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Abstract

Objective—Burn patients are particularly vulnerable to infection, and an estimated half of all 

burn deaths are due to infections. This study explored risk factors for healthcare-associated 

infections (HAIs) in adult burn patients.

Design—Retrospective cohort study.

Setting—Tertiary-care burn center.

Patients—Adults (≥18 years old) admitted with burn injury for at least 2 days between 2004 and 

2013.

Methods—HAIs were determined in real-time by infection preventionists using Centers for 

Disease Control and Prevention criteria. Multivariable Cox proportional hazards regression was 

used to estimate the direct effect of each risk factor on time to HAI, with inverse probability of 

censor weights to address potentially informative censoring. Effect measure modification by burn 

size was also assessed.

Results—Overall, 4,426 patients met inclusion criteria, and 349 (7.9%) patients had at least 1 

HAI within 60 days of admission. Compared to <5% total body surface area (TBSA), patients with 

5%–10% TBSA were almost 3 times as likely to acquire an HAI (hazard ratio [HR], 2.92; 95% CI, 

1.63–5.23); patients with 10%–20% TBSA were >6 times as likely to acquire an HAI (HR, 6.38; 

95% CI, 3.64–11.17); and patients with >20% TBSA were >10 times as likely to acquire an HAI 
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(HR, 10.33; 95% CI, 5.74–18.60). Patients with inhalational injury were 1.5 times as likely to 

acquire an HAI (HR, 1.61; 95% CI, 1.17–2.22). The effect of inhalational injury (P = .09) 

appeared to be larger among patients with ≤20% TBSA.

Conclusions—Larger burns and inhalational injury were associated with increased incidence of 

HAIs. Future research should use these risk factors to identify potential interventions.

Burn injuries are an important source of morbidity and mortality in the United States; an 

estimated 486,000 people required medical treatment and ~40,000 required hospitalization 

for a burn in 2016 alone.1,2 Burn patients are particularly vulnerable to infection due to the 

nature of their injury, their prolonged hospitalizations, hypermetabolic and hyper-catabolic 

conditions, inhalational injuries, and frequent use of invasive devices.3,4 In addition to these 

factors that impact local immunity, systemic immunity is also altered in the burn setting.5–7

The evolution of burn care management has led to significant improvements in morbidity 

and mortality rates. Early excision and grafting, enhanced antimicrobial options, and a better 

understanding of the pathophysiology of burns have significantly improved outcomes for 

burn survivors: survival is the rule, no longer the exception. In addition to the baseline risk 

for healthcare-associated infection (HAI) in hospitalized patients, burn patients are at 

increased risk of infection until their wounds are grafted and/or healed. Those patients with 

comorbid conditions may be at even higher risk of infection. This risk is a devastating 

consequence of burn trauma. It has been estimated that infections cause half of all burn 

deaths.8

Despite the tremendous impact of infections in the burn patient population, risk factors 

beyond burn size and inhalational injury are unclear, and whether burn size impacts the 

effect of risk factors on HAI incidence remains unknown. Thus, the goal of this study was to 

estimate the association between patient demographics, comorbidities, and burn 

characteristics with time to HAI among adult patients hospitalized for burn injuries. To the 

best of our knowledge, this is the first study to assess potential risk factors for HAIs 

irrespective of site and pathogen.

Methods

Study Population

Patients admitted between January 1, 2004, and December 31, 2013, to the North Carolina 

Jaycee Burn Center at the University of North Carolina (UNC) Hospitals were identified 

using the burn center registry, which includes data collected for reporting to the National 

Burn Repository. Adult patients (ie, ≥18 years old) admitted with burn injury (including 

inhalation injury alone) were eligible for inclusion. Only the first hospitalization for a 

patient’s first burn within the period was included in the analyses (n = 5,576). Patients were 

excluded if the discharge date could not be determined (n = 37; 0.7%; these patients were all 

discharged alive) or if they were hospitalized for <2 days (n = 1,113; 20.0%).
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Measures

Registry data were linked to the Carolina Data Warehouse for Health, a central repository for 

clinical and administrative data from the UNC Healthcare System and the UNC Hospital 

Epidemiology database, which captures healthcare-associated infections (HAIs) through 

real-time, comprehensive, hospital-wide surveillance in accordance with the Centers for 

Disease Control and Prevention (CDC) criteria.9,10 Age was categorized as <30 years old, 

30–39 years old, 40–49 years old, 50–59 years old, or ≥60 years old, and total burn surface 

area (TBSA) was categorized as <5% TBSA, 5–10% TBSA, 11–20% TBSA, or >20% 

TBSA. Revised Baux scores were calculated as described by Osler et al.11 Comorbidities 

were identified using International Classification of Disease, Ninth Revision, Clinical 
Modification (ICD-9-CM) diagnostic codes in the administrative records, and included 

diabetes (250–250.9), chronic pulmonary disease (490–496.9, 500–505.9, and 506.4), 

congestive heart failure (428–428.9), prior myocardial infarction (412–412.9), pre-existing 

renal disease (582– 583.7, 585 – 586.9, and 588 – 588.9), peripheral vascular disease (443.9, 

441–441.9, 785.4, and V43.4), and cerebrovascular disease (430–438.9). These coding 

schemes were all validated by Deyo et al.12

Statistical Analyses

Bivariate analyses comparing demographics, comorbidities, and burn characteristics between 

patients with and without an HAI within the first 60 days of hospitalization were performed 

using 2-tailed, Fisher’s exact, and Wilcoxon-Mann-Whitney tests, where appropriate. 

Kaplan-Meier survival curves were used to estimate the 60-day cumulative incidence of 

HAI, stratified by each factor of interest; inpatient mortality was treated as a competing risk.
13 A 2-sided P < .05 was considered statistically significant.

Multivariable Cox proportional hazards regression was used to estimate the direct effect of 

demographics, comorbidities, and burn characteristics (after adjusting for all other potential 

risk factors) on the time to HAI. The multivariable model included patient age, sex, race/

ethnicity, comorbidities (ie, diabetes, chronic pulmonary disease, congestive heart failure, 

prior myocardial infarction, pre-existing renal disease, peripheral vascular disease, and 

cerebrovascular disease), burn mechanism, TBSA, and inhalational injury. Patients 

contributed time from first day of hospitalization until their first HAI, death, discharge, or 

administrative censoring at 60 days postadmission. Radiation was reclassified as an “other” 

mechanism due to low incidence. To assess whether effect measure modification by TBSA 

of any risk factor on time to HAI, the multivariable Cox model described above (plus 

additional interaction terms between TBSA and each risk factor) was also fit. Wald χ2 tests 

were used to identify significant modification. Variables with a P < .10 were considered to 

have statistically significant modification.

To account for potentially informative censoring (ie, being discharged alive <60 days after 

admission), inverse probabilities of censor weights were calculated.14 Briefly, among 

patients censored (ie, did not have an infection or died), length of stay was partitioned into 

quintiles. Using those cut points, a pooled logistic regression model was used to estimate the 

probability of each patient being censored in each period, given the patient had not been 

discharged and had not been infected or died during the prior period, adjusting for patient 
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age, sex, race/ethnicity, comorbidities, burn mechanism, TBSA, inhalational injury, and 

admit year. Weights were scaled by the marginal (ie, overall) probability of being censored 

in each period and truncated at the 5th and 95th percentiles. Robust sandwich estimators were 

used to account for the weighting in the Cox regression models.

All analyses were performed using SAS version 9.4 software (SAS Institute, Cary, NC). 

Approval for this study was obtained from the Institutional Review Board (IRB) of the 

University of North Carolina at Chapel Hill.

Results

Overall, 4,426 patients were hospitalized for at least 2 days and were included in the 

analysis. The median length of stay was 10 days (interquartile range 5–17). Only 120 

patients (2.7%) had hospitalizations longer than 60 days without an HAI and were censored; 

of those patients, 29 (24.2%) had HAIs after 60 days. Moreover, 172 patients (3.9%) died 

during hospitalization and within 60 days of admission; among them, 68 (39.5%) died 

occurred after an HAI.

Within 60 days of admission, 349 (7.9%) patients had at least 1 HAI. Skin and soft-tissue 

infections (n = 125; 35.8%) and respiratory infections (n = 85; 24.4%) were the most 

common infection types (Table 1). In addition, 50 respiratory infections (52.6%) were 

ventilator associated and 45 urinary tract infections (67.2%) were catheter associated. 

Patients with HAIs were more likely to be older (median age, 48 years vs 43 years; P < .

0001), to have diabetes (16.1% vs 12.0%; P = .03), to have congestive heart failure (6.3% vs 

2.6%; P = .004), to have a prior myocardial infarction (4.9% vs 2.5%; P = .01), to have pre-

existing renal disease (6.3% vs 2.8%, P = .001), and to have peripheral vascular disease 

(4.0% vs 1.6%; P = .005) (Table 2). Additionally, patients with HAIs were more likely to 

have flame burns (77.0% vs 49.6%; P < .0001), larger burns (median TBSA, 19% vs 5%; P 
< .0001), and inhalational injuries (31.2% vs 6.9%; P < .0001). No significant differences 

were detected in the distribution of gender, race, or pulmonary disease.

No significant difference in the cumulative incidence of HAI was observed across gender (P 
= .69), race (P = .62), age (P = .39), diabetes (P = .60), pulmonary disease (P = .24), 

congestive heart failure (P = .11), prior myocardial infarction (P = .42), pre-existing renal 

disease (P = .92), peripheral vascular disease (P = .74), or cerebrovascular disease (P = .60) 

(data not shown). Burn mechanism was significantly associated with HAI incidence (P < .

0001), and patients admitted with flame burns had a significantly higher cumulative 

incidence of infection (Figure 1). Similarly, burn size and inhalational injury were 

significantly associated with increased cumulative incidence (P < .0001 and P < .0001, 

respectively) (Figures 2 and 3).

Burn mechanism was significantly associated with time to HAI in the bivariate analysis; 

however, after adjustment for all other potential risk factors and weighting for censoring, 

only chemical burns, compared to flame burns, were significantly associated with a lower 

hazard of infection (HR, 0.20; 95% CI, 0.06–0.71) was observed (Table 3). Both TBSA and 

inhalational injury significantly changed the hazard of HAI acquisition both before and after 
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adjustment. Compared to patients with <5% TBSA, patients with 5%–10% TBSA were 

almost 3 times as likely to acquire an HAI (HR, 2.92; 95% CI, 1.63–5.23); patients with 

10%–20% TBSA were >6 times as likely to acquire an HAI (HR, 6.38; 95% CI, 3.64–

11.17); and patients with >20% TBSA were >10 times as likely to acquire an HAI (HR, 

10.33; 95% CI, 5.74–18.60). Patients with inhalational injury were 1.5 times as likely to 

acquire an HAI (HR, 1.61; 95% CI, 1.17–2.22). Both before and after adjustment, no 

significant differences in time to first HAI were detected across gender, race, age, and 

comorbidities.

The effect of demographics and most comorbidities were also consistent across smaller 

(≤20% TBSA) and larger (>20% TBSA) burns (Table 4). However, prior myocardial 

infarction (P = .09), burn mechanism (P < .0001), and inhalational injury (P = .09) were each 

found to have differential effects across burn size. Specifically, prior myocardial infarction 

appeared to increase the incidence of infections among patients with small burns (HR, 1.25; 

95% CI, 0.63–2.51) but to decrease the incidence among patients with larger burns (HR, 

0.46; 95% CI, 0.18–1.15). Additionally, patients with small burns, scald burns (HR, 0.50; 

95% CI, 0.33–0.76), and contact burns (HR, 0.33; 95% CI, 0.10–1.14) appeared to have a 

lower likelihood of HAI compared to flame burns. However, among patients with large 

nonflame burns, an increased likelihoods of HAI were observed: scald HR, 1.38 (95% CI, 

0.77–2.45) and contact HR, 1.98 (95% CI, 0.50–7.90). Alternatively, the electrical burns 

increased the likelihood of HAI in small burns (HR, 2.08; 95% CI, 1.02–4.23) and lowered 

the likelihood of infection among patients with large burns (HR, 0.74; 95% CI, 0.29–1.91). 

Finally, the effect of inhalational injury appeared to have a smaller effect on time to HAI 

(HR, 1.17; 95% CI, 0.79–1.73) in patients with large burns compared to those with smaller 

burns (HR, 1.98; 95% CI, 1.24–3.14).

Discussion

In this analysis of 4,426 burn patients hospitalized for at least 2 days between 2004 and 

2013, the 60-day incidence of HAIs among burn patients was 8%. Patients with higher 

TBSA and inhalational injury were significantly more likely to acquire an HAI during their 

hospitalization. Moreover, the effect of burn mechanism and inhalational injury was 

differential across burn size. Neither demographics nor comorbidities were associated with 

time to HAI, even after allowing for differential effects across burn size. Other studies have 

also found that burn size, inhalational injury, and cardiac disease were associated with 

increased risk of infection.3,15–17 However, these previous analyses have been in specific 

populations (eg, older adults) or only looked at specific infection sites and pathogens. To our 

knowledge, this is the first study to conduct a comprehensive analysis of risk factors for 

HAIs, irrespective of site and pathogen, among all adults.

We also found that the effects of burn mechanism were differential across burn size. Among 

patients with TBSA ≤20%, flame burns and electrical burns had the highest incidence of 

HAI, and patients with larger scald and contact burns (ie, >20% TBSA) had a higher 

incidence of HAI. Typically, large scald and contact burns are either secondary to clinically 

significant neuropathies, where patients are unable to feel the high temperature of the liquid 

or object they are handling, or are the result of seizing or falling near a hot object and then 
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being unable to move away.18,19 While we adjusted for multiple comorbidities, the 

differential effect in burn mechanism across burn size may be due to the inability to fully 

control for patient frailty and health status.

Additionally, the effect of inhalational injury was also differential across burn size, with the 

effect of inhalational injury being more substantial among patients with small burns. There 

are a few plausible explanations. Possibly, while inhalational injury and burn size are risk 

factors for infection, when presenting together they have a less than multiplicative 

relationship (ie, the total effect is less than the sum of the parts). Alternatively, because we 

used ‘any HAI’ as our outcome, it could be that patients with larger burns were at such an 

increased risk for skin and soft-tissue infections and death (a competing risk) due to their 

large burn that inhalational injury was unable to have a meaningful impact using this study 

design. Future studies should look at the effect of these risk factors on specific infections 

types (eg, respiratory infections) to determine whether the effects of these risk factors 

change across infection type and whether the effect of inhalational injury remains 

differential across burn size.

We have previously described the timeline of HAIs and pathogens among patients with burn 

injuries, as well as temporal trends in HAIs in our burn unit.20–23 Patients tend to start off 

being colonized with more susceptible Gram-positive organisms early in their 

hospitalization, whereas after some time in the burn unit, multidrug resistant (MDR) gram-

negative bacteria including Pseudomonas aeruginosa tend to predominate.20 In our hospital, 

almost half of the pathogens colonizing burn patients were MDR organisms, and the rates of 

MDR infections increased the longer a patient was hospitalized. Furthermore, the rate of 

catheter-associated bloodstream infection (CLABSI) has decreased over the past decade, 

likely due to a bundled intervention introduced to the unit.22 These findings suggest that at 

least some infections in the burn unit are preventable, and intervention strategies can be used 

to reduce rates of infection.

This study has several limitations. First, this analysis included patients from a single, large, 

tertiary-care facility, and these results may not be generalizable to other hospitals, 

particularly if the patient population, burn characteristics, and antibiotic management 

strategies differ. Second, we combined all HAIs into a single outcome to increase power and 

better assess at-risk time for each patient, but outcomes are not all alike and may have 

different specific risk factors. Future studies should stratify HAIs and account for whether it 

was a patient’s first, second, etc., HAI for that hospitalization. Changes in HAI management 

strategies and the CDC definitions for HAIs over time may also impact results. Additionally, 

because patients could only be followed during their hospitalization, the potential for 

informative censoring exists; however, inverse probability of censor weighting was used to 

account for these differences to minimize the potential bias. Similarly, we were unable to 

assess the fraction of full thickness burn as a potential risk factor because it was not captured 

in the database. Finally, we have used standardized CDC definitions for HAI as determined 

in real time by trained infection preventionists. However, these definitions were developed 

and validated for surveillance purposes, and many more patients are treated for infection by 

their treating physician in the burn unit than those who meet strict criteria for HAI. Future 
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prospective, multicenter studies are needed to further define infectious risks in the burn 

population.

In conclusion, larger burns and inhalational injuries are associated with increased incidence 

of HAIs; moreover, the effects of burn mechanism and inhalational injury on time to HAI 

are different among patients with larger burns. Clinicians and infection preventionists may 

use these risk factors to identify potential interventions and increased surveillance systems to 

reduce the burden of infection among burn patients and to reduce morbidity and mortality.
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Figure 1. 
The 60-day cumulative incidence of healthcare-associated infections among adult burn 

patients, stratified by flame burns (black solid line), contact burns (black dashed line), scald 

burns (gray solid line), and other burn mechanisms (gray dashed line).
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Figure 2. 
The 60-day cumulative incidence of healthcare-associated infections among adult burn 

patients, stratified by <5% total burn surface area (TBSA) (black solid line), 5%–10% TBSA 

(black dashed line), 11%–20% TBSA (gray sold line), and >20% TBSA (gray dashed line).
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Figure 3. 
The 60-day cumulative incidence of healthcare-associated infections among adult burn 

patients, stratified by patients with (dashed line) and without (solid line) inhalational injury.
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Table 1

Breakdown of First HAI by Infection Type

Infection No. (%)

Skin and soft-tissue infections 125 (35.8)

Respiratory infection   85 (24.4)

Bloodstream infections   63 (18.1)

Urinary tract infections   62 (17.8)

Gastrointestinal infectionsa     5 (1.4)

Other infectionsb     9 (2.6)

NOTE. HAI, hospital-associated infection.

a
All gastrointestinal infections were caused by Clostridium difficile.

b
Other infections include cardiovascular infections and ear/eyes/nose/throat infections.
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Table 2

Demographics, Comorbidities, and Burn Characteristics of Adult Patients, Stratified by HAI Status

HAI (N = 349, 7.9%),
No. (%)a

No HAI (N = 4,077; 92.1%),
No. (%)a P Valueb

Hospitalization year

 2004–2007 213 (61.0)    950 (23.3) <.0001

 2008–2010   71 (20.3) 1,246 (30.6) <.0001

 2011–2013   65 (18.6) 1,881 (46.1) <.0001

Gender

 Male 257 (73.6) 2,920 (71.6)   .46

 Female   92 (26.4) 1,157 (28.4)   …

Race

 White 171 (50.2) 2,166 (54.6)   .13

 Black 116 (34.0) 1,167 (29.4)   .08

 Other   54 (15.8)    634 (16.0)   .99

 Unknown     8    110

Age

 <30 y   57 (16.3) 1,018 (25.0)   .0003

 30–39 y   57 (16.3)    811 (19.9)   .11

 40–49 y   81 (23.2)    840 (20.6)   .25

 50–59 y   58 (16.6)    707 (17.3)   .73

 ≥60 y   96 (27.5)    701 (17.2) <.0001

Comorbidities

 Diabetes   56 (16.1)    491 (12.0)   .03

 Pulmonary disease   37 (10.6)    352 (8.6)   .24

 Heart failure   22 (6.3)    106 (2.6)   .0004

 Prior myocardial infarction   17 (4.9)    102 (2.5)   .01

 Renal disease   22 (6.3)    114 (2.8)   .001

 Peripheral vascular disease   14 (4.0)      65 (1.6)   .005

 Cerebrovascular disease     8 (2.3)      41 (1.0)   .05

Burn mechanism

 Flame 268 (77.0) 2,012 (49.6) <.0001

 Scald   54 (15.5) 1,368 (33.7) <.0001

 Electrical   16 (4.6)    155 (3.8)   .47

 Contact     6 (1.7)    237 (5.8)   .0005

 Chemical     3 (0.9)    179 (4.4)   .0004

 Radiation     0 (0.0)      12 (0.3)   .62

 Other burn     1 (0.3)      95 (2.3)   .006

 Unknown     1      19   …

TBSA, %

 <5   24 (6.9) 2,073 (50.9) <.0001

 5–10   58 (16.6) 1,122 (27.6) <.0001
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HAI (N = 349, 7.9%),
No. (%)a

No HAI (N = 4,077; 92.1%),
No. (%)a P Valueb

 11–20 106 (30.4)    610 (15.0) <.0001

 >20 161 (46.1)    268 (6.6) <.0001

 Baux score, median (IQR)   77 (61–94)      50 (37–64) <.0001

 Inhalation injury 109 (31.2)    283 (6.9) <.0001

NOTE. HAI, hospital-associated infection; IQR, interquartile range; TBSA, total burn surface area. P values < .05 are bold.

a
Unless otherwise specified.

b
Two-tailed Fisher’s exact and Wilcoxon-Mann-Whitney tests were used to calculate P values.
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Table 3

Unadjusted and Adjusted Effects of Demographics, Comorbidities, and Burn Characteristics on Time to HAI

Crude Adjusteda

HR (95% CI) P Value HR (95% CI) P Value

Gender

 Male 1.04 (0.76–1.04) .76 1.04 (0.78–1.38) .78

 Female Ref … Ref …

 Race

 White Ref … Ref …

 Black 1.07 (0.85–1.36) .57 1.19 (0.90–1.58) .21

 Other 1.16 (0.86–1.58) .33 1.12 (0.78–1.62) .53

 Age

 <30 y Ref … Ref …

 30–39 y 1.15 (0.79–1.66) .47 0.98 (0.64–1.50) .92

 40–49 y 1.24 (0.88–1.75) .22 1.07 (0.71–1.61) .76

 50–59 y 0.98 (0.68–1.42) .91 1.01 (0.64–1.58) .98

 ≥ 60 y 1.28 (0.91–1.79) .16 1.34 (0.87–2.07) .19

Comorbidities

 Diabetes 0.91 (0.68–1.22) .54 1.04 (0.71–1.54) .84

 Pulmonary disease 0.96 (0.68–1.36) .82 0.99 (0.67–1.45) .96

 Heart failure 1.47 (0.94–2.29) .09 1.64 (0.95–2.82) .07

 Prior myocardial infarction 1.28 (0.79–2.07) .32 0.95 (0.54–1.69) .87

 Renal disease 1.02 (0.66–1.56) .95 0.77 (0.47–1.26) .30

 Peripheral vascular disease 1.02 (0.59–1.79) .94 0.79 (0.40–1.53) .48

 Cerebrovascular disease 1.09 (0.49–2.41) .83 0.72 (0.29–1.82) .49

Burn mechanism

 Flame Ref … Ref …

 Scald 0.46 (0.34–0.61)  <.0001 0.80 (0.56–1.15) .22

 Electrical 0.98 (0.59–1.64) .95 1.74 (0.95–3.20) .07

 Contact 0.24 (0.11–0.54)     .0005 0.69 (0.24–1.97) .49

 Chemical 0.19 (0.06–0.60)   .005 0.20 (0.06–0.71) .01

 Other burn 0.09 (0.01–0.64) .02 0.14 (0.02–1.04) .05

TBSA, %

 <5 Ref … Ref …

 5–10 3.39 (2.09–5.50)  <.0001 2.92 (1.63–5.23)    .0003

 11–20   7.67 (4.84–12.16)  <.0001   6.38 (3.64–11.17)  <.0001

 > 20 14.16 (9.00–22.29)  <.0001 10.33 (5.74–18.60)  <.0001

Inhalation injury

 Yes 2.32 (1.81–2.99)  <.0001 1.61 (1.17–2.22)   .003

 No Ref … Ref …

NOTE. HAI, hospital-associated infection; HR, hazard ratio; CI, confidence interval; Ref, reference; TBSA, total burn surface area. P values < .05 
are bold.
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a
Estimates are adjusted for gender, race, age, comorbidities, burn mechanism, TBSA, and inhalational injury and weighted to account for 

potentially informative censoring.
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Table 4

Assessment of Potential Effect Measure Modification Between Potential Risk Factors and Time to HAI by 

Burn Size

≤20% TBSA
HR (95% CI)a

>20% TBSA
HR (95% CI)a P Valueb

Gender

 Male 1.14 (0.77–1.68) 1.02 (0.68–1.53) .71

 Female Ref Ref …

Race

 White Ref Ref .44

 Black 1.18 (0.80–1.73) 1.24 (0.83–1.86) …

 Other 0.95 (0.57–1.59) 1.50 (0.93–2.42) …

Age

 <30 years old Ref Ref .28

 30–39 years old 1.08 (0.61–1.92) 0.88 (0.49–1.59) …

 40–49 years old 1.14 (0.64–2.05) 1.06 (0.62–1.80) …

 50–59 years old 1.06 (0.57–1.96) 1.15 (0.63–2.11) …

 ≥ 60 years old 1.75 (1.00–3.05) 0.82 (0.43–1.61) …

Comorbidities

 Diabetes 0.96 (0.59–1.59) 1.03 (0.57–1.87) .86

 Pulmonary disease 0.89 (0.54–1.44) 0.84 (0.41–1.70) .90

 Heart failure 1.61 (0.81–3.17) 1.23 (0.45–3.39) .67

 Prior myocardial infarction 1.25 (0.63–2.51) 0.46 (0.18–1.15) .09

 Renal disease 0.66 (0.33–1.31) 1.21 (0.59–2.47) .23

 Peripheral vascular disease 0.92 (0.37–2.31) 0.69 (0.26–1.80) .67

Burn mechanism

 Flame Ref Ref   <.0001

 Scald 0.50 (0.33–0.76) 1.38 (0.77–2.45) …

 Electrical 2.08 (1.02–4.23) 0.74 (0.29–1.91) …

 Contact 0.33 (0.10–1.13) 1.98 (0.50–7.90) …

 Chemical NA 0.73 (0.20–2.71) …

 Other burn 0.12 (0.02–0.89) NA …

Inhalation injury

 Yes 1.98 (1.24–3.14) 1.17 (0.79–1.73) .09

 No Ref Ref …

NOTE. HAI, hospital-associated infection; HR, hazard ratio; CI, confidence interval; Ref, reference; TBSA, total burn surface area; NA, not 
analyzable. P values < .05 are bold.

a
All estimates are adjusted for gender, race, age, comorbidities, burn mechanism, TBSA, and inhalational injury, as well as interaction terms 

between each potential risk factor and TBSA, and weighted to account for potentially informative censoring.

b
Wald tests for significant effect modification of the potential risk factor by burn size.
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