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SUMMARY.

Multiple comparison procedures combined with modeling techniques (MCP-Mod) (Bretz et al., 

2005) is an efficient and robust statistical methodology for the model-based design and analysis of 

dose-finding studies with an unknown dose-response model. With this approach, multiple 

comparison methods are used to identify statistically significant contrasts corresponding to a set of 

candidate dose-response models, and the best model is then used to estimate the target dose. Power 

and sample size calculations for this methodology require knowledge of the covariance matrix for 

the estimators of the (placebo-adjusted) mean responses among the dose groups. In this paper, we 

consider survival endpoints and derive an analytic form of the covariance matrix for the estimators 

of the log hazard ratios as a function of the total number of events in the study. We then use this 

closed-form expression of the covariance matrix to derive the power and sample size formulas. We 

discuss practical considerations in the application of these formulas. In addition, we provide an 

illustration with a motivating example on chronic obstructive pulmonary disease. Finally, we 

demonstrate through simulation studies that the proposed formulas are accurate enough for 

practical use.
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1. Introduction

There are two major objectives in early-phase clinical trials: the first one is to demonstrate 

the evidence of clinical efficacy (with acceptable risk) for the study medication, and the 

second one is to select the dose(s) to be tested in confirmatory trials. These two objectives 

are often referred to as proof-of-concept (PoC) and dose-finding steps, respectively. The two 

steps may be combined in a single trial in order to accelerate the development process.
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Statistical methods for dose-finding studies can be roughly categorized into multiple 

comparison procedures (MCP) and modeling techniques. The former approach regards dose 

as a qualitative factor and evaluates the statistical significance of contrasts between doses 

while controlling the family-wise error rate (FWER) at a pre-specified level; the statistical 

inference is restricted to the small set of doses used in the trial. The latter approach assumes 

a functional relationship between dose and response and uses the fitted dose-response model 

to estimate a dose required to achieve a desired level of response; the validity of the 

inference depends strongly on correct model specification.

Bretz et al. (2005) proposed a unified strategy, termed multiple comparison procedures 

combined with modeling techniques (MCP-Mod), that combines the MCP principle with the 

modeling approach. MCP-Mod specifies a set of candidate models covering a wide range of 

dose-response curves. Each model in the candidate set is tested with appropriate contrasts 

using MCP to preserve the FWER. The best model among the significant ones is chosen to 

estimate the target dose using a modeling technique. MCP-Mod was recently recommended 

by the European Medicines Agency (2014) as an efficient statistical methodology for the 

model-based design and analysis of dose-finding studies under model uncertainty and also 

received the “fit-for-purpose” designation by the US Food and Drug Administration in 2016.

The MCP-Mod methodology was originally developed for normally distributed, 

homoscedastic response at a single time point under the parallel-group study design (Bretz et 

al., 2005; Pinheiro et al., 2006). Recently, Pinheiro et al. (2014) extended this methodology 

to general parametric models by using generalized least squares estimation. The extension is 

focused on the analysis stage, where parameter estimates and covariance matrix are obtained 

from standard statistical software packages. The extension does not deal with calculations of 

power and sample size, which require knowledge of the covariance matrix before data 

collection.

In this paper, we show how to perform power calculations and determine sample sizes for 

the MCP-Mod methodology with survival endpoints. In particular, we derive the covariance 

matrix for the estimators of the log hazard ratios under the proportional hazards model. We 

express the covariance matrix in terms of the total number of events (i.e., uncensored 

observations) in the entire study. This analytic expression of the covariance matrix greatly 

facilitates power and sample size calculations for MCP-Mod with survival endpoints.

The rest of this paper is organized as follows. In Section 2, we present our methods and 

address related challenges. In Section 3, we provide a motivating example, together with 

simulation results. In Section 4, we discuss the use of the analytic form of the covariance 

matrix in other contexts.

2. Methods

2.1. Parallel Group Survival Studies

Suppose that there are K doses x1, …, xK besides placebo. Note that Bretz et al. (2005) used 

x1 to denote placebo. For survival endpoints, we take the placebo-adjusted dose-response 

modeling, so it is more convenient to use x1 to denote the first dose group. We specify that 
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the hazard function of survival time T in the kth dose group takes the form of the Cox (1972) 

proportional hazards model

λk(t) = λ0(t)e
βk, k = 1, …, K,

where λ0(t) is an arbitrary hazard function for placebo, and βk is the log hazard ratio.

For k = 0,1, …, K, let nk denote the number of patients in the kth dose group, with k = 0 

pertaining to the placebo group. Write n = n0 + n1 + …, nK. For i = 1, …, n, let Ti and Ci 

denote, respectively, the survival time and censoring time for the ith patient. For i = 1, …, n 
and k = 1, …, K, let Xki indicate, by the values 1 versus 0, whether or not the ith patient 

receives dose xk. The data consist of (T i, Δi, Xi) (i = 1, …, n), where T i = min T i, Ci , Δi = 

I(Ti ≤ Ci), I(·) is the indicator function, and Xi = (X1i, …, XKi)T.

2.2. Parameter Estimation and Covariance Matrix

For parameter estimation, it is more convenient to express the K proportional hazards 

models as a single model: λ t Xi = λ0 t e
βTXi, where β = (β1, …, βK)T. The partial 

likelihood (Cox, 1975) score function for β is given by

U(β) = ∑
i = 1

n
Δi Xi − E β, Ti ,

where E(β, t) = ∑i = 1
n I T i ≥ t e

βTXiXi/∑i = 1
n I T i ≥ t e

βTXi. The corresponding information 

matrix is

𝓘(β) = ∑
i = 1

n
Δi

∑ j = 1
n I T j ≥ Ti e

βTX jX jX j
T

∑ j = 1
n I T j ≥ Ti e

βTX j
− E β, Ti E β, Ti

T .

Let β  denote the maximum partial likelihood estimator of β, which is the solution to the 

score equation U(β) = 0. The estimator β  is asymptotically K-variate normal with mean β 
and covariance matrix 𝓘−1(β) (Andersen and Gill, 1982).

The (observed) information matrix can be calculated only after the data are collected. In the 

design stage, it is necessary to express the information matrix in terms of the quantities that 

can be pre-specified. Let D denote the total number of events (i.e., uncensored survival 

times) in the entire study, and let
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pk =
ξke

βk

1 + ξ1e
β1 + ⋯ + ξKe

βK
, k = 0, 1, …, K,

where ξk = nk/n0 (k = 0,1, …, K), and β0 = 0. In the appendix, we derive an analytic 

approximation to the information matrix

𝓘(β) ≈ D

p1 1 − p1 − p1p2 … − p1pK

− p2p1 p2 1 − p2 … − p2pK
⋮ ⋮ ⋮ ⋮

− pK p1 − pK p2 … pK 1 − pK

.

This leads to a very simple closed-form expression for the covariance matrix of β

S ≈ D−1

p0
−1 + p1

−1 p0
−1 … p0

−1

p0
−1 p0

−1 + p2
−1 … p0

−1

⋮ ⋮ ⋮ ⋮
p0

−1 p0
−1 … p0

−1 + pK
−1

, (1)

which, under the null hypothesis H0 : β = 0, reduces to

S0 ≈ n
D

n0
−1 + n1

−1 n0
−1 … n0

−1

n0
−1 n0

−1 + n2
−1 … n0

−1

⋮ ⋮ ⋮ ⋮
n0

−1 n0
−1 … n0

−1 + nK
−1

. (2)

The corresponding correlation matrix is the same as in the case of a normally distributed 

response variable.

2.3. MCPMod

The dose-response model takes the form f (x, θ) = a+bf0(x, θ*), where f0 is the standardized 

model function indexed by the parameter vector θ* (Bretz et al., 2005; Pinheiro et al., 2006; 

2014; Bornkamp et al., 2009). We consider M candidate models f m x, θm = am + bm f m
0 x, θm*
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(m = 1, …, M). For each candidate model, we form a contrast of β . The vector of optimal 

contrast coefficients under the mth model is

cm = S−1βm (3)

(Pinheiro et al., 2014), where S ≡ 𝓘−1(β) is the estimated covariance matrix for β  and can 

be obtained from standard software packages, such as R and SAS, and βm is the value of β 
under the mth candidate model, such that the kth component of βm is 

f m 0, θm − f m xk, θm ∝ f m
0 0, θm* − f m

0 xk, θm* . We use the differences fm(0, θm) − fm(xk, θm) 

since longer survival times corresponds to lower hazards. Indeed, the proportional hazards 

model λ(t | Xi) = λ0(t)e
βTXi can be expressed as a linear transformation model

log Λ0 Ti = − βTXi + ϵi,

where Λ0 (t) = ∫ 0
t λ0(s)ds, and ϵi has the extreme-value distribution. Thus, the dose-response 

curves for immediate normal responses (Bretz et al., 2005; Pinheiro et al., 2006; 2014; 

Bornkamp et al., 2009) can be applied to proportional hazards models with survival end-

points, but with an appropriate change of the sign.

The test statistics take the form

Zm =
cm

T β

cm
TScm

1/2 , m = 1, …, M . (4)

Under H0 : β = 0, Zm is asymptotically standard normal. In addition, the random vector (Z1, 

…, ZM)T is asymptotically M-variate normal with mean 0 and covariance matrix

cm
TS0cl

cm
TS0cmcl

TS0cl
1/2 ; m, l = 1, …, M . (5)

This joint distribution is used to determine the multiplicity-adjusted critical value for MCP-

Mod. Specifically, the FWER of α is achieved if the critical value q1-α satisfies

Pr( max
l = 1, …, M

Zl ≥ q1 − α β = 0) = α . (6)

We solve equation (6) for q1-α through multivariate normal integration.
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2.4. Power and Sample Size Calculations

Under the alternative hypothesis H0 : β = βα, Zm is asymptotically normal with mean 

cm
T βa/ cm

TScm
1/2

 and variance 1. In addition, the random vector (Z1, …, ZM)T is 

asymptotically M-variate normal with covariance matrix

cm
TScl

cm
TScmcl

TScl
1/2 ; m, l = 1, …, M . (7)

The power under the mth candidate model is given by

πm(D, ξ1, …, ξK; βm) = Pr( max
l = 1, …, M

Zl ≥ q1 − α β = βm) . (8)

The sample size to achieve a desired level of power can be determined accordingly.

To be specific, suppose that patients are recruited uniformly over the time period [0, R] and 

the survival time for the kth dose group follows the exponential distribution with hazard λk. 

Then the number of patients in the kth group to achieve Dk number of events is

Dk / 1 − exp
−λk(τ − R)

− exp
−λkτ

λkR ,

where τ is the endpoint of the study. This number needs to be adjusted upward to account for 

patient dropout (Lachin and Foulkes, 1986).

When evaluating (6) and (8), we need to evaluate the covariance matrices of the test statistics 

given in (5) and (7), respectively. Both covariance matrices involve cm, which, as shown in 

(3), involves the estimated covariance matrix S . In the design stage, we replace S  in cm by S 

for both (5) and (7). In the analysis stage, we use S  from the output of a standard software 

package.

Note that the covariance matrix S0 is used to determine the critical value whereas the 

covariance matrix S is used to calculate the optimal contrast coefficients and power. As 

explained in the last paragraph of the appendix, we replace β in the pk’s by β/2 when 

evaluating S, so as to obtain a more accurate power formula.

The standard two-sample comparison with a survival endpoint has the well-known events-

driven property that the power of the log-rank test or Cox regression is driven by the total 

number of events (rather than the total number of patients) in the two groups. We have 

discovered that, in the same vein, the power of MCP-Mod for a survival endpoint is 

determined by the total number of events in the entire study rather than the number of events 
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in each dose group. This event-driven property is very useful in practice because only the 

total number of events in the entire study is observable and controllable before un-blinding.

3. Motivating Example and Simulation

We illustrate the proposed method for power calculation with a motivating example on 

chronic obstructive pulmonary disease (COPD). The primary endpoint was time to the first 

COPD exacerbation. There were four once-daily doses of the study medication: 5 mg, 25 

mg, 50 mg and 100 mg, plus placebo, with an equal number of patients in each dose group. 

The median survival time for the placebo group was 0.5 years, and the hazard ratio on the 

optimal dose was 0.6. The desired one-sided type I error was set at 0.05.

We considered six dose-response curves, including linear, Emax, exponential, logistic, and 

betaMod; see Figure 1. We used the formulas given in Table 1 of Bornkamp et al. (2009) but 

changed the plus sign after E0 to the minus sign because longer survival times corresponds 

to lower hazards. The mean response was defined as the log hazard for the time to COPD 

exacerbation. For the placebo group, the mean response was therefore log{log(2)/0.5} ≈ 
0.327. The mean response for the optimal dose within the dose range Was log{log(2)/

(0.5/0.6)} ≈ −0.184, corresponding to a treatment difference of 0.511. The model betMod 

captures a non-monotone dose-response relationship. Although such behavior is not 

common, it may occur occasionally for a variety of reasons. For example, a high dose may 

induce severe toxicities and thus result in non-compliance with the study medication. In this 

case, the dose-response relationship may be non-monotone if all patients are included in the 

analysis regardless of their compliance with the study medication. Using formula (8), we 

found that a total of 242 events would be required to achieve an average power of 85% 

across the six dose-response models.

To assess the accuracy of the approximation behind the power formula, we conducted a 

simulation study with 10,000 trials that mimic the motivating example. Specifically, we 

enrolled 75 patients in each dose group and generated times to COPD exacerbations from 

exponential distributions. Each trial was terminated once the required 242 total number of 

events had been reached, and the remaining patients were censored at that time point. There 

was no drop-out. For each of 10,000 simulated trials, we obtained β  and S  from the coxph 
function in R. We then calculated the test statistics given in (4) and obtained the proportion 

of rejections under each dose-response model.

Table 1 compares the theoretical and empirical values of the power under each of the six 

dose-response models, as well as the average power. To make the comparisons more 

comprehensive, we include the results for the hazard ratios of 0.4 and 0.8 in addition to 0.6. 

We also display the empirical type I error for the three scenarios under β = 0. In all three 

scenarios, the type I error is very close to the nominal level of 0.05. In addition, the 

empirical power is remarkably close to its theoretical counterpart, the two values being 

identical up the second decimal place in most cases. Thus, the proposed methods for power 

and sample-size calculations are accurate enough for practical use.
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4. Discussion

In this paper, we present the MCP-Mod methodology for designing dose-finding studies 

with survival endpoints. Our main contribution lies in the derivation of an explicit form of 

the covariance matrix for the estimators of the log hazard ratios such that the power of MCP-

Mod can be evaluated analytically. A second contribution is the assessment of the 

performance of the corresponding power and sample size formulas in realistic settings. An R 

code implementing the proposed methods is available upon request.

For each contrast test, the optimal contrast coefficients involve the covariance matrix of the 

parameter estimators. In the design stage, we use the analytic expression S. In the analysis 

stage, we typically use the covariance matrix estimated from the observed data. In small 

studies with rare events for some of the arms, the estimated covariance matrix may be 

unstable, in which case we recommend using S instead. Note that the choice of the contrast 

coefficients affects the power, but not the validity of MCP-Mod.

We have focused on power and sample size calculations for hypothesis testing in a dose-

ranging study. A related task is to identify the dose-response relationship. Specifically, it 

may be of interest to consider proper estimation of the dose-response curve or target doses 

(Bornkamp et al., 2007). The precision for such estimation depends on the covariance matrix 

of the parameter estimators (Pinheiro et al., 2014). In addition, when it comes to selecting 

the number or location of doses, the optimal design also depends on the covariance matrix or 

equivalently the information matrix (Bretz et al., 2010). The analytic form of the covariance 

matrix provided in this paper will be highly useful in all such circumstances.

The analytic form of the covariance matrix will be useful beyond dose-finding studies. For 

example, investigators may simply be interested in comparing K different treatments, in 

which case our covariance matrix formula is directly applicable. A related problem is 

factorial designs (Lin et al., 2016), where the techniques given in the appendix of this paper 

can be used to derive power and sample size formulas.

5. Supplementary Materials

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Derivation of the Covariance Matrix

We adopt the counting-process martingale formulation: for i = 1, …,n, let 

Ni(t) = ΔiI(T i ≤ t), Y i(t) = I(T i ≥ t), and
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Mi(t) = Ni(t) − ∫0
t
Yi(s)e

βTXid Λ0 (s),

where Λ0 (t) = ∫ 0
t λ0(s)ds (Andersen and Gill, 1982). The kth component of U(β) is

Uk(β) = ∑
i = 1

n ∫0
∞

Xki − Ek(β, t) dNi(t),

where

Ek(β, t) = ∑
i = 1

n
Yi(t)e

βTXiXki/ ∑
i = 1

n
Yi(t)e

βTXi .

Assume that the censoring distributions are approximately the same among the (K + 1) dose 

groups. Then by the law of large numbers,

Ek(β, t) ≈
nke

βke
−e

βkΛ0(t)

n0e
−Λ0(t)

+ n1e
β1e−e

β1Λ0(t)
+ ⋯ + nKe

βKe
−eβKΛ0(t)

.

The right side can be approximated by

nke
βk

n0 + n1e
β1 + ⋯ + nKe

βK

provided that the βk’s are close to 0 or Λ0(t) is close to 0 (i.e., the event rate is low). Thus, 

Ek(β,t) ≈ pk.

Clearly,

Uk(β) = ∑
i = 1

n ∫0
∞

Xki − Ek(β, t) dMi(t), k = 1, …, K .

By the counting-process martingale theory (Andersen and Gill, 1982), the variance of Uk(β) 

is the expectation of its predictable variation

∑
i = 1

n ∫0
∞

Xki − Ek(β, t) 2Yi(t)e
βTXid Λ0 (t),
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which can be written as

∑
m = 0

K
e
βm ∑

i ∈ Am
∫0

∞
Xki − Ek(β, t) 2Yi(t)d Λ0 (t),

where Am denotes the set of patients in the mth group (m = 0,1, …, K). Upon the 

replacement of Ek (β,t) by pk, the above expression becomes

∑
m = 0

K
e
βm ∑

i ∈ Am
∫0

∞
Xki − pk

2Yi(t)d Λ0 (t),

which is equal to

1 − pk
2e

βk ∑
i ∈ Ak

∫0
∞

Yi(t)d Λ0 (t) + pk
2 ∑

m = 0, m ≠ k

K
e
βm ∑

i ∈ Am
∫0

∞
Yi(t)d Λ0 (t) .

By using the arguments for showing Ek (β, t) ≈ pk, we can show that 

∑i ∈ Ak
Y i(t) ≈ ξk∑i ∈ A0

Y i(t) (k = 1, …, K). Thus,

∑
i ∈ Ak

∫0
∞

Yi(t)d Λ0 (t) ≈ ξk ∑
i ∈ A0

∫0
∞

Yi(t)d Λ0 (t) .

Since E{Mi(t)} = 0 for all t, ∑i ∈ A0
∫ 0

∞Y i(t)d Λ0 (t) has the same expectation as D0, where 

D0 is the total number of events in the placebo group. Therefore,

Var Uk(β) ≈ D0 1 − pk
2ξke

βk + pk
2 1 + ξ1e

β1 + ⋯ + ξKe
βK − ξke

βk ,

which, by the definition of pk, is equal to

D0 1 + ξ1e
β1 + ⋯ + ξKe

βK 1 − pk
2pk + pk

2 1 − pk .

Because D0ξke
βk is approximately the number of events in the kth dose group, 

D0(1 + ξ1e
β1 + ⋯ + ξKe

βK) is approximately the total number of events in the entire study. 

Hence,

Var Uk(β) ≈ Dpk 1 − pk .
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The covariance between Uk(β) and Ul(β) (k ≠ l) is the expectation of their predictable 

covariation

∑
i = 1

n ∫0
∞

Xki − Ek(β, t) Xli − El(β, t) Yi(t)e
βTXid Λ0 (t) .

It then follows from the arguments in the previous paragraph that

Cov Uk(β), Ul(β) ≈ pkpl ∑
m = 0, m ≠ k, l

K
∑

i ∈ Am

e
βm∫0

∞
Yi(t)d Λ0 (t)

− 1 − pk pl ∑
i ∈ Ak

e
βk∫0

∞
Yi(t)d Λ0 (t) − 1 − pl pk ∑

i ∈ Al

e
βl∫0

∞
Yi(t)d Λ0 (t) .

The right side is approximately equal to

D0 pkpl 1 + ξ1e
β1 + ⋯ + ξKe

βK − ξke
βk − ξle

βl − 1 − pk plξke
βk − 1 − pl pkξle

βl)

or

D pkpl 1 − pk − pl − 1 − pk pkpl − 1 − pl pkpl ,

which is −Dpkpl. Thus, 𝓘(β) ≈ D akl; k, l = 1, …, K , where akk = pk (1 − pk), and ak1 = −pkpl 

(k ≠ l). It can be verified by direct matrix multiplication that 

𝓘−1(β) ≈ D−1 bkl; k, l = 1, …, K , where bkk = p0
−1 + pk

−1, and bkl = p0
−1 (k ≠ l).

The information matrix is used primarily in the estimation of the covariance matrix of the 

maximum (partial) likelihood estimator. It is also connected to hypothesis testing via the 

likelihood-ratio statistic, which is asymptotically χ2 distributed. Recall that the likelihood-

ratio statistic for testing the null hypothesis that β = 0 is −2 log L(0)/L(β) , where L(β) is the 

(partial) likelihood for β. Because the first derivative of log L(β) at β = β  is 0, the second-

order Taylor series expansion yields

−2 log L(0)/L(β)) = βT𝓘 β* β,

where β* lies between 0 and β . Thus, evaluating the information matrix at β* for the Wald 

statistic will result in a more accurate approximation to the desired χ2 distribution than 

evaluating it at 0 or β . In the design stage, it is best to evaluate the information matrix at an 

intermediate value between 0 and β, which is sensibly set to β/2.
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Figure 1: 
Candidate dose-response relationships for the COPD dose-finding study: the six plots 

correspond to Emax model with ED50 = 50 (Emax 1), Emax model with ED50 = 6.25 (Emax 

2), linear model, exponential model with δ = 22.756, logistic model with ED50 = 40.3287 

and δ = 6.9764, and betaMod model with D = 120, δ1 = 0.7489, and δ2 = 1.0485. The figure 

was created in ADDPLAN DF, with the label customized for the display.
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Table 1.

Theoretical and Empirical Power of the MCP-Mod

Hazard ratio

0.4 0.6 0.8

Number of patients per group 27 75 357

Total number of events 79 242 1240

Empirical type 1 error 0.049 0.048 0.054

Emax1

 Theoretical power 0.873 0.863 0.859

 Empirical power 0.870 0.857 0.859

Emax2

 Theoretical power 0.906 0.881 0.862

 Empirical power 0.897 0.872 0.854

Linear

 Theoretical power 0.823 0.827 0.833

 Empirical power 0.815 0.827 0.843

Exponential

 Theoretical power 0.778 0.811 0.836

 Empirical power 0.787 0.828 0.834

Logistic

 Theoretical power 0.913 0.917 0.921

 Empirical power 0.914 0.920 0.923

BetaMod

 Theoretical power 0.823 0.805 0.796

 Empirical power 0.806 0.804 0.803

Average

 Theoretical power 0.853 0.851 0.851

 Empirical power 0.848 0.851 0.853
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