Methylomic profiles reveal sex-specific differences in leukocyte composition
associated with post-traumatic stress disorder
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ABSTRACT

Post-traumatic stress disorder (PTSD) is a debilitating mental disorder precipitated by trauma exposure.
However, only some persons exposed to trauma develop PTSD. There are sex differences in risk; twice as many
women as men develop a lifetime diagnosis of PTSD. Methylomic profiles derived from peripheral blood are
well-suited for investigating PTSD because DNA methylation (DNAm) encodes individual response to trauma and
may play a key role in the immune dysregulation characteristic of PTSD pathophysiology. In the current study,
we leveraged recent methodological advances to investigate sex-specific differences in DNAm-based leukocyte
composition that are associated with lifetime PTSD. We estimated leukocyte composition on a combined me-
thylation array dataset (483 participants, ~450k CpG sites) consisting of two civilian cohorts, the Detroit
Neighborhood Health Study and Grady Trauma Project. Sex-stratified Mann-Whitney U test and two-way
ANCOVA revealed that lifetime PTSD was associated with significantly higher monocyte proportions in males,
but not in females (Holm-adjusted p-val < 0.05). No difference in monocyte proportions was observed between
current and remitted PTSD cases in males, suggesting that this sex-specific difference may reflect a long-standing
trait of lifetime history of PTSD, rather than current state of PTSD. Associations with lifetime PTSD or PTSD
status were not observed in any other leukocyte subtype and our finding in monocytes was confirmed using cell
estimates based on a different deconvolution algorithm, suggesting that our sex-specific findings are robust
across cell estimation approaches. Overall, our main finding of elevated monocyte proportions in males, but not
in females with lifetime history of PTSD provides evidence for a sex-specific difference in peripheral blood
leukocyte composition that is detectable in methylomic profiles and that may reflect long-standing changes
associated with PTSD diagnosis.

1. Introduction

intrusive and persistent re-experiencing of the traumatic event, avoid-
ance of distressing, trauma-associated stimuli, negative alterations in

Post-traumatic stress disorder (PTSD) is a debilitating mental dis- cognition and mood, and alterations in arousal/reactivity that persist
order that is precipitated by a traumatic experience involving direct or for longer than a month (American Psychiatric Association, 1994;
indirect exposure to actual or threatened death, serious injury, or sexual 2013). While most individuals are exposed to a potentially traumatic
violence (American Psychiatric Association, 2013). PTSD presents with event at some point in their lives, only some develop PTSD (Breslau,
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2009; Kessler et al., 1995; Kilpatrick, 2013; Liu, 2017; Benjet, 2016;
Kessler, 2005; Kessler and Wang, 2008), suggesting that the disorder
reflects a distinct inability to reinstate homeostasis after psychological
trauma in vulnerable individuals (Yehuda et al., 2011).

Epidemiological studies have identified sex to be a significant vul-
nerability factor for developing PTSD, with women twice as likely to
have lifetime PTSD than men, even when risk of exposure and types of
trauma are taken into consideration (Kessler et al., 1995; Kilpatrick,
2013; Kessler and Wang, 2008; Breslau, 1998; Breslau et al., 1997;
Tolin and Foa, 2006). This sex bias in disease prevalence is also ob-
served in other stress-related mood and anxiety disorders (Kessler,
1994), including depression (Kessler et al., 1993). Preclinical and
clinical investigations have identified sexual dimorphism in stress re-
sponse systems that may be involved in the increased prevalence of
stress-related psychopathologies in women (Hodes, 2013; Bangasser
and Valentino, 2014). Furthermore, in addition to sexual dimorphism in
the neurobiological underpinnings of stress/trauma response, recent
animal studies suggest that behavioral response to traumatic stress is
fundamentally different b etween m ales a nd f emales a nd s hould be
considered in interpretation of results (Pooley, 2018). In humans, re-
sponse to stress/trauma exposure involves both biological and social
contributors corresponding to sex and gender-related variables. While
the effects of sex and gender are difficult to disentangle, investigations
stratified by biological sex, understood to interact with gender-related
variables, are warranted to improve our currently limited under-
standing of the sex-specific biological processes dysregulated in PTSD
pathophysiology.

Mounting evidence suggests a key role for stress-induced in-
flammation a nd i mmune a lteration i n t he d evelopment a nd main-
tenance of PTSD and other stress-related psychiatric disorders.
Although findings from human literature have been mixed, PTSD has
generally been associated with increased pro-inflammatory tone, ba-
sally and in response to immune challenge, via both cytokine signaling
and changes in immune cell distribution/function (Passos, 2015;
Michopoulos et al., 2017; Wang and Young, 2016; Kawamura et al.,
2001; Altemus et al., 2003; G lover et al., 2005; Gill et al., 2009;
G otovac, 2010; Lindqvist, 2014; Aiello, 2016; Lindqvist, 2017;
Sondergaard et al., 2004; Sommershof, 2009; Hoge, 2009; Michopoulos
et al., 2015; Bersani, 2016; Wang et al., 2016). Investigations in animal
models, primarily in male rodent studies, have provided mechanistic
insights into how peripheral immune cell response/signaling and dis-
tribution is linked with microglial activation and neuroinflammatory
dynamics to trigger stress-induced anxiety behavior and memory im-
pairment (Wohleb, 2011; Wohleb et al., 2013; Wohleb, 2014; McKim,
2016a,b; Wohleb and Delpech, 2017; Yin, 2019).

Epigenetic mechanisms have emerged as important regulators of
PTSD-associated immune dysregulation and inflammation (Bam, 2016;
Zhou, 2014; Uddin, 2010; Rusiecki, 2013; Bam, 2016; Smith, 2011),
and are particularly significant for the study of P TSD b ecause they
capture the interactions among pre-disposing genetic/environmental
risk factors and the precipitating trauma exposure. Individual response
to trauma exposure can be encoded as short-lived or persistent epige-
netic changes that reflect and may contribute to p osttraumatic phy-
siological changes, some of which remain after remission of PTSD
symptoms. DNA methylation (DNAm) has been the most widely studied
epigenetic mechanism and evidence from both animal and human
models point to its key role in stress regulation (Yehuda et al., 2011;
Weaver, 2004; McGowan, 2009; Stankiewicz et al., 2013), fear memory
(Miller et al., 2008; Maddox et al., 2013; Zovkic and Sweatt, 2013;
Malan-Muller et al., 2014; Kwapis and Wood, 2014), and immune
function (Uddin, 2010; Rusiecki, 2013; Bam, 2016; Smith, 2011;
Alvarez-Errico et al., 2015; Sun, 2016; Chen, et al., 2016; Wolf, 2018),
in both brain and blood. Exploring PTSD-associated DNAm profiles in
blood may inform our understanding of mechanisms underlying im-
mune dysregulation, particularly those that coordinate peripheral im-
mune-neuroimmune crosstalk (Irwin and Cole, 2011; Pfau and Russo,

2015); moreover, given the well-known sex difference in PTSD pre-
valence and in immune response (Klein and Flanagan, 2016; Osborne
et al., 2018), sex-stratified investigation relating to these dual factors is
warranted to identify potential differences in variability by sex that
may be missed in analyses combining both sexes.

Peripheral blood-based methylomic profiles are comprised of two
dynamic components: 1) profiles reflecting proportions of immune cell
subtypes (i.e., leukocyte composition) and 2) alterations in DNAm le-
vels at CpG sites genome-wide (i.e., differential methylation).
Epigenome-wide association studies (EWAS) often seek to identify dy-
namic differential methylation marks and treat cellular heterogeneity as
a major confound that must be addressed to improve signal detection.
However, differences in leukocyte subtypes provide key insights into
immunological changes and warrant examination themselves. Recent
developments in deconvolution algorithms and cell-type discriminating
reference databases have improved estimates (Titus et al., 2017;
Teschendorff et al., 2017; Koestler, 2016; Salas, 2018) and enabled
utility of DNAm-based leukocyte subtype estimates as proxies for white
blood cell differential-based metrics (Wiencke, 2017; Koestler, 2017).
Leveraging these recently developed methods, here we use leukocyte-
derived methylomic profiles combined from two civilian cohorts to
investigate our hypothesis that PTSD is associated with sex-specific
differences in leukocyte composition, detectable by DNAm-based esti-
mates. To our knowledge, this study is the first to investigate leukocyte
composition profiles in PTSD using these new DNAm-based approaches
for immune profiling.

2. Materials and methods
2.1. Study participants

Samples from trauma-exposed, adult participants with available
Ilumina HumanMethylation450 (450 K) BeadChip array data were se-
lected from two predominantly African-American, community-based
cohorts examining biological and environmental correlates of PTSD,
namely the Detroit Neighborhood Health Study (DNHS; n = 192) and
Grady Trauma Project (GTP; n = 422). The DNHS, based in Detroit, MI,
was approved by the institutional review boards of the University of
Michigan and University of North Carolina at Chapel Hill. The GTP,
based in Atlanta, GA, was approved by the institutional review boards
of Emory University School of Medicine and Grady Memorial Hospital.
All participants provided written informed consent prior to data col-
lection. Details regarding the DNHS (Uddin, 2010; Goldmann, 2011;
Meyers, 2015) and GTP (Gillespie, 2009; Binder, 2008; Zannas, 2015)
were published previously. While neither study excluded participants
based on illness, women known to be pregnant (in the GTP) were ex-
cluded from estimation and analyses, due to well-known/known sig-
nificant differences in leukocyte composition during pregnancy (Luppi,
2003). Collected demographic data included self-reported gender, race,
age, and current smoking, which was defined as any cigarette smoking
in the past 30 days.

2.2. Assessment of PTSD

Study participants were assessed for PTSD, as defined by the
Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-1V) (American Psychiatric Association, 2013). In the DNHS, study
participants were assessed for PTSD using the well-validated self-report
PTSD Checklist, Civilian Version (PCL-C) (Blanchard et al., 1996;
Grubaugh et al., 2007; Wilkins et al., 2011; Ruggiero et al., 2003) and
additional questions about duration, timing, and impairment due to
symptoms, via structured telephone interviews (Breslau, 1998; Uddin,
2010; Koenen, 2011). Participants who met all six DSM-IV criteria in
reference to their worst traumatic event or to a randomly selected
traumatic event (if the participant experienced more than one trauma),
were considered affected by lifetime PTSD. Those that met criteria



based on symptoms reported within the past month were considered
affected by current PTSD. Analysis of data from the clinical interviews
showed that the PTSD instrument used during structured telephone
interviews had excellent internal consistency and high concordance
(Uddin, 2010; Uddin, 2011). The PCL-C yielded a Cronbach coefficient
alpha (a) of 0.93. Using cluster scoring based on DSM-IV criteria (i.e. to
be a case, the participant’s symptoms had to meet all six criteria), the
instrument had a specificity (SP) of 0.97, sensitivity (SE) of 0.24, po-
sitive predictive value (PPV) of 0.80, negative predictive value (NPV)
0.72, and an area under the ROC curve (AUC) of 0.76, as previously
reported (Uddin, 2010; Uddin, 2011). In the GTP (Jovanovic, 2010),
study participants were assessed for lifetime and current PTSD using the
Clinician-Administered Post-traumatic Stress Disorder Scale (CAPS,
DSM-1V), a structured interview administered by a clinician that has
previously been shown to have excellent reliability (i.e., consistent
scores across items, raters, testing occasions) and excellent convergent
and discriminant validity in large scale psychometric studies (Blake,
1995; Weathers et al., 2001). For lifetime analyses, participants
meeting criteria for PTSD at any point (including current and past
PTSD) were considered cases and compared to trauma-exposed controls
who lacked a history of PTSD at any point in their lifetime. For com-
parisons of current PTSD with remitted PTSD and trauma exposed
controls, participants with lifetime PTSD were further separated into
two groups: those with current PTSD and those with lifetime (but not
current) PTSD.

2.3. Sample processing

In the DNHS, samples were obtained via an in-home blood draw
performed by a clinician, processed in the lab within two hours, and
stored at — 20 °C until testing. Detailed methods regarding biospecimen
processing in the DNHS are available in a separate publication (Weckle,
2015). In the GTP, DNA was extracted from whole blood, aliquoted, and
frozen at —80 °C within two hours of collection. Genomic DNA was
extracted from peripheral blood using the DNA Mini Kit (Qiagen, Ger-
mantown, MD) in the DNHS and the G entra Puregene Kit (Qiagen,
Germantown, MD) in the GTP. Both studies bisulfite-converted the DNA
samples using the Zymo EZ-96 DNA methylation kit (Zymo Research,
Irvine, CA) and used 500ng of DNA per sample for whole-genome
amplification, fragmentation, and hybridization to the Illumina Human
Methylation 450 K BeadChip array (Illumina, San Diego, CA), according
to the manufacturers’ recommended protocols. Sample processing
procedures have been published previously for both the DNHS and GTP
(Wolf, 2018; Zannas, 2015; Ratanatharathorn, 2017; Uddin, 2018;
Mehta, 2013).

2.4. Quality control and pre-processing of 450K data

The raw .idat files w ere i mported i nto R ( version 3 .5.1) (R
Foundation for Statistical Computing, Vienna, Austria, 2018), using the
minfi package (Aryee, 2014), available on Bioconductor (version 3.7)
(Huber, 2015; Gentleman, 2004), for all subsequent data processing
and analyses. After quality control (QC) (Aryee, 2014; Barfield et al.,
2012; Xu et al., 2016), data pre-processing (Liu and Siegmund, 2016;
Fortin et al., 2017; Chen, 2013; Teschendorff, 2013; Morris, 2014; Tian,
2017) was conducted on all QC’ed samples (DNHS: n = 187; GTP:
n = 416). This included duplicates (n = 12) in the DNHS and partici-
pants with known pregnancy (n = 26) or missing PTSD phenotype data
(n = 82) in the GTP. Analyses were conducted on unique participants
that passed QC, as described below, and had PTSD data available
(Table 1).

For data quality assessment, samples were checked for 1) low total
signal (mean signal intensity less than half of the overall median, after
setting probes with detection p-value > 0.001 or < 2,000 arbitrary
units to missing); 2) > 1% of failed probes (detection p-value >
0.001); 3) outlying beta value distribution (i.e., smaller than three

Table 1
Key demographic characteristics, by Sex.

Female(n = 330) Male(n = 153) Total(n = 483)

Study

DNHS 111 (33.6%) 64 (41.8%) 175 (36.2%)
GTP 219 (66.4%) 89 (58.2%) 308 (63.8%)
Race

AA 291 (88.2%) 140 (91.5%) 431 (89.2%)
CA 33 (10.0%) 11 (7.2%) 44 (9.1%)
Other 6 (1.8%) 2 (1.3%) 8 (1.7%)
Median Age

49.0 (38.0-55.0) 48.0 (36.0-56.0) 48.0 (37.5-55.0)

Current Smoking

no 210 (63.6%) 72 (47.1%) 282 (58.4%)
yes 109 (33.0%) 78 (51.0%) 187 (38.7%)
Missing 11 (3.3%) 3 (2.0%) 14 (2.9%)

Lifetime PTSD
no 135 (40.9%)
yes 195 (59.1%)

71 (46.4%)
82 (53.6%)

206 (42.7%)
277 (57.3%)

This table describes the subset of participants included in primary analyses
investigating sex-specific associations between DNAm-based cell estimates and
lifetime PTSD, by sex. For the 2-way ANCOVA, 14 participants were excluded
due to missing current smoking data.

DNHS: Detroit Neighborhood Health Study; GTP: Grady Trauma Project

times interquartile range (IQR) from the lower quartile or > 3 times
IQR from the upper quartile); 4) greater than three standard deviations
of the mean bisulfite conversion control probe signal intensity (Salas,
2018). Additionally, samples were checked for gender discordance
based on median total intensity of X and Y-chromosome mapped probes
(as implemented in minfi) (Aryee, 2014) and removed if predicted sex
differed from self-reported gender. Five samples were removed among
DNHS samples for gender discordance, and six samples were removed
among GTP samples (two for data quality and four for gender dis-
cordance). After within-array background correction and dye-bias
equalization using out-of-band control probes (ssNoob, minfi) (Fortin
et al.,, 2017; Triche et al., 2013), probes with detection p-value >
0.001 in > 10% of samples (Barfield et al., 2012) and cross-reactive
probes (Chen, 2013) (i.e., cross-hybridized between autosomes and sex
chromosomes) were removed. Beta-mixture quantile (BMIQ) normal-
ization (ChRAMP) (Morris, 2014; Tian, 2017) was used to correct for type
II probe bias (Teschendorff, 2013).

To control for technical artifacts (e.g., sample processing and ima-
ging batch effects), principal components (PCs) based on non-negative
control probe signal intensity (Xu et al., 2016) were removed from
BMIQ-normalized M-values (i.e., logit-transformed beta-values) sepa-
rately for each study. PC correlation heatmaps were used to check for
successful removal/reduction of batch effects, especially chip and row
effects, while maintaining signal from biological variables. The DNHS
and GTP datasets were then combined and an empirical Bayes method
(i.e., ComBat (Johnson et al., 2007) in the sva package (Leek et al.,
2012) was used on the combined M-values to account for study effects
while controlling for sex and age. Data quality assessment, QC probe
filtering, and first step of batch removal were study-specific, while pre-
processing steps (ssNoob + BMIQ) implemented within-array ap-
proaches unaffected by study. Only probes that passed QC in both
studies (n = 455,072 probes) were included in the combined dataset.

2.5. Leukocyte composition estimation

Leukocyte composition was estimated on ComBat-adjusted beta-
values using the EpiDISH (Teschendorff et al., 2017) reference database,
which is informed by cell-type specific DNase hypersensitive sites (DHS;
based on the NIH Epigenomics Roadmap database (Roadmap
Epigenomics, 2015)) and is optimized for discriminating granulocytes,
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Fig. 1. Correlation (Spearman’s rho) between cell estimates derived using robust partial correlation (RPC) and constrained projection (CP) deconvolution algorithms
is high in all leukocyte subtypes, with CD8* T cells (CD8T) showing the worst agreement at R = 0.8 in females and R = 0.87 in males. CDST cells also showed the
largest discrepancy in sex-specific correlation of estimates. RPC-CP correlation was > 0.9 and difference in RPC-CP correlation between sexes was between 0.01 and

0.03 for all other leukocyte subtypes.

CD14" monocytes, CD8* T cells, CD4* T cells, CD19" B cells, and
CD56" natural killer cells. Robust partial correlation (RPC; robust
multivariate linear regression, non-constrained projection) was used as
the primary deconvolution algorithm and EpiDISH’s implementation of
linear, constrained projection (CP), originally introduced by Houseman
(2012), was used to calculate a second set of estimates for comparison.

2.6. Ancestry estimation

DNAm-based ancestry PCs were derived on cleaned beta-values
after regressing out sex and age from batch-adjusted M-values. Ancestry
PCs were calculated on a subset of 2,317 ancestry informative CpG
probes included in two published ancestry informative CpG lists that
accounted for confounders (Rahmani, 2017) and that included probes
within 10 base pairs (bp) of single nucleotide polymorphisms (SNPs)
(Barfield, 2014). The first 2 PCs based on this subset of probes were
used as ancestry PCs (ancPCs) after checking for strong association with
self-reported race and effective separation of self-reported races.

2.7. Statistical analysis

The Shapiro-Wilk test was used to assess normality and Levene’s test
was used to compare equality of variance among groups. Since cell
estimates had dissimilar, non-normal distributions, non-parametric
tests were used for all initial group comparisons of leukocyte subtypes.
The two-sample Kolmogorov-Smirnov (KS) test was used to compare
distribution of cell estimates when variances were unequal between
groups and Mann-Whitney U test was used to compare mean ranks of
cell estimates otherwise. Spearman’s rank correlation was used to assess
agreement between estimates based on RPC and CP deconvolution
approaches. A threshold of 0.05 was used for p-values and p-values
were adjusted for multiple comparisons using Holm’s method (Holm,
1979), unless otherwise specified.

To test our main hypothesis—that PTSD is associated with sex-
specific differences in leukocyte composition—initial sex-stratified
analyses were conducted on all leukocyte subtypes using the non-

parametric Mann-Whitney U test. For leukocyte subtypes determined to
be significantly associated with lifetime PTSD in either sex based on
initial Mann-Whitney U tests, a two-way analysis of covariance
(ANCOVA; Type III) controlling for age, ancestry (based on DNAm
ancestry PCs), and current smoking, was performed with post-hoc
comparison of estimated marginal means to examine the effects of sex
and lifetime PTSD on transformed cell estimates. Transformation for
cell estimate was conducted to meet modeling assumptions for
ANCOVA and was informed by Tukey’s Ladder of Powers. Power
parameter (A) was computed to maximize normality based on the
Shapiro-Wilks W statistic. Sex-stratified Kruskal-Wallis and post-hoc
Dunn tests were conducted as additional follow-up to investigate pos-
sible differences in cell proportions by PTSD status (i.e., trauma-ex-
posed controls, remitted PTSD, and current PTSD).

3. Results

3.1. Demographic characteristics of sampled study participants from the
DNHS and GTP

The demographic characteristics of study participants included in
primary analyses investigating sex-specific associations between
DNAm-based cell estimates and lifetime PTSD are presented in Table 1.
Of the 483 participants from the combined DNHS and GTP sample,
57.3% had a lifetime diagnosis of PTSD, 68.3% were female, and 38.7%
were current smokers. The study population was predominantly
African-American (89.2%), based on self-reported race, and the median
age was 48 years (IQR: 17.5; 37.5-55 years).

3.2. Comparison of leukocyte subtype estimates by deconvolution approach

Good overall agreement was observed between RPC and CP esti-
mates, as measured by Spearman’s correlation (i.e., RPC-CP correla-
tion), but CD8" T cells (CD8T) showed much poorer agreement,
ps(481) = 0.83, relative to the other leukocyte subtypes,
ps(481) > 0.94 (Fig. 1). Since the main objective of this study was to



investigate sex-specific differences in leukocyte composition, compar-
ison of RPC and CP estimates was stratified by sex. Sex-stratified RPC-
CP correlation revealed that the largest difference in RPC-CP correla-
tion between sexes was also found in CD8T cells, |Aps| = 0.07, such that
females showed poorer correlation, py(328) = 0.80, than males,
ps(151) = 0.87. For the other leukocyte subtypes, the difference in
RPC-CP correlation between sexes (|Aps|), ranged from 0.01 to 0.03,
with CD56* natural killer (NK) cells having the second largest differ-
ence in correlation between sexes (female: py(328) = 0.93; male:
ps(151) = 0.96). In all leukocyte subtypes, except CD19™ B cells, fe-
males had lower correlation coefficients than males. Detailed results for
RPC-based cell estimates are reported below and corresponding results
based on CP-based estimates are reported in supplementary materials,
due to strong agreement between findings from both sets of estimates.

3.3. Comparison of leukocyte subtype estimates by sex and lifetime PTSD

Cell estimates were compared by sex, lifetime PTSD, and study in
each leukocyte subtype to establish overall differences. Significant
overall sex differences were observed in the distributions of NK (KS:
D = 0.19, adj. p = 0.007) and CDS8T cell proportions (KS: D = 0.16; adj.
p = 0.04) in RPC estimates. Males showed greater variability than fe-
males for both NK and CDS8T cells (male vs. female — IQRyk: 6.2% vs.
4.15%; IQRcpst: 9.5% Vs. 6.2%), as well as higher median NK (5.5% vs.
4.4%) and lower median CD8T (9.0% vs. 9.7%) cell proportions
(Fig. 2). No significant overall differences (i.e., in both sexes combined)
were observed between lifetime PTSD cases and trauma-exposed con-
trols in any leukocyte subtype (Mann-Whitney). Additional analyses
comparing leukocyte subtype proportions between participating co-
horts and assessing age effects in each cell type are reported in sup-
plementary materials.

3.4. Elevated monocyte proportions were associated with lifetime PTSD in
males, but not females

Sex-stratified M ann-Whitney U tests revealed a significant differ-
ence in monocyte proportions between PTSD cases and controls in

monocyte proportions than trauma-exposed controls, U = 2100,
Z = —2.9, p=0.004, adj. p = 0.026, r = 0.23. In contrast, no differ-
ence in monocyte estimates was found between groups in females,
U= 13000, Z= —0.58, p = 0.6, adj. p = 1, r = 0.03. Lifetime PTSD-
associated differences were not observed in any other leukocyte sub-
types in either sex.

A two-way ANCOVA was conducted to investigate whether sex
moderated the effects of lifetime PTSD on transformed monocyte esti-
mates, while accounting for age, ancestry, and current smoking
(Table 2). Monocyte estimates were square root transformed for the
ANCOVA to meet model assumptions (i.e., normality) and were in-
formed by Tukey’s Ladder of Powers (RPC: A = 0.43; CP: A = 0.5). A
significant interaction was found between sex and lifetime PTSD, F(1,
461) = 4.89,p = 0.027, n,> = 0.011. Post-hoc comparison of estimated
marginal means (EMMs) for lifetime PTSD by sex (Fig. 5; Table 3)
showed a significant mean difference between lifetime PTSD cases and
controls in males, AEMM = 0.26, SE = 0.08, (46 1) = 3.32,p = 0.001,
where mean monocyte estimates were higher in lifetime PTSD cases
than controls. No significant mean difference was observed between
PTSD cases and controls in females, AEMM = 0.05, SE = 0.05, t
(461) = 0.89, p = 0.37, confirming findings from initial sex-stratified
analyses. Together, our results suggest that male PTSD cases have sig-
nificantly elevated monocyte proportions compared to trauma-exposed
controls and that this lifetime PTSD-associated difference is not ob-
served in females.

3.5. Association between monocyte proportions and lifetime PTSD in males
is independent of current PTSD status

To investigate whether participants with current PTSD exhibited a
different monocyte profile from those with remitted PTSD, a sex-stra-
tified Kruskal-Wallis test was conducted for PTSD status (i.e., trauma-
exposed controls, remitted PTSD, and current PTSD; Fig. 6). A sig-
nificant difference in monocyte estimates was observed in males, H
(2) = 8.2, p = 0.017, but not in females, H(2) = 1.1, p = 0.59, con-
firming findings from analyses for lifetime PTSD. The post-hoc Dunn
test revealed significant differences between PTSD case groups and

males (Figs. 3 and 4). Males with lifetime PTSD had higher median trauma-exposed controls (current PTSD vs. controls: Z = 2.31,
CD19+ B cells CD56+ NK cells CD4+ T cells
0.15+
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Fig. 2. Distribution of leukocyte subtypes based on robust partial correlation (RPC) estimates, by sex. Sex differences in CD8* T and CD56* NK cell distributions

were found to be prominent.
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Fig. 3. Violin plots of RPC estimates for lifetime PTSD cases and controls, stratified by sex. Only monocyte proportions in males showed a statistically significant
difference between lifetime PTSD cases and controls, based on Mann-Whitney U test (p-value = 0.004; Holm-adjusted p-value = 0.026). For figure labels on x-axis:
B = CD19" B cells; NK = CD56* NK cells; CDAT = CD4™" T cells; CD8T = CD8" T cells; Gran = Granulocytes; Mono = CD14* monocytes.

p =0.021, adj. p=0.042, r = 0.23; remitted PTSD vs. controls: Table 2
Z = 2.40, p = 0.016, adj. p = 0.049, r = 0.22), but no significant dif- Two-way ANCOVA Table for RPC monocyte estimates (n = 469).
ference between current and remitted PTSD groups, Z = 0.18,p = 0.86,

X L R Terms Type III Sum of df Mean F P partial n?
adj. p = 0.86, r = 0.02. These findings suggest that the association Squares Square
between monocyte proportions and lifetime PTSD in males is in-
dependent of current PTSD state and may reflect long-standing changes Sex " 0.336 1 0336 1.469 = 0.226 0003
. e - - . PTSDIi 2.379 1 2. 10. .001%- 0.022
associated with lifetime history of PTSD diagnosis. SDlife 37 379 0-407 2*00 0.0
Comparative analyses based on CP monocyte estimates showed si- Age 2.309 1 2.309 10101 0.002%  0.021
milar results to RPC-based results (see Supplementary Materials); o
however, CP-based results consistently presented smaller effect sizes ancPC1 0.000 1 0.000 0.001  0.977 0.000
than RPC-based results across all analyses and follow-up comparisons ;“CPISZ g'iég 1 g'iéz g'zz g'ng g'ggf
. moking 3 . B . .
i ex:PTSDlife  1.146 .146 5.0 0.026 .0
between PTSD case groups and trauma-exposed controls did not reach s Shlife  1.14 1 114 1 026 0011

significance after p-value adjustment in post-hoc Dunn test using CP Residuals 105.399 461 0.229
monocyte estimates in males.

**p < 0.05, **p < 0.01, ***p < 0.005.
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Fig. 4. Density plots for RPC monocyte estimates in lifetime PTSD cases and controls, stratified by sex, show distinctly higher monocyte levels in males with lifetime
PTSD compared to trauma-exposed controls. This difference in monocyte levels between lifetime PTSD cases and controls is not observed in females.
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Fig. 5. Lifetime PTSD by sex interaction plot for estimated marginal means (EMMs) of RPC monocyte estimates. Interaction plot shows a significant EMM difference
between lifetime PTSD cases (red) and controls (blue) in males, where mean monocyte estimates are higher in cases than controls. No significant EMM difference was
observed between PTSD cases and controls in females. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

Table 3

Summary for RPC monocyte estimates by group.
Sex PTSD n mean SE EMM  SEgym  lower.CL  upper.CL
Female no 135 7.113 0.2443 6.758 0.2214 6.330 7.200
Female yes 184 7.182 0.1691 7.014 0.1893 6.647 7.391
Male no 70 6.803 0.3228 6.507 0.2926 5.945 7.095
Male yes 80 8.103 0.3147 7.921 0.3063 7.331 8.535

This table describes untransformed RPC monocyte estimates by group (i.e., sex
and lifetime PTSD); n = count per group; EMM = estimated marginal means
(i.e., least squares means); SE = standard errors for regular means;
SEgmm = standard errors for EMM.

Lower and upper confidence limits (CL) are for 95% level. EMM and intervals
were back-transformed from the square root scale to the original scale of cell
subtype proportions (%). Significance level of alpha = 0.05 was used for EMM
comparisons. Results for pairwise comparison were averaged over levels for
current smoking. Degree of freedom was 461 and male lifetime PTSD cases were
significantly different from other groups.

4. Discussion

Methylomic profiles derived from peripheral blood offer a wealth of
information and can be harnessed to detect two dynamic measures of
immune state: 1) differences in leukocyte composition (i.e., proportions
of peripheral immune cell subtypes); and 2) true alterations in

methylation involved in epigenetic regulation of immune processes.
They are particularly well-suited for investigating PTSD because DNAm
encodes individual response to trauma and may play a key role in
PTSD-associated immune dysregulation. Given the prominent sex dif-
ferences in both PTSD prevalence (Kessler et al., 1995; Kilpatrick, 2013;
Kessler and Wang, 2008; Breslau, 1998; Breslau et al., 1997; Tolin and
Foa, 2006) and immune response (Klein and Flanagan, 2016; Osborne
et al., 2018), the primary goal of the present study was to investigate
whether PTSD is associated with sex-specific differences in leukocyte
composition, detectable by DNAm-based estimates. We found that
males with lifetime PTSD showed significantly higher monocyte pro-
portions than trauma-exposed males without PTSD; this difference was
not observed in females. No difference in monocyte proportions was
observed between current and remitted PTSD cases in males, suggesting
that this sex-specific difference may reflect a long-standing trait of
lifetime history of PTSD diagnosis, rather than current state of PTSD.
These findings were observed in both the primary RPC and comparison
CP-based sets of cell estimates, which were derived using non-con-
strained vs. constrained projection deconvolution algorithms, respec-
tively. Overall, our main finding of elevated monocyte proportions in
males, but not females with lifetime history of PTSD provides evidence
for a sex-specific difference in peripheral blood leukocyte composition
that may reflect long-standing changes associated with PTSD diagnosis
and is detectable in methylomic profiles, consistently across different
deconvolution algorithms.



PTSD Status

No PTSD D Remitted |:| Current

Female Male

0.201

0.15-
>
@010
3

0.05-

0.00 ‘ -

5 10 15 5 10 15

RPC Mono

Fig. 6. Density plots for RPC monocyte estimates comparing those with current PTSD, remitted PTSD, and trauma-exposed controls, stratified by sex. Distinguishing
between current and remitted PTSD cases suggests that the significant peak difference in male PTSD cases may be associated with long-standing PTSD trait, rather
than current PTSD state. Corresponding post-hoc Dunn test revealed no significant difference between current and remitted PTSD cases and significant differences
between PTSD case groups and trauma-exposed controls. Again, no significant differences were observed in females.

In our study, we leveraged recent advances in reference-based de-
convolution methods (Teschendorff et al., 2017; Koestler, 2016; Salas,
2018) - specifically the EpiDISH algorithm (Teschendorff et al., 2017),
which (i) employs DNase hypersensitive site (DHS) data of leukocyte
subtypes to inform probe selection for their reference database and (ii)
introduces RPC, a non-constrained projection approach for reference-
based deconvolution. A comparative validation study on in-silico mix-
tures of purified cell DNAm profiles previously showed this newer RPC
approach to consistently perform better than the widely used CP ap-
proach (Houseman, 2012), based on root mean square error (RMSE)
and R2, at low noise levels (Teschendorff et al., 2017) typically en-
countered in real data (Teschendorff et al., 2017; Salas, 2018). Relevant
to our results, the study showed the difference in RMSE and R2 to be the
most prominent in CD8T cells (Teschendorff et al., 2017). This is con-
sistent with our comparison between RPC and CP estimates, which
showed CD8T cells to exhibit poorer correlation between RPC and CP
estimates relative to other leukocyte subtypes and the largest difference
in RPC-CP correlation between sexes. Similarly, the validation study
reported better performance of RPC, compared to CP, in monocytes,
with higher RMSE and lower R2 in CP compared to RPC, suggesting
RPC-based estimates were more robustly associated with true weights.
In light of the validation study, this suggests that our RPC-based esti-
mates were better able to resolve male-specific association of monocyte
proportions with lifetime PTSD. In all, our results were consistent with
the previously published validation study (Teschendorff et al., 2017)
and favored use of RPC estimates for modeling leukocyte composition.
However, as these methods have been developed recently, further va-
lidation and comparative studies are warranted.

Comparison of leukocyte subtype estimates by sex revealed sig-
nificant baseline sex differences in the distributions of NK cell and
CDS8T cell proportions, with males showing greater median NK and
lower median CD8T cell proportions, using both RPC and CP based
estimates. This finding is consistent with a previous study that reported
sex differences in both leukocyte subtypes using estimates based on
minfi’s implementation of the Houseman approach (Inoshita, 2015) and
with immunology literature that reported higher NK cell counts and
proportions in males compared to females (Abdullah, 2012). A recent
study that modeled cell-specific methylation profiles also reported ro-
bust sex differences in CD56* NK methylation patterns (White, 2017),

suggesting that this leukocyte subtype may be regulated by DNAm in a
sex-specific manner. Additionally, DNAm dynamics have been found to
drive effector functions in CDS8T cells after stimulation (Scharer et al.,
2013; Suarez-Alvarez et al., 2012). Development of reference databases
that resolve the six main leukocyte subtypes to consider proportions of
subsets with shared lineage but different functionality/phenotype (e.g.,
naive vs. memory vs. regulatory subtypes) may allow us to explore this
hypothesis and would greatly enrich our understanding of immune
activity.

Our main finding of higher monocyte proportions in male lifetime
PTSD cases is consistent with a previous study of Gulf War Illness (GWTI)
in a predominantly male veteran cohort, which reported an association
between GWI and increase in monocyte count (Johnson et al., 2016).
However, comparable studies reporting monocyte counts from differ-
ential leukocyte count are generally lacking; the majority of immune
studies of PTSD have focused on inflammatory markers (e.g., cytokine
levels) and cellular activity, including spontaneous and stimulated cy-
tokine production, and studies of cell counts/proportions have focused
on lymphocytes, particularly T-cell subsets (Passos, 2015; Wang and
Young, 2016; Speer et al., 2018; Pace and Heim, 2011; Ironson et al.,
2007; Wong, 2002). Two PTSD studies that reported monocyte counts
based on white blood cell differential count found no significant dif-
ference in monocyte proportions (Rohleder et al., 2004; Gola, 2013),
which is consistent with our results in both sexes, but did not conduct
sex-stratified analyses. Additionally, a small study in adult females that
matched PTSD participants and controls for phase of menstrual cycle
agreed with our female-specific results and reported no difference be-
tween PTSD subjects and controls in percentage of any lymphocyte
subsets or total numbers of leukocytes, neutrophils, lymphocytes, or
monocytes (Altemus et al., 2006). PTSD studies investigating peripheral
lymphocyte numbers have reported mixed findings (Kawamura et al.,
2001; Zhou, 2014; Pace and Heim, 2011; Ironson et al., 2007; Rohleder
et al., 2004; Boscarino and Chang, 1999; de Kloet, 2007; Vidovic, 2011;
Vidovic, 2007; Jergovic, 2014), but more recent studies that further
resolved T-cell subpopulations support PTSD-associated differences in
T-cell composition indicative of pro-inflammatory skew (Sommershof,
2009; Zhou, 2014; Jergovic, 2014) and immunological aging (Aiello,
2016). Many of these studies were conducted predominantly in one sex
(often in male veteran cohorts) (Zhou, 2014; Boscarino and Chang,



1999; de Kloet, 2007; Vidovic, 2011, 2007; Jergovic, 2014) and those
based on both sexes did not conduct sex-stratified a nalyses (Aiello,
2016; Sommershof, 2009; Rohleder et al., 2004). To our knowledge, no
authoritative study of sex differences in complete blood counts in PTSD
has yet been published, and studies of sex differences in PTSD have
generally been lacking, with a number of large-scale studies conducted
in predominantly male military cohorts (or on female-only cohorts, e.g.
Nurses’ Health Study II) (Koenen, 2009; Sumner, 2017).

While not for PTSD, a study of depression that examined white blood
cell differential count noted a significant increase in monocyte count and
proportions among males with major depressive disorder (MDD), but not
females, and a significant s ex by d iagnosis i nteraction ( Maes, 1992).
Likewise, a separate longitudinal study following MDD inpatients also
reported elevated monocyte counts in patients compared to controls, and
this was driven by men (Seidel, 1996). Additionally, a decrease in de-
pression severity was associated with a decrease in monocyte counts
(Seidel, 1996), suggesting that monocytes may be related to clinical
improvement. Similarly, the presence and severity of atherosclerosis,
another condition linked to PTSD via systemic low-grade inflammatory
state (Brouwers et al., 2015), are also associated with an increase in
monocyte count in males, but not females (Huang, 2001).

Further prospective investigation of PTSD is needed to determine
whether the higher monocyte proportion observed in males reflects an
increased susceptibility for developing PTSD or if it reflects a n im-
munological shift in response to the precipitating trauma associated with
PTSD psychopathology. However, studies in a male rodent model pro-
vide strong evidence for the latter and have been important for estab-
lishing the relationship between peripheral immune cells and the brain in
the context of psychosocial stress and associated behavior. Repeated
social defeat (RSD) was found to induce myelopoiesis and release in-
flammatory ( Ly6C"™) m onocytes i nto c irculation v ia s ympathetic sig-
naling, and this increased level of circulating peripheral monocytes was
associated with recruitment of pro-inflammatory monocytes/macro-
phages to the brain and neuroinflammation (Wohleb, 2011; Engler et al.,
2004; Weber et al., 2017). Increased proportion of these peripheral
monocytes and macrophage recruitment to the brain were also demon-
strated to correspond with development, maintenance, and re-establish-
ment of RSD-induced anxiety-like behavior; blockade of this recruitment
(via splenectomy or B-adrenergic receptor blockage) before RSD was
found to prevent development of anxiety-like behavior (Wohleb, 2014;
McKim, 2016). Additionally, a recent paper discerned that stress-induced
anxiety-like behavior and social avoidance are dependent on an increase
in IL-6 after stress exposure, which induces a primed transcriptional
profile in monocytes recruited to the brain and propagates IL-13 medi-
ated inflammation associated with anxiety-like behavior (Niraula et al.,
2019). These studies implicate peripheral monocytes in directly affecting
relevant PTSD-like behavior after stress exposure in males (Bierhaus,
2003; Grisanti, 2010). Very recently, the first study using a modified
version of the RSD paradigm was conducted in female mice and reported
a similar onset of anxiety-like and social avoidance behavior, increase in
myelopoiesis, increase in peripheral monocyte proportions, and recruit-
ment of peripheral myeloid cells to the brain, 14h after the last RSD
cycle (Yin, 2019). Continued work based on this paradigm at multiple
time points may be fruitful for investigating if there are sex differences in
the kinetics of leukocyte trafficking and tissue di stribution, especially
since recent investigations in other PTSD-relevant rodent models suggest
fundamental sex differences in neurobiological response to trauma ex-
posure (Pooley, 2018) and in regulation of stress/trauma-induced neu-
roinflammatory p riming/neuroimmune a lterations ( Fonken, 2018;
Bekhbat and Neigh, 2018). Furthermore, a social stress paradigm in
pregnant rats reported lower numbers of monocytes in stressed females
than control female rats (Stefanski et al., 2005), illustrating the im-
portance of considering different paradigms and breeds/species.

Although no studies of PTSD have investigated sex differences in
monocyte counts or methylomic profiles, chronic PTSD-associated sex dif-
ferences were noted in transcriptional regulation (O'Donovan, 2011) and

gene expression (Neylan, 2011) of CD14* monocytes isolated from per-
ipheral blood. Given the inherent sex differences in innate immune response
(Klein and Flanagan, 2016; Nunn et al., 2009), as understood in the context
of infection, injury, and treatment of inflammatory disorders, sexually di-
morphic dynamics and effects may also exist in the context of neuroimmune
response to stress/trauma exposure (Bekhbat and Neigh, 2018). One re-
levant sex difference in monocytes involves the expression of IL-6, which
was suggested to be important for stress-induced anxiety-like behavior and
social avoidance in the RSD model (Niraula et al., 2019). Independent of
reproductive hormones (i.e., estradiol, dehydroepiandrosterone [DHEA],
progesterone), women were shown to have greater monocyte expression of
IL-6 across a circadian period than men, and sympathovagal balance was
negatively associated with monocyte IL-6 expression only in women
(O'Connor et al., 2007). On the other hand, a study examining sex differ-
ences in regulation of inflammatory cell recruitment and cytokine synthesis
found that ovarian hormones regulate phenotype, function, and numbers of
macrophages, but not T lymphocytes, in females (Scotland et al., 2011).
This fundamental sex difference may underlie more efficient recognition
and elimination of infectious stimuli without recruitment of circulating
neutrophils or excessive cytokine production in females, compared to males
(Scotland et al., 2011), and may also have implications in the context of
psychosocial stress exposure. Relatedly, statins, which have anti-in-
flammatory activity, modulate monocyte migration in a sex-specific
manner, such that both spontaneous and lipopolysaccharide-induced mi-
gration of isolated monocytes were found to be inhibited by statins in
women, but not men (Ruggieri, 2014).

Our observation of male-specific increase in monocyte proportions as-
sociated with lifetime PTSD may reflect fundamental sex differences in
leukocyte trafficking, tissue distribution, and thus composition in blood,
with implications for stress/trauma-induced neuroimmune alterations and
behavior. Of note, while the effect size detected in males translates to an
absolute difference of only 1.3% in monocyte proportions between parti-
cipants with vs. without PTSD (~8.1% vs. 6.8%; Table 3), it also corre-
sponds to an increase of approximately 19% in overall monocytes among
men with lifetime PTSD. Furthermore, the lack of difference between re-
mitted and current PTSD observed in males may have a number of im-
plications for PTSD pathophysiology, including adverse health con-
sequences associated with PTSD across the life course in men, which may be
distinct from PTSD-associated health trajectories in women (Dedert et al.,
2010; Mitchell, 2013; McLean et al., 2011).

Although the current dataset combined two cohorts and known
pregnancies were excluded from our study, sample size and unavailable
phenotype data on pregnancy, timing of the menstrual cycle, hormonal
birth control use, well-harmonized measures of depression, and health
status, as well as gender-related variables, such as coping mechanisms,
are all limitations of this study. Future studies that account for hormone
levels and other fundamental physiological sex differences may help
identify female-specific associations between PTSD and leukocyte
composition and clarify if hormone-dependent processes influence
leukocyte composition dynamics. Additionally, both cohorts included
in this study are civilian, urban, and predominantly African-American,
so generalizability of our findings may be limited to this population.

Overall, our study implements current state-of-the-art methods to illus-
trate feasibility of using DNAm-based leukocyte composition estimates to
probe immune profiles. Our literature-supported finding of higher DNAm-
based monocyte proportions in males may be an informative metric to in-
clude as part of a diagnostic biomarker panel for PTSD in males, and future
study in females, with consideration for hormonal status, may elucidate a
female-specific panel as well. Differential methylation markers discovered
in sex-stratified EWAS, which account for these cell estimates as covariates,
are other prime candidates to be included in such sex-specific biomarker
panels. Furthermore, in addition to being able to infer leukocyte composi-
tion when complete blood count data is not available, these DNAm-based
estimates of leukocyte composition can be used to determine cell-specific
differential methylation profiles. In fact, methods and validation for cell-
specific differential methylation analyses have been published very recently



(Zheng et al., 2018; Li et al., 2019) and may enable the next significant
advance in extracting insights from methylomic profiles by contextualizing
how differential methylation in specific leukocyte subtypes alter regulatory
dynamics in the immune system. Ultimately, this work may help to shape
future studies designed to determine whether sex-specific methylomic me-
trics of peripheral immune status can inform us about sex differences in
neuroinflammation and corresponding behavior in response to trauma ex-
posure.

5. Conclusion

By combining DNA methylation datasets from two civilian cohorts,
the current study found significantly higher monocyte proportions in
males with lifetime PTSD compared to trauma-exposed controls, a dif-
ference that was not observed in females. This sex-specific difference in
peripheral blood leukocyte composition may reflect a long-standing
trait of PTSD diagnosis, rather than current state of PTSD. While this
finding was confirmed using two different cell estimation approaches
(i.e., deconvolution algorithms), the recently developed non-con-
strained projection approach (RPC) appears better suited for modeling
leukocyte composition. Methylome-based characterization of immune
profiles holds special promise for the study of PTSD and continued
development of reference databases and validation of methods will
build on these recent improvements to enrich our understanding of sex-
specific immune dysregulation associated with PTSD.

Funding

NIH grants: RO1IMD011728; 3R01MD011728-02S1; RO1 DA022720;
DA022720-S1; RC1MHO088283; MH096764; MH071537; University of
Illinois: CompGen Fellowship.

Declaration of Competing Interest
None.
Acknowledgments

We appreciate the time and effort of study participants, staff and
volunteers of the Detroit Neighborhood Health Study and Grady
Trauma Project.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.bbi.2019.06.025.

References

Abdullah, M., et al., 2012. Gender effect on in vitro lymphocyte subset levels of healthy
individuals. Cell Immunol 272, 214-219. https://doi.org/10.1016/j.cellimm.2011.
10.009.

Aiello, A.E., et al., 2016. PTSD is associated with an increase in aged T cell phenotypes in
adults living in Detroit. Psychoneuroendocrinology 67, 133-141. https://doi.org/10.
1016/j.psyneuen.2016.01.024.

Altemus, M., Cloitre, M., Dhabhar, F.S., 2003. Enhanced cellular immune response in
women with PTSD related to childhood abuse. Am. J. Psychiat. 160, 1705-1707.
https://doi.org/10.1176/appi.ajp.160.9.1705.

Altemus, M., Dhabhar, F.S., Yang, R., 2006. Immune function in PTSD. Ann. N Y Acad.
Sci. 1071, 167-183. https://doi.org/10.1196/annals.1364.013.

Alvarez-Errico, D., Vento-Tormo, R., Sieweke, M., Ballestar, E., 2015. Epigenetic control
of myeloid cell differentiation, identity and function. Nat. Rev. Immunol. 15, 7-17.
https://doi.org/10.1038/nri3777.

Aryee, M.J., et al., 2014. Minfi: a flexible and comprehensive Bioconductor package for
the analysis of Infinium DNA methylation microarrays. Bioinformatics 30,
1363-1369. https://doi.org/10.1093/bioinformatics/btu049.

American Psychiatric Association, 1994. Diagnostic and statistical manual of mental
disorders. Fourth ed. (American Psychiatric Association, Washington, DC).

American Psychiatric Association, 2013. Diagnostic and statistical manual of mental
disorders. 5 ed.

Bam, M., et al., 2016. Dysregulated immune system networks in war veterans with PTSD

is an outcome of altered miRNA expression and DNA methylation. Sci. Rep. 6, 31209.
https://doi.org/10.1038/srep31209.

Bam, M., et al., 2016. Evidence for epigenetic regulation of pro-inflammatory cytokines,
interleukin-12 and interferon gamma, in peripheral blood mononuclear cells from
PTSD patients. J. Neuroimmune. Pharmacol. 11, 168-181. https://doi.org/10.1007/
511481-015-9643-8.

Bangasser, D.A., Valentino, R.J., 2014. Sex differences in stress-related psychiatric dis-
orders: neurobiological perspectives. Front. Neuroendocrinol. 35, 303-319. https://
doi.org/10.1016/].yfrne.2014.03.008.

Barfield, R.T., et al., 2014. Accounting for population stratification in DNA methylation
studies. Genet. Epidemiol. 38, 231-241. https://doi.org/10.1002/gepi.21789.

Barfield, R.T., Kilaru, V., Smith, A.K., Conneely, K.N., 2012. CpGassoc: an R function for
analysis of DNA methylation microarray data. Bioinformatics 28, 1280-1281.
https://doi.org/10.1093/bioinformatics/bts124.

Bekhbat, M., Neigh, G.N., 2018. Sex differences in the neuro-immune consequences of
stress: Focus on depression and anxiety. Brain Behav. Immun. 67, 1-12. https://doi.
org/10.1016/].bbi.2017.02.006.

Benjet, C., et al., 2016. The epidemiology of traumatic event exposure worldwide: results
from the World Mental Health Survey Consortium. Psychol. Med. 46, 327-343.
https://doi.org/10.1017/50033291715001981.

Bersani, F.S., et al., 2016. A population of atypical CD56(-)CD16(+ ) natural killer cells is
expanded in PTSD and is associated with symptom severity. Brain Behav. Immun. 56,
264-270. https://doi.org/10.1016/j.bbi.2016.03.021.

Bierhaus, A., et al., 2003. A mechanism converting psychosocial stress into mononuclear
cell activation. Proc. Natl. Acad. Sci. U.S.A. 100, 1920-1925. https://doi.org/10.
1073/pnas.0438019100.

Binder, E.B.,, et al., 2008. Association of FKBP5 polymorphisms and childhood abuse with
risk of posttraumatic stress disorder symptoms in adults. JAMA 299, 1291-1305.
https://doi.org/10.1001/jama.299.11.1291.

Blake, D.D., et al., 1995. The development of a Clinician-Administered PTSD Scale. J.
Trauma Stress 8, 75-90.

Blanchard, E.B., Jones-Alexander, J., Buckley, T.C., Forneris, C.A., 1996. Psychometric
properties of the PTSD Checklist (PCL). Behav. Res. Ther. 34, 669-673.

Boscarino, J.A., Chang, J., 1999. Higher abnormal leukocyte and lymphocyte counts 20
years after exposure to severe stress: research and clinical implications. Psychosom.
Med. 61, 378-386.

Breslau, N., et al., 1998. Trauma and posttraumatic stress disorder in the community: the
1996 Detroit Area Survey of Trauma. Arch. Gen. Psychiat. 55, 626-632.

Breslau, N., 2009. The epidemiology of trauma, PTSD, and other posttrauma disorders.
Trauma Viol. Abuse 10, 198-210. https://doi.org/10.1177/1524838009334448.
Breslau, N., Davis, G.C., Andreski, P., Peterson, E.L., Schultz, L.R., 1997. Sex differences in

posttraumatic stress disorder. Arch. Gen. Psychiat. 54, 1044-1048.

Brouwers, C. J., Wolf, J. M. von Kanel, R. 2015. Comprehensive Guide to Post-Traumatic
Stress Disorder Ch. Chapter 54-1, 1-13.

Chen, Y.A,, et al., 2013. Discovery of cross-reactive probes and polymorphic CpGs in the
Ilumina Infinium HumanMethylation450 microarray. Epigenetics 8, 203-209.
https://doi.org/10.4161/epi.23470.

Chen, L., et al., 2016. Genetic drivers of epigenetic and transcriptional variation in human
immune cells. Cell 167, 1398-1414. https://doi.org/10.1016/j.cell.2016.10.026.

de Kloet, C.S., et al., 2007. Leukocyte glucocorticoid receptor expression and im-
munoregulation in veterans with and without post-traumatic stress disorder. Mol.
Psychiat. 12, 443-453. https://doi.org/10.1038/sj.mp.4001934.

Dedert, E.A., Calhoun, P.S., Watkins, L.L., Sherwood, A., Beckham, J.C., 2010.
Posttraumatic stress disorder, cardiovascular, and metabolic disease: a review of the
evidence. Ann. Behav. Med. 39, 61-78. https://doi.org/10.1007/512160-010-
9165-9.

Engler, H., Bailey, M.T., Engler, A., Sheridan, J.F., 2004. Effects of repeated social stress
on leukocyte distribution in bone marrow, peripheral blood and spleen. J.
Neuroimmunol. 148, 106-115. https://doi.org/10.1016/j.jneuroim.2003.11.011.

Fonken, L.K,, et al., 2018. Neuroinflammatory priming to stress is differentially regulated
in male and female rats. Brain Behav. Immun. 70, 257-267. https://doi.org/10.1016/
j.bbi.2018.03.005.

Fortin, J.P., Triche Jr., T.J., Hansen, K.D., 2017. Preprocessing, normalization and in-
tegration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics
33, 558-560. https://doi.org/10.1093/bioinformatics/btw691.

Gentleman, R.C., et al., 2004. Bioconductor: open software development for computa-
tional biology and bioinformatics. Genome Biol. 5, R80. https://doi.org/10.1186/gb-
2004-5-10-r80.

Gill, J.M., Saligan, L., Woods, S., Page, G., 2009. PTSD is associated with an excess of
inflammatory immune activities. Perspect. Psychiat. Care 45, 262-277. https://doi.
org/10.1111/j.1744-6163.2009.00229.x.

Gillespie, C.F., et al., 2009. Trauma exposure and stress-related disorders in inner city
primary care patients. Gen. Hosp. Psychiat. 31, 505-514. https://doi.org/10.1016/j.
genhosppsych.2009.05.003.

Glover, D.A., Steele, A.C., Stuber, M.L., Fahey, J.L., 2005. Preliminary evidence for
lymphocyte distribution differences at rest and after acute psychological stress in
PTSD-symptomatic women. Brain Behav. Immun. 19, 243-251. https://doi.org/10.
1016/j.bbi.2004.08.002.

Gola, H., et al., 2013. Posttraumatic stress disorder is associated with an enhanced
spontaneous production of pro-inflammatory cytokines by peripheral blood mono-
nuclear cells. BMC Psychiat. 13. https://doi.org/10.1186/1471-244x-13-40.

Goldmann, E., et al., 2011. Pervasive exposure to violence and posttraumatic stress dis-
order in a predominantly African American Urban Community: the Detroit
Neighborhood Health Study. J. Trauma Stress 24, 747-751. https://doi.org/10.
1002/jts.20705.

Gotovac, K., et al., 2010. Natural killer cell cytotoxicity and lymphocyte perforin


https://doi.org/10.1016/j.bbi.2019.06.025
https://doi.org/10.1016/j.cellimm.2011.10.009
https://doi.org/10.1016/j.cellimm.2011.10.009
https://doi.org/10.1016/j.psyneuen.2016.01.024
https://doi.org/10.1016/j.psyneuen.2016.01.024
https://doi.org/10.1176/appi.ajp.160.9.1705
https://doi.org/10.1196/annals.1364.013
https://doi.org/10.1038/nri3777
https://doi.org/10.1093/bioinformatics/btu049
https://doi.org/10.1038/srep31209
https://doi.org/10.1007/s11481-015-9643-8
https://doi.org/10.1007/s11481-015-9643-8
https://doi.org/10.1016/j.yfrne.2014.03.008
https://doi.org/10.1016/j.yfrne.2014.03.008
https://doi.org/10.1002/gepi.21789
https://doi.org/10.1093/bioinformatics/bts124
https://doi.org/10.1016/j.bbi.2017.02.006
https://doi.org/10.1016/j.bbi.2017.02.006
https://doi.org/10.1017/S0033291715001981
https://doi.org/10.1016/j.bbi.2016.03.021
https://doi.org/10.1073/pnas.0438019100
https://doi.org/10.1073/pnas.0438019100
https://doi.org/10.1001/jama.299.11.1291
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0090
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0090
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0095
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0095
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0100
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0100
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0100
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0105
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0105
https://doi.org/10.1177/1524838009334448
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0115
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0115
https://doi.org/10.4161/epi.23470
https://doi.org/10.1016/j.cell.2016.10.026
https://doi.org/10.1038/sj.mp.4001934
https://doi.org/10.1007/s12160-010-9165-9
https://doi.org/10.1007/s12160-010-9165-9
https://doi.org/10.1016/j.jneuroim.2003.11.011
https://doi.org/10.1016/j.bbi.2018.03.005
https://doi.org/10.1016/j.bbi.2018.03.005
https://doi.org/10.1093/bioinformatics/btw691
https://doi.org/10.1186/gb-2004-5-10-r80
https://doi.org/10.1186/gb-2004-5-10-r80
https://doi.org/10.1111/j.1744-6163.2009.00229.x
https://doi.org/10.1111/j.1744-6163.2009.00229.x
https://doi.org/10.1016/j.genhosppsych.2009.05.003
https://doi.org/10.1016/j.genhosppsych.2009.05.003
https://doi.org/10.1016/j.bbi.2004.08.002
https://doi.org/10.1016/j.bbi.2004.08.002
https://doi.org/10.1186/1471-244x-13-40
https://doi.org/10.1002/jts.20705
https://doi.org/10.1002/jts.20705

expression in veterans with posttraumatic stress disorder. Prog.
Neuropsychopharmacol. Biol. Psychiat. 34, 597-604. https://doi.org/10.1016/j.
pnpbp.2010.02.018.

Grisanti, L.A., et al., 2010. Pro-inflammatory responses in human monocytes are betal-
adrenergic receptor subtype dependent. Mol. Immunol. 47, 1244-1254. https://doi.
org/10.1016/j.molimm.2009.12.013.

Grubaugh, A.L., Elhai, J.D., Cusack, K.J., Wells, C., Frueh, B.C., 2007. Screening for PTSD
in public-sector mental health settings: the diagnostic utility of the PTSD checklist.
Depress Anxiet. 24, 124-129. https://doi.org/10.1002/da.20226.

Hodes, G.E., 2013. Sex, stress, and epigenetics: regulation of behavior in animal models of
mood disorders. Biol. Sex Differ. 4, 1. https://doi.org/10.1186/2042-6410-4-1.
Hoge, E.A,, et al., 2009. Broad spectrum of cytokine abnormalities in panic disorder and
posttraumatic stress disorder. Depress Anxiety 26, 447-455. https://doi.org/10.

1002/da.20564.

Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scand. J. Statist.
6, 65-70.

Houseman, E.A., et al., 2012. DNA methylation arrays as surrogate measures of cell
mixture distribution. BMC Bioinformat. 13, 1-16. https://doi.org/10.1186/1471-
2105-13-86.

Huang, Z.S., et al., 2001. Correlations between peripheral differential leukocyte counts
and carotid atherosclerosis in non-smokers. Atherosclerosis 158, 431-436. https://
doi.org/10.1016/50021-9150(01)00445-2.

Huber, W., et al., 2015. Orchestrating high-throughput genomic analysis with bio-
conductor. Nat. Methods 12, 115-121. https://doi.org/10.1038/nmeth.3252.

Inoshita, M., et al., 2015. Sex differences of leukocytes DNA methylation adjusted for
estimated cellular proportions. Biol. Sex Differ. 6, 11. https://doi.org/10.1186/
513293-015-0029-7.

Ironson, G., Cruess, D., Kumar, M., 2007. in Psychoneuroimmunology (Fourth Edition) (ed
Robert Ader) 531-547. Academic Press.

Irwin, M.R., Cole, S.W., 2011. Reciprocal regulation of the neural and innate immune
systems. Nat. Rev. Immunol. 11, 625-632. https://doi.org/10.1038/nri3042.

Jergovic, M., et al., 2014. Patients with posttraumatic stress disorder exhibit an altered
phenotype of regulatory T cells. Allergy Asthma Clin. Immunol. 10, 43. https://doi.
org/10.1186/1710-1492-10-43.

Johnson, W.E., Li, C., Rabinovic, A., 2007. Adjusting batch effects in microarray ex-
pression data using empirical Bayes methods. Biostatistics 8, 118-127. https://doi.
org/10.1093/biostatistics/kxj037.

Johnson, G.J., Slater, B.C., Leis, L.A., Rector, T.S., Bach, R.R., 2016. Blood biomarkers of
chronic inflammation in Gulf War Illness. €0157855. PLoS One 11. https://doi.org/
10.1371/journal.pone.0157855.

Jovanovic, T., et al., 2010. Impaired fear inhibition is a biomarker of PTSD but not de-
pression. Depress Anxiety 27, 244-251. https://doi.org/10.1002/da.20663.

Kawamura, N., Kim, Y., Asukai, N., 2001. Suppression of cellular immunity in men with a
past history of posttraumatic stress disorder. Am. J. Psychiat. 158, 484-486. https://
doi.org/10.1176/appi.ajp.158.3.484.

Kessler, R.C,, et al., 1994. Lifetime and 12-month prevalence of DSM-III-R psychiatric
disorders in the United States. Results from the National Comorbidity Survey. Arch.
Gen. Psychiat. 51, 8-19.

Kessler, R.C., et al., 2005. Lifetime prevalence and age-of-onset distributions of DSM-IV
disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiat. 62,
593-602. https://doi.org/10.1001/archpsyc.62.6.593.

Kessler, R.C., McGonagle, K.A., Swartz, M., Blazer, D.G., Nelson, C.B., 1993. Sex and
depression in the National Comorbidity Survey. I: Lifetime prevalence, chronicity and
recurrence. J. Affect. Disord. 29, 85-96.

Kessler, R.C., Sonnega, A., Bromet, E., Hughes, M., Nelson, C.B., 1995. Posttraumatic
stress disorder in the National Comorbidity Survey. Arch Gen Psychiat. 52,
1048-1060.

Kessler, R.C., Wang, P.S., 2008. The descriptive epidemiology of commonly occurring
mental disorders in the United States. Annu. Rev. Public Health 29, 115-129. https://
doi.org/10.1146/annurev.publhealth.29.020907.090847.

Kilpatrick, D.G., et al., 2013. National estimates of exposure to traumatic events and PTSD
prevalence using DSM-IV and DSM-5 criteria. J. Trauma Stress 26, 537-547. https://
doi.org/10.1002/jts.21848.

Klein, S.L., Flanagan, K.L., 2016. Sex differences in immune responses. Nat. Rev.
Immunol. 16, 626-638. https://doi.org/10.1038/nri.2016.90.

Koenen, K.C., et al., 2009. Protocol for investigating genetic determinants of posttrau-
matic stress disorder in women from the Nurses' Health Study II. BMC Psychiat. 9, 29.
https://doi.org/10.1186/1471-244X-9-29.

Koenen, K.C., et al., 2011. SLC6A4 methylation modifies the effect of the number of
traumatic events on risk for posttraumatic stress disorder. Depress Anx. 28, 639-647.
https://doi.org/10.1002/da.20825.

Koestler, D.C., et al., 2016. Improving cell mixture deconvolution by identifying optimal
DNA methylation libraries (IDOL). BMC Bioinformat. 17, 120. https://doi.org/10.
1186/512859-016-0943-7.

Koestler, D.C., et al., 2017. DNA methylation-derived neutrophil-to-lymphocyte ratio: an
epigenetic tool to explore cancer inflammation and outcomes. Cancer Epidemiol.
Biomarkers Prev. 26, 328-338. https://doi.org/10.1158/1055-9965.EPI-16-0461.

Kwapis, J.L., Wood, M.A., 2014. Epigenetic mechanisms in fear conditioning: implications
for treating post-traumatic stress disorder. Trend. Neurosci. 37, 706-720. https://doi.
org/10.1016/j.tins.2014.08.005.

Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E., Storey, J.D., 2012. The sva package for
removing batch effects and other unwanted variation in high-throughput experi-
ments. Bioinformatics 28, 882-883. https://doi.org/10.1093/bioinformatics/bts034.

Li, Z., Wu, Z., Jin, P., Wu, H., 2019. Dissecting differential signals in high-throughput data
from complex tissues. Bioinformatics. https://doi.org/10.1093/bioinformatics/
btz196.

Lindgvist, D., et al., 2014. Proinflammatory milieu in combat-related PTSD is in-
dependent of depression and early life stress. Brain Behav. Immun. 42, 81-88.
https://doi.org/10.1016/j.bbi.2014.06.003.

Lindgvist, D., et al., 2017. Increased pro-inflammatory milieu in combat related PTSD — a
new cohort replication study. Brain Behav. Immun. 59, 260-264. https://doi.org/10.
1016/j.bbi.2016.09.012.

Liu, H., et al., 2017. Association of DSM-IV posttraumatic stress disorder with traumatic
experience type and history in the world health organization world mental health
surveys. JAMA Psychiat. 74, 270-281. https://doi.org/10.1001/jamapsychiatry.
2016.3783.

Liu, J., Siegmund, K.D., 2016. An evaluation of processing methods for
HumanMethylation450 BeadChip data. BMC Genom. 17, 469. https://doi.org/10.
1186/512864-016-2819-7.

Luppi, P., 2003. How immune mechanisms are affected by pregnancy. Vaccine 21,
3352-3357. https://doi.org/10.1016/50264-410x(03)00331-1.

Maddox, S.A., Schafe, G.E., Ressler, K.J., 2013. Exploring epigenetic regulation of fear
memory and biomarkers associated with post-traumatic stress disorder. Front.
Psychiat. 4, 62. https://doi.org/10.3389/fpsyt.2013.00062.

Maes, M., et al., 1992. Leukocytosis, monocytosis and neutrophilia: hallmarks of severe
depression. J. Psychiatr. Res. 26, 125-134. https://doi.org/10.1016/0022-3956(92)
90004-8.

Malan-Muller, S., Seedat, S., Hemmings, S.M., 2014. Understanding posttraumatic stress
disorder: insights from the methylome. Genes Brain Behav. 13, 52-68. https://doi.
org/10.1111/gbb.12102.

McGowan, P.O., et al., 2009. Epigenetic regulation of the glucocorticoid receptor in
human brain associates with childhood abuse. Nat. Neurosci. 12, 342-348. https://
doi.org/10.1038/nn.2270.

McKim, D.B., et al., 2016a. Sympathetic release of splenic monocytes promotes recurring
anxiety following repeated social defeat. Biol. Psychiat. 79, 803-813. https://doi.
org/10.1016/j.biopsych.2015.07.010.

McKim, D.B,, et al., 2016b. Neuroinflammatory dynamics underlie memory impairments
after repeated social defeat. J. Neurosci. 36, 2590-2604. https://doi.org/10.1523/
JNEUROSCI.2394-15.2016.

McLean, C.P., Asnaani, A., Litz, B.T., Hofmann, S.G., 2011. Gender differences in anxiety
disorders: prevalence, course of illness, comorbidity and burden of illness. J.
Psychiatr. Res. 45, 1027-1035. https://doi.org/10.1016/j.jpsychires.2011.03.006.

Mehta, D., et al., 2013. Childhood maltreatment is associated with distinct genomic and
epigenetic profiles in posttraumatic stress disorder. Proc. Natl. Acad. Sci. U.S.A. 110,
8302-8307. https://doi.org/10.1073/pnas.1217750110.

Meyers, J.L., et al., 2015. Frequency of alcohol consumption in humans; the role of
metabotropic glutamate receptors and downstream signaling pathways. e586.
Transl. Psychiat. 5. https://doi.org/10.1038/tp.2015.70.

Michopoulos, V., Norrholm, S.D., Jovanovic, T., 2015. Diagnostic biomarkers for post-
traumatic stress disorder: promising horizons from translational neuroscience re-
search. Biol. Psychiat. 78, 344-353. https://doi.org/10.1016/j.biopsych.2015.01.
005.

Michopoulos, V., Powers, A., Gillespie, C.F., Ressler, K.J., Jovanovic, T., 2017.
Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond.
Neuropsychopharmacology 42, 254-270. https://doi.org/10.1038/npp.2016.146.

Miller, C.A., Campbell, S.L., Sweatt, J.D., 2008. DNA methylation and histone acetylation
work in concert to regulate memory formation and synaptic plasticity. Neurobiol.
Learn Mem. 89, 599-603. https://doi.org/10.1016/j.nlm.2007.07.016.

Mitchell, K.S., et al., 2013. PTSD and obesity in the Detroit neighborhood health study.
Gen. Hosp. Psychiat. 35, 671-673. https://doi.org/10.1016/j.genhosppsych.2013.07.
015.

Morris, T.J., et al., 2014. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics
30, 428-430. https://doi.org/10.1093/bioinformatics/btt684.

Neylan, T.C,, et al., 2011. Suppressed monocyte gene expression profile in men versus
women with PTSD. Brain Behav. Immun. 25, 524-531. https://doi.org/10.1016/j.
bbi.2010.12.001.

Niraula, A., Witcher, K.G., Sheridan, J.F., Godbout, J.P., 2019. Interleukin-6 Induced by
social stress promotes a unique transcriptional signature in the monocytes that fa-
cilitate anxiety. Biol. Psychiat. 85, 679-689. https://doi.org/10.1016/j.biopsych.
2018.09.030.

Nunn, C.L., Lindenfors, P., Pursall, E.R., Rolff, J., 2009. On sexual dimorphism in immune
function. Philos. Trans. R Soc. Lond. B Biol. Sci. 364, 61-69. https://doi.org/10.
1098/rstb.2008.0148.

O'Connor, M.F., Motivala, S.J., Valladares, E.M., Olmstead, R., Irwin, M.R., 2007. Sex
differences in monocyte expression of IL-6: role of autonomic mechanisms. Am. J.
Physiol. Regul. Integr. Comp. Physiol. 293, R145-151. https://doi.org/10.1152/
ajpregu.00752.2006.

O'Donovan, A., et al., 2011. Transcriptional control of monocyte gene expression in post-
traumatic stress disorder. Dis. Markers 30, 123-132. https://doi.org/10.3233/DMA-
2011-0768.

Osborne, B.F., Turano, A., Schwarz, J.M., 2018. Sex differences in the neuroimmune
system. Curr. Opin. Behav. Sci. 23, 118-123. https://doi.org/10.1016/j.cobeha.
2018.05.007.

Pace, T.W., Heim, C.M., 2011. A short review on the psychoneuroimmunology of post-
traumatic stress disorder: from risk factors to medical comorbidities. Brain Behav.
Immun. 25, 6-13. https://doi.org/10.1016/j.bbi.2010.10.003.

Passos, 1.C., et al., 2015. Inflammatory markers in post-traumatic stress disorder: a sys-
tematic review, meta-analysis, and meta-regression. Lancet Psychiat. 2, 1002-1012.
https://doi.org/10.1016/52215-0366(15)00309-0.

Pfau, M.L., Russo, S.J., 2015. Peripheral and central mechanisms of stress resilience.
Neurobiol. Stress 1, 66-79. https://doi.org/10.1016/j.ynstr.2014.09.004.

Pooley, A.E., et al., 2018. Sex differences in the traumatic stress response: PTSD


https://doi.org/10.1016/j.pnpbp.2010.02.018
https://doi.org/10.1016/j.pnpbp.2010.02.018
https://doi.org/10.1016/j.molimm.2009.12.013
https://doi.org/10.1016/j.molimm.2009.12.013
https://doi.org/10.1002/da.20226
https://doi.org/10.1186/2042-6410-4-1
https://doi.org/10.1002/da.20564
https://doi.org/10.1002/da.20564
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0215
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0215
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1016/S0021-9150(01)00445-2
https://doi.org/10.1016/S0021-9150(01)00445-2
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1186/s13293-015-0029-7
https://doi.org/10.1186/s13293-015-0029-7
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0240
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0240
https://doi.org/10.1038/nri3042
https://doi.org/10.1186/1710-1492-10-43
https://doi.org/10.1186/1710-1492-10-43
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1371/journal.pone.0157855
https://doi.org/10.1371/journal.pone.0157855
https://doi.org/10.1002/da.20663
https://doi.org/10.1176/appi.ajp.158.3.484
https://doi.org/10.1176/appi.ajp.158.3.484
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0275
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0275
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0275
https://doi.org/10.1001/archpsyc.62.6.593
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0285
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0285
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0285
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0290
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0290
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0290
https://doi.org/10.1146/annurev.publhealth.29.020907.090847
https://doi.org/10.1146/annurev.publhealth.29.020907.090847
https://doi.org/10.1002/jts.21848
https://doi.org/10.1002/jts.21848
https://doi.org/10.1038/nri.2016.90
https://doi.org/10.1186/1471-244X-9-29
https://doi.org/10.1002/da.20825
https://doi.org/10.1186/s12859-016-0943-7
https://doi.org/10.1186/s12859-016-0943-7
https://doi.org/10.1158/1055-9965.EPI-16-0461
https://doi.org/10.1016/j.tins.2014.08.005
https://doi.org/10.1016/j.tins.2014.08.005
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/btz196
https://doi.org/10.1093/bioinformatics/btz196
https://doi.org/10.1016/j.bbi.2014.06.003
https://doi.org/10.1016/j.bbi.2016.09.012
https://doi.org/10.1016/j.bbi.2016.09.012
https://doi.org/10.1001/jamapsychiatry.2016.3783
https://doi.org/10.1001/jamapsychiatry.2016.3783
https://doi.org/10.1186/s12864-016-2819-7
https://doi.org/10.1186/s12864-016-2819-7
https://doi.org/10.1016/S0264-410x(03)00331-1
https://doi.org/10.3389/fpsyt.2013.00062
https://doi.org/10.1016/0022-3956(92)90004-8
https://doi.org/10.1016/0022-3956(92)90004-8
https://doi.org/10.1111/gbb.12102
https://doi.org/10.1111/gbb.12102
https://doi.org/10.1038/nn.2270
https://doi.org/10.1038/nn.2270
https://doi.org/10.1016/j.biopsych.2015.07.010
https://doi.org/10.1016/j.biopsych.2015.07.010
https://doi.org/10.1523/JNEUROSCI.2394-15.2016
https://doi.org/10.1523/JNEUROSCI.2394-15.2016
https://doi.org/10.1016/j.jpsychires.2011.03.006
https://doi.org/10.1073/pnas.1217750110
https://doi.org/10.1038/tp.2015.70
https://doi.org/10.1016/j.biopsych.2015.01.005
https://doi.org/10.1016/j.biopsych.2015.01.005
https://doi.org/10.1038/npp.2016.146
https://doi.org/10.1016/j.nlm.2007.07.016
https://doi.org/10.1016/j.genhosppsych.2013.07.015
https://doi.org/10.1016/j.genhosppsych.2013.07.015
https://doi.org/10.1093/bioinformatics/btt684
https://doi.org/10.1016/j.bbi.2010.12.001
https://doi.org/10.1016/j.bbi.2010.12.001
https://doi.org/10.1016/j.biopsych.2018.09.030
https://doi.org/10.1016/j.biopsych.2018.09.030
https://doi.org/10.1098/rstb.2008.0148
https://doi.org/10.1098/rstb.2008.0148
https://doi.org/10.1152/ajpregu.00752.2006
https://doi.org/10.1152/ajpregu.00752.2006
https://doi.org/10.3233/DMA-2011-0768
https://doi.org/10.3233/DMA-2011-0768
https://doi.org/10.1016/j.cobeha.2018.05.007
https://doi.org/10.1016/j.cobeha.2018.05.007
https://doi.org/10.1016/j.bbi.2010.10.003
https://doi.org/10.1016/S2215-0366(15)00309-0
https://doi.org/10.1016/j.ynstr.2014.09.004

symptoms in women recapitulated in female rats. Biol. Sex Differ. 9, 31. https://doi.
org/10.1186/513293-018-0191-9.

R: A Language and Environment for Statistical Computing (R Foundation for Statistical
Computing, Vienna, Austria, 2018).

Rahmani, E., et al., 2017. Genome-wide methylation data mirror ancestry information.
Epigenetics Chromatin 10, 1. https://doi.org/10.1186/s13072-016-0108-y.

Ratanatharathorn, A., et al., 2017. Epigenome-wide association of PTSD from hetero-
geneous cohorts with a common multi-site analysis pipeline. Am. J. Med. Genet. B
Neuropsychiatr. Genet. 174, 619-630. https://doi.org/10.1002/ajmg.b.32568.

Roadmap Epigenomics, C., et al., 2015. Integrative analysis of 111 reference human
epigenomes. Nature 518, 317-330. https://doi.org/10.1038/nature14248.

Rohleder, N., Joksimovic, L., Wolf, J.M., Kirschbaum, C., 2004. Hypocortisolism and
increased glucocorticoid sensitivity of pro-Inflammatory cytokine production in
Bosnian war refugees with posttraumatic stress disorder. Biol. Psychiat. 55, 745-751.
https://doi.org/10.1016/j.biopsych.2003.11.018.

Ruggieri, A., et al., 2014. Statin-induced impairment of monocyte migration is gender-
related. J. Cell Physiol. 229, 1990-1998. https://doi.org/10.1002/jcp.24657.

Ruggiero, K.J., Del Ben, K., Scotti, J.R., Rabalais, A.E., 2003. Psychometric properties of
the PTSD Checklist-civilian version. J. Trauma Stress 16, 495-502. https://doi.org/
10.1023/A:1025714729117.

Rusiecki, J.A., et al., 2013. PTSD and DNA methylation in select immune function gene
promoter regions: a repeated measures case-control study of U.S. military service
members. Front. Psychiat. 4, 56. https://doi.org/10.3389/fpsyt.2013.00056.

Salas, L.A., et al., 2018. An optimized library for reference-based deconvolution of whole-
blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray.
Genome Biol. 19, 64. https://doi.org/10.1186/s13059-018-1448-7.

Scharer, C.D., Barwick, B.G., Youngblood, B.A., Ahmed, R., Boss, J.M., 2013. Global DNA
methylation remodeling accompanies CD8 T cell effector function. J. Immunol. 191,
3419-3429. https://doi.org/10.4049/jimmunol.1301395.

Scotland, R.S., Stables, M.J., Madalli, S., Watson, P., Gilroy, D.W., 2011. Sex differences
in resident immune cell phenotype underlie more efficient acute inflammatory re-
sponses in female mice. Blood 118, 5918-5927. https://doi.org/10.1182/blood-
2011-03-340281.

Seidel, A., et al., 1996. Major depressive disorder is associated with elevated monocyte
counts. Acta Psychiat. Scand. 94, 198-204. https://doi.org/10.1111/j.1600-0447.
1996.tb09849.x.

Smith, A.K., et al., 2011. Differential immune system DNA methylation and cytokine
regulation in post-traumatic stress disorder. Am. J. Med. Genet. B Neuropsychiat.
Genet. 156B, 700-708. https://doi.org/10.1002/ajmg.b.31212.

Sommershof, A., et al., 2009. Substantial reduction of naive and regulatory T cells fol-
lowing traumatic stress. Brain Behav. Immun. 23, 1117-1124. https://doi.org/10.
1016/j.bbi.2009.07.003.

Sondergaard, H.P., Hansson, L.O., Theorell, T., 2004. The inflammatory markers C-re-
active protein and serum amyloid A in refugees with and without posttraumatic stress
disorder. Clin. Chim. Acta 342, 93-98. https://doi.org/10.1016/j.cccn.2003.12.019.

Speer, K., Upton, D., Semple, S., McKune, A., 2018. Systemic low-grade inflammation in
post-traumatic stress disorder: a systematic review. J. Inflamm. Res. 11, 111-121.
https://doi.org/10.2147/JIR.S155903.

Stankiewicz, A.M., Swiergiel, A.H., Lisowski, P., 2013. Epigenetics of stress adaptations in
the brain. Brain Res. Bull. 98, 76-92. https://doi.org/10.1016/j.brainresbull.2013.
07.003.

Stefanski, V., Raabe, C., Schulte, M., 2005. Pregnancy and social stress in female rats:
influences on blood leukocytes and corticosterone concentrations. J. Neuroimmunol.
162, 81-88. https://doi.org/10.1016/j.jneuroim.2005.01.011.

Suarez-Alvarez, B., Rodriguez, R.M., Fraga, M.F., Lopez-Larrea, C., 2012. DNA methyla-
tion: a promising landscape for immune system-related diseases. Trends Genet. 28,
506-514. https://doi.org/10.1016/j.tig.2012.06.005.

Sumner, J.A,, et al., 2017. Cross-sectional and longitudinal associations of chronic post-
traumatic stress disorder with inflammatory and endothelial function markers in
women. Biol. Psychiat. 82, 875-884. https://doi.org/10.1016/].biopsych.2017.06.
020.

Sun, B, et al., 2016. DNA methylation perspectives in the pathogenesis of autoimmune
diseases. Clin. Immunol. 164, 21-27. https://doi.org/10.1016/j.clim.2016.01.011.

Teschendorff, A.E., et al., 2013. A beta-mixture quantile normalization method for cor-
recting probe design bias in Illumina Infinium 450 k DNA methylation data.
Bioinformatics 29, 189-196. https://doi.org/10.1093/bioinformatics/bts680.

Teschendorff, A.E., Breeze, C.E., Zheng, S.C., Beck, S., 2017. A comparison of reference-
based algorithms for correcting cell-type heterogeneity in Epigenome-Wide associa-
tion studies. BMC Bioinformat. 18, 105. https://doi.org/10.1186/512859-017-
1511-5.

Tian, Y., et al., 2017. ChAMP: updated methylation analysis pipeline for Illumina
BeadChips. Bioinformatics 33, 3982-3984. https://doi.org/10.1093/bioinformatics/
btx513.

Titus, A.J., Gallimore, R.M., Salas, L.A., Christensen, B.C., 2017. Cell-type deconvolution
from DNA methylation: a review of recent applications. Hum. Mol. Genet. 26,
R216-R224. https://doi.org/10.1093/hmg/ddx275.

Tolin, D.F., Foa, E.B., 2006. Sex differences in trauma and posttraumatic stress disorder: a
quantitative review of 25 years of research. Psychol. Bull. 132, 959-992. https://doi.
org/10.1037/0033-2909.132.6.959.

Triche Jr., T.J., Weisenberger, D.J., Van Den Berg, D., Laird, P.W., Siegmund, K.D., 2013.
Low-level processing of Illumina Infinium DNA Methylation BeadArrays. e90. Nucl.

Acids Res. 41. https://doi.org/10.1093/nar/gkt090.

Uddin, M., et al., 2010. Epigenetic and immune function profiles associated with post-
traumatic stress disorder. Proc. Natl. Acad. Sci. U.S.A. 107, 9470-9475. https://doi.
org/10.1073/pnas.0910794107.

Uddin, M., et al., 2011. Gene expression and methylation signatures of MAN2C1 are as-
sociated with PTSD. Dis Mark. 30, 111-121. https://doi.org/10.3233/DMA-2011-
0750.

Uddin, M., et al., 2018. Epigenetic meta-analysis across three civilian cohorts identifies
NRG1 and HGS as blood-based biomarkers for post-traumatic stress disorder.
Epigenomics 10, 1585-1601. https://doi.org/10.2217 /epi-2018-0049.

Vidovic, A., et al., 2007. Circulating lymphocyte subsets, natural killer cell cytotoxicity,
and components of hypothalamic-pituitary-adrenal axis in Croatian war veterans
with posttraumatic stress disorder: cross-sectional study. Croat. Med. J. 48, 198-206.

Vidovic, A., et al., 2011. Repeated assessments of endocrine- and immune-related changes
in posttraumatic stress disorder. Neuroimmunomodulation 18, 199-211. https://doi.
0rg/10.1159/000322869.

Wang, Z., Young, M.R., 2016. PTSD, a disorder with an immunological component. Front.
Immunol. 7, 219. https://doi.org/10.3389/fimmu.2016.00219.

Wang, Z., Mandel, H., Levingston, C.A., Young, M.R.I., 2016. An exploratory approach
demonstrating immune skewing and a loss of coordination among cytokines in
plasma and saliva of Veterans with combat-related PTSD. Hum. Immunol. 77,
652-657. https://doi.org/10.1016/j.humimm.2016.05.018.

Weathers, F.W., Keane, T.M., Davidson, J.R., 2001. Clinician-administered PTSD scale: a
review of the first ten years of research. Depress Anxiety 13, 132-156.

Weaver, 1.C., et al., 2004. Epigenetic programming by maternal behavior. Nat. Neurosci.
7, 847-854. https://doi.org/10.1038/nn1276.

Weber, M.D., Godbout, J.P., Sheridan, J.F., 2017. Repeated Social Defeat,
Neuroinflammation, and Behavior: Monocytes Carry the Signal.
Neuropsychopharmacology 42, 46-61. https://doi.org/10.1038/npp.2016.102.

Weckle, A., et al., 2015. Rapid fractionation and isolation of whole blood components in
samples obtained from a community-based setting. J. Vis. Exp. https://doi.org/10.
3791/52227.

White, N., et al., 2017. Accounting for cell lineage and sex effects in the identification of
cell-specific DNA methylation using a Bayesian model selection algorithm.
€0182455. PLoS One 12. https://doi.org/10.1371/journal.pone.0182455.

Wiencke, J.K., et al., 2017. Immunomethylomic approach to explore the blood neutrophil
lymphocyte ratio (NLR) in glioma survival. Clin. Epigenet. 9, 10. https://doi.org/10.
1186/513148-017-0316-8.

Wilkins, K.C., Lang, A.J., Norman, S.B., 2011. Synthesis of the psychometric properties of
the PTSD checklist (PCL) military, civilian, and specific versions. Depress Anxiet. 28,
596-606. https://doi.org/10.1002/da.20837.

Wohleb, E.S., et al., 2011. beta-Adrenergic receptor antagonism prevents anxiety-like
behavior and microglial reactivity induced by repeated social defeat. J. Neurosci. 31,
6277-6288. https://doi.org/10.1523/JNEUROSCL.0450-11.2011.

Wohleb, E.S., et al., 2014. Re-establishment of anxiety in stress-sensitized mice is caused
by monocyte trafficking from the spleen to the brain. Biol. Psychiat. 75, 970-981.
https://doi.org/10.1016/j.biopsych.2013.11.029.

Wohleb, E.S., Delpech, J.C., 2017. Dynamic cross-talk between microglia and peripheral
monocytes underlies stress-induced neuroinflammation and behavioral con-
sequences. Prog. Neuropsychopharmacol. Biol. Psychiat. 79, 40-48. https://doi.org/
10.1016/j.pnpbp.2016.04.013.

Wohleb, E.S., Powell, N.D., Godbout, J.P., Sheridan, J.F., 2013. Stress-induced recruit-
ment of bone marrow-derived monocytes to the brain promotes anxiety-like beha-
vior. J. Neurosci. 33, 13820-13833. https://doi.org/10.1523/JNEUROSCIL.1671-13.
2013.

Wolf, E.J., et al., 2018. Traumatic stress and accelerated DNA methylation age: a meta-
analysis. Psychoneuroendocrinology 92, 123-134. https://doi.org/10.1016/j.
psyneuen.2017.12.007.

Wong, C.M., 2002. Post-traumatic stress disorder: advances in psychoneuroimmunology.
Psychiatr. Clin. North Am. 25 369-383,vii.

Xu, Z., Niu, L., Li, L., Taylor, J.A., 2016. ENmix: a novel background correction method
for Illumina HumanMethylation450 BeadChip. e20. Nucl. Acids Res. 44. https://doi.
org/10.1093/nar/gkv907.

Yehuda, R., Koenen, K.C., Galea, S., Flory, J.D., 2011. The role of genes in defining a
molecular biology of PTSD. Dis. Markers 30, 67-76. https://doi.org/10.3233/DMA-
2011-0794.

Yin, W., et al., 2019. Repeated social defeat in female mice induces anxiety-like behavior
associated with enhanced myelopoiesis and increased monocyte accumulation in the
brain. Brain. Behav Immun. 78, 131-142. https://doi.org/10.1016/j.bbi.2019.01.
015.

Zannas, A.S., et al., 2015. Lifetime stress accelerates epigenetic aging in an urban, African
American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266.
https://doi.org/10.1186/513059-015-0828-5.

Zheng, S.C., Breeze, C.E., Beck, S., Teschendorff, A.E., 2018. Identification of differen-
tially methylated cell types in epigenome-wide association studies. Nat. Methods 15,
1059-1066. https://doi.org/10.1038/5s41592-018-0213-x.

Zhou, J., et al., 2014. Dysregulation in microRNA expression is associated with alterations
in immune functions in combat veterans with post-traumatic stress disorder. €94075.
PLoS One 9. https://doi.org/10.1371/journal.pone.0094075.

Zovkic, I.B., Sweatt, J.D., 2013. Epigenetic mechanisms in learned fear: implications for
PTSD. Neuropsychopharmacology 38, 77-93. https://doi.org/10.1038/npp.2012.79.


https://doi.org/10.1186/s13293-018-0191-9
https://doi.org/10.1186/s13293-018-0191-9
https://doi.org/10.1186/s13072-016-0108-y
https://doi.org/10.1002/ajmg.b.32568
https://doi.org/10.1038/nature14248
https://doi.org/10.1016/j.biopsych.2003.11.018
https://doi.org/10.1002/jcp.24657
https://doi.org/10.1023/A:1025714729117
https://doi.org/10.1023/A:1025714729117
https://doi.org/10.3389/fpsyt.2013.00056
https://doi.org/10.1186/s13059-018-1448-7
https://doi.org/10.4049/jimmunol.1301395
https://doi.org/10.1182/blood-2011-03-340281
https://doi.org/10.1182/blood-2011-03-340281
https://doi.org/10.1111/j.1600-0447.1996.tb09849.x
https://doi.org/10.1111/j.1600-0447.1996.tb09849.x
https://doi.org/10.1002/ajmg.b.31212
https://doi.org/10.1016/j.bbi.2009.07.003
https://doi.org/10.1016/j.bbi.2009.07.003
https://doi.org/10.1016/j.cccn.2003.12.019
https://doi.org/10.2147/JIR.S155903
https://doi.org/10.1016/j.brainresbull.2013.07.003
https://doi.org/10.1016/j.brainresbull.2013.07.003
https://doi.org/10.1016/j.jneuroim.2005.01.011
https://doi.org/10.1016/j.tig.2012.06.005
https://doi.org/10.1016/j.biopsych.2017.06.020
https://doi.org/10.1016/j.biopsych.2017.06.020
https://doi.org/10.1016/j.clim.2016.01.011
https://doi.org/10.1093/bioinformatics/bts680
https://doi.org/10.1186/s12859-017-1511-5
https://doi.org/10.1186/s12859-017-1511-5
https://doi.org/10.1093/bioinformatics/btx513
https://doi.org/10.1093/bioinformatics/btx513
https://doi.org/10.1093/hmg/ddx275
https://doi.org/10.1037/0033-2909.132.6.959
https://doi.org/10.1037/0033-2909.132.6.959
https://doi.org/10.1093/nar/gkt090
https://doi.org/10.1073/pnas.0910794107
https://doi.org/10.1073/pnas.0910794107
https://doi.org/10.3233/DMA-2011-0750
https://doi.org/10.3233/DMA-2011-0750
https://doi.org/10.2217/epi-2018-0049
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0640
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0640
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0640
https://doi.org/10.1159/000322869
https://doi.org/10.1159/000322869
https://doi.org/10.3389/fimmu.2016.00219
https://doi.org/10.1016/j.humimm.2016.05.018
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0660
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0660
https://doi.org/10.1038/nn1276
https://doi.org/10.1038/npp.2016.102
https://doi.org/10.3791/52227
https://doi.org/10.3791/52227
https://doi.org/10.1371/journal.pone.0182455
https://doi.org/10.1186/s13148-017-0316-8
https://doi.org/10.1186/s13148-017-0316-8
https://doi.org/10.1002/da.20837
https://doi.org/10.1523/JNEUROSCI.0450-11.2011
https://doi.org/10.1016/j.biopsych.2013.11.029
https://doi.org/10.1016/j.pnpbp.2016.04.013
https://doi.org/10.1016/j.pnpbp.2016.04.013
https://doi.org/10.1523/JNEUROSCI.1671-13.2013
https://doi.org/10.1523/JNEUROSCI.1671-13.2013
https://doi.org/10.1016/j.psyneuen.2017.12.007
https://doi.org/10.1016/j.psyneuen.2017.12.007
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0720
http://refhub.elsevier.com/S0889-1591(19)30104-7/h0720
https://doi.org/10.1093/nar/gkv907
https://doi.org/10.1093/nar/gkv907
https://doi.org/10.3233/DMA-2011-0794
https://doi.org/10.3233/DMA-2011-0794
https://doi.org/10.1016/j.bbi.2019.01.015
https://doi.org/10.1016/j.bbi.2019.01.015
https://doi.org/10.1186/s13059-015-0828-5
https://doi.org/10.1038/s41592-018-0213-x
https://doi.org/10.1371/journal.pone.0094075
https://doi.org/10.1038/npp.2012.79

	Methylomic profiles reveal sex-specific differences in leukocyte composition associated with post-traumatic stress disorder
	Introduction
	Materials and methods
	Study participants
	Assessment of PTSD
	Sample processing
	Quality control and pre-processing of 450 K data
	Leukocyte composition estimation
	Ancestry estimation
	Statistical analysis

	Results
	Demographic characteristics of sampled study participants from the DNHS and GTP
	Comparison of leukocyte subtype estimates by deconvolution approach
	Comparison of leukocyte subtype estimates by sex and lifetime PTSD
	Elevated monocyte proportions were associated with lifetime PTSD in males, but not females
	Association between monocyte proportions and lifetime PTSD in males is independent of current PTSD status

	Discussion
	Conclusion
	Funding
	mk:H1_19
	Acknowledgments
	Supplementary data
	References




