5.166) and (5.167) in

Eq. (5.165), the exponential factors cancel, so that I find the following shifting relation

F ret,l
α± (qr, qθ; q

µ
0 ) = F̂ ret,l

α± (qr + qr0, qθ + qθ0). (5.169)

The same result also holds true for F S,l
α , so that

Fα(qr, qθ; q
µ
0 ) = F̂α(qr + qr0, qθ + qθ0). (5.170)

Accordingly, the SSF for a source with arbitrary initial conditions can always be related to a source that

shares the same constants of motion (e.g., E , Lz, and Q) but fiducial initial conditions.

Using the results presented by van de Meent [224], I find that (5.169) also extends to the gravitational

case, at least for the form of the gravitational self-force in the outgoing radiation gauge presented in Ref. [224].

In outgoing radiation gauge, the unregularized l-mode contributions to the gravitational self-force are given

by (Eq. 44 in Ref. [224])4

4Correcting for one small typo due to a missing factor of Ylm and reformatting indicies to more closely reflect the notation
used in our SSF calculations.
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Fµ,l±Rad (qr, qθ; qr0, qθ0) =
∑

mknsij

l1l2 l̂

Cµmknsij(r̂p(qr + qr0), θ̂p(qθ + qθ0))Ψ±
l̂mkn

(qr0, qθ0)

× 2R
±,(i)
l̂mkn

(r̂p(qr + qr0)) 2b
l1
l̂mkn

m
sA

l2
l1

j
mBll2Ylm(θ̂p(qθ + qθ0), 0)eim∆ϕ(qr+qr0,qθ+qθ0)e−im∆ϕ(qr0,qθ0)

× e−iωmkn∆t(qr+qr0,qθ+qθ0)eiωmkn∆t(qr0,qθ0)e−ikqθe−inqr + c.c., (5.171)

where the functions and coefficients are defined in Ref. [224] and c.c. denotes complex conjugation of the

previous terms. As van de Meent and Shah demonstrated in Ref. [225], the asymptotic amplitudes of

the outgoing radiation gauge Hertz potential Ψ±
l̂mkn

(qr0, qθ0) are proportional to the Teukolsky amplitudes

(normalization coefficients) for a gravitational source, C±
−2l̂mkn

(qr0, qθ0) (what they call Z±lmkn). Because the

gravitational Teukolsky amplitudes for generic initial conditions are also related to the amplitudes for fiducial

sources according to Eq. (5.152) [101], the ∆t(qr0, qθ0) and ∆ϕ(qr0, qθ0) terms cancel, and the gravitational

self-force in outgoing radiation gauge can be expressed in terms of the fiducial gravitational self-force by

Fµ,l±Rad (qr, qθ; qr0, qθ0) = F̂µ,l±Rad (qr + qr0, qθ + qθ0). (5.172)

In practice, choosing different initial conditions is equivalent to choosing a new starting point for the

geodesic flow of Fα(λ) on T 2
rθ, as shown in Fig. 2.4. While this result seems almost trivial for the non-

resonant case, it is useful for improving the efficiency of SSF calculations for resonant orbits, as I will discuss

in Chapter 8.

5.3.5: Regularization with numerical fitting

While the sum in Eq. (5.54) gives a finite result, the higher-order terms drop off at a rate of l−2. When

the sum is approximated by being truncated at l = lmax, there is a residual error that scales as l−1
max. For

computational cost reasons, it is typically beneficial to truncate the SSF calculation at lmax ∼ 20, which

means that relying only upon the regularization parameters Aα± and Bα will determine Fα to just one or

two digits of accuracy.

Including the higher-order parameters Dα,2n can improve the rate of convergence of the partial sums of

Eq. (5.41), which are now written as

Fα =

lmax∑
l=0

(
F alg,l
α± −

nmax∑
n=1

Dα,2n∏n
k=1(2l + 1− 2k)(2l + 1 + 2k)

)
. (5.173)

Here there is a two-fold truncation, with lmax determining the number of modes we calculate in the re-

tarded field, Φ, and nmax setting the limit in the number of available higher-order regularization parameters.

130



Eq. (5.173) converges at a rate of l−2(nmax+1) and therefore the SSF has an error that scales as l−2nmax−1
max .

Unfortunately, only Aα± and Bα are known analytically for generic orbits in Kerr [39] (although, terms up

to nmax = 2 are known for equatorial orbits in Kerr [122]).

I overcome the lack of analytically known higher-order regularization parameters by fitting [81] the high-l

contributions to the SSF to the assumed form in (5.52), similar to the methods discussed in Sec. IVC of

Ref. [236]. At high l, the self-force contributions are primarily determined by the missing regularization

parameters

F alg,l
α± '

N∑
n=1

Dα,2n∏n
k=1(2l + 1− 2k)(2l + 1 + 2k)

. (5.174)

The number of regularization parameters N that can be determined is limited by the precision of F alg,l
α±

and lmax. I take the last n̄ self-force l-mode contributions, F alg,l
α± , and fit these values to N regularization

parameters by applying a least-squares algorithm to Eq. (5.174). The value of n̄ is varied and a weighted

average is taken as described in Ref. [236]. I also vary N and use the standard deviation of the results

to estimate the error produced by this fitting scheme. However, I do not use Eq. (47) in Ref. [236], but

instead reapply the fitted regularization parameters using Eq. (5.173) to improve the convergence of my

SSF results. The estimated errors are also propagated to determine the accuracy of the SSF results. Errors

due to fitting typically dominate over the error from terminating the l-mode summation. The validity of

these fits and their errors is further discussed in Sec. 6.2, where I compare fitted conservative self-force data

(for an inclined Schwarzschild orbit) to conservative self-force data that has been regularized with known

higher-order parameters (for an equatorial Schwarzschild orbit).
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CHAPTER 6: Scalar self-force for non-resonant motion in Kerr spacetime

Section 6.1: Chapter overview

In this chapter I present numerical results for the SSF, F̂α, experienced by a scalar charge q following

fiducial non-resonant geodesics in Kerr spacetime. These results are broken down into three categories:

(a) eccentric, inclined orbits in Schwarzschild spacetime;

(b) spherical, inclined orbits in Kerr spacetime; and

(c) non-resonant, eccentric, inclined (generic) orbits in Kerr spacetime.

The Schwarzschild results provide a diagnostic test for my SSF code and verify the accuracy of the numerical

fitting procedure described in Sec. 5.3.5. The spherical orbits in Kerr spacetime provide another check and

are compared to previously published spherical, inclined Kerr SSF results [234]. The generic non-resonant

Kerr SSF results are novel calculations performed with the numerical algorithms discussed in the previous

chapter (Chapter 5) and are key results of this dissertation. These generic SSF results were first developed

and reported in collaboration with Osburn and Evans in Ref. [172]. Because we compare our SSF data to

previously published results by Warburton and Barack [236, 237, 234], we will follow some of their notation

and conventions in this chapter. The inclination of orbits will be specified in terms of ι, while the SSF will

be parameterized in terms of either the radial motion of the source or the Darwin phase variables ψ and χ.

These parameterizations were discussed earlier in Chapter 2. In a slight abuse of notation, in this chapter we

will refer to the SSF as F̂α, regardless of its parameterization, to emphasize that all of the orbits considered

here have fiducial initial conditions. Additionally, to simplify notation, we set M = 1 for the remainder of

this chapter.

Section 6.2: Eccentric, inclined orbits in Schwarzschild spacetime

We first examine eccentric, inclined orbits in the Schwarzschild limit (a = 0). These models serve as

a strong validation of the SSF code, since all elements of the field and self-force calculation are required,

yet they can be compared to much simpler-to-compute eccentric, equatorial models (i.e., ones with vastly

fewer computed modes). The one-to-one correspondence results from spherical-symmetry of Schwarzschild
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Figure 6.1: Components of the scalar self-force for an inclined eccentric orbit in Schwarzschild spacetime. The
orbital parameters are given by (a, p, e, ι) = (0, 10, 0.5, π/5). The red (dashed) lines refer to the dissipative
pieces of the self-force components, while the blue (dot-dashed) lines refer to the conservative pieces. The
black (solid) lines represent the total values for each self-force component. F̂t F̂r, F̂ϕ share the same
periodicity as the particle’s radial motion. Therefore, plotted as functions of r, these components form
closed self-force “loops.” However F̂θ does not close on itself in this eccentric, inclined case, because F̂θ
also depends on the longitudinal position of the particle θ̂p, which librates at a different frequency from the
particle’s radial position r̂p (Ωr 6= Ωθ).

spacetime, where two geodesics with the same eccentricities but different inclinations are related merely by

a rotation.

In spherically-symmetric spacetimes, the self-force for an eccentric inclined orbit Fα can be compared to

the force F rot
α that is obtained through rotational transformation of the equatorial plane self-force F eq

α . The

transformation is

F rot
t = F eq

t , F rot
θ = ±F eq

ϕ

√
1− cos ι csc2 θp, (6.1)

F rot
r = F eq

r , F rot
ϕ = F eq

ϕ cos ι, (6.2)

where ± depends on the sign of uθ (+ when uθ > 0).1

The four SSF components for an orbit characterized by (a, p, e, ι) = (0, 10, 0.5, π/5) are plotted in Fig. 6.1.

1Note that I do not use the hat notation here, because these relations also hold for non-fiducial SSF results.
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Figure 6.2: Comparison of the scalar self-force calculated from an inclined orbit and a rotated equatorial
orbit in Schwarzschild spacetime with M = 1 and a = 0. The equatorial orbit is described by the orbital
parameters (a, p, e, ι) = (0, 10, 0.5, 0), while the inclined orbit is described by (a, p, e, ι) = (0, 10, 0.5, π/5).
Red (solid) lines refer to the absolute residuals between the self-force calculated by rotating the results from
an equatorial orbit F̂ rot

α and the scalar self-force directly calculated from the inclined orbit F̂ inc
α . The black

(dot-dashed) and blue (dotted) lines refer, respectively, to the errors from calculating the self-force along
an inclined orbit and an equatorial orbit. The error for both the rotated equatorial orbit σrot

α and the error
for the inclined orbit σinc

α are based on the estimated error from fitting the conservative component of the
self-force, as outlined in Sec. 5.3.5.

For equatorial orbits, the self-force is a periodic function of ψ. This periodicity continues to be seen in Fig. 6.1

for the F̂t, F̂r, and F̂ϕ components in the inclined model as these self-force components “loop” back onto

themselves as the particle librates from rmin to rmax and then back to rmin. This periodicity is evident in

examining F̂ rot
t , F̂ rot

r , and F̂ rot
ϕ in Eqs. (6.1) and (6.2).

The behavior of F̂θ is different. When the orbit is rotated out of the equatorial plane, the F̂ eq
ϕ contri-

bution is split between the rotated self-force components F̂ rot
ϕ and F̂ rot

θ . While F̂ rot
ϕ differs from F̂ eq

ϕ by

a trigonometric factor; the projection of F̂ eq
ϕ onto the new inclined basis depends on the polar position of

the particle. This causes F̂ rot
θ to also depend upon θp (see Eq. (6.1)). The small body librates at different

frequencies in r and θ, which demonstrates why the inclined force component F̂θ does not form a closed loop

when plotted versus r.

These inclined SSF results can be compared in quantitative detail, again via Eqs. (6.1) and (6.2), to

results computed from an equivalent equatorial orbit (a, p, e, ι) = (0, 10, 0.5, 0). We refer to the self-force
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calculated directly using an inclined orbit as F̂ inc
α (previously we referred to the inclined SSF results more

generally as F̂α), while the force computed by rotating the equatorial-orbit self-force remains being denoted

by F̂ rot
α . The absolute residuals from comparing these orbits are plotted in Fig. 6.2. We also plot the

estimated numerical errors σinc
α and σrot

α for both self-force calculations. The primary source of error comes

from fitting the conservative component of the self-force. In Fig. 6.2 the residual errors between the two

calculations consistently fall below the errors that are estimated by the fitting procedure. This provides

additional confidence in the validity of our error estimation, which is outlined in Sec. 5.3.5, and makes a

strong case for having summed over all the required modes and correctly computed the regularization in the

inclined model.

Additionally, we compare specific numerical values of F̂ inc
α to previously and independently computed

equatorial results published in Ref. [237], by again using Eqs. (6.1) and (6.2) to transform the equatorial

plane SSF. We compare both the conservative and dissipative parts of the self-force in Table 6.1. The

fractional errors between the independently computed conservative parts typically fall below the estimated

errors in the conservative parts themselves that owe to the high-l fitting procedure. The dissipative part of

the inclined SSF typically agrees with the transformed dissipative part from Ref. [237] to 6 or more decimal

places.

Conservative Dissipative

ψ = 0 ψ = π
2 ψ = 0 ψ = π

2

F̂t × 104
This paper 0 0.568 263 3(2) 1.551 695 9 0.657 753 715 363

Rotated [237] 0 0.568 25(3) 1.551 696 2 0.657 754 26

F̂r × 104
This paper 1.446 26(5) −0.030 666 1(7) 0 0.176 664 399 73

Rotated [237] 1.446(2) −0.030 671 7(7) 0 0.176 664 37

F̂θ × 104
This paper 0 −1.912 00(1) 0 −3.726 015 695

Rotated [237] 0 −1.9119(2) 0 −3.726 015 6

F̂ϕ × 103
This paper 0 −0.539 248 9(1) −3.377 102 3 −1.050 859 941 917

Rotated [237] 0 −0.539 23(6) −3.377 101 9 −1.050 859 9

Table 6.1: A comparison between the scalar self-force (SSF) data produced by our code for an eccentric,
inclined orbit (a, p, e, ι) = (0, 10, 0.5, π/5) and equatorial SSF results from Ref. [237]. We rotate the results
of Ref. [237] using Eqs. (6.1) and (6.2) to directly compare with our inclined values. Conservative values
include error estimates due to fitting the large-l contribution as discussed in Sec. 5.3.5. Note that our fitting
procedure, outlined in Sec. 5.3.5, is partially motivated by but not equivalent to the fitting procedure in
Ref. [237]. Numbers in parentheses describe the estimated error in the last reported digit, i.e. 1.44626(5) =
1.446(2)± 0.002. Dissipative values are truncated based on the value of the last computed self-force l-mode
lmax.
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Section 6.3: Spherical, inclined orbits in Kerr spacetime

We next examine inclined orbits in the Kerr background by calculating the SSF along spherical, inclined

orbits. (In Kerr spacetime, spherical orbits are inclined orbits that maintain a fixed Boyer-Lindquist distance

from the black hole, but are not ‘circular’ because precession makes these orbits non-planar.) Similar to other

restricted orbits, spherical, inclined orbits are bi-periodic in their frequency spectrum, ωmk0 = mΩϕ + kΩθ,

rather than tri-periodic like eccentric, inclined orbits. Additionally, while the number of summed radial-

frequency modes in Eq. (5.39) rapidly grows with increasing eccentricities, the number of summed polar-

frequency modes is not as dramatically affected by increasing the inclination. Furthermore, the radial mode

functions only need to be evaluated at a single radial point for spherical orbits. This is beneficial, because

calculating the radial mode functions is one of the primary computational bottlenecks of my code. Altogether

these factors significantly reduce computational costs, allowing us to compute the SSF along spherical orbits

at large inclinations with high precision.

These orbits serve as a code test, since the SSF along spherical orbits was previously investigated by

ψ ψ = 0 ψ = π/3 ψ = π/2

F̂ cons
t × 104

This paper 0 1.077 533(4) 0

[234] 0 1.077 40(5) 0

F̂ diss
t × 103

This paper 1.683 771 018 273 96 1.623 585 013 78 1.668 641 421 01

[234] 1.683 771 1.623 585 1.668 641 4

F̂ cons
r × 104

This paper 4.050 372 7(9) −3.901 868(4) −7.719 77(2)

[234] 4.050 36(4) −3.901 90(8) −7.720 01(4)

F̂ diss
r × 104

This paper 0 −1.280 407 14 0

[234] 0 −1.280 407 1 0

F̂ cons
θ × 103

This paper 3.552 535 1(2) 2.254 85(3) 0

[234] 3.552 43(9) 2.254 95(4) 0

F̂ diss
θ × 102

This paper 0 −1.185 212 479 −1.146 202 895 87

[234] 0 −1.185 212 5 −1.146 202 9

F̂ cons
ϕ × 104

This paper 0 −2.979 84(2) 0

[234] 0 −2.9793(5) 0

F̂ diss
ϕ × 103

This paper −4.960 869 925 391 37 −7.246 295 971 2 −8.304 515 578 0

[234] −4.960 869 9 −7.246 296 0 −8.304 515 6

Table 6.2: A comparison between the scalar self-force data produced by our code for a spherical, inclined
orbit (a, p, e,Lz) = (0.998, 4, 0, 1) and the SSF results for the same orbit reported in Tables II and III of
Ref. [234]. Conservative values include error estimates due to fitting the large-l contribution as discussed in
Sec. 5.3.5. Numbers in parentheses describe the estimated error in the last reported digit, i.e. −2.9793(5) =
−2.9793 ± 0.0005. Dissipative values are truncated based on the value of the last computed dissipative
self-force l-mode lmax.

136



model p e ι a

base 10 0.1 π/5 0.5

large e 10 0.3 π/5 0.5

large ι 10 0.1 π/3 0.5

large a 10 0.1 π/5 0.9

Table 6.3: Orbital parameters for generic orbits presented in Fig. 6.4.

Warburton [234]. We reproduced the results from Ref. [234] for the orbit with parameters (a, p, e,Lz) =

(0.998, 4, 0, 1). To match the conventions of Ref. [234], the orbit is parameterized by the z-component

of angular momentum, Lz, instead of the inclination ι. The self-force data produced by my code are in

good agreement with those of Ref. [234]. The conservative components agree to ∼ 4 digits and dissipative

components to 7 or more digits. Comparative SSF values are provided in Table 6.2.

Section 6.4: Eccentric, inclined orbits in Kerr spacetime

The truly unique capability of my code is its ability to model the SSF on generic (bound) eccentric,

inclined orbits. We investigate the SSF on four different orbits of this type, with their characteristic param-

eters specified in Table 6.3. We refer to these orbits by their reference names: ‘base’, ‘large e’, ‘large ι’, and

‘large a.’ We use the orbit (a, p, e, ι) = (0.5, 10, 0.1, π/5) as a reference case and then vary either the orbital

eccentricity, the orbital inclination, or the black hole spin to get a sense of how the self-force depends on

these orbital and spin parameters. This also provides tests of my code’s ability to probe more challenging

regions of parameter space.

The ‘large e’ orbit is also used in Fig. 6.3 to demonstrate improved convergence of the mode-sum through

incorporating additional numerically-extracted regularization parameters. In Fig. 6.3, we plot the l-mode

contributions to the polar component of the SSF, F̂ lθ, at the point (ψ = π/8, χ = 3π/4). The (black) squares

represent the value of the retarded SSF contributions, F̂ ret,l
θ , prior to applying mode-sum regularization. The

dashed (black) line demonstrates the asymptotic 1/l0 behavior of the retarded l-mode contributions at large

l. It is clear that summing over these unregularized l-modes leads to a divergent result. Subtracting the

analytically-known regularization parameter Bθ produces the (red) triangles in Fig. 6.3, which fall-off as 1/l2

at large l, as demonstrated by the dotted (red) line. (Note that Aθ = 0.) We then fit for the higher-order

regularization parameters, Dθ,n, using the numerical fitting procedures described in Sec. 5.3.5. Successively

subtracting our numerically-obtained values for Dθ,2, Dθ,4, and Dθ,6 leads to the (blue) diamonds, the

(purple) circles, and the (orange) inverted triangles, respectively. The residual l-modes fall-off at increasing
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Figure 6.3: Convergence of the scalar self-force l-modes for an eccentric, inclined orbit in Kerr spacetime.
Orbital parameters are taken to be (a, p, e, ι) = (0.5, 10, 0.3, π/5). The dashed and dotted lines depict the
increasing rate of convergence for F̂θ(ψ = π/8, χ = 3π/4) as additional regularization parameters are in-
corporated. The (black) squares represent individual l-modes of the SSF prior to regularization, which
diverge as expected. The (red) triangles show the effect of subtracting the known analytic regularization
parameters Aθ and Bθ. The (blue) diamonds include the next regularization parameter Dθ,2, estimated
numerically (Sec. 5.3.5). The (purple) circles and the (orange) inverted triangles represent including addi-
tional numerically-fitted regularization parameters. Mode-sum convergence improves through inclusion of
successively more regularization parameters.

rates of 1/l2n+2, just as expected, validating our numerical fits of the higher-order regularization parameters.

While in restricted cases the self-force can be periodic, for generic orbits the self-force is instead bi-

periodic. (Even though inclined, eccentric orbits are tri-periodic due to the radial, polar, and azimuthal

motion of the particle, the SSF only depends on the radial and polar motion due to the rotational invariance

of Kerr spacetime. Therefore, the SSF is only bi-periodic.) As such, it is less practical to plot the self-force

as a function of time or radial position as in Fig. 6.1. Instead, one can map the self-force as contour levels on

the torus spanned by the coordinates ψ and χ, similar to the use of the torus in the discussion surrounding

Figs. 2.4, 2.5, and 2.6 of Sec. 2.6. The ergodic nature of the particle’s motion implies that the SSF is a

smooth continuous field over ψ and χ, with any given point eventually sampled by the motion (see also

Ref. [223]). This representation of the SSF for the generic (non-resonant) orbits listed in Table 6.3 is shown

in Fig. 6.4. (In these plots I use ψ and χ as coordinates rather than qr and qθ.)

For the orbits presented in Fig. 6.4, the largest variations in the SSF occur in the radial direction,

with the exception of the F̂θ component. Consequently, despite the low eccentricities considered, F̂t, F̂r,

and F̂ϕ are most dependent on ψ, i.e., the radial motion of the small body. Additionally, the maxima

and minima of each self-force component are shifted away from the turning points of the particle’s motion

(ψ = 0, π, 2π;χ = 0, π, 2π) and the particle’s passage through the equatorial plane (χ = π/2, 3π/2), as a

result of conservative effects. These shifts are most easily recognized in F̂r.
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Figure 6.4: The scalar self-force components, F̂α(ψ, χ), for the four orbits listed in Table 6.3 is depicted
through sampling on the torus. Each row of plots directly corresponds to the orbit in the same row of Table
6.3. (The first, second, third, and fourth rows correspond to the orbits ‘base,’ ‘large e,’ ‘large ι,’ and ‘large
a’ respectively.) The vertical axis is correlated with the θ-dependence of the self-force components, while
the horizontal axis is related to the r-dependence. Colors correspond to different values of the self-force,
with the values denoted in the colorbar to the right side of each plot. The self-force is constant along each
contour line. The tic labels in each colorbar correspond to the values of the contour lines. Therefore, in the
top left plot, F̂t = 5× 10−5 along the leftmost contour line.

Taking the ‘base’ orbit for comparison, one can also examine how the self-force changes as the orbital

parameters e and ι or the spin parameter a are varied. With the ‘high e’ orbit, the eccentricity is increased

from e = 0.1 to e = 0.3. The radial dependence of the self-force becomes further accentuated due to the

orbit’s increased eccentricity. Additionally, the maximum magnitude of the SSF increases in every self-force

component, most likely due to the particle’s smaller pericentric distance at the higher eccentricity.

For the ‘high ι’ orbit, the inclination is increased from ι = π/5 to ι = π/3. The dependence of the
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SSF on the particle’s polar (χ) motion becomes more pronounced, as the particle sweeps out a larger region

above and below the equatorial plane. Additionally, the radial component of the SSF shifts to become

predominantly positive. A similar behavior is seen for inclined, spherical orbits, where the average value

of Fr grows monotonically with inclination, as it ranges from ι = 0 to ι = π [234]. (Retrograde orbits are

parameterized with a < 0 in our code.)

For the ‘high a’ orbit, the black hole spin parameter is increased from a = 0.5 to a = 0.9. One can observe

a stronger dependence of the scalar self-force on the polar position of the particle when a is increased. Also,

the radial component of the SSF becomes attractive (F̂r < 0) along the entire orbit in this case. This is

consistent with previous work on circular, equatorial orbits, where F̂r decreases with increasing spin a [236].

Section 6.5: Scalar flux balance

As a final self-consistency check, we analyze the balance between the asymptotic fluxes with the local

dissipative self-force effects [162, 164, 163, 202, 237]. As discussed in Sec. 5.2.7, the average work done on

the particle by the SSF should be balanced by the rate of radiative energy loss. Likewise there should be a

balance between the local torque on the particle due to the SSF and the angular momentum radiated away

by the scalar field.

As described earlier in Sec. 5.2.7, the asymptotic energy and angular momentum fluxes can be calculated

by analyzing the scalar field at r ' ∞ and r ' r+

〈Ė〉tot =
q2

4π

∑
l̂mkn

ωmkn

(
γmkn|C−l̂mkn|

2 + ωmkn|C+

l̂mkn
|2
)
, (6.3)

〈L̇z〉tot =
q2

4π

∑
l̂mkn

m
(
γmkn|C−l̂mkn|

2 + ωmkn|C+

l̂mkn
|2
)
, (6.4)

Recall that γmkn ≡ ωmkn −ma/2Mr+. The flux balance formulae then take the form

〈Ė〉tot = −W, (6.5)

〈L̇z〉tot = −T . (6.6)

The fluxes and self-force are calculated independently from one another. Consequently, comparing SSF

results with flux calculations provides a self-consistency check for my code. Flux balance comparisons are

included in Table 6.4. One can see that they are in good agreement with fractional errors . 10−10.
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p e ι a 〈Ė〉tot × q−2 |1 + 〈Ė〉tot/W| 〈L̇z〉tot × q−2 |1 + 〈L̇z〉tot/T |

10 0.5 π/5 0 3.329 332 97× 10−5 1× 10−11 6.346 485 50× 10−4 3× 10−10

10 0.5 0 0 3.329 332 97× 10−5 3× 10−11 7.844 687 49× 10−4 2× 10−11

10 0.3 π/5 0.5 2.961 026 3× 10−5 9× 10−14 6.984 021 2× 10−4 4× 10−14

10 0.1 π/3 0.5 2.994 475 370× 10−5 0× 10−11 4.938 962 06× 10−4 0× 10−12

10 0.1 π/5 0.9 2.745 901 231× 10−5 7× 10−12 7.281 232 718× 10−4 0× 10−11

10 0.1 π/5 0.5 2.917 529 922× 10−5 5× 10−14 7.567 560 34× 10−4 6× 10−15

8 0.8 0 0.99 3.1363× 10−5 7× 10−8 4.2122× 10−4 7× 10−9

4 0 1.22 0.998 9.642 339 9× 10−4 7× 10−10 3.787 652 4× 10−3 8× 10−10

Table 6.4: Energy and angular momentum fluxes for various orbits, along with their comparisons to the local
work and torque done by the SSF on the particle. The plus signs in columns six and eight are due to the
negative signs in Eqs. (6.5) and (6.6). Flux expressions are truncated two digits prior to the order of the last
calculated SSF l-mode, lmax. If the energy flux for lmax is on the order of 10−14, then the flux is reported
to an accuracy of 10−12. The fluxes typically agree with the local work and angular momentum beyond the
level of reported accuracy (the relative errors are greater than the reported accuracy of the results). Note
that the inclination for the last orbit is irrational and only reported with three significant digits. In this case
the inclination value corresponds to an angular momentum value of Lz = 1.

Section 6.6: Significance of results

In this chapter, we presented the first SSF results for (non-resonant) eccentric, inclined orbits in Kerr

spacetime. These results extend previous work by Warburton and Barack [236, 237, 234], in which they

calculated the SSF along equatorial and spherical orbits in Kerr spacetime with their own frequency-domain

code. Our SSF results are also complementary to recent gravitational self-force calculations performed by

van de Meent [224] along eccentric, inclined orbits in Kerr, though his results are limited to orbits with

eccentricities of e = 0.1 due to the computational rigor of the gravitational self-force problem. My code,

on the other hand, can more rapidly evaluate higher-eccentricity orbits, as demonstrated in Sec. 6.4. These

SSF results, therefore, validate the efficacy of my SSF code and provide an important stepping stone for

surveying unexplored regions of the physical EMRI parameter space. In the following chapters, I use my SSF

code to explore two particularly interesting phenomena: the presence of high-frequency oscillations in the

waveforms of highly-eccentric EMRIs, known as quasinormal bursts, and the impact of eccentric, inclined

rθ-resonant orbits on the self-force and the ensuing evolution of the energy, angular momentum, and the

Carter constant that characterize the small body’s motion.
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CHAPTER 7: Quasinormal bursts

Section 7.1: Chapter overview

An advantage of my SSF code is that it can more rapidly explore interesting areas of physical parameter

space that are less accessible to current Kerr gravitational self-force codes. This capability led to a primary

physical result of this dissertation: the discovery of faint periodic signals in the EMRI waveform, which

we term quasinormal bursts. This discovery was precipitated by the work of Thornburg and Wardell [214],

who first found the existence of quasinormal mode excitation in the self-force itself for time-domain SSF

simulations of highly-eccentric Kerr orbits. That finding was discussed in a series of talks [212, 213, 215]

by Thornburg and reported in a paper by Thornburg and Wardell [214]. Oscillations were observed in the

self-force during the outbound portion of certain highly-eccentric orbits following periastron passage near

a rapidly-rotating black hole. These oscillations were confirmed to fit the least-damped overtone of the

l̂ = m = 1 quasinormal mode. I confirmed this phenomenon with my frequency-domain SSF calculations of

a similar highly-eccentric (e = 0.8) equatorial orbit about a rapidly-rotating (a/M = 0.99) primary.

More interestingly, my collaborators1 and I decided to take a look at the waveform in this same model

to see if the excitation is imprinted in an asymptotically-accessible signal. Confirming our expectation, it is

indeed possible to discern repeated (albeit faint) quasinormal bursts (QNBs) in the waveform following each

periastron passage. This work was originally published in Ref. [172]. Since its publication, the presence of

QNBs has also been confirmed by gravitational self-force codes [216] and motivated follow-on research [197]

to better understand their behavior, particularly for near-extremal black hole spins a/M ≥ 0.999.

In the following sections, I give a brief review of Kerr black hole quasinormal modes and present frequency-

domain SSF results that match the quasinormal ringing observed by the time-domain SSF calculations of

Thornburg and Wardell [214]. I then present evidence for the presence of periodic quasinormal ringing in the

EMRI (scalar) waveform, showing that these QNBs are in fact a superposition of (at least) four least-damped

quasinormal modes, with l̂ = m = 1 through l̂ = m = 4. I conclude with some comments on the detectability

and observational implications of QNBs. I refer the reader to Ref. [49] for a detailed review of black hole

quasinormal modes.

1This work was also done in collaboration with Osburn and Evans [172].
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Section 7.2: Quasinormal modes of black holes

Quasinormal modes (QNMs) are the natural frequency modes of black holes. Unlike normal modes,

QNMs are represented by complex frequencies and therefore decay with time. For black hole spacetimes,

this decay arises due to the emission of gravitational waves [49]. Quasinormal modes also appear to be

deeply tied to the “no-hair theorem” of black holes [65, 168, 49]. The “no-hair theorem” proposes that

axisymmetric, stationary, vacuum spacetimes are characterized by just two observable quantities: the mass

M of the black hole and the angular momentum J of the black hole (or its spin a = J/M) [65]. (A third

parameter, the charge Q of a black hole, is less astrophysically significant.) In other words, the Kerr metric

is the metric that describes isolated, rotating black holes in general relativity. Perturbations to a Kerr black

hole (or “hair” added to the black hole), therefore, correspond to quasinormal excitations that dissipate to

the surrounding spacetime as the the black hole “rings down” back to its stationary (Kerr) state. Moreover,

the frequencies of the quasinormal modes are dictated only by the properties of the black hole and the

particular angular harmonic numbers of the perturbation.

The quasinormal ringing of black holes was originally investigated by Vishveshwara [230] by ‘pinging’

Schwarzschild black holes with Gaussian wave packets through numerical simulations. Today this ringing

appears as a characteristic feature of the gravitational wave signals produced by stellar-mass compact-object

binaries (and seen by LIGO and Virgo) due to the quasinormal ringdown of the merged system as it settles

into a newly-formed, single black hole. Because the QNM frequencies only depend on a black hole’s mass

and angular momentum, identifying this quasinormal ringing in gravitational waveforms is an important tool

for parameter estimation.

Black hole QNMs are defined by the eigenfrequencies ωQNM of a field Ψs that perturbs the black hole.

These eigenfrequencies satisfy the boundary conditions of downgoing waves at the horizon and outgoing

waves at infinity [49],

Ψs(r∗ → −∞) ∼ e−iωQNM(t+r∗), Ψs(r∗ →∞) ∼ e−iωQNM(t−r∗), (7.1)

where ωQNM will be complex. Here s is the spin-weight of the field that excites the black hole’s QNMs.

For Kerr black holes, Ψs is governed by the Teukolsky equation, as described in Secs. 4.4.3 and 4.4.4.

Alternatively, QNM frequencies are given by the poles of the retarded Green’s function that defines the

behavior of the perturbing field [49, 67].

A black hole has an infinite QNM spectrum. Furthermore, for Kerr black holes, the QNM spectrum

exhibits Zeeman-like splitting that arises from the breaking of spherical symmetry by the black hole’s rotation
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[49]. The QNM spectrum of a Kerr black hole is labeled by three principal mode numbers: the overtone

p, the spheroidal harmonic index l̂, and the azimuthal index m, i.e., ωQNM = ωpl̂m. The l̂ and m mode

numbers refer to the angular dependence of the perturbation. (In Kerr spacetime, the QNM frequencies are

intimately tied to the spheroidal harmonics and their angular eigenvalues [148, 49].) For a given l̂ and m,

the p = 0 (or fundamental) frequency (i.e, ω0l̂m) is always found to be the least damped QNM frequency and

typically the easiest to excite and observe, while the higher overtones (p > 0) are subdominant. However,

for near-extremal Kerr black holes (M − a � M), several excited overtones can “stack together” to create

unique frequency responses [197]. Another unique feature of Kerr QNMs is that their decay rates (imaginary

components of the QNM frequencies) are tied to the normalized spin of the black hole a/M . As the spin

increases, the decay rate decreases. Thus perturbations for more rapidly-spinning black holes will dissipate

more slowly. This leads to “zero-damping modes” (purely real QNM frequencies) in the extremal limit

[246, 248].

Section 7.3: Scalar self-force for highly-eccentric orbits around rapidly-rotating black holes

Thornburg and Wardell [212, 213, 215, 214] were the first to demonstrate that for highly-eccentric orbits

(e & 0.7) about rapidly-rotating black holes (a/M & 0.8) interesting “wiggles” arise in the SSF. They further

showed that these high-frequency oscillations were attributable to the excitation of a QNM, the least-damped

l̂ = m = 1 mode, produced by periastron passage of the scalar-charged small body. Thornburg and Wardell

observed these excitations for a number of orbital configurations. The most pronounced excitations were

present in orbits with e ≥ 0.9, though weak oscillations arise for the orbit (a/M, p, e, xinc) = (0.8, 8, 0.8, 1)

(see Fig. 16 in Ref. [214]).

Thornburg and Wardell utilize a time-domain code, which can be well-suited for computing highly-

eccentric orbits. However, time-domain codes involve solving partial differential equations and have potential

numerical issues with initial-value transients, boundary conditions, and source modeling. Our code works in

the frequency domain, where the numerical problem involves solving ordinary differential equations for large

numbers of Fourier-harmonic modes. In general it is easier to attain higher accuracy with a frequency-domain

code. However, a countering factor is that the required number of modes and computational demand in a

frequency-domain code grows rapidly at high eccentricities. Accordingly, we have so far restricted ourselves

to orbits with e ≤ 0.8. On the positive side, a frequency-domain code only captures periodic behavior and is

not subject to initial-value transients. Given the many differences between the two approaches, a comparison

between results seemed desirable.

Having said that, we have not made an exact comparison. We have so far not tried to make a very time-
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Figure 7.1: The three non-zero components of the scalar self-force for a particle orbiting in a Kerr background
with orbital parameters (a/M, p, e, xinc) = (0.99, 8, 0.8, 1). The red (dashed) lines refer to the dissipative
pieces of the self-force components, while the blue (dot-dashed) lines refer to the conservative pieces. The
black (solid) lines represent the total values for each respective self-force component.

145



consuming calculation with e = 0.9 to duplicate one of the results in Ref. [214]. At the same time, rather

than replicating the e = 0.8 results of Thornburg and Wardell, with a/M = 0.8, we decided to calculate

the SSF and fluxes for the same orbital parameters but with a higher black hole spin: (a/M, p, e, xinc) =

(0.99, 8, 0.8, 1). The expectation was that we might see more pronounced ringing in the e = 0.8 orbit if the

QNM damping is lessened with a higher a/M .

We also chose to model an orbit in the equatorial plane, which substantially offsets the computational

cost of high-eccentricity orbits by restricting the mode spectrum ωm0n = mΩϕ + nΩr to be bi-periodic and

not tri-periodic. Additionally, higher-order regularization parameters are known for equatorial orbits [122]

and we were able to circumvent the fitting schemes discussed in Sec. 5.3.5 in this case, improving convergence

and reducing the estimated error.

Our frequency-domain SSF results for this model are plotted in Fig. 7.1. The closed loops in the force

components are split out into conservative part, dissipative part, and total. We see the same oscillatory

features in our self-force results as Thornburg and Wardell found, with the oscillations most prominent in

the t and r self-force components. After the point charge’s periastron approach (r ' 4.4M), the ringing in

the scalar field sweeps past the small body driving oscillations in the self-force, with the oscillations then

decaying as the system approaches apastron. As expected, by increasing the black hole spin, we observe

a more persistent ringing compared to that seen in the Thornburg and Wardell e = 0.8 model. Note that

in the plots the SSF is weighted by the cube of the radial position of the particle. This compensates for

the leading 1/r3 behavior of the SSF, accentuating the presence of QNM excitations even as the charge

approaches apastron.

Section 7.4: Quasinormal bursts in the waveforms of extreme-mass-ratio inspirals

As we mentioned at the beginning of the chapter, we decided to look at the waveform in this model to

see if the excitations were present in the asymptotic field. The left panel of Fig. 7.2 shows the asymptotic

waveform over a period of two radial librations at several observer angles. The waveform appears devoid of

ringing for all three observer angles: (θobs, ϕobs) = (π/2, 0), (θobs, ϕobs) = (π/4, 0), and (θobs, ϕobs) = (0, 0).

However, by high-pass filtering or otherwise enhancing high frequencies in the signal, we can make the low-

level QNBs evident. One particular way of enhancing high frequencies is shown in the right panel of Fig. 7.2

where the log (base 10) of the absolute value of the second time derivative of the waveform measured by

the observer at (θobs, ϕobs) = (π/2, 0) is plotted. (Computing the second derivative is reminiscent of some

numerical relativity codes where, to extract gravitational radiation, ψ4 is first obtained, from which the

waveforms are derived by integrating twice or by Fourier processing, as given by Eq. (4.121).) Now the
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Figure 7.2: The left panel depicts the asymptotic waveform rΦ/q visible to observers at several polar angles:
θobs = π/2 (blue solid line), θobs = π/4 (red dashed line), θobs = 0 (black dot dashed line). The plot
window covers two radial librations. Computed from an eccentric equatorial orbit (with associated apsidal
advance), the waveform is bi-periodic. Sharp transitions roughly correspond to the retarded time of successive
periastron passages. The right panel plots the log (base 10) of the absolute value of the second time derivative
of the waveform in Fig. 7.2 (for the observer at θobs = π/2). The second time derivative enhances higher
frequencies, making the faint QNBs visible in the aftermath of each periastron passage.

QNBs are revealed, superimposed on the lower frequency waveform components. Similar excitation is visible

to an observer at (θobs, ϕobs) = (π/4, 0), but the QNBs are not present for an observer at position θobs = 0

(i.e., along the polar axis). As we show below, this is consistent with the ringing being due to (prograde)

axial l̂ = m perturbations of the field in the Kerr geometry.

Rather than emphasizing high frequencies by taking time derivatives of the signal, one can instead apply

a high-pass filter to attenuate the lower frequency “background.” We construct a high-pass Butterworth

filter using Mathematica’s ButterworthFilterModel, ToDiscreteTimeModel, and RecurrenceFilter. We

choose the filter’s parameters by inspecting the power spectrum of the waveform.

After applying the high-pass filter and observing the presence of QNBs, we attempted to extract a

complex frequency ω = ω′+iω′′ for the excitation by (1) selecting a time window during which the excitation

dominates the filtered signal and (2) then performing a least-squares fit of a burst template to the filtered

data, as demonstrated in Fig. 7.3. The data was fitted to a real function of the form Ae+ω′′t sinω′(t+t0) using

Mathematica’s FindFit. Fitted complex frequencies have negative imaginary parts (ω′′ < 0), consistent

with damped bursts. The data in Fig. 7.3 was found to be best fit by the complex frequency ωfit =

0.4937− 0.0367i (in units with M = 1; henceforth assumed in this section).

We can compare this value to the spectrum of known QNM frequencies ωplm due to scalar perturbations of

Kerr spacetimes published by Berti [49]. The QNMs depend on a and are indexed by the spheroidal harmonic

mode numbers (l̂, m) and the overtone p. Assuming M = 1 but without assuming a value for a, we find that

the extracted complex frequency ωfit above most closely matches the QNM frequency ω011 = 0.4933−0.0368i
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Figure 7.3: Plot of a segment of the scalar field signal presented in Fig. 7.2 after applying a high-pass filter
(blue squares), along with a least-squares fit of the filtered signal (red line) to a model template. The high-
pass filter and fit were constructed as outlined in Sec. 7.4. The data are best fit by a decaying sinusoid with
a complex frequency of Mω = 0.4933− 0.0368i.

for a spin of a = 0.9899. In other words, by assuming that this complex frequency should be represented

by a QNM, the extracted frequency accurately recovers the spin of the primary black hole to three digits.

This result is consistent with those presented by Thornburg [212, 213, 215], who found that, across several

orbital configurations and spin parameters, the QNM frequencies in his self-force data were best fit by the

least-damped (smallest |ω′′|) l̂ = m = 1 QNMs.

Surprisingly perhaps, our frequency domain numerical results actually allow us to extract additional

QNMs. To do so, we obtain the residuals between the high-frequency signal and its fit in Fig. 7.3 and apply

the high-pass filter a second time to remove a remaining background (i.e., “flat-fielding” the signal). We fit

and obtain the complex frequency of a second damped oscillation. By iterating this process, we managed

to extract three additional QNM excitations in the filtered waveform. These are shown in Fig. 7.4. The

numerical values of the frequencies of all extracted QNMs are presented in Table 7.1 and compared to the

closest published QNMs for scalar perturbations of a Kerr spacetime with a = 0.99.

However, we can instead try to remain agnostic to the black hole spin and mode numbers and compare the

extracted frequencies to all known QNM frequencies across Berti’s densely sampled set of Kerr spacetimes.

Consulting Table 7.1, our second extracted frequency best fits a QNM in Berti’s table with frequency ω022 =

0.9269 − 0.0314i for a = 0.9897. Our third extracted frequency best fits one with ω033 = 1.3680 − 0.0304i

for a = 0.9899 and the fourth best fits Berti’s mode ω044 = 1.8084 − 0.0304i for a = 0.9897. By simply

looking for the best fit to known QNMs, we obtain multiple estimates of the black hole spin parameter.

Multiple parameter estimates all yield values for the black hole spin that are surprisingly close to a = 0.99

(with approximately three digits of agreement). If QNBs can be observed in highly-eccentric EMRIs, it
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Figure 7.4: Short window on the waveform showing successive sets of residuals (blue squares) after subtracting
successively determined modes via fitting. Also shown are the least-squares determined fits of the residual
signal data (red lines) at each stage in the subtraction. The top plot (a) depicts the residual signal from
subtracting the fit in Fig. 7.3 from the waveform and high-pass filtering a second time. The residuals in the
top panel are then fit by a damped sinusoid with Mω = 0.9277 − 0.0314i. The middle panel (b) depicts
the residuals after subtracting the first two QNMs and high-pass filtering. The result is fit by a mode with
Mω = 1.3682 − 0.0304i. The bottom panel (c) shows residuals after subtracting the first three determined
QNMs and filtering, yielding a final mode with Mω = 1.8115 − 0.0304i. We found it necessary to slightly
shift forward the time window after each fit.
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Figure p l m Extracted QNM Known QNM

Fig. 7.3 0 1 1 0.4933− 0.0368i 0.4934− 0.0367i

Fig. 7.4a 0 2 2 0.9277− 0.0314i 0.9280− 0.0311i

Fig. 7.4b 0 3 3 1.3682− 0.0304i 1.3686− 0.0302i

Fig. 7.4c 0 4 4 1.8115− 0.0304i 1.8111− 0.0300i

Table 7.1: A comparison of the QNM frequencies extracted from filtering and fitting the waveform, as
shown in Figs. 7.3 and 7.4, and the QNM frequencies calculated by Berti for scalar perturbations of Kerr
spacetime with spin parameter a/M = 0.99 [49]. The value of a is based on the spin parameter chosen for
this highly-eccentric SSF investigation.

may well be possible to get repeated snapshot determinations of the mass and spin of the primary black

hole. Furthermore, while the “orbital parts” of the EMRI waveform will evolve and move through the LISA

passband, the frequencies of the QNB component of the waveform will remain invariant, as these depend

upon the (essentially unchanging) primary mass and spin.

Section 7.5: Observational implications

By reproducing Thornburg and Wardell’s “wiggles,” we affirm that these are integral components of the

SSF. The finding of related QNBs in the scalar waveform suggests the strong likelihood that QNBs exist in the

gravitational waveforms of (some) EMRIs. A gauge invariant signal of this type, from repeatedly “tickling”

the primary black hole, might have important observational consequences in sufficiently high signal-to-noise

ratio EMRIs. These bursts are faint and might be fainter still in the gravitational case where l̂ = m = 2

will be the first mode excited. On the other hand, we have not yet conducted a thorough parameter survey

to find where the excitation is maximized. Furthermore, it is entirely possible that even faint QNBs might

be detected and measured using template matching. QNBs in EMRIs provide the exciting possibility of

measuring black hole properties by repeatedly “tickling the dragon’s tail,” as opposed to settling for the

single final excitation of quasinormal modes seen in LIGO/Virgo mergers. Finally, QNBs might reveal the

presence of EMRIs in systems with heavy M & 107M� primaries, where the usual, low-frequency parts of

the signal would be difficult to detect but the periodic, higher-frequency QNBs would lie in LISA’s area

of best sensitivity. Ultimately, the presence of QNBs in EMRI waveforms has sparked a flurry of research,

with its presence in gravitational waveforms just recently being confirmed [216]. The QNB response for near-

extremal black holes is also revealing new insights into the cumulative behavior of superimposed quasinormal

frequency overtones [197]. QNBs, therefore, are another tool for exploring the rich physical features of Kerr

black holes and EMRIs with Kerr primaries.
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CHAPTER 8: Scalar self-force for resonant motion in Kerr spacetime

Section 8.1: Chapter overview

In this chapter, I use my SSF code to explore another important class of physical phenomena in EMRIs:

transient orbital rθ-resonances. An orbital resonance occurs when two frequencies of orbital motion, ω1 and

ω2, form a rational ratio, i.e., ω2/ω1 = β2/β1 with β1, β2 ∈ Z. The smaller the relatively prime integers, β1

and β2, the stronger the resonance. In the solar system, orbital resonances occur among satellites sharing

the same primary, such as the 2:3 (β1 = 2 and β2 = 3) resonance of the solar satellites Neptune and Pluto

and the 1:2 (β1 = 1 and β2 = 2) resonance of the Galilean satellites Io and Europa. Resonances can also

occur between orbital periods and periods of rotation, like the 3:2 spin-orbit resonance of Mercury.

For an EMRI with a Kerr primary, a resonance can form between any of the three orbital frequencies,

Ωr, Ωθ, and Ωϕ. Previous authors have studied the effects of rϕ- [221] and θϕ-resonances [126]. These

resonances can lead to the anisotropic radiation of gravitational waves, resulting in resonant ‘kicks’ to the

velocity of the EMRI’s center of mass. Such effects are expected to contribute to an EMRI’s phase evolution

and waveform at O(ε) and, therefore, are presumably safe to neglect [221]. On the other hand, during rθ-

resonances, an EMRI can instead experience ‘kicks’ to the energy and angular momentum radiated away by

gravitational waves and to the evolution of the Carter constant [100, 101, 48]. Not only can these resonant

kicks significantly alter the inspiral of the EMRI, but they are particularly difficult to incorporate in certain

evolutionary models. It may also be possible for an EMRI to be caught in an rθ-resonance, which would

lead to a dramatic change in the EMRI’s dynamics. Recent analysis by van de Meent [220] suggests that the

conditions required for achieving these sustained resonances are fairly stringent (if even possible), making

it unlikely that LISA will measure an astrophysical EMRI that is trapped in a sustained resonant state.

Investigating such effects requires calculation of the gravitational self-force during resonances, which has not

yet been performed.

On the other hand, almost all EMRIs are expected to pass through at least one transient rθ-resonance,

as they evolve in the LISA passband [200]. Transient resonances, unlike sustained resonances, persist for a

resonant period Tres ∼ Mε−1/2 [100]. This leads to an O(ε−1/2) shift in the cumulative phase evolution of

the system, as expressed in Eq. (1.17). Flanagan and Hinderer [100] provided the first evidence of resonant

kicks to an EMRI’s orbital evolution using weak-field post-Newtonian approximations of the gravitational
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self-force. Berry, Cole, Cañizares, and Gair [48] then used this same model to demonstrate how unmodeled

resonances may impact LISA’s ability to detect EMRI signals. They found that resonances should not sig-

nificantly decrease LISA detection rates of EMRIs with low spins and eccentricities, though resonances will

likely hamper accurate parameter estimation for observed EMRI gravitational wave sources [48]. The impact

of resonances on the detection of EMRIs with higher spins and eccentricities is still unknown. Flanagan,

Hughes, and Ruangsri [101] provided some of the first strong-field results for EMRI rθ-resonances, demon-

strating how gravitational fluxes vary with the orbital phase at which an EMRI enters resonance. Hughes

and Ruangsri [200] followed-up on this work, driving evolutions using flux results and finding that nearly

all EMRIs will encounter either a 1:3, 1:2, or 2:3 rθ-resonance as they emit gravitational wave signals in

the LISA passband. Due to the computational demand of calculating the local strong-field gravitational

self-force in Kerr spacetime, self-force effects have not yet been calculated for EMRIs as they encounter

rθ-resonances. As a first step in exploring the local radiation-reaction effects driven by rθ-resonances, I use

my scalar code to calculate the SSF experienced by scalar-charged particles on rθ-resonant geodesics.

Section 8.2: Impact of resonances on radiation-reaction

As discussed in Sec. 2.5, rθ-resonant geodesics have two distinguishing features: their radial and polar

frequencies are commensurate and they are sensitive to initial conditions. Due to these unique characteristics,

EMRI inspirals that encounter strong rθ-resonances will significantly differ from inspirals that do not. To

further understand this impact, consider the radiated energy flux and its relation to the self-force

〈Ė〉tot =
1

Γ

∫ 2π

0

dqr
2π

∫ 2π

0

dqθ
2π

ΣFGSF,1
t . (8.1)

As described in Sec. 5.3.4, the self-force is only a function of the radial and polar motions of the source.

Therefore, the integrand of Eq. (8.1), Ė ≡ ΣFGSF
t Γ−1, can be represented by a double Fourier series,

Ė =
∑
kn

Ėkne
−iqkn , (8.2)

where the exponential phase is defined in terms of the angle variables, qkn ≡ kqθ+nqr, and the angle variables

depend on the orbital frequencies Υr and Υθ, i.e., qr,θ = Υr,θλ. For most of this work, I have approximated

the source motion as a geodesic and ignored changes to the motion due to the self-force. Thus, the frequencies

Υr and Υθ have been treated as constants. As the EMRI evolves, however, the backreaction of the self-force

will not only lead to the orbital ‘constants’ evolving, but the orbital frequencies will evolve, as well. To

capture this evolution, consider an arbitrary point in Mino time, λ0. On orbital timescales (Torb ∼M), the
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trajectory of the small compact object is tangent to a geodesic with frequencies Υ0
r and Υ0

θ. The phase in

Eq. (8.2) then takes the expanded form

qkn(λ) ' q0
kn +

(
kΥ0

θ + nΥ0
θ

)
(λ− λ0) + (kΥ′θ(0) + nΥ′r(0)) (λ− λ0)2 +O(∆λ3), (8.3)

where q0
kn is the initial phase at λ = λ0 and Υ′r ≡ dΥr/dλ. Because the evolution of the frequencies is

sourced by the self-force, their Mino time derivatives go like Υ′r ∼M2ε. Away from resonances the first term

in Eq. (8.3) dominates, provided M(λ − λ0) . ε−1. Phases with mode numbers k, n 6= 0 rapidly oscillate,

and these modes average away. Thus, the leading-order motion is set by the single zero-frequency mode, i.e.,

the fluxes (〈Ė〉tot = Ė00). On the radiation-reaction timescale (Trr ∼Mε−1), the expansion breaks down as

the frequencies substantially shift away from Υ0
r and Υ0

θ. The EMRI is no longer well approximated by the

original geodesic due to its adiabatic evolution. This accounts for the first term in Eq. (1.17).

On the other hand, if the EMRI enters a resonance at λ = λ0, the first term in Eq. (8.3) will vanish for

certain k, n when kβθ + nβr = 0. Because the second term is O(ε), these modes will oscillate slowly and

form nearly stationary phases. These modes will also contribute to the leading-order dynamics, e.g.,

〈Ė〉tot =
∑

(k,n)N=0

Ėkne
iq0kn , (8.4)

where (k, n)N represents all k and n values that satisfy the relation kβθ + nβr = N , including n = k = 0.1

As M(λ − λ0) → ε1/2, the expansion breaks down. The frequencies no longer remain commensurate, the

EMRI leaves the resonance, and the phases shift away from these stationary states so that, once again, only

the k = n = 0 mode contributes at leading order. This sets the timescale of the resonance, Tres ∼ Mε−1/2,

which accounts for the second term in Eq. (1.17).

An important consequence of Eq. (8.4) is that the presence of the higher modes results in fluxes that are

sensitive to the initial phase of the EMRI as it enters resonance. This is problematic for EMRI models. An

error in this phase will consequently lead to an error in the fluxes. Neglecting the phases may only lead to

a flux error εflux of O(ε), but this error will accumulate over the course of the resonance so that it grows

to εres ∼ εfluxTres ∼ ε1/2. As the EMRI leaves resonance, this error will continue to propagate through the

rest of the EMRI inspiral, leading to a final error in the waveform εwaveform ∼ εresTrr ∼ ε−1/2. If the EMRI

passes through another strong resonance, this error could be magnified by another factor of ε−1/2. Thus,

it is particularly important to understand the behavior of the local self-force and global fluxes as an EMRI

1For smaller integer-values of βr and βθ, lower, more dominant modes will contribute to the leading-order evolution. As βr
and βθ increase, only higher, less dominant modes will contribute, leading to a weaker effect. This is why low-integer ratios are
referred to as strong resonances, and higher ratios as weak resonances.
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approaches and transitions through a resonance.

A key difference between the resonant and non-resonant SSF problems is that in the case of resonances one

must take into account the initial conditions of the source, as discussed in Sec. 2.5. While most resonances

cannot be mapped to a fiducial geodesic (Eqs. (2.34)-(2.37)), they can be mapped to geodesics that are

parameterized by Mino time and the resonant offset λ0 (Eqs. (2.51)-(2.54)). As a result, for resonant

sources, the SSF is naturally parameterized by the resonant angle variables q̄ and q̄0 (see Sec. 2.6.1). In the

following sections, I outline various methods for constructing the SSF during rθ-resonances.

8.2.1: Scalar field for resonant sources

Once again I consider a point particle with scalar charge q orbiting a Kerr MBH. In the previous chapters,

I assumed that the charge followed a fiducial geodesic x̂µp (Eqs. (2.34)-(2.37)). Now I consider the case where

the charge follows a resonant geodesic. Therefore, I use x̄µp (q̄0), defined by Eqs. (2.51)-(2.54), as the wordline

of the scalar source. I leave the initial phase q̄0 as a free-parameter. The charge’s scalar field can be

constructed using the same methods outlined in Chapter 5,

Φ±(t, r, θ, ϕ) =
q

$

∑
ll̂mkn

C±
l̂mkn

X±
l̂mkn

(r)Sl̂mkn(θ)eimϕe−iωmknt, (8.5)

=
q

$

∑
ll̂mkn

bl̂lmknC
±
l̂mkn

X±
l̂mkn

(r)Ylm(θ, ϕ)e−iωmknt, (8.6)

Alternatively, one can use the reduced frequency spectrum ωmN = mΩϕ +NΩ (see Sec. 2.5) to decrease the

number of modes that contribute to the mode-summed field,

Φ±(t, r, θ, ϕ) =
q

$

∑
ll̂mN

C̄±
l̂mN

X±
l̂mN

(r)Sl̂mN (θ)eimϕe−iωmN t, (8.7)

=
q

$

∑
ll̂mN

bl̂lmN C̄
±
l̂mN

X±
l̂mN

(r)Ylm(θ, ϕ)e−iωmN t. (8.8)

The mode functions X±
l̂mN

and Sl̂mN satisfy the same differential equations as X±
l̂mkn

and Sl̂mkn, Eq. (5.23)

and (5.24), but with the frequencies replaced by ωmN rather than ωmkn. As a result, most of the mode

functions and constants are equivalent to their l̂mkn-mode counterparts, ωmN = ωm(k,n)N , bl̂lmN = bl̂lm(k,n)N
,

X±
l̂mN

= X±
l̂m(k,n)N

, and Sl̂mN = Sl̂m(k,n)N
.

The resonant normalization coefficients C̄±
l̂mN

are the exception. They are defined by the integrals

C̄±
l̂mN

=

∫ rmax

rmin

$2Xh,∓
l̂mN

(r)Z̄l̂mN (r)

Wl̂mN∆
dr, (8.9)
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where Z̄l̂mN is the radial decomposition of the resonant source in the frequency domain

ρscalar = − q$3

4πΣ∆

∑
l̂mN

Z̄l̂mN (r)Sl̂mN (θ)eimϕe−iωmN t, (8.10)

and Wl̂mN is the Wronskian, defined similarly to Eq. (5.33). The radial dependence Z̄l̂mN of the resonant

source, unlike Zl̂mkn in Eqs. (5.27) and (5.123), is naturally parameterized in terms of the resonant angle

variable q̄ and the controllable phase parameter q̄0. Therefore it can be constructed from the single integral

Z̄l̂mN (r; q̄0) =
1

2π

∫ 2π

0

dq̄ eiNq̄B̄mN (q̄, q̄0)Sl̂mN (θ̄p)δ(r − r̄p), (8.11)

where

B̄mN (q̄; q̄0) ≡ −4π

Γ

Σ̄p∆̄p

$̄3
p

eiωmN∆t̄e−im∆ϕ̄. (8.12)

Recall from Secs. 2.5 and 2.6.1 that the resonant geodesic functions ∆t̄, r̄p, θ̄p, and ∆ϕ̄ are understood to

be functions of q̄ and the parameter q̄0, i.e.,

∆t̄ ≡ ∆t̂(r)(q̄) + ∆t̂(θ)(q̄ + q̄0)−∆t̂(θ)(q̄0), (8.13)

r̄p ≡ r̂p(q̄), (8.14)

θ̄p ≡ θ̂p(q̄ + q̄0). (8.15)

∆ϕ̄ ≡ ∆ϕ̂(r)(q̄) + ∆ϕ̂(θ)(q̄ + q̄0)−∆ϕ̂(θ)(q̄0). (8.16)

Using Eq. (8.11), Eq. (8.9) simplifies to

C̄±
l̂mN

(q̄0) =
1

2π

∫ 2π

0

dq̄ D̄±
l̂mN

(q̄, q̄0)eiNq̄, (8.17)

where

D̄±
l̂mkn

(q̄; q̄0) ≡ −4π

Γ
Xh,∓
l̂mN

(r̄p)Sl̂mN (θ̄p)
Σ̄p

$̄pWl̂mN

eiωmN∆t̄e−im∆ϕ̄. (8.18)

Equation (8.17), like Eq. (5.125) for C±
l̂mkn

, is amenable to spectral integration,

q̄ =
2π

Nres
,  = 0, 1, . . . , Nres − 1 (8.19)

C̄±
l̂mN

(q̄0) ' 1

Nres

Nres−1∑
=0

D̄±
l̂mN

(q̄; q̄0)eiNq̄ , (8.20)

One can also see that, much like C±
l̂mkn

, C̄±
l̂mN

depends on the initial conditions of the source. For non-
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resonant sources, I ignored this dependence and assumed fiducial initial conditions without loss of generality.

This same assumption cannot be made for resonances. Consequently, I will express C̄l̂mN (q̄0) as an explicit

function of the initial resonant phase parameter q̄0 from now on.

While C̄l̂mN (q̄0) and Cl̂mkn are not equivalent, they are related by a coherent sum over all of the modes

that share the same frequency

C̄±
l̂mN

(q̄0) =
∑

(k,n)N

C±
l̂mkn

(q̄0) =
∑

(k,n)N

eiξmkn(0,0,βθq0,0)Ĉ±
l̂mkn

, (8.21)

as demonstrated in Appendix A of Ref. [101] and Sec. IIID of Ref. [117]. Recall that ξmkn is defined in

Eq. (5.151). Combining all of these relations, one can see that Eqs. (8.5) and (8.7) are equivalent. This leads

to two methods for calculating the SSF: one using the ωmN spectrum and the other using ωmkn. I present

both methods in the following sections, outlining the advantages and disadvantages of both approaches.

8.2.2: Constructing the self-force on the reduced mode-sum basis

In the preceding chapters, I parameterized the SSF using the angle variables qr and qθ (Eq. (5.158)).

For non-resonant sources, this parameterization allows one to map the infinite time evolution of the SSF

to a finite domain, as discussed in Secs. 2.6.1 and 5.3.4. For resonant sources—which are periodic with

respect to coordinate time but depend on initial conditions—I will make use of the resonant angle variable

q̄ and the relative phase parameter q̄0, which were introduced in Sec. 2.6.1. For an individual resonant

source, q̄0 is constant and only q̄ varies with time. By treating q̄0 as a free parameter, however, one can

capture the dependence of the SSF on the initial conditions. Therefore, while resonant geodesics are singly

periodic, they still have two degrees of freedom, just like non-resonant sources. To distinguish between these

two parameterizations, the SSF constructed from fiducial geodesic functions is denoted by F̂α(qr, qθ), while

the SSF constructed from resonant geodesic functions is denoted by F̄ res
α (q̄; q̄0). Other quantities that also

depend on the resonant source will be symbolized with an overbar, e.g., r̄p and C̄±
l̂mN

(q̄0).

The retarded contribution to the resonant SSF, when parameterized in terms of the resonant angle

variable and parameter, takes a similar form to Eq. (5.158),

F̄ ret,l
α± (q̄, q̄0) =

l∑
m=−l

(Dlmα φ̄±lm)(q̄; q̄0)Ȳlm(q̄; q̄0), (8.22)

where, like Eqs. (5.159) and (5.160),

Ȳlm(q̄; q̄0) ≡ Ylm(θ̄p(q̄ + q̄0), 0)eim(∆ϕ̄(q̄,q̄+q̄0)−∆ϕ̄(0,q̄0)), (8.23)
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φ̄±lm(q̄; q̄0) ≡
+∞∑
l̂=|m|

+∞∑
N=−∞

φ̄±
ll̂mN

(q̄; q̄0)e−iωmN (∆t̂(q̄,q̄+q̄0)−∆t̄(0,q̄0))e−iNq̄, (8.24)

φ̄±
ll̂mN

(q̄; q̄0) ≡ $̄−1
p (q̄)bl

l̂mN
C̄±
l̂mN

(q̄0)Xh,±
l̂mN

(r̄p(q̄)). (8.25)

Each resonant geodesic with a new value of q̄0 leads to a different source integral. Thus, a trade-off of

using the reduced mode-spectrum is that one must repeatedly integrate over different resonant sources with

different initial phases, q̄0.

In this approach, the regularized SSF is then obtained through mode-sum regularization

F̄ res
α (q̄; q̄0) =

∞∑
l=0

(
F̄ ret,l
α± (q̄; q̄0)− F̄ S,l

α±(q̄; q̄0)
)
, (8.26)

where the singular contributions, F̄ S,l
α±(q̄; q̄0), are constructed using the analytic regularization parameters

and numerical fitting procedure presented in Sec. 5.3.5. However, the resonant SSF, F̄ res
α , does not describe

the SSF for just a single geodesic. Instead it describes an entire family of resonant geodesics that share the

same orbital parameters, (p, e, xinc), but different initial phases, q̄0. The behavior of the SSF along a single

resonant orbit is found by choosing a particular value of q̄0 and then varying q̄.

Much like the fiducial SSF, the resonant SSF is periodic with respect to q̄ and q̄0, and therefore can be

expressed as a multiple Fourier series

F̄ res
α (q̄; q̄0) =

∑
KN

ḡKNα e−iNq̄e−iKq̄0 , ḡKNα =

∫ 2π

0

dq̄

2π

∫ 2π

0

dq̄0

2π
F̄ res
α (q̄; q̄0)eiNq̄eiKq̄0 . (8.27)

By sampling the resonant SSF on an evenly-spaced two-dimensional grid in q̄ and q̄0, I construct discrete

Fourier representations of F̄ res
α ,

q̄ı =
2πı

Nres
, ı = 0, 1, . . . , Nres − 1, q̄0 =

2π

N0
,  = 0, 1, . . . , N0 − 1, (8.28)

ḡKNα ' 1

N0Nres

N0−1∑
=0

Nres−1∑
ı=0

F̄ res
α (q̄ı; q̄0)e

iNq̄ıeiKq̄0 , (8.29)

F̄ res
α (q̄; q̄0) '

N0−1∑
K=0

Nres−1∑
N=0

ḡKNα e−iNq̄e−iKq̄0 . (8.30)

This provides an efficient way of storing resonant SSF data and interpolating results to obtain the SSF at

arbitrary times and initial phases.2

2One can further simplify the form of Eq. (8.29) by making use of the crossing relations, because F̄ res
α is real, though I do not

demonstrate the simplification here.
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8.2.3: Constructing the self-force on the full mode-sum basis

Alternatively, one can construct F̄ res
α (q̄; q̄0) from F̂α(qr, qθ). As described in Sec. 5.3.4, F̂α(qr, qθ)—the

SSF evaluated along a fiducial orbit—is related to the SSF evaluated along an orbit with arbitrary initial

conditions via Eq. (5.170),

F̄ res
α (q̄; q̄0) = F̂α(βr q̄, βθ q̄ + βθ q̄0). (8.31)

This is equivalent to constructing the resonant SSF using the full mode-sum representation of the scalar

field given in Eq. (8.5). While this connection is relatively simple, it demonstrates that one can calculate

the resonant SSF for any given initial phase using only fiducial geodesic functions. By summing over an

additional mode index, one avoids integrating over multiple sources. On the one hand, there appears at

first to be no computational savings from this approach. On the other hand, if one has already built a code

to calculate the SSF for non-resonant orbits, then that code can be easily optimized to calculate the SSF

along resonant orbits. This avoids the time-consuming process of constructing of an entirely new code just

to handle resonances.

In reality, it is somewhat more efficient to construct F̂α than F̄ res
α . As mentioned in Sec. 5.3.4, to

numerically calculate F̂α, I sample the fiducial SSF on a two-dimensional grid in qr and qθ and then represent

F̂α as a discrete Fourier series

qr,ı =
2πı

Nr
, ı = 0, 1, . . . , Nr − 1, qθ, =

2π

Nθ
,  = 0, 1, . . . , Nθ − 1, (8.32)

f̂knα =
1

NrNθ

Nθ−1∑
=0

Nr−1∑
ı=0

F̂α (qr,ı, qθ,) e
i(kqθ,+nqr,ı), (8.33)

F̂α(qr, qθ) =

Nθ−1∑
k=0

Nr−1∑
n=0

f̂knα e−i(kqθ+nqr), (8.34)

For resonant orbits, the Fourier coefficients f̂knα are related to the Fourier coefficients of the resonant SSF

ḡKNα because

F̂α(βr q̄, βθ q̄ + βθ q̄0) =
∑
kn

f̂knα e−iβθk(q̄+q̄0)e−iβrnq̄, (8.35)

=
∑
kn

f̂knα e−i(βθk+βrn)q̄e−iβθkq̄0 , (8.36)

=
∑
KN

f̂K/βθ,(N−K)/βr
α e−iNq̄e−iKq̄0 , (8.37)

= F̄ res
α (q̄; q̄0). (8.38)
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Comparing to Eq. (8.29), we see that

ḡKNα = f̂K/βθ,(N−K)/βr
α . (8.39)

This relation between the Fourier coefficients demonstrates that F̂α captures the behavior of the resonant

SSF with fewer Fourier modes than F̄ res
α . For example, consider a resonance defined by βr = 2 and βθ = 3.

Based on Eq. (8.39), ḡKNα = 0 unless K is a multiple of 3 and N −K is a multiple of 2. Thus the Fourier

representation of F̄ res
α , given by Eq. (8.29), will be full of (K,N)-modes that are equivalent to 0, and F̄ res

α

will require more modes (higher values of K and N) to encode the same amount of information as F̂α.

Calculating these higher modes requires a denser sampling of q̄ and q̄0 and, consequently, will require more

computational time. Therefore, to efficiently construct the SSF for resonant sources, one can first construct

the SSF using fiducial geodesics as outlined in Sec. 5.3.4, then relate f̂knα to ḡKNα to calculate F̄ res
α . However,

as a consistency check, I still use both methods to construct the SSF results reported in the following section.

8.2.4: Constructing resonant fluxes

In Secs. 4.4.6 and 5.2.7 I outlined the calculation of the gravitational and scalar wave fluxes using the

normalization constants C±
sl̂mkn

. However, Eqs. (4.123), (4.124), (5.69), and (5.72) only hold for non-resonant

orbits. For resonant sources, the fluxes must be modified due to the reduced frequency spectrum ωmN . The

essential point here is that for non-resonant orbits the fluxes calculated from Eqs. (5.69) and (5.72) reflect

an incoherent sum over the modes. When the orbit has a resonance, there are various interference terms

which averaged to zero in the non-resonant case, but no longer do so when Ωr and Ωθ are rationally related.

Then the (scalar) energy and angular momentum fluxes at the horizon take the form

〈Ė〉H =
q2

4π

∑
l̂mN

ωmNγmN

∣∣∣C−
l̂mN

(q̄0)
∣∣∣2 , 〈L̇z〉H =

q2

4π

∑
l̂mN

mγmN

∣∣∣C−
l̂mN

(q̄0)
∣∣∣2 , (8.40)

while the fluxes at infinity are given by

〈Ė〉∞ =
q2

4π

∑
l̂mN

ω2
mN

∣∣∣C+

l̂mN
(q̄0)

∣∣∣2 , 〈L̇z〉∞ =
q2

4π

∑
l̂mN

mωmN

∣∣∣C+

l̂mN
(q̄0)

∣∣∣2 . (8.41)

(The gravitational fluxes in Sec. (4.4.6) would similarly be rewritten in terms of the reduced-mode Teukolsky

amplitudes C±
−2l̂mN

.) As emphasized at the beginning of this section, resonances are sensitive to the phase at

which an EMRI enters resonance. Equations (8.40) and (8.41) demonstrate that this dependence is captured

by the normalization constants, which depend on the resonant phase q̄0. Thus, unlike in Chapter 6, the
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〈Ė〉tot and 〈L̇z〉tot are no longer constant for a given set of (resonant) orbital parameters (p, e, xinc) but also

depend on q̄0. A similar behavior appears in the local work and torque done on the particle, along with the

time-rate-of-change of the Carter constant. While Eqs. (5.60) (5.61), (5.64) still hold true for resonances,

the orbital averages in Eqs. (5.62) (5.63), and (8.44) reduce to

W = −q
2

Γ

∫ 2π

0

dq̄

2π
Σ̄(q̄; q̄0)F̄ res,diss

t (q̄; q̄0). (8.42)

T =
q2

Γ

∫ 2π

0

dq̄

2π
Σ̄(q̄; q̄0)F̄ res,diss

ϕ (q̄; q̄0), (8.43)

K = −2(Lz − aE)(T − aW) + 2
µq2

Γ

∫ 2π

0

dq̄

2π
Σ̄(q̄; q̄0)K̄µν(q̄; q̄0)ūµ(q̄; q̄0)f̄νres(q̄; q̄0), (8.44)

where fµ ≡ (gµν + uµuν)Fν is the component of the self-force that is orthogonal to uα, while Σ̄, K̄µν and

ūα are all evaluated along a resonant worldline x̄µp . For q̄0 6= 0, the conservative SSF components F̄ cons
t

and F̄ cons
ϕ are no longer antisymmetric with respect to q̄, and F̄ cons

t and F̄ cons
ϕ are no longer symmetric.

Therefore, the conservative components are not guaranteed to vanish in Eqs. (8.42)-(8.44) as they do with

non-resonant sources. For the local work and torque, the conservative components are discarded, because

the global energy and angular momentum fluxes, which balance the work and torque, are purely dissipative

effects.

However, it is still unclear whether the conservative component of the self-force should contribute to K,

since the evolution of the Carter constant, 〈Q̇〉tot, is not tied to a physical flux like the energy or angular

momentum. Flanagan and Hinderer [100] conjectured, because the conservative dynamics of the system is

integrable, that conservative effects cannot drive resonances nor will the conservative self-force contribute

to W, T , or K. While this “integrability conjecture” has been assumed in other work [101, 200], it has not

yet been confirmed by strong-field calculations of the conservative self-force. Accordingly, Isoyama et. al

[139, 140] included potential contributions from the conservative sector in their derivations of 〈Q̇〉tot based

on a Hamiltonian approach. Since I was able to make the first self-force calculation of rθ-resonances, it was

possible to test this conjecture. Later, in Sec. 8.5, I demonstrate that the conservative contribution of the

SSF to K is consistent with zero within the numerical tolerances of my results.

Section 8.3: Scalar self-force for resonant orbits

I present, for the first time, the SSF for six different resonant orbits, which are listed in Table 8.1. To

simplify notation, I once again set M = 1 for the remainder of this chapter. Each of these sources follows an

rθ-resonant geodesic in a Kerr spacetime with spin a = 0.9. I consider a spin of a = 0.9, because the measured

spins of massive black holes tend to be relatively high (a & 0.6) with many approaching the extremal limit
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label p e xinc βr:βθ

e02.13 3.622 0.2 cos(π/4) 1:3

e02.12 4.508 0.2 cos(π/4) 1:2

e02.23 6.643 0.2 cos(π/4) 2:3

e05.13 3.804 0.5 cos(π/4) 1:3

e05.12 4.607 0.5 cos(π/4) 1:2

e05.23 6.707 0.5 cos(π/4) 2:3

Table 8.1: A table summarizing the SSF sources presented in Sec. 8.3. All sources follow a rθ-resonant
geodesic in a Kerr spacetime with a = 0.9. The values of the semi-latus rectum for these resonant orbits are
all irrational. Therefore I report p with four significant digits for brevity.

(a → 1) [195]. I focus on 1:3, 1:2, and 2:3 rθ-resonances, which are the three resonances an EMRI is most

likely to encounter during its final years of evolution [200, 48]. To pick orbital parameters (p, e, xinc) that

produce resonant frequencies, I follow the work of Brink, Geyer, and Hinderer [55, 54]: I first specify values

for e and xinc, then numerically calculate p using the root-finding method described in Sec. V E of Ref. [54].

For this work, all of the orbits share the same inclination, xinc = cos(π/4), but I evaluate each resonance at

two different eccentricities, e = 0.2 and e = 0.5. The resulting values of p for each resonant configuration

are listed in Table 8.1.

As discussed in Sec. 5.3.4, the SSF produced by resonant sources can be conveniently expressed as a

function of the resonant angle variable q̄ and the initial resonant phase q̄0, i.e., F̄ res
α (q̄; q̄0), or the more general

angle variables qr and qθ and the initial phases qr0 and qθ0, i.e., F̂α(βr q̄, βθ q̄+βθ q̄0) = F̂α(qr, qθ + qθ0). I use

both descriptions to express these SSF results. Plotting the SSF as a function of q̄, as shown in Sec. 8.3.2,

highlights the periodicity of the SSF during resonances and more clearly demonstrates the evolution of the

SSF with time. On the other hand, plotting the SSF as a function of qr and qθ, as shown in Sec. 8.3.3,

separates the dependence of the SSF on the radial and polar motion of the source. It also mirrors the

parameterizations used for non-resonant orbits, as seen in Chapter 6 and Refs. [224, 172]. To better analyze

the impact of different orbital parameters and resonances on the SSF, I present each self-force component

separately.

8.3.1: Regularization and convergence of results

The regularized SSF is constructed via mode-sum regularization and the numerical fitting procedures

outlined in Sec. 5.3.5. As discussed earlier, the convergence of the mode-sum regularization procedure is

well understood. For example, subtracting the analytically-known regularization parameters, Aα and Bα,

produces residuals that fall off ∼ l−2 at large l. This provides an important validation test for these new

SSF results, because inaccurate results will not converge at these expected rates. In Fig. 8.1 I plot the
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Figure 8.1: Convergence of the SSF l-modes for the resonant sources listed in Table 8.1. The dashed and
dotted lines depict the increasing rate of convergence for F̄ res

ϕ (q̄ = 5π/16; q̄0 = 5π/32/βθ) as additional
regularization parameters are incorporated. The (black) squares represent individual l-modes of the unreg-
ularized SSF, which clearly diverge. The (red) triangles are the residuals from subtracting Aϕ and Bϕ. The
(blue) diamonds represent the residuals after subtracting Dϕ,2, which I obtain numerically as discussed in
Sec. 5.3.5. The (purple) circles represent the inclusion of Dϕ,4, which is also numerically approximated.

mode-sum convergence of F̄ res
ϕ at the point (q̄ = 5π/16, βθ q̄0 = 5π/32) for all six resonant configurations.

Points refer to the l-mode residuals that result from subtracting the analytically-known and numerically-
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fitted regularization parameters, while the lines refer to the expected convergence rate of these residuals at

large l. Across all six sources, the residuals approach their expected asymptotic rates of convergence.

While all of the sources have the same asymptotic behavior at large l, Fig. 8.1 demonstrates that for low

l-modes the e = 0.2 sources converge faster than e = 0.5, the 2:3 resonances converge faster than the 1:2

resonances, and the 1:2 resonances faster than the 1:3, as expected. Higher eccentricities require a broader

frequency spectrum to capture the radial motion. Additionally, sources that orbit farther into the strong-

field (closer to the MBH) will excite stronger perturbations and require more frequency modes to construct

the behavior of the self-force. The 1:3 resonances have the smallest separation, the 1:2 resonances the next

smallest, and the 2:3 resonances have the largest, reflecting the varying rates of convergence at low l.

This behavior poses a problem for the e05.13 orbits. For this source, it takes thousands of additional

modes to capture the behavior of the SSF compared to other resonant configurations. Because of the slow

convergence at low multipoles, truncating mode summations at a similar value of l as the other orbits will

introduce larger numerical errors in the retarded SSF contributions. While these numerical errors are still

relatively small, they are significant enough that they make it much more difficult to fit for higher-order

regularization parameters. The accuracy of the conservative component of the SSF suffers because of this.

Therefore, the conservative SSF is only known to ∼ 1 − 2 digits of accuracy for the e05.13 orbit. This

numerical error becomes particularly noticeable when the Fθ component of the SSF is close to zero, as

can be seen in Fig. 8.8. Fortunately, the dissipative component typically dominates over the conservative

contribution in regions of the orbit where the conservative contribution is known less accurately. Therefore,

the overall results still capture most of the quantitative behavior of the SSF during resonances, though the

e05.13 model will need to be recalculated with additional numerical precision in order to extract sufficiently

accurate numerical results for the conservative SSF.

8.3.2: Scalar self-force as a function of q̄

As a first step, I present the SSF as a function of the resonant variable q̄ in Figs. 8.2, 8.3, 8.4, and 8.5.

The SSF results are weighted by the cube of the minimum radial position of the particle (i.e., r3
min F̄

res
α ).

This weighting normalizes the SSF results, facilitating comparisons across different scalar sources without

distorting the dependence of the SSF on the radial and polar motion of the different orbits. For each

resonant source I plot the SSF produced by two geodesics with different initial conditions. The dot-dashed

(black) lines illustrate how the SSF varies along a resonant geodesic with initial polar phase βθ q̄0 = qθ0 = 0

(i.e., initial conditions xµp (λ = 0) = (0, rmin, θmin, 0) and ur(0) = uθ(0) = 0), while the solid (red) lines

illustrate how the SSF varies along a resonant geodesic with βθ q̄0 = qθ0 = −π/2 (i.e., initial conditions
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Figure 8.2: The radial-component of the SSF as a function of the resonant angle variable q̄, i.e., F̄ res
r (q̄; q̄0),

for the six resonant geodesics presented in Table 8.1. The SSF is weighted by the cube of the pericenter
radius, r3

min, so that all six orbits are of comparable magnitude. The dot dashed (black) line represents
the SSF for a resonant geodesic with an initial resonant phase of βθ q̄0 = qθ0 = 0, while the solid (red)
line represents the SSF for a resonance with the same orbital parameters, but an initial resonant phase of
βθ q̄0 = qθ0 = −π/2. The shaded grey region represents all of the SSF values produced by varying the initial
phase q̄0 from 0 to 2π.

xµp (λ = 0) = (0, rmin, π/2, 0), ur(0) = 0, and uθ(0) < 0).3 The shaded grey regions refer to the full range of

SSF values that result from varying the initial phases—either qθ0 or q̄0—of the resonant orbit.

Figures 8.2, 8.3, 8.4, and 8.5 illustrate that the SSF is periodic with respect to q̄. Interestingly, for the

2:3 resonances, F̄ res
t , F̄ res

r , and F̄ res
ϕ are periodic on the interval of [0, π] rather than [0, 2π]. This behavior

arises, because (in Kerr spacetime) the time-, radial-, and azimuthal-components of the SSF are invariant

under parity transformations of the radial and polar motion (i.e., reflections through the equatorial plane,

rp → rp and θp → π − θp), while the polar-component changes sign [234]. This is also observed for the

gravitational self-force [224]. For a 2:3 resonance, the radial motion of the source is identical on the intervals

[0, π] and [π, 2π], while the polar motion is related by a parity transformation. This explains the repetition

in F̄ res
t , F̄ res

r , and F̄ res
ϕ , while also highlighting that F̄ res

θ (q̄; q̄0) = −F̄ res
θ (q̄ + π; q̄0).

These symmetries also manifest themselves in the number of low-frequency “oscillations” that arise in the

SSF components, particularly for the low-eccentricity orbits. Focusing on F̄ res
r in Fig. 8.2, the SSF peaks six

times for the e02.13 and e02.23 sources and four times for the e02.12 source, with the peaks closely aligning

3Note that we keep our choice of qθ0 constant rather than q̄0, because the same value of q̄0 can actually generate different
initial conditions for resonances with different values of βθ.
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Figure 8.3: The time-component of the SSF as a function of the resonant angle variable q̄, i.e., F̄ res
t (q̄; q̄0),

for the six resonant geodesics presented in Table 8.1.
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Figure 8.4: The polar-component of the SSF as a function of the resonant angle variable q̄, i.e., F̄ res
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for the six resonant geodesics presented in Table 8.1.
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Figure 8.5: The azimuthal-component of the SSF as a function of the resonant angle variable q̄, i.e.,
F̄ res
ϕ (q̄; q̄0), for the six resonant geodesics presented in Table 8.1.

with the points at which each orbit passes through its polar extrema. Additionally the troughs tend to align

with the passage of the source through the equatorial plane. A similar behavior is also seen for F̄ res
t , F̄ res

ϕ ,

and the higher eccentricity sources, though for the e = 0.5 orbits it is more difficult to identify local peaks,

particularly as the small body approaches apocenter. For F̄ res
θ in Fig. 8.4, the peaks align with the passage

of the source through θmin, while the troughs align with its passages through π − θmin.

I also find that initial conditions have varying effects on different SSF components. For F̄ res
t in Fig. 8.3

the initial conditions have a minimal impact on the SSF. For F̄ res
r in Fig. 8.2 and F̄ res

ϕ in Fig. 8.5 there are

greater variation due to initial conditions. Likewise, for F̄ res
θ in Fig. 8.4, there is significant variation. To

understand the source of this variance, recall that the radial and polar position of the resonant source, r̄p

and θ̄p, depend on the angle variables according to

r̄p = r̂p(qr) = r̂(βr q̄), (8.45)

θ̄p = θ̂p(qθ + qθ0) = θ̂(βθ q̄ + βθ q̄0). (8.46)

Consequently, broader grey bands indicate a stronger dependence on the polar motion of the source. Thus,

F̄ res
t primarily depends on the radial motion of the source. In contrast, F̄ res

r is sensitive to the both the polar

and radial motion of the source, though at apocenter the polar motion has a smaller impact. In behavior

opposite of F̄ res
t , F̄ res

θ is primarily dependent on the polar motion of the source. Finally, F̄ res
ϕ depends mostly
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Figure 8.6: The time-component of the SSF, F̂t, is depicted through sampling on the torus for the six sources
listed in Table 8.1. The SSF is normalized by the cube of each source’s pericenter distance. The vertical axis
is correlated with the θ-dependence of the self-force, while the horizontal axis is related to the r-dependence.
Colors correspond to different values of the self-force, with the values denoted in the colorbar on the right.
The self-force is constant along each (solid) contour line. The tic labels in the colorbar correspond to the
values of the contour lines (e.g., in the top left plot, r3

min × F̂t = −0.118 along the leftmost contour line).
The dot-dashed lines trace over the SSF values that are sampled by a resonant source with fiducial initial
conditions (q̄0 = 0).

on the radial motion of the source, though the polar position becomes more important near pericenter.

8.3.3: Scalar self-force as a function of qr and qθ

To better visualize the dependence of the SSF on the radial and polar motion of resonant orbits, I project

the SSF components onto the two-torus spanned by qr + qr0 and qθ + qθ0 in Figs. 8.6, 8.7, 8.8, and 8.9.

While I set qr0 = 0 in my earlier discussions, those results hold for arbitrary values of qr0 as well. As before,

I weight the force components by the cube of the minimum radial position of the source. The dot-dashed

(black) lines trace the geodesic motion of a source with initial conditions βθ q̄0 = qθ0 = 0. Sampling the SSF

as the source evolves along these tracks reproduces the black dot-dashed curves in Figs. 8.2, 8.3, 8.4, and

8.5. Maintaining previous notation, I will refer to the SSF parameterized by qr + qr0 and qθ + qθ0 as F̂α.

As observed in Sec. 8.3.2, F̂t (shown in Fig. 8.6) primarily depends on the radial motion of the source,

with little variation as one moves along the qθ-axis. The radial and azimuthal components, F̂r and F̂ϕ

(shown in Figs. 8.7 and 8.9, respectively) are sensitive to both the radial and polar motion of the scalar
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Figure 8.7: The radial-component of the scalar self-force, F̂r, for the six orbits listed in Table 8.1.
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Figure 8.8: The polar-component of the scalar self-force, F̂θ, for the six orbits listed in Table 8.1. Note that
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Figure 8.9: The azimuthal-component of the scalar self-force, F̂ϕ, for the six orbits listed in Table 8.1.

charge, especially near pericenter, though F̂r appears to have a stronger dependence on the polar motion.

Figure 8.7 clearly demonstrates the parity antisymmetry of F̂θ discussed in the previous section.

In agreement with previous investigations [236, 237, 234, 172] of the SSF, I find that F̂t is strictly

positive, in contrast to the gravitational self-force case, where the time-component can become negative in

both radiation and Lorenz gauge [222, 224].4 On the other hand, F̂r is predominantly negative across the

entire torus, though it becomes slightly positive near apocenter. This behavior is consistent with higher spins

leading to attractive radial SSF results [236]. Large inclinations, on the other hand, lead to predominantly

positive values of the SSF, as seen in SSF results for spherical orbits [234], however this requires inclinations

x & 0.5, which I do not consider here. Interestingly, while all of the SSF components peak in magnitude

following the pericenter passage of the source, the magnitude of these peaks grows for F̂t and F̂r as rmin

decreases, while the peaks grow for F̂θ and F̂ϕ as rmin increases. The latter behavior is actually due to the

factor of r3
min. If one removes this weighting, then closer pericenter passages excite larger peaks in the SSF

for all components. This suggests that the leading-order behavior of F̂θ and F̂ϕ is closer to 1/r2, which one

might expect based on dimensional analysis ([Fθ,ϕ/Ft,r]dim ∼ [M ]dim).

While these results provide the first insights into the behavior of the strong-field SSF during rθ-resonances,

4I do not try to draw any physical interpretation from this behavior, because the SSF and gravitational self-force are both
gauge-dependent results (though in the SSF case the gauge is simply set by the overall spacetime coordinates).

169



5.53486
5.53487
5.53488
5.53489
5.53490
5.53491
5.53492
5.53493
5.53494
5.53495
5.53496

0 π
2 π 3π

2 2π

〈Ė
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Figure 8.10: The total energy and angular momentum fluxes, 〈Ė〉tot and 〈L̇z〉tot for a resonant scalar source
with orbital parameters (a, p, e, xinc) = (0.9, 4.607, 0.5, cosπ/4) (e05.12 in Table 8.1). The fluxes vary with
respect to the initial phase q̄0, though these variations are small.

the SSF data for the highly-eccentric (e = 0.5) sources are only accurate to a few digits, as discussed in

Sec. 8.3.1. A limited ability to numerically extract higher-order regularization parameters ultimately limits

the accuracy of the e = 0.5 SSF values. This is particularly apparent in Fig. 8.8 for the e05.13 source.

The numerical noise that is introduced by fitting for the higher-order regularization parameters eventually

dominates F̂θ as its values pass close to and through zero. This leads to disjointed variations in F̂θ centered

around qr + qr0 = π in the bottom left plot of Fig. 8.8. Therefore, to extract numerical values of F̂θ around

qr + qr0 = π, I will need to rerun this calculation with additional numerical precision. However, in the rest

of the plot, the numerical noise is subdominant to the physical variation in the SSF.

Section 8.4: Resonant fluxes

Using Eqs. (8.40) and (8.41), I calculate the scalar wave fluxes 〈Ė〉tot and 〈L̇z〉tot. As discussed earlier,

the fluxes, like the SSF, vary with respect to the initial phase q̄0. Figure 8.10 illustrates this variation for the

e05.12 resonant orbit. While both fluxes certainly oscillate with the initial phase, their fractional variations

are small, i.e., ∆Ėtot = 0.036% and ∆L̇tot
z = 0.085%, where [101]

∆X ≡ 2

∣∣∣∣max [〈X〉]−min [〈X〉]
max [〈X〉] + min [〈X〉]

∣∣∣∣ . (8.47)

The skeptical reader may be concerned that these variations are not physical but the result of numerical

error. However, flux calculations are exponentially convergent and do not require regularization. These

fluxes, therefore, are much more accurate than the previously discussed SSF results, with fractional errors

that I found to be ∼ 10−8. The small fractional variations seen in Fig. 8.10 are therefore accurate to many
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source 〈Ė〉H × 105 〈L̇z〉H × 104 〈Ė〉∞ × 103 〈L̇z〉∞ × 103
∣∣∣1 + 〈Ė〉tot

W

∣∣∣ ∣∣∣1 + 〈L̇z〉tot
T

∣∣∣
e02.13 −4.411457095 −7.017966266 1.301535 7.677846 9× 10−7 8× 10−7

e02.12 −2.021123696 −3.395925026 0.5737075 4.843929 2× 10−8 2× 10−8

e02.23 −0.324830139 −0.877896699 0.134964247 1.762343845 6× 10−9 3× 10−11

e05.13 −0.482340196 −6.445882073 1.45739 7.28846 9× 10−5 8× 10−5

e05.12 −0.364726314 −2.915401042 0.590229 3.85672 3× 10−5 2× 10−5

e05.23 0.092800200 −0.713304108 0.12832694 1.3990094 3× 10−7 2× 10−7

Table 8.2: The resonant energy and angular momentum fluxes for the scalar sources listed in Table 8.1.
Fluxes through the horizon, 〈Ė〉H and 〈L̇z〉H, and infinity, 〈Ė〉∞ and 〈L̇z〉∞, are included. All quantities
are evaluated along orbits with an initial phase q̄0 = 0 and are normalized by q−2. The reported precision is
limited by the accuracy of each calculation, though I truncate high-precision results at nine decimal places
for brevity. The total fluxes are also compared to the local work and torque performed by the SSF, W and
T via the flux balance relations. The fractional errors between the fluxes and orbit-averaged SSF range from
∼ 10−5 − 10−11 and reflect the numerical accuracy of the dissipative SSF results.

source 〈Ė〉H × 105 〈L̇z〉H × 104 〈Ė〉∞ × 103 〈L̇z〉∞ × 103
∣∣∣1 + 〈Ė〉tot

W

∣∣∣ ∣∣∣1 + 〈L̇z〉tot
T

∣∣∣
e02.13 −4.411497781 −7.017992874 1.301534 7.677831 7× 10−7 6× 10−7

e02.12 −2.021127357 −3.396083610 0.5736988 4.843824 2× 10−8 2× 10−8

e02.23 −0.325170299 −0.877675562 0.134984611 1.762586419 6× 10−9 3× 10−11

e05.13 −0.480744834 −6.448440589 1.45724 7.28681 9× 10−5 8× 10−5

e05.12 −0.361475840 −2.919310921 0.589990 3.85408 3× 10−5 2× 10−5

e05.23 0.090053088 −0.710893569 0.12855813 1.4017751 3× 10−7 2× 10−7

Table 8.3: The same as Table 8.2, but now all quantities are evaluated along orbits with an initial phase
βθ q̄0 = −π/2.

source ∆ĖH ∆L̇Hz ∆Ė∞ ∆L̇∞z ∆Ėtot ∆L̇tot
z

e02.13 0.0011% 0.0004% 0.0001% 0.0002% 0.0001% 0.0003%

e02.12 0.0204% 0.0047% 0.0017% 0.0023% 0.0016% 0.0029%

e02.23 0.2008% 0.0252% 0.0156% 0.0138% 0.0129% 0.0158%

e05.13 1.1214% 0.0400% 0.0109% 0.0227% 0.0092% 0.0287%

e05.12 2.3850% 0.1352% 0.0427% 0.0684% 0.0352% 0.0849%

e05.23 5.8510% 0.3400% 0.1835% 0.1975% 0.1575% 0.2262%

Table 8.4: The fractional variation in the resonant fluxes for the scalar sources listed in Table 8.1. Fractional
variations are reported to four decimal places for brevity.
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digits and are physical and consistent with observations of the resonant fluxes in the gravitational case

[101]. In Table 8.2 I present the value of the fluxes at q̄0 = 0, while in Table 8.3 I report their values at

βθ q̄0 = −π/2. In Table 8.4 I give the fractional variations of the fluxes as defined by Eq. (8.47). For the 1:2

and 1:3 resonances, the fluxes reach their maximum at q̄0 (see Fig. 8.10). On the other hand, the fluxes of

the 2:3 sources are minimized at q̄0 = 0.

As shown in Tables 8.2 and 8.3, most of the horizon fluxes are negative due to superradiant scattering

[167]. Orbits with smaller pericenter values rmin tend to produce larger fluxes, while the eccentricity of an

orbit has a much smaller impact. I also compare these flux values to the average work and torque done by

the SSF. The fractional errors from this comparison are given in the last two columns of Tables 8.2 and 8.3.

I find good agreement between the fluxes and my SSF results, with fractional errors of ∼ 10−6. Recalling the

numerical convergence of the SSF reported in Fig. 8.1, these fractional errors are indicative of the numerical

accuracy of my results.

Table 8.4 demonstrates that the variations in the fluxes tend to increase as p and e increase. In fact, the

flux variations for the e02.13 source are negligible compared to the other sources. This suggests that this

variation is dampened as a source moves closer to the MBH. While e05.13 has a smaller pericenter value

than e02.13, the larger variation in the radial motion could then be responsible for the larger variation in

the fluxes with respect to the phase q̄0.

Section 8.5: Impact of conservative self-force and the integrability conjecture

While the conservative component of the SSF is often ignored when computing fluxes and time-averaged

quantities, researchers are still uncertain whether or not the conservative self-force will contribute to the

evolution of the Carter constant during resonances [100, 140]. Therefore, I investigated this open problem

with my resonant SSF results. Figure 8.11 plots 〈Q̇〉tot, the average time-rate-of-change of the Carter

constant, for the resonant source e02.23. I calculate 〈Q̇〉tot using the balance formula

〈Q̇〉tot = −K, (8.48)

where K is given in Eq. (8.44). In the left plot of Fig. 8.11, the solid (red) line gives the value of 〈Q̇〉tot when

it is evaluated using the full SSF (dissipative plus conservative), while the dashed (black) line plots the value

of 〈Q̇〉tot when it is evaluated using only the dissipative component of the SSF. In the right plot, 〈Q̇〉tot is

evaluated using only the conservative SSF.

Comparing these two plots, the contribution from the dissipative component clearly dominates that of
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Figure 8.11: The average time-rate-of-change of the Carter constant 〈Q̇〉tot for the resonant source
(a, p, e, xinc) = (0.9, 6.643, 0.2, cosπ/4). In the left panel, the solid (red) line represents the value of 〈Q̇〉tot

when it is constructed using the full SSF, F̂ res
α , in Eq. (8.44). The dashed (black) line represents the value of

〈Q̇〉tot when it is constructed using just the dissipative component of the SSF F̂ diss
α . As seen with the energy

and angular momentum fluxes, 〈Q̇〉tot varies with the initial phase of the source q̄0. In the right planel,
the black (dashed) line represents the value of 〈Q̇〉tot when it is calculated using only the conservative SSF
components F̂ cons

α . Note that the left plot is scaled by 103, while the right plot is scaled by 107. Thus, the
conservative contribution is about four orders of magnitude weaker than the dissipative contribution.

the conservative component. However, the conservative contribution does not vanish and produces a small

shift and change in the magnitude of the variations of 〈Q̇〉tot. This initially suggests that the conservative

SSF does contribute to the evolution of Q. Further analysis shows, however, that the residual conservative

contribution is smaller than my estimated numerical error due to the mode-sum regularization procedure

and the attendant numerical fitting of the higher-order regularization parameters. This estimated error

is ∼ 5 × 10−7. Therefore, within the numerical tolerances of this code, the conservative contribution is

consistent with zero.

However, the conservative contribution in the right plot of Fig. 8.11 has a much smoother behavior

than what one might expect for numerical noise. To understand this behavior, consider that for a non-

resonant orbit one can calculate W, T , and K without regularizing the SSF, because the singular field

averages away when integrated over the course of the orbit. However, this is not the case for resonant

orbits. Figure 8.12 demonstrates the effect of neglecting regularization when calculating 〈Q̇〉tot. As one

sums over additional l-modes the singular contribution to 〈Q̇〉tot does not average away, but instead diverges

(for βθ q̄0 6= 0, π/2, π, 3π/2). The growing singular contribution also varies in the exact same manner as the

conservative contribution in Fig. 8.11. Subtracting the analytically-known regularization parameters, Aα

and Bα, leads to a convergent result, but unless one sums over an infinite number of modes this does not

completely remove the presence of the singular field.

Therefore, I argue that the (fully regularized) conservative component of the SSF is not responsible for

the non-vanishing variations in the right plot of Fig. 8.11. Instead, this “conservative contribution” results
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Figure 8.12: The average time-rate-of-change of the Carter constant 〈Q̇〉tot
(unreg) calculated from the unregular-

ized SSF results for the resonant source (a, p, e, xinc) = (0.9, 6.643, 0.2, cosπ/4). The solid (black) line refers
to the value of 〈Q̇〉tot

(unreg) if one truncates the calculation of the unregularized SSF at lmax = 10. Likewise,

the dashed (blue) line refers to result after truncating calculations at lmax = 20, the dotted (red) line for
truncating at lmax = 30, and the dot dashed (purple) line for lmax = 40. While these results are diverging,
if one averages over the initial phase, the singular contributions vanishes.

from the residual singular field that has not been completely removed through mode-sum regularization.

In effect, any residual contributions from the conservative SSF in W, T , and K most likely result from my

numerically-fitted higher-order regularization parameters, which are not fully capturing (and then removing)

the singular field. This suggests, based on Fig. 8.11, that my numerical fitting procedure regularized the

SSF data of e02.23 down to an accuracy of ∼ 1× 10−7, which is slightly better than the estimated error of

5× 10−7.

Section 8.6: Significance of results

In this chapter I presented the first numerical calculations of the strong-field (scalar) self-force for rθ-

resonant orbits in Kerr spacetime. This serves as a first step in understanding the still unquantified behavior

of the gravitational self-force during transient resonances. While constructing these results, I found that a

simple mapping exists between self-force calculations for fiducial, non-resonant orbits and self-force calcula-

tions for non-fiducial, resonant orbits. This mapping provides an efficient method for analyzing the self-force

as a function of the initial phase at which a system enters resonance.

With my novel self-force calculations I also analyzed the impact of the conservative self-force on the orbit-

averaged time-rate-of-change of the Carter constant, 〈Q̇〉tot, to test the “integrability conjecture” proposed

by Flanagan and Hinderer [100]. While the conservative SSF makes a small contribution to 〈Q̇〉tot, it

appears that this contribution results from errors in the mode-sum regularization procedure, rather than

being connected to a physical effect. Ultimately, these results do demonstrate that any possible conservative
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contribution is subdominant to that of the dissipative self-force. Understanding the source of this residual

conservative contribution, however, will require alternative, improved regularization schemes or access to

analytic expressions for the higher-order regularization parameters. For now, the validity of the “integrability

conjecture” remains an open question.
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CHAPTER 9: Conclusion

Section 9.1: Summary of dissertation research

For this dissertation, I used a developmental scalar field model to investigate numerical and analytical

techniques for calculating self-force effects in EMRIs with a Kerr primary. In this scalar problem, a point

scalar charge follows a generic bound geodesic in Kerr spacetime and experiences a backreaction to its motion

from a scalar self-force (SSF). Thus the scalar problem is similar to but mathematically more tractable than

the gravitational self-force problem, making it a powerful tool for developing new computational algorithms.

A Mathematica code was designed to perform these calculations in the frequency domain, mirroring current

methods for calculating the gravitational self-force in Kerr spacetime [222, 224]. A novel feature of this

code is the use of fast spectral source integration techniques to reduce expensive two-dimensional source

integrals to successive one-dimensional Fourier sums (Sec. 5.3.3). These methods prove to be three orders

of magnitude more efficient than traditional adaptive-step-size methods [175, 172]. These same techniques

were also used to numerically integrate Kerr geodesics (Sec. 2.7). I have incorporated these methods in the

openly-available KerrGeodesics Mathematica package of the Black Hole Perturbation Toolkit [1].

Several other key optimizations were also found to improve the calculation of scalar perturbations in the

frequency domain. When implementing the Mano-Suzuki-Takasugi (MST) [154] function expansion method,

Eq. (5.110) was found, empirically, to improve the convergence of the inner (scalar) Teukolsky radial solutions

(Sec. 5.3.2). When determining the renormalized angular momentum parameter ν via monodromy techniques

[68, 69], transforming to the confluent Heun equation improved the numerical calculation of the monodromy

eigenvalue at infinity via Stokes multipliers (Sec. 5.3.2). Furthermore, when calculating the scalar spheroidal

harmonics, the three-term recurrence relation for the coupling coefficients was recast in terms of continued

fractions, which proved to be much faster to evaluate at higher-precisions compared to solving the recurrence

relation with standard matrix methods (Sec. 5.3.1). I also outlined optimized procedures for constructing the

SSF for both resonant (Sec. 8.2) and non-resonant sources (Sec. 5.3.4). A key result is that, by parameterizing

the SSF in terms of the angle variables qr and qθ, the SSF due to a source with fiducial initial conditions,

x̂µp (0) = (0, rmin, θmin, 0), can be directly related to the SSF due to a source with arbitrary initial conditions

via Eq. (5.170). This provides an efficient method for evaluating the SSF along resonant orbits (Eq. (8.31)),

which are sensitive to the initial phase at which the system enters resonance. This result also generalizes to
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the gravitational self-force case.

Using my SSF code, Osburn, Evans, and I [172] produced novel results for the SSF experienced by a

scalar charge on inclined, eccentric geodesics in Kerr spacetime (Sec. 6.4). In the process of computing the

SSF for highly-eccentric (e = 0.8), equatorial orbits around a rapidly-rotating (a/M = 0.99) Kerr primary,

we verified the existence of previously observed [214] quasinormal excitations in the SSF (Sec. 7.3). We then

further searched for and observed quasinormal bursts (QNBs)—periodic bursts of quasinormal ringing—in

the asymptotically observed (scalar) waveform itself (Sec. 7.4) [172]. I then produced the first calculation

of the SSF due to rθ-resonant orbits (Sec. 8.3). Using these resonant results, I demonstrated that the

conservative component of the SSF makes a negligible, if not vanishing, contribution to the time-rate-of-

change of the Carter constant 〈Q̇〉tot during resonances. This provides the first calculation of strong-field

conservative effects during EMRI resonances, and is thus a key result of this dissertation.

Section 9.2: Future prospects

In future work, Evans and I hope to make a thorough survey of QNB strengths, including moving beyond

equatorial orbits. Eccentric, inclined orbits may source stronger QNB excitations and will likely excite non-

axial modes (l̂ 6= m). Part of this work will also focus on possible strategies for processing EMRI waveforms,

such as matching templates or co-adding waveform segments, to try and draw QNBs out of the detector noise.

I also plan on extending my investigation of EMRI rθ-resonances by collaborating with other researchers

to evolve scalar-charged EMRIs through resonances using my SSF results. This will provide a new step in

understanding the currently unquantified long term radiation-reaction effects that arise during resonances.

Moving forward, I will also explore the overlap between post-Newtonian (PN) theory and black hole

perturbation theory (BHPT). Analytic PN approximations can describe EMRIs in weak-field, low-frequency

regimes. Consequently, researchers have produced analytic PN expressions for the time-averaged gravita-

tional wave fluxes of EMRIs and expansions of conservative quantities, such as the generalized redshift

invariant [80, 107, 50, 143, 105, 131, 171]. Looking to extend this work, I am building a Mathematica code to

produce purely analytic PN expansions of scalar and gravitational self-force quantities for EMRIs with Kerr

MBH primaries to first-order in the mass-ratio. These PN expansions can then be incorporated in numerical

calculations to rapidly evaluate low-frequency solutions to the Teukolsky equation. Future work also aims

to incorporate PN results in the mode-sum regularization procedure to improve the convergence of self-force

results [124].

Lastly, I plan on generalizing many of the methods and techniques developed in this work to design a

new code that calculates gravitational wave fluxes and the gravitational self-force. Much of my SSF code
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is already set up to calculate gravitational as well as scalar perturbations using the Teukolsky formalism,

providing a firm foundation for this future work.
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[60] P. Cañizares and C. F. Sopuerta. Efficient pseudospectral method for the computation of the self-
force on a charged particle: Circular geodesics around a Schwarzschild black hole. Phys. Rev. D,
79(8):084020, April 2009.

[61] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower. Accurate evolutions of orbiting black-
hole binaries without excision. Physical Review Letters, 96:111101, Mar 2006.

[62] P. Canizares, C. F. Sopuerta, and J. L. Jaramillo. Pseudospectral collocation methods for the compu-
tation of the self-force on a charged particle: Generic orbits around a Schwarzschild black hole. Phys.
Rev. D, 82(4):044023, August 2010.

[63] S. M. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Cambridge University
Press, 2019.

[64] B. Carter. Global structure of the kerr family of gravitational fields. Phys. Rev., 174:1559–1571, Oct
1968.

[65] B. Carter. Axisymmetric Black Hole Has Only Two Degrees of Freedom. APhysical Review Letters,
26(6):331–333, February 1971.

[66] M. Casals, S. Dolan, A. C. Ottewill, and B. Wardell. Self-force calculations with matched expansions
and quasinormal mode sums. Phys. Rev. D, 79(12):124043, June 2009.

[67] M. Casals, S. Dolan, A. C. Ottewill, and B. Wardell. Self-force and Green function in Schwarzschild
spacetime via quasinormal modes and branch cut. Phys. Rev. D, 88(4):044022, August 2013.

[68] A. Castro, J. M. Lapan, A. Maloney, and M. J. Rodriguez. Black hole monodromy and conformal field
theory. Phys. Rev. D, 88(4):044003, August 2013.

[69] A. Castro, J. M. Lapan, A. Maloney, and M. J. Rodriguez. Black hole scattering from monodromy.
Classical and Quantum Gravity, 30(16):165005, August 2013.

182



[70] S. Chandrasekhar. On the Equations Governing the Perturbations of the Schwarzschild Black Hole.
Royal Society of London Proceedings Series A, 343:289–298, May 1975.

[71] S. Chandrasekhar and S. Detweiler. On the equations governing the axisymmetric perturbations of the
Kerr black hole. Royal Society of London Proceedings Series A, 345:145–167, August 1975.

[72] P. L. Chrzanowski. Vector potential and metric perturbations of a rotating black hole. Phys. Rev. D,
11:2042–2062, 1975.

[73] J. M. Cohen and L. S. Kegeles. Electromagnetic fields in curved spaces - a constructive procedure.
Phys. Rev. D, 10:1070–1084, 1974.

[74] G. Compère, K. Fransen, T. Hertog, and Y. Liu. Scalar self-force for high spin black holes. Phys. Rev. D,
101(6):064006, March 2020.

[75] C. T. Cunningham, R. H. Price, and V. Moncrief. Radiation from collapsing relativistic stars. I.
Linearized odd-parity radiation. Astrophys. J., 224:643–667, 1978.

[76] A. B. Olde Daalhuis and F. W. J. Olver. On the calculation of stokes multipliers for linear differential
equations of the second order. Methods Appl. Anal., pages 348–67, 1995.
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[170] J. Moxon and É. Flanagan. Radiation-reaction force on a small charged body to second order. Phys.
Rev. D, 97(10):105001, May 2018.

[171] C. Munna and C. R. Evans. Eccentric-orbit extreme-mass-ratio-inspiral radiation: Analytic forms
of leading-logarithm and subleading-logarithm flux terms at high PN orders. Phys. Rev. D,
100(10):104060, Nov 2019.

[172] Z. Nasipak, T. Osburn, and C. R. Evans. Repeated faint quasinormal bursts in extreme-mass-ratio
inspiral waveforms: Evidence from frequency-domain scalar self-force calculations on generic Kerr
orbits. Phys. Rev. D, 100(6):064008, September 2019.

[173] E. Newman and R. Penrose. An Approach to Gravitational Radiation by a Method of Spin Coefficients.
Journal of Mathematical Physics, 3:566–578, May 1962.

[174] Amos Ori. Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential
in Kerr spacetime. Phys. Rev. D, 67:124010, 2003.

[175] T. Osburn. Extreme-mass-ratio inspirals into a black hole. PhD thesis, The University of North
Carolina at Chapel Hill, 2016.

[176] T. Osburn, E. Forseth, C. R. Evans, and S. Hopper. Lorenz gauge gravitational self-force calculations
of eccentric binaries using a frequency domain procedure. Phys. Rev. D, 90:104031, Nov 2014.

[177] T. Osburn, N. Warburton, and C. R. Evans. Highly eccentric inspirals into a black hole. Phys. Rev.
D, 93:064024, Mar 2016.

[178] E. Poisson. Absorption of mass and angular momentum by a black hole: Time-domain formalisms
for gravitational perturbations, and the small-hole or slow-motion approximation. Phys. Rev. D,
70(8):084044, October 2004.

[179] E. Poisson. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University
Press, 2004.

[180] E. Poisson, A. Pound, and I. Vega. The motion of point particles in curved spacetime. Living Rev.
Rel., 14:7, 2011.

[181] E. Poisson and C. M. Will. Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge University

188



Press, Cambridge, UK, 1st edition, 2014.

[182] A. Pound. Nonlinear gravitational self-force. I. Field outside a small body. Phys. Rev. D, 86:084019,
2012.

[183] A. Pound. Second-order gravitational self-force. Physical Review Letters, 109:051101, 2012.

[184] A. Pound. Nonlinear gravitational self-force: Second-order equation of motion. Phys. Rev. D,
95(10):104056, May 2017.

[185] A. Pound, C. Merlin, and L. Barack. Gravitational self-force from radiation-gauge metric perturbations.
ArXiv e-prints, October 2013.

[186] A. Pound and J. Miller. Practical, covariant puncture for second-order self-force calculations. Phys.
Rev. D, 89(10):104020, May 2014.

[187] A. Pound and E. Poisson. Osculating orbits in Schwarzschild spacetime, with an application to extreme
mass-ratio inspirals. Phys. Rev. D, 77:044013, 2008.

[188] A. Pound, B. Wardell, N. Warburton, and J. Miller. Second-Order Self-Force Calculation of Grav-
itational Binding Energy in Compact Binaries. APhysical Review Letters, 124(2):021101, January
2020.

[189] W. H. Press and S. A. Teukolsky. Perturbations of a Rotating Black Hole. II. Dynamical Stability of
the Kerr Metric. Astrophys. J., 185:649–674, October 1973.

[190] F. Pretorius. Evolution of Binary Black Hole Spacetimes. Physical Review Letters, 95:121101, 2005.

[191] T. C. Quinn. Axiomatic approach to radiation reaction of scalar point particles in curved spacetime.
Phys. Rev. D, 62(6):064029, September 2000.

[192] T. C. Quinn and R. M. Wald. Axiomatic approach to electromagnetic and gravitational radiation
reaction of particles in curved spacetime. Phys. Rev. D, 56(6):3381–3394, Sep 1997.

[193] T. C. Quinn and R. M. Wald. Energy conservation for point particles undergoing radiation reaction.
Phys. Rev. D, 60(6):064009, September 1999.

[194] T. Regge and J. A. Wheeler. Stability of a Schwarzschild singularity. Phys. Rev., 108:1063–1069, 1957.

[195] C. S. Reynolds. The spin of supermassive black holes. Classical and Quantum Gravity, 30(24):244004,
Dec 2013.

[196] D. Rickles and C. M. DeWitt. The Role of Gravitation in Physics: Report from the 1957 Chapel
Hill Conference. The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference,
February 2011.

[197] N. E. M. Rifat, G. Khanna, and L. M. Burko. Repeated ringing of black holes: Quasinormal bursts
from highly eccentric, extreme mass-ratio binaries. Physical Review Research, 1(3):033150, December
2019.

[198] M. J. Rodriguez. sites.google.com/site/justblackholes/techy-zone.

[199] E. Rosenthal. Regularization of the second-order gravitational perturbations produced by a compact
object. Phys. Rev. D, 72:121503, 2005.

[200] U. Ruangsri and S. A. Hughes. Census of transient orbital resonances encountered during binary
inspiral. Phys. Rev. D, 89(8):084036, Apr 2014.

189

sites.google.com/site/justblackholes/techy-zone


[201] N. Sago, H. Nakano, and M. Sasaki. Gauge problem in the gravitational self-force. I: Harmonic gauge
approach in the Schwarzschild background. Phys. Rev. D, 67:104017, 2003.

[202] N. Sago, T. Tanaka, W. Hikida, K. Ganz, and H. Nakano. The adiabatic evolution of orbital parameters
in the Kerr spacetime. Prog. Theor. Phys., 115:873–907, 2006.

[203] M. Sasaki and T. Nakamura. A class of new perturbation equations for the kerr geometry. Physics
Letters A, 89(2):68 – 70, 1982.

[204] M. Sasaki and H. Tagoshi. Analytic Black Hole Perturbation Approach to Gravitational Radiation.
Living Reviews in Relativity, 6:6, November 2003.

[205] W. Schmidt. Celestial mechanics in Kerr spacetime. Class. Quant. Grav., 19:2743, 2002.

[206] A. G. Shah, J. L. Friedman, and T. S. Keidl. Extreme-mass-ratio inspiral corrections to the angu-
lar velocity and redshift factor of a mass in circular orbit about a Kerr black hole. Phys. Rev. D,
86(8):084059, October 2012.

[207] A. G. Shah, T. S. Keidl, J. L. Friedman, D.-H. Kim, and L. R. Price. Conservative, gravitational
self-force for a particle in circular orbit around a Schwarzschild black hole in a radiation gauge. Phys.
Rev. D, 83(6):064018, March 2011.

[208] J. H. Taylor and J. M. Weisberg. A new test of general relativity - Gravitational radiation and the
binary pulsar PSR 1913+16. Astrophys. J., 253:908–920, February 1982.

[209] S. A. Teukolsky. Perturbations of a rotating black hole. I. Fundamental equations for gravitational,
electromagnetic, and neutrino-field perturbations. Astrophys. J., 185:635–647, 1973.

[210] S. A. Teukolsky and W. H. Press. Perturbations of a rotating black hole. III. Interaction of the hole
with gravitational and electromagnetic radiation. Astrophys. J., 193:443–461, October 1974.

[211] The LIGO Scientific Collaboration and the Virgo Collaboration. GW190412: Observation of a Binary-
Black-Hole Coalescence with Asymmetric Masses. arXiv e-prints, page arXiv:2004.08342, April 2020.

[212] J. Thornburg and B. Wardell. Scalar self-force for highly eccentric orbits in Kerr spacetime. 2014.
17th Capra Meeting on Radiation Reaction in General Relativity, Caltech, California, USA.

[213] J. Thornburg and B. Wardell. Scalar self-force for highly eccentric orbits in Kerr spacetime. 2016.
19th Capra Meeting on Radiation Reaction in General Relativity, Paris Observatory, France.

[214] J. Thornburg and B. Wardell. Scalar self-force for highly eccentric equatorial orbits in Kerr spacetime.
Phys. Rev. D, 95(8):084043, April 2017.

[215] J. Thornburg and B. Wardell. Scalar self-force for highly eccentric orbits in Kerr spacetime. 2017. 20th
Capra Meeting on Radiation Reaction in General Relativity, University of North Carolina at Chapel
Hill, USA.

[216] J. Thornburg, B. Wardell, and M. van de Meent. Excitation of kerr quasinormal modes in extreme-
mass-ratio inspirals. Phys. Rev. Research, 2:013365, Mar 2020.

[217] K. S. Thorne. Multipole expansions of gravitational radiation. Rev. Mod. Phys., 52(2):299–339, Apr
1980.

[218] W. Throwe. High precision calculation of generic extreme mass ratio inspirals, 2010.
http://hdl.handle.net/1721.1/61270.

[219] C. S. Unnikrishnan. IndIGO and Ligo-India Scope and Plans for Gravitational Wave Research and

190



Precision Metrology in India. International Journal of Modern Physics D, 22:1341010, January 2013.

[220] M. van de Meent. Conditions for sustained orbital resonances in extreme mass ratio inspirals. Phys.
Rev. D, 89(8):084033, April 2014.

[221] M. van de Meent. Resonantly enhanced kicks from equatorial small mass-ratio inspirals. Phys. Rev.
D, 90(4):044027, Aug 2014.

[222] M. van de Meent. Gravitational self-force on eccentric equatorial orbits around a kerr black hole. Phys.
Rev. D, 94:044034, Aug 2016.

[223] M. van de Meent. The mass and angular momentum of reconstructed metric perturbations. Classical
and Quantum Gravity, 34(12):124003, June 2017.

[224] M. van de Meent. Gravitational self-force on generic bound geodesics in Kerr spacetime. Phys. Rev.
D, 97, May 2018.

[225] M. van de Meent and A. G. Shah. Metric perturbations produced by eccentric equatorial orbits around
a Kerr black hole. Phys. Rev. D, 92(6):064025, September 2015.

[226] M. van de Meent and N. Warburton. Fast self-forced inspirals. Classical and Quantum Gravity,
35(14):144003, July 2018.

[227] I. Vega and S. Detweiler. Regularization of fields for self-force problems in curved spacetime: Founda-
tions and a time-domain application. Phys. Rev. D, 77(8):084008, April 2008.

[228] I. Vega, P. Diener, W. Tichy, and S. Detweiler. Self-force with (3+1) codes: A primer for numerical
relativists. Phys. Rev. D, 80(8):084021, October 2009.

[229] I. Vega, B. Wardell, P. Diener, S. Cupp, and R. Haas. Scalar self-force for eccentric orbits around a
Schwarzschild black hole. Phys. Rev. D, 88(8):084021, October 2013.

[230] C. V. Vishveshwara. Stability of the Schwarzschild metric. Phys. Rev. D, 1:2870–2879, 1970.

[231] R. M. Wald. On perturbations of a Kerr black hole. J. Math. Phys., 14:1453, 1973.

[232] R. M. Wald. Construction of solutions of gravitational, electromagnetic, or other perturbation equa-
tions from solutions of decoupled equations. Physical Review Letters, 41:203–206, 1978.

[233] M. Walker and R. Penrose. On quadratic first integrals of the geodesic equations for type {22}
spacetimes. Communications in Mathematical Physics, 18:265–274, December 1970.

[234] N. Warburton. Self-force on a scalar charge in Kerr spacetime: Inclined circular orbits. Phys. Rev. D,
91(2):024045, January 2015.

[235] N. Warburton, S. Akcay, L. Barack, J. R. Gair, and N. Sago. Evolution of inspiral orbits around a
schwarzschild black hole. Phys. Rev. D, 85:061501(R), Mar 2012.

[236] N. Warburton and L. Barack. Self-force on a scalar charge in Kerr spacetime: Circular equatorial
orbits. Phys. Rev. D, 81(8):084039, April 2010.

[237] N. Warburton and L. Barack. Self-force on a scalar charge in Kerr spacetime: Eccentric equatorial
orbits. Phys. Rev. D, 83(12):124038, June 2011.

[238] N. Warburton, L. Barack, and N. Sago. Isofrequency pairing of geodesic orbits in Kerr geometry. Phys.
Rev. D, 87(8):084012, Apr 2013.

191



[239] N. Warburton, T. Osburn, and C. R. Evans. Evolution of small-mass-ratio binaries with a spinning
secondary. Phys. Rev. D, 96(8):084057, October 2017.

[240] N. Warburton and B. Wardell. Applying the effective-source approach to frequency-domain self-force
calculations. Phys. Rev. D, 89(4):044046, February 2014.
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