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Countries around the globe have implemented unprecedented measures to mitigate

the coronavirus disease 2019 (COVID-19) pandemic. We aim to predict the COVID-19

disease course and compare the effectiveness of mitigation measures across countries

to inform policy decision making using a robust and parsimonious survival-convolution

model. We account for transmission during a pre-symptomatic incubation period and

use a time-varying effective reproduction number (Rt) to reflect the temporal trend of

transmission and change in response to a public health intervention. We estimate the

intervention effect on reducing the transmission rate using a natural experiment design

and quantify uncertainty by permutation. In China and South Korea, we predicted the

entire disease epidemic using only early phase data (2–3 weeks after the outbreak). A

fast rate of decline in Rt was observed, and adopting mitigation strategies early in the

epidemic was effective in reducing the transmission rate in these two countries. The

nationwide lockdown in Italy did not accelerate the speed at which the transmission rate

decreases. In the United States, Rt significantly decreased during a 2-week period after

the declaration of national emergency, but it declined at a much slower rate afterwards.

If the trend continues after May 1, COVID-19 may be controlled by late July. However,

a loss of temporal effect (e.g., due to relaxing mitigation measures after May 1) could

lead to a long delay in controlling the epidemic (mid-November with fewer than 100 daily

cases) and a total of more than 2 million cases.

Keywords: COVID-19, survival-convolution model, time-varying effective reproduction number, mitigation

measures, prediction

1. INTRODUCTION

The COVID-19 pandemic is currently a daunting global health challenge. The novel coronavirus
was observed to have a long incubation period and highly infectious during this period (1–4).
The cumulative case number surpasses 4.1 million by May 10, with more than 1.3 million in the
United States (US). It is imperative to study the course of the disease outbreak in countries that
have controlled the outbreak (e.g., China and South Korea) and compare mitigation strategies to
inform decision making in regions that are in the midst of (e.g., the US) or at the beginning of
outbreak (e.g., South America).
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Various infectious disease models (5–7) are proposed to
estimate the transmission of COVID-19 (8–12) and investigate
the impact of public health interventions on mitigating the
spread (13–17). Several studies modeled the transmission by
stochastic dynamical systems (8–10, 15), such as susceptible-
exposed-infectious-recovered (SEIR) models (8), extended
Kalman filter (18–20), and individual-based simulation models
(13, 14). Some models did not explicitly take into account of
behavioral change (e.g., social distancing) and government
mitigation strategies that can have major influences on the
disease course, while other work modified the transmission
rate as public-health-intervention-dependent (15, 17) or
time-varying (10). A recent study (16) considered the disease
incubation period and used a convolution model based on SEIR.
A state-space susceptible-infectious-recovered (SIR) model with
time-varying transmission rate (21) was developed to account
for interventions and quarantines.

SEIR models can incorporate mechanistic characteristics and
scientific knowledge of virus transmission to provide useful
estimates of its temporal dynamics, especially when individual-
level epidemiological data are available through surveillance
and contact tracing. However, these sophisticated models may
involve a large number of parameters and assumptions about
individual transmission dynamics. They may thus be susceptible
to perturbation of parameters and prior assumptions, yielding
wide confidence intervals especially when granular individual-
level data are not available. In contrast to infectious disease
models, alternative statistical models are proposed to predict
summary statistics such as deaths and hospital demand under a
non-linear mixed effects model framework (22), survival analysis
has been introduced to model the occurrence of clinical events
in infectious disease studies (23), and a non-parametric space-
time transmission model was developed to incorporate spatial
and temporal information for predictions at the county level (24).
Non-parametric modeling or survival models are data-driven,
and parameters may therefore not be scientifically related to
disease epidemic.

In this work, we propose a parsimonious and robust
population-level survival-convolution model that is based on
main characteristics of COVID-19 epidemic and observed
number of confirmed cases to predict disease course and assess
public health intervention effect. Our method models only key
statistics (e.g., daily new cases) that reflect the disease epidemic
over time with at most six parameters, and it may therefore be
more robust than models that rely on individual transmission
processes or a large number of parameters and assumptions.
We constructed our model based on prior scientific knowledge
about COVID-19 instead of post-hoc observations of the trend
of disease spread. Specifically, three important facts we consider
include that (1) SARS-CoV-2 virus has an incubation period up
to 14–21 days (1), and a patient can be highly infectious in the
pre-symptomatic phase; (2) the transmission rate varies over time
and can change significantly when government guidelines and
mitigation strategies are implemented; and (3) the intervention
effect may be time-varying.

We aim to achieve the following goals. The first goal is
to fit observed data to predict daily new confirmed cases and

latent pre-symptomatic cases, the peak date, and the final total
number of cases. The second goal is to assess the effect of
nationwide major interventions across countries (e.g., mitigation
measures) under the framework of natural experiments [e.g.,
longitudinal pre-post quasi-experimental design, (25)]. Quasi-
experiment approaches are often used to estimate intervention
effect of a public health intervention [e.g., HPV vaccine,
(26)] or a health policy where randomized controlled trials
(RCTs) are not feasible. Our third goal is to project the future
trend of COVID-19 for the countries (e.g., US) amid the
epidemic under different assumptions of future transmission
rates, including the continuation of the current trend and
relaxing mitigation measures.

2. METHODS

2.1. Data Source
We used data from a publicly available database that consolidates
multiple sources of official reports (World Meters[https://www.
worldometers.info/coronavirus/]). We analyzed two countries
with a large number of confirmed cases in Asia (China and South
Korea) and two outside (Italy and US). Since both China and
South Korea are already at the end of epidemic, we used their
data to test empirical prediction performance of our method. We
included data in the early phase of epidemic as training set to
estimatemodel parameters and leave the rest of the data as testing
set for evaluation. For China, we used data up to 2 weeks post
the lockdown of Wuhan city (January 23) as training (data from
January 20 to February 4), and we used the remaining observed
data for evaluation (February 5 to May 10). Similarly, for South
Korea we used data from February 15 to March 4 as training
and leave the rest for evaluation (March 5 to May 10). Italy is
the first European country confronted by a large outbreak and
currently has passed its peak. We estimated the effect of the
nation-wide lockdown in Italy (dated March 11) using 10 weeks
data (February 20 to April 29). For the US, as, after May 1, some
mitigationmeasures were lifted in various states, we also included
about 10 weeks data (February 21 to May 1) to assess the effect of
its mitigation strategies.

2.2. Survival-Convolution Model
Let t denote the calendar time (in days) and let N0(t) be the
number of individuals who are newly infected by COVID-19
at time t. Let tj denote the time when individual j is infected
(tj = ∞ if never infected), and let Tj be the duration of this
individual remaining infectious to any other individual and in the
transmission chain. Let t0 be the unknown calendar time when
the first patient (patient zero) is infected. Therefore, at time t, the
total number of individuals who can infect others is

∑
j I(tj ≤

t,Tj ≥ t − tj) =
∑C

m=0

∑
{j: j is infected at (t −m)} I(Tj ≥ m), where

C = min(t − t0,C1) with C1 as the maximum incubation period
(i.e., 21 days for SARS-CoV-2) and I(E) denotes an indicator
function with I(E) = 1 if event E occurs and I(E) = 0 otherwise.
Since the total number of individuals who are newly infected at
time (t−m) is N0(t−m), the number of individuals who remain
infectious at time t isM(t) =

∑C
m=0 N0(t −m)S(m), where S(m)

Frontiers in Public Health | www.frontiersin.org 2 July 2020 | Volume 8 | Article 325

https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Wang et al. Survival-Convolution Models for Predicting COVID-19

denotes the proportion of individuals remaining infectious after
m days of being infected, or, equivalently, the survival probability
at day m for Tj. On the other hand, right after time t, some
individuals will no longer be in the transmission chain (e.g., due
to testing positive and quarantine or out of infectious period)
with duration Tj = (t− tj). The total number of these individuals

is
∑

j I(tj ≤ t,Tj = t − tj) =
∑C

m=0

∑
j: j is infected at (t −m) I(Tj =

m), or equivalently

Y(t) =

C∑

m=0

N0(t −m)[S(m)− S(m+ 1)]. (1)

Therefore, (M(t) − Y(t)) is the number of individuals who can
still infect others after time t. Assuming the transmission rate at t
to be a(t), at time (t + 1), the number of newly infected patients
is a(t)[M(t)− Y(t)], which yields

N0(t + 1) = a(t)

C∑

m=0

N0(t −m)S(m+ 1). (2)

Note that a(t) is time-varying because the transmission rate
depends on how many close contacts an infected individual may
have at time t, which is affected by public heath interventions
(e.g., stay-at-home order, lockdown), and saturation level of the
infection in the whole population. Define Rt =

∑C
m=0 a(t +

m)S(m), the expected number of secondary cases infected
by a primary infected individual in a population at time
t while accounting for the entire incubation period of the
primary case. Thus, Rt is the instantaneous time-varying effective
reproduction number (27) that measures temporal changes in the
disease spread.

Models (1) and (2) provide a robust dynamic model
to characterize COVID-19 epidemic. Equation (2) gives a
convolution update for the new cases using the past numbers,
while equation (1) gives the number of cases out of transmission
chain at time t, and M(t) computes the number of latent
pre-symptomatic cases by the end of time t. This model
considers three important quantities to characterize COVID-
19 transmission: the initial date, t0, of the first (likely
undetected) case in the epidemic, the survival function of time
to out of transmission, S(m), and the transmission rate over
calendar time, a(t).

We model the transmission rate a(t) as a non-negative, piece-
wise linear function with knots placed at meaningful event times.
The simplest model consists of a constant and a single linear
function with three parameters [infection date of patient zero and
the intercept and slope of a(t)]. When a massive public health
intervention (e.g., nation-wide lockdown) is implemented at
some particular date, we introduce an additional linear function
afterwards with a new slope parameter. Thus, the difference in
slope parameters of a(t) before and after an intervention reflects
its effect on reducing the rate of change in disease transmission
(i.e., “flattening the curve”). Since the intervention effect may
diminish over time, we introduce another slope parameter 2
weeks after intervention to capture the longer-term effect. We
use existing knowledge of the SARS-CoV-2 virus incubation

period (1) to approximate S(m) and perform sensitivity analysis
assuming different parameters. For estimation, we minimize a
loss functionmeasuring differences betweenmodel predicted and
observed daily number of cases. For statistical inference, we use
permutation based on standardized residuals. All mathematical
details are in Supplementary Material.

2.3. Utility of Our Model
First, with parameters estimated from data and assuming that
the future transmission rate remains the same trend, we can use
models (1) and (2) to predict future daily new cases, the peak
time, expected number of cases at the peak, when Rt will be
reduced to below 1.0 and the epidemic will be controlled (the
number of daily new cases below a threshold or decreases to
zero). Furthermore, our model provides the number of latent
cases cumulative over the incubation period at each future
date, which can be useful to anticipate challenges and allocate
resources effectively.

Second, we can estimate the effects of mitigation strategies,
leveraging the nature of quasi-experiments where subjects receive
different interventions before and after the initiation of the
intervention. The longitudinal pre-post intervention design
allows valid inferences, assuming that pre-intervention disease
trend would have continued had the intervention not taken
place and local randomization holds (whether a subject falls
immediately before or after the initiation date of an intervention
may be considered as random, and the “intervention assignment”
may thus be considered to be random). Applying this design, the
intervention effects will be estimated as the difference in the rate
of change of the transmission rate function before and after an
intervention takes place.

Third, we can study the impact of an intervention (e.g., lifting
mitigation measures) that changes the epidemic at a future date.
Using permutations, we can obtain the joint distribution of the
parameter estimators and construct confidence intervals (CI) for
the projected case numbers and interventions effects.

3. RESULTS

For China, the transmission rate a(t) is a single linear function
(estimates in Table 1). The first community infection was
estimated to occur on January 3, 17 days before the first reported
case (Table 1). Figure 1A shows that the model captures the peak
date of new cases, the epidemic end date, and the confidence
interval contains the majority of observed number of cases
except one outlier (due to a change of diagnostic criteria). The
reproduction number Rt decreases quickly from 3.34 to below
1.0 in 14 days (Figure 2A). We only used data up to February
4 to estimate our model. The observed total number of cases by
May 10 is 82,901, which is inside the 95% CI of the estimated
total number of cases [58,415; 95% CI: (42,516, 133,083)]. There
are two outlier days (February 12, 13) with a total of 19,198 cases
reported in the testing set. Excluding two outliers, the observed
number of cases 62,356.

For South Korea, Figure 1B shows that the model captures
the general trend of the epidemic except at the tail area (after
March 15) where some small and enduring outbreak is observed.
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TABLE 1 | Model estimated parameters in each country.

Country Parameter Estimate 95% CI

or prediction∗

China t0 (d) Jan 3 (17) (12, 21)∗∗

Training data: Jan 20 to Feb 4 a0 0.793 (0.68, 1.02)

Testing data: Feb 5 to May 10 a1 -0.693 (-1.13, -0.42)

Duration 44 (39, 55)

End date Mar 4 (Feb 28, Mar 15)

Total 58,415 (42,516, 133,083)

South Korea t0 (d) Feb 11 (4) (1, 7)

Training data: Feb 15 to Mar 4 a0 1.363 (1.03, 1.98)

Testing data: Mar 5 to May 10 a1 -1.496 (-2.39, -0.96)

Duration 39 (37, 43)

End date Mar 25 (Mar 23, Mar 29)

Total 7,977 (7,307, 10,562)

Italy t0 (d) Feb 10 (10) (4, 11)

Training data: Feb 20 to Apr 29a0 0.789 (0.73, 1.10)

Testing data: Apr 30 to May 10 a1 -0.358 (-0.68, -0.26)

a2 -0.372 (-0.46, -0.31)

a3 0.061 (0.02, 0.12)

a4 -0.057 (-0.12, -0.01)

Duration 123 (103, 179)

End date Jun 22 (Jun 2, Aug 17)

Total 223,410 (216,848, 257,710)

United States t0 (d) Feb 15 (6) (1, 4)

Training data: Feb 21 to May 1 a0 0.410 (0.34, 0.62)

Testing data: May 2 to May 10 a1 0.526 (0.23, 0.72)

a2 -1.031 (-1.24, -0.86)

a3 -0.042 (-0.06, -0.03)

Scenario 1: Continue current† Duration 156 (139, 188)

End date Jul 26 (Jul 9, Aug 27)

Total 1,626,950 (1,501,036, 1,918,602)

Scenario 2: 50% slower Duration 188 (163, 233)

after May 1 End date Aug 27 (Aug 2, Oct 11)

Total 1,731,992 (1,563,122, 2,113,294)

Scenario 3: 75% slower Duration 226 (190, 289)

after May 1 End date Oct 4 (Aug 29, Dec 5)

Total 1,832,291 (1,616,574, 2,324,552)

Scenario 4: 100% slower Duration‡ 272 (201, 448)

after May 1 Control date‡ Nov 19 [Sep 9, May 13 (2021)]

Total‡ 2,084,235 (1,728,028, 3,094,518)

∗t0 is the estimated date of the first undetected community infection; d is the estimated

gap days between the first undetected case and the first reported case; a0 is the

transmission rate before the reported first case; a1, a2, and a3 are rates of change of a(t)

in each period measured as change per 21 days; “Duration” is the number of days from

the date of the first reported case to “End date”; “End date” is the date when predicted

new case decreases to zero; and “Total” is the total number of predicted cases by the

“End date.” ∗∗CI for d. †Scenario 1 assumes the transmission rate decreases at the same

rate (i.e., a3 ) after May 1; Scenarios 2–4 assume the relaxation of quarantine measures

after May 1 will lead to a slower decrease of transmission rate by 50, 75, and 100%

(complete loss of temporal effect over time). ‡Under scenario 4, “Duration” and “Control

date” is defined by the date when the predicted daily new case is less than 100 since the

distribution of new cases has an extremely long tail (the end date defined by zero new

case is May 3, 2021; CI: Dec 27, 2021 to Mar 16, 2022); and “Total” is the total predicted

cases by the “Control date”.

FIGURE 1 | Observed and predicted daily new cases and 95% confidence

interval (shaded). (A) China. Training data: January 20 to February 4; testing

data: February 5 to May 10. 14,108 cases were reported on February 12 and

not shown on figure. The recent cases since April are imported cases. (B)

South Korea. Training data: February 15 to March 4; testing data: March 5 to

May 10. (C) Italy. First dashed line indicates the nation-wide lockdown (March

11). Second and third dashed line indicates 2 or 4 weeks after. Training data:

February 20 to April 29 (7 weeks after the lockdown); testing data: April 30 to

May 10.

The effective reproduction number decreases dramatically from
5.37 at the beginning of the outbreak to below 1.0 in 14 days
(Figure 2B). The predicted number of new cases at the peak is
665 and the total number of predicted cases at the peak time is

Frontiers in Public Health | www.frontiersin.org 4 July 2020 | Volume 8 | Article 325

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Wang et al. Survival-Convolution Models for Predicting COVID-19

close to the observed total (4,300 vs. 4,335). The predicted total
number by March 15 is 7,816 and the observed total is 8,162.

For Italy, we model a(t) as a four-piece linear function to
account for the change in mitigation strategies with a knot
placed at the lockdown (March 11), and two additional knots
at 2-week intervals (March 25, April 8) to account for a time-
varying intervention effect (during the immediate 2 weeks, next
2 weeks, and afterwards). The difference in the rate of change
before and after the first knot measures the immediate effect of
lockdown on reducing the transmission rate. Change before and
after the second and third knot measures whether the lockdown
effect can be maintained in longer term. The rate of change
in Rt is not significantly different before and 2 weeks after
the lockdown (Figure 2C). The reproduction number decreased
from 3.73 at the beginning to 1.02 2 weeks post-lockdown.
However, starting from the third week post-lockdown (March
26), Rt stops decreasing and remains close to 1.0 until April 16.
The slope of a(t) increases by 116% to a slightly positive value
after March 26 (Table 1, comparing a2 and a3 for Italy). This is
consistent with a relatively flat trend of observed daily new cases
during this period (Figure 1C). The estimated total by May 10
is 216,300 [95%CI: (214,863, 228,406)] and close to the observed
total (219,070). Recent daily cases in the testing set also closely
follow our predicted trend (Figure 1C).

In the US, we fit a three-piece model for a(t) with a knot
on March 13 (the declaration of national emergency) and an
additional knot 2 weeks after (March 27) to account for potential
changes in the transmission rate. The predicted peak date is May
3 (Figure 3A) with a total number of 1,176,915 cases by May
3, which is close to the observed total (1,188,122). Rt increases
during the early phase but decreases sharply after the declaration
of national emergency (Figure 3B) up to 2 weeks after. During
the next period (March 28 to April 10), Rt decreases at a much
slower rate. If this trend continues, the end of epidemic date is
predicted to be July 26 (scenario 1, Figure 3A,Table 1). However,
since states in the US are gradually lifting mitigation measures
after May 1, the trend of transmission rate may change. We
predicted the epidemic control date, assuming a(t) decreases
slower after May 1 by 50% (scenario 2), 75% (scenario 3),
and 100% (scenario 4) in Table 1. Under scenario 4, where the
temporal effect of mitigation measures is completely lost [i.e.,
a(t) is a constant over time], the projected total number of
cases will be more than 2 million, and the epidemic cannot be
controlled until November 19 (with less than 100 daily cases
Table 1). We provide an updated analysis of the US epidemic
with more training data until May 29 (Supplementary Material).
The predicted recent trend is closer to scenario 4 with a control
date in November and 2.7 million total cases. Assuming a case
fatality rate of 6% as observed by May 10, the total number of
deaths would be around 162,000 by November.

The estimated number of latent cases present on each
day (i.e., including pre-symptomatic patients infected
k days before but have not shown symptoms) can be
seen in the Supplementary Material (Figure S1). For
all countries, there were a large number of latent cases
around the peak time. We performed a sensitivity
analysis using different distributions of S(m) assuming

FIGURE 2 | Effective reproduction number Rt for each country computed as

the average number of secondary infections generated by a primary case at

time t accounting for the incubation period of the primary case. Dashed lines

indicate knots for transmission rate a(t). (A) China. (B) South Korea. (C) Italy.

a delay in reporting confirmed cases. The results show
that predicted daily new cases were similar under
different parameters of S(m) for both US and Italy
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FIGURE 3 | United States: observed and predicted daily new cases, 95%

confidence intervals under four scenarios that assume relaxation of mitigation

measures occurs after May 1. Scenario 1: transmission rate a(t) follows the

same trend after May 1 as observed between March 27 and May 1. Scenario

2: rate of decrease of a(t) slows by 50% after May 1. Scenario 3: rate of

decrease of a(t) slows by 75% after May 1. Scenario 4: rate of decrease of a(t)

slows by 100% after May 1 (complete loss of temporal decreasing effect). First

dashed line indicates the declaration of national emergency (March 13).

Second dashed line indicates 2 weeks after (March 27). Training data:

February 21 to May 1 (7 weeks after declaring national emergency); testing

data: May 2 to May 10. (A) Observed and predicted daily new cases. (B)

Effective reproduction number Rt.

(Figures S2, S3), demonstrating robustness of our method
to the assumptions of S(m).

4. DISCUSSION

In this study, we propose a parsimonious and robust survival
convolution model to predict daily new cases of the COVID-
19 outbreak and use a natural quasi-experimental design to
estimate the effects of mitigation measures. Our model accounts
for major characteristics of COVID-19 (long incubation period
and highly contagious during incubation) with a small number
of parameters (up to six) and assumptions, directly targets
prediction accuracy, and provides measures of uncertainty and

inference based on permuting the residuals. We allow the
transmission rate to depend on time and modify the basic
reproduction number R0 as a time-dependent measure Rt to
estimate change in disease transmission over time. Thus, Rt
corrects for the naturally impact of time on the disease spread.
Our estimated reproduction number at the beginning of the
epidemic ranges from 2.81 to 5.37, which is consistent with
the R0 reported in other studies (28) (range from 1.40 to 6.49
with a median of 2.79). For predicting daily new cases, our
analyses suggest that the model estimated from early periods of
outbreak can be used to predict the entire epidemic if the disease
transmission rate dynamic does not change dramatically over the
disease course (e.g., about 2 weeks of data is sufficient for China
and fits the general trend of South Korea).

Comparing the effective reproduction numbers across
countries, Rt decreased much more rapidly in South Korea
and China than Italy (Figure 1). In South Korea, the effective
reproduction number had been reduced from 5.37 to under
1.0 in a mere 13 days, and the total number of cases is low.
The starting reproduction number in South Korea was high
possibly due to many cases linked to patient 31 and outbreaks
at church gatherings. Similarly, for China, the reproduction
number reduced to below 1.0 in 14 days. Italy’s Rt decreased until
almost reaching 1.0 on March 25 but remained around 1.0 for 3
weeks. The US followed a fast decreasing trend during a 2-week
period after declaring national emergency (a2 = −1.031), which
is faster than the first 2 weeks in China (a1 = −0.693), but its Rt
decreased at a much slower rate (a3 = −0.042) afterwards and
was below 1.0 on May 5.

Comparing mitigation strategies across countries, the fast
decline in Rt in China suggests that the initial mitigation
measures put forth on January 23 (lockdown of Wuhan
city, traffic suspension, home quarantine) were successful in
controlling the transmission speed of COVID-19. Additional
mitigation measures were in place after February 2 (centralized
quarantine and treatment) but did not seem to have significantly
changed the disease course. In fact, our model assumes the same
transmission rate trajectory after February 2 fits all observed data
up to May 10. A recent analysis of Wuhan’s data (29, 30) arrived
at a similar conclusion, and their estimated Rt closely matches
with our estimates. However, their analyses were based on
self-reported symptom onset and other additional surveillance
data, where we used only widely available official reports of
confirmed cases. Another mechanistic (31) study confirmed the
effectiveness of early containment strategies in Wuhan.

South Korea did not impose a nation-wide lockdown or
closure of businesses but, at the very early stage (whenmany cases
linked to patient 31 were reported on February 20), conducted
extensive broad-based testing and detection (drive through tests
started on February 26), rigorous contact tracing, isolation of
cases, and mobile phone tracking. Our results suggest that South
Korea’s early mitigation measures were also effective.

Italy’s initial mitigation strategies in the most affected areas
reduced Rt from 3.73 to 1.92 in 20 days. To estimate the effect of
the nation-wide lockdown as in a natural experiment, we require
local randomization and the continuity assumption. The former
requires that characteristics of subjects who are infected right
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before or after the lockdown are similar. Since, in a very short
time period, whether a person is infected at time t or t + 1 is
likely to be random, local randomization is likely to be valid.
Continuity assumption refers to that the transmission rate before
the lockdown would be the same as the trend afterwards had
the intervention not been implemented. Under this assumption,
the lockdown in Italy is not effective in further reducing the
transmission speed [slopes of a(t) are similar before and after
lockdown onMarch 11]. There were 10,149 cases reported in Italy
as of March 10, suggesting that the lockdown was placed after the
wide community spread had already occurred. Nevertheless, it is
possible that without the lockdown the transmission rate would
have had increased, i.e., the lockdown enhanced and maintained
the effect of quarantine for 2 weeks. In fact, after 2 weeks of
lockdown, we observe a loss of temporal effect so that Rt has
remained around 1.0 for about 2–3 weeks before it starts to
decrease again.

For the US, Rt was as high as 4.50 before the declaration
of national emergency on March 13 but declines rapidly
over a 2-week period after March 13. Although the disease
trend and mitigation strategies vary across states in the US,
since the declaration of national emergency, many states have
implemented social distancing and ban of large gathering. The
large difference before and 2 weeks after March 13 is likely due
to states with large numbers of cases that implemented state-
wide stay-at-home orders (e.g., New York and New Jersey),
which indicates that these measures may be effective. Our model
estimated a continued decrease in Rt from March 27 to May 1
but at a much slower rate (95.9% slower; Table 1, comparing
a2 and a3 for the US) when it approached 1.0. In China,
centralized quarantine and treatment were implemented when
Rt was around 1.0 (29), which assisted in quick further reduction
of Rt to zero and final control of the epidemic. If the trend in
US continues after May 1, the first wave of epidemic will be
controlled by July 26 (CI: July 9, August 27). However, after
May 1, many states enter a re-opening phase. If the guidelines
on quarantine measures are relaxed in order for the temporal
effect of quarantine measures to be completely lost, the predicted
total number of cases is more than 2 million, with a long delay
in controlling the epidemic (less than 100 cases by November
19 and no new case by May, 2021). In an updated analysis that
includes additional observed data in May, the recent Rt is near
a constant between 1.1 and 1.2 from April 11 to May 29, and
the confidence interval suggests some possibility of an uptake
of new cases (Supplementary Material). These results suggest
that the epidemic in the US is still not yet fully under control
by June 7, especially in certain states that present a consistent
increase of daily new cases since re-opening. Careful mitigation
measures should be maintained to prevent an uptake in daily
new cases and another outbreak. These prediction results will
be regularly updated at our Github website (https://github.com/
COVID19BIOSTAT/covid19_prediction).

Other studies reported transmission between asymptomatic
individuals (9), which is not accounted for here. However,
asymptomatic individuals can only be identified and confirmed
by serological tests which are not widely available.When there is a
delay in reporting some symptomatic patients, the daily reported

cases are a mixture of new symptomatic cases and patients
presenting after having had symptoms for a few days. In this case,
the average number of days to testing positive may be higher than
the virus incubation period of 5.2 days. However, as shown in our
sensitivity analysis, the prediction of daily reported cases was not
affected by using a larger mean value for S(m), demonstrating
robustness of the model. Our model does not consider subject-
specific covariates and focuses on predicting population-level
quantities. Neither have we considered borrowing information
from multiple countries or state-level analysis for the US, which
are worthy of study in a mixed effects model framework. We do
not consider prediction of daily new deaths or hospitalizations.
These data can be included to enhance the prediction of new cases
by linking the distribution of time to COVID symptom onsets,
hospitalization, or death. Lastly, we can consider a broader class
of models for transmission rate a(t) to allow discontinuity in both
intercepts and slopes before and after an intervention under a
regression discontinuity design (26, 32).

Despite these limitations, our study offers several implications.
Implementing mitigation measures earlier in the disease
epidemic reduces the disease transmission rate at a faster speed
(South Korea, China). Consequently, for regions at the early stage
of disease epidemic, mitigation measures should be introduced
early. Nation-wide lockdownmay not further reduce the speed of
Rt reduction compared to regional quarantine measures as seen
in Italy. In countries where disease transmissions have slowed
down, lifting of quarantine measures may lead to a persistent
transmission rate delaying control of epidemic and thus should
be implemented with caution and close monitoring.
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