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We appreciate Dr. Jackelyn Hwang’s comments (1) on our
paper in which we compared a virtual audit of Detroit, Michi-
gan, using data from Google Street View (Google, Inc., Moun-
tain View, California) with an in-person audit of the same city
(2). Broadly, we concur with her observations regarding the
benefits and limitations of virtual audits and share her excite-
ment regarding how the technique might be leveraged in the
future. We elaborate here on key points raised by Dr. Hwang,
emphasizing decision points relevant to future research using
virtual audits.

First, we concur that ordinary kriging, the interpolation tech-
nique that we and others have used for spatially sampled neigh-
borhood data (3-6), does not account for block-by-block
differences in neighborhood physical disorder that can arise in
rapidly changing neighborhoods (7). More broadly, many built
environment characteristics of researcher interest, including
sidewalk accessibility (8), transit access (9—11), many aspects of
urban form (12), and pedestrian safety (13) display microscale
spatial patterns (i.e., block-by-block differences) that make
spatial interpolation imprecise at that level of aggregation.
However, these microscale patterns do not preclude the use
of a virtual audit, only interpolation. That is, a virtual audit of
every block in a neighborhood would capture the granular
variation in these features as well as would an in-person audit
of every block. Thus, researchers considering neighborhood
audits should allow the expected microscale variation of the
characteristics being audited to inform the sample design.

Second, we also concur that “big data” (14), such as 3-1-1
(nonemergency) and 9-1-1 (emergency) call records, could
supplement virtual audits by measuring aspects of social disor-
der indicators that virtual audits cannot (15); however, these
data may introduce biases because some demographic groups
are more engaged with 3-1-1 and 9-1-1 systems than are others
(16). Indeed, we expect that researchers will develop models
that integrate indicators of disorder from multiple sources in
future research; administrative and audit data used together in a
single spatial model may provide better measurement accuracy
than any one source alone. Such models, potentially leveraging

universal kriging, will benefit from further work comparing the
reliability and validity of available assessment techniques for
similar domains of inquiry (17).

Finally, we caution researchers considering virtual audits or
using other online geospatial tools that using subject’s home
addresses to select block faces to audit may violate the privacy
of those study subjects (18). Web browsers and virtual audit
systems such as the Forty Area Study Street View (19) and the
Computer Assisted Neighborhood Visual Assessment System
(20) send location information to Google to identify the street
segment to audit, thus passing identifying information to a
third party. Spatial interpolation, as used in the present study,
and spatial imputation minimize the risks of identity disclo-
sure (2, 18).
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