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Seth D. Axen,† Xi-Ping Huang,‡,∥ Elena L. Caćeres,†,§ Leo Gendelev,†,§ Bryan L. Roth,‡,∥,⊥

and Michael J. Keiser*,†,§

†Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 675 Nelson Rising Lane NS 416A,
San Francisco, California 94143, United States
‡Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
§Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, and Institute for Computational Health
Sciences, University of California, San Francisco, 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States
∥National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina, Chapel
Hill, North Carolina 27599, United States
⊥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina 27599, United States

ABSTRACT: Statistical and machine learning approaches
predict drug-to-target relationships from 2D small-molecule
topology patterns. One might expect 3D information to
improve these calculations. Here we apply the logic of the
extended connectivity fingerprint (ECFP) to develop a rapid,
alignment-invariant 3D representation of molecular con-
formers, the extended three-dimensional fingerprint (E3FP).
By integrating E3FP with the similarity ensemble approach
(SEA), we achieve higher precision-recall performance relative
to SEA with ECFP on ChEMBL20 and equivalent receiver
operating characteristic performance. We identify classes of
molecules for which E3FP is a better predictor of similarity in
bioactivity than is ECFP. Finally, we report novel drug-to-target
binding predictions inaccessible by 2D fingerprints and confirm
three of them experimentally with ligand efficiencies from 0.442−0.637 kcal/mol/heavy atom.

■ INTRODUCTION

Many molecular representations have arisen since the early
chemical informatics models of the 1970s, yet the most widely
used still operate on the simple two-dimensional (topological)
structures of small molecules. Fingerprints, which encode
molecular 2D substructures as overlapping lists of patterns,
were a first means to scan chemical databases for structural
similarity using rapid bitwise logic on pairs of molecules. Pairs of
molecules that are structurally similar, in turn, often share
bioactivity properties1 such as protein binding profiles. Whereas
the prediction of biological targets for small molecules would
seem to benefit from a more thorough treatment of a molecule’s
explicit ensemble of three-dimensional (3D) conformations,2

pragmatic considerations such as calculation cost, alignment
invariance, and uncertainty in conformer prediction3 nonetheless
limit the use of 3D representations by large-scale similarity
methods such as the similarity ensemble approach (SEA),4,5

wherein the count of pairwise molecular calculations reaches into
the hundreds of billions. Furthermore, although 3D representa-
tions might be expected to outperform 2D ones, in practice, 2D

representations nonetheless are in wider use and can match or
outperform them.3,6−8

The success of statistical and machine learning approaches
building on 2D fingerprints reinforces the trend. Naive Bayes
classifiers (NB),9−11 random forests (RF),12,13 support vector
machines (SVM),9,14,15 and deep neural networks (DNN)16−20

predict a molecule’s target binding profile and other properties
from the features encoded into its 2D fingerprint. SEA and
methods building on it such as optimized cross reactivity
estimation (OCEAN)21 quantify and statistically aggregate
patterns of molecular pairwise similarity to the same ends. Yet
these approaches cannot readily be applied to the 3D molecular
representations most commonly used. The rapid overlay of
chemical structures (ROCS) method is an alternative to
fingerprints that instead represents molecular shape on a
conformer-by-conformer basis via Gaussian functions centered
on each atom. These functions may then be compared between a
pair of conformers.22,23 ROCS, however, must align conformers
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to determine pairwise similarity; in addition to the computational
cost of each alignment, which linear algebraic approximations
such as SCISSORS24 mitigate, the method provides no invariant
fixed-length fingerprint (feature vectors) per molecule or per
conformer for use in machine learning. One way around this
limitation is to calculate an all-by-all conformer similarity matrix
ahead of time, but this is untenable for large data sets such as
ChEMBL25 or the 70-million data point ExCAPE-DB,26

especially as the data sets continue to grow.

Feature point pharmacophores (FEPOPS), on the other hand,
use k-means clustering to build a fuzzy representation of a
conformer using a small number of clustered atomic feature
points, which simplify shape and enable rapid comparison.27,28

FEPOPS excels at scaffold hopping, and it can use charge-
distribution-based prealignment to circumvent a pairwise
alignment step. However, prealignment can introduce similarity
artifacts such that explicit pairwise shape-based or feature-point-
based alignment may nonetheless be preferred.27 Accordingly,

Figure 1. Diagram of information flow in the E3FP algorithm. (A) Overview of fingerprinting process for cypenamine. At iteration 0, we assign atom
identifiers using a list of atomic invariants and hash these into integers (shown here also as unique atom colors). At iteration i, shells of radius i · r center
on each atom (top right). The shell contains bound and unbound neighbor atoms. Where possible, we uniquely align neighbor atoms to the xy-plane
(top right) and assign stereochemical identifiers. Convergence occurs when a shell’s substructure contains the entire molecule (third from the right) or
at the maximum iteration count. Finally we “fold” each iteration’s substructure identifiers to 1024-bit space. (B) Overview of fingerprinting for
alphaprodine. (C) Overview of fingerprinting for a large, flexible molecule (CHEMBL210990; expanded in Supporting Information, Figure S1). A
three-dimensional substructure can consist of two disconnected substructures and their relative orientations (right).
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3D molecular representations and scoring methods typically
align conformers on a pairwise basis.2,3 Another promising
method, torsion fingerprint deviation (TFD), requires a
preliminary atom mapping between molecules to ensure
comparison of the correct torsion angles.29 An alternative
approach is to encode conformers against 3- or 4-point
pharmacophore keys that express up to 890 thousand or 350
million discrete pharmacophores, respectively.30,31 The count of
purchasable molecules alone, much less their conformers,
however, exceeds 200 million in databases such as ZINC (zinc.
docking.org),32 and the structural differences determining
bioactivity may be subtle. Atom-pair fingerprints are one
potentially more scalable approach, with natural implementa-
tions in 2D and 3D amenable to comparison.33,34

To directly integrate 3D molecular representations with
statistical and machine learning methods, we developed a 3D
fingerprint that retains the advantages of 2D topological
fingerprints. Inspired by the widely used circular ECFP (2D)
fingerprint, we develop a spherical extended 3D fingerprint
(E3FP) and assess its performance relative to ECFP for various
systems pharmacology tasks. E3FP is an open-source fingerprint
that encodes 3D information without the need for molecular
alignment, scales linearly with 2D fingerprint pairwise compar-
isons in computation time, and is compatible with statistical and
machine learning approaches that have already been developed
for 2D fingerprints. We use it to elucidate regions of molecular
similarity space that could not previously be explored. To
demonstrate its utility, we combine E3FP with SEA to predict
novel target-to-drug activities that SEA could not discover using
ECFP and confirm experimentally that they are correct.

■ RESULTS
The three-dimensional fingerprints we present are motivated by
the widely used two-dimensional (2D) extended connectivity
fingerprint (ECFP),35 which is based on theMorgan algorithm.36

ECFP is considered a 2D or “topological” approach because it
encodes the internal graph connectivity of a molecule without
explicitly accounting for 3D structural patterns the molecule may
adopt in solution or during protein binding. While ECFP thus
derives from the neighborhoods of atoms directly connected to
each atom, a 3D fingerprint could incorporate neighborhoods of
nearby atoms in 3D space, even if they are not directly bonded.
We develop such an approach and call it an extended three-
dimensional fingerprint (E3FP).
A Single Small Molecule Yields Multiple 3D Finger-

prints. Many small molecules can adopt a number of
energetically favorable 3D conformations, termed “conformers”.
In the absence of solved structures, it is not always apparent
which conformer a molecule will adopt in solution, how this may
change on protein binding, and which protein−ligand
interactions may favor which conformers.37 Accordingly, we
generate separate E3FPs for each of multiple potential
conformers per molecule. E3FP encodes all three-dimensional
substructures from a single conformer into a bit vector,
represented as a fixed-length sequence of 1s and 0s (Figure
1A). This is analogous to the means by which ECFPs represent
two-dimensional substructures. To encode the three-dimen-
sional environment of an atom, E3FP considers information
pertaining not only to contiguously bound atoms but also to
nearby unbound atoms and to relative atom orientations
(stereochemistry). We designed this process to be minimally
sensitive to minor structural fluctuations so that conformers
could be distinguished while the set of conformers for a given

molecule would retain a degree of internal similarity in E3FP
space.
The binding-relevant conformers of most small molecules are

not known a priori. Accordingly, prior to constructing any 3D
fingerprint, we generate a library of potential conformers for the
molecule, each of which in turn will have a unique fingerprint. We
employed a previously published protocol using the open-source
RDKit package,38 wherein the authors determined the number of
conformers needed to recover the correct ligand conformation
from a crystal structure as a function of the number of rotatable
bonds in the molecule, with some tuning (see Experimental
Section).

E3FP Encodes Small-Molecule 3D Substructures. The
core intuition of E3FP generation (Figure 1A) is to draw
concentrically larger shells and encode the 3D atom neighbor-
hood patterns within each of them. To do so, the algorithm
proceeds from small to larger shells iteratively. First, as in ECFP,
we uniquely represent each type of atom and the most important
properties of its immediate environment. To do so, we assign 32-
bit integer identifiers to each atom unique to its count of heavy
atom immediate neighbors, its valence minus neighboring
hydrogens, its atomic number, its atomic mass, its atomic charge,
its number of bound hydrogens, and whether it is in a ring. This
can result in many fine-grained identifiers, some examples of
which are visualized as differently colored atoms for the molecule
cypenamine in Figure 1A and for larger molecules in Figure 1B,C.
At each subsequent iteration, we draw a shell of increasing

radius around each atom, defining the neighbors as the atoms
within the shell as described above. The orientation and
connectivity of the neighbors, or lack thereof (as in Figure 1C,
red circle, expanded in Supporting Information (SI), Figure S1),
is combined with the neighbors’ own identifiers from the
previous iteration to generate a new joint identifier. Thus, at any
given iteration, the information contained within the shell is the
union of the substructures around the neighbors from the
previous iterations merged with the neighbors’ orientation and
connectivity with respect to the center atom of the current shell.
The set of atoms represented by an identifier therefore comprise
a three-dimensional substructure of the molecule.
We continue this process up to a predefined maximum

number of iterations or until we have encountered all
substructures possible within that molecule. We then represent
each identifier as an “on” bit in a sparse bit vector representation
of the entire conformer (Figure 1A, bitvector). Each “on” bit
indicates the presence of a specific three-dimensional sub-
structure. The choice of numerical integer to represent any
identifier is the result of a hash function (see Experimental
Section) that spreads the identifiers evenly over a large integer
space. Because there are over four billion possible 32-bit integers
and we observe far fewer than this number of molecular
substructures (identifiers) in practice, each identifier is unlikely
to collide with another and may be considered unique to a single
atom or substructure. Because this still remains a mostly empty
identifier space, we followed the commonly used approach from
ECFP and “fold” E3FP down to a shorter bitvector for efficient
storage and swift comparison, adapting the 1024-bit length that
has been effective for ECFP46,39 (SI, Table S2).
To demonstrate the fingerprinting process, Figure 1A steps

through the generation of an E3FP for the small molecule
cypenamine. First, four carbon atom types and one nitrogen
atom type are identified, represented by five colors. As
cypenamine is fairly small, E3FP fingerprinting terminates after
two iterations, at which point one of the substructures consists of

http://zinc.docking.org
http://zinc.docking.org
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the entire molecule. The slightly larger molecule alphaprodine
takes an additional iteration to reach termination (Figure 1B).

Figure 1C and SI, Figure S1, demonstrate the same process for
CHEMBL210990.25 This molecule is more complex, with 13

Figure 2. Comparative performance of E3FP and ECFP4. For all pairs of 308315 molecules from ChEMBL20, (A) log density plot summarizing 48
billion maximum Tanimoto coefficients (TC) calculated between E3FP conformer fingerprint sets versus corresponding TC by ECFP4 fingerprints.
The dotted red line is a linear least-squares fit. Optimal SEA TC cutoffs for E3FP (green) and ECFP4 (blue) are dotted lines. Red markers indicate
examples in Figure 3. (B)Histograms of TCs from (A). (C) Combined precision-recall (PRC) curves from five independent 5-fold cross-validation runs
using 1024-bit E3FP, E3FP without stereochemical identifiers (E3FP-NoStereo), E3FP without stereochemical identifiers or nearby unbound atoms
(E2FP), E3FP without nearby unbound atoms (E2FP-Stereo), ECFP4, and ECFP4 with distinct bond types encoding chirality (ECFP4-Chiral). Only
the PRC of the highest AUC fold is shown. (D) Combined highest-AUC ROC curves for the same sets as in (C). (E) Results of bootstrapping AUCs as
in Table 1. Dots indicate mean AUC, and whiskers standard deviations. Insets show absolute scale. (F) Target-wise comparison of mean AUPRCs using
E3FP versus ECFP4.
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distinct atom types, and in the conformation shown reaches
convergence in three iterations. Because themolecule bends back
on itself, in the second and third iterations, several of the
identifiers represent substructures that are nearby each other in
physical space but are not directly bound to each other and
indeed are separated by many bonds (e.g., red circle in Figure
1C). 2D fingerprints such as ECFP are inherently unaware of
unconnected proximity-based substructures, but they are
encoded in E3FP.
SEA 3D Fingerprint Performance Exceeds That of 2D in

Binding Prediction. We were curious to determine how
molecular similarity calculations using the new E3FP represen-
tations would compare to those using the 2D but otherwise
similarly motivated ECFP fingerprints. Specifically, we inves-
tigated whether the 3D fingerprint encoded information that
would enhance performance over its 2D counterpart in common
chemical informatics tasks.
The ECFP approach uses several parameters (e.g., ECFP4 uses

a radius of 2), and prior studies have explored their
optimization.39 We likewise sought appropriate parameter
choices for E3FP. In addition to the conformer generation
choices described above, E3FP itself has four tunable parameters:
(1) a shell radius multiplier (r in Figure 1A), (2) number of
iterations (i in Figure 1A), (3) inclusion of stereochemical
information, and (4) final bitvector length (1024 in Figure 1A).
We explored which combinations of conformer generation and
E3FP parameters produced the most effective 3D fingerprints for
the task of recovering correct ligand binders for over 2000
protein targets using the similarity ensemble approach (SEA).
SEA compares sets of fingerprints against each other using
Tanimoto coefficients (TC) and determines a p-value for the
similarity among the two sets; it has been used to predict drug off-
targets,4,5,40,41 small-molecule mechanisms of action,42−44 and
adverse drug reactions.4,45,46 For the training library, we
assembled a data set of small-molecule ligands that bind to at
least one of the targets from the ChEMBL database with an IC50
of 10 μM or better. We then generated and fingerprinted the
conformers using each E3FP parameter choice, resulting in a set
of conformer fingerprints for each molecule and for each target.
We performed a stratified 5-fold cross-validation on a target-by-
target basis by setting aside one-fifth of the known binders from a
target for testing, searching this one-fifth (positive data) and the
remaining nonbinders (negative data) against the target using
SEA, and then computing true and false positive rates at all
possible SEA p-value cutoffs. For each target in each fold, we
computed the precision recall curve (PRC), the receiver
operating characteristic (ROC), and the area under each curve
(AUC). Likewise, we combined the predictions across all targets
in a cross-validation fold to generate fold PRC and ROC curves.

As there are far more negative target−molecule pairs in the test
sets than positives, a good ROC curve was readily achieved, as
many false positives must be generated to produce a high false
positive rate. Conversely, in such a case, the precision would be
very low. We therefore expected the AUC of the PRC (AUPRC)
to be a better assessment of parameter set.47 To simultaneously
optimize for both a high AUPRC and a high AUC of the ROC
(AUROC), we used the sum of these two values as the objective
function, AUCSUM. We employed the Bayesian optimization
program Spearmint48 to optimize four of five possible E3FP
parameters (we did not optimize fingerprint bit length, for
simplicity of comparison to ECFP fingerprints) so as tomaximize
the AUCSUM value and minimize runtime of fingerprinting (SI,
Figure S2).
We constrained all optimization solely to the choice of

fingerprint parameters on the same underlying collection of
precomputed molecular conformers. For computational effi-
ciency, we split the optimization protocol into two stages (see
Experimental Section). This yielded an E3FP parameter set that
used the three lowest energy conformers, a shell radius multiplier
of 1.718, and five iterations of fingerprinting (SI, Figure S4).
After bootstrapping with five independent repeats of 5-fold cross-
validation using E3FP and ECFP4 on a larger set of 308315
ligands from ChEMBL20, E3FP produced a mean AUPRC of
0.6426, exceeding ECFP4’s mean AUPRC of 0.5799 in the same
task (Figure 2C,E, Table 1). Additionally, E3FP’s mean AUROC
of 0.9886 exceeds ECFP4’s AUPRC of 0.9882 (Figure 2D,E,
Table 1). Thus, at a SEA p-value threshold p ≤ 3.45 × 10−47,
E3FP achieves an average sensitivity of 0.6976, specif icity of
0.9974, precision of 0.5824, and F1 score of 0.6348. ECFP4
achieves 0.4647, 0.9986, 0.6236, and 0.5325, at this p-value
threshold. ECFP4 is unable to achieve the high F1 score of E3FP,
but at its maximum F1 score of 0.5896, it achieves a sensitivity of
0.6930, a specif icity of 0.9966, and a precision of 0.5131 using a p-
value threshold p≤ 3.33× 10−23. To ensure a fair comparison, we
subjected ECFP to a grid search on its radius parameter and
found that no radius value outperforms ECFP4 with both
AUPRC and AUROC (SI, Table S1). Additionally, fingerprints
with longer bit lengths did not yield significant performance
increases for E3FP or ECFP4 despite the expectation that longer
lengths would lower feature collision rates (SI, Table S2); indeed,
it appears that increasing the fingerprint length reduced the
performance of E3FP. RDKit uses slightly different atomic
invariants for its Morgan fingerprints than E3FP’s default
Daylight invariants, but we found that RDKit’s invariants with
E3FP (“E3FP-RDKit”) produced no significant difference in
fingerprint performance (Table 1). By design, this optimization
and consequent performance analysis does not attempt to

Table 1. Performance of Variants of E3FP and ECFP Using SEAa

name mean fold AUPRC mean fold AUROC mean target AUPRC mean target AUROC

ECFP4 0.5799 ± 0.0018 0.9882 ± 0.0001 0.6965 ± 0.2099 0.9772 ± 0.0387
ECFP4-Chiral 0.5977 ± 0.0017 0.9882 ± 0.0002 0.7021 ± 0.2088 0.9769 ± 0.0391
E2FP 0.5781 ± 0.0015 0.9871 ± 0.0002 0.7080 ± 0.2034 0.9768 ± 0.0392
E2FP-Stereo 0.6390 ± 0.0011 0.9883 ± 0.0001 0.7140 ± 0.2016 0.9780 ± 0.0371
E3FP-NoStereo 0.6849 ± 0.0012 0.9894 ± 0.0003 0.7312 ± 0.1989 0.9774 ± 0.0409
E3FP 0.6426 ± 0.0016 0.9886 ± 0.0002 0.7046 ± 0.1991 0.9805 ± 0.0326
E3FP-RDKit 0.6409 ± 0.0014 0.9885 ± 0.0003 0.7086 ± 0.2003 0.9798 ± 0.0348

aMean and standard deviations for combined fold AUPRC and AUROC curves versus target-wise AUPRC and AUROC curves across five
independent repeats of 5-fold cross-validation are shown. A random classifier will produce a mean AUPRC of 0.0051 (fraction of positive target/mol
pairs in test data), a mean target AUPRC of 0.0053 ± 0.0076, and a mean AUROC and mean target-wise AUROC of 0.5.
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quantify novelty of the predictions nor does it assess the false
negative or untested-yet-true-positive rate of either method.
Having found that SEA-E3FP using RDKit-generated con-

formers outperformed SEA-ECFP4, we tested whether E3FP
could still better enrich for known actives by using crystal
structure conformers from the Protein Data Bank (PDB). Using
SEA, we queried 32639 known ligands across 24 targets in
ChEMBL20 that lacked crystal conformations against sets of
1446 unique target-bound ligands from the PDB. We generated
E3FP fingerprints for ChEMBL20 using RDKit conformers as
before while calculating the E3FP fingerprints for the PDB
reference ligands on RDKit-generated (E3FP-RDKit) or crystal
conformers (E3FP-PDB). While ECFP4’s AUPRC of 0.5718
exceeded E3FP-RDKit’s 0.5235 (SI, Figure S5A), E3FP-RDKit
achieved a higher AUROC (0.8440 vs 0.8127) and AUC of the
enrichment curve (AUEC) (0.8291 vs 0.7992) than ECFP4 (SI,
Figure S5B,C). Interestingly, crystal conformers yielded poorer
performance by all metrics, perhaps due to limitations of RDKit
conformer generation. To test this, we repeated the same
experiment using only the 1446 unique ligands from the PDB to
populate test and train sets, with no ChEMBL test ligands, but
the trend persisted (SI, Figure S5D−F).
We note that E3FP was optimized here for use with SEA, and

SEA inherently operates on sets of fingerprints, such as those
produced when fingerprinting a set of conformers. Most machine
learning methods, however, operate on individual fingerprints.
To determine how well E3FP could be integrated into this
scenario, we repeated the entire ChEMBL-wide cross-validation
with four common machine learning classifiers: Naive Bayes
classifiers (NB), random forests (RF), support vector machines
with a linear kernel (LinSVM), and artificial neural networks
(NN). As these methods process each conformer independently,
we computed the maximum score across all conformer-specific
fingerprints for a given molecule and used that score for cross-
validation. Operating on E3FP, the RF, NN, and LinvSVM
classifiers matched or exceeded SEA PRC performance (SI,
Figure S6), although only RF matched SEA’s AUROC (SI,
Figure S7). The same classifiers achieved higher AUPRCs using
ECFP4 than E3FP, but at the cost of lower ROC performance for
RF and LinSVM (SI, Figure S7). In general, the machine learning
methods underperformed when using E3FP compared to
ECFP4. When we instead took the bitwise mean of all
conformer-specific E3FPs to produce one single summarizing
“float” fingerprint per molecule, we observed an improvement
across all machine learning methods except for LinSVM (by
AUROC) and RF.
3D Fingerprints Encode Different Information than

Their 2D Counterparts. 2D fingerprints such as ECFP4 may
denote stereoatoms using special disambiguation flags or
identifiers from marked stereochemistry (here termed
“ECFP4-Chiral”).35 E3FP encodes stereochemistry more
natively. Conceptually, all atoms within a spatial “neighborhood”
and their relative orientations within that region of space are
explicitly considered when constructing the fingerprint. To
quantify how stereochemical information contributes to E3FP’s
improved AUPRC over that of ECFP4, we constructed three
“2D-like” limited variants of E3FP, each of which omits some 3D
information and is thus more analogous to ECFP. The first
variant, which we term “E2FP,” is a direct analogue of ECFP, in
which only information from directly bound atoms are included
in the identifier and stereochemistry is ignored. This variant
produces similar ROC and PRC curves to that of ECFP4 (Figure
2C,D; SI, Figures S8−S9). A second variant, “E2FP-Stereo,”

includes information regarding the relative orientations of bound
atoms. E2FP-Stereo achieves a performance between that of
ECFP4 and E3FP, demonstrating that E3FP’s approach for
encoding stereochemical information is effective (Figure 2C,D).
The third variant, “E3FP-NoStereo,” includes only the
information from bound and unbound atoms. E3FP-NoStereo
performs slightly better than E3FP in both ROC and PRC
analysis (Figure 2C,D), indicating that E3FP’s enhanced
performance over ECFP4 in PRC analysis is due not only to
the relative orientations of atoms but also due to the inclusion of
unbound atoms. All variants of E3FP with some form of 3D
information outperformed both ECFP4 and ECFP4-Chiral
(Figure 2C,D; SI, Figures S8−S9).
On average, the final E3FP parameters yield fingerprints with

35% more “on” bits than ECFP4, although if run for the same
number of iterations, ECFP is denser. Thus, E3FP typically runs
for more iterations (SI, Figure S4C,D). Folding E3FP down to
1024 bits results in an average loss of only 1.4 bits to collisions.
The TCs for randomly chosen pairs of molecules by E3FP are
generally lower (Figure 2A,B) than those for ECFP4, and there
are fewer molecules with identical fingerprints by E3FP than by
ECFP4. The final E3FP parameter set outperforms ECFP up to
the same number of iterations (SI, Table S1; Figure 2C,D).
Intriguingly, E3FP outperforms ECFP4 at this task on a per-
target basis for a majority of targets (Figure 2F).
We assessed E3FP’s performance relative to several other 3D

molecular comparison methods. First, we used FastROCS to
compute maximum ROCS shape (ROCS-shape) and shape plus
color (ROCS-combo) TCs among all molecules in ChEMBL20,
on the same set of conformers used for E3FP. This took six days
using eight graphics processing units (GPUs), or approximately
74.7 central processing unit (CPU) years (SI, Table S3).We then
performed 5-fold cross-validation to enrich for correct ligands
(actives) by maximum pairwise TC. E3FP and ECFP4 achieved
the highest areas under the enrichment curve (AUECs) of 0.9907
and 0.9918, whereas ROCS-shape achieved an AUEC of 0.9240,
and ROCS-combo achieved an AUEC of 0.9703 (SI, Figure
S11a). Correspondingly, we observed a weak correlation
between individual E3FP and ROCS conformer-pair scores,
particularly for ROCS-combo (SI, Figure S11B−E). Finally, we
asked how these methods would correlate with root-mean-
square deviation (RMSD) on optimally aligned conformer pairs
as a separate baseline. To address this, we randomly sampled
1000 pairs, typically comparing one molecule’s conformer to a
conformer of another molecule, and found that none of the above
methods was a good predictor of RMSD on maximum common
substructure (MCS; SI, Figure S12A−D). However, we observed
better correlations with RMSD when we recomputed these
analyses, as well as the 3D pharmacophoric torsion fingerprint
deviation (TFD),29 using 10000 random same-molecule con-
formers instead (SI, Figure S12E−H).

Fourteen Molecular Pairs where 3D and 2D Finger-
prints Disagree. To explore cases where E3FP and ECFP4
diverge, we computed E3FP versus ECFP4 pairwise similarity
scores (Tanimoto coefficients; TCs) for all molecule pairs in
ChEMBL20 (red markers in Figure 2A). We then manually
inspected pairs from four regions of interest. Pairs representative
of overall trends were selected, with preference toward pairs that
had been assayed against the same target (SI, Table S4). The first
region contains molecule pairs with TCs slightly above the SEA
significance threshold for E3FP but below the threshold for
ECFP4 (denoted by “x” markers). These predominantly
comprise small compact molecules, with common atom types
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across multiple orders or substituents on rings (Figure 3A).
Some of these molecules are already reported to interact with the
same protein targets. For instance, CHEMBL11321725 binds to

GABA-B receptor with an IC50 of 280 nM, while
CHEMBL11390725 binds GABA-B with a similar IC50 of 500
nM (Figure 3A).49 In another example, CHEMBL32943125

Figure 3. Examples of molecule pairs with high differences between E3FP and ECFP4 Tanimoto coefficients. Molecule pairs were manually selected
from regions of interest, displayed as red markers in Figure 2A: (A) upper left, (B) upper right, (C) lower right, and (D) far right. Pair TCs for ECFP4
and E3FP are shown next to the corresponding 2D and 3D representations; the conformer pairs shown are those corresponding to the highest pairwise
E3FP TC. Where pair TCs for ECFP4 with stereochemical information differ from standard ECFP4, they are included in parentheses. Each colored
asterisk indicates a target for which existing affinity data for both molecules was found in the literature and is colored according to fold-difference in
affinity: black for <10-fold, orange for 10−100-fold, and red for >100-fold. Further references for all compounds shown, including CHEMBL214799625

and CHEMBL454457,25 may be found in SI, Table S4.
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binds to inducible, brain, and endothelial human nitric oxide
synthases with IC50s of 10.0, 10.1, and 59 μM, respectively,50

while CHEMBL36584925 binds to the same targets at 3.1 μM,
310 nM, and 4.7 μM.51 The black asterisk alongside this pair
marks similar affinities for the first target (within one log), and
the orange asterisks affinities for the second two, each spanning
two logs. Red asterisks mark targets whose affinities differ by
more than two logs, but no such cases were found for this region.

The second region (red crosses in Figure 2A) contains
molecule pairs with TCs considered significant both in 2D and in
3D but whose similarity was nonetheless greater by 3D (Figure
3B). For instance, the molecule pairs often differed by atom types
in or substituents on a ring despite a high degree of similarity in
3D structures. In the case of CHEMBL15826125 and
CHEMBL333193,25 the molecules bind to carbonic anhydrase
II with near-identical affinities of 3.6 and 3.3 nM.52 Interestingly,
the 2D similarity of this pair is barely above the significance

Figure 4. Experimental results of novel compound−target predictions. (A) SEA predictions that motivated the binding experiments, with 2D versus 3D
SEA p-values for each drug−target pair. Tanimoto coefficients score the similarity of 2D versus 3D structures for the searched drug against its most
similar known ligand(s) of the target by ECFP4 (left) and E3FP (right). E3FP uses an early parameter set. Supporting Information, Table S5, shows
recalculated SEA p-values on the final E3FP parameter set used elsewhere. SEA p-value >1 denotes cases lacking TC above the SEA threshold (SI, Figure
S13D−E), such that no p-value could be calculated. (B−E) Experimentally measured binding curves for tested drugs and reference binders (black) at
protein targets (B) M5, (C) α2β4, (D) α3β4, and (E) α4β4. See SI, Table S8, for more details. All compounds shown, including CHEMBL3087961,
CHEMBL3088075, CHEMBL430497, CHEMBL220476, and CHEMBL56817, are from ChEMBL20.25
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t h r e sho ld . I n ano the r e x amp l e , t h e mo l e cu l e s
CHEMBL18685625 and CHEMBL30654125 achieve markedly
similar pharmacological profiles, as the first binds to the
inducible, brain, and endothelial human nitric oxide synthases
with IC50s of 1.2, 2.8, and 10.5 μM,53 whereas the second was
reported at 2.9, 3.2, and 7.1 μM.54 On the other hand, two other
pa i r s somewhat d iffer in b ind ing profi l e : whi le
CHEMBL21871025 binds to metabotropic glutamate receptors
2 and 3 with Kis of 508 and 447 nM, CHEMBL883925 binds to
these targets more potently, at 40.6 and 4.7 nM.55 Likewise, the
b ind ing profi l e s o f CHEMBL25514125 and and
CHEMBL27080725 to histamine H3 receptor differed by
approximately an order of magnitude, with respective Kis of 17
and 200 nM.56

The third region (red squares in Figure 2A) contains molecule
pairs significant in 2D but not in 3D (Figure 3C), and the fourth
region (red diamonds in Figure 2A) contains pairs identical by
2D yet dissimilar in 3D (Figure 3D). These examples span
several categories: First, the conformer generation protocol failed
for some pairs of identical or near-identical molecules having
many rotatable bonds because we generated an insufficient
number of conformers to sample the conformer pair that would
attain high 3D similarity between them (not shown). Second, in
cases where the 2Dmolecules do not specify chirality, the specific
force field used may favor different chiralities, producing
artificially low 3D similarity. As an example, CHEMBL2042925

and CHEMBL2130925 (Figure 3C) have relatively similar
affinities for vesicular acetylcholine transporter at 200 and 40
nM57 despite their low 3D similarity. Third, some pairs consist of
molecules primarily differentiated by the size of one or more
substituent rings (Figure 3C,D). ECFP4 is incapable of
differentiating rings with five or more identical atom types and
only one substituent, while E3FP substructures may include
larger portions of the rings. The role of ring size is revealed in the
target affinity differences for one such pair: CHEMBL26357525

binds to the κ opioid, μ opioid, and nociceptin receptors with Kis
of 100, 158, and 25 nM, while CHEMBL35465225 binds to the
same receptors notably more potently at 2.9, 0.28, and 0.95
nM.58 Fourth, many pairs consist of molecules primarily
differentiated by the order of substituents around one or more
chiral centers (Figure 3C,D). The molecules CHEMBL14854325

and CHEMBL35860,25 for example, bind to HIV type 1 protease
with disparate Kis of 56059 and 0.12 nM60 despite their
exceptionally high 2D similarity of 0.853 TC. Likewise,
CHEMBL180755025 and CHEMBL312531825 have opposing
specificities for the human sodium/glucose cotransporters 1 and
2; while the former has IC50s of 10 nM and 10 μM for the
targets,61 the latter has IC50s of 3.1 μM and 2.9 nM.62 In another
example, despite being identical by standard 2D fingerprints, the
stereoisomers CHEMBL205176125 and CHEMBL205197825

bind to maltase−glucoamylase with IC50s of 28 nM versus 1.5
μM, and to sucrase−isomaltase at 7.5 nM versus 5.3 μM.63 The
stereoisomers CHEMBL30167025 and CHEMBL58824,25 how-
ever, show a case where 3D dissimilarity is a less effective guide,
as both molecules bind to the muscarinic acetylcholine receptors
M1−M4 with generally similar respective IC50s of 426.58 nM
versus 851.14 nM, 95.5 nM versus 851.14 nM, 1.6 μM versus
794.33 nM, and 173.78 nM versus 794.33 nM.64 Similarly,
CHEMBL60693725 and CHEMBL60693825 have low similarity
in 3D but bind to the σ opioid receptor with IC50s of 37 and 34
nM.65

E3FP Predicts Correct New Drug Off-Targets That Are
Not Apparent in 2D. As E3FP enhanced SEA performance in

retrospective tests (Figure 2C,D), we hypothesized that this
combination might identify novel interactions as yet overlooked
with two-dimensional fingerprints. We therefore tested whether
SEA with E3FP would make correct drug-to-target predictions
that SEA with ECFP4 did not make. Using a preliminary choice
of E3FP parameters (SI, Table S5), we generated fingerprints for
all in-stock compounds in the ChEMBL20 subset of the ZINC15
(zinc15.docking.org) database with a molecular weight under
800 Da. As our reference library, we extracted a subset of
ChEMBL20 comprising 309 targets readily available for testing
by radioligand binding assay in the Psychoactive Drug Screening
Program (PDSP)66 database. The distribution of Tanimoto
coefficients between these two molecule sets resembles that of
pairwise molecules in ChEMBL20 (Figure 2; SI, Figure S13A,B).
Histograms plotting representative drug pairwise similarities
against the ligand sets of their predicted targets (SI, Figure
S13C−E) demonstrate that almost all ECFP4 TC fall below the
SEA TC cutoff for significance, while approximately half of
E3FP’s TCs exceed its SEA TC cutoff. Using SEA on this library,
we identified all drug-to-target predictions with a p-value stronger
than 1 × 10−25. To focus on predictions specific to E3FP, we
removed all predictions with a p-value stronger than 0.1 when
counter-screened by SEA with ECFP4, resulting in 9331 novel
predicted interactions. We selected eight predictions for testing
by binding assay; of these, five were inconclusive and three bound
to the predicted target subtype or to a close subtype of the same
receptor (SI, Tables S5−S8). We address each of the latter in
turn.
The E3FP SEA prediction that the psychostimulant and

antidepressant67−69 cypenamine (CHEMBL2110918), for
which we could find no accepted targets in the literature despite
its development in the 1940s, would bind to the human nicotinic
acetylcholine receptor (nAchR) α2β4 was borne out with a Ki of
4.65 μM(Figure 4C; SI, Table S8). Of note, this corresponds to a
high ligand efficiency (LE) of 0.610 kcal/mol/heavy atom (see
Experimental Section). An LE greater than 0.3 kcal/mol/heavy
atom is generally considered a promising drug candidate.70 As
any prediction is only as specific as the reference ligand data from
ChEMBL upon which it was based, we assayed cypenamine
against multiple subtypes of nAchR. Cypenamine also bound to
the nAchR subtypes α3β4 and α4β4 with Ki’s of 2.69 and 4.11
μM (Figure 4D,E; SI, Table S8) and ligand efficiencies of 0.637
and 0.616 kcal/mol/heavy atom.
Anpirtoline (CHEMBL1316374) is an agonist of the 5-HT1B,

5-HT1A, and 5-HT2 receptors and an antagonist of the 5-HT3
receptor, with Ki’s of 28, 150, 1490, and 30 nM, respectively.71,72

However, we predicted it would bind to the nAchRs, of which it
selectively bound to α3β4 at a Ki of 3.41 μM and an LE of 0.536
kcal/mol/heavy atom (Figure 4D; SI, Table S8). In this case, the
motivating SEA E3FP prediction was for the α4β2 subtype of
nAchR, for which the experiment was inconclusive, suggesting
either that the ligand reference data from ChEMBL distinguish-
ing these subtypes was insufficient or that the SEA E3FP method
itself did not distinguish among them, and this is a point for
further study.
Alphaprodine (CHEMBL1529817), an opioid analgesic used

as a local anesthetic in pediatric dentistry,73 bound to the
muscarinic acetylcholine receptor (mAchR) M5 with a Ki of 771
nM and an LE of 0.442 kcal/mol/heavy atom (Figure 4B; SI,
Figure S14E). We found no agonist activity on M5 by
alphaprodine by Tango assay74,75 (SI, Figure S15B), but we
did find it to be an antagonist (SI, Figure S16). Intriguingly,
alphaprodine also showed no significant affinity for any of the
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muscarinic receptors M1−M4 up to 10 μM(SI, Figure S14A−D),
indicating that it is an M5-selective antagonist. Muscarinic M5
selective small molecules are rare in the literature.76 Whereas its
M5 selectivity would need to be considered in the context of its
opioid activity (μ, κ, and δ opioid receptor affinities, however, are
not publicly available), alphaprodine nonetheless may find utility
as a M5 chemical probe, given the paucity of subtype-selective
muscarinic compounds. Interestingly, the E3FP SEA prediction
leading us to the discovery of this activity was for the muscarinic
M3 receptor, to which alphaprodine ultimately did not bind and
for which alphaprodine showed no agonist activity (SI, Figure
S15A). This highlights not only the limitations of similarity-
based methods such as SEA for the discovery of new subtype-
selective compounds when none of that type are previously
known but also the opportunity suchmethods provide to identify
chemotypes and overall receptor families that merit further study
nonetheless.

■ DISCUSSION AND CONCLUSIONS
Three results emerge from this study. First, we encode a simple
three-dimensional molecular representation into a new type of
chemical informatic fingerprint, which may be used to compare
molecules in a manner analogous to that already used for two-
dimensional molecular similarity. Second, the 3D fingerprints
contain discriminating information that is naturally absent from
2D fingerprints, such as stereochemistry and relationships among
atoms that are close in space but distant in their direct bond
connectivity. Finally, as small molecules may adopt many
structural conformations, we combine conformation-specific
3D fingerprints into sets to evaluate entire conformational
ensembles at once. This may be of interest in cases where
different conformations of a molecule are competent at diverse
binding sites across the array of proteins for which that same
molecule is, at various potencies, a ligand.
We devised a simple representation of three-dimensional

molecular structures, an “extended 3D fingerprint” (E3FP), that
is directly analogous to gold standard two-dimensional
approaches such as the extended connectivity fingerprint
(ECFP). As with two-dimensional fingerprints, this approach
enables precalculation of fingerprints for all conformers of
interest in an entire library of molecules once. Unlike
conventional 3D approaches, similarity calculations in E3FP do
not require an alignment step. Consequently, E3FP similarity
calculations are substantially faster than standard 3D comparison
approaches such as ROCS (SI, Table S3, Figure S10).
Furthermore, E3FP fingerprints are formatted identically to
ECFP and other 2D fingerprints. Thus, systems pharmacology
approaches such as SEA,4,5 naiv̈e Bayes classifiers,11 SVM,14 and
other established machine learning methods may readily
incorporate E3FPs for molecular conformers without modifica-
tion. While choices of E3FP’s parameter space might be
specifically optimized for the machine learning method in
question, we have demonstrated that E3FP’s highest-performing
parameter choice for SEA (Figure 2C,D) produces fingerprints
that likewise perform well for SVM, random forests, and neural
networks (SI, Figures S6−S7).
To explore the role of 2D vs 3D features in the discriminatory

power of molecular fingerprints, we progressively disabled
capabilities specific to E3FP, such as stereochemistry encoding
(termed “E3FP-NoStereo”) and nonbonded atom relationships
(termed “E2FP-Stereo”), eventually arriving at a stripped-down
version of E3FP (termed “E2FP”) that, much like ECFP, encodes
only 2D information. We evaluated the consequences of

removing these three-dimensional features on performance in
retrospective machine learning tasks (e.g., Figure 2C−E, Table 1;
SI, Figures S8−S9). We found that inclusion of nonbonded
atoms was a more important contributor to performance than
stereochemical information. Intriguingly, while progressively
adding stereochemical information and inclusion of nonbonded
atoms produces marked improvement over ECFP4, inclusion
only of nonbonded atom information produces the highest
performance fingerprint of all, perhaps because 3D orientations
of larger substructures are implicitly encoded within shells purely
by relative distances. This observation leads us to believe that a
more balanced inclusion of stereochemical information and
nonbonded atoms may produce an even higher performing
fingerprint. Historically, 3D representations have typically
underperformed 2D ones such as ECFP,7 and this has always
been the case with similarity ensemble approach (SEA)
calculations in particular.6 Here, however, we find that E3FP
exceeds the performance of ECFP4 in its precision-recall curve
(PRC) and matches that of ECFP4 in its receiver-operating
characteristic curve (ROC) area under the curve (AUC) scores
(Figure 2C−E, Table 1; SI, Figures S8−S9). While the ROC
curve evaluates the general usefulness of the fingerprint for
classification by comparing sensitivity and specificity, the
precision-recall evaluates how useful the method is for real
cases where most tested drug−target pairs are expected to have
no affinity. The increased performance in PRC curves when
using E3FP over ECFP4 therefore indicates an increased
likelihood of predicting novel drug−target pairs that will be
experimentally born out with no loss in predictive power.
E3FP’s utility for this task became especially clear when we

used it to predict novel drug to protein binding interactions. To
do so, we examined only strong SEA predictions with E3FP
(SEA-E3FP; p-value ≤ 1 × 10−25) that could not be predicted
using SEA with ECFP4 (SEA-ECFP; p-value ≥ 0.1). We
considered this a challenging task because on-market drugs
might be expected to have fewer unreported off-targets in general
than a comparatively newer and less-studied research compound
might. Furthermore, much of the prior work in chemical
informatics guiding molecule design and target testing has been
motivated by 2D approaches.2,7,77 Accordingly, approximately
half of the new predictions were inconclusive in this first
prospective test of the method (SI, Tables S5 and S7).
Nonetheless, many also succeeded with high ligand efficiencies
(LEs), and these included unique selectivity profiles (Figure 4).
In one example, SEA-E3FP successfully predicted that
alphaprodine would also act as an antagonist of the M5
muscarinic receptor, which to our knowledge is not only a new
“off-target” activity for this drug but also constitutes a rare,
subtype-selective M5 antimuscarinic ligand.

76 TheM5 muscarinic
receptor has roles in cocaine addiction,78 morphine addiction,79

and dilation of cerebral blood vessels, with potential implications
for Alzheimer’s disease.80 Study of M5 receptors has been
hindered by a lack of selective ligands. Because of serious adverse
reactions,81 alphaprodine was withdrawn from the market in the
United States in 1986 and is therefore unlikely to be applied as a
therapeutic. However, alphaprodine might be explored not only
as a chemical probe for studying M5, but also as a reference for
future therapeutic development.
Anpirtoline and cypenamine, likewise predicted and sub-

sequently experimentally confirmed to bind previously unre-
ported off-targets among the nicotinic receptors, exhibited
exceptional LEs (0.536−0.637 kcal/mol/heavy atom), a
commonly used metric of optimization potential. Recent patents
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combining psychostimulants with low-dose antiepileptic agents
for the treatment of attention deficit hyperactivity disorder
(ADHD) incorporate cypenamine,82,83 and nicotinic agents
improve cognition and combat ADHD.84 Given likewise the
association of nicotinic acetylcholine receptor (nAchR) α4 gene
polymorphisms with ADHD,85 a combination of traditional
psychostimulant activity with “non-stimulant” nAChR activity
via α4 might improve anti-ADHD efficacy. Whereas cypen-
amine’s micromolar binding concentration to nAchR is likely
below the plasma concentrations it reaches at steady state, its
exceptional LEs at nAchR may support further optimization of
this pharmacology. As with cypenamine, anpirtoline may serve as
a well-characterized starting point for further nAchR optimiza-
tion, and secondarily, its serotonergic activity may serve as a
guide to explore cypenamine’s likely serotonergic activity.
Anpirtoline’s benign side effect profile, combined with the
nAchR α3β4 subunit’s role in nicotine addiction86 and the lack of
α3β4 specific drugs,87 motivate further exploration.
We find that, whereas E3FP’s performance matches or exceeds

that of ECFP4 under multiple retrospective metrics, and whereas
it leads to new off-target predictions complementing those of
ECFP4 with SEA, there are cases where the more traditional 2D
representation yields higher retrospective performance. It would
be difficult to tease out the impact that 2D has of necessity made
in guiding the design and testing of suchmolecules, and only time
will tell whether ECFP4’s higher performance in these cases is
due to true pharmacology or historical bias. However, we
currently find that ECFP4 outperforms E3FP on specific targets
using SEA (Figure 2F) and in general when applying other
machine learning methods (SI, Figures S6−S7). Similarly,
ECFP4 performs well on highly flexible molecules, owing to
the difficulty of a small conformer library representing the
flexibility of these molecules. Conversely, E3FP’s potential for
discerning similar target binding profiles is best realized when
comparing molecules with a high degree of conformational
similarity on the one hand or on the other one or more chiral
centers. As is evident from their respective PRC plots, E3FP
typically discriminates SEA predictions more than ECFP4 does,
thereby achieving a better precision-recall ratio at the initial cost
of some sensitivity (Figure 2C). However, this also allows E3FP
to consider more distant molecular similarity relationships while
maintaining greater discriminatory power than ECFP4 does at
this range. It would be interesting to explore whether some of
these more distant relationships might also be regions of
pharmacological novelty.
One longtime advantage of 2D molecular representations has

been their ability to implicitly sidestep the question of
conformation. Whereas heroic effort has gone into solving the
crystallographic conformations of hundreds of thousands of
small molecules,88,89 the binding-competent 3D conformations
for millions of research25 and purchasable32 small molecules are
not known. Furthermore, polypharmacology exacerbates this
problem, wherein a single small molecule can bind many protein
partners, as it is not always the case that the molecule in question
will adopt the same conformation for each binding site.2

Powerful methods to enumerate and energetically score potential
conformations exist,90−92 but it falls to the researcher to prioritize
which of these conformers may be most relevant for a given
protein or question. Treating the top five, ten, or more most
energetically favorable conformers as a single set, however, may
be an alternate solution to this problem. We originally developed
SEA so as to compare entire sets of molecular fingerprints against
each other,4 so it seemed natural to use it in a conformational-set-

wise manner here. Furthermore, because SEA capitalizes on
nearest-neighbor similarities among ligands across sets of
molecules, we expected that it might analogously benefit from
nearest-neighbor similarities in conformational space on a
protein-by-protein basis. This may indeed be the case, although
we have not attempted to deconvolve E3FP’s performance in a
way that would answer whether different E3FPs, and hence
different conformations, of the same molecule most account for
its predicted binding to different protein targets.
The E3FP approach is not without its limitations. E3FP

fingerprints operate on a pregenerated library of molecular
conformers. The presence of multiple conformers and therefore
multiple fingerprints for a single molecule hampers machine
learning performance in naive implementations (SI, Figures S6−
S7), as flexible molecules dominate the training and testing data.
We anticipate higher numbers of accepted conformers to only
exacerbate the problem. The full conformational diversity of
large, flexible molecules pose a substantial representational
challenge as well (Figure 3C,D). As E3FP depends upon
conformer generation, a generator that consistently imposes
specific stereochemistry on a center lacking chiral information
may produce artificially low or high 3D similarity (Figure 3C).
Furthermore, the core intuition of E3FP hinges on the
assumption that most binding sites will have differing affinities
for molecules with diverging stereochemical orientations, such as
stereoisomers. Because of site flexibility, this is not always the
case (Figure 3C,D).
Despite these caveats, we hope that this simple, rapid, and

conformer-specific extended three-dimensional fingerprint
(E3FP) will be immediately useful to the broader community.
To this end, we have designed E3FP to integrate directly into the
most commonly used protein target prediction methods without
modification. An open-source repository implementing these
fingerprints and the code to generate the conformers used in this
work is available at https://github.com/keiserlab/e3fp/tree/1.1.

■ EXPERIMENTAL SECTION
Generating Conformer Libraries. To maximize reproducibility,

we generated conformers following a previously published protocol38

using RDKit.93 For each molecule, the number of rotatable bonds
determined the target number of conformers, N, such that N = 50 for
molecules with less than 8 rotatable bonds, N = 200 for molecules with
8−12 rotatable bonds, andN = 300 for molecules with over 12 rotatable
bonds. We generated a size 2N pool of potential conformers.

After minimizing conformers with the Universal Force Field92 in
RDKit, we sorted them by predicted energy. The lowest energy
conformer became the seed for the set of accepted conformers. We
considered each candidate conformer in sorted order, calculated its root-
mean-square deviation (RMSD) to the closest accepted conformer, and
added the candidate to the accepted set if its RMSD was beyond a
predefined distance cutoff R. Optionally, we also enforced a maximum
energy difference E between the lowest and highest energy accepted
conformers. After having considered all 2N conformers, or having
accepted N conformers, the process terminated, yielding a final set of
conformers for that molecule.

We tuned this protocol using three adjustable parameters: (1) the
minimum RMSD between any two accepted conformers, (2) the
maximum computed energy difference between the lowest energy and
highest energy accepted conformers, and (3) the number of lowest
energy conformers to be accepted (fingerprinted). We generated two
different conformer libraries by this protocol. In the first (rms0.5), we
used a RMSD cutoff R = 0.5, with no maximum energy difference E. In
the second (rms1_e20), we chose a RMSD cutoff R = 1.0, with a
maximum energy difference of 20 kcal/mol.

Enumerating Protonation States.Where specified, we generated
dominant tautomers at pH 7.4 from input SMILES using the CXCALC
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program distributed with ChemAxon’s Calculator Plugins.94 We kept
the first two protonation states with at least 20% predicted occupancy.
Where no states garnered at least 20% of the molecules, or where
protonation failed, we kept the input SMILES unchanged. Conformer
generation for each tautomer proceeded independently and in parallel.
ECFP Fingerprinting. To approximate ECFP fingerprints, we

employed theMorgan fingerprint from RDKit using default settings and
an appropriate radius. ECFP4 fingerprints, for example, used a Morgan
fingerprint of radius 2. Where ECFP with stereochemical information is
specified, the same fingerprinting approach was used with chirality
information incorporated into the fingerprint. An ECFP fingerprint is a
bitvector, where a specific bit indicates the presence of a 2D molecular
substructure at a given circular radius.
E3FP Fingerprinting. Given a specific conformer for a molecule,

E3FP generates a 3D fingerprint, parametrized by a shell radius
multiplier r and a maximum number of iterations (or level) L, analogous
to half of the diameter in ECFP. E3FP explicitly encodes stereo-
chemistry. As with ECFP, an E3FP fingerprint is by default a bitvector,
where a specific bit indicates the presence of a 3D molecular
substructure.
Generating Initial Identifiers. Like ECFP, E3FP generation is an

iterative process and can be terminated at any iteration or upon
convergence. At iteration 0, E3FP generation begins by determining
initial identifiers for each atom based on seven atomic properties,
identical to the invariants described in35 the number of heavy atom
immediate neighbors, the valence minus the number of neighboring
hydrogens, the atomic number, the atomic mass, the atomic charge, the
number of bound hydrogens, and whether the atom is in a ring. For each
atom, the array of these values are hashed into a 32-bit integer, the atom
identifier at iteration 0. While the hashing function is a matter of choice,
so long as it is uniform and random, this implementation used
MurmurHash3.95

Generating Atom Identifiers at Each Iteration. At each iteration
i where i > 0, we considered each atom independently. Given a center
atom, the set of all atoms within a spherical shell of radius i · r centered
on the atom defines its immediate neighborhood, where the parameter r
is the shell radius multiplier (Figure 1A). We initialize an array of integer
tuples with a number pair consisting of the iteration number i and the
identifier of the central atom from the previous iteration.
For each noncentral atom within the shell, we added to the array an

integer 2-tuple consisting of a connectivity identifier and the atom’s
identifier from the previous iteration. The connectivity identifiers were
enumerated as an expanded form of those used for ECFP: the bond
order for bond orders of 1−3, 4 for aromatic bonds, and 0 for neighbors
not bound to the central atom. To avoid dependence on the order in
which atom tuples were added to the array, we sorted the positions of all
but the first tuple in ascending order. The 3-tuples were then formed
through the addition of a stereochemical identifier, followed by
resorting. This process is described in detail below.
We then flatten the completed array into a one-dimensional integer

array. We hash this 1D array into a single new 32-bit identifier for the
atom and add it to an identifier list for the iteration after optional filtering
described below.
Adding Stereochemical Identifiers. We generated stereo-

chemical identifiers by defining unique axes from the sorted integer 2-
tuples from the previous step combined with spatial information. First,
we determined the vectors from the center atom to each atomwithin the
shell. Then, we selected the first unique atom by atom identifier from the
previous iteration, if possible, and set the vector from the central atom to
it as the y-axis. Where this is not possible, we set the y-axis to the average
unit vector of all neighbors. Using the angles between each unit vector
and the y-axis, the atom closest to 90° from the y-axis with a unique atom
identifier from the previous iteration defines the vector of the x-axis
(Figure 1A).
We then assigned integer stereochemical identifiers s. Atoms in the y

> 0 and y < 0 hemispheres have positive and negative identifiers,
respectively. s =±1 was assigned to atoms whose unit vectors fall within
5° of the y-axis. We divided the remaining surface of the unit sphere into
eight octants, four per hemisphere. The x-axis falls in the middle of the s
= ±2 octants, and identifiers ±3−5 denote remaining octants radially

around the y-axis (Figure 1A). If unique y- and x-axes assignment fails, all
stereochemical identifiers are set to 0.

Combining the connectivity indicator and atom identifier with the
stereochemical identifier forms a 3-tuple for each atom, which, when
hashed, produces an atom identifier dependent orientation of atoms
within the shell.

Removing Duplicate Substructures. Each shell has a correspond-
ing substructure defined as the set of atoms whose information is
contained within the atoms in a shell. It includes all atoms within the
shell on the current iteration as well as the atoms within their
substructures in the previous iteration. Two shells have the same
substructure when these atom sets are identical, even when the shell
atoms are not. As duplicate substructures provide little new information,
we filtered them by only adding the identifiers to that iteration’s list that
correspond to new substructures or, if two new identifiers correspond to
the same substructure, the lowest identifier.

Representing the Fingerprint. After E3FP runs for a specified
number of iterations, the result is an array of 32-bit identifiers. We
interpreted these as the only “on” bits in a 232 length sparse bitvector,
and they correspond to 3D substructures. As with ECFP, we “folded”
this bitvector to a much smaller length such as 1024 by successively
splitting it in half and conducting bitwise OR operations on the halves.
The sparseness of the bitvector results in a relatively low collision rate
upon folding.

Variants of E3FP. For comparisons against ECFP, we disabled
specific features of the E3FP fingerprinting process to determine the
contribution of that feature to E3FP’s overall performance. Unlike
ECFP, full E3FP considers neighboring atoms that are not bound to the
central atom. Disabling this feature produces a similar fingerprint to
ECFP, termed “E2FP-Stereo”, because it still contains stereochemical
identifiers. Additionally, disabling stereochemical identifiers produces a
very similar fingerprint to default ECFP, which we term “E2FP”.
Conversely, if we disabled only the addition of stereochemical identifiers
while still considering unbound neighbors, we produced the “E3FP-
NoStereo” fingerprint.

Fingerprint Set Comparison with SEA. The similarity ensemble
approach (SEA) is a method for searching one set of bitvector
fingerprints against another set.4 SEA outputs the maximum Tanimoto
coefficient (TC) between any two fingerprint sets and a p-value
indicating overall similarity between the sets. SEA first computes all
pairwise TCs between the two fingerprint sets. The sum of all TCs above
a preset pairwise TC threshold T defines a raw score. For a given
fingerprint, SEA calculates a background distribution of raw scores
empirically.4 This yields an observed z-score distribution, which at
suitable values of T follows an extreme value distribution (EVD). For
values ofT ranging from 0 to 1, comparing goodness of fit (chi-square) to
an EVD vs a normal distribution determines an optimal range of T,
where the empirical z-score distribution favors an EVD over a normal
distribution. In this EVD regime we may convert a z-score to a p-value for
any given set−set comparison.

k-Fold Cross-Validation with SEA. We performed k-fold cross-
validation on a target basis by dividing the ligands of at least 10 μM
affinity to each target into k sets per target. For a given fold, k-1 ligand
sets and their target labels together formed the training data. The
remaining ligand sets and their target labels formed the test data set.
Because of the high number of negative examples in the test set, this set
was reduced by ∼25% by removing all negative target−molecule pairs
that were not positive to any target in the test set. Conformers of the
same ligand did not span the train vs test set divide for a target. For each
fold, conformer fingerprint sets for molecules specific to the test set were
searched against the union of all training conformer fingerprints for that
target, yielding amolecule-to-target SEA p-value. From the−log p-values
for all test-molecule-to-potential-target tuples, we constructed a receiver
operatoring characteristic (ROC) curve for each target, and calculated
its area under the curve (AUC). We likewise calculated the AUC for the
precision-recall curve (PRC) at each target. For a given fold, we
constructed an ROC curve and a PRC curve using the−log p-values and
true hit/false hit labels for all individual target test sets, which we then
used to compute a fold AUROC and AUPRC. We then computed an
average AUROC and AUPRC across all k folds. The objective function



AUCSUM consisted of the sum of the average AUROC and AUPRC. For
some analyses, we additionally computed the enrichment curve (EC),
also known as cumulative recall curve, which reports the fraction of
actives recovered (sensitivity) as a function of percent of database
screened.96

Optimizing Parameters with Spearmint. E3FP fingerprints have
the following tunable parameters: stereochemical mode (on/off),
nonbound atoms excluded, shell radius multiplier, iteration number,
and folding level. Additional tunable parameters for the process of
conformer generation itself are the minimum RMSD between
conformers, the maximum energy difference between conformers, and
how many of the first conformers to use for searching. This parameter
space forms an eight-dimensional hypercube. Of the eight dimensions
possible, we employed the Bayesian optimization program Spearmint48

to explore four: shell radius multiplier, iteration number, number of first
conformers, and two combinations of values for the RMSD cutoff and
maximum energy difference between conformers. We evaluated the
parameter sets by an objective function summing ROC and PRC AUCs
(AUCSUM), and Spearmint proposed future parameter combinations.
The objective function evaluated k-fold cross-validation with the
similarity ensemble approach (SEA) as described in the following
section.
For the first stage, the data set consisted of 10000 ligands randomly

chosen from ChEMBL17, the subset of targets that bound to at least 50
of these ligands at 10 μM or better, and the objective function used was
the AUPRC. Spearmint explored values of the shell radius multiplier
between 0.1 and 4.0 Å, the number of lowest energy conformers ranging
from 1 to all, and maximum iteration number of 5. Additionally, two
independent conformer libraries were explored: rms0.5 and rms1_e20
(see above). Consequently, 343 unique parameter sets were explored.
We found that the best parameter sets used less than 35 of the lowest
energy conformers, a shell radius multiplier between 1.3 and 2.8 Å, and
2−5 iterations. The conformer library used did not have an apparent
effect on performance (data not shown).
For the second stage, we ran two independent Spearmint trajectories

with a larger data set consisting of 100000 ligands randomly chosen from
ChEMBL20, the subset of targets that bound to at least 50 of these
ligands at 10 μM or better, and the AUCSUM objective function. We
employed the CXCALC program94 to determine the two dominant
protonation states for each molecule at physiological pH, and then
conformers were generated using an RMSD cutoff of 0.5. The number of
fingerprinting iterations used in both trajectories was optimized from 2
to 5, but the two trajectories explored different subsets of the remaining
optimal parameter ranges identified during the first stage: the first
explored shell radius multipliers between 1.3 and 2.8 Å with number of
conformers bounded at 35, while the second explored shell radius
multipliers between 1.7 and 2.8 Å with number of conformers bounded
at 20. Spearmint tested 100 parameter combinations in each trajectory.
During optimization, we observed that the simple heuristic used by

SEA to automatically select the TC threshold for significance resulted in
folds with high TC cutoffs having very high AUPRCs but low AUROCs
due to low recall, while folds with lowTC cutoffs had lower AUPRCs but
very high AUROCs (SI, Figure S3). Several folds in the latter region
outperformed ECFP4 in both AUPRC and AUROC (SI, Figure S3c).
We therefore selected the best parameter set as that which produced the
highest AUCSUM while simultaneously outperforming ECFP4 in both
metrics. For all future comparisons, the TC cutoff that produced the best
fold results was applied to all folds during cross-validation.
k-Fold Cross-Validation with Other Classifiers. We performed

k-fold cross-validation using alternative classifiers in the same manner as
for SEA, with the following differences. We trained individual classifiers
on a target by target basis. In the training and test data, we naively treated
each conformer fingerprint as a distinct molecular fingerprint, such that
the conformer fingerprints did not form a coherent set. After evaluating
the target classifier on each fingerprint for a molecule, we set the
molecule score to be the maximum score of all of its conformer
fingerprints.
For the naiv̈e Bayes (NB), random forest (RF), and support vector

machine with a linear kernel (LinSVM) classifiers, we used Scikit-learn
version 0.18.1 (https://github.com/scikit-learn/scikit-learn/tree/0.18.

1). We used default initialization parameters, except where otherwise
specified. For the RF classifier, we used 100 trees with a maximum depth
of 25. We weighted classes (positive and negative target/molecule pairs)
to account for class imbalance. For LinSVM kernel, we applied an l1
norm penalty and balanced class weights as for RF.

We implemented artificial neural network (NN) classifiers with
nolearn version 0.6.0 (https://github.com/dnouri/nolearn/tree/0.6.0).
We trained networks independently for each target using 1024-bit input
representations from either E3FP or ECFP4. The NN architecture
comprised three layers: an input layer, a single hidden layer with 512
nodes, and an output layer. We used dropout97 as a regularizer on the
input and hidden layers at rates of 10% and 25%, respectively. The
hidden layer activation function was Leaky Rectified Linear98 with
default leakiness of 0.01. The prediction layer used softmax non-
linearities. We trained networks trained for 1000 epochs with early
stopping to avoid overfitting by monitoring the previous 75 epochs for
lack of change in the loss function. The final softmax layer contained two
tasks (classes), one corresponding to binding and the other
corresponding to the absence of binding. This softmax layer produced
a vector corresponding to the probability of a given molecule being a
binder or nonbinder given the neural network model. We calculated
training error using a categorical cross entropy loss.

Enriching for Actives Using PDB Ligands. To assess the impact
of crystal conformers on E3FP’s performance, we used target/ligand
pairs annotated in scPDB v. 2013.99We filtered it to those 24 targets that
could be mapped to ChEMBL20 and had at least 25 ligands in crystal
conformations. The set of 1446 unique PDB ligands was the union of all
ligands annotated to at least one of these targets. The query data set
consisted of 32639 unique ligands from ChEMBL20 annotated to bind
to one of the PDB targets, after removing all compounds found in the
PDB data set. For ChEMBL20 ligands, we generated ECFP4
fingerprints and E3FP fingerprints using the conformer generation
protocol described above (E3FP-RDKit). For PDB compounds, we
generated the same fingerprints as well as an additional set of E3FP
fingerprints using the crystal conformer (E3FP-PDB). Using each of the
above representations, we queried ChEMBL20 compounds against
PDB targets in a set-by-set validation using SEA and assessed
performance by ROC, PRC, and EC curves. Additionally, we performed
a separate 5-fold cross-validation on PDB-only ligands using SEA, where
all train and test ligands were derived solely from the PDB set.

Comparing E3FP to Other 3D Methods. To compare perform-
ance of E3FP with other 3D methods, we computed pairwise ROCS
shape and combo (shape + color) TCs between all molecule pairs in our
ChEMBL20 data set using FastROCS (OpenEye Toolkits v2017.Jan)
on GeForce 1080 GTX Founders Edition GPUs. We then performed
enrichment analysis as described in “Enriching for Actives using PDB
Ligands” on ChEMBL20 molecules by 5-fold cross-validation,
evaluating comparative performance of ECFP4, E3FP, and ROCS by
AUEC. To compare pairwise similarity scores from each method against
RMSD, we computed ECFP4TC, E3FPMax TC, ROCS-shape TC, and
ROCS-combo TC for all pairs of 10000 random molecules. RMSDs
were computed on the MCS between the two conformers, as
determined by RDKit. Likewise, we computed each of the above 3D
similarities on 10000 random same-molecule conformer pairs, in
addition to the TFD pharmacophoric comparison implemented in
RDKit.

Predicting Novel Compound-Target Binding Pairs. To identify
novel compound-target pairs predicted by E3FP but not by ECFP4, we
built a subset of 309 proteins/complex mammalian targets (106 human)
for which the National Institute of Mental Health Psychoactive Drug
Screening Program (NIMH PDSP)66 had established binding assays.
We selected all compounds listed as in-stock in ZINC15,32 downloaded
on 2015-09-24. We fingerprinted all ligands in ChEMBL2025 with
affinity <10 μM to the PDSP targets using the RDKit Morgan algorithm
(an ECFP implementation) as well as by a preliminary version of E3FP
(SI, Table S5).We likewise fingerprinted the ZINC15 compounds using
both ECFP4 and E3FP. We queried the search compounds using SEA
against a discrete sets of ligands from <10 nM affinity (strong binders) to
<10 μM affinity (weak binders) to each target, in log-order bins, using
both ECFP4 and E3FP independently. We filtered the resulting
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predictions down to those with a strong SEA-E3FP p-value (<1× 10−25)
and ≤10 nM affinity to the target, where the SEA-ECFP p-value
exceeded 0.1 (i.e., there was no significant SEA-ECFP prediction) in the
same log-order affinity bin. From this set of compound−target pairs, we
manually selected eight for experimental testing.
Experimental Assays of Compound-Target Binding Pairs. All

active compounds were reported ≥95% pure by their vendor (SI, Table
S6). Alphaprodine’s purity was verified by NMR (SI, Figure S17) and
LC-MS (SI, Figure S18). Anpirtoline was confirmed >99% pure by
HPLC (SI, Table S6). All tested compounds were checked for
promiscuous binding by binding assays against a large family of related
targets (SI, Table S7).
Radioligand binding and functional assays were performed as

previously described.74,100,101 Detailed experimental protocols and
curve fitting procedures are available on the NIMH PDSP Web site at:
h t t p s : / / p d s p d b . u n c . e d u / p d s p W e b / c o n t e n t /
PDSP%20Protocols%20II%202013-03-28.pdf. Ligand efficiencies were
calculated using the expression

= − ≈ −RT K N K NLE (ln )/ 1.373log /i heavy 10 i heavy

where R is the ideal gas constant, T is the experimental temperature in
Kelvin, and Nheavy is the number of heavy atoms in the molecule.

102 The
ligand efficiency is expressed in units of kcal/mol/heavy atom.
Source Code. Code for generating E3FP fingerprints is available at

https://github.com/keiserlab/e3fp/tree/1.1 under the GNU Lesser
General Public License version 3.0 (LGPLv3) license. All code
necessary to reproduce this work is available at https://github.com/
keiserlab/e3fp-paper/tree/1.1 under the GNU LGPLv3 license.
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