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Abstract
In patients with Plasmodium vivax malaria treated with effective blood-stage therapy,

the recurrent illness may occur due to relapse from latent liver-stage infection or rein-

fection from a new mosquito bite. Classification of the recurrent infection as either

relapse or reinfection is critical when evaluating the efficacy of an anti-relapse treat-

ment. Although one can use whether a shared genetic variant exists between baseline

and recurrence genotypes to classify the outcome, little has been suggested to use both

sharing and nonsharing variants to improve the classification accuracy. In this paper,

we develop a novel classification criterion that utilizes transition likelihoods to distin-

guish relapse from reinfection. When tested in extensive simulation experiments with

known outcomes, our classifier has superior operating characteristics. A real data set

from 78 Cambodian P. vivax malaria patients was analyzed to demonstrate the prac-

tical use of our proposed method.
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1 INTRODUCTION

The classification of infections from more than one potential

cause is critical in malaria research. Taking Plasmodium fal-
ciparum, for example, the most prevalent malaria species in

Sub-Saharan Africa, may recur due to relapse from treatment

failure or due to reinfection from new mosquito bites. The true

anti-malarial treatment efficacy cannot be determined without

knowing whether the recurrent infection is due to treatment

failure or new infection in an area of high malaria transmis-

sion (Kwiek et al., 2007; Daniels et al., 2008; Juliano et al.,
2010). Plasmodium vivax, the leading cause of malaria out-

side Africa, may similarly recur due to treatment failure or

reinfection. However, in many endemic areas such as South-

east Asian and Oceania, it often recurs due to relapse of hyp-

nozoites reactivating from the liver, as most anti-malarials are

not active against these latent liver stages of P. vivax (Lin

et al., 2015; Beck et al., 2016; Pearson et al., 2016). Indeed,

without knowing the cause of recurrent infection, determin-

ing treatment efficacy, relapse rate, and disease epidemiology

is challenging.

Given the high degree of genetic diversity and polyclonal

nature of P. vivax infections in many parts of the world, where

many clones (genetically distinct strains) exist within a human

host, a targeted amplicon deep sequencing approach provides

an opportunity for a higher precision of classification (Lin

et al., 2015). As part of a malaria cohort study conducted

from 2010 to 2011 (Lon et al., 2014), patients in Cambo-

dia found to have P. vivax were followed after treatment with

a highly efficacious artemisinin-based combination therapy,

with blood samples collected for deep sequencing at base-

line. Of 78 infected patients followed, 23 individuals devel-

oped recurrent infections. Their blood sample was collected at

the time of recurrence for another round of sequencing. It was

hypothesized that through genotyping of the initial and recur-

rent parasite isolates, one may be able to distinguish relapse
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from reinfection based on variant overlap between the two

sequencing results within individuals.

Naively, one may classify the recurrent infection as relapse

if any variant in the recurrent infection is shared with the

initial infection (Nyachieo et al., 2005; Kobbe et al., 2006).

However, without considering the prevalence of the variant,

false positive misclassification likely occurs if some variants

are frequently observed in the population (Juliano et al.,
2009). Kwiek et al. (2007) treated the recurrent infection as

indeterminate if the initial and recurrent infections shared

only one variant with a prevalence of more than 10%.

However, this approach is somewhat ad hoc because the 10%

prevalence cutoff may not be generally applied to other areas,

and sharing only one variant may be rare in regions of high

transmission where the parasite population is diverse, and a

high number of variants is routinely detected in an individual

(Juliano et al., 2010). Instead, Lin et al. (2015) calculated the

reinfection probability as the product of all reinfection proba-

bilities from all shared variants and classified the recurrence

as reinfection if the probability is more than 10%. Specifically,

they calculated the reinfection probability based on a binomial

probability model (BPM) that equals to
∏

𝑗{1 − (1 − 𝑦𝑗)𝑥},

where 𝑦𝑗 is the prevalence of a shared variant and 𝑥 is

the number of variants observed in the recurrent infection.

As one can see, the probability model considers only the

possibility of shared variants occurred in the recurrence. A

nonshared variant may also occur at random in the recurrent

infection, regardless whether the recurrence is relapse or rein-

fection. This is likely due to reactivation of latent parasites

acquired from other, historical infections preceding those

captured by genotyping (Chen et al., 2007; Imwong et al.,
2007).

The presence or absence of variants in the initial and recur-

rence sequencings can naturally be described by a transition

model. However, the estimation of transition probabilities is

complicated by an unknown mixture of two models, one from

relapse and one from reinfection. Here in this paper, we pro-

pose an estimation procedure that can estimate the transition

probabilities under unknown causes of infections. The method

is first established on a statistical model that can describe the

probability of relapse in the recurrent infection. Then, through

comparison of two transition likelihoods, our novel classifi-

cation criterion utilizing the transition information can sig-

nificantly improve a classifier that uses only initial sequenc-

ing information.

The rest of the paper is organized as follows. In Section 2,

we develop a statistical model for the probability of observing

a recurrent infection in the follow-up period, which sums over

probabilities of relapse and reinfection. A likelihood-based

estimation method is utilized, with a computing solution for

high-dimensional data when the number of allelic variants

exceeds the number of subjects. Our novel classification cri-

terion is discussed in Section 3. Simulation studies in Sec-

tion 4 for both low- and high-dimensionality scenarios show

the consistency and high accuracy of our classifier. A com-

parison to the existing BPM method (Lin et al., 2015) shows

the superiority of our approach. We apply our method to the

P. vivax infection data and present part of the classification

results in Section 5. Assumptions and possible generalizations

of our approach are discussed in Section 6.

2 STATISTICAL MODEL
AND ESTIMATION

2.1 Notation

For subject 𝑖, let 𝑿𝑖 = (𝑋𝑖1,… , 𝑋𝑖𝐽 )′ and 𝒁 𝑖 =
(𝑍𝑖1,… , 𝑍𝑖𝐽 )′ denote a 𝐽 -dimensional vector of sequencing

outcomes in the initial and recurrent infections, respectively.

Let 𝑌𝑖 be the binary indicators with 𝑌𝑖 = 1 indicating the

recurrence and 0 otherwise. In this study, we aim to classify

the recurrent infection, 𝑌𝑖 = 1, into two latent classes,

namely, relapse 𝑅𝑖 = 1 or reinfection 𝑁𝑖 = 1, assuming that

two types of infections cannot occur simultaneously. We

also assume that a third possible class, treatment failure, is

unlikely in the setting of highly efficacious therapy. Note

that the sequencing outcomes 𝒁 𝑖 in the recurrent infection

can only be observed when 𝑌𝑖 = 1, and can be different

from 𝑿𝑖 even when the recurrent infection is relapse. If a

subject does not have a recurrent infection, that is, 𝑌𝑖 = 0, the

information on 𝒁 𝑖 is not available. Through the paper, the

number of subjects from the baseline with initial sequencing

is denoted by 𝑛, and the number of subjects who have

recurrent infections with follow-up sequencing is denoted by

𝑚 =
∑𝑛

𝑖=1 𝑌𝑖.

2.2 Statistical model

Suppose that 𝑃 (𝑋𝑖𝑗 = 1) = 𝑝𝑗 for 𝑖 = 1,… , 𝑛, where 𝑋𝑖𝑗 = 1
indicates the presence of variant 𝑗 in the sequencing outcome

of subject 𝑖, and 𝑋𝑖𝑗 = 0 otherwise. Given a realization of the

initial sequencing outcome 𝒙𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝐽 )′, the indicator

for relapse, denoted by 𝑅𝑖, is assumed to follow a logistic

model

log
{

𝜋𝑖(𝜃)
1 − 𝜋𝑖(𝜃)

}
= 𝛼 + 𝒙′𝑖𝜷, (1)

where 𝜋𝑖(𝜃) = 𝑃 (𝑅𝑖 = 1|𝑿𝑖 = 𝒙𝑖), 𝜽 = (𝛼,𝜷′)′, and 𝜷 =
(𝛽1,… , 𝛽𝐽 )′ with 𝛽𝑗 = 0 indicating the 𝑗th variant is not asso-

ciated with the relapse.

However, the relapse indicator 𝑅𝑖 cannot be observed.

What can be observed is the recurrence indicator 𝑌𝑖, which

equals 1 if either relapse or reinfection occurs. Assume that



the probability of acquiring an reinfection is constant and

independent of the baseline variants 𝑿𝑖, that is,

𝑃 (𝑁𝑖 = 1|𝑅𝑖 = 0,𝑿𝑖) = 𝑃 (𝑁𝑖 = 1|𝑅𝑖 = 0) = 𝜇,

and that both infections cannot occur simultaneously, that is,

𝑃 (𝑁𝑖 = 1|𝑅𝑖 = 1,𝑿𝑖) = 0.

One can write

𝑃 (𝑌𝑖 = 1|𝑿𝑖)

= 𝑃 (𝑁𝑖 = 1, 𝑅𝑖 = 0|𝑿𝑖) + 𝑃 (𝑁𝑖 = 0, 𝑅𝑖 = 1|𝑿𝑖)

= 𝑃 (𝑁𝑖 = 1|𝑅𝑖 = 0,𝑿𝑖)𝑃 (𝑅𝑖 = 0|𝑿𝑖)

+𝑃 (𝑁𝑖 = 0|𝑅𝑖 = 1,𝑿𝑖)𝑃 (𝑅𝑖 = 1|𝑿𝑖)

= 𝜇{1 − 𝜋𝑖(𝜽)} + 𝜋𝑖(𝜽), (2)

where 𝜋𝑖(𝜽) = exp(𝛼 + 𝒙′𝑖𝜷)∕{1 + exp(𝛼 + 𝒙′𝑖𝜷)} as defined

in model (1).

Note that assuming constant infection rate is reasonable

because subjects who live in the same area shall be bite by

mosquitoes completely at random. The reinfection rate may

depend on risk factors. If so, we may build a regression model

relating the reinfection rate to those risk factors. Our approach

still applies after such adjustment.

2.3 Estimation method

For the binary outcome 𝑌𝑖, one can estimate the unknown

parameters minimizing the negative log-likelihood function.

However, the reinfection probability 𝜇 and baseline relapse

rate 𝛼 may not be estimable simultaneously because both

parameters are part of the baseline recurrences. To avoid

such identifiability problem, we assume the reinfection rate

is known or can be estimated via external information. Given

𝜇, the parameter 𝜽 can be estimated via minimizing the nega-

tive log-likelihood function

𝓁(𝜽) = 𝑛−1
𝑛∑

𝑖=1
[𝑦𝑖 log 𝑝𝑖(𝜽) + (1 − 𝑦𝑖) log{1 − 𝑝𝑖(𝜽)}],

where 𝑦𝑖 is a realization of 𝑌𝑖 and 𝑝𝑖(𝜽) = 𝜇{1 − 𝜋𝑖(𝜽)} +
𝜋𝑖(𝜽). Under regularity conditions for maximum likelihood

estimators, one can show that �̂� is a consistent estimator of

𝜽 and 𝑛1∕2(�̂� − 𝜽) converges in distribution to a normal vari-

able with mean 0 and variance that is the inverse of Fisher

information matrix.

In our data where the number of variants is larger than the

number of patients, we penalize the likelihood function with

an 𝐿1-penalty (Tibshirani, 1996) to enable variable selection

and avoid ill-posed minimization problem when 𝐽 > 𝑛. In par-

ticular, we solve the following optimization problem

�̂� = argmin
𝜽

−𝓁(𝜽) + 𝜆

𝐽∑
𝑗=1

|𝛽𝑗|, (3)

where 𝜆 is a tuning parameter whose optimal value will be

determined by cross-validation. There are some other choices

of penalty functions, such as elastic net penalty (Zou and

Hastie, 2005), adaptive Lasso (Zou, 2006), or folded-concave

penalty (Fan and Lv, 2011). From numerical studies, we

found that the performance of our method is not sensitive

to the choice of penalty functions. The main purpose of

penalization is to regulate the optimization problem with

high-dimensional covariates and select baseline variants that

associate with recurrence.

2.4 Computation

We develop a coordinate gradient descent algorithm (Fried-

man et al., 2010) to solve the optimization problem (3).

Let �̃� = (𝛼, 𝜷
′
)′ be the current value of 𝜽 and 𝜗𝑖 = 𝛼 + 𝒙′𝑖𝜷.

Let 𝑓 (𝜗𝑖) = 𝑦𝑖 log 𝑝(𝜗𝑖) + (1 − 𝑦𝑖) log{1 − 𝑝(𝜗𝑖)} with 𝜗𝑖 =
𝛼 + 𝒙′𝑖𝜷, and let 𝑓 ′(𝜗𝑖) and 𝑓 ′′(𝜗𝑖) denote the first and sec-

ond derivatives of the function 𝑓 with respect to 𝜗𝑖, respec-

tively. A local quadratic approximation to −𝓁(𝜽) can be

written as

𝓁𝑄(𝜽; �̃�)

= 𝑛−1
𝑛∑

𝑖=1

{
−1
2
𝑓 ′′(𝜗𝑖)(𝜗𝑖 − 𝜗𝑖)2 − 𝑓 ′(𝜗𝑖)(𝜗𝑖 − 𝜗𝑖)

}
+ 𝑐1(�̃�)

= (2𝑛)−1
𝑛∑

𝑖=1
−𝑓 ′′(𝜗𝑖)

{
𝜗𝑖 − 𝜗𝑖 +

𝑓 ′(𝜗𝑖)
𝑓 ′′(𝜗𝑖)

}2

+ 𝑐2(�̃�)

= (2𝑛)−1
𝑛∑

𝑖=1
�̃�𝑖(𝜗∗𝑖 − 𝛼 − 𝒙′𝑖𝜷)

2 + 𝑐2(�̃�),

where 𝜗∗𝑖 = 𝜗𝑖 − 𝑓 ′(𝜗𝑖)∕𝑓 ′′(𝜗𝑖), �̃�𝑖 = −𝑓 ′′(𝜗𝑖), and 𝑐1(�̃�)
and 𝑐2(�̃�) are functions depending only on �̃�. We then min-

imize 𝓁𝑄(𝜽; �̃�) + 𝜆
∑𝐽

𝑗=1 |𝛽𝑗|, which becomes a regularized

weighted least squares problem:

�̃�
new

= argmin
𝜽

(2𝑛)−1
𝑛∑

𝑖=1
�̃�𝑖(𝜗∗𝑖 − 𝛼 − 𝒙′𝑖𝜷)

2 + 𝜆

𝐽∑
𝑗=1

|𝛽𝑗|.
(4)

Such a problem can be solved by a standard coordinate gradi-

ent descent algorithm (Friedman et al., 2010), which is imple-

mented by R package glmnet.



The remaining tasks are to derive 𝑓 ′(𝜗𝑖) and 𝑓 ′′(𝜗𝑖). By

the definition of 𝑝(𝜗𝑖), one has 𝑝′(𝜗𝑖) = (1 − 𝜇)𝜋𝑖(𝜽){1 −
𝜋𝑖(𝜽)}, and 𝑝′′(𝜗𝑖) = (1 − 𝜇)𝜋𝑖(𝜽){1 − 𝜋𝑖(𝜽)}{1 − 2𝜋𝑖(𝜽)}.

Then, one can write 𝑓 ′(𝜗𝑖) as

𝑓 ′(𝜗𝑖) =
𝑦𝑖

𝑝(𝜗𝑖)
𝑝′(𝜗𝑖) −

1 − 𝑦𝑖
1 − 𝑝(𝜗𝑖)

𝑝′(𝜗𝑖)

=
𝑝′(𝜗𝑖)

𝑝(𝜗𝑖){1 − 𝑝(𝜗𝑖)}
{𝑦𝑖 − 𝑝(𝜗𝑖)}. (5)

Since

log𝑓 ′(𝜗𝑖) = log 𝑝′(𝜗𝑖) + log{𝑦𝑖 − 𝑝(𝜗𝑖)}

− log 𝑝(𝜗𝑖) − log{1 − 𝑝(𝜗𝑖)},

taking derivatives on both sides gives

𝑓 ′′(𝜗𝑖)
𝑓 ′(𝜗𝑖)

= 𝜕

𝜕𝜗𝑖

log𝑓 ′(𝜗𝑖) =
𝑝′′(𝜗𝑖)
𝑝′(𝜗𝑖)

−
{

1
𝑦𝑖 − 𝑝(𝜗𝑖)

+ 1
𝑝(𝜗𝑖)

− 1
1 − 𝑝(𝜗𝑖)

}
𝑝′(𝜗𝑖). (6)

Straightforwardly, the product of (5) and (6) gives 𝑓 ′′(𝜗𝑖). We

summarize the algorithm as follows:

Step 1: Initialize 𝜽 at �̃� = (𝛼,𝜷
′
)′.

Step 2: Solve

�̃�
new

= argmin
𝜽

(2𝑛)−1
∑

𝑖∶�̃�𝑖>0
�̃�𝑖(𝜗∗𝑖 − 𝛼 − 𝒙′𝑖𝜷)

2

+𝜆

𝐽∑
𝑗=1

|𝛽𝑗|,
where 𝜗∗𝑖 = 𝜗𝑖 − 𝑓 ′(𝜗𝑖)∕𝑓 ′′(𝜗𝑖), 𝜗𝑖 = 𝛼 + 𝒙′𝑖𝜷, and

�̃�𝑖 = −𝑓 ′′(𝜗𝑖).
Step 3: Update 𝜗𝑖, 𝜗∗𝑖 , and �̃�𝑖 by letting 𝜗new

𝑖 = 𝛼new +
𝒙′𝑖𝜷

new
, 𝜗∗new

𝑖 = 𝜗new
𝑖 − 𝑓 ′(𝜗new

𝑖 )∕𝑓 ′′(𝜗new
𝑖 ), and

�̃�new
𝑖 = −𝑓 ′′(𝜗new

𝑖 ).
Step 4: Iterate between steps 2 and 3 until convergence, that

is, the 𝐿2-norm ||�̃�new
− �̃�||2 ≤ 𝜖, where 𝜖 is a user-

defined stopping threshold. We choose 𝜖 = 0.001.

Remark that, when 𝜇 > 0, the function −𝑓 (𝜗𝑖) is not a

convex function. Therefore, solving our proposed target func-

tion (3) is a challenging nonconvex optimization problem. To

ensure stable computation of the gradient descent algorithm,

we drop negative weight �̃�𝑖 when solving the intermediate

weighted least squares function (4) in Step 2 above. Similar to

other nonconvex optimization problems, the gradient descent

algorithm converges to a local minimum of the objective func-

tion. In the simulation studies, we find that such local minima

admit good variable selection and classification performance;

see Section 4.

3 CLASSIFICATION

We aim to classify recurrent infection (𝑌𝑖 = 1) to either

relapse (𝑅𝑖 = 1) or reinfection (𝑁𝑖 = 1). Two classifiers are

studied. The first one utilizes the initial sequencing informa-

tion and logistic regression model (1) to calculate the initial

probability estimation of the recurrence being relapse. The

second one updates the initial probability estimation using

transition likelihoods under relapse and reinfection. Through

comparison between two transition likelihoods, the second

classifier is anticipated to perform better than the first one

because more information is used.

3.1 Based on baseline information

Let 𝜉𝑖 denote the probability of being relapse given that a

recurrent infection has occurred. One can show that, based

on the recurrence probability in formula (2),

𝜉
(0)
𝑖 = 𝑃 (𝑅𝑖 = 1|𝑌𝑖 = 1,𝑿𝑖)

= 𝑃 (𝑁𝑖 = 0|𝑅𝑖 = 1,𝑿𝑖)
𝑃 (𝑅𝑖 = 1|𝑿𝑖)
𝑃 (𝑌𝑖 = 1|𝑿𝑖)

=
𝜋𝑖(𝜽)

𝜇{1 − 𝜋𝑖(𝜽)} + 𝜋𝑖(𝜽)
,

which can be estimated by

𝜉
(0)
𝑖 =

𝜋𝑖(�̂�)

𝜇{1 − 𝜋𝑖(�̂�)} + 𝜋𝑖(�̂�)
.

This estimator gives a possible classification criterion via

ranking 𝜉
(0)
𝑖 . Acknowledging the interpretation of probabil-

ity, one may claim the recurrent case is (100 × 𝜉
(0)
𝑖 )-percent

likely to be relapse. However, one may ask for a clear cut to

identify the relapse. Barring this in mind, one can classify a

recurrent infection to be relapse if 𝜉
(0)
𝑖 > 0.5, which means

𝜋𝑖(�̂�) > 𝜇{1 − 𝜋𝑖(�̂�)} or equivalently, 𝑃 (𝑁𝑖 = 0, 𝑅𝑖 = 1|𝑌𝑖 =
1,𝑿𝑖) > 𝑃 (𝑁𝑖 = 1, 𝑅𝑖 = 0|𝑌𝑖 = 1,𝑿𝑖). The cutoff could be

chosen to optimize the operating characteristics if the true

infection type is available. Without the gold standard in this

study, we simply use 0.5 as the cutoff to choose the winner.

3.2 Updated by transition likelihoods

The variant present or absent in the baseline sequenc-

ing may not be present or absent again in the follow-up



sequencing. Recall that𝒁 𝑖 = (𝑍𝑖1,… , 𝑍𝑖𝐽 )′ is a random vari-

able for the recurrence sequencing outcomes. Assuming the

recurrent infection is a relapse, one can write 𝑍𝑖𝑗 as

𝑍𝑖𝑗 = 𝑋𝑖𝑗𝛿𝑖𝑗 + (1 −𝑋𝑖𝑗)(1 − 𝛿∗𝑖𝑗),

where 𝛿𝑖𝑗 and 𝛿∗𝑖𝑗 are two binary indicators that represent

repeated presence and absence of variant 𝑗 in the recur-

rence sequencing, with probability 𝑞𝑗 = 𝑃 (𝛿𝑖𝑗 = 1) and 𝑞∗𝑗 =
𝑃 (𝛿∗𝑖𝑗 = 1), respectively. Specifically, we assume that vari-

ant 𝑗 has probability 𝑞𝑗 = 𝑃 (𝑍𝑖𝑗 = 1|𝑋𝑖𝑗 = 1, 𝑅𝑖 = 1) to be

observed again in the recurrence sequencing if the variant is

observed in the initial sequencing, while the variant has proba-

bility 𝑞∗𝑗 = 𝑃 (𝑍𝑖𝑗 = 0|𝑋𝑖𝑗 = 0, 𝑅𝑖 = 1) to remain unobserved

in the recurrence sequencing if the variant is absent at the

baseline. This mechanism can be considered as a transition

model from the baseline sequencing to the follow-up sequenc-

ing outcomes, where 𝑞𝑗 and 𝑞∗𝑗 are transition probabilities in

a two-state transition model. If the recurrence is indeed a new

infection, we assume 𝒁 𝑖 is independent of 𝑿𝑖, and follows the

same distribution as 𝑿𝑖.

When 𝑿𝑖 and 𝒁 𝑖 are observed, parameters 𝑝𝑗 , 𝑞𝑗 , and

𝑞∗𝑗 , 𝑗 = 1,… , 𝐽 , can be estimated as follows. The probabil-

ity 𝑝𝑗 can be consistently estimated by the sample mean 𝑝𝑗 =
𝑛−1

∑𝑛
𝑖=1 𝑥𝑖𝑗 , where 𝑥𝑖𝑗 is a realization of 𝑋𝑖𝑗 . Different from

the baseline variants, the distribution of 𝑍𝑖𝑗 is a mixture of

two distributions, depending on whether the recurrent case

is relapse or reinfection. Assuming the variants are mutually

independent, we have

𝑃 (𝑍𝑖𝑗 = 1|𝑅𝑖 = 1, 𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖)

= 𝑥𝑖𝑗𝑞𝑗 + (1 − 𝑥𝑖𝑗)(1 − 𝑞∗𝑗 ) = 𝜂(𝑥𝑖𝑗),

𝑃 (𝒁 𝑖 = 𝒛𝑖|𝑅𝑖 = 1, 𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖)

=
𝐽∏

𝑗=1
𝜂(𝑥𝑖𝑗)𝑧𝑖𝑗{1 − 𝜂(𝑥𝑖𝑗)}1−𝑧𝑖𝑗 ,

and

𝑃 (𝒁 𝑖 = 𝒛𝑖|𝑅𝑖 = 0, 𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖) =
𝐽∏

𝑗=1
𝑝
𝑧𝑖𝑗
𝑗 (1 − 𝑝𝑗)1−𝑧𝑖𝑗 .

Let 𝜙𝑅
𝑖 (𝑞, 𝑞

∗) = 𝑃 (𝒁 𝑖 = 𝒛𝑖|𝑅𝑖 = 1, 𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖) , where

𝑞 = (𝑞1,… , 𝑞𝐽 )′ and 𝑞∗ = (𝑞∗1 ,… , 𝑞∗
𝐽
)′, and let 𝜙𝑁

𝑖 (𝑝) =
𝑃 (𝒁 𝑖 = 𝒛𝑖|𝑅𝑖 = 0, 𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖), where 𝑝 = (𝑝1,… , 𝑝𝐽 )′.
The mixture distribution of 𝒁 𝑖 can be written as

𝑃 (𝒁 𝑖 = 𝒛𝑖|𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖)

=
1∑

𝑟=0
𝑃 (𝒁 𝑖 = 𝒛𝑖, 𝑅𝑖 = 𝑟|𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖)

=
1∑

𝑟=0
𝑃 (𝒁 𝑖 = 𝒛𝑖|𝑅𝑖 = 𝑟, 𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖)

×𝑃 (𝑅𝑖 = 𝑟|𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖)

= 𝜙𝑁
𝑖 (𝑝)(1 − 𝜉

(0)
𝑖 ) + 𝜙𝑅

𝑖 (𝑞, 𝑞
∗)𝜉(0)𝑖 .

To obtain the maximum likelihood estimators for 𝑞 and 𝑞∗, we

maximize the profiled log-likelihood function

𝓁(𝑞, 𝑞∗) =
𝑚∑
𝑖=1

log{𝜙𝑁
𝑖 (𝑝)(1 − 𝜉

(0)
𝑖 ) + 𝜙𝑅

𝑖 (𝑞, 𝑞
∗)𝜉(0)𝑖 }, (7)

where 𝜙𝑁
𝑖 (𝑝) =

∏𝐽
𝑗=1 𝑝

𝑧𝑖𝑗
𝑗 (1 − 𝑝𝑗)1−𝑧𝑖𝑗 , and 𝜉

(0)
𝑖 is the esti-

mated probability of relapse based on the baseline sequenc-

ing information.

Based on the transition model for the follow-up sequenc-

ing outcomes, one can derive the probability of relapse given

the follow-up sequencing realization 𝒁 𝑖 = 𝒛𝑖. One can show

that,

𝜉
(1)
𝑖 = 𝑃 (𝑅𝑖 = 1|𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖,𝒁 𝑖 = 𝒛𝑖)

=

𝑃 (𝒁 𝑖 = 𝒛𝑖|𝑅𝑖 = 1, 𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖)
×𝑃 (𝑅𝑖 = 1|𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖)∑1

𝑟=0 𝑃 (𝒁 𝑖 = 𝒛𝑖|𝑅𝑖 = 𝑟, 𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖)
×𝑃 (𝑅𝑖 = 𝑟|𝑌𝑖 = 1,𝑿𝑖 = 𝒙𝑖)

=
𝜙𝑅
𝑖 (𝑞, 𝑞

∗)𝜉(0)𝑖

𝜙𝑁
𝑖 (𝑝)(1 − 𝜉

(0)
𝑖 ) + 𝜙𝑅

𝑖 (𝑞, 𝑞∗)𝜉
(0)
𝑖

,

which can be consistently estimated by

𝜉
(1)
𝑖 =

𝜙𝑅
𝑖 (𝑞, 𝑞

∗)𝜉(0)𝑖

𝜙𝑁
𝑖 (𝑝)(1 − 𝜉

(0)
𝑖 ) + 𝜙𝑅

𝑖 (𝑞, 𝑞∗)𝜉
(0)
𝑖

,

where

𝜙𝑅
𝑖 (𝑞, 𝑞

∗) =
𝐽∏

𝑗=1
𝜂(𝑥𝑖𝑗)𝑧𝑖𝑗{1 − 𝜂(𝑥𝑖𝑗)}1−𝑧𝑖𝑗 ,

and

𝜂(𝑥𝑖𝑗) = 𝑥𝑖𝑗𝑞𝑗 + (1 − 𝑥𝑖𝑗)(1 − 𝑞∗𝑗 ),

where 𝑞𝑗 and 𝑞∗𝑗 are maximum likelihood estimators solving

(7).

The estimator provides another classifier as one may claim

the recurrent case is (100 × 𝜉
(1)
𝑖 )-percent likely to be relapse

and classify the recurrence as relapse if 𝜉
(1)
𝑖 > 0.5. In fact,

𝜉
(1)
𝑖 can be considered as the probability that updates 𝜉

(0)
𝑖 by a

ratio of two transition likelihoods 𝜙𝑁
𝑖 (𝑝) and 𝜙𝑅

𝑖 (𝑞, 𝑞
∗). More



specifically, the estimated odds of relapse given the follow-up

information can be written as

Ôdds
(1)
𝑖 =

𝜉
(1)
𝑖

1 − 𝜉
(1)
𝑖

=
𝜙𝑅
𝑖 (𝑞, 𝑞

∗)𝜉(0)𝑖

𝜙𝑁
𝑖 (𝑝)(1 − 𝜉

(0)
𝑖 )

=
𝜙𝑅
𝑖 (𝑞, 𝑞

∗)
𝜙𝑁
𝑖 (𝑝)

Ôdds
(0)
𝑖 ,

which updates the estimated odds from the baseline informa-

tion by multiplying the ratio of two transition likelihoods. If

𝜙𝑅
𝑖 (𝑞, 𝑞

∗) > 𝜙𝑁
𝑖 (𝑝), the realization of 𝒁 𝑖 more likely came

from relapse. Hence, the odds of the recurrent infection being

relapse would increase from the one that uses only base-

line information.

Note that as 𝒁 𝑖 is only available from 𝑚 subjects who have

recurrent infections, the parameters 𝑞 and 𝑞∗ cannot be solved

by the likelihood function (7) when the combined dimensions

of 𝑞 and 𝑞∗ is larger than the number of subjects 𝑚. To avoid

this, we assume the transition probabilities are the same for

each variant, that is, 𝑞1 = 𝑞2 = ⋯ = 𝑞𝐽 and 𝑞∗1 = 𝑞∗2 = ⋯ =
𝑞∗
𝐽

, such that there are only two scalar parameters 𝑞 and 𝑞∗ in

(7). A possible generalization that relaxes this assumption is

discussed in Section 6.

4 SIMULATION EXPERIMENTS

In this section, we demonstrate our method via simulation

experiments with various combinations of reinfection rate 𝜇,

sample size 𝑛, and number of variants 𝐽 . First, we explore

a low-dimension setting when there are only 10 variants in

both sequencings. The baseline sequencing outcomes 𝑋𝑖𝑗 ,

𝑗 = 1,… , 10, are assumed to follow a Bernoulli distribution

with success probability 𝑝𝑗 = 0.5 exp{−(𝑗 − 1)∕10}, which

mimics the distribution of variants in our real data. Two transi-

tion probabilities, 𝑞𝑗 and 𝑞𝑗 , are set to be 0.95. The probability

of acquiring a new infection is set to be 𝜇 = 0.05, 0.12, 0.25,

from low to high reinfection rates. We explore two scenarios

under which the association between the presence of the vari-

ant and relapse is different. In the first scenario, we assume

that the relapse is associated with three most prevalent vari-

ants 𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3. In the second scenario, we assume the

relapse is associated with three rarest variants 𝑋𝑖8, 𝑋𝑖9, 𝑋𝑖10.

In each scenario, we set the intercept 𝛼 = −2 in the relapse

model (1) and coefficients 𝛽𝑗 = 0.405 if the variant 𝑗 is asso-

ciated with the relapse and 𝛽𝑗 = 0 otherwise. The sample size

is set to be 𝑛 = 100, 200, 400, 800. We simulate 1000 repeti-

tions for each combination of 𝜇 and 𝑛 in each scenario. We

report the bias of the coefficient estimates to demonstrate

the consistency of our proposed estimator for the regression

coefficients. We also report operating characteristics such

as sensitivity (sens), specificity (spec), and overall accuracy

(acc) of the classifiers 𝐼(𝜉(0) > 0.5) and 𝐼(𝜉(1) > 0.5). We

also compare our method to the BPM used in Lin et al.
(2015).

T A B L E 1 Bias of regression coefficient estimation under

scenario 1

𝝁 𝒏 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓

0.05 100 1.129 1.243 1.181 −0.142 −0.276

200 0.114 0.044 0.093 −0.048 −0.081

400 0.026 0.014 0.041 −0.003 0.012

800 0.012 0.005 0.021 −0.004 0.007

0.12 100 3.899 3.774 3.837 −3.748 −0.519

200 0.742 0.379 0.424 −0.050 −0.341

400 0.028 0.030 0.045 −0.004 −0.010

800 0.008 0.005 0.030 −0.014 0.001

0.25 100 5.816 4.482 4.579 −0.814 −2.132

200 3.066 2.573 2.478 −0.985 −0.544

400 0.271 0.092 0.079 0.120 −0.039

800 0.014 0.028 0.029 0.001 0.007

𝝁 𝒏 𝜷𝟔 𝜷𝟕 𝜷𝟖 𝜷𝟗 𝜷𝟏𝟎

0.05 100 −0.756 −1.409 −1.295 −0.863 −0.754

200 −0.089 −0.135 −0.197 −0.135 −0.153

400 −0.022 −0.032 −0.028 −0.026 −0.043

800 −0.003 −0.015 −0.012 −0.010 −0.023

0.12 100 −3.657 −1.947 −1.914 −1.718 −5.552

200 −0.860 −0.973 −0.214 −2.913 −0.650

400 −0.049 −0.053 0.004 −0.015 −0.062

800 −0.018 −0.023 0.001 −0.001 −0.013

0.25 100 −4.738 −4.455 −3.278 −5.488 −4.870

200 −1.155 −2.339 −3.635 −2.956 −1.537

400 −0.143 −0.263 −0.225 −0.612 −0.210

800 −0.016 −0.010 −0.072 −0.037 −0.020

Tables 1 and 2 show the simulation results under the sce-

narios 1 and 2, respectively. One can see that our estimator

is consistent. When the sample size 𝑛 increases, the bias con-

verges toward 0. It is worth noting that our estimator performs

equally well in those two scenarios when either common or

rare variants are associated with the relapse. Table 3 shows

the operating characteristics of three classifiers under differ-

ent reinfection rates. One can see that using 𝐼(𝜉(0) > 0.5) as

the classifier can be overly aggressive under a low reinfec-

tion rate. Most of the recurrences are claimed as relapse and

result in high sensitivity but low specificity, especially when

the sample size is large. On the other hand, using 𝐼(𝜉(1) > 0.5)
as the classifier performs well, reaching a high degree of accu-

racy in both sensitivity and specificity. The reinfection rate is a

significant factor for the classification accuracy of our classi-

fiers. Under a high reinfection rate, the overall accuracy of the

classifier 𝐼(𝜉(0) > 0.5) is low. Correctly classifying relapse

becomes more difficult for the classifier using 𝜉(0). The same

problem occurs to 𝐼(𝜉(1) > 0.5)when the sample size is small.

However, when the sample size increases, the accuracy of

𝐼(𝜉(1) > 0.5) increases to a satisfactory level, under either



T A B L E 2 Bias of regression coefficient estimation under

scenario 2

𝝁 𝒏 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓

0.05 100 0.656 0.367 0.177 −0.746 −0.924

200 −0.100 −0.004 0.192 −0.178 −0.108

400 0.010 −0.019 0.004 −0.015 −0.002

800 0.009 −0.011 −0.004 −0.006 −0.006

0.12 100 −0.368 −1.593 −2.398 −1.302 −1.104

200 −0.541 −0.682 −0.138 −1.069 −2.454

400 −0.015 0.006 −0.050 −0.055 −0.002

800 −0.012 −0.007 −0.004 −0.013 0.007

0.25 100 −1.367 −2.823 −1.996 −3.290 −1.771

200 −1.325 −1.096 −1.609 −2.230 −3.028

400 −0.467 −0.876 0.152 −1.062 −0.190

800 0.012 −0.090 −0.002 −0.023 −0.019

𝝁 𝒏 𝜷𝟔 𝜷𝟕 𝜷𝟖 𝜷𝟗 𝜷𝟏𝟎

0.05 100 −1.965 −1.708 0.768 0.700 1.537

200 −0.257 −0.220 0.072 −0.090 0.080

400 −0.017 −0.033 0.008 −0.017 0.000

800 −0.003 −0.010 0.006 −0.008 −0.001

0.12 100 −3.751 −6.018 1.511 0.675 −0.877

200 −1.751 −1.306 0.509 0.586 0.267

400 −0.074 −0.150 0.041 −0.029 −0.074

800 −0.019 −0.008 0.006 0.001 0.001

0.25 100 −3.384 −3.217 2.677 1.502 1.927

200 −4.561 −3.112 1.756 −0.204 1.783

400 −1.325 −1.724 0.370 −0.042 0.158

800 −0.293 −0.091 0.031 −0.078 −0.050

common or rare variants scenario. In comparison to the BPM

method (Lin et al., 2015), one can see that the BPM’s perfor-

mance remains unchanged under different reinfection rates.

The method generally performs better than our classifier when

the sample size is small. However, when the sample size is

large or when the reinfection rate is low, our classifier per-

forms much better than the BPM method. Note that the cutoff

probability used in the BPM can be arbitrary and may depend

on the prevalence of the shared variant, which is unknown in

practice. It is not clear how to select the best cutoff for their

method. We used 10% as suggested in Lin et al. (2015).

In addition, we performed a simulation study when the

number of variants exceeds the sample size. We simulate base-

line and follow-up sequencing outcomes from the same dis-

tribution as in the low-dimensional case. We consider two

combinations of 𝑛 and 𝐽 for (𝑛, 𝐽 ) = (100, 200) and (𝑛, 𝐽 ) =
(200, 400) and three reinfection rates for 𝜇 = 0.05, 0.12, 0.25.

We also consider two scenarios of how the variants associate

with relapse. In scenario 3, the relapse is associated with five

most prevalent variants through model (1), where 𝛼 = −1 and

𝜷 = (0.2, 0.2, 0.2, 0.2, 0.2, 0,… , 0)′. In scenario 4, the relapse

is associated with five relatively rare variants, where 𝛼 = −1
and 𝜷 = (0,… , 0, 0.2, 0.2, 0.2, 0.2, 0.2, 0,… , 0)′ with the 10

most prevalent variants not associated with relapse. Aver-

age sensitivity (sens), specificity (spec), and overall accuracy

(acc) of the two classifiers are reported in Table 4 for each

scenario. We also report average bias (Bias), which is defined

by (1∕𝐽 )
∑𝐽

𝑗=1 |𝛽𝑗 − 𝛽𝑗|, number of true positives (TP), and

number of true negatives (TN) to evaluate the variable selec-

tion performance of our method.

Table 4 shows that our method still works well when 𝐽 is

much larger than 𝑛. The performance of the classifier 𝐼(𝜉(1)𝑖 >

0.5) is much better than that of the classifier 𝐼(𝜉(0)𝑖 > 0.5).
When the reinfection rate is relatively high, both classifiers

suffer lower accuracy under this more difficult situation. The

performance of the classifier 𝐼(𝜉(1)𝑖 > 0.5), however, remains

acceptable. Moreover, our method identifies most of the vari-

ants that are associated with the relapse, that is, its TP propor-

tion is high, regardless of whether they are prevalent or rare,

while controlling the selection of true negatives at a satisfac-

tory level.

5 REAL DATA ANALYSIS

Given the high degree of genetic diversity and polyclonal

nature of P. vivax infections in Cambodia, many clones

or strains exist within a human host. A targeted amplicon

deep sequencing approach was chosen to genotype initial

and recurrent isolates from P. vivax patients enrolled in a

malaria cohort and treatment study conducted in northern

Cambodia from 2010 to 2011 (Lon et al., 2014; Lin et al.,
2015). Subjects found to have P. vivax malaria were treated

with dihydroartemisinin-piperaquine (DP), then followed for

recurrence with weekly blood smears for six weeks and with

a monthly blood smear after that. Of 78 P. vivax-infected sub-

jects followed for a median of 115 days, 23 individuals, or

approximately one third of the cohort, developed a recurrent

infection. These recurrences likely represent relapse or rein-

fection, because treatment failure with DP is unlikely. Dur-

ing the follow-up, six subjects suffered second recurrences,

and one subject suffered a third recurrent infection. Hence, a

total of 30 recurrent infections were available for the follow-

up genotype analysis. In combination with 78 subjects at the

baseline, there are 108 isolates available for the genotype anal-

ysis. To avoid the bias due to length of follow-up, we only use

78 baseline sequencings (𝑛 = 78) to estimate the parameters

in relapse model (1), with 23 positive responses (
∑𝑛

𝑖=1 𝑌𝑖 =
23). However, in order to utilize as much information as pos-

sible, we include those 7 second or third recurrences in the

estimation of transition probabilities 𝑞 and 𝑞∗, using their most

recent sequencing as the baseline sequencing. This results in

30 pairs of baseline and recurrence sequencings in the log-

likelihood function (7) with 𝑚 = 30.



T A B L E 3 Operating characteristics of proposed classifiers under low-dimensional scenarios

BPM 𝑰(𝝃(𝟎)
𝒊

> 𝟎.𝟓) 𝑰(𝝃(𝟏)
𝒊

> 𝟎.𝟓)
Scenario 𝝁 𝒏 sens spec acc sens spec acc sens spec acc
1 0.05 100 89.1 83.3 88.2 89.6 12.0 76.5 93.2 82.4 91.2

200 89.2 83.7 88.3 97.0 3.8 81.8 98.4 87.2 96.5

400 89.3 84.2 88.5 99.5 0.7 83.4 98.8 87.8 97.0

800 89.4 84.0 88.5 100.0 0.0 83.7 98.9 88.3 97.2

0.12 100 88.9 84.4 87.5 64.7 38.2 56.1 73.0 79.5 75.0

200 89.1 84.2 87.5 78.4 25.3 60.9 93.2 91.2 92.5

400 89.2 84.2 87.6 87.0 16.8 63.9 97.4 92.0 95.6

800 89.3 84.1 87.6 92.2 11.5 65.7 97.6 92.3 95.9

0.25 100 89.1 84.4 86.7 44.3 58.5 51.6 50.8 72.8 61.9

200 89.4 84.3 86.8 46.1 57.6 52.0 71.1 90.1 80.8

400 89.3 84.4 86.9 50.9 55.1 53.1 92.0 94.4 93.2

800 89.4 84.3 86.8 53.0 55.3 54.2 95.7 94.7 95.2

2 0.05 100 89.2 85.1 88.3 81.4 19.8 68.5 85.8 79.5 84.3

200 89.3 84.9 88.4 92.3 8.3 74.9 96.7 88.4 94.9

400 89.4 84.5 88.4 98.2 2.0 78.5 98.4 88.8 96.4

800 89.5 84.2 88.5 99.8 0.2 79.3 98.5 89.5 96.6

0.12 100 89.1 84.5 87.2 55.3 48.0 52.4 61.9 74.4 66.6

200 89.2 83.9 87.1 63.3 39.3 53.7 83.9 90.0 86.3

400 89.5 83.9 87.3 73.8 29.7 56.4 96.2 93.0 94.9

800 89.6 84.0 87.4 80.2 23.6 57.8 97.0 93.4 95.6

0.25 100 89.3 84.1 86.3 41.1 62.5 53.6 44.6 70.5 59.5

200 89.6 84.1 86.4 35.6 67.5 54.1 54.7 87.3 73.6

400 89.8 84.2 86.5 35.9 67.7 54.3 80.8 94.6 88.7

800 89.7 84.2 86.5 33.7 71.7 55.6 94.0 95.5 94.9

T A B L E 4 Average bias of coefficient estimation, variable selection, and operating characteristics of our proposed classifier under

high-dimensional scenarios

Scenario 3 𝑰(𝝃(𝟎)
𝒊

> 𝟎.𝟓) 𝑰(𝝃(𝟏)
𝒊

> 𝟎.𝟓)
𝝁 (𝒏, 𝑱 ) Bias TP TN sens spec acc sens spec acc
0.05 (100,200) 0.11 5 146 100 0 92.0 100 80.6 98.3

(200,400) 0.03 4 332 100 0 92.2 99.0 97.0 98.8

0.12 (100,200) 0.07 5 157 99.0 1.3 82.3 100 69.1 94.6

(200,400) 0.02 5 353 99.8 0.1 83.2 99.0 85.1 96.7

0.25 (100,200) 0.09 5 156 89.1 11.9 65.9 100 75.2 92.6

(200,400) 0.04 5 351 82.4 17.5 63.7 89.9 85.8 88.9

Scenario 4 𝑰(𝝃(𝟎)
𝒊

> 𝟎.𝟓) 𝑰(𝝃(𝟏)
𝒊

> 𝟎.𝟓)
𝝁 (𝒏, 𝑱 ) Bias TP TN sens spec acc sens spec acc
0.05 (100,200) 0.01 5 194 100 0 91.9 100 50 95.2

(200,400) 0.01 5 395 100 0 93.6 100 80 98.2

0.12 (100,200) 0.07 5 157 90.9 0 76.9 97.6 57.1 91.1

(200,400) 0.02 5 354 97.4 0 83.5 97.7 88.9 96.7

0.25 (100,200) 0.05 5 174 70.5 27.5 59.2 86.7 74.3 80.9

(200,400) 0.11 5 280 71.8 24 58.8 96.3 83.3 92



Targeted deep sequencing was performed on DNA

extracted from filter paper blood spots collected by finger

prick. A nested polymerase chain reaction (PCR) assay was

used to amplify a 117-base pair variable portion of the P. vivax
merozoite surface protein 1 (pvmsp1) gene based on previ-

ous work showing great nucleotide diversity across this region

(Parobek et al., 2014). Samples were amplified in duplicate

and individually tagged, then pooled and sequenced on the

Ion Torrent platform from Life Technologies. The Pvmsp1
sequence variants were determined by SeekDeep, a bioin-

formatics pipeline that uses a clustering method to construct

the most likely haplotypes within a patient while removing

false haplotypes due to PCR or sequencing error (Hathaway

et al., 2018). For each subject, pvmsp1 haplotypes that were

present in two independent duplicate PCR samples at ≤0.5%

frequency were counted as unique variants. Consensus hap-

lotypes were each assigned a unique population identifier

based on their prevalence in the cohort, namely, CAM.00 to

CAM.66 with CAM.00 being the most prevalent pvsmp1 vari-

ant encountered. In total, 67 unique pvmsp1 variants were

detected across 108 isolates. Nine common variants appeared

in at least 10% of individuals, while two-thirds of variants

appeared in only one isolate. In-host genetic diversity was also

high, as 90% of initial infections contained multiple variants,

displaying an average of 3.6 co-circulating variants.

We used the penalized likelihood model with an 𝐿1-

penalty, as shown in (3), with 5% reinfection rate. We report

variants in the initial and recurrence sequencing, their esti-

mated coefficients 𝜷 in model (1), prevalence of the variants,

two classification probability estimates, and classification

results based on 𝜉
(1)
𝑖 and BPM method. Variants with a

nonzero estimated coefficient are considered to be associated

with relapse. Using the profiled likelihood function (7), the

maximum likelihood estimates for the transition probability

are 𝑞 = 0.387 and 𝑞∗ = 0.987.

Table 5 shows part of the classification results. A com-

plete list of the classification results is shown in the Sup-

porting Information. First, one can see that the recurrence is

likely classified as reinfection if variants in the recurrence are

prevalent and not observed in the initial sequencing. Taking

151→151R pair, for example, the nonsharing variant CAM.00

that appeared in the recurrence sequencing is the most preva-

lent variant in the sample, suggesting that the recurrence

is likely reinfection. Second, the high transition probability

𝑞∗ = 0.987 suggests that an unobserved variant in the ini-

tial sequencing likely remains unobserved in the recurrence

sequencing if the recurrence is a relapse. This explains why

152→152R pair is classified as reinfection. The appearance

of prevalent variants CAM.05 and CAM.07 in the recurrence

sequencing significantly lowers the classification probability

from 𝜉
(0)
𝑖 to 𝜉

(1)
𝑖 .

Some recurrence pairs tend to have more diverse and abun-

dant minority variants. Many variants tend to be nonshar-

ing due to this abundance. For example, both 80→80R pair

and 125→125R pair have multiple variants in the recurrence

sequencing that did not appear in the initial sequencing, result-

ing in a low value of 𝜉
(1)
𝑖 and reinfection as the classification

result. It is worth noting that, nonsharing variants in the ini-

tial sequencing have little impact on 𝜉
(1)
𝑖 . Taking 36→36R, for

example, the pair is still classified as relapse even when seven

initial variants were not observed in the recurrence sequenc-

ing. The classification probability 𝜉
(1)
𝑖 only slightly decreases

from 𝜉
(0)
𝑖 . This tendency can be explained by a low value of

transition probability estimate 𝑞 = 0.387. If 𝑞 is small, it is not

unusual to see a variant in the initial sequencing not observed

in the recurrence sequencing if the infection is a relapse pair

like 36→36R. In contrast, even though the 80R→80RR pair

has five sharing variants in the initial sequencing, the clas-

sification probability 𝜉
(1)
𝑖 decreases significantly from 𝜉

(0)
𝑖

because one nonsharing variant in the recurrence sequencing,

CAM.04, is prevalent.

When comparing our method to the BPM, disparity

occurs when prevalent variants appeared only in the recur-

rence sequencing. As discussed earlier, the 152→152R and

80R→80RR pairs are classified as reinfection by our method

because nonsharing variants appeared in recurrence sequenc-

ing are prevalent. The BPM method classifies them as relapse

because more than one prevalent variant overlapped in both

sequencings, such as CAM.00 and CAM.01 in the 152→152R

pair, and CAM.00, CAM.02, and CAM.06 in the 80R→80RR

pair. Contrarily, the BPM method likely classifies a recurrent

infection to reinfection if there is only one sharing variant

that is prevalent, such as CAM.00 in the 96→96R pair. Our

method otherwise classifies the pair as relapse because there

are not enough nonsharing variants appeared in the recur-

rence sequencing. In summary, the classification result of

80→80R pair demonstrates the flaw of BPM. When multi-

ple prevalent nonsharing variants (such as CAM.01, CAM.02,

and CAM.03) appears in the recurrence, it is more likely the

recurrence is reinfection, not relapse. A method like BPM

considering only shared variants ignores this possibility and

likely misclassifies the case.

Note that, from a statistical point of view, the analysis is

sensitive to the selection of background reinfection rate. If the

reinfection rate is misidentified, the maximum likelihood esti-

mator of the coefficients in model (1) may not be consistent, as

well as the classification probability 𝜉
(0)
𝑖 calculated from these

estimators. The classification probability 𝜉
(1)
𝑖 may not be con-

sistent as well because it is established on the initial classifi-

cation probability 𝜉
(0)
𝑖 . In this data analysis, the classification

result based on 𝜉
(1)
𝑖 is quite robust when the reinfection rates is

less than 10%. Meanwhile, an in vivo study on the dynamics of

P. vivax infection suggests that up to 96% of the P. vivax infec-

tion is due to relapse in individuals living in the endemic areas

in Thailand (Adekunle et al., 2015). Cambodia is in Southeast



T A B L E 5 Classification results for recurrence pairs using our method and binomial probability model

Initial Recurrence Variant Proposed BPM
Recurrence Pair Variants 𝜷 𝝃(𝟎)

𝒊
Variants Prevalence 𝝃(𝟏)

𝒊
Class Class

36→ 36R CAM.00 1.833 0.960 CAM.01 0.269 0.870 Relapse Relapse

CAM.01 0.469 CAM.02 0.410

CAM.02 0.892 CAM.07 0.192

CAM.03 0 CAM.17 0.064

CAM.04 3.519

CAM.05 −1.085

CAM.06 −1.416

CAM.07 1.750

CAM.09 0

CAM.11 0

80 → 80R CAM.00 1.833 0.992 CAM.00 0.590 0.000 Reinfection Relapse

CAM.04 3.519 CAM.01 0.269

CAM.05 −1.085 CAM.02 0.410

CAM.08 0.395 CAM.03 0.295

CAM.09 0 CAM.05 0.231

CAM.24 2.954 CAM.06 0.231

CAM.27 0 CAM.07 0.192

CAM.08 0.154

CAM.12 0.064

CAM.41 0.013

80R→ 80RR CAM.00 1.833 0.673 CAM.00 0.590 0.340 Reinfection Relapse

CAM.01 0.469 CAM.02 0.410

CAM.02 0.892 CAM.04 0.346

CAM.03 0 CAM.06 0.231

CAM.05 −1.085 CAM.08 0.154

CAM.06 −1.416 CAM.12 0.064

CAM.07 1.750 CAM.59 0.013

CAM.08 0.395

CAM.12 0.677

CAM.41 0

96 → 96R CAM.00 1.833 0.979 CAM.00 0.590 0.992 Relapse Reinfection

CAM.02 0.892 CAM.30 0.013

CAM.04 3.519

CAM.08 0.395

125 → 125R CAM.02 0.892 0.130 CAM.00 0.590 0.000 Reinfection Reinfection

CAM.01 0.269

CAM.02 0.410

CAM.04 0.346

CAM.09 0.077

CAM.13 0.013

CAM.14 0.026

CAM.38 0.013

CAM.45 0.013

(Continues)



T A B L E 5 (Continued)

Initial Recurrence Variant Proposed BPM
Recurrence Pair Variants 𝜷 𝝃(𝟎)

𝒊
Variants Prevalence 𝝃(𝟏)

𝒊
Class Class

151 → 151R CAM.03 0 0.030 CAM.00 0.590 0.005 Reinfection Reinfection

CAM.05 −1.085 CAM.08 0.154

CAM.08 0.395 CAM.14 0.026

152 → 152R CAM.00 1.833 0.379 CAM.00 0.590 0.018 Reinfection Relapse

CAM.01 0.469 CAM.01 0.269

CAM.05 0.231

CAM.07 0.192

Asia and geographically adjacent to Thailand. Assuming 5%

reinfection rate in this area is reasonable. Interestingly, from

the complete list of our classification result in the Supporting

Information, 23 individuals had recurrent infections among 78

subjects at the baseline. Among those 23 subjects, 10 subjects

are classified as reinfections by our algorithm. The reinfection

rate 𝜇 = 𝑃 (𝑁𝑖 = 1|𝑅𝑖 = 0) may be estimated at 10/(78-13) =
15%, which is higher than the literature suggests.

6 DISCUSSION

In this paper, we propose a novel classification method that

is model-based and utilizes transition likelihoods to classify

recurrent P. vivax infections as either relapse or reinfection.

Previous work used only shared variants to calculate the rein-

fection probability. Here, we show that nonshared variants are

also informative. Both simulation studies and real data anal-

ysis support the feasibility and practical use of our classi-

fier. Some assumptions and generalizations of our method are

worth of discussion.

First, we assume that the reinfection rate 𝜇 is known or

can be correctly specified. Model misspecification on 𝜇 can

be problematic for both regression coefficient estimation

and classification probability calculation when an incorrect

value is used. Through simulation experiments listed in our

Supporting Information, one can see the impact of the mis-

specification is apparent when the sample size is small. When

the sample size is large, however, the bias in the coefficient

estimation diminishes, and the performance of our classifier

improves. Our approach is robust to the misspecification of

𝜇 when the sample size is large. As one can imagine, bias

more likely occurs to the estimation of intercept 𝛼 because

both 𝜇 and 𝛼 represent some sense of baseline occurrence

rates. Underestimation of 𝜇 shall lead to overestimation of

𝛼, and overestimation of 𝜇 shall lead to underestimation

of 𝛼 to balance the overall baseline occurrence rate. Such

tendency in bias can be seen in our simulation results in the

Supporting Information. Meanwhile, although misspecifica-

tion on 𝜇 leads to biased estimation of 𝜉
(0)
𝑖 , the classification

performance of 𝜉
(1)
𝑖 utilizing transition likelihoods is mildly

affected when the reinfection rate is underestimated. Even

when the reinfection rate is overestimated, the accuracy of

the classifier 𝐼(𝜉(1)𝑖 > 0.5) can still reach a satisfactory level.

Second, we assume the occurrence of the variants is inde-

pendent. This assumption can be checked in our real data.

Using Fisher’s exact tests for presence/absence of any two

of 13 most frequent variants, the minimum 𝑝-value is 0.0048

and only 10 out 78 pairs have 𝑃 -value smaller than 0.05.

After Benjamini-Hochberg adjustment for multiple compar-

isons, none of the 𝑃 -values is smaller than 0.05. The inde-

pendence assumption is not significantly violated in our case.

Finally, we assume the transition probabilities are equal

for all variants, that is, 𝑞1 = ⋯ = 𝑞𝐽 and 𝑞∗1 = ⋯ = 𝑞∗
𝐽

.

This assumption can be relaxed using external information

to model the transition probabilities. Specifically, one can

assume the probability follow a logistic model log{𝑞𝑗∕(1 −
𝑞𝑗)} = 𝑊 ′

𝑗 𝛾 and log{𝑞∗𝑗 ∕(1 − 𝑞∗𝑗 )} = 𝑊 ′
𝑗 𝛾

∗, where 𝑊𝑗 is a

column vector of external covariates, and 𝛾 and 𝛾∗ are col-

umn vectors of regression coefficients. In our case, reading

frequency of the variant may be the covariate that is asso-

ciated with the transition of the variants. It is worth noting

that we assume the transition starts from a new infection to

either relapse or reinfection. However, in our real data, there

are seven second or third recurrent infections. Although in

the real data analysis we treated the most recent infection as

the initial infection, the recurrent infection may depend on

multiple previous events in this case. The modeling is much

more complicated, considering the status of previous infec-

tions is unknown except for the baseline infection. It is not

clear whether a relapse infection could be associated with the

transition probability of the variants. One possible approach

is to include the relapse indicator, 𝑅𝑖, in the logistic model for

𝑞𝑗 and 𝑞∗𝑗 , as part of covariates 𝑊𝑗 . However, because 𝑅𝑖 is

not observable, it is not clear how 𝛾 and 𝛾∗ can be estimated.

We leave it for future research.

Our current analysis considers only recurrence indicator

without time domain involved. The causes of the recurrent

infection can actually be seen as competing risks, for which

one observes the event occurrence of either relapse or



reinfection. In our case, the cause of the event is unknown

in all of the events, so the challenge remains as how one can

derive the classification probability using a hazard model

and transition likelihoods to classify the recurrent infections

incorporating the time to infection.

ACKNOWLEDGMENTS
The authors wish to thank editor, associate editor, and

reviewers for their careful review and constructive com-

ments. This work is partially supported by National Insti-

tutes of Health, through grant award number UL1TR002489

and K08AI110651.

DATA AVAILABILITY STATEMENT
The malaria infection data used in the real data analysis are

also included in the supporting information and available for

public use.

ORCID
Feng-Chang Lin https://orcid.org/0000-0002-2638-1775

Quefeng Li https://orcid.org/0000-0003-0707-2763

Jessica T. Lin https://orcid.org/0000-0002-4516-723X

R E F E R E N C E S
Adekunle, A.I., Pinkevych, M., McGready, R., Luxemburger, C., White,

L.J., Nosten, F., Deborah, C. and Davenport, M.P. (2015) Modeling

the dynamics of Plasmodium vivax infection and hypnozoite reacti-

vation in vivo. PLoS Neglected Tropical Diseases, 9, e0003595.

Beck, H.-P., Wampfler, R., Carter, N., Koh, G., Osorio, L., Rueangweer-

ayut, R., Krudsood, S., Lacerda, M.V., Llanos-Cuentas, A., Duparc,

S., Rubio, J.P. and Green, J.A. (2016) Estimation of the antirelapse

efficacy of tafenoquine, using plasmodium vivax genotyping. The
Journal of Infectious Diseases, 213, 794–799.

Chen, N., Auliff, A.M., Rieckmann, K.H., Gatton, M.L. and Cheng, Q.

(2007) Relapses of Plasmodium vivax infection result from clonal

hypnozoites activated at predetermined intervals. The Journal of
Infectious Diseases, 195 (7), 934–41.

Daniels, R., Volkman, S.K., Milner, D.A., Mahesh, N., Neafsey, D.E.,

Park, D.J., Rosen, D., Angelino, E., Sabeti, P.C., Wirth, D.F. and Wie-

gand, R.C. (2008) A general SNP-based molecular barcode for Plas-
modium falciparum identification and tracking. Malaria Journal, 7,

223.

Fan, J. and Lv, J. (2011) Nonconcave penalized likelihood with NP-

dimensionality. IEEE Transactions on Information Theory, 57,

5467–5484.

Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization paths

for generalized linear models via coordinate descent. Journal of Sta-
tistical Software, 33, 1–22.

Hathaway, N.J., Parobek, C.M., Juliano, J.J. and Bailey, J.A. (2018)

SeekDeep: single-base resolution de novo clustering for amplicon

deep sequencing. Nucleic Acids Research, 46, e21.

Imwong, M., Snounou, G., Pukrittayakamee, S., Tanomsing, N., Kim,

J.R., Nandy, A., Guthmann, J.P., Nosten, F., Carlton, J., Looa-

reesuwan, S., Nair, S., Sudimack, D., Day, N.P., Anderson, T.J. and

White, N.J. (2007) Relapses of Plasmodium vivax infection usually

result from activation of heterologous hypnozoites. The Journal of
Infectious Diseases, 195, 927–933.

Juliano, J.J., Ariey, F., Sem, R., Tangpukdee, N., Krudsood, S., Olson,

C. LooareesuwanS. Rogers, W.O., Wongsrichanalai, C. and Mesh-

nick S.R., (2009) Misclassification of drug failure in Plasmodium
falciparum clinical trials in Southeast Asia. The Journal of Infectious
Diseases, 200, 624–628.

Juliano, J.J., Porter, K., Mwapasa, V., Sem, R., Rogers, W.O., Ariey, F.,

Wongsrichanalai, C., Read, A. and Meshnick, S.R. (2010) Expos-

ing malaria in-host diversity and estimating population diversity by

capture-recapture using massively parallel pyrosequencing. Proceed-
ings of the National Academy of Sciences, 107, 20138–20143.

Kobbe, R., Neuhoff, R., Marks, F., Adjei, S., Langefeld, I., von Reden, C.

AdjeiO. Meyer, C.G. and May, J. (2006) Seasonal variation and high

multiplicity of first Plasmodium falciparum infections in children

from a holoendemic area in Ghana, West Africa. Tropical Medicine
& International Health, 11, 613–619.

Kwiek, J.J., Alker, A.P., Wenink, E.C., Chaponda, M., Kalilani, L.V. and

Meshnick, S.R. (2007) Estimating true antimalarial efficacy by het-

eroduplex tracking assay in patients with complex Plasmodium falci-
parum infections. Antimicrobial Agents and Chemotherapy, 51, 521–

527.

Lin, J.T., Hathaway, N.J., Saunders, D.L., Lon, C., Balasubramanian,

S., Kharabora, O. GosiP. Sriwichai, S., Kartchner, L., Chuor, C.M.,

Satharath, P., Lanteri, C., Bailey, J.A. and Juliano, J.J. (2015) Using

amplicon deep sequencing to detect genetic signatures of Plasmod-
ium vivax relapse. The Journal of Infectious Diseases, 212, 999–

1008.

Lon, C., Manning, J.E., Vanachayangkul, P., So, M., Sea, D., Se, Y., Gosi,

P., Lanteri, C., Chaorattanakawee, S., Sriwichai, S., Soklyda, C.,

Kuntawunginn, W., Buathong, N., Nou, S., Walsh, D.S., Tyner, S.D.,

Juliano, J.J., Lin, J., Spring, M., Bethell, D., Kaewkungwal, J., Tang,

D., Chuor, C.M., Satharath, P. and Saunders, D. (2014) Efficacy of

two versus three-day regimens of dihydroartemisinin-piperaquine for

uncomplicated malaria in military personnel in northern Cambodia:

an open-label randomized trial. PLoS ONE, 9, 1–13.

Nyachieo, A., Van Overmeir, C., Laurent, T., Dujardin, J.-C. and

D’Alessandro, U. (2005) Plasmodium falciparum genotyping by

microsatellites as a method to distinguish between recrudescent and

new infections. The American Journal of Tropical Medicine and
Hygiene, 73, 210–213.

Parobek, C.M., Bailey, J.A., Hathaway, N.J., Socheat, D., Rogers, W.O.

and Juliano, J.J. (2014) Differing patterns of selection and geospa-

tial genetic diversity within two leading Plasmodium vivax candidate

vaccine antigens. PLoS Neglected Tropical Diseases, 8, 1–17.

Pearson, R.D., Amato, R., Auburn, S., Miotto, O., Almagro-Garcia, J.,

Amaratunga, C. SuonS. Mao, S., Noviyanti, R., Trimarsanto, H.,

Marfurt, J., Anstey, N.M., William, T., Boni, M.F., Dolecek, C., Hien,

T.T., White, N.J., Michon, P., Siba, P., Tavul, L., Harrison, G., Barry,

A., Mueller, I., Ferreira, M.U., Karunaweera, N., Randrianarivelo-

josia, M., Gao, Q., Hubbart, C., Hart, L., Jeffery, B., Drury, E., Mead,

D., Kekre, M., Campino, S., Manske, M., Cornelius, V.J., MacInnis,

B., Rockett, K.A., Miles, A., Rayner, J.C., Fairhurst, R.M., Nosten, F.,

Price, R.N. and Kwiatkowski, D.P. (2016) Genomic analysis of local

variation and recent evolution in Plasmodium vivax. Nature Genetics,

48, 959–964C.

Tibshirani, R. (1996) Regression shrinkage and selection via the Lasso.

Journal of the Royal Statistical Society, Series B, 58, 267–288.

https://orcid.org/0000-0002-2638-1775
https://orcid.org/0000-0002-2638-1775
https://orcid.org/0000-0003-0707-2763
https://orcid.org/0000-0003-0707-2763
https://orcid.org/0000-0002-4516-723X
https://orcid.org/0000-0002-4516-723X


Zou, H. (2006) The adaptive lasso and its oracle properties. Journal of
the American Statistical Association, 101, 1418–1429.

Zou, H. and Hastie, T. (2005) Regularization and variable selection via

the elastic net. Journal of the Royal Statistical Society, Series B, 67,

301–320.

SUPPORTING INFORMATION
Web Appendices, Tables, and Figures referenced in Sections 5

and 6 are available with this paper at the Biometrics website

on Wiley Online Library. The program codes for the real data

analysis are also available at the website.

How to cite this article: Lin F-C, Li Q, Lin JT.

Relapse or reinfection: Classification of malaria

infection using transition likelihoods. Biometrics.

2020;1–13. https://doi.org/10.1111/biom.13226

https://doi.org/10.1111/biom.13226

