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Ancestry-specific associations identified in
genome-wide combined-phenotype study
of red blood cell traits emphasize benefits
of diversity in genomics
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Ruth J. F. Loos13, Charles Kooperberg12 and Christy L. Avery1

Abstract

Background: Quantitative red blood cell (RBC) traits are highly polygenic clinically relevant traits, with
approximately 500 reported GWAS loci. The majority of RBC trait GWAS have been performed in European- or East
Asian-ancestry populations, despite evidence that rare or ancestry-specific variation contributes substantially to RBC
trait heritability. Recently developed combined-phenotype methods which leverage genetic trait correlation to
improve statistical power have not yet been applied to these traits. Here we leveraged correlation of seven
quantitative RBC traits in performing a combined-phenotype analysis in a multi-ethnic study population.

Results: We used the adaptive sum of powered scores (aSPU) test to assess combined-phenotype associations
between ~ 21 million SNPs and seven RBC traits in a multi-ethnic population (maximum n = 67,885 participants;
24% African American, 30% Hispanic/Latino, and 43% European American; 76% female). Thirty-nine loci in our multi-
ethnic population contained at least one significant association signal (p < 5E-9), with lead SNPs at nine loci
significantly associated with three or more RBC traits. A majority of the lead SNPs were common (MAF > 5%) across
all ancestral populations. Nineteen additional independent association signals were identified at seven known loci
(HFE, KIT, HBS1L/MYB, CITED2/FILNC1, ABO, HBA1/2, and PLIN4/5). For example, the HBA1/2 locus contained 14
conditionally independent association signals, 11 of which were previously unreported and are specific to African
and Amerindian ancestries. One variant in this region was common in all ancestries, but exhibited a narrower LD
block in African Americans than European Americans or Hispanics/Latinos. GTEx eQTL analysis of all independent
lead SNPs yielded 31 significant associations in relevant tissues, over half of which were not at the gene
immediately proximal to the lead SNP.
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Conclusion: This work identified seven loci containing multiple independent association signals for RBC traits using
a combined-phenotype approach, which may improve discovery in genetically correlated traits. Highly complex
genetic architecture at the HBA1/2 locus was only revealed by the inclusion of African Americans and Hispanics/
Latinos, underscoring the continued importance of expanding large GWAS to include ancestrally diverse
populations.

Keywords: Blood cell traits, Combined-phenotype analysis, Pleiotropy, Diversity, Multi-ethnic, GWAS

Background
In the average adult, 200 billion red blood cells (RBCs) are
generated daily from hematopoietic stem cells in the bone
marrow. The most commonly assessed traits for mature
RBCs are hematocrit (HCT), hemoglobin concentration
(HGB), mean corpuscular hemoglobin (MCH), MCH con-
centration (MCHC), mean corpuscular volume (MCV),
RBC count (RBCC), and red cell distribution width (RDW);
together, these traits are used to characterize RBC develop-
ment and function, diagnose anemic disorders, and identify
risk factors for complex chronic diseases [1–6]. RBC traits
also are moderately to highly heritable, making these com-
plex quantitative traits excellent candidates for genomic in-
terrogation [7–9]. Improved characterization of RBC
molecular pathways has benefitted both disease diagnosis
and pharmaceutical development, as has been demon-
strated by recent successes in a BCL11A-silencing gene
therapy clinical trial for individuals with sickle cell disease
(SCD) [10, 11].
Genetic association studies have reported over 500 in-

dependent loci for RBC traits [12–31]. However, several
research gaps remain which may be addressed via re-
cently developed methods and broadly representative
study populations. First, previously published RBC trait
genome-wide association study (GWAS) populations
have mostly been ancestrally homogeneous [31–39].
Utilization of diverse study populations can improve
identification of rare or ancestry-specific variants located
in biological pathways that affect phenotypes in global
populations and, when summary data are made publicly
available, enable construction of broadly applicable poly-
genic risk scores [40]. Relatedly, gaps between estimated
heritability and the proportion of variance explained by
GWAS findings suggest that additional associations re-
main to be identified, including rare variants and inde-
pendent secondary associations at known loci that are
both more likely to be ancestrally specific [12, 41, 42].
Finally, RBC traits exhibit modest to high correlation,
and several dozen loci have been reported for two or
more RBC traits, although few studies have leveraged
this shared genetic architecture to increase statistical
power to map novel RBC trait loci [12, 20, 26, 43–45].
In this work, we examined the individual and shared gen-

etic architecture of seven RBC traits in participants of the

ancestrally diverse Population Architecture using Genomics
and Epidemiology (PAGE) study [46]. Our findings reinforce
the necessity of incorporating multi-ethnic study populations
in genomics in order to accurately characterize RBC trait loci
and encourage equitable application of the results to transla-
tional work [39]. The complexity of association signals at loci
previously characterized in European- and East Asian-
ancestry populations also demonstrates improved power to
perform conditional analysis using a combined-phenotype
model [47].

Results
The number of participants with both phenotype and
genotype data ranged from 33,549 (RDW) to 67,885
(HCT, see Methods, Tables S2 & S3). Seventy-eight per-
cent of participants were female and participants were
on average 57 years old at time of blood collection
(Table S4). Self-reported race/ethnicity in the total study
population was approximately 20% African American,
30% Hispanic/Latino, and 40% European American
(Table S3).

Combined-phenotype analyses
Approximately 21M SNPs met our inclusion criteria and
were evaluated in our primary analysis, a combined-
phenotype multi-ethnic meta-analysis of seven RBC traits.
SNP associations with the combined phenotype multi-
ethnic meta-analysis exceeded genome-wide significance
at 39 loci (p < 5E-09, Figures S1, S2), all of which were
identified previously. Lead SNPs at nine loci (KIT, HFE,
HBS1L/MYB, IKZF1, TFR2, HBB, HBA1/2, GCDH, and
TMPRSS6) were associated with three or more RBC traits
at genome-wide significance (Tables 1, S5A). HCT, HGB,
and MCHC exhibited genome-wide-significant associa-
tions at the fewest loci (eleven, ten, and six, respectively),
whereas MCH and MCV had the most (twenty and
twenty-one, respectively, Fig. 1a, Table S5A). Estimated
partial correlations by RBC trait pair ranged from HCT-
MCHC (partial correlation ρ = − 0.02) to HCT-HGB (ρ =
0.94, Fig. 1b). Consistent with other GWAS of quantitative
complex traits, effect size was inversely correlated to allele
frequency across all phenotypes (Fig. 1c).
Trait-specific directions of effect were largely consistent

with pairwise correlations. Among 58 independent
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association signals identified via conditional analysis, 64%
(n = 37) exceeded genome-wide significance for the
combined-phenotype lead SNP in two or more traits.
When comparing genome-wide significant associations
for two traits exhibiting a pairwise correlation >|0.2|
among these loci, in 93% of instances (119 of 128) the dir-
ection of effect matched the direction of trait correlation
(Fig. 1a, b, Tables S5A, S6). Eight of nine trait-pair associa-
tions with directions of effect opposite of expectation were
instances in which MCH or MCV drove the lead SNP as-
sociation, and HCT or HGB had a different lead SNP in
high LD with the combined-phenotype lead SNP (r2 > 0.8
in the combined MEGA-genotyped study population).
Only one of nine associations was in a trait pair exhibiting
moderate correlation: HGB and RBCC (ρ = 0.68) exhibit-
ing opposite directions of effect for rs9924561, the lead
SNP in the HBA1/2 region on chromosome 16.

Evidence of independent associations at established loci
We identified 20 independent association signals at
seven loci (HFE, CCND3, HBS1L/MYB, CITED2, ABO,
HBA1/2, and PLIN4/5, Table 1, Fig. 1a). The majority of
lead SNPs were common to all ancestries (MAF > 0.01);

evidence of association was most significant in European
Americans at HFE and HBS1L/MYB loci, whereas His-
panics/Latinos had the most significant association at both
CITED2 lead SNPs. In two instances, known causal vari-
ants accounted for the entire association signal after con-
ditioning. At the HFE locus, both rs1800562 (HFE
p.C282Y) and rs1799945 (HFE p.H63D, r2~0.99 with lead
SNP rs2032451) are known coding hemochromatosis vari-
ants and accounted for all significant associations within
+/− 3Mb of the lead SNP [48]. Similarly, rs2519093 and
rs10901252 are in moderate to high LD with variants that
affect RBC traits but also determine an individual’s ABO
blood type, and adjusting for these two variants accounted
for the entire association at this locus.
Of note, the HBA1/2 locus demonstrated ancestry spe-

cificity (i.e., the lead SNP was monomorphic in one or
more ancestries) at 11 of 14 conditionally independent
SNPs (Fig. 2a, Tables S5B-D). With the exception of
rs60125383 (frequency of the A allele: 0.43 in African
Americans, 0.55 in European Americans, 0.62 in His-
panics/Latinos), located in a nonsense-mediated-decay
transcript for NPRL3, no lead SNP at this locus was
common to all ancestries. The LD block for rs60125383

Fig. 1 Identification and characterization of 58 independent lead variants in 39 loci in a multi-ethnic study population. a Lead and conditionally
independent SNPs from combined-phenotype analysis of total study population show shared genetic architecture directionally consistent with
correlation structure. Colored circles to the right of figure correspond to trait-specific associations. X-axis: rsid (bottom) sorted by chromosome
(top) and position; y-axis: significance of association and direction of effect, represented by t-value (scaled to a maximum of t = |15|). Size of
circles is exponentially proportional to effect size standardized to trait means (3Z) to demonstrate differences in average effect size at lead SNPs
by trait. Dashed gray lines correspond to genome-wide-significance threshold of a = 5E-09. b RBC trait pair partial correlations among MEGA-
genotyped participants adjusted for linear regression model covariates (n = 29,090 for HCT, HGB, and MCHC measurements; n = 22,330 for MCH,
MCV, and RBCC; n = 19,573 for RDW). c. Low-frequency and rare alleles exhibit larger magnitude of effect across RBC traits in the total multi-
ethnic study population. X-axis: minor allele frequency; y-axis: effect size standardized to trait mean (|Z|). Filled circles represent variants present in
all ancestry sub-populations; open circles are monomorphic in one or more ancestries
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contained fewer variants in African Americans (Fig. 2b, no
SNPs r2 > 0.4) compared to Hispanics/Latinos (Fig. 2c, 10
SNPs r2 > 0.6) and European Americans (Fig. 2d, 13 SNPs
r2 > 0.6).

Sensitivity analyses
Trait-specific sensitivity analyses identified two previously-
unreported variants exceeded genome-wide significance for
a single RBC trait in the univariate analyses, yet did not
meet genome-wide significance in the combined pheno-
type. Rs6573766 was specific to RBCC (p = 1.1E-9) and is
common to all ancestries but was poorly captured by earlier
genotyping arrays and is not represented in 1000 genomes
phase 3 data (Figure S3, Table S7). Rs145548796 was sig-
nificant for MCV (p = 4.6E-9) and is rare (< 1%) in all popu-
lations, only meeting the inclusion criteria in the MEGA
pooled sample and one study sub-population (Figure S4,
Table S7). Ancestry-specific sensitivity analyses did not un-
cover any significant association signals that did not achieve
genome-wide significance in the overall study population.

When adjusting for esv3637548 deletion dosage in the
MEGA-genotyped subgroup, we observed evidence of
both attenuation and strengthening of effect at otherwise
conditionally independent lead SNPs at the HBA1/2
locus (Table S8). Specifically, eight lead SNPs lost more
than two orders of magnitude p-value after conditioning
on esv3637548; one increased in significance; and five
remained unchanged. Among the lead SNPs in this
chromosomal region which remained significant was
rs145546625, which was previously reported as signifi-
cant for MCV independent of esv3637548 in a GWAS of
HCHS/SOL participants using a different genotyping
array [28]. All other PAGE lead SNPs in the HBA1/2 re-
gion either did not pass QC or imputation criteria for
the custom array used in that study, or had p > 1E-07 in
the primary analysis.

Generalization of previously reported associations
Generalization of previously identified association signals
varied for trait-specific loci (p < 1.07E-4, Tables S9-S11),

Fig. 2 Multiple independent associations with MCH demonstrate complex genetic architecture at HBA1/HBA2 locus. All plots: each point
represents one SNP; x-axis: increasing position on chromosome 16 left to right; y-axis: -log10(p-value) of the association with MCH. a Regional
association plot of 14 independent associations in unadjusted analysis of multi-ethnic study population (n = 41,317). Large circles represent
conditionally independent lead SNPs, labeled by rsid (order of conditioning is shown in Table 1); small colored SNPs represent variants in high LD
(r2 > 0.8 in LD in pooled MEGA subpopulation) with the lead SNP of the corresponding color. b-d Locus-Zoom regional association plots of MCH
association with rs60125383 (11th round of conditioning, purple diamond) in African Americans on an African American LD background (b n =
8703), Hispanics/Latinos on a Hispanic/Latino LD background (c, n = 17,380), and European Americans on a European LD background (d n =
14,707). SNP correlation with the lead SNP (r2) is colored according to the legend in (b). Annotated Refseq genes proximal to the lead SNP are
shown by position above the X axis
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ranging from 50 of 143 (35%) for MCHC to 93 of 121
(77%) for HGB. Ancestry-specific generalization varied
by trait, with the highest proportion of generalization oc-
curring in the European-ancestry sub-population and
the lowest occurring in African Americans, which may
be due to power differences to detect associations by
ancestry.

eQTL function of index SNPs
To assess the potential regulatory roles of lead SNPs, we
evaluated cis-eQTL (< 500 kb) associations for all lead
SNPs in GTEx as available [49]. Thirty-three of 51 SNPs
were low-frequency or common (MAF > 1%) in the
European-ancestry GTEx population and had available
information in whole blood, liver, spleen, and/or thyroid
tissues. Fourteen SNPs exhibited significant associations
in RBC-relevant tissues; seven SNPs were eQTLs for
multiple genes (Table S12). Although approximately 40
genes were within 500 kb of each of the chromosome 16
lead SNPs, none of the lead SNPs in this region
exceeded a MAF > 1% in the GTEx study population and
hence could not be evaluated for cis-eQTLs.

Discussion
RBC traits are complex quantitative phenotypes that have
been broadly examined in GWAS of European- and East
Asian-ancestry study populations. Here, we examine the
benefits of identifying and characterizing RBC trait associ-
ations in the ancestrally diverse PAGE study population
using a combined-phenotype approach. Although the
combined-phenotype method we employed did not enable
identification of novel loci, ancestral diversity improved
characterization of loci containing both ancestry-specific
and common variants. The continued underrepresenta-
tion of diverse populations in GWAS despite the growing
clinical and public health significance of GWAS-enabled
tools that are ancestry-specific underscores the continued
importance of expanding existing RBC trait GWAS of pre-
dominantly European and East Asian populations to glo-
bal populations [50–53].
With regard to regions exhibiting multiple independ-

ent significant associations, our results demonstrate al-
lelic heterogeneity at known RBC trait loci, the
characterization of which was enabled by an inclusive
study design. Of particular note was our identification of
eleven variants specific to African and/or Amerindian
ancestries within the first megabase of chromosome 16.
The chromosome 16 region includes hemoglobin genes
HBA1, HBA2, HBM, and HBZ as well as fifty other
protein-coding genes that should be examined for plaus-
ible roles in RBC trait biology. Decades of research have
demonstrated selective pressure in this region occurring
over millennia in malaria-endemic regions of the world
but, as with many other complex quantitative traits, red

blood cell traits—specifically with regard to the HBA1/2
locus—have been primarily analyzed in Eurocentric
study populations. Given the high polygenicity and com-
plexity of quantitative RBC traits, our identification of
over a dozen independent association signals suggests a
highly-transcribed region with either complementary or
redundant regulatory mechanisms that may affect mul-
tiple genes. Future work could extend our efforts by
examining other populations in malaria-endemic re-
gions, as well as previously identified and highly influen-
tial structural variants, including a previously identified
3.7 kb copy number variant, which we were only able to
evaluate as a sensitivity analysis [28].
A combined-phenotype method was selected due to its

purported ability to increase statistical power to identify
novel loci with modest effects across multiple correlated
traits. However, sample sizes of previous RBC trait
GWAS suggest that many loci with modest effects and
lead SNPs in the low to common allele frequency range
in European or East Asian populations have already been
identified. Power was also lacking to detect loci that
might be specific to other race/ethnic groups—although
African Americans and Hispanics/Latinos were well-
represented in this study, sample sizes similar to Euro-
pean populations will not be proportionately representa-
tive of genetic diversity, particularly for variants that are
low-frequency or difficult to impute. This observation
demands an increase in representation of African Ameri-
cans and Hispanics/Latinos, as narrower (on average)
LD blocks in populations exhibiting ancestral admixture
also improve fine-mapping for prioritizing candidate
variants for functional characterization. A combined-
phenotype method can also improve the interpretability
of association signals when one causal SNP per associ-
ation signal is assumed. For example, a direction of ef-
fect inconsistent with the phenotypic correlation of two
RBC traits is feasible in some anemia states, for which
MCV and RDW—despite being negatively correlated in
healthy individuals—may vary widely depending on the
underlying cause [54, 55]. The African-ancestry-specific
SNP rs9924561 (previously identified for MCH, MCHC,
and MCV) is an example of a variant that unexpectedly
showed opposite directions of effect for HGB and RBCC
(pairwise correlation = 0.68) in our study [28, 30, 56].
The mechanism driving very strong associations (p <
1E-15 in all traits aside from HCT) with this intronic
variant remains uncharacterized, likely because it is
not present in European-ancestry populations and
hence could not be detected in otherwise highly pow-
ered studies [12, 31]. The identification of such candi-
date functional variants for multiple traits with the
added context of the phenotypic correlation can pro-
vide insight for molecular experimentation examining
causal biological mechanisms.
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The possibility that combined-phenotype methods
could benefit the study of other correlated polygenic
traits still merits further investigation, particularly with
groups of traits that may overlap in genetic architecture,
but have not been previously examined in concert. Over
the past three decades, RBC traits have been associated
with cardiovascular disease outcomes like heart failure
and stroke, highlighting the potential for identifying
novel pleiotropic loci [6, 57–62]. Indeed, combined-
phenotype approaches that examine the shared genetic
architecture underlying intermediate phenotypes and
clinical events may be particularly powerful for out-
comes like stroke and heart failure, given that pheno-
typic heterogeneity of these phenotypes has complicated
locus identification and characterization.
Our evaluation of lead SNPs’ effects on expression in

RBC-relevant tissues faced known constraints that lim-
ited interpretation and contextualization of identified
variants. Crucially, the vast majority of publicly available
functional data were collected from European-ancestry
individuals, precluding the use of these databases for
interpreting potential effects of ancestry-specific or low-
frequency SNPs on gene expression. For example,
rs8051004 is one of two less frequent variants that were
detected in European-ancestry populations at the HBA1/
2 locus (CAF = 0.02). However, rs8051004 was reported
as “monoallelic” in spleen tissue in GTEx, despite having
a 10% allele frequency in PAGE African Americans and
12 and 11% in the 1000G African and East Asian super-
populations, respectively. The exclusion of populations
with African, Amerindian, and Asian ancestry continues
to hamper the potential benefits of these resources. Add-
itionally, while the GTEx consortium has made extensive
efforts to characterize a wide array of tissue types, bone
marrow was not included [49]. RBCs enucleate in the
bone marrow prior to entering circulation, with no
nuclear transcription and extremely limited translation
occurring in mature RBCs. Therefore, bone marrow is the
only tissue for which eQTL data characterizing the effects
of genetic variation on gene expression for RBCs directly.
As with other genetic association studies, we faced

several limitations. First, sample sizes for RBC trait
GWAS have ballooned to nearly 200,000 participants
and we were restricted to a smaller study population.
However, the PAGE study has recently demonstrated
that modest-sized studies that are more ancestrally di-
verse improve detection of novel and independent sig-
nals compared to simply increasing the number of
European-ancestry individuals [56]. Second, while this
study did improve on previous studies in terms of repre-
sentation from African and American continental ances-
tries, we were unable to evaluate associations in several
populations, particularly South Asians, Pacific Islanders,
Native Americans, and Native Hawaiians. Native

Americans and Native Hawaiians are represented in
PAGE, but RBC phenotypes were not measured in con-
tributing studies. South Asian study populations have
been included in several previous RBC trait GWAS; Na-
tive Americans and Pacific Islanders remain underrepre-
sented in GWAS of all complex traits [15, 20, 39, 63].
Third, we were unable to evaluate structural variants,
which have traditionally been difficult to impute, and re-
calling all structural variants within significant loci was
outside the scope of this work. A sensitivity analysis ac-
counting for the effect of esv3637548 in MEGA-genotyped
study participants suggests that further evaluation is required
to determine whether true causal variants overlap the pos-
ition of this 3.7 kb structural variant on other ancestral hap-
lotypes. However, it is expected that some structural variants
will be adequately represented by proxy SNPs, and future
sequencing-based studies will be able to characterize these
rare variants. Finally, eQTL data could not be comprehen-
sively interpreted given the limitations of publicly available
databases as described above. It is imperative that these re-
sources focus their efforts on improving inclusivity over the
next several years to keep abreast of increased representative-
ness in association studies.

Conclusion
In conclusion, we identified over 50 association signals
within 39 loci in a combined-phenotype analysis of seven
RBC traits. We did not observe large improvement in
discovery signal detection by using the combined-
phenotype methods, although further work is required
to fully test the utility of these approaches. However, our
work demonstrates the benefits of diverse study popula-
tions for highly polygenic traits, in spite of the fact that
while global populations are increasing in genetic diver-
sity, genetic research has become less diverse. As gen-
omics tools become more broadly available, our results
underscore the critical importance of including diverse
global populations so the benefits of genomics research
can be equitably applied.

Methods
Study population
The PAGE study comprises ancestrally-diverse study
populations from United States cohorts and biobanks
evaluating common complex diseases and accompanying
risk factors (see online supplement for more informa-
tion). This study used data from self-reported African
American, Asian American, European American, His-
panic/Latino, and Native American participants from the
Atherosclerosis Risk in Communities Study (ARIC); the
Coronary Artery Risk Development in Young Adults
Study (CARDIA); the Hispanic Community Health
Study/Study of Latinos (HCHC/SOL); the Icahn Mt.
Sinai School of Medicine BioME Biobank (BioME); and
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the Women’s Health Initiative (WHI, described above).
Our study population comprised sixteen analytic sub-
groups which were genotyped and imputed separately.
Fifteen of the sixteen analytic subgroups were identified
by study and self-reported race/ethnicity (Tables S2, S3).
The sixteenth subgroup was a pooled sample of self-
reported African American, Asian American, Hispanic/
Latino, Native American, and “Other” MEGA-genotyped
individuals from BioMe, HCHS/SOL, and WHI. Partici-
pants were excluded if they had ever been diagnosed
with HIV or leukemia, were pregnant at time of blood
draw, were receiving chemotherapy at time of blood
draw, or had a severe hereditary anemia (primarily
sickle-cell disease, determined by genotype).

RBC trait measurement
RBC traits were measured with hemanalyzers following
standardized laboratory protocols from blood draws at
the earliest available visit (see online supplement) for the
three primary (HCT, HGB, and RBCC) and four derived
(MCH, MCHC, MCV, and RDW) RBC traits (Table S1).
RBC trait values that exceeded four standard deviations
from the mean of the trait in the overall study population
were excluded, mirroring protocols established by prior
GWAS [28, 45]. Pairwise correlation coefficients were cal-
culated in the MEGA-genotyped analytic subgroup (see
below) adjusting for all the covariates used in univariate
regression analysis, specifically age at blood draw, sex,
study site or region, and ancestral principal components.

Genotyping, quality control, and imputation
Genotyping methods have been described for each of
our study sub-populations previously; all imputation of
genotype data used in this study was performed by the
PAGE coordinating center [64]. Briefly, genotyping ar-
rays and quality control measures used were as follows.
Affymetrix Genome-Wide Human SNP Array 6.0 for
ARIC, BioMe Mt. Sinai Biobank European Americans,
CARDIA, and WHI SHARe. The Illumina OmniExpress
was used to genotype individuals for all remaining
BioMe Mt. Sinai Biobank participants. WHI GARNET
participants were genotyped on the Illumina Human
Omni1-Quad v1–0 B array; WHI GECCO participants
on the Illumina 610 K and Cytochip 370 K arrays; WHI
HIPFX participants on the Illumina 550 K and 610 K
arrays; WHI LLS participants on the Illumina
HumanOmniExpressExome-8v1_A array; WHI MOP-
MAP participants on the Affymetrix Gene Titan, Axiom
Genome-Wide Human CEU I Array Plate; and WHI
WHIMS participants on the HumanOmniExpress
Exome-8v1_B array. All remaining participants from
BioMe, HCHS/SOL, and WHI were genotyped on the
Illumina Infinium Expanded Multi-Ethnic Genotyping
Array (MEGA).

With regard to quality control, studies employed either
a 90% (ARIC, MOPMAP) or 98% (all other studies) SNP
call-rate threshold. A sample call rate of 95% was
employed for ARIC and. A 98% rate for MEGA-
genotyped participants, with no sample call rate applied
to remaining studies. Similarly, a 1E-06 HWE p-value
threshold was employed for ARIC, and a 1E-04 thresh-
old for MEGA-genotyped participants. Additional study-
specific genotype QC criteria are described in Table S2.
All studies were imputed to the 1000 Genomes phase 3
reference panel by the PAGE coordinating center after
study-specific quality control criteria were applied (Table
S2, 56). We further excluded SNPs on a sub-study-
specific basis which had poor imputation quality (< 0.4)
or an effective heterozygosity < 35 (calculated as 2 x
CAF x (1-CAF) x N x imputation quality, where CAF is
coded allele frequency and N is sample size).

Statistical methods
Overall reporting of results
Previously-reported SNPs for the seven RBC traits evaluated
in this study were identified through review of the NHGRI-
EB GWAS Catalog [65] as of January 1, 2019, supplemented
by a PubMed search. Multi-ethnic combined-phenotype re-
sults were presented as the primary findings, employing
Bonferroni correction assuming 10M independent tests (i.e.,
genome-wide significance refers to paSPU < 5E-9). We de-
fined a locus using physical proximity (+/− 500 kb from the
lead SNP), and we defined an association signal as the lead
(most significant) SNP and proxy SNPs in local LD based
on conditional independence within ten megabases. Discov-
ery loci were defined as ≥500 kb from and conditionally in-
dependent of a variant previously reported to satisfy the
field standard p < 5E-8 for any of the seven RBC traits.
Ancestry-specific and trait-specific analyses were performed
as sensitivity analyses to improve interpretation of results.
Complete summary-level results are available through
dbGaP (phs000356).

Univariate analysis
Univariate associations for the seven RBC traits were es-
timated assuming an additive genetic model of inherit-
ance and adjusting for linear effects of age at blood
draw, sex, study site or region, and ancestral principal
components [66]. The total MEGA-genotyped subgroup
was analyzed using generalized estimating equations
allowing correlated errors for first or second-degree rela-
tives, and independent error distributions by self-
reported ancestry group [67]. Linear regression was im-
plemented in SUGEN for the other 15 analytic sub-
groups [67]. For each RBC trait, METAL software was
used to perform inverse-variance-weighted meta-analysis
across all sub-studies [68]. SNP effect heterogeneity was
measured with the Cochran’s Q test. SNP meta-analysis
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p-values were assessed by RBC trait by calculating gen-
omic inflation factors (λ) and plotting the expected dis-
tribution against observed results.

Combined-phenotype analyses
We used an adaptive sum of powered scores (aSPU)
simulation-based method to perform a combined-
phenotype analysis incorporating univariate results from
seven RBC traits in sixteen analytic subgroups that were
combined using inverse-variance-weighted meta-analysis.
To evaluate evidence for shared genetic effects across all
seven RBC traits, we combined meta-analyzed univariate
results with aSPU to generate a combined-phenotype p-
value for each SNP [28, 69]. In comparison with other avail-
able methods, we chose aSPU because it exhibited low type
1 error rate in simulations; accommodated direction of ef-
fect; and was computationally scalable to the millions of
SNPs measured using 1000 Genomes Phase 3 imputed data
[70]. We implemented aSPU using Julia 1.0 to optimize effi-
ciency (https://github.com/kaskarn/aspu_julia).
aSPU incorporated univariate summary z-scores, cal-

culated for each SNP across all 7 traits, to yield a single
p-value evaluating whether one or more of the traits
were associated with a given SNP. Briefly, the procedure
estimates Σ, the 7 × 7 correlation of null z-scores across
univariate results and draws 1011 Monte-Carlo samples

from the multivariate N7ð0; Σ̂Þ distribution. For each SNP
j, the results for all 7 traits zj1, …, zj7 are used to form a se-
quence of sums of powered scores: SPUðγÞ ¼ zγ1 þ…

þzγ7 , where γ = 0, 1, …, 8, plus SPU(∞) =max ∣ S7∣. Each
powered score is compared to the distribution of the 1011

powered scores calculated using simulated null values
with the same γ to calculate a Monte-Carlo p-value. An
overall SNP p-value (paSPU, possible range: [1/(1 + 1011),
1]), is calculated by comparing the minimum p-value
across the sequence of powered scores to the reference
distribution of minimum p-values across the sequence of
powered scores computed using the simulated null data.
The adaptive aspect of the test lies in the potential for dif-
ferent γ values to yield the maximal SPU across SNPs,
maintaining power compared to a test with only a single
possible alternative hypothesis.

Sensitivity analyses
Sensitivity analyses were performed for combined-trait
results by self-reported race/ethnicity among analytic
subgroups with greater than 1000 participants (i.e., re-
stricted to African Americans, Hispanics/Latinos, and
European Americans). Given the number of known
ancestry-specific variants driving blood trait values, it
was necessary to ensure that all self-reported race/ethnic
groups be evaluated individually for associations that
may be undetectable in the larger population. Meta-

analyses of univariate summary statistics followed by
combined-phenotype analysis were performed within each
self-reported race/ethnicity using the same methods de-
scribed above for the overall study population to identify
genome-wide association signals (p < 5E-09).
We also examined whether there was evidence of sig-

nificant trait-specific loci that were not identified in
combined-phenotype analyses. Meta-analyses of each
univariate RBC trait across all analytic subpopulations,
as described above, were evaluated for association signals
exceeding genome-wide significance (p < 5E-09). Al-
though RBC traits are expected to share genetic under-
pinnings, particularly within pairs of correlated traits,
association signals which were trait-specific in the well-
powered UK BioBank blood trait GWAS suggest that
each trait has its own unique suite of associations [12].
Finally, in an attempt to examine the influence of the

previously identified 3.7 kb structural variant esv3637548
in the HBA1/2 region of chromosome 16, we also ad-
justed for esv3637548 dosage (r2 = 0.86) in the MEGA-
genotyped subgroup [28]. This structural variant either
overlaps or has the potential to affect chromatic accessi-
bility for multiple variants at this locus, but is present as
both a duplication and a deletion. The duplication was
not able to be imputed, and the deletion only met im-
putation quality criteria in the MEGA-genotyped study
population, hence esv3637548 could not be evaluated
within the entire study population in which this variant
may be present. To evaluate the potential effect of this
variant on each lead SNP reported as independent
within our study, unadjusted combined-phenotype p-
values were therefore compared to p-values after condi-
tioning on esv3637548.

Generalization of previously reported associations to
PAGE
All SNPs located within 500 kb of a variant previously
reported for any RBC trait were evaluated for evidence
of association in the combined-phenotype analysis as
well as each individual trait analysis. A generalization
significance threshold of 1.07E-4 was calculated using
Bonferroni correction for the previous number of one-
megabase genomic regions for which one or more
genome-wide-significant variants were reported for one
or more RBC traits (n = 466, representing 1308 index
SNPs previously reported for one or more of the seven
RBC traits we evaluated). We first reported trait-specific
associations—i.e., index variants that have been reported
by trait. We did not report loci containing a SNP that
exceeded genome-wide-significance for the first time in
one RBC trait but were previously reported for another
trait as discovery associations; therefore, we also used
the aforementioned significance threshold to evaluate
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generalization of association signals in each trait across
all known loci.

Identification of conditionally independent association
signals
Iterative conditional analysis was performed to identify
all independent, genome-wide-significant combined-
phenotype lead SNPs as described above. To avoid iden-
tifying SNPs as independent that were in long-range LD,
we began by conditioning on the top SNP within ten
megabase windows on each chromosome. To identify in-
dependent SNPs, linear models were extended to include
all PAGE combined-phenotype lead SNPs on shared
chromosomes using the same methods described above
for univariate analysis, with an added covariate to in-
clude the dosage information for each participant at
each lead SNP. Following each round of conditioning,
aSPU was re-run on conditioned results. Additional
rounds of conditional analyses were performed as an it-
erative process until no genome-wide-significant SNPs
remained in the combined phenotype analysis.

Publicly available expression quantitative trait
locus (eQTL) analysis
To help prioritize candidate causal gene-variant associa-
tions at identified loci, we evaluated all available lead
SNPs within significant loci in relevant available tissues
(whole blood, liver, spleen, and thyroid) for evidence of
association with gene expression using the Genotype
Tissue Expression (GTEx) portal [49].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6626-9.

Additional file 1: Figure S1. Manhattan and Quantile-Quantile plots for
individual RBC traits in the total study population. In Manhattan plots,
previously reported loci (published index SNP reported p < 5E-08 within
500 kb of PAGE combined-phenotype lead SNP) are shown in purple; pre-
viously unreported loci with a PAGE lead SNP p < 5E-09 are shown in
green. In Q-Q plots, all (black) p-values and p-values for variants > 500 kb
from a previously reported significant variant for any RBC trait (blue) are
both shown. Figure S2. Evidence of genetic associations shared across
correlated RBC traits. X-axis: chromosome and position (top) and rsid
(bottom) for each combined-phenotype lead SNP. Y-axis: trait-specific –
log10(p-values), with increased intensity representing higher significance,
for each combined-phenotype lead SNP. P-values scaled to a maximum –
log10 value of 25 for improved interpretation. Figure S3. Locus-Zoom
plots of the association between rs6573766 and RBCC in PAGE African
Americans on an African American LD background (A), Hispanics/Latinos
on a Hispanic/Latino LD background (B), and European Americans on a
European LD background (C). Each point represents one SNP; x-axis: in-
creasing position on chromosome 14 left to right; y-axis: -log10(p-value)
of the association with MCH SNP correlation with the lead SNP (r2) is col-
ored according to the legend in Figure S3A. Annotated Refseq genes
proximal to the lead SNP are shown by position above the X axis. Figure
S4. Locus-Zoom plot of the association between MCH (A) and MCV (B)
and rs145548796 in the total MEGA study population. Each point repre-
sents one SNP; x-axis: increasing position on chromosome 6 left to right;
y-axis: -log10(p-value) of the association with MCH SNP correlation with

the lead SNP (r2) is colored according to the legend in Figure S4A. Anno-
tated Refseq genes proximal to the lead SNP are shown by position
above the X axis.

Additional file 2. Twelve supplemental tables supporting findings
reported in the main text. Tables cover trait, genotyping, and QC
description; ancestry- and trait-specific findings for combined-phenotype
lead SNPs; sensitivity analysis of a deletion at the HBA1/2 locus;
generalization of previously reported findings to PAGE study populations;
and eQTL findings for PAGE lead SNPs in relevant tissue types.
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