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The formation of a latent reservoir of Human Immunodeficiency Virus (HIV†) infection hidden from 
immune clearance remains a significant obstacle to approaches to eradicate HIV infection. Towards 
an understanding of the mechanisms of HIV persistence, there is a growing body of work implicating 
epigenetic regulation of chromatin in establishment and maintenance of this latent reservoir. Here we 
discuss recent advances in the field of chromatin regulation, specifically in our understanding of the 
histone code, and how these discoveries relate to our current knowledge of the chromatin mechanisms 
linked to HIV transcriptional repression and the reversal of latency. We also examine mechanisms 
unexplored in the context of HIV latency and briefly discuss current therapies aimed at the induction of 
proviral expression within latently infected cells. We aim to emphasize that a greater understanding of 
the epigenetic mechanisms which govern HIV latency could lead to new therapeutic targets for latency 
reversal and clearance cure strategies.
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INTRODUCTION

Over 30 years after the identification of Human Im-
munodeficiency Virus (HIV) and an intense focus on pre-
vention research, there are still over 2 million new infec-
tions every year across the world [1]. Improved public 
health and education outreach programs, increased STD 

testing, easier access to antiretroviral drugs, and recent 
studies showing the effectiveness of pre-exposure prophy-
laxis (PrEP) have all been significant contributors to the 
decline in new HIV cases since the peak of the epidemic, 
however, a preventative vaccine remains elusive. Despite 
these improvements and the high efficacy of antiretroviral 
therapy (ART) in diverse clinical settings, it is estimat-



ed only 46 percent of persons living with HIV were on 
ART by the end of 2015 [1]. There continues to be a dis-
proportionally high burden of infection in Sub-Saharan 
Africa, which accounts for two-thirds of new infections 
[1]. Even here in the United States, at the end of 2012 1 
in 8 people are unaware they were living with HIV [2]. 
These statistics reaffirm that despite effective treatment 
and increasingly effective prevention methods, without a 
change in the status quo of tools used to respond to the 
HIV pandemic, the virus is and will continue to be a per-
sistent human pathogen.

While there are still public health issues which result 
in the chronic HIV burden worldwide, diagnosis com-
bined with ART compliance have resulted in the ability 
of HIV-infected individuals to live a normal life-span [3]. 
As such, the field of HIV research has taken a significant 
shift towards identification of a functional or sterilizing 
cure, defined as control of infection without need for 
ART or clearance of all virus from an individual respec-
tively [4]. If achieved and implemented in combination 
with current prevention strategies, the potential exists 
to eradicate HIV globally. A significant obstacle to cure 
research is the latent reservoir of HIV. Established very 
early in infection in resting CD4+ T-cells, these latent 
cells are indistinguishable from healthy cells and are one 
source of viral rebound upon halting ART. One strategy 
that has emerged from new research towards an HIV cure 
has been popularly labeled “shock and kill” [5]. A two 
component system, this strategy envisions the reversal of 
latency to reveal the latent virus reservoir, followed by 
clearance of these cells by a native or engineered immune 
response within infected individuals [5]. 

The latency reversal (“shock”) portion of this cure 
strategy has focused on inducing expression of HIV to 
a level detectable by immune clearance mechanisms via 
the use of host-targeted therapies termed latency reversal 
agents (LRAs) [6]. Reversal of HIV latency has focused 
on the two main mechanisms of transcriptional repres-
sion, restriction of critical host factors and epigenetic 
repression of the integrated provirus. There is a signifi-
cant understanding of the host factors and mechanisms 
that govern successful transcription of HIV [7]. However, 
there is still work to be done in understanding the epi-
genetic mechanisms that repress the viral DNA, how the 
modulation of these restrictions impacts viral transcrip-
tion, and if successful therapeutic induction of viral tran-
scription via targeting of these epigenetic blocks might 
lead to recognition and clearance of latent cells. Here we 
will focus primarily on the role of the histone code in 
transcriptional activation and repression of HIV latency 
and highlight new discoveries in the field of epigenetics 
which may have functional relevance in transcriptional 
silencing. We will also briefly examine current LRAs, 
their mechanisms, and the effectiveness of these treat-

ments. Ultimately, we hope to emphasize that a greater 
understanding of the molecular mechanisms which gov-
ern HIV latency could lead to new targets for epigene-
tic-based LRAs for latency reversal and clearance cure 
strategies.

TRANSCRIPTIONAL ACTIVATION OF HIV

The events which govern successful transcription-
al activation of HIV are a well characterized cascade of 
events featuring both major and minor players. For the 
purpose of this review, we will highlight the critical fac-
tors but aim to emphasize one point: successful reactiva-
tion of latent HIV requires both the release of host factors 
restricted in resting CD4+ T-cell in combination with a 
change in the repressive chromatin structure of the in-
tegrated virus. In resting CD4+ T-cells, various host pro-
teins critical to driving HIV transcription such as NF-kB, 
NFAT, and P-TEFb are sequestered or are present at low 
levels [8]. T-cell activation via TCR signaling can remove 
these restrictions to allow recruitment to the viral promot-
er. While only NF-kB and Sp1 are required for activation 
of the LTR, binding of these and other non-essential host 
transcription factors results in minimal but sufficient tran-
scriptional initiation and elongation by RNA polymerase 
II (RNAPII) to produce the multi-spliced Tat transcript. 
Minimal activation of the LTR also results in unproduc-
tive RNAPII transcripts approximately 60 nucleotides 
in length which encode the viral non-coding RNA TAR. 
TAR forms into a stem-loop structure that is recognized 
and bound by Tat. The Tat/TAR interaction helps to ini-
tiate a positive feedback loop at the LTR via Tat-mediat-
ed recruitment of various proteins such as P-TEFb and 
histone acetyltransferases which aid to drive sustained 
productive elongation from the viral promoter. As such, 
successful production of Tat is a critical driver in latency 
reactivation [9]. For those interested, the mechanisms of 
viral activation have been reviewed in far greater detail in 
the following [9-13].

EPIGENETIC CONTROL OF HIV 
TRANSCRIPTION

Concomitant with the binding of host transcription 
factors and the production of Tat, a sequence of events 
must also occur to change the local chromatin environ-
ment from a repressive to a transcriptionally permissive 
state. Epigenetic modifications which alter chromatin 
structure and transcriptional activity include DNA meth-
ylation and histone modifications. In the context of HIV, 
a role for DNA methylation has been long debated but 
looks not to be involved in transcriptional repression of 
HIV [14] whereas histone modifications appear to have a 
more functional role. A nucleosome consists of 146 base 



pairs of DNA wrapped around an octamer of four histone 
proteins – H2A, H2B, H3, and H4 – and acts to structur-
ally organize DNA. Histone H1, which binds linker DNA 
between nucleosomes, is involved in spatial compaction 
of nucleosomes to form higher order chromatin struc-
ture (reviewed in [15]). The role of H1 in HIV latency 
has been little characterized, although H1 appears to be 
present at the latent LTR and acts to repress Tat-medi-
ated transcription [16,17], implicating some level of nu-
cleosome compaction in latency. Each histone protein 
within the nucleosome has an unstructured tail which can 
be modified by various post-translational modifications 
(PTMs), the combination of which results in the histone 
code which governs the chromatin structure and tran-
scriptional accessibility of a region of DNA [18]. PTMs 
found at histones tails include phosphorylation of serine 
and threonine and ubiquitination of lysine; however, the 
most studied modifications in relation to transcription are 
methylation and acetylation of lysine residues [19-21]. 

Acetylation and methylation are thought to be im-
portant in the regulation of transcription due to their 
effect on nucleosome stability. The basic charge of the 
core histone proteins can be neutralized by acetylation 
of lysine residues on the histone tails, resulting in de-
stabilization of the DNA/histone interactions, increased 
accessibility of the local DNA, and decreased structural 
stability of the overall nucleosome (reviewed in [22]). 
Methylation of histone tails does not change the overall 
charge of the proteins and certain methyl marks can act 
to recruit chromatin regulators which further stabilize and 
compact the chromatin structure. Upon integration, the 
HIV LTR is structured by the placement of well-defined 
nucleosomes. Nuc-0 is positioned at the beginning of the 
U3 region, followed by an unbound and nuclease sensi-
tive region (DNase hypersensitivity region 1 or DHS1) 
around 250bp in size which includes the critical tran-
scription factor binding sites for NF-kB and SP1 [23,24]. 
Nuc-1 is located immediately after the TSS, followed by 
a second nuclease sensitive region (DHS2) and nuc-2 ap-
proximately 400bp downstream [23,24]. 

A study of global histone methylation and acetylation 
patterns in CD4+ T-cells identified a histone “backbone,” 
a group of 17 histone marks which individually associat-
ed with transcriptional activation, highly associated with 
each other, and when in combination were associated 
with higher gene expression [21]. These 17 marks include 
H2A.Z, H2BK5ac, H2BK12ac, H2BK20ac, H2BK120ac, 
H3K4ac, H3K4me1, H3K4me2, H3K4me3, H3K9ac, 
H3K9me1, H3K18ac, H3K27ac, H3K36ac, H4K5ac, 
H4K8ac, and H4K91ac [21]. Examination of 39 total 
histone lysine methylation and acetylation modifications 
resulted in the observation that the majority of histone ly-
sine and acetylation marks associated with transcription-
ally active euchromatin while only five marks associated 

with repressive chromatin – H3K27me2, H3K27me3, 
H3K9me2, H3K9me3, and H4K20me3 [21].

HISTONES MARKS AND 
TRANSCRIPTIONAL ACTIVATION OF HIV

H3/H4 Acetylation
Consistent with the role of histone acetylation in the 

histone backbone which marks active transcription [21], 
one of the earliest events at the viral LTR upon activation 
is the recruitment of histone acetyltransferases (HATs). 
Proteins with known and characterized HAT activity in-
cluding CBP, GCN5, and P/CAF have been observed at 
the LTR upon reactivation [25-28], however only CBP 
recruitment was shown to be Tat-independent [29]. In-
deed, CBP and the closely related p300 are transcription-
al coactivators of NF-kB, suggesting binding of NF-kB 
recruits the initial factors needed to initiate chromatin re-
modeling of the integrated provirus [29,30]. Recruitment 
of HATs has been linked to increases in global H3 and H4 
acetylation at all three nucleosomes surrounding the LTR, 
as well as increases of the specific marks H3K9ac, H3K-
14ac, H4K5ac, H4K8ac, and H4K16ac [25-29]. HATs 
have also been demonstrated to modulate Tat function by 
acetylation of Tat itself [26,31]. 

The importance of acetylation of lysine residues on 
histone tails at the LTR is emphasized by the fact that 
inhibitors of histone deacetylases (HDACs), the proteins 
responsible for removal of acetylation, have been shown 
to enhance reactivation from latency and are currently 
being tested in the clinic as LRAs [32-34]. The role of 
HDACs in HIV latency was first identified when HDAC1 
was found in complex with transcriptional repressors 
YY1 and LSF at the LTR [35-37], with subsequent work 
identifying HDAC recruitment and the resulting histone 
deacetylation as the primary mechanism of transcription-
al repression by this complex [38]. Since then, a variety 
of LTR-binding repressive proteins have been linked 
to HDAC recruitment [39-42]. There are currently 18 
known HDAC proteins in humans divided amongst four 
classes based on sequence similarity (reviewed in [43]). 
While the members of Class I have been primarily linked 
to the deacetylation of histones at the LTR [44], a role 
for a Class II HDAC has been proposed in integration 
[45] and a Class III in Tat deacetylation [46], suggesting
diverse roles throughout the HIV lifecycle. Studies have
also described an apparent lack of significant substrate
specificity amongst the HDACs, although this may de-
pend on interacting proteins and other factors which are
not apparent in biochemical studies of purified protein
[43]. However, the ability to act to deacetylate multiple
substrates indicates a degree of redundancy in the system
which may suggest why pan-HDAC inhibitors have been
one of the most effective epigenetic-targeted LRAs.



minally differentiated cells. Yet, recent evidence suggests 
crosstalk exists between these pathways [61-63] and tran-
scriptional control of HIV could be a potential example of 
this paradigm shift.

 H3K27 Methylation and Polycomb
The Polycomb group (PcG) proteins were first iden-

tified as repressors of development-related genes in Dro-
sophila melanogaster (reviewed in [64]). A highly con-
served mechanism also required for temporal regulation 
of genes during mammalian development, PcG-medi-
ated repression is carried out by two complexes, PRC1 
and PRC2. Polycomb Repressive Complex 2 (PRC2) is 
the sole complex which catalyzes H3K27 mono-, di-, 
and tri-methylation in mammalian cells (reviewed in 
[64,65]). PRC2 requires three core proteins to mediate 
H3K27 methylation – SUZ12, the chromatin reader EED, 
and the methyltransferase EZH2 – and can also associ-
ate with other non-essential PcG proteins which enhance 
enzymatic activity or targeting of the complex [64,65]. 
The H3K27 mark has been linked to both active and re-
pressive chromatin. Presence of H3K27me1 in concert 
with H3K36me3 within a gene body is associated with 
transcription and refractory to further H3K27 di- and 
tri-methylation [66]. H3K27me2/3 are strongly linked 
with repressive chromatin and reduced gene expression 
[21,65,67]. H3K27me3 at PRC2 targeted loci is main-
tained via binding and reading of existing H3K27me3 by 
the chromodomain of EED, initiating a reinforcing loop 
which is proposed to help maintain the repressive mark 
during DNA replication [64,65]. PRC2 is also intimately 
linked with Polycomb Repressive Complex 1 (PRC1) to 
modulate chromatin structure and maintain transcription-
al silencing.

PRC1 is comprised of a CBX, PCGF, RING, and 
PHC protein of which there are multiple homologues for 
each, resulting in PRC1 complexes which differ among 
cell types (reviewed in [68]). Regardless of composition, 
PRC1 functions to monoubiquitinate H2A lysine 119 
(H2AK119ub1) via the ubiquitin E3 ligase activity of 
the RING1A/B proteins [64,65]. H2AK119ub1 has been 
proposed to block RNAPolII transcription, leaving it in a 
‘poised’ state at PRC regulated genes [69]. Early mech-
anistic characterization in D. melanogaster and in mam-
malian cells identified a canonical recruitment pathway 
by which PRC2-mediated H3K27me3 is recognized by 
the chromodomain of the CBX reader proteins, leading 
to recruitment of PRC1 and ubiquitination at H2AK119 
at chromatin domains already marked by H3K27me3 
(reviewed in [67,68,70]). However in recent years, re-
search has emerged suggesting the relationship between 
PRC1 and PRC2 recruitment appears far more complex 
[67,68,70]. PRC1 can also mediate chromatin compac-
tion through a mechanism independent of histone tails, 

H3 Methylation
While acetylation of both histones and Tat are criti-

cal to HIV reactivation, studies are limited with regards 
to other highly studied and traditionally activating marks. 
H3K4me at the promoter and H3K36me and K3K79me 
within the gene body are strongly associated with tran-
scriptionally active genes. Interestingly, H3K4me3, a 
mark well associated with active transcription but mutu-
ally exclusive to H3K4ac [19,21,47] has been linked to 
both repression and activation of the virus. H3K4me3 was 
observed in association with H3K9me3 and the bispecific 
H3K9/H3K4 demethylase LSD1 in microglial cells and 
was lost upon activation [48]. Conversely, an early study 
of P-TEFb observed H3K4me3 levels increased upon 
TNF-α activation, however this was observed well with-
in the body of Gag and not examined at the LTR [49]. 
H3K79me3 marks active transcription, is linked to tran-
scriptional elongation, and methylation is dependent on 
initial ubiquitination of H2BK123, a modification linked 
to disruption of chromatin compaction [50]. Knockdown 
of the only known H3K79 methyltransferase DOT1L has 
been linked to activation of the LTR [51], suggesting this 
mark may be inhibitory to viral expression. To date, no 
work has significantly examined a role for H3K36 meth-
ylation in HIV regulation, a mark implicated exon-intron 
demarcation, splicing, and repression of cryptic intragen-
ic transcription [52-55]. H3K36me2/3 has been observed 
within the coding region of HIV [49,56] and is proposed 
to be deposited via the recruitment of the H3K36 meth-
yltransferase SETD2 by IWS1, a protein which interacts 
with histone chaperone SUPT6H (Spt6) [56]. It would be 
interesting to determine if these methylation marks con-
form to established mechanisms in the context of HIV, as 
in the case of H3K4me3 and H3K79me3 alternate func-
tions could be exploited for latency reversal strategies.

HISTONE MARKS AND TRANSCRIPTIONAL 
REPRESSION OF HIV

Of the histone marks linked to repressive chromatin, 
HIV latency has been associated with both H3K27 and 
H3K9 methylation. These two pathways of chromatin 
repression have long been thought to be mutually exclu-
sive of each other. Methylation of H3K9 has traditionally 
been associated with the idea of constitutive heterochro-
matin [57-60], a term that describes the highly stable and 
compact chromatin found at the pericentromeric regions, 
telomeres, repetitive elements, repressed endogenous 
retrovirus elements, and transposons. These regions tend 
to be gene-poor and are consistently silenced areas in all 
differentiated cell types. In contrast, regions marked by 
H3K27 are termed facultative heterochromatin [57-60]. 
Repression by H3K27 is considered less fixed, a feature 
allowing plasticity and differential gene expression in ter-



ent at the LTR during latency [74]. There have been no 
further studies to clearly link PRC1 and H2AK119ub1 
to HIV latency; however, the presence of both Polycomb 
complexes at the LTR suggests the symbiotic relationship 
between these complexes may be relevant in maintaining 
latency and another potential target for development of 
LRAs.

Another interesting and open question is the mecha-
nism by which PRC1/2 are recruited to the LTR. Knock-
down of PRC2 components EZH2 and SUZ12 as well 
as pre-treatment of Jurkat cells with EZH2 inhibitors re-
sulted in a decrease in establishment of latency using a 
reporter virus construct, implicating PRC2 in the earliest 
stages of chromatin repression of HIV [75]. In D. mela-
nogaster, PcG recruitment is mediated by recognition 
of specific DNA sequences called polycomb repressive 
elements. Similar elements have not been found in mam-
malian cells and there is still significant debate as to the 
mechanisms which drive initial recruitment of PRC1/2 
to target loci (reviewed in [67,68,70]). Furthermore, the 
preferential integration of HIV into active gene bodies 
[76] leads to an association of epigenetic marks of ac-
tive transcription [77] which are traditionally refracto-
ry to PRC2, suggesting an active mechanism for PRC2

suggesting that while PTMs may aid in localization of 
PRC1, they are not necessary for this activity [71].

Presence of H3K27me3 as a marker of HIV latency 
at the promoter and the requirement for EZH2 has been 
observed in both cell culture and primary cell models of 
latency [72-75]. In the first study to characterize the role 
of PRC2 in HIV latency, shRNA-mediated knockdown of 
EZH2 strongly reactivated HIV in Jurkat-based models 
of latency and synergized with known T-cell activators 
[72]. They also demonstrated heterogeneity in the levels 
of H3K27me3 at the LTR was directly related to the abil-
ity of TNF-α to reactivate the virus [72], supporting the 
idea that different integration sites may be differentially 
regulated at the chromatin level which could impact the 
reactivation potential. Treatment of both Jurkat cells and 
a primary cell model of latency with the selective EZH2 
methyltransferase inhibitor GSK-343 in combination 
with other LRAs including the HDAC inhibitor SAHA 
or the bromodomain inhibitor JQ1 increased levels of re-
activation when compared to the individual compounds 
alone, suggesting H3K27 and EZH2 are active in mainte-
nance of latency and that loss of H3K27me3 primed the 
LTR for reactivation [74]. This work also demonstrated 
for the first time that components of the PRC1 are pres-

Table 1. Potential mechanisms for polycomb recruitment to integrated HIV.

Mechanisms of Polycomb Recruitment
CpG Islands Both PRC1 and PRC2 are known to co-localize with CpG islands [70]. CpG islands 

associate with promoter elements of active genes and remain methylation-free, in contrast 
to lone CpG dinucleotides which are highly subject to cytosine methylation (reviewed in 
[148]). The percentage of CpG sites in the HIV LTR does not meet the canonical definition 
of a CpG island, however studies of latent HIV in resting CD4+ T-cells suggests they are 
not subject to methylation [14,149,150] and furthermore that methylation of the LTR is 
highly repressive [151,152]. While the role for DNA methylation itself in latency is greatly 
debated [14,149-154], these elements may act as a marker for an intragenic promoter [155] 
and play a role in recruitment of PRC2.

ncRNAs Noncoding RNAs have been identified as major regulators of gene silencing during 
development. Two of the most studied ncRNA mechanisms, X-chromosome inactivation 
and HOX gene silencing by their cognate ncRNAs XIST and HOTAIR, have defined PRC2 
binding and recruitment by these ncRNAs as critical for establishment of transcriptional 
repression (reviewed in [156]). PRC2 core proteins EZH2, SUZ12 and accessory 
protein JARID2 have all been demonstrated to have RNA binding domains critical to this 
recruitment mechanism [157,158]. Knockdown of an HIV-expressed antisense RNA has 
been shown to decrease EZH2 at the LTR and increase transcriptional activation, however 
they were unable to establish a definitive role in a primary CD4+T-cell model [159].

H3K36 and the 
PCL Proteins

Sub-stoichiometric components of the PRC2 complex, the PCL proteins recognize 
H3K36me3, a mark traditionally found within the gene bodies of transcriptionally 
active genes. The PCL proteins were shown to simultaneously recruit the H3K36 
demethylase KDM2B (NO66), the H3K4 demethylase KDM5A (JARID1A), and PRC2 
to drive heterochromatin formation [160-162]. This mechanism could have implications 
in repression of cryptic transcripts and may play a role in maintenance of latency when 
provirus is integrated into active genes.



HMT in latency. A later study also demonstrated siR-
NA-mediated knockdown of G9a and treatment of latent-
ly infected Jurkats with the G9a/GLP specific inhibitor 
BIX01294 resulted in loss of G9a and H3K9me3 at the 
LTR via ChIP, increased transcription, and synergized 
with the HDAC inhibitor SAHA [97]. As G9a/GLP and 
HP1γ localize with euchromatin regions of DNA, it may 
be that SETDB1 plays a greater role as the mediator of 
H3K9me3 at the LTR than the SUV39 HMTs. However, a 
role for these epigenetic marks in primary lymphoid cells 
has yet to be demonstrated.

Position effect variegation (PEV), whereby introduc-
tion of a traditionally active gene into heterochromatin 
results in silencing of the active gene, is another phenom-
enon driven by repressive H3K9 methylation. Early Jur-
kat latency models in which some integration was found 
near heterochromatin may have been subject to PEV [98], 
however the relevance of this mechanism in primary cells 
with integration into active genes is debatable. Regard-
less, the field was further complicated by the discovery of 
the HUSH complex and the suggestion that this mecha-
nism plays a role in HIV latency. The HUman Silencing 
Hub is comprised of H3K9me3 reader MPP8, TASOR, 
and periphilin and was identified by specifically search-
ing for the proteins which were responsible for silencing 
of a lentiviral-GFP reporter via PEV [99]. HUSH recruits 
SETDB1 to mediate H3K9me3 and heterochromatin for-
mation does not appear to be dependent on any of the 
HP1 proteins [99]. Knockdown of HUSH components 
MPP8, TASOR, and periphilin was shown to activate 
Jurkats transduced with an HIV-Tat-LTR reporter as well 
as activate four different J-Lat clones, Jurkat-based laten-
cy models [99]. Unfortunately, knockdown of SETDB1 
was not tested or reported in the J-Lat lines, howev-
er SETDB1 knockdown in a latent line established in 
KBM7 cells of myeloid lineage did demonstrate a strong 
role for SETDB1 in LTR repression [99]. Further studies 
of the role of HUSH in HIV regulation are needed.

New work suggesting crosstalk between the H3K9 
and H3K27 methylation pathways increases the poten-
tial complexity of HIV latency regulation by these path-
ways. While studies of this relationship are limited, one 
report observed PRC2 and H3K27me increased stabili-
ty and binding of HP1 proteins to H3K9me3, however 
a direct interaction between HP1 and PRC2 components 
was not observed [61]. Another identified a direct inter-
action between PRC2 and G9a/GLP and demonstrated 
G9a deficient cells show impaired PRC2 recruitment at 
loci targeted by both PRC2 and G9a [62]. Interestingly, a 
recent study of the kinetics of HIV latency establishment 
observed viruses silenced within 3 days as measured by 
a fluorescent reporter showed increased H3K27me3 but 
no difference in H3K9me3 relative to the transcription-
ally active population [75]. However, continued cultur-

recruitment to the LTR. CpG islands, non-coding RNAs 
(ncRNAs), and H3K36 methylation have all been impli-
cated as mechanisms for PRC2 recruitment and all have 
the potential to be functionally relevant in the context of 
latency establishment (see Table 1).

H3K9 Methylation
Like the pattern of H3K27me, H3K9me1 is observed 

at the TSS of active genes while H3K9me2/3 strongly 
associate with constitutive heterochromatin [78]. H3K9 
methylation is mediated by multiple HMTs which appear 
to have unique roles in the cell. SUV39H1 and SUV39H2 
double knockouts show a severe impairment in H3K9me3 
in vivo and loss of heterochromatin formation at pericen-
tric regions, however in vitro methylation of unmodified 
H3K9 peptides suggests they can also mediate H3K9me1/
me2 [79-81]. PRDM3 and PRDM16 have more recently 
been identified as mono-H3K9 methyltransferases which 
co-localize with SUV39 and constitutive heterochroma-
tin regions [82]. In contrast, the H3K9me1/2/3 HMT 
SETDB1 and H3K9me1/2 HMTs G9a and GLP show 
distribution patterns over euchromatin regions of the ge-
nome [79,83-86]. Presence of these HMTs and addition 
of the H3K9me3 mark ultimately recruit heterochroma-
tin protein 1 (HP1), of which there are three isoforms 
in mammalian cells, HP1α, HP1β, and HP1γ. HP1 is a 
chromatin reader which recognizes H3K9me3 and me-
diates chromatin compaction via homodimerization [87-
90]. HP1α and HP1β associate with pericentric heteroch-
romatin while HP1γ is found with euchromatin regions 
[91]. HP1 further helps to reinforce heterochromatin by 
recruiting DNA methyltransferases [92-94].

A role for H3K9 methylation in regulation of HIV 
was first identified when examining the role of tran-
scriptional repressor CTIP2 in microglial cells. CTIP2 
was found to repress transcription via sequestration of 
Tat in concert with HP1α [95]. In a follow-up study, the 
authors observed overexpression of CTIP2 in HEK293T 
cells containing an episomal LTR-luciferase reporter re-
sulted in increased levels of H3K9me3, SUV39H1, and 
all three HP1 isoforms at the LTR reporter via chroma-
tin immunoprecipitation (ChIP) [40]. In a more detailed 
study using integrated reporter constructs and Jurkat la-
tency models, du Chéné et al. observed siRNA-mediated 
knockdown of SUV39H1 and HP1γ increased activation 
in TZB-bl cells, a HeLa-derived LTR-luciferase report-
er line [96]. Interestingly, knockdown of HP1γ, but not 
SUV39H1, was able to reactivate the LTR in the absence 
of Tat and this activation was linked to recruitment of 
Sp1 [96], suggesting HP1γ likely acts to repress access to 
the DNA in this model. As knockdown of SUV39H1 re-
sulted in significantly smaller levels of reactivation with 
Tat, this could suggest redundancy in the H3K9 pathway 
or that the SUV39 enzymes are not the primary H3K9 



H4K20me1 and H4K20me3 only represent a small frac-
tion of total H4K20 methylation, a role in transcription-
al repression and a link to pathways overlapping those 
already identified in HIV latency exist, suggesting these 
marks may be worth additional study in the context of 
HIV latency.

NUCLEOSOME REMODELING/HISTONE 
CHAPERONES

The integration of HIV into genes which are tran-
scriptionally active in resting CD4+ T-cells suggests re-
pressive histone PTMs must be actively maintained in 
the context of elongating RNAPolII. ATP-dependent nu-
cleosome remodeling complexes and histone chaperones 
are known to help maintain nucleosome positioning and 
histone PTMs during DNA replication and transcription.

ATP-dependent remodeling complexes use ATP to 
move, remove, or exchange nucleosomes and are thought 
to function to increase or decrease accessibility to DNA. 
Numerous complexes exist and many contain proteins 
which can recognize histone PTMs, a mechanism which 
has been implicated in how these complexes are recruit-
ed and differentially localized (reviewed in [109]). The 
biochemically distinct PBAF and BAF complexes are 
mammalian SWI/SNF-type remodelers which have been 
implicated in HIV latency. BAF has been linked to tran-
scriptional repression via positioning of Nuc-1 at a less 
energetically favorable DNA sequence [110] while PBAF 
is recruited by acetylated Tat and promotes efficient tran-
scription [111]. BAF has been observed to be highly re-
fractory to co-localization and co-repression with PRC2 
and H3K27me [109], an interesting observation in the 
context of HIV latency given the strong evidence for a 
role for PRC2. Regardless, small molecule inhibitors of 
the BAF complex show promise as a new class of LRAs 
in both cell lines and primary cell models of latency [112].

Histone chaperones remove and deposit nucleosomes 
around elongating RNA polymerase to repress spurious 
antisense and cryptic transcription within gene bodies 
[113,114]. While the HIV LEDGF/p75 complex is known 
for its role in directing integration, additional investiga-
tion has found a post-integration role in establishing and 
maintaining transcriptional repression in latently infected 
cells. LEDGF/p75 appears in complex with SUPT6H and 
IWS1 at the HIV LTR, whereby the H3 histone chaperone 
SUPT6H appears to maintain repressive nucleosomes 
across the HIV promoter and throughout the coding re-
gion [115]. Similar to the mechanism of SUPT6H, the 
FAcilitates Chromatin Transcription (FACT) complex 
acts to remodel nucleosomes by disrupting histones H2A-
H2B ahead of elongating RNA polymerase II (RNAPII) 
[116]. Knockdown of SUPT16H and SSRP1, the com-
ponents of FACT, have been demonstrated to reactivate 

ing of both the inactive and active populations for 60 
days resulted in eventual silencing of 60 percent of the 
active population and increases in H3K27 and H3K9 in 
both populations [75]. The inactive population marked 
by early H3K27me3 and later H3K9me3 was observed 
to be harder to reactivate than the initial active population 
silenced with slower kinetics, implicating a mechanism 
involving both of these marks which drives the virus into 
a deeper latency [75]. Successful reactivation of this pop-
ulation may prove critical to latency reversal and clear-
ance strategies and may depend on a more complete un-
derstanding of the interplay between H3K9 and H3K27 
repression.

H4K20 Methylation
To date, there have been no published reports impli-

cating H4K20 methylation in regulation of HIV latency. 
The H4K20 mark has been linked to chromatin stabil-
ity, DNA replication, DNA damage, and transcriptional 
repression (reviewed in [100]). H4K20me1 is observed 
across euchromatin and the inactivated X-chromosome 
[101] while H4K20me2 is found throughout chromatin
with approximately 80 percent of H4 in the cell marked
either exclusively or in some combination with this mark
[101,102]. Consistent with an association with tran-
scriptionally repressive chromatin [21], H4K20me3 is
found co-localized with H3K9me3 at constitutive het-
erochromatin including pericentric heterochromatin and
telomeres [101,103]. The HMT PR-SET7 (SET8) is re-
sponsible for H4K20me1 and is necessary for subsequent
H4K20me2/3 by the closely related SUV4-20H1/2 en-
zymes [104].

H4K20me3 at constitutive heterochromatin is de-
pendent on placement of H3K9me3 and SUV4-20H2 
interaction with HP1 [101,103]. Of note, H4K20me3 
has been implicated in pausing of RNAPolII in a breast 
cancer model [105]. Epigenetic silencing of tumor sup-
pressor TMS1 was maintained by H4K20me3 even after 
inhibition of accompanying H3K9 methylation and DNA 
methylation at the gene [105], suggesting H4K20me3 
can maintain repression independently of other repres-
sive marks or exist in parallel to reinforce transcrip-
tional silencing. Early studies of H4K20me1/PR-SET7 
also identified this mark to be associated with silenced 
chromatin [104]. H4K20me1 has since been implicated 
in transcriptional repression via recruitment of L3MB-
TL1, a methyl-lysine chromatin reader protein which can 
compact chromatin and interacts with HP1γ [106,107]. 
Based on localization of H4K20me1 to the inactive X 
chromosome, it has been proposed to be involved in fac-
ultative heterochromatin [106]. However, studies of glob-
al patterns of histone marks and gene expression have 
linked H4K20me1 to active transcription, a controversy 
reviewed in greater detail by Beck et al. [108]. While 



vitro comparison of PKC agonists and HDACi on CD4+ 
and CD8+ T-cells reinforce these favorable results. PKC 
agonists Bryostatin 1 and Prostratin demonstrated high 
levels of T-cell activation and impaired CD8+ function 
while HDACi showed minimal to no impact on these 
pathways [133]. Thus while able to modify the restrictive 
chromatin structure, HDACi are likely limited in the abil-
ity to alter host factor restriction and are thus less potent 
LRAs as compared to PKC agonists. 

Bromodomain inhibitors (BETi), in clinical testing 
for oncology, are also being examined as LRAs and may 
act to both ease host factor and chromatin restrictions. 
Bromodomains are responsible for recognition of acetyl-
ated lysine residues and are found in a wide range of pro-
teins including HATs, helicases, and transcriptional medi-
ators, to name a few (reviewed in [134]). In the context of 
HIV, bromodomain-containing protein BRD4 is known 
to compete with Tat for binding of P-TEFb [135]. Test-
ing of JQ1, a BETi with primary specificity for BRD4, 
but also for BRD2 and BRD3, has been shown to induce 
viral reactivation, presumably by removing BRD4 and 
increasing p-TEFb accessibility [136-139]. However, a 
study has also proposed JQ1 acts in a Tat-independent 
mechanism by inhibiting BRD2 and that BRD2 functions 
as a repressor of transcription at the LTR [140]. While the 
specific mechanisms for JQ1 activation of HIV as well as 
BRD2 repression remain unclear, BETi show promise as 
future LRAs which may move towards the clinic.

While clinical studies of single agent LRAs have 
not yet achieved convincing depletion of latent infec-
tion, results of such studies may be improved if LRAs 
are used in combination with specific viral clearance 
strategies [141]. However, increased LRA activity may 
also be needed. Mediators of NF-kB activation tested 
in combination with various HDACi or JQ1 ex vivo in 
resting CD4+ T-cells isolated from stably suppressed in-
dividuals demonstrated increased viral reactivation as 
compared to single agents alone, even at suboptimal dos-
ing of PKC agonists [142]. However, no combinations 
at full dose reached equivalent levels of reactivation 
observed via maximal PMA/Ionomycin stimulation and 
in vitro response varied between patients. In addition to 
these observations it has been demonstrated that maximal 
stimulation of resting CD4+ T-cells via small molecule 
agonists of T-cell activation in vitro fail to simultaneously 
reactivate all inducible proviruses [143]. They found no 
evidence to suggest these proviruses were integrated into 
a highly repressed chromatin region of the host genome, 
nor did they observe increases in repressive DNA methyl-
ation at the LTR, leading to the hypothesis that induction 
even under maximal stimulation is stochastic [143]. In 
this setting, the idea of stochastic reactivation is meant to 
mean that a given viral promoter may respond differently 
to the same stimuli at two moments in time, due to mo-

HIV transcription [117]. This work also observed knock-
down of SUPT6H, the remodeler CHD1, and histone 
chaperones ASF1a and HIRA resulted in viral reactiva-
tion [117]. While these proteins are typically considered 
positive transcription factors in the context of normal 
mammalian transcription, they act to repress HIV tran-
scription. This suggests a potential mechanism similar to 
transcriptional interference by which normal chromatin 
remodeling mechanisms represses access to the integrat-
ed viral LTR, potentially via maintenance of established 
repressive histone PTMs.

CURRENT AGENTS FOR LATENCY 
REVERSAL AND CLEARANCE

Current LRAs act either by allowing the release of 
host factor restriction, modulating HIV LTR chromatin 
structure, or perhaps in some case both, to favor tran-
scription. Within the former is the large class of protein 
kinase C (PKC) agonists. Induction of the PKC signaling 
pathway in T-cells results in the activation of NF-kB and 
AP-1, both which bind the viral LTR and synergize to 
reactivate viral transcription [118]. Prostratin [119,120], 
Bryostatin 1 [121], and ingenol [122] are all small mol-
ecules which mimic diacylglycerol activation of PKC 
and are among the most potent LRAs. However, there 
are significant concerns regarding use of PKC agonist in 
patients. PKC agonists are non-specific, can activate the 
PKC pathway in multiple cell types, and can upregulate 
markers of T-cell activation (reviewed in [118,123]). A 
study in the 1990’s of anti-CD3, a potent T-cell activator 
via activation of the T-cell receptor, demonstrated signif-
icant toxicity when used in patients [124]. This has led to 
a conservative approach in the clinic, and clinical experi-
ments of this kind were not attempted until a recent study 
of single dose administration of Bryostatin 1 at two low 
concentrations showed tolerability and limited adverse 
effects, but failed to show PKC activation or reactivation 
of HIV [125]. 

HDAC inhibitors (HDACi) represent a class of LRAs 
which primarily act to modulate chromatin structure of 
the virus. Current HDACi are pan inhibitors which target 
class I and II HDACs and include three FDA approved 
molecules for treatment of T-cell lymphomas, Vorinos-
tat (SAHA), Belinostat, and Romidepsin (reviewed in 
[126]). HDACi have been shown to induce HIV activation 
in vitro [33,38,127,128], however early clinical studies 
with valproic acid demonstrated no impact on the latent 
reservoir [129-131]. A clinical study of the more potent 
inhibitor Vorinostat showed induction of cell associated 
viral RNA [132], however recent results also demonstrate 
a failure to measurably decrease the viral reservoir [32]. 
Of note however, these clinical trials have reported mini-
mal safety concerns regarding HDACi in vivo. A recent in 



infected individuals due to rarity of such cells in vivo, and 
the difficulties with generating a truly representative in 
vitro model of latency [144].

lecular, temporal fluctuations in precise biochemical and 
biophysical state of the promoter. However, such precise 
observations as to the state of the local chromatin and the 
repression of the DNA structure surrounding an individu-
al integrated provirus cannot yet be assessed in cells from 

Table 2. Histone marks and the reader, writer, and eraser proteins implicated in control of HIV 
transcription and reactivation from latency.

Histone Mark/Chromatin 
Regulator

Observed Effect Latency Model Reference

Positive Epigenetic Regulators of HIV Transcription
HATs (p300, CBP, P/CAF, 
hGCN5)

Tat recruits transcriptional coactivators with 
HAT domains which are important in HIV 
activation.

LTR-CAT reporter +/- Tat in HeLa, 
Jurkat, and 293 cell lines (integrated 
and non-integrated)

[25-28]

H3K9ac, H3K14ac, 
H4K5ac, H34K8ac, 
H4K16ac, various HATs, 
total H3ac, total H4ac

Study of TPA-induced LTR activation and 
recruitment of the listed marks/HATs over time 
via ChIP.

LTR-CAT HeLa reporter (HL3T1, 
integrated) and U1 cell lines

[29]

H3K36me2 Observed H3K36me2 in coding region upon 
TNF-α activation of LTR via ChIP. Implied 
positive regulator.

OM-10.1 cell line [49]

H3K36me3 Observed in coding region via ChIP. Implied 
positive regulator.

HLM107 cell line [56]

pBAF pBAF is important in Tat-mediated 
transcriptional activation of viral LTR.

TZM-bl, productively infected PMBCs [111]

Negative Epigenetic Regulators of HIV Transcription
H3K4me3, H3K9me, LSD1 Decreased LSD1, H3K9me3, and H3K4me3 

associated with increase in viral transcription.
Human microglial cells and U1 cell 
line

[48]

Total H3ac, Total H4ac, 
HDACs

HDAC recruitment and loss of H3/
H4 acetylation results in transcriptional 
repression.

Various, including primary resting 
CD4+ T-cells from durably 
suppressed donors

[32,33,
35-37,44]

H3K79me2, DOT1L siRNA knockdown of H3K79 methyltransferase 
DOT1L and decreased H3K97me2 associated 
with increase in LTR-driven transcription.

HeLa cells with integrated LTR-
Luciferase reporter

[51]

H3K27me3, PRC2 Decrease in H3K27 methylation via siRNA and 
small molecule targeting of PRC2 components 
results in increased viral transcription.

Various Jurkat-derived latency 
reporter cell lines, primary T-cell 
models

[72-75]

PRC1 Observed PRC1 components at LTR during 
latency. Implied negative regulator.

Jurkat-derived 2D10 reporter line, 
primary T-cell model

[74]

H3K9me3, SUV39H1, 
HP1α/β/γ, CTIP2, HDAC1/2

Repressor CTIP2 recruits HDAC1/2, 
SUV39H1, and HP1 to the viral LTR, resulting 
in increased H3K9me3.

Microglial, 293T, and HeLa lines 
with integrated or episomal LTR-
Luciferase reporter, U1 cell line

[40,95]

H3K9me3, SUV39H1, 
HP1γ

siRNA knockdown of H3K9 methyltransferase 
SUV39H1 and reader HP1γ results in 
decreased H3K9me3 and increased H3ac and 
viral transcription.

LTR-Luciferase reporter in HeLa 
(integrated and non-integrated/
transient)

[96]

H3K9me3, G9a siRNA and small molecule targeting of G9a 
results in loss of G9a and H3K9me3 at LTR 
and increased viral transcription.

LTR-Luciferase reporter, Ach2, OM-
10.1 cells lines

[97]

HUSH Complex, SETDB1 Knockdown of HUSH complex (H3K9me3-
mediated PEV) components results in viral 
reactivation.

Jurkat LTR-Tat-GFP reporter, J-Lat 
models, and myeloid latency model

[99]

Histone Chaperones 
(SUPT6H, FACT, CHD1, 
ASF1a, HIRA)

Knockdown of various histone chaperones 
promotes viral reactivation.

J-Lat models [115,117]

BAF Knockdown of BAF complex components 
promotes viral reactivation.

J-Lat models and LTR-Luciferase
reporter

[110]
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