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Because many aspects of viral infection dynamics and inhibition are governed by stochastic processes, single-cell 
analysis should provide more information than approaches using population averaging. We have developed a 
microfluidic device composed of ~6000 wells, with each well containing a microstructure to capture single, infected 
cells replicating an enterovirus expressing a fluorescent reporter protein. We have used this system to characterize 
enterovirus inhibitors with distinct mechanisms of action. Single-cell analysis reveals that each class of inhibitor 
interferes with the viral infection cycle in a manner that can be distinguished by principal component analysis. 
Single-cell analysis of antiviral candidates not only reveals efficacy but also facilitates clustering of drugs with the 
same mechanism of action and provides some indication of the ease with which resistance will develop.

INTRODUCTION
Over the past few decades, the world has witnessed outbreaks of 
myriad RNA viruses, including West Nile virus, severe acute respi-
ratory syndrome coronavirus, Chikungunya virus, Ebola virus, 
Zika virus, and, most recently, the poliovirus (PV)–related viruses: 
enterovirus D68 (EV-D68) and enterovirus A71 (EV-A71) (1–6). 
Unfortunately, viral emergence has outpaced the discovery and 
development of compounds capable of treating these pathogens. 
Because sporadic outbreaks come, go, and may never come again, 
development of broad-spectrum therapeutics exhibiting high barriers 
to resistance would have the greatest value. Unbiased screening 
of chemical libraries for antiviral agents using cell-based assays 
has no problem identifying active compounds of high potency. 
However, identifying the target and predicting the likelihood for 
evolution of resistance generally take years of effort following com-
pound discovery.

As a part of a study evaluating PV infection dynamics on the single- 
cell level, we observed that a chain-terminating antiviral ribonucleotide 
selectively eliminates the most-fit members of the viral population 
(7). This class of antiviral agent has always been touted as having a 
high barrier to resistance (8). The typical explanation for this high 
barrier is that amino acid substitutions in the active site of the viral 
RNA polymerase conferring resistance to the antiviral ribonucleoside 
also impair the specificity and/or efficiency of incorporation of natural 
ribonucleotides (9). Elimination of the most-fit members of the viral 
population by an antiviral agent requires that resistance emerges from 
the surviving, low-fitness members of the population, which would 
ultimately require restoration of fitness for the population to survive 
the myriad mechanisms of host restriction (10). Restoration of fitness 

may be the insurmountable barrier precluding the development of 
resistance to chain-terminating antiviral ribonucleotides.

This study was designed to determine the extent to which single- 
cell analysis of antiviral agents can contribute to our understanding 
of antiviral therapeutics relative to traditional approaches. We de-
scribe a microfluidics device that can be used to produce complete 
dose- response curves. We have used this device to compare three 
mechanistically distinct classes of antiviral agents: a PV polymerase in-
hibitor [2′-C-methyl-adenosine (2′-C-Me-A)], a PV protease inhibitor 
(rupintrivir), and two heat shock protein 90 (HSP90) inhibitors 
[geldanamycin (GA) and ganetespib (GS)]. We find that single-cell 
analysis distinguishes these classes of inhibitors. We suggest that 
addition of single-cell analysis to the existing paradigm for preclinical 
development of antiviral therapies may have the potential to identify 
leads with limited potential for development of resistance.

RESULTS
A device for single-cell analysis of the activity of antiviral agents
Our initial foray into single-cell analysis of PV infection dynamics used 
cell density to control single-cell occupancy of wells of a microfluidic 
device (7). What this means practically is that most wells are empty. 
Reducing the number of events monitored by a mere factor of two 
takes us below the number of events required for statistical analysis 
of the data. Acquisition of a dose-response curve was therefore im-
possible using this first-generation device.

To address this problem, we created a multilayer device as previ-
ously described (Fig. 1A) (7) but added a trapping structure to the 
channel layer of the device (Fig. 1B and fig. S1A). The position of 
the trapping structure was guided by simulation (Fig. 1C), leading 
to placement of the trapping structure on the rear wall of each well 
(Fig. 1D). The device contains five independent zones, each con-
taining 1140 wells for a total of 5700 wells. The device mounts easily 
to the stage of a microscope (fig. S1B); the device in the cross section is 
shown in fig. S1C. Single-cell occupancy of the device was sensitive 
to the width of the channels used for loading (fig. S1D) and cell 
density (fig. S1E) with maximum occupancy near 90% (Fig. 1D and 
fig. S1). Under conditions in which an inhibitor reduces infection to 
10%, ~100 infected cells will be observed using this device. This 
number of events is more than enough for statistical analysis.
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Reevaluation of a PV polymerase inhibitor
Viral polymerases represent a well-established target of antiviral thera-
peutics. For example, cocktails used to treat human immunodeficiency 
virus infection and hepatitis C virus (HCV) infection include syn-
thetic nucleoside analogs targeting reverse transcriptase and RNA- 
dependent RNA polymerase (RdRp), respectively (11, 12). The 
nonobligate, chain- terminating antiviral ribonucleoside 2′-C-Me-A 
is the prototype for the HCV RdRp inhibitor, sofosbuvir, and related 
compounds (13). In a previous study, we evaluated infections that 
survived treatment when present at a concentration that reduces the 
number of infections by 50% [median inhibitory concentration (IC50)]. 
To our surprise, we observed selective ablation of cells infected with 
virus variants capable of the fastest rates of replication and the highest 
yields of replicated RNA (7). This experiment suffered from the in-
ability to evaluate concentrations of drug higher than the value of 
the IC50. Here, we use 2′-C-Me-A to validate the new device.

For all experiments reported herein, we pretreat HeLa S3 cells 
with drug for 1 hour, infect cells off chip with PV engineered to express 
enhanced green fluorescent protein (PV-eGFP) at a multiplicity of 
infection (MOI) of 0.5 plaque-forming units (PFU) per cell, pellet 
and wash cells to remove free virus, suspend cells to a density of 
5 × 105 cells/ml in drug-containing medium, and load the microfluidic 
device. Each well is monitored for eGFP fluorescence every 30 min 
for a 24-hour period, which gives rise to a population of time courses 
exhibiting substantial between-cell variability (fig. S2A). We plot the 
percentage of infected (green, GFP-positive) cells as a function of 

drug concentration and fit to a hyperbola to obtain a value for the 
IC50 value. In the case of 2′-C-Me-A, concentrations greater than 50 M 
exhibit toxicity (14); therefore, these data do not fit to a hyperbola 
(fig. S2B). It is clear from this experiment, however, that the approach 
is sensitive enough to acquire data for a complete dose-response 
analysis (fig. S2B).

A major advantage of the single-cell platform is that the effect of a 
drug on the viable population can be determined. To analyze the single- 
cell data, we use five phenomenological parameters extracted from each 
time course (fig. S2C). These parameters are maximum fluorescence 
observed, which correlates to yield of genomic RNA; slope at the time 
of half-maximum fluorescence, which correlates to replication speed; 
infection time, which, to a first approximation, is the time it takes for 
an infection to go from start to finish akin to the virus generation time; 
start point, which is the earliest time in which fluorescence can be de-
tected; and midpoint, the time of half-maximum fluorescence. This 
analysis leads to a collection of data points for each parameter value 
measured in each cell. Instead of displaying the primary data in a scat-
ter plot (fig. S2, D and E), we display and analyze the curve derived 
from the first derivative of the cumulative distribution function from 
the raw data (fig. S2E). Our statistical analysis uses an unpaired two-
tailed t test to determine if a significant difference exists for the means 
of a given parameter under two experimental conditions. In these 
experiments, the area under the curve defining each distribution has 
been normalized to one for ease of comparison. We do not attempt 
to interpret a difference in the “fine” structure of the distributions.

Fig. 1. Addition of cell-trapping microstructures to wells of a microfluidic device enhances single-cell occupancy. (A) Schematic of the device. The following layers 
exist: microwell (not shown explicitly), channel (green), and valve (cyan). The device is divided into five sections of 1140 microwells (different shades of green for the 
channel layer) for a total of 5700 microwells. (B) Schematic of two wells of the device with all relevant dimensions indicated. The microwell layer creates a physical barrier 
between adjacent wells. The barrier between adjacent wells is sealed with water emanating from the valve layer. Water in the valve layer is sealed by application of 
air under pressure (20 to 30 psi). (C) Simulation of the flow velocity field in a microwell indicated that the outlet would maximize cell trapping by the microstructure. 
(D) Image showing cells captured by the microstructures in the microwells. The device was infused with cells (5 × 105 cells/ml) at a rate of 0.5 l/min. Under optimal con-
ditions, 86.1% (4908) microwells of the device contained single cells.



Using this data analysis pipeline to evaluate outcomes in the ab-
sence and presence of 2′-C-Me-A (50 M), we observed a statistically 
significant difference in the mean values for the maximum (fig. S2F) 
and slope (fig. S2G) parameters without a statistically significant 
change in the mean values for the remaining parameters (fig. S2, H 
to J). Tabulation of the data and statistical analysis for this experiment 
are provided in table S1. These observations reproduce outcomes 
presented by us previously using the first-generation device (7). The 
mean values for maximum and slope parameters were reduced sub-
stantially in the presence of 2′-C-Me-A. The observed between-cell 
variability in response to 2′-C-Me-A treatment can be attributed 
to multiple factors, including speed and/or fidelity of the viral poly-
merase, the capacity for the nucleoside to be converted to the nucle-
oside triphosphate (NTP), among other possibilities.

Evaluation of a PV 3C protease inhibitor
The observation that a subset of the viral population was most sen-
sitive to 2′-C-Me-A was unexpected but could be easily rationalized 
by the notion that increased replication efficiency should correlate 
to increased 2′-C-Me-AMP incorporation efficiency. Do inhib-
itors of other viral enzymes exhibit the same selectivity? Proteases of 
retroviruses and positive-sense RNA viruses responsible for polyprotein 
processing represent a second category of well-established antiviral 
therapeutics used in the cocktails to treat HIV and HCV, respectively 
(15–17). Inhibitors of the picornaviral protease responsible for poly-
protein processing (3C) have been pursued for many years (18). For 
this study, we selected rupintrivir, which targets the 3C protease 
activity of all three types of PVs as well as that of other EVs (19, 20).

We measured the impact of rupintrivir on the establishment of PV 
infection in HeLa S3 cells (Fig. 2A). The IC50 value was 8.0 ± 4.0 nM, 
which agrees with values (5 to 40 nM) measured using conventional 
plaque assays (19). We analyzed the single-cell data obtained at all 
concentrations (table S2) but focused only on the concentrations 
approximating the IC50 and 2 × IC50, 10 and 20 nM, respectively, to 
emphasize trends in the data. At both concentrations, we observed 
a statistically significant difference compared with the control for 
all parameters: maximum (Fig. 2B), slope (Fig. 2C), infection time 
(Fig. 2D), start point (Fig. 2E), and midpoint (Fig. 2F). This outcome 
with rupintrivir is distinct from that above with 2′-C-Me-A. We con-
clude that not all antiviral agents interfere with the viral population in 
the same manner or at the same stage(s) of the lifecycle reflected by the 
parameters determined by monitoring the kinetics of fluorescence 
produced by GFP reporter virus.

Evaluation of HSP90 inhibitors
Compounds antagonizing the function of cellular chaperones rep-
resent an emergent class of anticancer and antiviral therapeutics 
(21, 22). Chaperones of the HSP90 family are required when the cell 
is growing fast and/or producing high levels of proteins, as observed 
in cancer cells or in virus-infected cells. Seminal studies from the 
Frydman and Andino laboratories demonstrate a clear, essential role 
for HSP90 in the production of infectious PV virions (23). However, 
every step of the virus lifecycle has been suggested as a target for 
HSP90 when viruses outside of the picornavirus family are considered 
(22, 24). The benefit of targeting antiviral therapeutics to cellular 
proteins is that the likelihood for evolution of resistance is mini-
mized (23).

We have used GA because it is a potent inhibitor of HSP90 (nano-
molar range) that is active against PV (23). The presence of GA reduced 

the number of infections established by 22 ± 4%, with an IC50 value 
of 30 ± 8 nM (Fig. 3A). An earlier study did not observe an impact of 
GA prior to virus assembly; however, it is possible that a reduction 
of the magnitude shown here would be concealed by experimental 
error (23). Because infection is monitored by eGFP, which requires 
virus entry, genome replication, and genome translation, interference 
with any of these steps would lead to a reduction in the number of 
eGFP-positive cells. It is clear, however, that translation and folding 
of eGFP are not altered in the presence of the highest concentration 
of GA used in this experiment (fig. S3).

Analysis of the single-cell data is presented in table S3. The mean of 
the distribution of values for the maximum parameter did not change 
in the presence of GA (Fig. 3B), in contrast to the inhibitors targeting 
viral proteins. Observation of a statistically significant difference in 
the distribution of the values for the infection time parameter was 
concentration dependent (Fig. 3D). A statistically significant difference 
for the mean of the distributions for the remaining parameters was 
observed at concentrations corresponding to the IC50 and above 
(Fig. 3, C, E, and F). A third signature of antiviral action is therefore 
revealed with GA.

Given the interest in using HSP90 inhibitors as therapeutics for 
cancer, a variety of compounds exist (25, 26). For example, GS is an 

Fig. 2. Evaluation of rupintrivir, a PV 3C protease inhibitor. (A) Dose-response 
analysis. Percentage of single, infected (green, GFP-positive ) cells was determined 
as a function of rupintrivir concentration. (B to F) Distributions for each parameter 
in the presence of 10 or 20 nM rupintrivir were compared with that in the absence 
of drug using a t test. A *P < 0.05 and **P < 0.005. Numerical values for experimen-
tal parameters and statistical analysis are provided in table S2. The parameters pre-
sented in the panels are as follows: (B) maximum, (C) slope, (D) infection time, (E) 
start point, and (F) midpoint. hpi, hours postinfection; a.u., arbitrary units.



HSP90 inhibitor that differs from GA substantially in chemical struc-
ture (compare inset in fig. S4 to that in Fig. 3A) but is thought to 
have the same mechanism of action (27, 28). The use of GS provides 
an important test of the capacity of the single-cell analysis to reveal 
common signature for compounds with common mechanisms.

In contrast to observations with GA, GS reduced the number of 
infections established by 70 ± 14%, with an IC50 of 3 ± 1 nM due to 
its higher affinity for HSP90 (29). Analysis of the single-cell data is 
presented in table S3. The impact of GS on the five phenomenological 
parameters was the same as observed for GA (fig. S4). In this case, 
it is clear that mechanistically identical compounds yield identical 
signatures at the single-cell level.

Evaluation of antiviral drug combinations
The long-term use of an antiviral therapy is determined, in part, by 
the time required for resistance mutants to emerge. One approach to 
delaying or even eliminating the emergence of drug-resistant mutants 
is the use of antiviral combinations (30, 31). What is often evaluated 
is the ability of two drugs to exhibit greater efficacy (synergy) in 
preventing infection in combination than observed when either drug 
is used alone. We evaluated the ability of 2′-C-Me-A to synergize 
with GA by treating cells with the concentrations of one or both at 
their IC50 values (Fig. 4A). In the absence of drug, 34 ± 3% of cells 

in the device were infected. That number was reduced to 18 ± 2, 
30 ± 3, or 15 ± 3% in the presence of 2′-C-Me-A, GA, or the combi-
nation thereof, respectively. On the basis of this observation alone, 
the conclusion would be that this combination of antiviral agents is not 
even additive. Analysis of the entire single-cell dataset is presented 
in table S4. Because 2′-C-Me-A exhibits the most substantial antiviral 
effect relative to the dimethyl sulfoxide (DMSO) control, here we 
compare the combination to 2′-C-Me-A alone. We observed a sta-
tistically significant difference for all parameters (Fig. 4, B to F). 
Single-cell analysis therefore has the ability to reveal efficacy of drug 
combinations masked at the population level. We performed the 
comparable experiment with GS and reached the same conclusion 
(fig. S5 and table S4).

Evaluation of single-cell data by using PCA
Our evaluation of three classes of anti-PV drugs revealed three unique 
signatures based on changes to the phenomenological parameters used 
to describe infection dynamics (fig. S6). We reasoned that principal 
component analysis (PCA) might provide an even more robust ap-
proach to compare datasets using our five parameters. As shown 
in Fig. 5A, PCA resolves each class of inhibitor from the other, as 
well as from outcomes in the absence of drug. The mechanistically 

Fig. 3. Evaluation of GA, an HSP90 inhibitor. (A) Dose-response analysis. Percentage 
of single, infected (green, GFP-positive ) cells was determined as a function of GA 
concentration. (B to F) Distributions for each parameter in the presence of 25 or 
100 nM GA were compared with that in the absence of drug using a t test. **P < 0.005. 
Numerical values for experimental parameters and statistical analysis are provided 
in table S3. The parameters presented in the panels are as follows: (B) maximum, 
(C) slope, (D) infection time, (E) start point, and (F) midpoint.

Fig. 4. Evaluation of an antiviral drug combination: 2′-C-Me-A and GA. (A) Combi-
nation of 2′-C-Me-A and GA is not synergistic based on the fraction of established 
infections. Percentage of single, infected (green, GFP-positive) cells was determined 
in the presence of 50 M 2′-C-Me-A, 25 nM GA, or the combination of the two drugs. 
(B to F) Distributions for each parameter in the presence of the combination were 
compared with that in the presence of GA alone using a t test. Numerical values for 
experimental parameters and statistical analysis are provided in table S4. The pa-
rameters presented in the panels are as follows: (B) maximum, (C) slope, (D) infection 
time, (E) start point, and (F) midpoint. *P < 0.05; **P < 0.005.



related, but chemically distinct, inhibitors of HSP90 cluster by PCA 
(see GA and GS in Fig. 5A). We evaluated the antiviral drug combina-
tions in the context of the PCA space (Fig. 5B). An additive combi-
nation is defined by the vector bisecting the parallelogram defined 
by the experiment in the absence of either drug (control) and the 
experiments in the presence of each drug alone (Fig. 5B). The 2′-C-
Me-A–GA combination was synergistic, with the position indi-
cating that the combination delays the start point and retards the 
infection time. We conclude that single-cell analysis of antiviral 
therapeutics can provide not only information on the efficacy of 
a drug but also information on the mechanism of action and syn-
ergy of combinations of antiviral therapeutics. This experimental 
paradigm should have a transformative impact on the drug devel-
opment process.

DISCUSSION
The era of single-cell virology has begun (7, 32–35). Infection out-
comes in cells are determined, in part, by stochastic processes (36). 
For example, the presence and abundance of viral restriction factors 
and viral replication promoting factors of the host are largely governed 
by stochastic gene expression (37). As a result, substantial between- 
cell variation exists in all quantifiable parameters of infection. An 
underappreciated consequence of the behavior of systems such as 
these is the non–self-averaging nature of these systems, which means 
that the population average of any single-cell parameter will almost 
certainly fail to represent the dynamics within any single cell (38, 39). 
The practical complication arising from this phenomenon is that 
changes in the average kinetics observed in a growth curve for a virus 
caused by a perturbation, e.g., exposure to an antiviral therapeutic, 
will not inform accurately the step(s) of the viral lifecycle affected 
most by the perturbation.

With this perspective in mind, it is not surprising that our previous 
evaluation of an antiviral ribonucleotide using a single-cell approach 
revealed the unexpected finding that the most-fit members of the 
viral population were most susceptible to this class of compounds 
(7). This observation left one major unresolved question: Do all ef-

fective antiviral therapeutics target the same subpopulation of viruses 
or do unique signatures exist for distinct mechanistic classes of anti-
viral therapeutics? Addressing these questions is the central objective 
of this study.

Our first-generation microfluidic device for on-chip investigation 
of viral infection dynamics relied on cell density as the mechanism 
to achieve isolation of single cells in wells of the device, an approach 
which leaves most wells of the device empty (7). We have redesigned 
the device to add physical cell-trapping structures to each well. The 
outcome of which is the ability to achieve single-cell occupancy of 
~90% of the ~6000 wells of the device (Fig. 1 and fig. S1). The en-
hanced occupancy enabled the complete characterization of antiviral 
therapeutics by permitting the acquisition of complete dose-response 
curves (e.g., Fig. 2A).

The three classes of antiviral therapeutics chosen target a viral 
polymerase (2′-C-Me-A; fig. S2), a viral protease (rupintrivir; Fig. 2), 
or a host factor, HSP90, [GA (Fig. 3) and GS (fig. S4)]. Our data 
analysis pipeline emphasizes five phenomenological parameters with 
correlates to traditional parameters for assessment of the viral life-
cycle. The major finding of this study is that each class of antiviral 
therapeutics exhibited a unique signature with respect to the five 
phenomenological parameters measured. We used the absolute value 
of the difference of each parameter in the presence and absence of 
the antiviral agent to visualize the signature for the antiviral agent 
and compare one antiviral agent to another (fig. S6A). It was possible 
to use PCA to stratify the different therapeutic classes (Fig. 5A). Both 
GA and GS overlapped by PCA despite their substantial differences 
in structure and efficacy (Fig. 5A). Drug combinations, which failed to 
affect establishment of infection, exhibited synergy when single-cell 
parameters were monitored (Figs. 3 and 5B).

As observed previously, viruses with the highest yields (maximum) 
and fastest rates of replication (slope) were sensitive to 2′-C-Me-A 
(fig. S6B) (7). An efficient polymerase is likely required to replicate 
fast and to the highest levels. Such a polymerase might be expected 
to use the antiviral nucleotide better, leading to extinction of this 
population of viruses. These same members of the viral population 
were sensitive to rupintrivir (fig. S6C). In this case, at concentrations 

Fig. 5. Mechanistic classes of antiviral agents distinguished by PCA of single-cell data. (A) Points representing groups of single cells are colored according to com-
pound identities with each point representing a different drug treatment concentration. PCA was performed using the mean values of the maximum, slope, infection 
time, start point, and midpoint from the various drug treatment concentrations and control groups. The top two principal components accounted for 94% of the total 
variance. The light blue lines indicate the relationship between variables in the space of the first two components. (B) The pair of scores for principle components 1 and 
2 for the drug combination experiment shown in Fig. 4 was plotted in the PCA space from (A). The expected vector for additive behavior of the combination is indicated. 
This analysis reveals the synergistic behavior of the combination of 2′-C-Me-A and GA.



equivalent to or lower than the IC50, binding is driven by the con-
centration of the protease target, which would be highest in cells 
replicating fastest and to the highest levels. GA only affected a subset 
of 2′-C-Me-A and rupintrivir-sensitive members, those with a fast 
rate of replication (fig. S6D). This observation is quite interesting in 
that fast rates of replication in our assay mean fast rates of translation 
to produce GFP. Chaperones like HSP90 would be expected to be 
most useful under these conditions. A comparable analysis using the 
start point and infection time provided an even greater distinction 
between the three classes of antiviral agents studied herein (fig. S6, 
E to G). Most noteworthy was the observation that rupintrivir retarded 
the time it took to establish infection and to complete replication 
(fig. S6F). This observation may reflect the role of the protease in 
promoting replication by cleaving cellular antagonists of the virus 
lifecycle.

This study is among the first to analyze a range of antiviral ther-
apeutics on viral infection dynamics at the single-cell level. The res-
olution afforded by this approach is unprecedented when compared 
with other cell-based approaches, which only provide a measure of 
efficacy. Given the substantial effort required to go from compound to 
mechanism using the traditional experimental paradigm, the ability of 
single-cell analysis to inform mechanism should make this approach 
a welcome addition to the drug discovery and development toolbox. It 
is not uncommon for analogs to be synthesized during the drug devel-
opment process that lose specificity or even function by a different 
mechanism of action; single-cell analysis has the potential to reveal 
changes such as these at the start of the analysis instead of much, much 
later in the development process. Last, although we have used antiviral 
agents to demonstrate the power of single-cell analysis, use of this tech-
nology and approach will be applicable to the discovery and develop-
ment of any class of therapeutics that can be assessed in cell culture.

MATERIALS AND METHODS
Cells, viruses, and reagents
HeLa and HeLa S3 cells were obtained from the American Type 
Culture Collection and maintained in Dulbecco’s modified Eagle’s 
medium/F12 (1:1) (Life Technologies) supplemented with 10% fetal 
bovine serum (Atlanta Biologicals) and penicillin-streptomycin 
(100 IU/ml; Corning) in a humidified atmosphere of 95% air and 
5% CO2 at 37°C.

To generate enhanced green fluorescent protein (EGFP)–tagged 
PV used in this work, pMo-EGFP-PV-WT plasmid was linearized 
with Apa I and purified using the QIAEX II Gel Extraction Kit (Qiagen, 
Netherlands). With the linearized plasmid as the template, viral RNA 
was transcribed at 37°C for 5.5 hours in a 20-l reaction medium con-
taining 350 mM Hepes (pH 7.5), 32 mM magnesium acetate, 40 mM 
dithiothreitol, 2 mM spermidine, 28 mM NTPs, linearized DNA 
(0.025 g/l), and T7 RNA polymerase (0.025 g/l). After removing 
magnesium pyrophosphate in the mixture by centrifugation for 2 min, 
RNA concentration was measured by scanning the gel at fluorescence 
mode with a Typhoon 8600 scanner (Promega, USA). Then, 5 g of 
viral RNA was used to transfect HeLa cells cultured at 37°C by electro-
poration. Virus was harvested by three repeated freeze-thaw cycles, 
centrifuged at 3000 rpm for 5 min, and suspended in 0.5% NP-40. 
For purification, the supernatant was mixed with 1 volume of 20% 
PEG-8000 (polyethylene glycol, molecular weight 7000~9000)/1 M 
NaCl solution and incubated overnight at 4°C. After centrifugation 
at 8000g for 10 min at 4°C, the pellet was resuspended in phosphate- 

buffered saline (PBS) and filtered with Centricon Plus-70 (EMD Milli-
pore, USA). Plaque assay was performed to determine the virus titer.

DMSO and rupintrivir were purchased from Sigma Chemical Co. 
(St. Louis, MO, USA). 2′-C-Me-A was obtained from Carbosynth 
Limited (Compton, Berkshire, UK). Solutions of GA and GS in DMSO 
were provided by X. Zhang (Department of Chemistry, Pennsylvania 
State University) and J. Frydman (Department of Biology, Stanford 
University), respectively. All the antiviral compounds were prediluted 
in DMSO for use. For no drug groups, same volumes of DMSO were 
spiked into the culture medium.

Microfluidic devices
The microfluidic layers were fabricated from polydimethylsiloxane 
(PDMS; GE RTV615) by standard soft lithography techniques. The 
molds were fabricated by coating photoresist SU-8 25/50 with de-
sired thicknesses on a silicon wafer and photolithographic patterning 
(fig. S1). Premixed PDMS prepolymer and curing agent (ratio, 5:1) 
were poured onto the mold for the valve layer and cured. Premixed 
PDMS prepolymer and curing agent (ratio, 20;1) were spin coated on 
the mold for the channel layer at 1500 rpm for 1 min and incubated 
at 65°C for 20 min. Then, the valve layer was released from the mold 
and placed on the channel layer with alignment. The assembly was 
baked at 65°C overnight for efficient bonding. The assembly was further 
bonded with alignment to the microwells layer cured from premixed 
PDMS prepolymer and curing agent (ratio, 20:1) by baking at 65°C 
overnight. The obtained device was further bonded to a glass slide 
to prevent deformation when applying a pressure to the valves.

On-chip experiments
For each group, 2 × 105 HeLa S3 cells were cultured with drug- 
containing medium for 1 hour. Then, the cells were centrifuged, 
resuspended in PBS, and mixed with EGFP-PV at the MOI of 0.5 PFU 
per cell. After shaking at 140 rpm for 30 min, the cells were centri-
fuged and resuspended in media with corresponding treatments. With 
a PHD ULTRA Syringe pump (Harvard Apparatus), the cell suspen-
sions were infused to the inlets of a microfluidic device for trapping 
of single cells for 5 min. A pressure of 30 psi was applied to the valves 
to isolate the microwells.

The device was placed in the chamber of a stage top WSKM 
GM2000 incubation system (Tokai, Japan) adapted to a Nikon Eclipse 
Ti inverted microscope (Nikon, Japan) equipped with a ProScan II 
motorized flat top stage (Prior Scientific, USA). With this setup, 
bright-field and fluorescence images of the microwells were auto-
matically acquired every 30 min from 2.5 to 24 hours postinfection. In 
each image, 36 (6 × 6) microwells were included with a CFI60 Plan 
Apochromat Lambda 10× objective and a Hamamatsu C11440 camera.

Data processing
Infected and uninfected cells were counted manually to calculate the 
percentage of infection. A customized MATLAB script was used to 
extract the fluorescence intensity and background intensity for each 
microwell in each fluorescence image. (Fluorescence intensity − 
Background)/background was calculated to represent the relative 
intensity. Meanwhile, wells containing two or more infected cells 
and showing autofluorescence or out-of-focus signals were manually 
excluded. As a result, the fluorescence intensity of each infected single 
cell over time could be obtained. With a customized package of R, 
the maximum, slope, infection time, start point, and midpoint were 
derived for each data curve, as described previously (7, 40). For 



comparison of different experiments, the intensities were further 
normalized to uniformize the mean values of the maximums for the 
no drug groups (2.00 arbitrary units in this work). To visualize the 
distributions, as in fig. S2 and elsewhere in the manuscript, we cal-
culated the cumulative distribution function from the raw data, then 
calculated the first derivative, and smoothed it using Savitzky-Golay 
smoothing. The area under each curve was normalized to 1.

Statistical analysis
All of the experimental data were obtained in triplicate and are pre-
sented as means ± SD unless otherwise mentioned. Unpaired two-
tailed t tests were used to determine if a significant difference exists for 
the means of a given parameter under two experimental conditions. 
All statistical analysis was performed using OriginPro 9.1 software.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/10/eaax4761/DC1
Fig. S1. A microfluidic device containing cell-trapping microstructures for high-throughput 
analysis of single-cell infections.
Fig. S2. Evaluation of 2′-C-Me-A, a PV RdRp inhibitor.
Fig. S3. Translation of eGFP mRNA and activation of fluorophore are normal in the presence of 
GA and GS.
Fig. S4 Evaluation of GS, an HSP90 inhibitor.
Fig. S5 Evaluation of an antiviral drug combination: 2′-C-Me-A and GS.
Fig. S6 Evaluation of inhibitor-specific signatures.
Table S1. Means, SD, and P values between groups for the 2′-C-Me-A experiment.
Table S2. Means, SD, and P values between groups for the rupintrivir experiment.
Table S3. Means, SD, and P values between groups for experiments with HSP90 inhibitors.
Table S4. Means, SD, and P values between groups for antiviral synergy experiments.

View/request a protocol for this paper from Bio-protocol.
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