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SUMMARY

A detailed understanding of the mechanisms that
establish or maintain the latent reservoir of HIV will
guide approaches to eliminate persistent infection.
We used a cell line and primary cell models of HIV la-
tency to investigate viral RNA (vRNA) expression and
the role of the host transcriptome using single-cell
approaches. Single-cell vRNA quantitation identified
distinct populations of cells expressing various
levels of vRNA, including completely silent popula-
tions. Strikingly, single-cell RNA-seq of latently
infected primary cells demonstrated that HIV down-
regulation occurred in diverse transcriptomic envi-
ronments but was significantly associated with
expression of a specific set of cellular genes. In
particular, latency was more frequent in cells ex-
pressing a transcriptional signature that included
markers of naive and central memory T cells. These
data reveal that expression of HIV proviruses within
the latent reservoir are influenced by the host cell
transcriptional program. Therapeutic modulation of
these programs may reverse or enforce HIV latency.

INTRODUCTION

Transcriptional downregulation of HIV in latently infected cells

results in persistent HIV infection despite antiretroviral therapy.

The mechanisms that enforce latency are complex and only

partially understood but involve a repressive chromatin state

that is regulated by diverse histone modifications (Turner and

Margolis, 2017). Such latently infected cells appear to persist

in infected patients for decades, their frequency little changed

by years of antiretroviral therapy (ART) (Crooks et al., 2015;

Siliciano et al., 2003). Furthermore, latently infected CD4+

T cells can contribute to the rebound of infection upon cessation

of antiviral therapy and thus are a principal barrier to curing HIV

infection (Chun et al., 2010; Davey et al., 1999; Finzi et al., 1997).

Intensive efforts currently focus on strategies to eliminate HIV-in-

fected reservoir cells, and a major strategy to achieve this

goal involves treatment with pharmacological latency-reversing

agents (LRAs) to upregulate HIV expression in infected cells,
Ce
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so that these cells can be recognized and cleared by the host im-

mune system (Archin et al., 2012; Søgaard et al., 2015; Zhu et al.,

2012). However, LRAs thus far are ineffective at reactivating HIV

in a majority of latently infected cells (Ho et al., 2013). Multiple

mechanisms of regulation of proviral expression may limit the

response to LRAs acting through a singlemechanism, in addition

to the heterogeneous phenotypic nature of latently infected cells

themselves. Several host factors, such as CDK9 and CyclinT1,

are known to regulate HIV transcription in various models of la-

tency (Tyagi et al., 2010), and epigenetic features play a central

role in antagonizing or augmenting the role of viral transactivation

(He et al., 2002; Turner and Margolis, 2017; Van Lint et al., 2013,

Friedman et al., 2011; Tripathy et al., 2015). It has also been

demonstrated in model systems that establishment of latency

can be driven by stochastic fluctuations in the viral transcription

factor Tat (Razooky et al., 2015; Weinberger et al., 2005). Deter-

mination of how the host cell transcriptome affects viral expres-

sion and latency may identify targets to enhance or reverse

latency.

One limitation of previous studies examining HIV latency was

using cells considered as bulk populations and not as single

cells, missing critical insights. The latently infected CD4+ T cell

reservoir is inherently diverse, with each provirus exhibiting a

potentially unique combination of the effects of integration site,

epigenetic modifications, and infected cell phenotype. For

example, CD4+ T cells, the major host cell for HIV infection,

can exist as several different developmental stages, categorized

as naive (Tn), central (Tcm) and effector memory (Tem), and

effector cells. Each of these subtypes have distinct transcrip-

tional and epigenetic programs that could affect the activity of

the integrated HIV promoter (Durek et al., 2016). Additionally,

biological noise and stochastic fluctuations in transcriptional ac-

tivity could play an important role in either establishment or

reversal of latency (Dar et al., 2014).

Given the multitude of factors that can affect the establish-

ment and maintenance of latent infection, the application of

methods that permit the analysis of single cells will be required

to fully characterize latency and the mechanisms that determine

HIV latency. Recent technological breakthroughs in analysis of

individual cells by single-cell RNA sequencing (scRNA-seq)

now permit detailed characterization of heterogeneous behav-

iors of individual cells (Hashimshony et al., 2016; Macosko

et al., 2015; Picelli et al., 2013; Villani and Shekhar, 2017). These

methods have provided insights into biological systems and
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revealed surprising diversity in cultures of cells previously

assumed to be uniform (Buettner et al., 2015; Shalek et al.,

2014; Villani and Shekhar, 2017). We hypothesized that within

latently infected populations, there exist subpopulations with

differing patterns of viral and host gene transcription at rest

and after host cell activation. Moreover, we hypothesized that

this transcriptional diversity within latently infected cell popula-

tions is influenced by an identifiable set of genes. To investigate

these hypotheses, we applied two single-cell assays to models

of latent HIV infection. Analysis of vRNA at the single-cell level re-

vealed the existence of diverse levels of vRNA expression both at

rest and after LRA stimulation, and scRNA-seq of latently in-

fected primary cells indicated that HIV downregulation occurs

in diverse environments but was significantly associated with

expression of a specific set of host cell genes. This latency asso-

ciated signature suggests that downregulation of HIV in primary

cells is regulated by the underlying transcriptional program of the

infected cells. These insights illustrate an important role for the

host cell environment in HIV latency and will guide the develop-

ment of therapies that can achieve optimal reactivation of the

latent reservoir.

RESULTS

Heterogeneous Viral RNA Induction by LRAs and a
Threshold for Viral Protein Expression
To measure viral RNA (vRNA) in individual latently infected CD4+

T cells, we used an approach that combined flow sorting of sin-

gle cells into 96-well PCR plates followed by real-time qPCR for

unspliced HIV RNA. To determine the utility of this approach, we

first analyzed vRNA levels in N6 cells, a Jurkat-derived CD4+

T cell line that is latently infected with HIV. This cell line contains

a full-length integrated copy of the NL4-3 strain of HIV, with the

nef open reading frame replaced by coding sequence for themu-

rine Heat-shock antigen (HSA) reporter. Flow cytometry for sur-

face expression of the HSA reporter protein encoded by this viral

clone allowed us to identify HIV reactivation in N6 cells. We stim-

ulated N6 cells with three different LRAs—the histone deacety-

lase inhibitor vorinostat (3 mM), the protein kinase C (PKC)

agonist prostratin (3 mM), and tumor necrosis factor-alpha

(TNFa; 100ng/mL)—and assayed vRNA levels in 144 cells for

each condition at 24 hr (Figure S1A). In unstimulated cells, the

majority of cells had undetectable vRNA levels, but a subpopu-

lation (19%) expressed low levels of vRNA, detectable but typi-

cally below the lower limit of quantification. Upon stimulation,

cells treated with either of the three LRAs exhibited a strong up-

regulation of vRNA and the appearance of detectable HSA pro-

tein expression. A wide range of vRNA levels from 1 to 3,442

copies per cell was detected across the population, with coeffi-

cients of variation ranging from 93% for vorinostat to 164% for

TNFa. vRNA levels did not exceed 3,442 copies per cell, sug-

gesting a uniform restriction of vRNA across the clonal cell line.

Notably, expression of virally encoded HSA became pro-

nounced only when vRNA levels were above 500 copies per

cell, suggesting that a threshold of vRNA is required for transla-

tion of a detectable quantity of HSA in these cells. For all LRAs,

the percentage of vRNA+ cells exceeded the percent of HSA+

cells, indicating that protein-based viral reporters significantly
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underestimate the fraction of responding cells (Figure S1B).

Thus, these data demonstrate that stimulation of latently infected

cells with LRAs induces a broad spectrum of diverse vRNA/anti-

gen responses and that a significant population of vRNA+ cells

can be detected that are not producing detectable viral antigen.

We also examined the response of N6 cells to vorinostat at

different times after stimulation (Figure S2A) and at different con-

centrations (Figure S2B). These data demonstrated significant

variation in the kinetics and thresholds of reactivation for vRNA

expression among individual cells.

Establishment of a Primary CD4+ T Cell Model for HIV
Latency
To further examine the behavior of latently infected cells, we

established a primary CD4+ T cell model of HIV latency. This

model is similar to models from other laboratories (Kim et al.,

2014; Mohammadi et al., 2014; Sahu et al., 2006; Tyagi et al.,

2010) and involves infecting activated CD4+ T cells with a

GFP-expressing HIV strain (Yang et al., 2009) and sorting to

obtain a pure infected population, followed by long-term

(8–12 weeks) co-culture with H80 cells (Figure 1A). During this

period of culture, we observed highly variegated transcriptional

downregulation of HIV gene expression within the infected pop-

ulation. Some cells exhibited downregulation of GFP expression

to undetectable levels (GFP�), while others maintained interme-

diate or high levels of expression (Figures 1B and 1C). To test the

ability of the latently infected cells to reactivate viral gene expres-

sion in response to T cell receptor (TCR) engagement, we puri-

fied GFP� cells from the infected cell culture and stimulated

them with anti-CD3/CD28 beads. These cells re-expressed

GFP to nearly 90% by 3 days, indicating that they were indeed

latently infected and that initial loss of GFP expression was not

due to deletion of the provirus or outgrowth of a contaminating

uninfected population (Figure 1D).

Single-Cell Analysis of vRNA in Latently Infected
Primary CD4+ T Cells
To investigate the diversity of vRNA expression in latently

infected primary cells, we analyzed sorted single cells from the

infected population at 12 weeks post-infection (wpi) without

stimulation (Figure 2). For comparison, we also examined pro-

ductively infected cells at 2 days post-infection (dpi). Using linear

regression, we found that vRNA levels in primary CD4+ T cells

were linearly correlated with GFP protein expression for

both time points (R2 = 0.179, p = 1.71 3 10�7 for 12 wpi;

R2 = 0.475, p = 1.35 3 10�21 for 2 dpi). This contrasts with the

apparent threshold of vRNA required for viral protein expression

in N6 Jurkat cells (Figure S1). The 2 dpi population expressed

significantly higher overall levels of vRNA than cells at 12 wpi

(p < 0.00001, Mann-Whitney test), indicating that transcriptional

downregulation accounted for part of the reduction in GFP pro-

tein expression over time, but interestingly, a subset of 12 wpi

cells expressed vRNA to a similar level to that seen at 2 dpi. At

12 wpi, 12% of cells exhibited undetectable vRNA, indicating

transcriptional latency. Overall, this analysis shows that after

long periods in culture, most infected cells downregulate viral

gene expression at both the RNA and protein level, but the extent

of this downregulation varied greatly between individual cells



Figure 2. Single-Cell Viral RNA and Antigen Expression in the Pri-

mary Cell Latency Model Is Heterogeneous

Single infected primary CD4+ T cells at 2 dpi (blue) and 12 wpi (red) were flow

sorted and analyzed for vRNA expression by single-cell qPCR (sc-qPCR). GFP

mean fluorescence intensity (MFI) for each cell was plotted against vRNA

copies per cell. Each dot represents data from an individual cell.

Figure 1. Primary CD4+ T Cell Model of HIV Latency

(A) Graphical depiction of primary cell model of latency. Activated cells were

infected with pNL4-3-D6-dreGFP, a GFP-expressing HIV clone, and infected

(GFP+) cells were isolated by flow sorting.

(B) After 8 weeks of co-culturing the sorted GFP+ population with H80 cells,

cells displayed heterogeneous levels of virally encoded GFP expression, with

40% now being GFP�.
(C) The percentage GFP� cells over time was determined by flow cytometry.

Data shown are a representative sample from one of three separate donors.

(D) Latently infected cells were isolated by flow sorting of the lowest 15%GFP-

expressing cells from the infected cell culture. These cells were then stimu-

lated with anti-CD3/CD28 beads for 3 days. GFP expression wasmeasured by

flow cytometry before (GFP�) and after (GFP� + aCD3/CD28) stimulation and

compared with uninfected (uninf) cells. Error bars represent SDs of two

technical replicates.
and that an HIV-infected culture contains cells with diverse tran-

scription levels.

Differential Proviral Transcription in Cells with Different
Host Cell Gene Expression Patterns
We next sought to determine the relationship between host cell

gene expression patterns and expression of vRNA by performing

single-cell RNA-seq (scRNA-seq). We first compared the single-

cell transcriptomes of 5,666 uninfected and 3,565 infected CD4+

T cell populations from two donors. Reduction of the dimension-

ality of the transcriptomes of single cells to two dimensions by

t-distributed stochastic neighbor embedding (tSNE) created a

single-cell map of the clusters of cells. Overall, the infected cells

clustered near the uninfected cells, indicating overall similar tran-

scriptome profiles (Figure 3A). However, the cells from the two
donors clustered distinctly, indicating differences in transcrip-

tomic profiles between donors (Figure 3A). The inter-donor dif-

ferences could represent true biological differences but may

also incorporate some batch specific phenomena, as the donors

were cultured and processed for scRNA-seq at different times.

As such, we focused our attention on analyzing differences be-

tween infected and uninfected cells and between infected cells

within the donors. Unsupervised graph-based clustering identi-

fied seven clusters on the basis of gene expression (Figure 3B).

For themost part, these clusters represent a continuous gradient

of T cell gene expression rather than discrete clusters of cell sub-

sets. This result is consistent with previous scRNA-seq analysis

of human T cells (Villani and Shekhar, 2017). Nevertheless, the

clusters exhibited significant differences in gene expression.

For example, clusters 0, 5, and 3 had higher levels of expression

for TNFSF10 and ID2, while clusters 4, 1, and 2 had higher

expression ofCCR7 and SELL (Figure 3C). Cluster 6 had upregu-

lation of genes that indicated feeder cell contamination and were

excluded from further analysis. Among 21,258 total genes de-

tected in all samples, we identified 12 upregulated and 6 down-

regulated transcripts (p % 0.001, likelihood-ratio test) when

comparing infected and uninfected cells (Figure 3D; Table S1).

As a marker of viral expression, GFP was the most differentially

expressed transcript, followed by IFITM1 and MIF (Figure 3D;

Table S1). IFITM1 has been shown to be upregulated upon HIV

infection and even identified as a candidate marker of latently in-

fected cells (Raposo et al., 2017), andMIF has been shown to be

elevated in plasma from HIV-infected individuals and may play a

role in viral replication (Regis et al., 2010). These results sug-

gested that after 12 weeks of culture, infected and uninfected

CD4+ T cells have overall similar transcriptomes, but there are

a small number of transcripts that are differentially expressed

as a result of infection.

Next, we focused our analysis on differences within the in-

fected cell population. We included the scRNA-seq from an

additional 641 cells from a third donor, interrogating in total the
Cell Reports 25, 107–117, October 2, 2018 109



Figure 3. Single-Cell Transcriptome Analysis of Infected and Uninfected CD4+ T Cells

(A) Two-dimensional plot from unsupervised clustering by t-distributed stochastic neighbor embedding (tSNE) of the single-cell transcriptomes of 5,666 unin-

fected (blue) and 3,565 infected (red) CD4+ T cell populations from two donors. Individual dots represent single cells. Uninfected cells were cultured in parallel with

the infected cells under identical conditions.

(B) Two-dimensional tSNE plot with identified distinct clusters determined by graph-based clustering.

(C) Heatmap of the top five transcripts differentially expressed between each cluster (likelihood ratio test; p % 0.05). Each pixel column is the expression of an

individual cell. Transcripts are on the rowswith the normalized expression (Z scores) colored by the legend (yellow,more upregulated; blue, more downregulated).

(D) Heatmap of transcripts differentially expressed between infected and uninfected cells (likelihood ratio test; p% 0.05). Each pixel column is the expression of

an individual cell. Transcripts are on the rows with the normalized expression (Z scores) colored by the legend (yellow, more upregulated; blue, more down-

regulated).
transcriptomes of 4,206 infected cells from three donors. Again,

the three donors clustered distinctly, indicating differences in

overall transcriptomes among the donors (Figure 4A). We identi-

fied 2,435 cells with detectableGFP transcript expression repre-

senting 68.5%, 28.9%, and 48.4% of the infected cells in the

three donors, respectively (Figure 4C). The cells with no detect-

able GFP expression are candidate latently infected cells.

Consistent with our previous observation, viral gene expression,

as measured by GFP RNA levels, was heterogeneous within the

infected cell population. Importantly, cells with undetectable

viral transcription were observable in all the clusters, indicating

that latency can be established in diverse cellular environments.

However, significant differences in viral gene expression were
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found between some clusters (Figure S3). Specifically, cells

from two of the three donors (donors 1 and 3) contained clusters

that were significantly enriched for high levels of GFP expres-

sion, as well as clusters that were enriched for GFP� cells (Fig-

ures 4B and S3). The other donor (donor 2) also exhibited

apparent differences in viral gene expression between clusters,

but these differences were not statistically significant, possibly

because of the smaller number of cells recovered for this donor.

To investigate this observation further, we then determined the

differences in gene expression between cells actively tran-

scribing vRNA (GFP+) and cells with no vRNA expression

(GFP�). We found 33 upregulated and 13 downregulated tran-

scripts in GFP+ cells compared with GFP� cells (p % 0.001,



Figure 4. Differential Gene Expression in In-

fected Cells with Different Levels of Viral

Transcription

(A) Two-dimensional plot from unsupervised

clustering by t-distributed stochastic neighbor

embedding (tSNE) of the single-cell tran-

scriptomes of 4,206 infected CD4+ T cell pop-

ulations from three donors. Individual dots repre-

sent single cells. Cells were taken from infected

cultures at 12 wpi and consist of a mixture of GFP+

and GFP� cells.

(B) Normalized transcript expression level of GFP

on the tSNE plot representation. Legend indicates

normalized transcript values.

(C) Violin plots detailing the expression levels of

GFP in each of the three donors infected cells.

(D and E) Volcano plots of genes significantly

differentially expressed genes in GFP+ cells (D) or

high-GFP+ cells (R2 GFP expression) (E) with

adjusted log p value and log2 fold change

graphed. Only significant genes are shown. Up-

regulated transcripts in red and downregulated in

blue.

(F) Ingenuity Pathway Analysis (IPA; QIAGEN) of

predicted functional annotations (diseases and

functions) for gene lists comparing all GFP+ or the

high-GFP+ and GFP� cells.

(G) Predicted activation or inhibition of canonical

pathways. Z score indicates activation versus in-

hibition of indicated functions.
likelihood-ratio test; Figure 4D; Table S2). We also determined

the differences in expression in cells with high vRNA expression

(GFPhi; top 10 percentile GFP expression; normalized expres-

sion R 2) compared with GFP� cells and found 87 upregulated

and 42 downregulated transcripts (p % 0.001, likelihood-ratio

test; Figure 4E; Table S3). Genes with higher expression in the

GFPhi subset included IL2RA (CD25), TNFRSF4 (OX40L), and

TNFRSF18 (GITR), consistent with previous observations that

activated T cells permit higher levels of HIV transcription (Wil-

liams and Greene, 2007). In contrast, cells with undetectable

HIV gene expression exhibited higher expression of CCR7,

CXCR4, SELL (CD62L), and the cytokine receptor CD127. Visu-

alization of the expression patterns for a number of these genes

in individual donors also suggested an enrichment of latently in-

fected cells in clusters with higher CCR7, CD27, and SELL

expression and a greater frequency of cells with higher viral tran-

scription in clusters with expression of IL2RA, HLA-DRA, and

CD38 (Figure 5). Thus, although HIV transcriptional downregula-

tion can occur in cells with diverse phenotypes, it occurs with a
Cell
higher frequency in cells that express a

specific set of cellular genes.

To investigate the temporal dynamics

of the observed gene changes, we per-

formed scRNA-seq on 7,300 infected

cells from an additional donor after

6 weeks of culture and identified 2,599

GFP+-expressing cells (Figure S4A). As

in our analysis of cells at 12 wpi, we

observed HIV downregulation in all tran-
scriptomic clusters but also found that some clusters were

significantly enriched for high HIV gene expression or for down-

regulation (Figure S4B). We found seven or nine upregulated and

three or two downregulated genes when comparing the GFP+

(p % 0.001, likelihood-ratio test; Table S4) or high GFP+ (top

10 percentile of GFP expression; Table S5) with GFP� cells,

respectively (Figure S4C). Interestingly, even after only 6 weeks

of culture, we found that cells with undetectable vRNA expres-

sion as measured by GFP expression had higher expression of

several of the same genes we observed at 12 wpi, including

TCF7 and CD27 (Figures S4C and S4D).

HIV Transcription Is Preferentially Downregulated in
Cells with Greater Proliferative Potential
To investigate whether the set of genes that differentiate tran-

scriptionally silent HIV infection (GFP�) from transcriptionally

active infection (GFP+) represented differential activity of specific

biological pathways, we performed Ingenuity Pathway Analysis

(Jiménez-Marı́n et al., 2009) and identified significant enrichment
Reports 25, 107–117, October 2, 2018 111



Figure 5. Expression Patterns of Host Cell

Genes that AssociatewithHIV Transcription

Level

(A and B) Normalized expression pattern for

selected genes whose expression negatively (A) or

positively (B) associated with viral gene expres-

sion (GFP) plotted on the tSNE plot representation.

Each dot represents and individual cell. Legends

indicate normalized transcript values. Data are

derived from one of three donors.
of genes involved in cell death and survival and cellular prolifer-

ation when comparing all GFP+ or GFPhi cells to GFP� cells (Fig-

ure 4F). We then determined the predicted activation status of

the genes in the cell death and survival and cellular growth and

proliferation categories in the high-GFP+ cells and found that

transcripts were changed in a way that predicted inhibition of

cell death and proliferation compared with GFP� cells (Fig-

ure 4G). A recent study also found activation of cellular survival

and OX40 pathways during HIV infection (Kuo et al., 2018). On
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the basis of this analysis, we hypothe-

sized that HIV transcriptional downregu-

lation might be correlated with differential

proliferative potential of the infected cells.

To test this hypothesis, we sorted in-

fected cells at 8 wpi into two populations

on the basis of GFP expression level

(GFP�, GFP+) (Figure 6, top). We then

stimulated each population with anti-

CD3/CD28 beads in the presence of

IL-2 100 U/mL for 3 days, then allowed

the culture to expand further in the

absence of stimulation. After 14 days of

expansion, we measured expansion by

counting viable cells. Notably, GFP� cells

exhibited the greater fold expansion of

the two cultures (Figure 6, bottom). These

data are consistent with a model in which

HIV transcriptional downregulation oc-

curs preferentially in a specific subset of

cells with greater proliferative potential

and suggest that HIV transcriptional

downregulation in primary CD4+ T cells

is associated with intrinsic biological

properties of host cells.

Viral Downregulation Is Associated
with T Cell Subset Identity
The observation that several transcripts

that define specific T cell subsets

(CCR7, SELL, CD27) are differentially ex-

pressed within infected cells with the

lowest level of HIV gene expression sug-

gested a relationship between specific

CD4+ T cell subsets and transcriptional

downregulation of the HIV promoter.

CD4+ T cells emerge from the thymus as
naive T cells (Tn), then, through a combination of antigenic simu-

lation and cytokine cues, develop linearly into central memory

T cells (Tcm), transitional memory T cells (Ttm), and finally

effector memory T cells (Tem). These subsets are defined by dif-

ferential expression of a set of surface markers including

CD45RO and CCR7. We examined expression of CCR7 and

CD45RO on the surface of infected cells by flow cytometry after

8weeks of co-culture with H80 cells. This staining confirmed that

the infected cell population consisted of a mixture of cells with



Figure 6. HIV Is Preferentially Downregu-

lated in Cells with Higher Proliferative

Capacity

An infected culture of primary CD4+ T cells at 8 wpi

was sorted into two populations on the basis of the

level of GFP expression: GFP� and GFP+ (top

right). Equivalent numbers of sorted cells were

then stimulated with aCD3/aCD28 beads for

3 days and then expanded in 100 U/mL IL-2 for

2 weeks. At the end of this period, the fold

expansion for each culture was calculated by

counting live cells using a hemocytometer and

trypan blue exclusion (bottom). Data shown are

from three independent donors. Error bars indi-

cate SDs of two technical replicates. *p < 0.05

(Student’s t test).
‘‘naive’’ (CCR7+ CD45RO�) phenotype, cells with a Tcm pheno-

type (CCR7+ CD45RO+), and cells with a Tem/Ttm (CCR7�

CD45RO+) phenotype (Figure 7, left). Notably, the distribution

of cells within these populations differs from other reports using

a similar model (Tyagi et al., 2010; Yang et al., 2009). This differ-

ence is likely explained by methodological differences in the

preparation of the cells: in one of the previous studies (Tyagi

et al., 2010), the infected cells were reactivated and expanded

post-sorting, while in our experiments, the infected cells were

not re-stimulated after the initial activation. To determine the

level of viral gene expression in each subset, we examined the

percentage of GFP� (latent) cells in each subset (Figure 7, right).

All three populations exhibited amixture of GFP� andGFP+ cells,

but, consistent with the scRNA-seq, we observed that there was

a gradient of HIV downregulation across the populations, with

CD45RO� CCR7+ cells having the highest percentage of GFP�

cells and CD45RO+ CCR7� cells exhibiting the lowest. These re-

sults demonstrated that in this latency model, HIV transcription

was preferentially downregulated in cells at the Tn/Tcm end of

the developmental spectrum. Nevertheless, we also observe

heterogeneous viral expression levels within each subset,

consistent with the hypothesis that latency is the output of a

convergence of factors at the level of each individual cell. In

this model, we would expect a diverse population of latently in-

fected cells, the most frequent phenotype of which would reflect

themost common convergence of these influences: (1) a cell that

had recently returned to the central memory pool from a highly

activated effector population prone to the initial stages of HIV

infection and (2) a provirus whose expression had become

restricted by epigenetic marks.
Cell
DISCUSSION

In this study we used single-cell ap-

proaches to determine the expression of

viral and host cell genes in individual

latently infected cells. Our approach pro-

vides a view of the latently infected

cellular subsets, revealing that (1) latency

occurs in diverse cellular environments,

(2) transcriptional downregulation is

significantly associated with a distinct
host cell transcriptional signature, and (3) transcriptional down-

regulation occurs preferentially in cells that possess greater pro-

liferation potential than cells in which viral transcription remains

high.

Over the past few years, single-cell methods have become

widely used and have provided powerful new insights into het-

erogeneity in biological systems that were previously assumed

to be homogeneous (Linnarsson and Teichmann, 2016; Shalek

et al., 2014; Villani and Shekhar, 2017). These methods are

particularly useful to the study of virus-host interactions, in which

multiple layers of complexity arise from variation in both host

cells and infecting viruses (Ciuffi et al., 2016). The HIV latent

reservoir, for example, consists of thousands of genetically

distinct viral genomes, including those encoding immune escape

variants, that persist as transcriptionally silent proviruses inte-

grated into a range of genomic locations. Furthermore, expres-

sion of these proviruses is regulated by a wide range of dynamic

chromatin modifications and host cell transcription factors that

can be divergently expressed and differentially active in different

CD4+ T cell subpopulations. The latent HIV reservoir thus repre-

sents not a single, uniform target but a diverse mixture of several

subpopulations of infected cells, potentially with fundamentally

different characteristics. The development of strategies to reac-

tivate or eliminate these cells may need to account for this

diversity within the latent reservoir. For example, targeting this

reservoir with LRAs may require separate strategies for different

subtypes of cells rather than a ‘‘one size fits all’’ approach.

Consistent with this notion, upon a single round of induction, in-

dividual LRAs typically disrupt latency in only a fraction of repli-

cation competent proviruses (Ho et al., 2013). As such there is an
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Figure 7. HIV Is Preferentially Downregu-

lated in Cells Expressing Tn and Tcm

Markers

Infected cells at 8 wpi were stained for surface

markers CD4, CD45RO, and CCR7 to identify

different CD4+ T cell subsets. CD45RO� CCR7+

cells represent naive T cells (Tn), CD45RO+CCR7+

cells represent central memory cells (Tcm), and

CD45RO+ CCR7� cells represent a mix of transi-

tional memory T cells (Ttm) and effector memory

T cells (Tem). The fraction of GFP� cells in each

gate was then calculated and plotted (right). Data

shown on the right represent the average of four

independent donors. Error bars indicate SDs of

biological replicates. *p < 0.05 (Student’s t test).
urgent need to study latency in the context of approaches that

can observe and characterize individual latently infected cells.

Prior studies have also applied single-cell approaches to the

study of HIV latency, although with significantly different meth-

odologies. Wiegand et al. (2017) used cell-associated HIV

RNA/DNA quantitation combined with single HIV genome

sequencing, both at limiting dilution, to detect diversity of viral

transcription from individual proviruses within samples from pa-

tients on antiretroviral therapy. Similar to our results, they found

that a minor subset of latently infected cells express detectable

RNA in the absence of stimulation and that vRNA levels differ

greatly from infected cell to infected cell. Likewise, Bui et al.

(2015) found that the burst size of virus release from single in-

fected cells varies over a wide range. Flow cytometry using

probes for viral transcripts has also yielded insights into diversity

of virus and host gene expression in individual cells during infec-

tion (Baxter et al., 2016.; Bolton et al., 2017; Martrus et al., 2016).

Two recent publications have also examined HIV latency using

scRNA-seq of a primary cell model (Golumbeanu et al., 2018)

and from sorted patient samples (Cohn et al., 2018), yielding

important insights. In particular, Golumbeanu et al. (2018)

observed two clusters of cells in a primary cell model system

that exhibited distinct transcriptional phenotypes, associated

with different levels of viral gene expression. Furthermore, these

investigators identified a transcriptional signature that distin-

guished these clusters. This signature contains some of the

same genes we observe as being associated with HIV gene ex-

pressing in our study, such as IL-32, GAPDH, HLA-E, and CD96,

but also many different genes (Golumbeanu et al., 2018).

Using a single-cell vRNA assay, we found that viral transcrip-

tion levels are variable among individual latently infected cells.

This observation was true for both a Jurkat-derived cell line

(N6) and latently infected primary cells. In both model systems,

a sizable subpopulation of latently infected cells transcribed

low levels of vRNA in the absence of stimulation. Furthermore,

the data demonstrate that antigen-based assays for latency

reversal significantly underestimate the fraction of responding

cells after stimulation with LRAs. N6 cells exhibited an apparent

threshold of vRNA expression before virally encoded antigen

became detectable, while for primary cells, this relationship

was more complex. The reason for this difference is unclear
114 Cell Reports 25, 107–117, October 2, 2018
but could be related to the greater levels of underlying heteroge-

neity in primary cells.

In our primary cell latency model, we observed only minor dif-

ferences between infected and uninfected cells using scRNA-

seq, suggesting that viral reprogramming of infected cells during

latency is limited. This finding is consistent with a previous pop-

ulation analysis of the transcriptome of infected cells using a

similar model (Mohammadi et al., 2014). However, the virus

used in these studies lacks expression of most viral proteins in

order to limit cytopathic effect and thus may not reflect the full

impact of an intact replication competent virus on the host cell.

In contrast, we observed a significant association between activ-

ity of the HIV promoter and the host cell transcriptome within the

infected cell population. Thus, our data argue that viral transcrip-

tion during latency is influenced by the underlying environment of

the infected host cells. In particular, we observed a clear prefer-

ence for HIV downregulation in cells expressing markers of Tn

and Tcm subsets, while effector and activated cells were asso-

ciated with higher levels of viral gene expression. These results

thus suggest a role for T cell subset identity and intracellular envi-

ronment in regulating the outcome of infection. Consistent with

this notion, it has recently been demonstrated that HIV preferen-

tially enters latency if infection occurs during a period of global

cellular transcriptional downregulation as cells return to rest

from activation (Shan et al., 2017). It is unlikely that the preferen-

tial downregulation we observe in Tn and Tcm in our primary cell

model is related to differential mutagenesis of the provirus,

because almost 90% of sorted latent (GFP�) primary cells in

our model re-expressed GFP upon TCR stimulation. Our finding

of preferential HIV downregulation in Tn and Tcm cells is also

consistent with outgrowth studies from suppressed patents

(Soriano-Sarabia et al., 2014).

Several other studies have also noted significant differences

between T cells subsets with respect to the establishment, main-

tenance, or reversal of latency, confirming that this is an area that

will require further investigation. Tsunetsugu-Yokota et al. (2016)

reported using an ex vivo infectionmodel that latent proviruses in

cells with a naive phenotype are difficult to reactivate compared

with proviruses within thememory cell compartment, suggesting

a distinct mechanism of latency in these cells. Consistent with

our findings, Grau-Expósito et al. (2017) used a single-cell



flow-fluorescence in situ hybridization (FISH) assay of patient

derived samples to identify effector memory T cells as the subset

with the highest level of proviral transcription. Another recent

study used flow cytometry to characterize cells expressing

vRNA and Gag protein in both viremic and antiretroviral ther-

apy-treated cells and found that proviruses in Tcm and Tem cells

exhibited distinct patterns of reactivation with LRAs (Baxter

et al., 2016).

Our finding that HIV is preferentially downregulated in cells

with greater proliferation potential is also consistent with this hy-

pothesis, and this phenomenonmay contribute to persistence of

the reservoir. It was also recently reported that HIV-infected cells

exhibit long-term cell survival through expression of BIRC5 (Kuo

et al., 2018). We did not observe upregulation of BIRC5 in our

model system, although we did observe a related protein,

BIRC3, being upregulated in cells with active HIV transcription.

It is not yet clear whether viral gene expression contributes to

increased infected cell survival in our system or whether,

conversely, the viral infection trajectory is guided by pre-existing

cellular phenotypic diversity.

The molecular basis for differential viral downregulation across

CD4+ T cell subtypes is unclear. As T cells develop along a linear

developmental trajectory from Tn to Tcm, and then to Ttm and

Temcells, they undergo progressive epigenetic remodeling, char-

acterized by de-repression of cellular genes and loss of histone

methylation islands that regulateexpressionof thesegenes (Durek

et al., 2016). Thus, the pattern of HIV downregulation we observe

mirrors the overall epigenetic programof these cells, suggesting a

link between the two. In addition to epigenetic differences, the ac-

tivity of other important mechanisms of HIV transcriptional regula-

tion, such as Tat or transcriptional elongation factors (Kim et al.,

2011; Razooky et al., 2015; Weinberger et al., 2005; Yukl et al.,

2018), may differ in distinct T cell subsets. Nevertheless, with

each subset, we see amixture of GFP+ andGFP� cells, indicating

that subset identitymay result in a given provirus being vulnerable

to viral downregulation, but other factors, such as integration site

or stochasticity, must also contribute to the process of entry into

latency (Chen et al., 2017; Weinberger et al., 2005).

Overall these findings indicate that the latent reservoir is a

complex and diverse population of cells but that expression of

specific host cell genes likely plays a role in the preferential

downregulation of the HIV provirus in some T cell subtypes.

The functional roles of the individual genes whose expression

is enriched in the different transcriptional clusters in HIV gene

expression should be investigated. Further studies to under-

stand the mechanisms of latency may lead to more effective

therapeutic approaches to clear persistent proviral infection.
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Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Edward P.

Browne (epbrowne@email.unc.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

N6 Jurkat cell model
N6 cells were a generous gift from David Irlbeck (Glaxo SmithKline, Chapel Hill, NC). This cell line was derived from the human Jurkat

T cell line and was made using HIV-1 engineered to express a luciferase reporter in place of the HIV-1 nef gene with an additional

mouse heat stable antigen CD24 (HSA) reporter located just downstream of the luciferase open reading frame, separated by a

T2A element (NLCH-Luci-HSA). NLCH, the parent molecular infectious clone was kindly provided by the laboratory of Dr. Ron

Swanstrom (UNC-Chapel Hill, Chapel Hill, NC) and is a modification of HIV-1 NL4-3 (GenBank U26942) where flanking sequences

were removed. To generate latently infected clones, NLCH-Luci-HSA infected Jurkat cells expressing low levels of HSA were

selected, limit diluted, and individual clones, including clone N6, were expanded in culture. This cell line wasmaintained in RPMI me-

dia with 10% Fetal calf serum (FCS) and penicillin/streptomycin. 500nM Efavirenz was added to the media to prevent spontaneous

virus outgrowth.

Primary cell model of HIV latency
For generation of infected primary model cells, human blood was purchased from Gulf Coast Regional Blood Center (Houston, TX).

Total CD4 T cells were then isolated from human peripheral blood mononuclear cells (PBMCs) by negative selection using Easysep

total CD4 T cell isolation kit (Stem Cell, Vancouver, BC). Purity was determined by staining with anti-CD4-FITC and flow cytometry

and was typically �98%–99%. For infection, 20 million CD4 T cells were activated by mixing with anti-CD3/CD28 beads (Thermo

Fisher) at one bead per cell for 2 days with 100U/mL IL-2. At 2d, the beads were magnetically removed, and the cells infected

with pNL43-D6-dreGFP virus by centrifugation at 600 g for 2h at room temperature, in the presence of 4ug/mL polybrene. At

2dpi, cells were resuspended in staining buffer, and infected (GFP+) cells were isolated using a FACSAria flow sorter (Becton

Dickson). The recovered GFP+ cells were then co-cultured with the human H80 cell line in RPMI media (provided by Darrell Bigner,

Duke University) and 20 U/mL IL-2 for up to 12 weeks. Media for the co-culture was replaced every 2-3 days. Infected cells were

moved to flasks with fresh H80 cells every two weeks. All donors were anonymous. This study was reviewed by the UNC-Chapel

Hill institutional review board (IRB) and was deemed to not constitute human research.

METHOD DETAILS

Generation of HIV stocks
HIV stocks were produced by transient transfection of the human 293T cell line with pNL43-D6-dreGFP plasmid, as well as the pack-

aging plasmids PAX2 and gp160 envelope, using Mirus LT1 tranfection reagent (Mirus Bio, Madison, WI). pNL43-D6-dreGFP was

kindly provided by Robert Siliciano (Johns Hopkins). This virus contains premature stop codons in all viral genes except tat and

rev, and contains a destabilized eGFP gene in the envelope open reading frame (Yang et al., 2009). The gp160 expression plasmid

was derived from the CXCR4-tropic NL4-3 strain and was kindly provided by Ronald Swanstrom (UNC Chapel Hill). Tissue culture

media was replaced at 24 h. At 48 h. supernatant was harvested and spun at 2000 rpm for 5mins to remove cell debris before filtering

through a 0.45mM filter (Millipore, Burlington MA). Aliquots of virus were frozen at �80�C.

Single cell vRNA (sc-vRNA) assay
Cells were stained at 1:1000 in phosphate buffered saline (PBS) with the live/dead dye Zombie Violet (ZV; Biolegend, San Diego CA) for

20 mins. Cells were then washed and resuspended in staining buffer (PBS with 2% fetal calf serum and 1mM EDTA). Next, single cells

were sorted into 96-well PCRplateswith 10ml of TCLbuffer (QIAGEN,Hilden, Germany) containing 1%Beta-mercaptoethanol using an

Aria flow sorter (Becton Dickinson, Franklin Lakes, NJ). Doublets were identified and excluded by forward scatter (FSC)/side scatter
Cell Reports 25, 107–117.e1–e3, October 2, 2018 e2
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(SSC) gating, and dead cells were excluded by gating on ZV- cells. Index sorting was used to record fluorophore/GFP intensity for each

cell. After sorting plates were briefly spun and frozen at�80�C. To extract RNA, plates were thawed and 22 ml of RNA-Clean XP beads

(Beckman Coulter, Brea, CA) added and incubated for 10 mins. Beads were then isolated and washed in 80% ethanol, then

eluted into 10 mL of 1x PCR master mix using Fastvirus (Thermo, Waltham, MA) and primer sets for HIV Gag (GAG-F: ATCAAGCAGC

CATGCAAATGTT, GAG-R: CTGAAGGGTACTAGTAGTTCCTGCTATGTC, GAG-Probe: FAM/ZEN-ACCATCAATGAGGAAGCTGCA

GAATGGGA-IBFQ) and Beta-actin (BAC-F: TCACCCACACTGTGCCCATCTACGA, BAC-R: CAGCGGAACCGCTCATTGCCAATGG,

BAC-Probe: HEX-ATGCCCTCCCCCATGCCATCCTGCGT-IBFQ). This plate was then run on a QS3 (Applied Biosystems, Foster

City, CA) real time thermocycler with a 5 minute reverse transcription step at 50�C, followed by 40 cycles of 94�C (3 s.), 60�C (30 s.).

RNA copy number was determined by comparison to a standard curve of synthesized Gag gblock purchased from Integrated DNA

Technologies (Coralville IA). Wells that failed to amplify Beta actin were excluded from analysis. The lower limit of quantification

(LLOQ) for this assay was seven copies of Gag RNA. Coefficient of variation for technical replicates in the standard curve ranged

from 10%–15% for 5000 copies to 40%–45% for 7 copies. Analysis of uninfected cells indicated a false positive amplification rate of

approximately 1%, with the majority of false positive signals falling below the LLOQ. Sensitivity and precision of this assay was also

benchmarked by analysis of vRNA standards (purchased fromBio-synthesis, Lewisville TX) that were spiked into assay wells with lysis

buffer (Figure S5).

scRNA-seq
scRNA-seq was performed as described (Zheng et al., 2017). Briefly, cellular suspensions were loaded on a GemCode Single-Cell

instrument (10XGenomics, Pleasanton, CA) to generate single-cell beads in emulsion. scRNA-seq libraries were then prepared using

GemCode Single Cell 30 Gel bead and library kit (10X Genomics). Single-cell barcoded cDNA libraries were quantified by quantitative

PCR (Kappa Biosystems, Wilmington, MA) and sequenced on an Illumina NextSeq 500 (San Diego CA). Read lengths were 26 bp for

read 1, 8 bp i7 index, and 98 bp read 2. Cells were sequenced to greater than 50,000 reads per cell. The Cell Ranger Single Cell Soft-

ware Suite was used to perform sample de-multiplexing, barcode processing and single-cell 30 gene counting (Zheng et al., 2017).

Reads were aligned to human genome release Hg38 with GFP nucleotide sequence added as an additional gene. Graph based cell

clustering, dimensionality reduction and data visualization were analyzed by the Seurat R package (Satija et al., 2015). Cells that ex-

hibited high transcript counts indicative of cells with abnormal expression or multiple cells within single droplet (> 7500 total tran-

scripts), > 0.1% mitochondrial transcripts (cellular stress), or transcripts characterized by the H80 feeder cells were excluded

from analysis. scRNA-seq data shown in the main text are from three donors at 12 wpi. An additional donor was analyzed at

6 wpi and these data are shown in the supplemental information.

Antibodies/flow cytometry
For flow cytometry, cells were stained in 100 ml staining buffer (PBS with 2% FCS and 1 mM EDTA). Staining was carried out for

30 mins. on ice, before washing with PBS and resuspension in staining buffer. Flow cytometry was carried out on a BD Fortessa

(Becton Dickson). Antibodies/fluorophores used for staining were anti-CD24-PE, anti-CD4-BV605, anti-CD45RO-BV785, anti-

CCR7-APC. All antibodies were purchased from Biolegend.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differentially expressed transcripts were determined in the Seurat R package utilizing the Likelihood-ratio test for single cell gene

expression statistical test (McDavid et al., 2013) and resulting p values were adjusted for multiple comparisons using Bonferroni

correction within Seurat. Significantly changed genes were identified as an adjusted p value% 0.05. Enriched gene pathway analysis

and predicted pathway activation were determined using Ingenuity Pathway Analysis (QIAGEN) software. For Figure 2, R2 values

were calculated by linear regression, with p values determined for a null hypothesis of the slope being zero. For data in Figures 6

and 7, analysis was performed with two tailed Students t test, with significance indicated by p > 0.05.

DATA AND SOFTWARE AVAILABILITY

scRNaseq data has been deposited in the Biosample database. Accession numbers are: SAMN08685499, SAMN08685500,

SAMN08685501, SAMN08685502.
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