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ABSTRACT: To investigate large library docking’s ability to
find molecules with joint activity against on-targets and
selectivity versus antitargets, the dopamine D2 and serotonin
5-HT2A receptors were targeted, seeking selectivity against the
histamine H1 receptor. In a second campaign, κ-opioid
receptor ligands were sought with selectivity versus the μ-
opioid receptor. While hit rates ranged from 40% to 63%
against the on-targets, they were just as good against the
antitargets, even though the molecules were selected for their
putative lack of binding to the off-targets. Affinities, too, were
often as good or better for the off-targets. Even though it was
occasionally possible to find selective molecules, such as a
mid-nanomolar D2/5-HT2A ligand with 21-fold selectivity versus the H1 receptor, this was the exception. Whereas false-
negatives are tolerable in docking screens against on-targets, they are intolerable against antitargets; addressing this problem
may demand new strategies in the field.

■ INTRODUCTION

The efficacy of many drugs and reagents depends on activities
on multiple targets,1−7 and this is particularly true of molecules
active against G protein-coupled receptors (GPCRs) for
psychiatric diseases. Conversely, the unwanted activity of
drugs on related GPCR antitargets can cause adverse reactions.
Accordingly, there has been much interest in the design of
drugs with focused polypharmacology and specificity.8−10 With
the surge of GPCR structures determined to atomic
resolution11−16 and their exploitation for ligand discovery,17−24

there is an opportunity to adopt a structure-based approach for
focused polypharmacology and antitarget selectivity. Using
structural models of the on- and off-targets, libraries may be
docked for those that complement the on-targets well and fit
the off-targets poorly.
Structure-based screens for focused polypharmacology face

at least three technical challenges in addition to the common
liabilities of docking.25 First, one must select molecules that
complement the sites of two or more targets; many molecules
optimal for one target will fit subsequent targets poorly,
reducing ligand possibilities. Second, one must often use
homology models to address disease-relevant polypharmacol-
ogy,26 as the structures of many targets remain experimentally
undetermined. Third, while false-negatives are typically
acceptable in a docking screen against a single target, they
are much less tolerable when seeking molecules that are

selective against an antitarget. The use of one or a small
number of receptor conformations, which is common when
only looking for true positives, may be a dubious proposition
when selecting against a flexible receptor.
We thought to explore these questions in two docking

campaigns: one for molecules that antagonized both the
serotonin 5-HT2A (HTR2A) and the dopamine D2 (DRD2)
receptors and, at the same time, that did not antagonize the
histamine H1 (HRH1) receptor antitarget, and a second
campaign for molecules that bound to the κ-opioid receptor
(KOR) without affinity for the μ-opioid receptor (MOR).
Coantagonists of HTR2A and DRD2 would speak to the first
two questions, that of finding molecules able to modulate two
different targets at the same time and of using homology
models, as the structures of these two receptors had not been
determined at the time of the study (we note that we do use
crystal structures for MOR, KOR, and the antitarget HRH1).
Nevertheless, the two structures were readily modeled based
on the DRD3 crystal structure, which was available and which
shares 78% and 40% transmembrane sequence identity to
DRD2 and HTR2A, respectively. This is considered well
within the range of sequence identity to serve as a template for
a GPCR docking screen.24,26,27 The insistence on not
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antagonizing HRH1 speaks to the third challenge, that of false-
negatives against an antitarget. The triplet of receptors is
therapeutically relevant, as coantagonism of DRD2 and
HRT2A is crucial to the efficacy of atypical antipsychotics
like clozapine, while antagonism of HRH1 by many
antipsychotics and antidepressants, such as clozapine and
olanzapine, is thought to lead to the weight gain typical of
these molecules.28,29 Indeed, clozapine has a higher affinity for
the HRH1 antitarget than for the therapeutic targets HTR2A
and DRD2 (1.2 nM versus 5.4 nM and 256 nM,
respectively),28 while even a much newer and selective drug
like ziprasidone has affinities 0.3 nM for HTR2A, 9.7 nM for
DRD2, and 43 nM for HRH1.28,30

The second docking campaign, against the two opioid
targets, allows us to consider simple selectivity, with only one
on- and one off-target and without resorting to homology
models, as crystal structures in the inactive state were available
for both KOR and MOR. Here, too, selectivity is therapeuti-
cally relevant: KOR-selective antagonists have been mooted as
potential antidepressants without the unwanted effects of
MOR antagonists like naloxone, while peripheral KOR-
selective agonists could confer analgesia without activating
the reward pathways associated with MOR.31,32

In both campaigns, the docking screens found new
chemotypes with the desired mechanism, either joint
antagonism of DRD2/HTR2A or modulation of KOR, with
high hit rates, and in both campaigns, compounds selective
against the antitargets were found. However, even in the
simpler case of KOR vs MOR, most of the new molecules were
unselective against the antitarget, and indeed, hit rates against
an antitarget, either HRH1 or MOR, were as high or higher as
for the on-targets. Efforts to overcome this problem through
flexible receptor docking, again tested prospectively with new
ligands, will be considered, as will the challenge of docking
against promiscuous antitargets.

■ RESULTS

Receptor Modeling and Retrospective Docking.
Whereas the structures of many pharmacological target-pairs

are only acessible via homology modeling, not all may be
modeled with sufficient reliability to support library docking
screens. To ensure that homology models of the DRD2 and
the HTR2A could do so, we investigated retrospective
enrichment of known ligands against decoy molecules by the
models.21,24,27 We began with homology models of the two
targets based on the DRD3 template, the most homologous
template available to us at the time (PDB code 3PBL),33 using
MODELLER v9.8 to generate 400 models for each
receptor.34,35 To investigate the models’ prioritization of
known ligands, we selected a set of 68 and 85 diverse
HTR2A and DRD2 ligands, respectively, from the ChEMBL10
database.36 Only ligands with lead-like properties37 (molecular
weights between 250 and 350, log P less than 3.5, and 7 or less
rotatable bonds) and with affinity better than 100 nM were
chosen. Enrichment was measured against over 2500 property-
matched decoys21 and experimentally confirmed nonbinders
from ChEMBL10 for all homology models of both receptors.
To measure enrichment, we used the metric of adjusted
log AUC, which compares the prioritization of known ligands
over generated decoy molecules versus what would be
expected at random (an adjusted log AUC of 0 represents
random, with a maximum of 85.5). The log-weighted
enrichment, where enrichment, for instance, in the top 0.1−
1% of the ranked library counts as much as enrichment in the
top 1−10%, emphasizes the performance of the highest-
ranking molecules. One homology model was chosen for
DRD2 and one for HTR2A, with log AUC values of 15 and 11,
respectively, of the known ligands to the on-targets (Figure
S1). Fortunately, the two on-target models also favorably
enriched the other on-target’s ligands. The DRD2 model
showed an adjusted log AUC of 5.7 for HTR2A ligands, and
similarly, the HTR2A model showed an adjusted log AUC of
12.3 for DRD2 ligands.
We note that recently, after the completion of this study, a

crystal structure of the DRD2 bound to risperidone
appeared.38 The docking-prioritized DRD2 homology model
superposes to the DRD2 crystal structure (PDB code 6CM4)
with an all-atom binding site root-mean-square deviation
(rmsd) of 0.9 Å (Figure 1A, superposition based on all-

Figure 1. Docking-prioritized homology models superpose well on subsequently determined crystal structures (0.9−1 Å all atom binding site
rmsd). (A) Binding site of the DRD2-risperidone cocrystal structure (PDB code 6MC4, green) superposition based on all receptor atom overlay on
the docking-prioritized homology model used in the docking screens (magenta). (B) Binding site of HTR2B ergotamine cocrystal structure (PDB
code 4IB4, orange) superposition based on all receptor atoms overlaid on the docking-prioritized homology model used in the docking screen
(cyan).
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receptor atom overlay). The model has a remarkably similar
binding site shape in the upper portion of the orthosteric site,

though it does not predict the risperidone-induced opening of
the binding pocket in the transmembrane core. Similarly,

Table 1. Hit Compounds at HTR2A, DRD2, and HRH1 with Their Respective Docking Ranks, Binding Constants, and
Tanimoto Similarity Coefficients (Tc)

a

aFootnotes: *Weak binding detected at high concentration but Ki could not be calculated. aNo agonist activity measured in calcium flux assay at
concentrations up to 100 μM.
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superposition of the docking-prioritized HTR2A homology
model to the HTR2B crystal structure (PDB code 4IB439)
gives a binding site all-atom rmsd of 1.0 Å, again with good
agreement (Figure 1B). Reassuringly, the new ligands
discovered from docking against the DRD2 homology model
(see below) also had high docking scores against the DRD2
crystal structure, with scores ranging from −67 to −37 kcal/
mol, and docked with reasonable poses.
To minimize the likelihood of finding docking hits for the

antitarget, HRH1, we docked to the DRD2 and HTR2A
homology models an additional set of 50 diverse HRH1
ligands from ChEMBL10 against a corresponding set of over
1600 property-matched decoys. Each model showed little or
no enrichment of HRH1 ligands, with an adjusted log AUC of
−2.44 of known HRH1 ligands by the DRD2 model and 0.47
of known HRH1 ligands by the HT2RA model. The antitarget
HRH1 crystal structure (PDB code 3RZE40) had a high
retrospective enrichment, with an adjusted log AUC of 41 for
its 50 ligands over property-matched decoys and annotated
nonbinders (Figure S2). The utility of this structure has
previously been shown in prospective virtual screening, giving a
73% hit rate in a screen of novel, chemically diverse
fragments.20

Prospective Docking for New Ligands Binding to
DRD2/HTR2A but Not HRH1. Satisfied with the high
retrospective enrichments of both the on-target and antitarget,

we launched a docking campaign with the 3 million lead-like
subset of ZINC (http://zinc15.docking.org)41,42 for molecules
that complemented HTR2A and DRD2 well and that fit
HRH1 poorly, using DOCK3.6.43 The 5862 molecules that
ranked in the top 1% to both HTR2A and DRD2 were selected
for detailed evaluation (insisting on this union of high ranking
molecules dropped the number of candidates by 80% over
either target considered alone). Any of these DRD2/HTR2A
high-ranked molecules with an ECFP4-based Tanimoto
coefficient (Tc) of 0.5 or greater to any of the top 50 000
ranked molecules docked to HRH1 were discarded, increasing
the likelihood that we would find molecules that do not
complement HRH1. We further insisted that no DRD2/
HTR2A high-ranking molecule had Tc > 0.35 to any known
HRH1 binder in the ChEMBL10 database, further increasing
dissimilarity of the docked hit list to known HRH1 ligands.
This left 354 docking hits, from which we eliminated molecules
with ECFP4-based Tc values of >0.7 to known DRD2 or
HT2RA ligands in ChEMBL10. With ECFP4 fingerprints,
molecules with this level of similarity are either identical or
very close analogs. Ultimately 28 top-ranking molecules were
selected by visual inspection for experimental testing.
Molecules were prioritized based on the formation of the
key salt-bridge to D3.32 (Ballesteros−Weinstein numbering44)
in the docked pose to both HTR2A and DRD2, a
complementary fit to the HTR2A and DRD2 binding sites

Figure 2. Docking can predict dual-binders for on-targets but cannot reliably predict nonbinders for an antitarget. (A−C) Cut-away view of the
orthosteric binding sites for HTR2A model with LSD bound; DRD2 model with eticlopride bound; HRH1 cocrystal structure with doxepin. (D−
F) Docked pose of the most selective compound, compound 21, to HTR2A; DRD2; HRH1. Clashes with the HRH1 crystal structure are shown as
red circles. (H−J) Docked pose of the least selective compound, compound 6, docked to HTR2A; DRD2; HRH1. Clashes with the HRH1 crystal
structure are shown as red circles.
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and a poor fit to the HRH1 binding site, pragmatic availability
from the vendor, and diversity among the candidate ligands
(Table S1). While a basic center was not an a priori filtering
criterion, one was present in all 354 top scoring molecules.
Five New Ligands with Dual DRD2/HTR2A Binding

and with HRH1 Specificity. From the initial 28 molecules,
17 displaced [3H]ketanserin from HTR2A (60% hit rate, Table
S1), 10 displaced [3H]N-methylspiperone from DRD2 (35%
hit rate, Table S1), and 8 molecules bound to both (29%,
Table 1, compounds 5, 9, 12, 14, 19, 21, 23, 25), all with Ki
values of <10 μM. None of these were previously annotated in
the public databases to bind to either target, and all had Tc
values of <0.65 (ECFP4 fingerprints) to any known ligand for
these receptors when compared to the most recent list of
ChEMBL annotated ligands (September 2017) and so likely
represent new chemotypes (Table 1). The high hit rate and
novelty are balanced by the relatively weak affinities, compared
to hits previously identified in docking campaigns against
aminergic GPCRs; only three molecules had mid-nanomolar Ki
values against HTR2A, and only compound 21 had mid-
nanomolar Ki values against both targets. Conversely, five of
the eight dual ligands showed substantial specificity vs HRH1
when tested for binding by displacement of radiolabeled
[3H]pyrilamine: compounds 5, 14, 19, 21, and 25. Four of
these (5, 14, 19, and 25) had HRH1 Ki values worse than 100
μM and corresponding selectivity values of better than 19-fold
to better than 130-fold for HTR2A vs HRH1 and from 3.4-fold
to 31-fold for DRD2 vs HRH1. However, these molecules had
only modest affinity for the on-targets, and they did show signs
of weak affinity for HRH1. The molecule with the best dual
affinity for HTR2A/DRD2 and with appreciable selectivity
against HRH1 was 21, with binding affinities of 55 nM, 334
nM, and 1144 nM for HTR2A, DRD2, and HRH1,
respectively (Table 1, docked poses shown in Figure 2 and

binding curves shown in Figure 3, top row). This represents a
21- and 3-fold selectivity, respectively, for the therapeutic
targets over the antitarget and is comparable to that of the
most selective antipsychotic currently on the market,
ziprasidone (discussed above). Although on-target affinities
are about 100-fold worse than those of ziprasidone, they are
within the range of known antipsychotics (Psychoactive Drug
Screening Program (PDSP) Ki database

8).
Prospective Docking of Hit Analogs Fails To Improve

Selectivity. To improve the moderate affinities and
selectivities of the initial hits, we investigated commercially
available analogs of compounds 5, 19, and 21. On the basis of
docking fits to the receptors, we selected seven analogs of
compound 5 (5a−g in Table 2), three analogs of compound
19 (19a−c in Table 2), and five analogs of compound 21 for
experimental testing (21a−e in Table 2), using the same target
and antitarget criteria as in our initial docking screen. Despite
the strict filtering and improved starting molecules, analogs
either improved HRH1 affinity or reduced HTR2A and/or
DRD2 affinity. No analog improved selectivity over the
antitarget.

A Problematic False Negative Rate against HRH1.
While docking had a substantial true positive rate for dual
HTR2A/DRD2 ligands, the false-negative rate against HRH1
was disappointingly high, with 16/28 molecules (57%)
displacing [3H]pyrilamine. Not only was this hit rate for the
antitarget similar to that for HTR2A and higher than that for
DRD2, several of the HRH1 hits bound with high affinity. For
instance, compound 6, in spite of a relatively poor rank of
326 040 out of 3 million docked, had a Ki of 0.8 nM (Table 1),
among the tightest binding compounds found in a GPCR
structure-based screen45,46 (docked pose shown in Figure 2
and binding curves in Figure 3, bottom row). Worse still,
compound 6 had no measurable affinity for the on-targets

Figure 3. Radioligand displacement binding affinities for HTR2A, DRD2, and HRH1. Reference ligands are [3H]ketanserin, [3H]N-
methylspiperone, and [3H]pyrilamine, respectively. (Top) Specific binding of the 20-fold selective docking hit, compound 21. (Bottom)
Compound 6, a molecule that was both a docking false-positive (it does not bind to the on-targets HTR2A and DRD2) and a false-negative (it does
bind to the off-target HRH1 with subnanomolar affinity).
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Table 2. Analogs of Hit Compounds 5, 19, and 21 with Their Respective HTR2A, DRD2, and HRH1 Docking Ranks, Binding
Constants, and Selectivity Ratiosa
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HTR2A/DRD2, in the teeth of much better ranks. Indeed,
median affinities were higher for the discovered HRH1
antitarget ligands, despite the emphasis on low docking rank
and poor predicted HRH1 binding site fit (median Ki = 3430
nM, 4276 nM, and 1042 nM, with median ranks of 5784, 2097,
and 1 030 000, for DRD2, HTR2A, and HRH1, respectively).
Modeling HRH1 Receptor Flexibility To Reduce

Docking False Negatives. Inspection of the HRH1 false-
negatives suggested that receptor flexibility might play a role in
the unwanted activity of these molecules. For instance,
compound 6, a subnanomolar HRH1 binder, ranks poorly in
the HRH1 docking screen (though still in the top 10%, rank
326 040). The van der Waals score of −5.8 DOCK score units
(putatively kcal/mol) reflects poor steric fit; top-ranked
molecules in this receptor typically score over −30 DOCK
units. The molecule docks with the key salt-bridge to D3.32

intact but clashes with the backbone carbonyl of D178 on the
extracellular loop; this clash may likely be relieved by modest
receptor relaxation (Figure 2J).
To test whether receptor flexibility contributed to the high

false-negative rate, we first tested induced fit docking (IFD) to
model local protein rearrangement upon ligand binding.47

Flexibility modeled through IFD rescued 5 out of the 16 false-
negatives, with high scores and well docked poses. However, a
high scoring pose was not found for the remaining 9 HRH1
binders, representing 70% of the false-negatives, including
compound 6, suggesting that the IFD protocol was insufficient
to fully model receptor flexibility. We also worried that the IFD
procedure would be too expensive computationally to be
practical for high-throughput de novo screening.
Instead, we turned to elastic normal modes to model the

conformational changes that might occur upon ligand binding
in a more computationally efficient way. We worried that many
annotated HRH1 ligands may be too bulky to dock into the
HRH1 crystal structure, with its small and compact orthosteric
site (Figure 2C), indeed one well-suited to fragment-
discovery.20 We used the program 3K-ENM48 to pregenerate
3700 expanded orthosteric site models. We selected seven
large, topologically diverse ligands from the annotated HRH1
ligands in ChEMBL10. While five of these docked into the
crystallographic orthosteric site with sterics, two did not.

Docking these seven large ligands into the 3700 ENM models,
we selected the seven models that best ranked them. Adding
the seven enlarged-site models to the crystal structure docking
did not affect enrichment of known ligands (50 diverse
molecules from ChEMBL over a background of property-
matched decoys and experimental nonbinders, log AUC = 35
for the crystal structure only, log AUC = 32 for the combined
docking, where for each molecule the docking score was
selected as the highest score in the crystal structure and model
docking). While the crystal structure alone did not enrich the
false-negatives in our prospective screen, the combined
docking did (log AUC of −1.7 vs 14, respectively, over the
same background of property-matched decoys and exper-
imental nonbinders).
Ultimately, we found that using all seven expanded models

was not necessary; a single expanded-site model sufficed to
enrich what were formerly the docking false-negatives.
Accordingly, we selected the model that prioritized the ligand
with the largest solvent accessible surface area (Figure S5).
This model was reasonable on visual inspection, and known
ligands docked with believable poses. Docking to this model
combined with the crystal structure enriched known binders
(log AUC = 31 for the 50 diverse ChEMBL ligands over a
background of property-matched decoys and experimental
nonbinders). Importantly, this model was not selected using
any knowledge of those specific false-negatives but rather on
the ability to recognize large, already annotated HRH1 ligands.
It was however able to rescue many of the false-negatives from
our previous docking screen (log AUC = 14 over the same
background of property-matched decoys and experimental
nonbinders).

Prospective Screening with an Expanded HRH1
Model. Prospective docking screens were repeated against
the HTR2A, DRD2, the new model of the HRH1, and its
crystal structure, again with the ZINC lead-like database. To
further increase the chances of finding specific molecules, the
top ranked molecules were filtered more stringently. Again,
molecules that ranked in the top 1% docked to both HTR2A
and DRD2 were selected and molecules having a Tc > 0.5 to
the top 50 000 HRH1 docked models were excluded. All
DRD2/HTR2A docking hits with Tc > 0.8 to the top 500 000

Table 2. continued

aFootnotes: *Weak binding detected at high concentration but Ki could not be calculated. aNo agonist activity measured in calcium flux assay at
concentrations up to 100 μM.
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docking-ranked molecules to HRH1 were also excluded. In this
way, we ensured that all molecules we selected and their close
analogs were even more poorly ranked against HRH1 (below
500 000 in the crystal structure and expanded site). Twenty
new molecules, none previously known to bind to the HTR2A
or the DRD2, were selected for testing against the three
receptors (Table S1, second screening round, compounds 29−
48).
Testing the New Molecules for Binding to DRD2/

HTR2A and Selectivity against HRH1. Despite the higher
stringency of this second screen, the on-target hit rates
remained high, with 13/20 and 9/20 (65% and 45%)
molecules binding to HTR2A and DRD2, respectively, and 6
(30%) binding to both with Kd < 10 μM (Table 1, compounds
31, 35, 38, 39, 42, 47). Unfortunately, the false-negative rate
actually rose, with 15/20 (75%) of the molecules binding to
HRH1 (Table 1). Affinities were comparable to the first
screen, with median affinities of 1970 nM, 6442 nM, and 1271
nM and median ranking of 14 466, 15 595, and 726 846 to the
HTR2A, DRD2, and HRH1, respectively. HRH1 hits again
generally had higher affinity, with five submicromolar
compounds (compared to three for HTR2A and none for
DRD2).
Impact of Chemical Similarity Filters and Scoring

Functions. In the initial docking screen, we filtered molecules
by dissimilarity to any known HRH1 binder, insisting on Tc <
0.35 using radial ECFP4 fingerprints. To investigate whether a

different fingerprint could have better prefiltered these HRH1
false-negatives, we used MACCS structural keys49 and
dendritic and linear fingerprints50 to recalculate the similarity
of the docking hits to known HRH1 ligands in ChEMBL.
While MACCS similarity was high for all the false-negatives,
suggesting that it may have been able to remove the HRH1
false-negatives, it was also high for all the true negatives,
suggesting that this fingerprint had low discriminatory power
overall. Meanwhile, similarity to the false-negatives was low for
both the dendritic and linear fingerprints, with a similar
distribution of Tc similarities for true and false-negatives for all
three fingerprints (Figure S3). At a perhaps more fundamental
level, we would note that while similarity filtering is certainly
useful and pragmatic, it does not address the problem of false-
negatives from structure-based docking.
Arguably, this could be addressed by improved scoring

functions. Accordingly, we docked all experimentally tested
compounds with GLIDE and rescored with molecular
mechanics/generalized Born surface area (MM-GBSA)
(Schrodinger, Inc.51). While a tight correlation between
MM-GBSA scores and experimental binding affinities is not
expected, this is often a suitable docking and rescoring
protocol to discriminate actives from inactive compounds.52

However, we found no discrimination using the MM-GBSA
scores (Figure S4). In fact, our most potent false-negative,
compound 6 (HRH1 Ki = 0.8 nM), was given a poor MM-
GBSA score of −6 (putative units of kcal/mol) against HRH1

Table 3. Compounds Predicted To Be HRH1-Selective by the Similarity Ensemble Approach (SEA) with Their Respective E
Values, Binding Constants, and Selectivity Ratios
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whereas the relatively selective compound 21 scored −31 kcal/
mol, and compounds that had no detectable HRH1 activity
scored as high as −67 kcal/mol. It is likely that there are
scoring functions that could better discriminate than those we
have investigated here; our own view is that scoring functions
alone cannot fully address the docking “false-negative” problem
on which this study has foundered (see below).
Prospective Chemoinformatic Screening for Selec-

tive Compounds. To deconvolute the influence of 2D
chemical similarity on aminergic selectivity, we screened the
same ZINC lead-like library with the similarity ensemble
approach (SEA), a statistical model that ranks the significance
of chemical similarity of a query molecule to a set of ligands for
a target.53 We insisted on compounds having an expectation
value (E value) cutoff of less than 10−10 to both HTR2A and
DRD2 but one greater than 1 to HRH1. Further, molecules
had to have Tc < 0.4 to any known HRH1 ligand. This filtering
led to seven purchasable molecules that were experimentally
tested for HTR2A, DRD2, and HRH1 affinities (compounds
49−55 in Table 3). While no molecules showed appreciable
affinity for HRH1, only compound 49 showed midmicromolar
affinity for DRD2 and compound 50 for HTR2A. No tested
molecules had the desired selectivity profile.
Docking for Compounds Selective for KOR vs MOR. A

possible problem with the HTR2A/DRD2/HRH1 campaign
was the reliance on homology models for the structures of the
on-targets; a second concern was that HRH1 might be
unusually promiscuous. To partly control for these concerns,
we turned to docking for selective ligands of the κ-opioid
receptor (KOR) over the μ-opioid receptor (MOR). The
structures of both receptors had been determined by
crystallography, and in an earlier study we had been able to
find agonists functionally selective for MOR versus KOR and
versus the δ-opioid and nociception opioid receptors54 (i.e.,
the reverse selectivity). Here again, a set of 60 diverse

antagonists were used to retrospectively measure enrichment
against several thousand property-matched decoys. Unlike
docking to the aminergic receptors, the best adjusted log AUC
achieved was 6.5, reflecting the rich diversity of ligands
annotated to these targets and their large, solvent-exposed
binding sites. While this retrospective adjusted log AUC is
lower than what we have observed with small neurotransmitter
GPCRs, it is similar to that seen in the successful prospective
screen against MOR,54 and so we proceeded. Three million
lead-like molecules from ZINC were docked into the KOR
orthosteric site using DOCK3.6, and the top 1% of the ranked
molecules were more closely examined. We calculated the ratio
of each compound’s rank in the KOR screen to the
compound’s rank in the MOR screen, and the binding poses
of the molecules with the biggest rank ratio were visually
inspected. Molecules were selected on the basis of key salt-
bridges to D3.32 in the KOR binding pose, a complementary fit
to the orthosteric site, and interactions with residues that are
either specific to KOR or exist in a pose-conflicting and
different rotamer in the MOR crystal structure (Glu209 in the
second extracellular loop, Glu2976.58, Tyr3127.35, and
Thr1112.56, Gln1152.60, Tyr3207.43; Figure 4; residue numbering
from KOR), thus making a similar binding pose in MOR
unlikely.

Testing for Binding to KOR and Selectivity against
MOR. Of the 22 molecules tested, nine specifically displaced
radiolabeled [3H]U69593 from KOR with Ki values between
1.8 and 14 μM (41% hit rate; Table 4; Table S2). Here again,
hit rates were high, and while affinities were worse than have
been observed against several small neurotransmitter
GPCRs,10,19,20,27 they were comparable to affinities observed
against other peptide and protein receptors.54,55 As previous
docking screens at the inactive opioid receptor structures had
found agonists,55,54 we tested the active compounds in Gi
functional assays. While most compounds were, in fact, KOR

Figure 4. KOR and MOR binding sites. (A) Orthosteric sites for KOR (left) and MOR (right), with their respective cocrystallized ligand. The
residues shown as sticks were those used to discriminate predicted selective compounds. (B) A selective compound, 2, is shown in the docked pose
to KOR (left) and MOR (right).
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Table 4. Hit Compounds at KOR and MOR with Their Respective Docking Ranks, Binding Constants, and Selectivity Ratios
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antagonists, compounds 106 and 114 were agonists (Table 4).
Of the nine active compounds, two, 103 and 122, had better
than 18-fold specificity for KOR over MOR.
A Problematic False Negative Rate against MOR.

Correspondingly, and like the HTR2A/DRD2 screen, the
selectivity that was a key goal for the KOR vs MOR campaign
was low: seven of nine KOR actives were also active against
MOR, displacing radiolabeled [3H]DAMGO. Indeed, three of
the 22 molecules tested were actually specific to MOR vs KOR
(the opposite of the intended selectivity). Median affinities
were similar for each receptor: 4.7 μM for KOR vs 4.4 μM for
MOR, despite a median docking rank of 6842 to KOR but of
251 804 to MOR, each out of the same 3 million compound
library. Here too, success in finding novel compounds for the
on-target was often belied by the inability to select against the
antitarget.

■ DISCUSSION AND CONCLUSIONS
Ligands with focused polypharmacology have attracted much
recent interest.1,5,7,8,15,56−59 In principle, these are accessible
from docking screens against on- and off-targets. Returning to
the challenges that motivated this study, docking must find
molecules that jointly complement two or more targets,
reducing the number of candidates. For biologically relevant
polypharmacology, the screens must often use homology
models, adding to uncertainty. Lastly, for selectivity, the
docking screens cannot afford the false-negatives tolerated for
on-targets; rather, molecules that might bind to the off-target
must be stringently identified and discarded. Three major
observations emerge from this study. First, docking can find
molecules that modulate a pair of modeled targets with a high
hit rate, with mid-nanomolar (occasionally) to the low
micromolar (more typically) binding affinities. This is despite
the inevitable reduction in chemical space due to the
requirement for joint complementarity. Second, while a
handful of these molecules were, in fact, selective for the on-
targets vs the off-targets, most compounds chosen for their
supposed inability to fit the off-targets in fact bound them well,
sometimes with high affinity. Third, flexible treatment of the
HRH1 antitarget, in an effort to find a receptor conformation

that could identify the false-negatives from the initial screen,
was unsuccessful, as was an effort to exclude the false-negatives
by 2D ligand similarity.
If the discovery of novel GPCR ligands by library docking

has been established by studies in the past dec-
ade,17,19−21,54,55,60 including for modeled structures,24,26,27,45,61

the ability to do so for two targets, much less two modeled
targets, simultaneously, has received less attention. In this
limited sense, the results of this study are encouraging. Even
with the chemotype restrictions implicit fitting to two targets,
hit rates for the on-targets were as high or higher than typical
for an unbiased library docking screen, at 63%, 40%, and 41%
for the HTR2A, DRD2, and KOR. Admittedly, many of the
new compounds had only low micromolar affinity, and this
does perhaps reflect the restraints of dual inhibition. Four
compounds with micromolar binding against HTR2A and
DRD2 had 29- to 120-fold selectivity vs HRH1 (Figure 5).
However, one compound, 21, had mid-nanomolar affinity for
HTR2A and DRD2 and 21-fold selectivity vs the HRH1
(Table 1). This potency and selectivity of 21 place it among
the few serotonin/dopamine receptor antagonists with
substantial HRH1 selectivity.
Still, the larger story is perhaps the remarkably high hit-rates

for the antitargets. Against the HRH1, the first-round hit rate
was 57%. This grew to a daunting 75% in the second-round
screen. This second round conformation had a larger
orthosteric site that identified many of the false-negatives
from the first screen; this, however, did not prevent it from
missing new false-negatives in the next prospective screen. For
the MOR antitarget, false-negative rates were about as bad,
despite selecting docked molecules interacting with residues
specific to KOR or in pose that conflicted with the rotamers
adopted in MOR.
Discounting the slender successes of selective compounds

such as 5, 14, 19, 21, 25, 103, and 122, three broad
explanations may be considered for the failure to select against
HRH1 and MOR. First, we did not properly model low-energy
receptor conformations that could accommodate the high-
scoring molecules from the on-targets. Second, the antitargets
might be so permissive that they will always be a selectivity

Table 4. continued

Figure 5. Visual summary of the initial screen of 28 molecules tested against the HT2RA, DRD2, and HRH1 receptors.
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challenge, at least without a much larger and more diverse
docking library. Finally, it could be that our docking scoring
function is approximate and inaccurate enough to prevent the
distinction among what are, after all, related aminergic targets
recognizing related primary neurotransmitters (serotonin,
dopamine, and histamine or, in the case of KOR and MOR,
opioid peptides). We can perhaps discount this third
possibility; as approximate and inaccurate as our scoring
function remains, the false-negatives come from their ability to
fit targets that sterics alone should have largely excluded. Thus,
we focus on the first two possibilities here.
Crystal structures are typically snapshots of a receptor in one

conformation, but biophysical studies and simulations suggest
that GPCRs exist in an ensemble of low energy, distinguishable
states.62−65 In docking for new ligands for an on-target, any
one of these low-energy conformations, certainly including the
crystal structure, will do. As long as the docked ligand fits the
selected low-energy conformation well, mass balance will make
up for the ignored accessible states, typically with only a minor
energy penalty. Said another way, only representing one good
low energy conformation of the on-target will certainly miss
plausible ligands (false-negatives), but since the goal is simply
to find some new ligands, this is tolerable. For selectivity
against antitarget, however, the molecule must not fit any
accessible conformation of the receptor. This is not only a
substantial sampling problem but also one of weighting the
receptor states in the available ensemble against each other.66

After the problems selecting against HRH1 in the first
docking screen, we modeled an alternative HRH1 conforma-
tion with an expanded binding site that, together with the
HRH1 crystal structure, could accommodate even the largest
known HRH1 ligands. Had we used both structures in the
initial docking screen, the first-round false-negatives would
have scored well against HRH1 and so not been selected.
Unfortunately, this had little predictive value in the second
prospective screen, which had an even higher hit rate against
the antitarget. We considered whether an alternative method,
induced-fit docking, which optimizes orthosteric site residues
around a docked pose and then re-docks the molecule, would
have found acceptable poses for these false-negatives.
Unfortunately, only five (30%) of the false-negatives would
have been rescued and correctly predicted to score well in the
HRH1 site; among the nine (70%) false-negatives that
continued not to fit, for instance, was the 0.8 nM HRH1
ligand, which was still predicted as a nonbinder. This suggests
that induced-fit docking alone could not have solved our
selectivity problem; to do so would have likely required the
sampling of more conformations of the overall receptor
structure, not just local accommodations around two particular
states.
A second explanation for the antitarget false-negatives might

be that HRH1 and MOR are unusually promiscuous, and
selective chemotypes may simply be absent from the docking
library. The inability to improve any hit compound’s selectivity
through docking may support this idea. While only a small
percentage of ligands in ChEMBL23 are annotated to bind to
all three of DRD2, HTR2A, and HRH1, 18.2% and 21.6% of
the HRH1 compounds are annotated for HTR2A or DRD2,
respectively (note that many more ligands are annotated for
DRD2 and HTR2A vs HRH1, which may reflect the historical
interests of medicinal chemistry campaigns, Figure 6). More
broadly, 40.1% of the HRH1 annotated ligands are active
against at least two other aminergic receptors, 21.2% are active

against three other aminergic receptors in ChEMBL23, and
chemoinformatics of the overall ligand-based similarity among
receptors suggests that HRH1 ligands are not only among the
most diverse of the aminergic GPCRs (suggesting a broad
recognition of chemotypes associated with different classes of
receptors) but also among those with the greatest ligand
overlap with other receptors.53,67 Similarly, while 71.3% of
KOR ligands also bind to MOR, 72.6% of MOR ligands bind
to KOR with affinity better than 10 μM. In short, the
antitargets chosen here, though clinically relevant, might be so
similar in their structure and share so many ligands and
chemotypes with the on-targets that finding just the right
selective molecules will be difficult with available libraries.
Consistent with this view, tightening of our original topological
similarity or docking rank filters would have removed
essentially all the aminergic molecules in the library, removing
not only false-negatives but also true-positives. If this argument
were true (and we moot it only tentatively), then an expansion
of our libraries to sample new chemotypes may help in finding
selective and still potent molecules, direct from a structure-
based screen, against highly related targets such as those
sampled here.
Certain gaps in this study temper its conclusions. While it

may be that HRH1 is too similar in structure and ligand
recognition to HTR2A and DRD2 to reliably dock for selective
molecules, several such molecules were in fact found, and
others have been optimized from medicinal chemistry
campaigns. Beginning with a compound with nascent potency
and selectivity, new compounds have been synthesized with
focused polypharmacology and selectivity, even against highly
related targets.68 This partly reflects the synthesis of chemo-
types not present even among the 3 million commercially
available molecules. We also note that we largely ignored
functional effects of docked molecules; for most compounds,
we did not consider whether they were agonists or inverse
agonists. Arguably, this was not crucial for this proof-of-
concept study, though it would be important in a true effort
toward focused polypharmacology. Throughout, we insisted on
aminergic molecules that made well-precedented interactions
in the heart of the orthosteric sites of each of the D2, 5HT2a,
and KOR receptors. Such cationic molecules are almost
canonical for these on-targets, but this is a feature shared with
H1 ligands. Allowing for nonaminergic ligands, which are very

Figure 6. Venn diagram of annotated ChEMBL ligands for the three
targets.
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rare for this family of receptor but not entirely unheard of,69 or
expanding our search to putative allosteric sites where
sequence diversity is higher59 may have improved our chances
of finding selective ligands, though it would likely have reduced
hit-rates against the on-targets themselves. Finally, our failure
to reliably select against the antitargets at least partly reflects
well-known weaknesses in our methods. Among the most
important of these was the failure to consider multiple low-
energy receptor states in modeling our off-targets, although
more rigorous treatment will be challenging in high-
throughput.
These caveats should not obscure the main observations

from this study. Structure-based docking may be pragmatic for
focused polypharmacology, here finding multiple molecules
that can jointly modulate the HTR2A and DRD2 GPCRs.
Homology models of these targets can support these efforts, at
least when they are sufficiently similar to structural templates
and are vetted in control experiments (e.g., retrospective
benchmarking). Crucially, however, we struggled to find
molecules selective against the off-targets, with hit rates against
HRH1 and MOR as high or higher than for the on-targets.
Overcoming this problem may demand expanding chemotypes
in dockable libraries,70−72 so that just the right molecule might
be found, and certainly better modeling of the accessible
conformations of the antitargets.73−80

■ EXPERIMENTAL SECTION
Homology Modeling and Docking. The alignments for the

construction of the DRD2 and HTR2A models were generated using
PROMALS3D.81 Homology models of the DRD2 and HTR2A
receptors were built with MODELLER 9v8 using the crystal structure
of the dopamine D3 receptor (PDB code 3PBL) as the template.
Elastic network models for the expanded HRH1 binding site were
produced by the program 3K-ENM.48 We used DOCK3.643 to screen
the ZINC database (Results). In DOCK3.6, ligand conformational
ensembles are precalculated in a frame of reference defined by their
rigid fragments, and fragment atoms are fit onto binding site matching
spheres, which represent favorable positions for individual ligand
atoms. Once a sphere-atom superposition is defined for a rigid-
fragment, the conformational ensemble may be oriented in the site
using the defined rotation−translation matrix of that rigid frag-
ment.27,43 Each ligand pose is scored as the sum of the receptor−
ligand electrostatic and van der Waals interaction energies and
corrected for context-dependent ligand desolvation.82 Partial charges
from the united-atom AMBER force field were used for all receptor
atoms except for, in the KOR, Asp1383.32, Glu209 in ECL2, and
Glu2976.58, for which the magnitude of the partial atomic charges in
the carboxylate was increased, as previously described;18 the net
charges were not changed. When selecting molecules from the KOR
screen, those with high internal-energy interactions that do not appear
in the Cambridge Structural Database were manually discarded, as is
common as a last step in the docking-aided selection of new
molecules.25

Induced Fit Docking. The induced-fit docking used a three-step
protocol: (1) each molecule was docked into the receptor; (2) for
each pose, the receptor side chains and backbone were minimized
around the posed ligand using PLOP;83 (3) the compound was re-
docked into the optimized receptor binding site.
Binding Affinity and Functional Assays. Radioligand binding

and functional (GloSensor, Tango, and FLIPR) assays at the DRD2,
HTR2A, HRH1, KOR, and MOR were carried out at the National
Institute of Mental Health Psychoactive Drug Screening Program, as
described.84

Compound Sources. Compounds were obtained from commer-
cial suppliers and used without further purification (a full list is
provided in the Supporting Information as a tab-delimited files with
vendors and SMILES strings). All active compounds reported for the

serotonin, dopamine, and histamine receptors were tested for purity
by liquid chromatography/mass spectrometry and were at least 95%
homogeneous by peak height and identity. Compounds were
counterscreened for aggregation using detergent-dependent inhibition
of AmpC β-lactamase as a proxy, as has been widely done,85 and no
substantial inhibition was observed. Also, the dose−response curves in
the GPCR assays themselves were well-behaved with Hill coefficients
close to 1.
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