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Abstract

Background

The rate of community-acquired Clostridium difficile infection (CA-CDI) is increasing. While

receipt of antibiotics remains an important risk factor for CDI, studies related to acquisition

of C. difficile outside of hospitals are lacking. As a result, risk factors for exposure to C. diffi-

cile in community settings have been inadequately studied.

Main objective

To identify novel environmental risk factors for CA-CDI

Methods

We performed a population-based retrospective cohort study of patients with CA-CDI from

1/1/2007 through 12/31/2014 in a 10-county area in central North Carolina. 360 Census

Tracts in these 10 counties were used as the demographic Geographic Information System

(GIS) base-map. Longitude and latitude (X, Y) coordinates were generated from patient

home addresses and overlaid to Census Tracts polygons using ArcGIS; ArcView was used

to assess “hot-spots” or clusters of CA-CDI. We then constructed a mixed hierarchical

model to identify environmental variables independently associated with increased rates of

CA-CDI.
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Results

A total of 1,895 unique patients met our criteria for CA-CDI. The mean patient age was 54.5

years; 62% were female and 70% were Caucasian. 402 (21%) patient addresses were

located in “hot spots” or clusters of CA-CDI (p<0.001). “Hot spot” census tracts were scat-

tered throughout the 10 counties. After adjusting for clustering and population density, age

� 60 years (p = 0.03), race (<0.001), proximity to a livestock farm (0.01), proximity to farm-

ing raw materials services (0.02), and proximity to a nursing home (0.04) were indepen-

dently associated with increased rates of CA-CDI.

Conclusions

Our study is the first to use spatial statistics and mixed models to identify important environ-

mental risk factors for acquisition of C. difficile and adds to the growing evidence that farm

practices may put patients at risk for important drug-resistant infections.

Introduction

Clostridium difficile infection (CDI) leads to adverse patient outcomes [1]. Now the most com-

mon pathogen causing healthcare-associated infections (HAI) [2], deaths related to CDI

increased 400% between 2000 and 2007 [3]. In fact, the CDC estimates that approximately

500,000 patients have CDI each year in the US, and 29,000 die as a result of the infection [4].

As a result, CDI was recently classified as an “urgent” threat to public health [5].

While the threat from CDI continues to grow, its epidemiology is incompletely understood.

More than 50% of CDI cases begin in the community [6], and the rate of community-acquired

(CA) CDI is increasing [6, 7]. However, a large proportion of patients who develop CA-CDI

lack traditional risk factors such as antimicrobial use or proton pump inhibitor (PPI) exposure

[8, 9]. Ultimately, patients admitted to acute care hospitals with CA-CDI in turn impart “CDI

pressure” that increases the risk of acquisition of CDI by other vulnerable hospitalized patients

that share the same hospital unit [10].

Environmental factors may increase the risk for community acquisition of some tradition-

ally healthcare-associated pathogens, including methicillin-resistant Staphylococcus aureus
(MRSA) and C. difficile. For example, the authors of a recent analysis of 1,539 cases of

CA-MRSA in a population of 446,480 concluded that proximity to farms that applied swine

manure fertilizer was a strong predictor for CA-MRSA skin infection [11]. Similarly, pig farms

have recently been associated with CDI, particularly infections caused by ribotype 078 strain

[12].

In light of our limited understanding of community reservoirs of C. difficile and the fact

that many patients who develop CA-CDI lack traditional risk factors, new and innovative

approaches are needed to determine if additional environmental factors increase the risk for

community acquisition of C. difficile. Methods in spatial statistics including Geographic Infor-

mation Systems (GIS) are increasingly applied to healthcare investigations and allow research-

ers to examine outpatient transmission by analyzing the dynamics of spatial configuration of

disease over time. We therefore undertook this large, multicenter cohort study using GIS and

spatial statistics to identify novel environmental risk factors for CA-CDI.

GIS CA-CDI risk factor analysis
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Materials and methods

The Duke University Health System (Pro00063169) and University of North Carolina (#15–

1712) IRBs approved this research.

Patient identification

This population-based retrospective cohort study included patients with CDI from two health

systems. These systems included two tertiary care hospitals, three community hospitals in the

Duke Infection Control Outreach Network [13], and 802 outpatient facilities. Microbiology

records were queried to identify all patients with a positive stool test for C. difficile from Janu-

ary 1, 2007, through December 31, 2014 (hereafter, the “study period”). If a patient had more

than one positive test for C. difficile, only the first test during the study period was included.

Patients were defined as having CA-CDI if a positive test was obtained a) at an outpatient

clinic or b) during the first 72 hours of a documented hospitalization [14]. Patients who met

the above criteria were excluded from our analysis if they had been hospitalized in the prior 12

weeks. Finally, we narrowed our analysis to include only case patients with addresses in a

10-county area surrounding the five study hospitals in an attempt to include the collective

catchment area of the study hospitals and health systems in central NC. The population of the

10 study counties was approximately 1.94 million; 1.2 million were located in the two largest

population centers: Wake County (Raleigh) and Durham County (Durham).

Data management and GIS methods

Demographic data for North Carolina were obtained and grouped at Census Tract level using

2010 United Sates Census Bureau Data [15]; 360 Census Tracts in the 10 counties were used as

the demographic GIS base-map. We obtained Census Tracts surfaces as measured in square

kilometers and converted to square miles [16]. Data related to socioeconomic status were

obtained for targeted census tracts from the American Community Survey (ACS) 2008–2012

[17]. Patient home addresses were used to identify longitude and latitude (X, Y) coordinates.

The resulting points were overlaid to existing polygons describing the Census Tracts using

ArcGIS (version 10.2.2 ESRI, Redlands CA). SAS Data Management Studio was used to USPS

verify and standardize each patient address, and then geocode the standardized patient

addresses at the rooftop/street level of geography, using USPS and TomTom/TeleAtlas. Arc-

GIS was used to calculate Euclidean distance (in miles) between case addresses and environ-

mental and geographic variables, as defined by ESRI infrastructure features and MAPINFO

Business Points and categorized by standard industrial classification codes (SICCODE)

(http://siccode.com/). Environmental variables of interest included proximity to livestock

farms, agriculture services, mining services, meat processing facilities, wood mills, sewage

treatment facilities, grocery stores, day care facilities, health service facilities such as skilled

nursing facilities, hospitals, and dialysis centers, and natural waterways (e.g., rivers, streams,

creeks, lakes). SICCODEs used in this study correspond to designations for addresses during

2014

Disease burden within census tracts was initially computed by calculating a rate of cases per

thousand per census tract. These unstandardized ratios were then adjusted by age, race, and

sex.

Spatial statistics methods

ArcGIS was used to assess “hot-spots” or clusters of CA-CDI based on a) patient addresses and

b) CA-CDI rates. Formal spatial statistical tests using the Getis-Ord statistic were conducted to

GIS CA-CDI risk factor analysis
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determine the likelihood that the data configurations were random [18]. The null hypothesis

that the geographic distributions of cases were random was rejected if p<0.05. Because patient

addresses may indicate clusters due to the tendency of groups with similar risk factors or

demographic factors to reside together, the testing of rates was adjusted by age, race, and sex

with exact 95% confidence limits to identify correlated clusters of incidence rates. Similarly,

we specifically assessed population density to ensure that clusters were not simply reflective

of high population density. We also conducted additional tests of temperatures and their

monthly average, seasonal average, and variations over time according to geographical location

to assess for potential alternative clustered distributions and time-related peaks of CA-CDI.

We assessed differences in demographic data between clustered patients and not clustered

patients using standard descriptive statistical tests.

Definitions

Patients and census tracts with Getis-Ord z-scores of�1.96 were defined as “clustered;” those

with z-scores <1.96 were considered “not clustered”. For the purpose of our analyses, the

seven census-based age-groups were collapsed into three categories: <29 years, 30–59 years,

60 years or older. Population densities were calculated for census tracts and categorized as

“low” (�1,729 persons per square mile), “medium” (1,730 to 2,454) and “high” (�2,455). Defi-

nitions of poverty were categorized by Census Tract areas; “low” poverty was defined as 15.6%

or less of the population living with an income below the poverty line, “medium” poverty

defined as 15.7% to 23.9%, and “high” poverty defined as�24% [17].

Mixed hierarchical model

We constructed a mixed hierarchical model to identify variables independently associated

with increased rates of CA-CDI, including distance from important environmental locations.

We chose this approach to maximize mixed models’ ability to handle heterogeneous variations

associated with spatial heterogeneity and “nuisance” or extra-Poisson variation, which violate

the assumption of independence of observations required in standard models. In addition,

multilevel mixed models accommodate large numbers of random effects simultaneously with

large numbers of fixed effects by evaluating variability as fixed effects at the first level and

including random intercepts of individual patients at a second level.

We used the SAS HPMIXED procedure (SAS v9.2, Cary, NC) to create a hierarchical

model with multilevel, nested, and spatially clustered observations. Our models included

three hierarchical levels: county, census tract, and individual (case patient). More specifi-

cally, our modeling approach incorporated polygonal spatial locations (census tracts);

individuals were treated as random effects in this model. In contrast, age, sex, race, socioeco-

nomic status, population density, and distance variables were treated as fixed effects. Aver-

age monthly temperature and date of C. difficile test were included to determine if temporal

or seasonal trends in CA-CDI incidence were present during the study period. The covari-

ates of the fixed part of the model were tested with Pearson Correlation Coefficients to assess

potential collinearity between covariates. Interaction terms between poverty and race as well

as population density and patient clusters were evaluated and included in the initial, full

model as well.

After developing our initial, full model, we constructed a final, simplified model using back-

wards elimination of non-significant variables. Fitness statistics confirmed improved fit of the

simplified model compared with the full model.

GIS CA-CDI risk factor analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0176285 May 16, 2017 4 / 13

https://doi.org/10.1371/journal.pone.0176285


Results

A total of 8,813 unique patients had a positive test for C. difficile during the study period; 2,906

patients (33%) met our criteria for CA-CDI, and 1,895 patients with CA-CDI had addresses in

the 10-county catchment area for the study hospitals (Fig 1). The mean patient age of our

cohort was 54.5; 62% were female and 70% were Caucasian. The population of the 10 study

counties was approximately 1.94 million; 1.2 million were located in the two largest population

centers: Wake County (Raleigh) and Durham County (Durham).

A total of 402 (21%) patient addresses were located in “hot spots” or clusters of CA-CDI

(Getis-Ord p<0.001). Rates of CA-CDI per census tract were also clustered (Getis Ord

p<0.001). “Hot spot” census tracts were scattered throughout the 10 counties (Fig 2). Patients

with CA-CDI in these clusters were more likely to be Caucasian, younger, and more likely to

live in areas of medium or high poverty than patients not residing in clusters (Table 1). Fur-

thermore, CA-CDI “hot spots” were more common in areas of medium population density

and areas of medium poverty.

After adjusting for clustering and population density, two patient-specific variables were

independently associated with increased rates of CA-CDI: age� 60 years and race. Several

environmental variables were associated with rates of CA-CDI. Increasing proximity to a live-

stock farm, increasing proximity to farming raw materials services, and increasing proximity

to a nursing home were associated with increasing rates of CA-CDI (Table 2). In addition,

increasing distances from meat processing plants, hospitals, and wood mills were each inde-

pendently associated with increased rates of CA-CDI in our exploratory model. No linear tem-

poral or seasonal/temperature trends in rates were observed in our models.

Discussion

Our large, multicenter study is the first to use GIS and spatial statistics to identify both specific

geographic clusters and novel environmental risk factors for C. difficile infection (CDI)

Fig 1. Case location of 1,895 cases of community-associated Clostridium difficile infection in the

10-county study area in central North Carolina. *Census tract size is inversely proportional to population

density. Grey dots represent individual cases. North is oriented to the top of the page. MAP SOURCE: Map

created using ArcGIS software by Esri using TeleAtlas and US Census data sources.

https://doi.org/10.1371/journal.pone.0176285.g001
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Fig 2. “Hot spots” or clusters of community-acquired CDI in a 10-county area in central North Carolina.

North is oriented to the top of the page. MAP SOURCE: Map created using ArcGIS software by Esri using

TeleAtlas and US Census data sources.

https://doi.org/10.1371/journal.pone.0176285.g002

Table 1. Comparison of patients with community-acquired C. difficile infection (CA-CDI) in clusters or “hot spots” of infection versus patients

with CA-CDI not located in clusters or hot spots.

Overall

N = 1895

n (%)*

Clustered

N = 402

n (%)*

Not Clustered

N = 1493

n (%)*

p-value

Age—mean ± SD 54.5 ± 21.7 52.8 ± 24.2 54.9 ± 23.5 0.05

�29 years 310 (16) 77 (19) 233 (16)

30 to 59 years 689 (36) 147 (37) 542 (36)

�60 years 896 (47) 178 (44) 718 (48)

Female sex 1183 (62) 246 (61) 937 (63) 0.61

Race 0.001

Caucasian 1329 (70) 305 (76) 1024 (69)

African American 430 (23) 64 (16) 366 (25)

Other 136 (7) 33 (8) 103 (7)

Population density 0.02

High 282 (15) 53 (14) 229 (15)

Medium 390 (21) 102 (25) 288 (19)

Low 1223 (65) 247 (61) 976 (65)

Socioeconomic status 0.04

High poverty 301 (16) 68 (17) 233 (16)

Medium poverty 382 (20) 97 (24) 285 (19)

Low poverty 1212 (64) 237 (60) 975 (65)

* percentages may not add up 100 due to rounding

https://doi.org/10.1371/journal.pone.0176285.t001
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acquired in the community. Proximity to livestock farms and proximity to facilities that handle

raw farming materials were independently associated with increasing rates of CA-CDI. Our

model also supports findings from prior studies by showing that age greater than 60 years and

nursing homes were independently associated with increased rates of CA-CDI [19].

Additional studies are needed to understand why proximity to farms and farming services

are associated with increased rates of CA-CDI. The prevailing model for the pathogenesis of

CDI requires a perturbation of the gut flora (e.g., medication or procedure) and exposure to/

acquisition of C. difficile [20]. Prior studies of the risk factors for CA-CDI have primarily

focused on the factors that alter gut flora and render patients susceptible, including antimicro-

bial therapy and exposure to proton pump inhibitors [21–23]. In contrast, few studies have

investigated community reservoirs for exposure to and acquisition of C. difficile. These studies

have identified exposure to household contacts with C. difficile [24] and exposure to children

less than one1 year of age in the household as risk factors for CA-CDI [8, 25]. Other investiga-

tors have identified C. difficile in retail food, livestock, domestic animals, and wild animals

[26–31], but no prior studies have demonstrated that proximity to or interaction with these

potential animal reservoirs is a risk for subsequent human infection.

Despite John Snow’s original use of geographic mapping to identify an important source

for an infectious disease over 150 years ago, the strategy has infrequently been employed to

investigate environmental risk factors and healthcare-associated and/or multidrug-resistant

pathogens. GIS and spatial statistics were recently used to evaluate risk factors for MRSA infec-

tion among 867,254 people in a three-borough catchment area in London [32]. The risk of

CA-MRSA was increased in areas with important socioeconomic factors such as overcrowd-

ing, homelessness, low income, and recent immigration. Geographic areas adjacent to these

high-risk areas were also at increased risk, confirming the impact of geographic proximity to

high risk areas. To our knowledge, however, no prior studies have used GIS and spatial

Table 2. Fixed effects variables in the final, reduced hierarchical model* to determine factors inde-

pendently associated with community-associated Clostridium difficile infection (CA-CDI).

Variables Model Estimate SE p-value

Age 0.086 0.041 0.03

Race 2.26 0.25 <0.001

Population density category -0.29 0.14 0.04

Proximity to**

Livestock farm -0.021 0.009 0.01

Nursing home -0.019 0.009 0.04

Farm raw materials services -0.011 0.005 0.02

Meat processing plant 0.027 0.007 <0.001

Hospital 0.041 0.010 <0.001

Wood mill 0.041 0.013 0.001

*Model controlled for potential confounding from socioeconomic status, proximity to mining, and interactions

between a) socioeconomic status and race and b) cluster and population density. Wood mill was included in

the analysis for check for model validity. Wood mill and farming locations serve as inverse geographic

variables. That is, locations close to farming locations are further away from wood mill locations and vice-

versa. As expected, proximity to wood mill was significant, but inverse to the relationship observed for

livestock farm.

**Proximity variables based on SICCODES, negative values for estimates implies correlation with smaller

values (i.e., closer proximity to the environmental location).

SE—Standard Error

https://doi.org/10.1371/journal.pone.0176285.t002
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statistics to investigate risk factors for C. difficile acquisition and infection in the community.

Chitnis et al. recently summarized 984 patients with CA-CDI identified through the CDC’s

Emerging Infection Program. Similar to our study, the median age of patients in this cohort

was 51 and the majority were female [8]. A total of 345 (36%) patients had no antibiotic expo-

sure and 177 (18%) had no known healthcare exposure. Occupational exposure to animals was

not found to be a risk factor for CA-CDI, though only 22 (2%) patients had this exposure in

the entire cohort. Other environmental or geographic factors were not evaluated in this

investigation.

Proximity to farms has also previously been show to put patients at risk for acquisition of

other multidrug-resistant organisms such as MRSA [33–35]. This increased risk in populations

that live close to livestock operations and farms may be related to practices used in modern

farming, including the application of swine manure to fields. Aerosolized MRSA isolates gen-

erated on farms can be identified in the air up to 150m downwind and in the soil up to 300m

downwind [36, 37]. In fact, proximity to farms that apply swine manure to crop fields and live-

stock operations is associated with a 1.4-fold increase in CA-MRSA infection, a 1.3-fold

increase in HA-MRSA, and a 1.4-fold increase in skin and soft tissue infection [11]. Of note,

this exposure also led to a 30% increase in risk of HA-MRSA, implying that patients exposed

to MRSA from farm practices can import MRSA into hospitals.

By our review, proximity to livestock farms has not previously been described as a risk fac-

tor for CDI. We believe this association is plausible. Multiple studies have documented the

presence of C. difficile in the farm environment and farm workers, and identified common

C. difficile strains and clones in both livestock and humans. First, 80% of the antimicrobials

used in the US are used in livestock [38], which likely increases selection for C. difficile. Second,

pathogenic C. difficile isolates, most notably ribotypes 078 and 027, have been isolated on

farms and from farm animals such as pigs. For example, Hopman et al. evaluated 71 newborn

piglets and observed that they were routinely colonized with C. difficile ribotype 078 within 48

hours of birth. This strain of C. difficile was also cultured from soil and air samples from pig

farms; 20 of 21 isolates evaluated were clonal by multiple locus variable number tandem repeat

analysis (MLVA) [39]. Ribotype 078 is the most common circulating strain among both pigs

and humans in Spain [40], and the third most common strain in humans in Europe [41]. Kees-

sen et al investigated 32 hog farms in the Netherlands and identified C. difficile ribotype 078 in

pig manure in all farms [12]. Humans were exposed to and colonized by the same strains as

the pigs in this study; more specifically, 25% of people with direct interaction with pigs on the

farms had C. difficile colonization of stool. Pig and human C. difficile isolates were identical by

MLVA in 13 of 15 farms evaluated. These studies, however, did not evaluate for CA-CDI in

the general population living near these farms.

Our study has limitations. First, this analysis was performed as a hypothesis-generating

exercise that needs further validation. Though plausible, our findings are inferential and do

not demonstrate clear causality. Second, our dataset did not include specific information

regarding long term care facility (LTCF)-associated CDI. However, our final model found risk

factors independently associated with increasing rates of CA-CDI despite including proximity

to nursing home, which we believe should adequately account for LTCF-associated CDI.

Third, all hospitals transitioned to more sensitive PCR testing for C. difficile during the study

period. We tested for temporal trends in our models, however, and concluded that year did

not impact the fixed effects estimates in our models. Fourth, our study was performed in

North Carolina, the second largest pig producing state in the US. While findings from our

models specifically related to proximity to livestock farms may have limited generalizability,

we believe our results are a useful demonstration of the potential utility of GIS methods in epi-

demiological studies. In addition, risk related to proximity may not be specifically related to

GIS CA-CDI risk factor analysis
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the type of farm but the practices performed at the farm (e.g., spraying of manure). Next, our

models were built on assumptions such as a stable census (measured in 2010) and stable SIC-

CODEs. In reality, we suspect that population changes occurred and businesses changed dur-

ing the seven-year study period. We believe the error introduced by these changes, however,

would be random error and, thus, believe that the use of these assumptions in our model was

reasonable. In addition, we did not check residual spatial variation in our regression residuals.

Finally, our analysis included only limited patient-specific variables and did not include antibi-

otic exposure for the patient cohort. However, the risk factors that we identified in our analysis

may reflect potential risk factors for C. difficile exposure and acquisition, rather than risk fac-

tors for perturbation of colonic flora.

In summary, our study is the first to use GIS, spatial statistics, and mixed models to investi-

gate potential environmental risk factors for acquisition of C. difficile. Using this novel

approach, we found that proximity to livestock farms, proximity to facilities that handle raw

farming materials, age, and nursing homes were risk factors for CA-CDI. Our data adds to the

growing evidence that farms and farming practices, such as regular use of antibiotics in live-

stock and use of manure, may increase the risk of disease among people living near these facili-

ties. Subsequent molecular studies will be required to more definitively demonstrate causality.

Further investigation and confirmation, however, is important, as increasing rates of CA-CDI

have direct impact on the spread of CDI within hospitals [42]. In light of increasing informa-

tion suggesting that CDI spread in the hospital originates from community reservoirs [43],

more studies like ours are needed.

APPENDIX 1. Detailed hierarchical model

Variables and variable definitions

Subscripts: k th observation from j th patient in the i th area (polygons, catchment areas)

Fixed effects variables

Yijk ¼ mþ b1ðGetOrdijkÞ þ b2 ðSTD COUNTYijkÞ þ b3 ðagecat2ijkÞ þ b4ðrace4ijkÞþ

b5 ðpctpovcatijkÞ þ b6ðpopdenscatijkÞþ

b7 ðlivestock farmijkÞ þ b8ðminingijkÞ þ b9 ðmeat processingijkÞþ

b10 ðwood millsijkÞ þ b11 ðfarm raw materialsijkÞ þ b12 ðnursing homeijkÞþ

b13ðhospitalijkÞ þ b4ðrace4ijkÞ
�
b5 ðpctpovcatijkÞ þ b1ðGetOrdijkÞ�b6 ðpopdenscatijkÞ þ

ajðPatientÞ þ bij þ eijk

μ = Intercept, Overall mean

β1 = GetOrd (Hot-spot indicator, 1 = clustered 0 = not clustered)

β2 = Counties (catchment area counties 1, 2, 3. . . 8, 9, 10)

β3 = Age categories

β4 = Race categories (“Whites”, “Blacks/African-American”, “Other”)

β5 = Poverty in percentages of individuals living below poverty line (“high”, “medium”,

“low”)

β6 = Population density in number of persons per Square Miles (“high”, “medium”, “low”)

β7 = Livestock farm distance from patient address in Square miles

β8 = Mining site distance from patient address in Square miles

β9 = Meat processing plants distance from patient address in Square miles

β10 = Wood mills distance from patient address in Square miles
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β11 = Farm raw materials processing site distance from patient address in Square miles

β12 = Nursing-home facility distance from patient address in Square miles

β13 = Hospital distance from patient address in Square miles

β4 (race4ijk)� β5 (pctpovcatijk) = Interactions of race by poverty

β1 (GetOrdijk)� β6 (popdenscatijk) = Interactions of hot-spots by population density

aj = Patients (Random intercepts)

bij = Patients nested to catchment areas

eijk = Random residual

Supporting information
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