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HIV type 1 (HIV-1) persists within resting CD4+ T cells despite anti-
retroviral therapy (ART). To better understand the kinetics by
which resting cell infection (RCI) is established, we developed
a mathematical model that accurately predicts (r = 0.65, P = 2.5 ×
10−4) the initial frequency of RCI measured about 1 year postin-
fection, based on the time of ART initiation and the dynamic
changes in viremia and CD4+ T cells. In the largest cohort of
patients treated during acute seronegative HIV infection (AHI) in
whom RCI has been stringently quantified, we found that early
ART reduced the generation of latently infected cells. Although RCI
declined after the first year of ART in most acutely infected
patients, there was a striking absence of decline when initial RCI
frequency was less than 0.5 per million. Notably, low-level viremia
was observed more frequently as RCI increased. Together these
observations suggest that (i) the degree of RCI is directly related to
the availability of CD4+ T cells susceptible to HIV, whether viremia
is controlled by the immune response and/or ART; and (ii) that two
pools of infected resting CD4+ T cells exist, namely, less stable cells,
observable in patients in whom viremia is not well controlled in
early infection, and extremely stable cells that are established de-
spite early ART. These findings reinforce and extend the concept
that new approaches will be needed to eradicate HIV infection,
and, in particular, highlight the need to target the extremely small
but universal, long-lived latent reservoir.

HIV latency | viral kinetics

The persistence of HIV infection despite antiretroviral therapy
(ART) is a challenge. Infection quickly establishes viral res-

ervoirs that provide a persistent source of recrudescent viremia
following the interruption of ART. HIV reservoirs have been
characterized as cells or tissues that restrict virus replication and
preserve replication-competent HIV for long periods of time (1).
Of these reservoirs, the latent proviral reservoir within resting
CD4+ memory T cells is conceptually the most challenging ob-
stacle to viral eradication. The capacity of HIV-1 to establish
latent infection within a population of infected but resting CD4+

T cells allows viral persistence despite immune surveillance or
ART. The precise measurement of the reservoir of resting CD4+

T-cell infection (RCI) requires a stringent assay that measures
replication-competent HIV recovered from these cells, and does
not reflect forms of HIV DNA that cannot produce infectious
virions: unintegrated linear or circularized molecules, or the
predominant population of integrated proviruses that encode
dysfunctional genomes (1).
Proviral latency is established in resting CD4+ T cells during

early HIV infection (2). It is thought to be established pre-
dominantly by the return of infected, cycling cells to the resting
state, although direct infection of resting cells may also play

a role (3). The frequency of resting CD4+ T-cell infection is
thought to represent a balance of the following: (i) the entry of
virus into this pool via direct infection of resting cells, or the
return to G0 of infected activated cells; and (ii) the loss of cells
from this pool by death or activation of infected resting cells,
processes that may be influenced by the levels of immune acti-
vation and viral replication. The homeostatic proliferation of
infected resting CD4+ T cells in the absence of viral expression
or infected cell clearance was recently proposed to influence the
frequency of RCI (2, 4–6).
Patients treated with ART during acute HIV infection (AHI)

present a unique opportunity to study the founding of the res-
ervoir of RCI, as in these cases the duration and extent of viremia
is better defined than in patients diagnosed after chronic infection
has been established. We studied a cohort of patients identified in
AHI via the North Carolina STAT program and the Center for
HIV-AIDS Vaccine Immunology (CHAVI) who initiated ART
within 45 d of the estimated date of infection (7).
To understand the effect of ART during seronegative HIV

infection on the frequency of latently infected cells we used a
mathematical model to analyze patient data that includes viral
load, CD4+ T-cell counts, and the frequency of latently infected
cells in HIV patients receiving ART during acute infection. We
found a statistically significant correlation (r=0.65,P=2.5× 10−4)
between the measured frequency of latently infected cells and our
model prediction showing that themodel can describe the data.We
show that latently infected cells are largely generated before the
initiation of ART during early infection, and that the frequency of
latently infected cells often decays during initial antiviral therapy.
Our model also suggests that earlier treatment initiation reduces
the number of latently infected cells remaining at the time of
measurement. These results suggest that the degree of latent in-
fection can be limited by early ART during acute HIV infection.

Methods
Patient Cohort. We studied a cohort of 27 patients identified in AHI (plasma
HIV RNA detected andHIVWestern blot negative). One patient (S25) initiated
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ART 6 mo after the date of infection; all others initiated ART within 45 d of
the estimated date of infection. All patients provided written informed
consent, and studies were approved by the University of North Carolina
Institutional Review Board. Serial measurements of plasma viremia and CD4+

cell count were performed, and when patients were aviremic (<50 HIV RNA
copies/mL) on ART for >6 mo, cells were obtained by continuous-flow leu-
kopheresis to measure RCI (8). In 11 of these patients available for study,
serial measurements of RCI were performed.

We have previously calculated the SD of our RCI assay performed on
different days to be 0.3 log10 or roughly a factor of 2 (8). This value was
calculated using a dataset with a large number of assays, and makes the
conservative assumption that there is never any real decline of RCI. There-
fore, the true variance of our assay is likely to be lower.

Model. We consider the following variant of a mathematical model (9):

dI
dt

¼ gβVðtÞTðtÞ þ aL− δI; [1]

dL
dt

¼ fβVðtÞTðtÞ− μL;       μ ¼ aþ δL; [2]

in which the target cell level, T(t), and the plasma viral load, V(t), will be
specified by the data rather than by explicit equations. Here, I and L rep-
resent the density of productively infected cells and latently infected cells,
respectively. Target cells become infected at a rate proportional to the
product of target cell density and virus concentration with a rate constant β.
We assume that a fraction, f, of infection events generates latently infected
cells with replication competent genomes, a fraction contains “dead” pro-
viruses detectable by PCR but incapable of reactivation, and the remaining
fraction of infection events, g, leads to productively infected cells. Latently
infected cells become productively infected at rate a due to stimulation.
Productively infected cells and latently infected cells die at rates δ and δL,
respectively. During ART, the infection rate β is reduced to the rate (1-ε)β,
where ε represents antiviral drug efficacy. A schematic diagram of the model
is shown in Fig. S1.

Statistical Analysis. We approximated the uninfected target cell density, T(t),
by the CD4 count. As shown in Fig. 1, the CD4+ T-cell counts measured after
the start of ART changed approximately linearly with time. Thus, we per-
formed linear regression to obtain a function approximating T(t) for the
time after the initiation of therapy. Moreover, early in HIV-1 infection,
a reduction in CD4 count is typically observed (10, 11). Therefore, from the
time of infection, t = 0, to a certain time t = tm, we assume that T(t) declines
linearly from the initial CD4+ T-cell count, T0 (Fig. 1). Similarly, the viral load
V(t) was approximated by a cubic-spline curve fitted to the viral load data
(Fig. 1) using the ‘spline.m’ function in MATLAB (MathWorks). For viral load
measurements below the detection limit (i.e., 50 HIV-1 RNA copies/mL), we
assumed that the viral loads were 25 HIV-1 RNA copies/mL (12). However, we
note that choice of a value for undetected viral load does not alter our
conclusions as we compute the total area under the viral load curve, which is
mainly influenced by the peak viral load. For seven of the 27 patients, we
obtained an unrealistic viral load spline curve before the time of ART initi-
ation due to limited data before ART. In those cases, we approximated the
early viral kinetics by assuming that the viral load increased exponentially
from some initial viral load, V0, to the first viral load measured. Such ex-
ponential increases in viral load have been observed in other studies (13).
We choose V0 = 0.001 HIV RNA copies/mL as done by Stafford et al. (14)
when fitting a model to the kinetics of AHI. Making this value 3 logs lower
or 3 logs higher has a negligible influence on our final results. Using T(t) and
V(t) approximated from the data, we calculated the latently infected cell
density at the final time, tF, i.e., the time at which latently infected cells were
first measured by leukopheresis. Solving the model given by Eqs. 1 and 2
one finds

LðtFÞ ¼ e− μtF L0 þ e− μtF fβ
Z tH

0
VðτÞTðτÞeμτdτ

þ e− μtF fð1− εÞβ
Z tF

tH
VðτÞTðτÞeμτdτ; [3]

where tH is the time of ART initiation, and L0 is the initial latently infected
cell density at t = 0, the time of infection. Because it is unlikely that latently
infected cells were transmitted at the time of infection we set L0 = 0. Fur-
thermore, the values of the parameters f and β are not known for each
patient. Thus, we assumed them to be the same for all patients and use L/fβ,

i.e., the number of latently infected cells in arbitrary units, as a measure of
the predicted density of latently infected cells in each patient. Assuming that
f and β are the same for all patients might have some effect on our results, as
patients could differ in infecting viral quasi-species and in the susceptibility
of their CD4+ T cells to infection.

We also calculated areas under the V(t), T(t), and V(t)T(t) curves from the
time of infection to the time of ART initiation, from the time of ART initiation
to the time latently infected cells were measured and from the time of in-
fection to the final time. Using the Statistical Toolbox in MATLAB (Math-
Works), we carried out correlation analysis between these areas and the
measured frequency of RCI. For our initial computation we used T0 = 1000/μL,
μ = 0.0039/d (corresponding to a latently infected cell half-life of 6mo (15, 16)),
ε = 0.75 (17), and tm = tH, the time of ART initiation. However, there are
uncertainties about these values; for example, in some studies (18, 19) the half-
life of latently infected cells has been estimated as 44 mo, the drug efficacy ε
could be higher than 0.75, as observed in Louie et al. (17) for certain drug
regimes, and T0, the T-cell count before HIV-1 infection can vary among
patients, as can the amount of initial CD4+ T-cell decline after infection (20–
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Fig. 1. Spline curve fit to the patient viral load data and a biphasic linear fit
to the patient CD4 count data for four representative patients. Vertical
dashed line indicates the time of ART initiation; horizontal dash–dot line
represents the assay detection limit. Filled circles denote measured HIV RNA
copies/mL; open circles denote values below the limit of quantification. The x
axis for each patient extends from the estimated time of infection to the
time of first leukopheresis, at which time the RCI frequency was measured.
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22). Therefore, we performed a sensitivity analysis to examine the effects of
using different values of T0, tm, μ, and ε.

Results
Model vs. Data.Viral load and CD4+ T-cell count data, along with
the approximating curves V(t) and T(t), are shown in Fig. 1 for
representative patients (S19, S31, S237, and S241). We com-
pared the latently infected cell frequency predicted by the model
for each subject with the initial RCI frequency measured 6–12
mo after ART initiation. Note that the frequency of latently
infected cells predicted by our model is given by L/(T+I+L).
However, latently infected cell frequency is typically only a few
cells per million, and at the time of leukopheresis there are few
infected cells, as most infected cells live only for a short time and
ART largely prevents the infection of new cells. Thus, by the
time our samples are taken 6 mo or more after ART was initi-
ated, L and I can be ignored in the denominator, and latently
infected cell frequency at the time of leukopheresis is approxi-
mately given by L(tF)/T(tF). We found a statistically significant
correlation between the predicted and measured RCI frequen-
cies (r = 0.65, P = 2.5 × 10−4) (Fig. 2), where the predicted
frequency is given in arbitrary units (as in Methods).

Correlation Analysis of Latently Infected Cells. We also sought to
determine whether the measured frequency of latently infected
cells might correlate with simpler viral dynamic features. We
analyzed the correlation of the frequency of latently infected
cells with the area under the viral load curve, the CD4+ T-cell
count curve, and the product of viral load and the CD4+ T-cell
count curve [which differs from the model in Eq. 3 in that it does
not take into consideration the lifespan of latently infected
cells (μ)].
Given that high levels of plasma viremia (23–26) and global

activation of CD4+ T cells (27) are seen during primary infection,
it has been speculated that viral replication (or accumulated vi-
rus) during this period could make a significant contribution to
the establishment of latently infected resting CD4+ T cells (28,
29). This period is thus thought to be the most amenable to
therapeutic intervention for the purposes of preventing the es-
tablishment of latently infected cell reservoirs (28). Supporting
this argument, our analysis also shows a significant positive cor-
relation (r = 0.40, P = 0.0401) between the RCI frequency and
the area under the pretreatment viral load curve (Fig. S2).
We could not find any statistically significant correlation be-

tween the measured RCI frequency and the areas under the T(t)
curve or V(t)T(t) curve from the time of infection to the time of
ART initiation. However, the RCI frequency showed a signifi-
cant positive correlation with the areas under the V(t) and V(t)T

(t) curves and a significant negative correlation with area under
the T(t) curve from the time of ART initiation to the time of
leukopheresis (Fig. S2). Moreover, RCI frequency also had sig-
nificant correlations with the total areas under the V(t), T(t), and
V(t)T(t) curves from the time of infection to the time of leuko-
pheresis (Fig. S2).

Dynamics of Latently Infected Cells. To study RCI over time, we
simulated the dynamics of latently infected cells predicted by the
model (Fig. 3). The simulations show that RCI is largely gen-
erated before ART initiation (Fig. 3). Once ART is initiated, the
frequency of latently infected cells declines in most patients,
supporting the contention that ART during early infection can
reduce RCI. It is noteworthy that after effective ART initiation,
few latently infected cells should be generated, and their fre-
quency should decline as existing latently infected cells die or
become productively infected cells.

Sensitivity Analysis. We performed a sensitivity analysis of the
correlation between the frequency of latently infected cells pre-
dicted by our model and their measured values by changing the
values of T0, tm, μ, and ε used in Eq. 3. Changing the initial CD4+

T-cell count, T0, from 600/μL to 1600/μL did not make any change
in the P values or r values obtained. We assumed that the time the
minimum CD4 count was attained tm = tH, the time of ART ini-
tiation for our baseline computation. However, some studies (10)
show a decline of CD4+ T cells for the first few weeks of illness
only. Thus, we repeated the analysis taking tm = 7, 14, 21, 28, 35,
and 42 d, and found that the correlation always remained statis-
tically significant, with P values lying in the range 2.5–3.2 × 10−4

(range of r = 0.64–0.65). On changing μ = loge(2)/180 d−1 [cor-
responding to 6 mo half-life (t1/2) for latently infected cells, as
elsewhere (15, 16)] to μ= loge(2)/1320 d

−1 (corresponding to t1/2=
44 mo) as published (18, 19), the significance of the correlation is
preserved with a slight increase in P value from 2.5 × 10−4 to 6.8 ×
10−4 and decrease in r from 0.65 to 0.61. Also, the drug efficacy
could be lower or higher than the value of 0.75 taken in our base
case. Thus, we performed the correlation analysis by taking various
values of ε ranging from 0.5 to 0.99. In this range of ε, the corre-
lation always remained statistically significant with the P value
varying between 2.2 × 10−4 and 6.9 × 10−4, and r varying between
0.61 and 0.65. The fact that even low values of ε generated statis-
tically significant correlations suggests that most latently infected
cells are generated before ART initiation and particularly early in
infection, when both viral loads and T-cell counts are high.

Low-Level Viremia Measured by a Single-Copy Assay Is Associated
with RCI Frequency. Approximately 80% of patients on ART with
clinically undetectable viremia have stable, persistent, low-level
viremia when tested with more sensitive methods (30). In most
patients, viral genotypes closely related to those that populate
this small plasma pool can be found in resting CD4+ T cells, but
this is not always the case (31, 32). We therefore measured low-
level viremia using a single-copy assay (SCA) (33) in these
patients treated during AHI (Fig. 4A) and in a comparator group
of patients treated in chronic HIV infection (CHI) (Fig. 4B),
seeking an association between SCA viremia and RCI frequency.
In both cohorts, SCA viremia was frequently undetectable (<1
copy/mL) when RCI frequency was <0.3/ million resting CD4+ T
cells. Low-level viremia was observed in none of four AHI
patients with RCI <0.3 per million, and in four of six patients
with RCI > 0.3 per million (Fischer’s two-tailed P = 0.076). A
similar trend was observed in 12 CHI patients (one of six and five
of six, respectively, P = 0.08), and a significant association (P =
0.04) was seen with the 22 patients evaluated as a group. This
observation is consistent with the hypothesis that SCA viremia is
the result of expression of a fraction of proviral genomes within
the resting cell population.
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RCI Frequency over Time. The initial evaluation of RCI frequency,
which was used to compare with the theoretical analysis above,
was performed within the first year of ART suppression. How-
ever, 11 patients in this cohort remained on ART (Table S1), and
RCI frequency was periodically determined.
Initial RCI in this cohort ranged widely, from more than 12

IUPM to as little as 0.031 IUPM. In three of four patients in
whom initial RCI was > 5 IUPM, a precipitous decline of RCI,
with mean t1/2 = 5.1 mo, was seen during the initial months of
this follow-up period (S257, S368, S416; Table 1 and Fig. 5). In
the fourth patient (S25), RCI also declined over time, but with
slower and noisier kinetics that resulted in a decay slope that was
not significantly different from zero (Table 1 and Fig. 5). The
decay of RCI was similar to that observed in several patients
reported by Chun et al. (34). However, in patients with an initial
RCI frequency of <5 IUPM (S231, S256, S521, S396, and S237;
Fig. 5), the decay of RCI was significantly slower, mean t1/2 =
13.7 mo, and in the two patients (S26 and S520) with very low
initial RCI (< 0.1 IUPM) there was no decay observed (Table 1
and Fig. S3). Interestingly, in the patients in whom decay was
significant, the decay was exponential (Fig. 5) and thus consistent
with the mathematical model (Eq. 2).

Discussion
Resting CD4+ T-cell infection, an obstacle to eradication of HIV
infection, is established during acute HIV infection (28, 29). We
used a mathematical model to analyze the viral load, CD4+ T-
cell counts, and the frequency of latently infected cells for HIV
patients given ART during acute infection. We found a highly
significant correlation (r = 0.65, P = 2.5 × 10−4) between the
model prediction of latently infected cell frequency and the ex-
perimental measurements, showing that the model can explain
the patient data.
Nonetheless, we acknowledge some limitations of our model.

As in previous models (9, 35), we considered the experimentally
measured peripheral blood CD4+ T-cell count and plasma HIV
viral load as measures of target cell and viral density. These

quantities may vary in different tissues, and the fraction of CD4+

T cells in blood may change during therapy due to changes in
tissue viral burden. Also, as in previous models of latency (6, 9),
we did not consider the possibility of productively infected cells
surviving and reverting to a resting state, a scenario suggested to
be unlikely by Chun et al. (36).
Rapid decay of RCI after ART in acute or early HIV infection

has been reported in a study of seven patients (34). In our co-
hort, in patients with higher initial levels of RCI, a larger, less
stable population of cells appears to decay after several years of
ART, consistent with an earlier observation in chronically
infected patients (37). In patients with early containment of RCI,
this smaller pool of persistently infected cells appears to be
highly stable, as does a larger pool of resting CD4+ cells mea-
sured over time in chronic infection (38). Possible mechanisms
for these differences include infection of different populations of
memory cells, potent restriction of proviral expression in some
cells (e.g., chromatin modifications, or cotranscriptional effects
surrounding the proviral integration site), or combinations of
these effects. Whether the apparent difference in decay kinetics
of RCI defines biological differences in latency is an important
area for study as strategies to attack RCI are developed.
Our analysis demonstrates that there is a significant correla-

tion of the RCI frequency measured after suppression of viremia
with the area under the viral load curve from the time of in-
fection to the time of ART initiation. This positive correlation
between the frequency of latently infected cells and the area
under the pretreatment viral load curve suggests that early
treatment during primary infection, which reduces the area un-
der the pretreatment viral load curve, reduces the number of
latently infected cells. This is especially so in the majority of
patients in whom the innate and adaptive immune response do
not rapidly and stringently contain HIV replication. In our co-
hort of all patients with AHI, the median observed peak of vi-
remia is nearly 600,000 copies/mL and can be as high as 84
million copies/mL (7).
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It is worth mentioning that Chun et al. (28) did not find a
significant correlation between the frequency of latently infected
resting CD4+ T cells and the time of initiation of ART after the
onset of symptoms of primary HIV-1 infection. Due to significant
variations of viral load dynamics among patients from the time
of infection to the time of ART initiation, such a correlation
analysis cannot account for the viral load dynamics during early
infection. On the other hand, the area under the viral load curve
considered here takes into account both the viral load that drives

the generation of latently infected cells before ART and the time
to ART initiation. Our observations are consistent with models
in which the generation of latent infection proceeds with similar
kinetics during acute and chronic infection.
Because target cells are lost due to infection, we also asked

whether there was correlation between the area under the CD4+

T-cell curve and the level of latently infected cells. Viral kinetic
theory does not predict any such correlation, and we did not find
any significant correlation between the frequency of latently
infected cells and the area under the T-cell curve before the
initiation of ART. However, the area under the T-cell curve
calculated after ART began was negatively correlated with the
frequency of latently infected cells. This may be an indirect effect
whereby patients with lower CD4+ T-cell counts had higher
levels of infection that generated more latently infected cells.
We found that latently infected cells are efficiently generated

during primary infection from initiation of infection up to the
time of ART. It is this critical period, during which viral loads are
high and the immune system may not be in a hyperactivated
state, that virions may be more likely to encounter and to infect
(albeit inefficiently) CD4 cells that are not maximally activated.
Such encounters may be more likely to result in a latent, rather
than a productive, infection (3).
Once ART is initiated, there are many fewer infections gen-

erating fewer latently infected cells. Therefore, the density of the
latently infected cells is predicted to decay during ART. None-
theless, viral kinetic theory suggests that if there is a constant
probability that infection of a target cell will lead to the gener-
ation of a latently infected cell, then the total number of latently
infected cells should be proportional to the total number of in-
fection events before and after ART. Consistent with this, we
found a significant correlation between the frequency of latently
infected cells and net infection, as given by Eq. 3, i.e., the area
under the V(t)T(t) curve corrected for the effects of latently
infected cell loss.
The longitudinal nature of this study allowed examination of

the stability of the latently infected cell reservoir in patients in
whom ART was initiated during AHI. In patients on ART rapid
depletion of RCI was observed, as previously reported (34).
However, this process was not uniform across all patients, or
across all infected resting CD4+ T cells within a patient. We
noted a population of persistently infected resting CD4+ T cells
could be observed, usually at a frequency <0.5 per million (Fig.
S3 and Table 1). Critically, there was no appreciable decay of
infection in this rare population of resting CD4+ T cells. This
observation may be related to the apparently stable low level of
viremia observed in ART-treated patients after several years of
suppression (39).
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Fig. 4. Comparison of low-level viremia (single-copy assay) and RCI fre-
quency in (A) acutely treated and (B) chronically treated HIV-1–infected
patients labeled A–L.

Table 1. Characteristics of RCI decay

Initial RCI Decay rate Half-life of RCI
Patient (per million) (per month) P value* (mo)

Patients with initial RCI >5 IUPM
S257 11.3 0.081 NA 8.6
S368 10.3 0.17 NA 4.1
S416 5.1 0.27 NA 2.6
S25 >5.2 0.025 0.139 27.7

Patients with initial RCI <5 IUPM
S231 1.24 0.028 0.016 24.8
S256 1.2 0.055 0.034 12.6
S521 0.98 0.09 NA 7.7
S396 0.92 0.12 0.11 5.8
S237 0.31 0.039 0.033 17.8

Patients with initial RCI <0.1 IUPM
S26 0.064 −0.032 0.034 NA
S520 0.095 −0.041 0.557 NA

*For patients with only two RCI measurements, a P value cannot be com-
puted for the decay rate being different from zero.
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Of note, in our experience with the RCI assay, the frequency
of RCI in patients with chronic HIV infection who have been
stably and successfully treated for several years is similar, usually
∼0.5 infected cells per million resting CD4+ T cells (8, 40, 41).
One conceptual model that would unify these observations is
that “short-lived” latent infections decay over the first 2 y of
therapy, as they might represent cells that recognize common
antigens that are more likely to be reactivated (37), or proviruses
that are less restricted by cellular mechanisms such as histone
modification or transcriptional interference and are similarly
more likely to be reactivated, or both. Conversely, we hypothe-
size there exists a population of “long-lived” or deeply latent
infections that do not decay, as they represent cells that recog-
nize rare antigens, or contain proviruses that are heavily re-
stricted by cellular mechanisms, or both. It is also possible that
this population may be capable of self-renewal.
If this conceptual model is correct, in patients treated in AHI,

there is less opportunity for rare events that establish “deep”
latent infections, in comparison with patients treated later. Re-
stricting the opportunity for these rare events might be thought
of as a vaccine goal—durable, persistent infection may not be
established despite early infection and replication events, if the
frequency of these events is limited by the immune response to

a level that is below that required to generate “deep” latent in-
fections. Although not included in the model, this study may
define a very long-lived population, one for which data are not
available to allow a mathematical analysis.
In future studies aimed at eradicating persistent infection,

patients treated in AHI might be ideal candidates for protocols
in which ART interruption is eventually envisioned. Given the
report of rapid viral rebound after ART interruption in a single
such patient (38), this small enclave of residual infection may be
one of great clinical significance, and special efforts to devise an
effective therapeutic strategies to prevent “deep” latency during
AHI, or target them once established, are essential.
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