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Ultra-large library docking for 
discovering new chemotypes
Jiankun lyu1,2,10, Sheng Wang3,4,10, trent e. Balius1,10, isha Singh1,10, Anat levit1, Yurii S. Moroz5,6, Matthew J. O’Meara1, tao che4,  
enkhjargal Algaa1, Kateryna tolmachova7, Andrey A. tolmachev7, Brian K. Shoichet1*, Bryan l. roth4,8,9* & John J. irwin1*

Despite intense interest in expanding chemical space, libraries containing hundreds-of-millions to billions of diverse 
molecules have remained inaccessible. Here we investigate structure-based docking of 170 million make-on-demand 
compounds from 130 well-characterized reactions. The resulting library is diverse, representing over 10.7 million scaffolds 
that are otherwise unavailable. For each compound in the library, docking against AmpC β-lactamase (AmpC) and the 
D4 dopamine receptor were simulated. From the top-ranking molecules, 44 and 549 compounds were synthesized and 
tested for interactions with AmpC and the D4 dopamine receptor, respectively. We found a phenolate inhibitor of AmpC, 
which revealed a group of inhibitors without known precedent. This molecule was optimized to 77 nM, which places 
it among the most potent non-covalent AmpC inhibitors known. Crystal structures of this and other AmpC inhibitors 
confirmed the docking predictions. Against the D4 dopamine receptor, hit rates fell almost monotonically with docking 
score, and a hit-rate versus score curve predicted that the library contained 453,000 ligands for the D4 dopamine receptor. 
Of 81 new chemotypes discovered, 30 showed submicromolar activity, including a 180-pM subtype-selective agonist of 
the D4 dopamine receptor.

In a highly cited footnote, Bohacek and colleagues suggested that there 
are over 1063 drug-like molecules1. This is too many to even enumerate, 
and other estimates of drug-like chemical space have been proposed2–4. 
What is clear is that the number of possible drug-like molecules is 
many orders of magnitude higher than the number that exists in early 
discovery libraries, and that this number grows exponentially with 
molecular size3. Because most optimized chemical probes and drug 
candidates resemble the initial discovery hit5, there is much interest 
in expanding the number of molecules and chemotypes that can be 
explored in early screening.

Expanding chemical space
An early effort to enlarge chemical libraries focused on the enumera-
tion of side chains from central scaffolds. Although such combinato-
rial libraries can be very large, efforts to produce and test them often 
suffered from problems with compound synthesis, assay artefacts6 
and a lack of diversity. More recently, a related strategy using DNA-
encoded libraries7 has overcome many of these deficits8. Still, most 
DNA-encoded libraries are limited to several reaction types or core 
scaffolds9, reducing diversity.

In principle, structure-based docking can screen virtual libraries of 
great size and diversity, selecting only the best-fitting molecules for 
synthesis and testing. These advantages are balanced by serious defi-
cits: docking cannot calculate the affinity of a compound accurately10 
and the technique has many false-positive hits. Accordingly, docking 
of readily available molecules is crucial. For virtual molecules, such 
accessibility has been problematic. Worse still, a large library screen 
could exacerbate latent docking problems, giving rise to new false- 
positive hits. Thus, although docking screens of several million 

molecules have found potent ligands for multiple targets11–22, docking 
much larger virtual libraries has remained largely speculative.

To overcome the problem of compound availability in a make-on-
demand library, we focused on molecules from 130 well-characterized  
reactions using 70,000 building blocks from Enamine (Fig. 1). The 
resulting reaction products are often functionally congested— 
displaying multiple groups from a compact scaffold—with substantial 
three-dimensionality; less than 3% are commercially available from 
another source. The addition of new reactions and building blocks has 
steadily grown the library (Fig. 1a). At the time of publication, there are 
over 350 million make-on-demand molecules in ZINC (http://zinc15.
docking.org) in the lead-like range23. More than 1.6 billion readily syn-
thesizable molecules have been enumerated, and the dockable library 
should soon grow beyond 1 billion molecules (Fig. 1b). Meanwhile, 
diversity is retained: a new scaffold is added for approximately every 
20 new compounds (Fig. 1c). As a consequence of its great size and 
diversity, a library of this size is almost entirely virtual.

Even if the make-on-demand molecules are readily accessible, a com-
bination of inaccurate scores and a vast chemical space could over-
whelm the true active compounds with docking decoys. Accordingly, 
we simulated how hit rates would vary as the library grew from tens-
of-thousands to hundreds-of-millions of molecules. First, we docked 
tens-to-hundreds of known ligands mixed with thousands of proper-
ty-matched decoys24 (Extended Data Fig. 1a, b). From the resulting 
rank distributions, we simulated the effect of varying the ligand-
to-decoy ratio in a growing library. Performance was judged by the 
number of ligands in the top 1,000 ranked molecules for any library 
size, a stringent criterion. When ligands were enriched in the smaller 
libraries, performance typically improved with library size (Extended 

1Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA. 2State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug 
Design, School of Pharmacy, East China University of Science & Technology, Shanghai, China. 3State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, 

Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. 4Department of Pharmacology, University of 

North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA. 5National Taras Shevchenko University of Kiev, Kiev, Ukraine. 6Chemspace, Riga, Latvia. 7Enamine, Kiev, Ukraine. 8Division 

of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 9National Institute of Mental Health Psychoactive 

Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA. 10These authors contributed equally: Jiankun Lyu, 
Sheng Wang, Trent E. Balius, Isha Singh. *e-mail: bshoichet@gmail.com; bryan_roth@med.unc.edu; jir322@gmail.com

https://doi.org/10.1038/s41586-019-0917-9
http://zinc15.docking.org
http://zinc15.docking.org
mailto:bshoichet@gmail.com
mailto:bryan_roth@med.unc.edu
mailto:jir322@gmail.com


Data Fig. 1c). Conversely, when docking performed poorly in small 
benchmarks, performance often deteriorated with library size.

Second, we investigated ligand enrichment against the full make-
on-demand library. We counted known binding compounds as well 
as their close analogues in the library as ligands; the rest of the library 
was considered to be decoys (Methods). For targets with well-formed 
binding sites, known ligands and ligand analogues were found among 
the top docking hits, even in libraries of more than 170 million mole-
cules (Extended Data Fig. 1d and Supplementary Table 1).

Docking 99 million molecules against AmpC
Encouraged by these simulations, we turned to prospective predic-
tion of new compounds. We targeted two unrelated proteins: the 
enzyme AmpC and the D4 dopamine (D4) receptor. Against AmpC, 
we docked the make-on-demand lead-like library, which was—at the 
time—composed of 99 million molecules. Each compound was fit in 
the enzyme active site with an average of 4,054 orientations, and for 
each orientation 280 conformations were sampled. Each configura-
tion was scored for energetic fit, using the physics-based DOCK3.7 
scoring function. The top-ranked 1 million molecules were clustered 
by scaffold25 and by topological similarity, reducing redundancy. 
Molecules were excluded that resembled known AmpC inhibitors 
from ChEMBL26 (ECFP4 Tanimoto coefficient (Tc) > 0.45) or that 
resembled any molecule in the 3.5 million in-stock library (ECFP4 
Tc > 0.5). Therefore, we sought molecules that were newly generated 
and matched to the enzyme.

Fifty-one top-ranking molecules—each a different scaffold—were 
selected for testing, of which 44 (86%) were successfully synthesized 
(Supplementary Table 9 and Supplementary Data 11, 12). Five com-
pounds measurably inhibited AmpC, with inhibitory constant (Ki) 
values ranging from 1.3 to 400 μM (Extended Data Figs. 2, 3), consti-
tuting an 11% hit rate. All five compounds were selective competitive 

inhibitors that did not aggregate, nor did they inhibit counter-screening  
enzymes such as trypsin and chymotrypsin (Supplementary  
Tables 2, 3). Notably, the compound ZINC339204163 at 1.3 μM 
engages the crucial oxyanion hole of AmpC with a phenolate. Not 
only is 339204163 the most potent reversible AmpC inhibitor found 
in any screen of which we are aware, but also its phenolate is a war-
head that is rarely—if ever—known to interact with β-lactamases, and 
is one with few precedents among inhibitors of other amidases and 
proteases27. To optimize the five initial hits, we chose 90 well-scoring 
analogues from within the make-on-demand library (Methods). Over 
half were active on testing, improving the affinity of each of the 5 hits by 
3- to 29-fold (Extended Data Fig. 2 and Supplementary Table 2). This 
included the compound ZINC549719643 (77 nM), an analogue of the 
phenolate 339204163, which is among the most potent non-covalent 
AmpC inhibitors of which we are aware. The ability to optimize affinity 
by finding analogues within the library attests to its depth of coverage 
for many chemotypes.

Crystal structures of three of the new ligand families, and of 
549719643 at 77 nM, were determined to a resolution that ranged from 
1.50 to 1.91 Å. Unambiguous electron density maps confirmed their 
fidelity to the docking predictions, with root mean square deviation 
(r.m.s.d.) values that varied from 0.98 to 1.52 Å (Fig. 2, Extended Data 
Table 1 and Extended Data Fig. 4). The r.m.s.d. increases to 1.98 Å 
for ZINC275579920; however, this largely reflects a rotation of the 
terminal ring, which makes no polar interactions with the enzyme in 
either conformation. For the central core of 275579920, the r.m.s.d. is 
1.20 Å and all five hydrogen bonds predicted by docking are found in 
the crystal structure (Fig. 2b). Such polar interactions corresponded 
well between docked and crystallographic poses in all four structures, 
including that of the phenolate of 549719643, which forms the three 
docking-predicted hydrogen bonds with the oxyanion hole of AmpC 
(Fig. 2e).
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Fig. 1 | Make-on-demand compounds are diverse and have increased 
exponentially. a, Characteristic reagents, reactions and products in the 
make-on-demand library. b, The expansion of the make-on-demand 

library; orange bars represent projected growth. c, The distribution of 
compounds among the 10.7 million scaffolds in the library.
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dopamine receptor subtypes (Extended Data Table 2). Meanwhile, 
ZINC615622500 had no detectable Gi activity, but was a β-arrestin- 
biased agonist at 3 μM (Extended Data Table 2 and Extended Data Fig. 5).

Notably, the potent agonist 21433143 was tested as a diastereomeric 
mixture. Several of its diastereomers, each independently docked, 
also scored well—an example is ZINC621433144, which differs from 
21433143 by adopting the (3R, 4S) rather than the (3S, 4S) stereoiso-
mer around the tetrahydropyrrole; the two stereoisomers superpose 
well onto their docked poses on the D4 receptor (Fig. 3c). Accordingly, 
the four diastereomers were independently synthesized and tested. 
Compound 621433144 is a full agonist at 180 pM, with 2,500-fold 
subtype selectivity, making it one of the most potent, selective full 
agonists characterized for the D4 receptor. Compound 621433144 was 
also functionally selective, with a 17-fold bias towards Gi signalling 
versus β-arrestin recruitment, compared to the characteristic agonist 
quinpirole (Fig. 3e). Two of the other diastereomers, ZINC361131264 
and ZINC361131265, had Gi biases of 26- and 11-fold, respectively, 
and the third (21433143) had a β-arrestin bias of 7-fold (Extended Data 
Table 2); here stereoisomerization at a single centre flips the bias of a 
potent agonist.

The make-on-demand library will soon exceed one billion lead-like 
molecules (Fig. 1b), and it is tempting to dock only cluster representa-
tives, rather than every single molecule. Indeed, doing so reduced dock-
ing time by 22-fold. Unfortunately, the best cluster representative for a 
protein is unknowable without docking all cluster members. We found 
that only docking a single cluster representative, chosen by multiple 
criteria (Methods), substantially reduced the docking scores, especially 
for the highest-ranked molecules (Fig. 3f and Extended Data Fig. 6a). 
This had a devastating effect on experimentally active scaffold families. 
For instance, the 47 confirmed active compounds among the top 3,000 
ranked molecules were replaced with different cluster representatives, 
and these fell in rank by an average of 1,121,443; only 2 of the original 
active scaffolds remained (Supplementary Table 7). Similar effects were 
observed for β-lactamase (Extended Data Fig. 6b and Supplementary 
Table 8). Screening the entire library was essential for the discovery of 
the compounds that we report here.

Docking hit rates vary regularly with score
A longstanding question in docking is how well rank predicts binding 
likelihood. In most docking screens, only tens of molecules are tested, 
and then only from among the top ranks. With the great expansion of 
the library, it seemed interesting to sample also from lower ranks, with 
enough molecules to be statistically meaningful. Accordingly, we mod-
elled potential ‘hit-rate’ curves as a function of docking score. Using 
distributions of prior probabilities from Bayesian statistics, we devel-
oped ranges of docking scores over which we should test molecules 
to experimentally define the curve (Fig. 4). From these simulations, 
the 549 make-on-demand molecules were spread among 12 scoring  
bins covering the highest-ranking (−75 to −63 kcal mol−1), mid-rank-
ing (–61 to −46 kcal mol−1) and low-ranking scores, for which 
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dashed lines. a–d, AmpC in complex with ZINC547933290 (a; Protein 
Data Bank (PDB) 6DPZ, r.m.s.d. = 1.3 Å) and 275579920 (b; PDB 6DPY, 
r.m.s.d. = 1.2 Å for the warhead), the 1.3 μM inhibitor 339204163 (PDB 
6DPX; r.m.s.d. = 0.98 Å) and its 77 nM analogue 549719643 (d; PDB 
6DPT, r.m.s.d. = 1.52 Å). e, Close-up of the 549719643 phenolate in the 
oxyanion hole. Extended Data Fig. 4 shows the electron densities.

Fig. 2 | Structural fidelity between docked-predicted and 
crystallographically determined poses of the new β-lactamase 
inhibitors. Crystal structures of the inhibitors (carbons in cyan) overlaid 
with their docking predictions (magenta). AmpC carbon atoms are shown 
in grey, oxygens in red, nitrogens in blue, sulfurs in yellow, chlorides in 
green and fluorides in light blue. Hydrogen bonds are shown as black 

Docking 138 million molecules against the D4 receptor 
The prospective screen against the D4 receptor had two goals. The 
first was to see whether we could discover new receptor chemotypes, 
as with most docking investigations. A second goal was to investigate 
something that remains largely unexplored in molecular docking: how 
success varies with docking rank. Accordingly, we tested 549 make-on-
demand molecules drawn from not only high-ranking molecules, but 
also from mid- and low-ranked ones (Fig. 3a).

Seeking new chemotypes28,29, 138 million library molecules were 
docked against the structure of the receptor14. About 70 trillion com-
plexes were sampled in the orthosteric site, requiring 43,563 core hours 
or about 1.2 calendar days on 1,500 cores. Again, the ranked library 
was clustered by topology and by scaffold25, reducing redundancy. To 
increase novelty, molecules found in the 3.5 million in-stock library, or 
that resembled the approximately 28,000 dopaminergic, serotonergic 
or adrenergic ligands in ChEMBL (https://www.ebi.ac.uk/chembl/) 
(Tc ≥ 0.35 by ECFP4 fingerprints), were excluded. Of the 589 mole-
cules selected, 549 (93%) were successfully synthesized (Supplementary 
Table 10 and Supplementary Data 11, 13). From the top 1,000 ranking 
clusters, 124 molecules were selected by visual inspection for favourable 
and diverse interactions with the D4 site and for lack of internal strain30; 
another 444 were selected automatically, by docking score alone, across 
the rank-ordered list (19 were in both lists). At 10 μM, 122 of the 549 
molecules displaced more than 50% 3H-N-methylspiperone-specific 
D4 receptor binding (Fig. 3a). Dose–response curves for 81 com-
pounds revealed Ki values that ranged from 18.4 nM to 8.3 μM (Fig. 3b, 
Extended Data Table 2 and Supplementary Table 4).

Many of the highly ranked molecules were functionally congested, 
and often docked to interact with residues that are rarely simultane-
ously engaged (Fig. 3c and Extended Data Fig. 5). Most filled the pocket 
defined by residues in helices 5 and 6, such as S1965.42, F4106.51 and 
F4116.52, and ion-paired with D1153.32, both common interactions 
among dopaminergic ligands (Fig. 3c, superscripts use Ballesteros–
Weinstein and GPCRdb nomenclature31,32). Less common among pre-
viously known ligands, but frequently observed here, was engagement 
of the D4 receptor selectivity pocket, defined by F912.61 and L1113.28, 
which distinguishes this subtype from the D2 and D3 dopamine recep-
tors (Fig. 3c). This may explain the 30- to 500-fold subtype selectivity 
of many of the hits (Extended Data Table 2). Finally, some compounds 
docked to further hydrogen-bond with backbone atoms in extracellular 
loop 2 (Fig. 3c), which is thought to influence signalling bias33.

In functional assays, several of the high-ranking molecules were 
potent. For instance, ZINC621433143 appeared to be a full agonist at 
2.3 nM (see below), ZINC465129598 and ZINC270269326 were full 
agonists at 24 nM and 17 nM, respectively, whereas ZINC464771011 
was a partial agonist at 10 nM (Fig. 3d and Extended Data Table 2). 
Two antagonists were also found: ZINC413570733 (half-maximum 
inhibitory concentration (IC50) = 5.9 μM) and ZINC130532671 
(IC50 = 10.8 μM) (Extended Data Table 2 and Extended Data Fig. 5). 
All six compounds lacked detectable activity against the D2 or D3 

https://www.ebi.ac.uk/chembl/
https://www.rcsb.org/structure/6DPZ
https://www.rcsb.org/structure/6DPY
https://www.rcsb.org/structure/6DPX
https://www.rcsb.org/structure/6DPT


most molecules had unconvincing receptor interactions (−43 to 
−35 kcal mol−1). Typically, 35 to 40 molecules were tested per bin,
with more in the highest scoring bins to maximize the number of active 
compounds found. Overall, 444 molecules were picked automatically, 
whereas 124 were picked by visual inspection (as described above). All
molecules were tested in vitro using the same protocol.

Notably, hit rates fell almost monotonically with score, after a pla-
teau defined by the highest-ranking molecules. In this plateau region, 
hit rates ranged from 22 to 26%, but below scores of –65 kcal mol−1 hit 
rates decreased steadily to 12% for a docking score of –54 kcal mol−1 
and at scores of –43 kcal mol−1, the hit rate reached zero, where it 
remained for the next two (worse) scoring bins. We fit a response curve 
to these observations, with a top hit rate at 24%, a bottom hit rate at 
0%, a mid-point at −54 kcal mol−1 and a mid-point hit-rate slope of 
−1.7% per kcal mol−1. The regularity of this curve suggests that, at
least for the D4 receptor, ligand activity is well-predicted by docking
score, notwithstanding a high false-positive rate and an inevitable
false-negative rate.

From this curve we can model the total number of compounds that 
are active against the D4 receptor in the library. Assuming that all mol-
ecules in a scoring range have the same hit rates, we can multiply the 

total number of library molecules in any such range by the observed 
hit rate in that range and sum (Fig. 4). Among the library of 138 mil-
lion molecules, we calculated there to be over 453,000 D4 receptor 
active molecules, in over 72,600 scaffolds, with estimated Ki values of 
10 μM or better (Fig. 4a, c). The number of active compounds drops 
to 158,000 at a more stringent 1 μM cut-off (Fig. 4b, d). Admittedly, 
these predictions have uncertainties, with 95% confidence intervals 
ranging from 188,000 to 1,035,000 active molecules and from 38,000 
to 129,000 active scaffolds. Still, in some ways the estimates are  
conservative—for instance, we assume a 0% rate of compound discovery  
below a docking score of −40 kcal mol−1 (Fig. 4a, b). Had we assumed a 
higher random hit rate, the number of discoverable compounds would 
have increased, as most of the library scored lower than −35 kcal mol−1 
(Fig. 4). Finally, we note that this unusually large set of 549 confirmed 
active and inactive compounds, all with docking poses, may be a useful 
benchmark for the field (see https://figshare.com/articles/D4_bench-
mark_mols_mol2/7367288/2 and Supplementary Table 4).

Human versus machine
We wondered whether molecules prioritized by docking and  
human visual evaluation would perform better than those prioritized 

a b

c

ZINC465129598
K i

D4 = 80 nM

ZINC464771011
K i

D4 = 140 nM

ZINC480408888
K D4 = 400 nM

ZINC362128724
K i

D4 = 160 nM

ZINC518842964
K i

i i

D4 = 120 nM

ZINC270269326
K D4 = 500 nM

0

50

100

150

DOCK score (kcal mol–1)

3 H
-N

-m
et

hy
ls

p
ip

er
on

e 
b

in
d

in
g 

(%
)

–75 –68 –64 –61 –58 –55 –52 –49 –46 –43 –40–35

L18745.52

C18545.50

W10123.50

S942.64

F912.61

Y4387.43

D1153.32

C1193.36

F4106.51

F4116.52

H4146.55

S1965.42

V1935.39

L1113.28

L18745.52

W10123.50

S942.64

F912.61

Y4387.43

D1153.32

C1193.36

F4106.51
F4116.52

H4146.55

S1965.42

V1935.39

L1113.28

ZINC518842964 ZINC480408888

d e

ZINC621433143
ZINC621433144

L18745.52
W10123.50

S942.64

F912.61

Y4387.43

D1153.32

C1193.36

F4106.51

F4116.52

H4146.55

S1965.42

V1935.39

L1113.28

f

N
HN

H
NBr

O

N

F

H
N N

Cl
N

S
N

N
H

O

N

S

N
HN

Cl

N

O

HO

HN

N

Br N

Cl

Cl

N
N N

H
N

O

–12 –10 –8 –6 –4

0

50

100

150

log([Compound] (M))

Q
ui

np
iro

le
 (%

)

–14 –12 –10 –8 –6 –4

0

25

50

75

100

log([Compound] (M))

Q
ui

np
iro

le
 (%

)

Bias = 1 7
(G-protein)

–80 –60 –40 –20 0
0

1 × 105

2 × 105

3 × 105

4 × 105

DOCK score (kcal mol–1)

N
um

b
er

 o
f s

ca
ff

ol
d

s

Fig. 3 | Testing 549 molecules at different docking ranks against the 
D4 receptor. a, Displacement of the antagonist 3H-N-methylspiperone by 
each of the 549 molecules tested at 10 μM. Data are mean ± s.e.m. of three 
assays. The molecules are coloured by their docking score. The number of 
molecules with substantial activity (<50% remaining radioligand, below 
the dashed line) diminishes with docking score. b, Six active compounds, 
each with a different scaffold. c, Docked poses of ZINC518842964 (left), 
ZINC480408888 (middle) and superposed 21433143 and 621433144 
(right). The receptor helices are shown as ribbons, the conserved 
D1153.32 is shown as sticks, interacting residues within 4 Å of the docked 
molecules are shown as lines. Ballesteros–Weinstein residue numbers are 
shown as superscripts. Modelled hydrogen bonds are shown as dashed 

lines. d, cAMP functional assays of the 180 pM full agonist 621433144 
(orange) and the 10 nM partial agonist 464771011 (blue, agonist mode; 
purple, antagonist mode (464771011 and 100 nM quinpirole)). Data are 
mean ± s.e.m. of three assays. e, Gαi/o bioluminescence resonance energy 
transfer and β-arrestin-2 bioluminescence resonance energy transfer 
functional assays of the 180 pM full agonist 621433144 (Gαi/o, orange; 
β-arrestin-2, red) and the unbiased ligand quinpirole (Gαi/o, black;  
β-arrestin-2, blue). Data are mean ± s.e.m. of three assays. f, The effect 
of pre-clustering on docking scores: the orange curve is the distribution 
of the best-scoring scaffold representative, the blue curve is the score 
distribution from pre-clustering and choosing only single cluster 
representatives to dock.
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found in the smaller, in-stock library. It is the great expansion of the 
make-on-demand library, both in compounds and chemotypes, that 
has enabled the discovery of new ligands.

Certain caveats merit mentioning. The variation of the hit rate with 
docking score—although sigmoidal—was not fully monotonic, with 
variability among the sets of top-ranking molecules tested. Also, the 
estimate of active compounds is valid only for the D4 receptor and has 
wide error margins (Fig. 4). Whereas molecules were docked as pure 
stereoisomers and diastereomers, they were often tested as stereochem-
ical mixtures. Furthermore, long-standing challenges with regards to 
the sampling and scoring of compounds in molecular docking screens 
remain41. Whereas the hit rate versus docking score curve (Fig. 4) sup-
ports the ability to prioritize active compounds, our raw docking scores 
remain off-set from true binding energies, and we cannot confidently 
rank-order molecules for activity. Finally, docking undoubtedly con-
tinues to suffer from false-negative hits.

These caveats should not obscure our principal observations. First, 
docking rank predicts the likelihood that a molecule will bind to the 
D4 receptor (Fig. 4). This suggests that docking methods42–49, at least 
for well-formed binding sites, can efficiently prioritize new molecules 
from a large chemical space. Second, the discovery of novel and potent 
chemotypes for both targets suggests that the ultra-large libraries con-
tain molecules that are better suited to a given receptor structure than 
can be found within the smaller in-stock libraries, and that docking 
can recognize them. Third, the well-behaved hit rate versus score 
curve (Fig. 4) allows one to predict the total number of expected active 
compounds for a target within a library, including those unrelated to 
known ligands. Integrating under this curve predicts that there are a 
notable 453,000 D4 receptor ligands in over 72,000 scaffold families in 
the make-on-demand library. As daunting as these numbers are, we 
expect them to grow, with the library itself anticipated to exceed one bil-
lion lead-like molecules by 2020. This represents a great challenge but 
also a great opportunity: a 1,000-fold expansion of the molecules and 
chemotypes readily available to chemical biology and to drug discovery 
that is openly accessible to the community (http://zinc15.docking.org).

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-0917-9.
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by docking alone. From among the top 1,000 ranked molecules, we 
selected 124 that—on inspection—had favourable interactions, 
and deprioritized those with strained internal energies30. Another 
114 high-ranking molecules were selected by docking score alone, 
from the same ranks. Unexpectedly, the hit rates were about the same 
at around 24% (Extended Data Fig. 7a). However, the molecules pri-
oritized by human inspection typically had better affinities: 44% of 
these were submicromolar, which was true of only 27% of those pri-
oritized by docking score alone. Correspondingly, a disproportionate 
number of the most potent agonists, such as 621433144 (180 pM) and 
464771011 (14 nM), were selected by human prioritization (Extended 
Data Fig. 7b, c).

The docking results presented here can be compared to those 
from previous high-throughput screening and docking studies. For 
AmpC, the direct docking active 339204163 is over 20 times 
more potent than previously described non-covalent inhibitors34–
36, and its opti-mized analogue 549719643 is among the most 
potent non-covalent AmpC inhibitors of which we are aware. This 
reflects in part the sim-ple absence of phenolates from the much 
smaller libraries that were previously screened. Similarly, the low- 
and mid-nanomolar agonists 465129598, 270269326 and 
464771011 are tenfold more potent than any D4 receptor screening 
hits of which we are aware, even from stud-ies biased towards 
dopaminergic chemotypes37, and are also more selective. 
Similarly, the compound 621433144 at 180 pM is among the most 
potent selective agonists reported for this target38–40. Comparing this 
study to a recent docking screen of 600,000 in-stock compounds 
against the D4 receptor14, the initial lead from the smaller library 
was an agonist that was effective at 260 nM, and even after three 
rounds of optimization resulted only in an agonist that is effective 
at 4 nM. As was true for the phenolate compounds that interacted 
with AmpC, in this case no compound that is topologically similar to 
621433144 was 
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MEthodS
Database generation. Dockable ligand databases can be downloaded from 
ZINC (http://zinc15.docking.org) and protonation states and tautomers (Jchem 
v.15.11.23.0, https://chemaxon.com/), three-dimensional structures (Corina
v.3.6.0026, https://www.mn-am.com/products/corina), conformational ensembles 
(omega v.2.5.1.4, https://www.eyesopen.com/omega)50, atomic charges51 and des-
olvation energies52,53 are calculated as previously described54. For both the AmpC
and D4 receptor campaigns, library molecules were protonated according to exper-
imental testing near neutral pH, using logarithmic acid dissociation constant (pKa) 
values calculated according to Jchem. Whereas AmpC is known to prefer anionic 
molecules, and dopamine receptors are known to prefer cations, there is a prece-
dent for uncharged molecules that bind to both55,56. Accordingly, the full library,
unfiltered for charge state except by lead-like characteristics, was docked against 
both targets. The full list of docked library molecules, by ZINC number, SMILES 
and docking scores, has been deposited in FigShare (https://doi.org/10.6084/
m9.figshare.7359626.v2 and https://doi.org/10.6084/m9.figshare.7359401.v3); 
from this, full charge and structural representations can be found at http://zinc15.
docking.org.
Toy model for database growth. We constructed a model of ligand enrichment 
with library size, using the distribution of ligand and decoy docking scores. Except 
for the D4 receptor, the ligands and decoys are drawn from the DUD-E bench-
mark; for the D4 receptor, 48 ligands were downloaded from IUPHAR (http://www.
guidetopharmacology.org) and the corresponding decoys were generated by the 
DUD-E web server (http://dude.docking.org/generate). Inputs to the model are the 
ligand-to-decoy ratio and the number of molecules in databases. From these two 
parameters, the distributions are sampled. We generated distributions by fitting the 
skewed-normal distribution to that observed for the DUD-E ligands and decoys 
from docking, using the statistical library in SciPy (Extended Data Fig. 1a–c and 
Supplementary Table 1).
Simulating hit rates from full-library docking. We docked the full make-on-
demand library to investigate the ranking of ligands versus decoys. All known 
ligands for each target were drawn from ChEMBL26. Their analogues in the make-
on-demand library were defined by ECFP4 Tc similarity ≥0.5, ≥0.6 or ≥0.7 for 
each target (Extended Data Fig. 1d). Together, the known active compounds and 
their analogues were defined as ligands, and the rest of the docked molecules were 
defined as decoys. The full library was then docked. To investigate the effect of 
library size on the ability to enrich ligands among the top 1,000 ranked compounds, 
105, 3 × 105, 106, 3 × 106, 107, 3 × 107 and 108 sets of molecules were randomly
selected from the full docking-ranked list and the number of ligands among the 
1,000 was counted. Each set was pulled twenty times with random selection from 
the larger library.
Bemis–Murcko scaffold analysis. The SMILES of all the make-on-demand
lead-like molecules in ZINC were downloaded from http://zinc15.docking.org/
tranches/home/ on 28 February 2018. The program mitools (https://www.molin-
spiration.com/) calculated scaffolds for all 233 million lead-like molecules using 
the Bemis and Murcko method25.
Large-scale docking. The AmpC campaign used the structure in PDB 1L2S,
whereas the D4 receptor campaign used PDB 5WIU. In each, 45 matching spheres
were calculated around and including the ligand atoms—a 26 μM thiophene car-
boxylate for AmpC and nemonapride for D4—and structures were prepared and
AMBER united atom charges assigned14. The magnitude of the partial atomic 
charges for five residues in AmpC was increased without changing the net residue 
charge55. For both targets, the low protein dielectric was extended into the binding 
site using pseudo-atom positions that represented possible ligand docking sites; the 
radius was 1.0 Å and 2.0 Å for D4 and AmpC, respectively14,53,57. For the D4 recep-
tor, the desolvation volume of the site was also increased by similar atom positions, 
using a radius of 0.3 Å. This improved the ligand charge balance in benchmarking 
calculations, reducing the number of high-ranking dications. Energy grids repre-
senting the AMBER van der Waals potential58, Poisson–Boltzmann electrostatic
potentials using QNIFFT59,60 and ligand desolvation from the occluded volume of
the target for different ligand orientations53 were calculated. Using DOCK3.7.261, 
over 99 million and over 138 million library molecules were docked against AmpC 
and the D4 receptor, respectively. Each library molecule was sampled in about 4,054 
and 3,300 orientations and, on average, 280 and 479 conformations for AmpC and 
D4, respectively, and were rigid-body-minimized with a simplex minimizer. The
throughput averaged 1 s per library compound.
Clustering. To increase novelty, the high-ranking molecules from both screens
were filtered for similarity to previously known ligands and for similarity to the 
molecules in the 3.5-million in-stock library (we have deposited tools to do this at 
https://github.com/docking-org/ChemInfTools). To increase diversity, the dock-
ing-ranked molecules were clustered into related families of compounds. For 
the AmpC screen, the top 1 million ranked molecules were best-first clustered 
using an ChemAxon ECFP4 Tc of 0.5 for cluster inclusion (using the Tc_c_tool 
that we have deposited at https://github.com/docking-org/ChemInfTools). For 

the D4 screen, we wanted to sample through the docking scoring range, and thus 
used a hybrid clustering approach to treat many more molecules. To cluster the 
53,588,665 molecules with DOCK scores better than −30 kcal mol−1 against the 
D4 receptor, we used best-first clustering on the first 2 million molecules (DOCK 
score to −49.38 kcal mol−1). This resulted in 126,287 clusters. Bemis–Murcko 
scaffolds were calculated for the full 53,588,665 molecules, resulting in 4,893,388 
scaffold-based clusters. The ECFP4-based clusters and the scaffold-based clusters 
were combined, and ECFP4 best-score first clustering was run on the best scoring 
members of each cluster, again using a 0.5 Tc cut-off. This left 423,656 hybrid 
clusters, each represented by its top-scoring member.
Analysis of full library docking versus pre-clustering library docking. The scaf-
fold analysis of all docked molecules against AmpC and D4 receptor used Bemis–
Murcko scaffolds, as above. For the full library docking, the best-scoring member 
was selected to represent the scaffold. To investigate the influence of only docking 
cluster representatives, rather than docking the full library, scaffold representatives 
were picked by four different methods: (1) the closest member to the centroid by 
molecular mass and a calculated log octanol/water value of the partition coefficient 
of the compound (clogP), (2) the closest member to the centroid of molecular mass 
alone, (3) the member with the largest molecular mass and (4) the member with 
the smallest molecular mass. The molecular mass values are calculated and the 
clogP values are predicted by Rdkit (http://www.rdkit.org).
Analoging within the library. The 90 AmpC analogues from within the make-on-
demand library were selected on the basis of topological similarity to the primary 
docking hits: each had an ECFP4-based Tc ≥ 0.5 or shared the same substructure 
as the initial hit. All prioritized analogues also had favourable docking scores to 
the enzyme.
Make-on-demand synthesis. Compounds were synthesized using 70,000 qual-
ified in-stock building blocks and 130 well-characterized, two-component reac-
tions at Enamine. Historically, molecules have been synthesized in three to four 
weeks with an 85% fulfilment rate; in this project delivery time was six weeks, but 
with a 93% fulfilment rate. Each reaction is well-tested for conditions, including 
temperatures, completion time and mixing, as previously described62. Typically, 
compounds are made in parallel by combining reagents and solvents in a single vial 
in the appropriate conditions to allow the reaction to proceed to completion. The 
product-containing vial is filtered by centrifugation into a second vial to remove 
precipitate and the solvent is evaporated under reduced pressure; the product is 
then purified by high-performance liquid chromatography. Identity and purity is 
assessed by liquid chromatography–mass spectrometry, 1H and 13C NMR. All com-
pounds were shipped with 90% (most with 95%) or higher purity (Supplementary 
Tables 9, 10 and Supplementary Data 11–14).
AmpC crystallography. All four inhibitors, 547933290, 275579920, 339204163 
and 549719643, were cocrystalized from 1.7 M potassium phosphate with micro-
seeding at pH values that varied from 8.7 to 8.9, as previously described63. Crystals 
were cryo-cooled in a solution that contained a reservoir solution and 25% sucrose. 
Reflections were measured at beamline 8.3.1 of the Advanced Light Source with a 
wavelength of 1.11583 nm at a temperature of 100 K. Complexes with 547933290, 
275579920, 339204163 and 549719643 were measured to a resolution of 1.50 Å, 
1.91 Å, 1.90 Å and 1.79 Å, respectively (Extended Data Table 1). All four com-
plexes crystalized in the C2 space group with two molecules in the asymmetric 
unit63. The datasets were processed, scaled and merged using XDS and AIMLESS64. 
MOLREP was used for molecular replacement using the protein model from PDB 
1KE4, giving unbiased electron densities for the inhibitor in initial electron density 
maps. Initial model fitting and water addition was done in COOT65 followed by 
refinement in REFMAC66. Geometry restraints of inhibitor molecules were created 
in eLBOW-PHENIX. Following inhibitor modelling in COOT, refinement was 
carried out using PHENIX67. For each structure, geometry was assessed using 
MolProbity. The final models of 547933290, 275579920, 339204163 and 549719643 
in complex with AmpC were refined to Rwork and Rfree values of 19.1 and 22.3%, 
19.4 and 23.2%, 17.1 and 20.3%, and 18.6 and 22%, respectively. Coordinates have 
been deposited with PDB identifiers 6DPZ, 6DPY, 6DPX and 6DPT, respectively. 
Model quality was confirmed using PROCHECK. The total number of residues 
located in the most favourable and allowed region of the Ramachandran plot 
for the complexes with 547933290, 275579920, 339204163 and 549719643 were 
97.89% and 2.11%, 98.03% and 1.97%, 98.31% and 1.69%, and 98.03% and 1.97%, 
respectively. The data measurement and refinement statistics are summarized in 
Extended Data Table 1.
AmpC enzymology. All candidate inhibitors were dissolved in DMSO at 30 mM, 
and more dilute DMSO stocks were prepared as necessary so that the concentration 
of DMSO was held constant at 1% v/v in 50 mM sodium cacodylate buffer, pH 6.5. 
AmpC activity and inhibition was monitored spectrophotometrically using either 
CENTA or nitrocephin as substrates68. All assays included 0.01% Triton X-100 
to reduce compound aggregation artefacts69. Active compounds were further 
investigated for aggregation by dynamic light scattering and by inhibition of three 
counter-screening enzymes: trypsin, chymotrypsin and malate dehydrogenase36. 
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Unless otherwise stated, no active compound was found to form aggregates nor did 
they inhibit any of the three counter-screening enzymes (Supplementary Tables 2, 
3). IC50 values reflect the percentage inhibition fit to a dose–response equation 
in GraphPad Prism (GraphPad), whereas Ki values were calculated directly 
from Lineweaver–Burk plots for all compounds, except for ZINC170811339, 
ZINC184991516, ZINC171610178 and 547933290, for which the Cheng–Prusoff 
equation was used.
D4 receptor radioligand binding assay. Binding was measured using membrane 
preparations from HEK293T cells that transiently expressed human D2 (D2 long 
receptor), D3 and D4 (D4.4 variant). HEK293T cells (ATCC CRL-11268; 59587035; 
mycoplasma free) were transfected and membrane preparation and radioligand 
binding assays were set up in 96-well plates in the standard binding buffer (50 mM 
Tris, 10 mM MgCl2, 0.1 mM EDTA, 0.1% BSA, pH 7.4)14. For primary screening, 
10 μM compounds were incubated with membrane and radioligands (0.8–1.0 nM 
3H-N-methylspiperone) (PerkinElmer). For displacement experiments, test com-
pounds with increasing concentrations were incubated with the membrane and 
radioligands (0.8–1.0 nM 3H-N-methylspiperone). Reactions for either primary 
screening or displacement experiments were incubated for 2 h at room temper-
ature in the dark and terminated by rapid vacuum filtration onto chilled 0.3% 
PEI-soaked GF/A filters, followed by three quick washes with cold washing buffer 
(50 mM Tris HCl, pH 7.4) and quantified as previously described70. Results (with 
or without normalization) were analysed using GraphPad Prism 5.0 using one-site 
shift models where indicated.
cAMP inhibition assay. To measure D4 Gαi/o-mediated cAMP inhibition, 
HEK293T (ATCC CRL-11268; 59587035; mycoplasma free) cells were co- 
transfected with human D4 (D4.4 variant) along with a luciferase-based cAMP bio-
sensor (GloSensor; Promega) and assays were performed as previously described14. 
After 16 h, transfected cells were seeded in poly-l-lysine-coated 384-well  
white clear-bottom cell culture plates (Greiner; 10,000 cells per well, 40 μl per 
well) in DMEM containing 1% dialysed FBS. The next day, ligand solutions were  
prepared in fresh buffer (20 mM HEPES, 1× HBSS, 0.3% bovine serum album 
(BSA), pH 7.4) at 3× the drug concentration. Plates were decanted and received 
20 μl per well of ligand buffer followed by addition of 10 μl of ligand solution  
(3 wells per condition) for 15 min in the dark at room temperature. To measure 
agonist activity for Gαi/o-coupled receptors, 10 μl luciferin (4 mM final concen-
tration) supplemented with isoproterenol (400 nM final concentration was added 
to activate Gs via endogenous β2-adrenergic receptors) and luminescence inten-
sity was quantified 10 min later. Data were analysed using ‘log(agonist) versus 
response’ in GraphPad Prism 5.0.
Bioluminescence resonance energy transfer (BRET) assay. To measure D4-
mediated G protein activation, HEK293T cells were co-transfected with human 
D4, Gαi1 containing C-terminal Renilla luciferase (RLuc8), Gβ and Gγ containing 
a C-terminal GFP (at mass ratio 1:0.3:2:2, respectively). To measure D4-mediated 
arrestin recruitment, HEK293T cells were co-transfected with human D4 contain-
ing C-terminal RLuc8 and β-arrestin-2 containing a N-terminal YFP at ratio 1:3. 
After at least 16 h, transfected cells were plated in poly-l-lysine-coated 96-well 
white clear-bottom cell culture plates in plating medium (DMEM and 1% dialysed 
FBS) at a density of 40,000–50,000 cells in 200 μl per well and incubated overnight. 
The next day, the medium was decanted and cells were washed twice with 60 μl of 
drug buffer (20 mM HEPES, 1× HBSS, pH 7.4), then 60 μl of the RLuc substrate, 
coelenterazine 400a for G protein assay, and coelenterazine h for β-arrestin-2 assay 
(Promega, 5 μM final concentration in drug buffer), was added per well, incubated 
an additional 5 min to allow for substrate diffusion. Afterwards, 30 μl of drug (3×) 
in drug buffer (20 mM HEPES, 1× HBSS, 0.1% BSA, pH 7.4) was added per well 
and incubated for another 5 min. Plates were immediately read for luminescence 
at 400 nm and GFP fluorescence emission at 515 nm (G protein assay); 485 nm and 
eYFP fluorescence emission at 530 nm (β-arrestin-2 assay) for 1 s per well using 
a Mithras LB940 multimode microplate reader. The ratio of GFP/RLuc or eYFP/
RLuc was calculated per well and the net BRET ratio was calculated by subtracting 
the GFP/RLuc or eYFP/RLuc from the same ratio in wells without GFP or eYFP 
present. The net BRET ratio was plotted as a function of drug concentration using 
Graphpad Prism 5 (Graphpad).
Hit-rate curve prediction and estimation of maximum number of hits. To define 
the docking scoring ranges from which molecules would be picked for experimen-
tal testing, we used distributions of prior probabilities from Bayesian statistics for 
highest, mid-point and random hit rates, and for the slope of the curve. To advance 
the argument, we assumed that docking hit rates would behave in a manner similar 
to a dose–response curve as a function of docking energy, ei:

=
−

−
+− ⋅ −eHitRate( ) top bottom

1 e
bottomi S (e dock )i 50

This function is defined by four parameters: (1) top is the maximum hit rate; (2) 
dock50 is the dock energy in kcal mol−1 at top/2; (3) S = slope × 4/top, in which slope  

is the change in the hit rate at dock50 in hit rate %/(kcal mol−1); and (4) bottom is 
the minimum hit rate that we fixed at zero. To define the prior probability distribu-
tion, 4 authors graded 440 compounds across 11 energy slices (Extended Data Fig. 8e), 
from which we chose independent Bayesian prior probabilities for each parameter,  

α β= = =P(top) beta( 20, 80) , µ σ= = − =P(dock ) normal( 60, 15)50 , P(S) = 
µ σ= − . = .normal( 0 2, 0 1) (Extended Data Fig. 8b–d). To sample curves from 

the posterior distribution given the prior distribution and given the results of testing  
the 549 compounds, we used Hamiltonian Monte Carlo with no-u-turn sampling 
with Stan71 (four chains of 50,000 warm-up and 50,000 sampling steps each and 
adapt_delta = 0.99 and max_treedepth = 12 control parameters) (Fig. 4a and 
Extended Data Fig. 8b–d). To select the most informative compounds to test, we 
evaluated the Shannon information gain of six candidate designs, defined as the 
expected difference in posterior minus prior entropy over the prior-predictive 
distribution, by nested Monte Carlo72,73. We selected design 5 favouring higher 
information gain over number of active compounds (Extended Data Fig. 8f). To 
estimate the number of active compounds (Fig. 4b) and scaffolds (Extended Data 
Fig. 8g), the energies of the compounds and scaffold cluster heads were integrated 
over the uncertainty in the posterior hit-rate model (Extended Data Fig. 8h, i).
Code availability. DOCK3.7 is freely available for non-commercial research http://
dock.compbio.ucsf.edu/DOCK3.7/. A web-based version is available at http://
blaster.docking.org/.
Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
Active molecules reported here are available from B.K.S. or directly from Enamine. 
The four structures of AmpC determined with the new docking hits are available 
from the PDB with accession numbers 6DPZ, 6DPY, 6DPX and 6DPT. The com-
pounds docked in this study are freely available from our ZINC lead-like make-
on-demand library (http://zinc15.docking.org). All active compounds are available 
either from the authors or may be purchased from Enamine. Figures with asso-
ciated raw data include: Fig. 2, for which electron density and reflection files are 
deposited with the PDB; Figs. 3, 4 and Extended Data Fig. 5, for which Source Data 
are available in the online version of the paper; Extended Data Fig. 1, for which the 
data are included in Supplementary Table 1; Extended Data Fig. 6, for which raw  
clustering or no-clustering rank numbers are included in Supplementary Tables 8, 9.  
Further data are provided in Supplementary Tables 3, 5 (aggregation assays  
for AmpC inhibitors and D4 ligands); Extended Data Table 1 (crystallographic 
data collection and refinement); Supplementary Tables 9, 10 and Supplementary 
Data 12–15 (chemical purity of active ligands and their spectra); Supplementary 
Data 11 and 14 (synthetic routes to compounds). All other data are available from 
the authors on request.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Simulating the effect of library size on ligand 
enrichment among the top 1,000 docked molecules. a, b, The energy 
distribution of ligands (a) and decoys (b) from docking enrichment 
calculations against AmpC. The skewed normal fitting curves are plotted 
in red lines. The fitting parameters (shape (α), location (loc) and scale 
values) are shown. c, Heat maps of the number of active molecules in the 
top 1,000 docked molecules for 6 targets. The number of ligands in the 
top 1,000 docked molecules for a given library size and the ratio between 
ligands and decoys is coloured using a log10(number of ligands) scale 
ranging from 1 (blue) to 1,000 (red). Cells with zero ligands are shown 
in white. d, Large-library docking screens of AmpC (top, n = 99 million 
molecules) and D4 (bottom, n = 138 million molecules). Molecules 

that are known to bind to AmpC and D4, as well as close analogues, are 
treated as ligands and the rest of the molecules are treated as decoys. 
Left, the energy distributions of decoys (grey), ligands defined by 
ECFP4 Tc similarity ≥0.5 (blue), 0.6 (green) and 0.7 (orange) to ligands 
from ChEMBL. Middle, heat maps of the number of ligands in the top 
1,000 docked molecules based on fit to full-library docking with the 
ligands (AmpC, Tc ≥ 0.5, green; D4, Tc ≥ 0.6, orange) and decoys (grey) 
distributions. Right, number of ligands in the top 1,000 docked molecules 
as the library grows based on actual distributions plotted in the left 
panel. Data are mean ± s.d. of 20 samples. See Supplementary Table 1 for 
retrospective performance on three more targets.



Extended Data Fig. 2 | Initial hits and selected analogues against 
AmpC. The five initial hits are shown in the left column. Under each 
compound, the first row includes the ZINC identifier; the second row is 
the cluster rank (position in cluster head list sorted by DOCK score) with 
global rank (position in unclustered hit list sorted by DOCK score) shown 
in brackets; the third row is the Tc value (Tanimoto coefficient to known 
AmpC inhibitors in ChEMBL); the fourth row is the Ki value. Five selected 
analogues for the corresponding hits are shown in the right column. Under 
each compound, the first row includes the ZINC identifier; the second row 
is the Tc value; and the third row is the Ki value.



Extended Data Fig. 3 | Lineweaver–Burk plot and Ki analysis 
for analogues of each of the five series of AmpC inhibitors. 
a–f, Lineweaver–Burk plots for ZINC776666294 (a), 275579920 (b), 
ZINC548592534 (c), ZINC1187516987 (d), 339204163 (e) and 549719643 

(f), indicating competitive inhibition. IC50 values were determined by 
nonlinear regression fit in GraphPad Prism, and Ki values calculated by a 
replot of the slope of each Lineweaver–Burk plot versus the corresponding 
inhibitor concentration.



Extended Data Fig. 4 | Electron density maps for AmpC–inhibitor 
complexes. The initial Fo − Fc electron density map contoured at 2.5σ 
around the inhibitor (density in cyan) with refined 2Fo − Fc electron 
density contoured at 1σ for enzyme residues for the complexes with the 

following compounds. a, 547933290. b, 275579920. c, 339204163.  
d, 549719643. Inhibitor carbons are shown in cyan and enzyme carbons 
are shown in grey, oxygens in red, nitrogens in blue, sulfurs in yellow and 
chlorides in green.



Extended Data Fig. 5 | Selected D4 hits from docking 138 million make-
on-demand molecules. Six ligands with docked poses (first column), 
cAMP Gαi/o activities (second column), Tango β-arrestin activities (third 
column) and 3H-N-methylspiperone displacement and chemical drawing 
(fourth column) are shown. The receptor structure is in grey and ligand 
carbons are in teal. Ballesteros–Weinstein residue numbers are included 
as superscripts. Functional assays represent normalized concentration–

response curves of the ligands in cloned human D4-mediated activation 
of Gαi/o and β-arrestin translocation. Data are mean ± s.e.m. of three 
assays. The first row shows an example of an antagonist identified among 
the D4 hits. Both agonist (teal curve) and antagonist (purple curve) modes 
are shown for ZINC130532671 in the third panel; the concentration of 
quinpirole in the antagonist mode was 100 nM.



Extended Data Fig. 6 | Pre-clustering the docking library yields 
much worse scores of scaffold representatives compared to full 
library docking. a, b, Comparison of energy distributions of scaffold 
representatives between full library docking (orange) and pre-clustered 
library docking for D4 (a) and AmpC (b) using four strategies: the closest 
member to the centroid of molecular masses and clogP (blue), the closest 
member to the centroid of molecular masses (pink), the member with the 
largest molecular masses (magenta) and the member with the smallest 

molecular masses (green). The inset shows the ratio of the number of 
molecules at a given docking score for full library docking divided by 
the number at that score when only cluster representatives are docked 
(coloured by clustering method). For each target, two examples illustrate 
the effect on our experimentally active scaffold families. c, D4. d, AmpC. 
The scaffold for each molecule is highlighted in red. The ZINC identifier, 
post-cluster rank and pre-cluster rank are labelled for each pair. The arrow 
colour is as for the pre-clustering methods in a and b.



Extended Data Fig. 7 | Comparison of hit rates achieved by combined 
docking score and human prioritization compared to the rates achieved 
by docking score alone. a, The hit rates for selecting compounds at 
different scoring ranges by each strategy: human prioritization and 
docking score (orange), or docking score alone (blue). Hit rate is the ratio 
of active compounds/tested compounds; the raw numbers appear at the 
top of each bar. b, Distribution of the binding affinity level among the hits 
from a. There are 32 hits from human prioritization and docking score, 

and 26 hits from the docking score alone. These are divided into three 
affinity ranges: <100 nM (pale blue); 100 nM–1 μM (blue); 1–10 μM 
(dark blue). c, Functional activity distribution among the hits from b. 
There are 22 molecules from human prioritization and docking score, 
and 7 molecules from the docking score alone. These are divided into five 
activity ranges: <10 nM (pale green); 10 nM–1 μM (light green); 1–10 μM 
(olive); 10–50 μM (forest green); and not determined (dark green).



Extended Data Fig. 8 | Bayesian prior modelling for balancing 
information gain and ligand discovery in molecule-selection design 
and error estimation. a, Sigmoid functional form for the hit-rate model. 
b–d, Marginal Bayesian prior (teal) and posterior (red) distributions 
(n = 200,000) for each model parameter. b, Top. c, Dock50. d, Slope. e, 
Estimated hit rate based on evaluation by the authors of the docked poses 
before any molecules were tested. Brown, mean ± s.d.; n = 200, 220, 230, 
230, 285, 235, 210, 230 and 200 compounds; n = 5, 4, 4, 4, 4, 4, 4, 4 and 

4 experts. The prior mean (green) and samples (n = 200) from the prior 
(blue) are shown. f, Candidate (blue) and chosen (orange) experimental 
designs (inset, designs 1–6), with expected number of hits and information 
gain for each design. g, Expected number of active scaffolds (orange, 
mean; grey, posterior draws n = 200,000) superimposed on the total 
number of scaffold cluster heads (black). h, i, Marginal distribution of 
the number of active compounds (h) and scaffolds (i) over the posterior 
distributions (n = 200,000).



Extended data table 1 | data collection and refinement statistics of AmpC inhibitors

One crystal for each structure was used.
∗Values in parentheses are for the highest-resolution shell.



Extended data table 2 | the highest-affinity direct docking hits for the d4 receptor

The 36 highest-affinity hits are shown. See Supplementary Table 4 for all 549 compounds tested. See Supplementary Table 6 for novelty.
∗Cluster rank, position in cluster head (see Methods) list sorted by DOCK score.
†Tc, Tanimoto coefficient to dopaminergic, serotonergic or adrenergic ligands from ChEMBL.
‡ND, not determined. The compound was tested but no measurable value was observed.
§NT, not tested.
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