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ABSTRACT 

 

Christina B. Vander Vegt: Physiological Correlates of Working Memory Behavior for Cognitive 

Efficiency: implications for concussion management 

(Under the direction of Johna K. Register-Mihalik) 

 

Cognitive efficiency—characterized via robust behavioral and physiological response 

dynamics, may provide clinically meaningful information with respect to dynamic concussion 

injury response and return to play considerations. Moreover, a feasible and ecologically valid 

method to assess dynamic behavioral and physiological metrics is also needed to best 

characterize cognitive efficiency in athletes and soldiers at a greater risk for concussion. This 

project was designed to examine the clinical utility and feasibility of a cognitive efficiency 

assessment designed to be completed within a virtual reality environment, which may hold 

significant implications for improved concussion clinical management. As such, we aimed to 

first further understand the relationships between heart rate variability and pupillary response as 

physiological correlates of digit-span task behavior in the context of cognitive efficiency, then to 

examine the effects of prior concussion on these responses. Additionally, we applied innovative, 

reliably sound, and validated psychophysiological methods using a feasible instrumentation 

option (virtual reality headset with pupillometry and heart rate monitor watch and strap). We feel 

these methodological considerations allowed us to best address our study aims and inform future 

directions of this line of inquiry to have direct ecologically valid applications. Collegiate club 

sports athletes, (N=59; 40% with a concussion history; age = 20.48 ± 1.86 years; 58% male), 

completed a backwards digit-span task (20 trials) in a virtual 
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reality environment while recording pupil size. Linear mixed effects models showed a 

significant effect of cognitive load (digit sequence-length) on pupillary response (F4,232=3.67, 

p=0.006). Negligible effects were seen in task performance, heart rate variability or concussion 

history p<0.05 Pupillary response shows potential in informing cognitive load and efficiency in 

applied settings, using VR and eye tracking technology. Future investigations should consider 

participants’ concussion history variability. 
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CHAPTER 1: INTRODUCTION 
1.1 Overview of Concussion Injury and Associated Deficits 

Repetitive head impact exposures and concussion are major athletic health concerns1 for 

which the physiological response and recovery dynamics are poorly understood. Concussion 

among college aged athletes participating in National Collegiate Athletic Association (NCAA) 

sports is estimated around 10,560 nationally with the overall concussion rate of 4.47 per 10,000 

athlete-exposures.2  Recent literature regarding the effects associated with repetitive head impact 

exposures remains unclear. However, studies suggest greater functional impairments and 

potentially long-term structural changes in those who have experienced multiple prior 

concussions.3–5 Contact and collision sport athletes (e.g., American football, rugby, men’s 

lacrosse, etc.) are likely at the greatest risk of such deficits, as they experience relatively high 

numbers of head impact exposures and greater concussion rates over the course of a single 

season and their athletic careers.65 5,6Understanding the relationships between clinical and 

physiological response dynamics following repetitive head impact exposures and concussion is 

therefore important to ensure proper care and management. 

Neuropathophysiological changes following concussion and repetitive head impacts—

and the associated clinical impairment manifestations7,8 do not adhere to fixed response and 

recovery timelines. As such, these changes are difficult to fully characterize with currently 

available clinical measures. The recommended concussion assessment paradigm6,10,119 uses a 

variety of clinical measures  (e.g., symptom inventory, motor control, neurocognitive screening, 



 

2 

etc.) known to demonstrate ceiling effects10 and rapidly lose signal detection11,12 in the 

days following concussion injury.13–15 The current battery functions to guide clinical decisions 

such as return to play (RTP), often made following clinical measure normalization. Clinical 

normalization for collegiate aged athletes typically occurs within 7 to 10 days following 

injury.16,17 Recent neuroimaging studies however, report prolonged physiological impairment 

exhibited by increased spatial and temporal activity disproportional to task demands.8,18,19 

Moreover, the sole monitoring of performance deviations relative to baseline or normative 

values, further limits dynamic clinical and/or physiological response characterization.8,9,18  

Prolonged post-concussion physiological impairment has been described as 

compensatory neural resource utilization to meet cognitive demands, which previous studies 

have described as neurophysiological cognitive inefficiency. 7,8,19 These compensatory 

mechanisms are posited to provide some explanation for early clinical normalization in 

performance-based outcomes.8 Studies using advanced neuroimaging measures have contributed 

valuable evidence regarding compensatory physiological mechanisms, and suggest that they may 

result in prolonged neural vulnerability and associated negative consequences (e.g. increased risk 

for neurodegenerative disease, neuropsychiatric deficits, etc.).8,18,19 However, the poor ecological 

validity (e.g., cost, time, availability) of these studies,18 limit our ability to further elucidate 

neurophysiological responses and recovery associated with various head trauma exposure types 

(e.g., documented concussion injury7,8, repeat concussions,3,4,18 repetitive head impacts,6,20,20 and 

participation in a single season of collision sport play6,21). Overall, these issues highlight the need 

for more ecologically valid assessment options to better capture concussion injury response 

dynamics.8,11,12   
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Recent studies concerning the clinical concussion assessment paradigm have suggested 

the need for critical modifications to include more robust, reliable, and validated measures that 

capture the dynamic nature of post-injury clinical and physiological responses. Adaptations to 

the current assessment battery that fulfill these needs may support clinical decision-making 

regarding athlete/soldier readiness for return to activity and/or duty, potentially mitigating 

negative and injurious consequences associated with premature return. 22,23 

1.2 Cognitive Efficiency Following Concussion  

Current concussion assessments lack neurophysiologic and performance-based 

measurement options that are feasible and demonstrate adequate utility, to fully inform cognitive 

efficiency. Combining these two measurements and examining them in the context of task 

demands allows extends their meaning to that of efficiency—beyond effectiveness. Whereby, 

efficiency refers to the assessment of the dynamic interplay between elements of cognitive task 

demands (task difficulty), physiological characteristics associated with cognitive effort and 

capacities, and performance-based outcomes24,25 is not represented in the current clinical battery. 

Current neurocognitive assessments within the concussion assessment battery statically capture 

two of these three elements—i.e., task demands (design and difficulty) and performance 

outcomes. However, important adaptations within these two elements may be necessary to 

improve our understanding of task performance dynamics as they relate to cognitive efficiency 

following concussion. For example, task performance on the SAC’s digit-span task is one of the 

most sensitive to acute concussion.11,12 Previous findings in healthy adult samples suggest that 

relatively minor (though necessary) task adaptations (i.e., adapted task demands, scoring, and 

administration parameters) elicit better dynamic working memory processes and should therefore 

be considered.26,27 Additionally, feasible measurement options for the third element of cognitive 
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efficiency—physiological characteristics of cognitive effort and capacities—have yet to be 

established. 

An objective physiological marker for neural resource utilization and/or cognitive effort 

would need to demonstrate sensitivity, dynamic responsivity, and robustness, with 

discriminatory abilities across varying levels of cognitive efficiency associated with the 

concussion response acutely and in the longer-term. Specific consideration should also be given 

to the clinical feasibility of potential metric solutions to best examine their overall utility. 

1.3 Physiological Correlates of Cognitive Efficiency 

Pupillary responses have demonstrated significant associations with various cognitive 

and emotional constructs, to examine information processing. Research efforts in cognitive 

pupillometry specifically, have shown that pupillary responses reflect changes in cognitive 

processing load.28,29  As such, pupillary response dynamics serve as an indication of the 

allocation of neural resources, relative to variations in cognitive load and information processing. 

Cognitive pupillometry metrics have further demonstrated associations with advanced spatial and 

temporal measures of neural activation using electroencephalography (EEG) and functional 

magnetic resonance imaging (fMRI).29–33 Concurrent validation with advanced imaging 

concluded that cognitive pupillary response metrics are modulated by the noradrenergic Locus 

Coeruleus neuromodulatory system (LC-NE) with widespread projections that extend to nearly 

all cortical and subcortical regions.30,33  

Autonomic Nervous System (ANS) contributes dual ciliary innervation of both 

sympathetic and parasympathetic branches, to regulate pupil dilation and constriction 

mechanisms respectively.31,33 Pupillary response dynamics across cognitive constructs generally 

follow that of a within trial incremental pupil dilation (sympathetic activity) response relative to 
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task demands and/or difficulty until the point of capacity, at which point pupil size plateaus or 

constricts.34–36 As such, researchers often examine pupillary responses to the varying cognitive 

demands of digit-span tasks, with respect to working memory and working memory 

capacity.28,35,70 28,32,35,37–39 Pupillary response dynamics to cognitive demands may therefore 

prove meaningful with respect to physiological and task performance dynamics following 

concussion, given its valid association with increasing cognitive demands across various 

cognitive processes.31,32,37,40 including those often affected by concussion (e.g., attention, 

processing speed, and working memory) and ANS regulatory involvement considering known 

dysfunction in both sympathetic and parasympathetic activity following injury.  

Pupillary response dynamics to the backwards digit-span task (Figure 1.1) include 

incremental dilation as each digit is encoded, reaching maximum dilation following final digit 

presentation (while manipulating and reordering) or at the point of encoding capacity, whichever 

comes first.28,32,35 Upon recall, pupils recover to pre-trial size.28,32,37 Pupillary response 

magnitudes are often summarized for each trial as the average pupil size change following final 

digit presentation, while encoding and reordering numbers, compared to pre-trial size—where 

longer digit sequence lengths elicit greater dilation responses until the point of capacity.28,34 

Outcomes represent individual neural resource utilization for a given sequence-length—which 

may inform individuals’ cognitive efficiency.30,35 Current literature supports resultant decreases 

in performance with increased resource utilization via cognitive effort in response to higher 

levels of task difficulty29, also seen in dual-task concussion literature.3931,41 Therefore, 

incorporating simultaneous pupillary response recording during the digit-span task may be a 

meaningful physiologic metric for concussion assessment, with respect to the individual 

characteristic (capacity) of cognitive efficiency.41,42 
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Pupillary response dynamics may be useful to inform cognitive efficiency in isolation—

though recent psychophysiological investigations suggests monitoring multiple metrics when 

examining associations between physiological and behavioral outcomes associated with complex 

cognitive constructs and processes.29,34,41,42 Juxtaposed with concussion literature, recent 

systematic reviews regarding the physiological response to injury concludes that a single ‘perfect 

metric’ that accounts for the complexities associated with concussion is highly unlikely—rather, 

a combination of measures may be more appropriate.8,18 Moreover, physiological metrics 

regulated by the ANS require careful consideration given the many latent variables that may 

contribute to variability in response dynamics (e.g., stress, emotional response, etc.).41,43–45 Heart 

rate variability (HRV) may be a meaningful supplement to pupillary response during digit-span 

task completion to inform cognitive efficiency, as an index of neurocardiac function associated 

with the ANS.44,46,47 Limited research is available to fully describe HRV and ANS dysfunction 

following concussion, though most studies report HRV response dynamics to physical 

activity/movement task demands.46–49 The majority of HRV investigations in the concussion 

space focus on persistent cerebral metabolic deficiencies related to reduced cerebral blood flow 

at rest, and threshold determinants for exercise tolerance testing.18,50,51 Applications of this 

measure to estimate potential thresholds for cognitive load are unclear.  

Cognitive neuroscience data clearly acknowledges environmental factors that influence 

current pupil size monitoring. Specifically, environmental luminance and accommodation 

responses, have previously hindered scientific inquiry progression in this space and other 

physiologic outcomes, with respect to internal validity.32 Recent advancements in virtual reality 

(VR) head mounted displays with embedded infrared eye tracking technology provide a 

controlled, portable, and cost-effective solution to this problem and improved ecological validity 
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for pupillary response parameter assessment to inform cognitive efficiency. Examination of HRV 

as it relates to ANS activity may serve as a useful supplement to describe the resolution of post-

concussion compensatory mechanisms and physiological impairment, combined with an 

ecologically valid marker for neural resource utilization.46,52,53  

1.4 Problem Statement 

Clinicians and researchers need objective measures to better characterize behavioral and 

physiological response dynamics associated with cognitive inefficiency following concussion. 

While cognitive efficiency can be described relative to various cognitive processes, working 

memory is most often examined with respect to relationships between task demands and 

available cognitive resources. Working memory is also one of the most common cognitive 

impairments following concussion—where associated post-injury clinical measures (digit-span 

task) demonstrate high diagnostic sensitivity.11,12  

Clinical task performance and physiological response dynamics associated with cognitive 

efficiency are difficult to characterize following concussion due to rapidly deteriorating signal 

detection and poor ecological validity of current clinical assessments and advanced 

neuroimaging modalities.8,18 Dynamic cognitive efficiency characterization via clinical task 

performance and physiological and metrics may better inform concussion recovery response 

dynamics. Results may therefore have important implications for improved concussion clinical 

assessment and management regarding readiness to return to athletic and or military activity. 

The study aims were to first examine relationships between clinical task performance, 

heart rate variability, and cognitive load associated with a digit-span working memory task, on 

pupillary response dynamics, then examine potential concussion history effects. 
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1.5 Specific Aims 

Specific Aim 1: To examine associations between task performance accuracy, heart rate 

variability, and pupillary response dynamics, across levels of task difficulty within a digit-

span working memory, task in healthy collegiate club sports athletes. 

Hypothesis: We anticipate significant associations to exist across participants between 

task performance accuracy, heart rate variability, and pupillary response dynamics with 

respect to the levels of task difficulty within a digit-span working memory task. 

Specifically, we anticipate individuals will demonstrate decreasing heart rate variability 

and task performance accuracy across increasing digit sequence-lengths—while 

pupillary responses will increase (dilation) to a point of working memory capacity, then 

plateau or decrease (constriction).  

Significance: The digit-span task within the current recommended concussion 

assessment battery is known to be one of the most sensitive to acute injury. Rapid loss in 

this signal detection is likely attributable to limitations associated with clinical task 

performance factors (e.g., task design, administration and interpretation, etc.) and lack of 

psychophysiological characterization of cognitive efficiency. If combined task 

performance and physiological (heart rate variability and pupillary response) assessments 

can objectively inform individual differences in cognitive efficiency, the potential exists 

to also provide insight regarding neurocognitive deficits. Dual physiological assessment 

monitoring during the digit-span task by both pupillary response and heart rate variability 

may provide a more robust picture of cognitive efficiency with respect to physiological 

resource availability.  
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Specific Aim 2: To examine the effect of prior concussion injury, and task performance 

accuracy and heart rate variability response dynamics on pupillary response dynamics, 

across levels of task difficulty within a digit-span working memory task in healthy 

collegiate club sport athletes. 

Hypothesis: We anticipate that those who report prior concussion, task performance 

accuracy, and heart rate variability dynamics will exhibit worse physiological outcomes 

of pupillary response (increased dilation responses) across digit-sequence lengths, 

though performance-wise they may not differ from those without a concussion history.  

Significance: Recent studies examining the individual ability of potential physiological 

biomarkers to discriminate between those who have a concussion history —with respect 

to neurocognitive deficits—have exhibited various threats to internal validity. 

Examination of the effects of prior injury as it relates to cognitive efficiency may provide 

insight regarding the potential utility of a more dynamic behavioral and physiological 

assessment for post-concussion assessment and monitoring. 

1.6 Independent Variables 

1. Digit sequence length: the number of digits within a given sequence. Discussed in terms of 

cognitive load as a representation of task difficulty level associated with longer sequences. 

(Aims 1 & 2) 

2. Task performance—average percent of correctly identified digits (by serial position) with 

respect to sequence-length for each trial. (Aims 1 & 2) 

3. Heart rate variability— Total HRV as the root mean square of successive differences 

(RMSSD) from baseline to baseline for each trial. 64 52,54,55 (Aims 1 & 2)  
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4. Concussion history—Self-reported by first providing athletes with the definition for 

concussion from included in Section 1.8, then asking them to consider their concussion 

history following provision of a definition. Participants included in the history group were 

those who reported their most recent concussion occurring between the years in which they 

attended secondary school (grades 9-12) until 6 months prior to their study participation date. 

(Aim 2) 

1.7 Dependent Variable:  

1. Pupillary response: Pupillary Response represented as the baseline corrected pupil diameter 

in mm, during the retention period–measured by trial, whereby greater dilation response 

reflects greater neural resource utilization.28,32,56 

1.8 Potential Co-variates:  

1. Sex—male versus female 

2. Prior contact/collision sport participation—examined via 2 variables using questions from the 

(Head Impact Exposure Index—HIEI57) 

i. Total number of years participating in contact/collision sport 

ii. Total number of hours participating in contact/collision sport 

1.9 Definition of Terms 

1. Concussion: The definition provided in the Berlin Concussion Consensus statement will be 

applied throughout as follows: A change in brain function following a force to the head, 

which may be accompanied by temporary loss of consciousness and is identified in awake 

individuals with measures of neurologic and cognitive dysfunction. Common concussion 

symptoms include headache, feeling slowed down, difficulty concentrating or focusing, 
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dizziness, balance problems/loss of balance, fatigue/loss of energy, feeling in a fog, 

irritability, drowsiness, nausea, memory loss, sensitivity to light/noise, and blurred vision. 

2. Sequence-length: the numbers of digits in a digit-sequence. 

3. Cognitive load: cognitive demands relative to the task—i.e., task difficulty associated with 

longer sequences. 

4. Neural Resource Utilization: brain activity used to accomplish a cognitive task.  

5. Baseline Period: two seconds prior to each digit-span being presented to allow for pupils to 

rest and stabilize.  

6. Loading Phase: the portion of the digit-span task in which participants are presented with a 

sequence of digits at the rate of 1 per second and asked to remember the number sequence. 

7. Retention Period: three second period after each digit-span is presented when participants 

process/encode the information and prepare to recall. 

8. Task performance: percent correctly identified digits (by serial position) across trials for each 

sequence-length. 

9. Pupillary Response: average pupil size (diameter) across trials for each sequence length. 

10. Cognitive Efficiency: the ability to maximize neural resource utilization while maximizing 

task performance. 

11. Heart Rate Variability: The root mean square of successive differences (RMSSD). A reliable 

estimate of vagally mediated changes in heart rate variability (i.e., beat-to-beat variance in 

heart rate), from ultra-short-term measurement durations—shown to capture acute mental 

stress during cognitive tasks.  
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1.10 Delimitations 

1. Individuals who were not a collegiate club sport athlete were not included in this study.  

2. Individuals with permanent vision loss, strabismus, amblyopia, or eye surgery in the last 6 

months were not included in this study.  

3. Individuals participating in visual or vestibular therapy were excluded to prevent 

confounding variables.  

1.11 Limitations 

1. Participants with a concussion history were responsible for reporting their own medical 

history. Being so, there is potential for participants to be included in the concussion history 

group who should not have been or vice versa. 

2. Study sample may predominantly consist of males, and therefore, we may be unable to 

examine sex differences within the proposed study aims. 

1.12 Assumptions 

1. Participants accurately reported past medical and sport participation history. 

2. Participants remembered and accurately reported all concussion injuries. 

3. Participants remained engaged and gave full effort during the task.  

1.13 Summary of Study Significance 

This study is the first to examine an assessment for cognitive efficiency that accounts for 

both task performance and physiological response dynamics, which may provide meaningful 

insight for concussion injury response and recovery. Consideration for necessary adaptations to 

the digit-span task within the clinical battery to better elicit dynamic working memory processes, 

while also overlaying two physiological response dynamics known to be associated with digit-



 

13 

span task performance outcomes, will allow us to better describe efficiency.(Figure 1.1) We will 

also examine the effect of concussion history on these measures as a preliminary step towards 

improving our ability to capture the dynamic clinical and physiological aspects of cognitive 

efficiency.  

 

 

 

 

Figure 1.1 Conceptual Model for the current study highlighting the need for better characterization of 
physiological response and recovery dynamics following concussion 
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CHAPTER 2: LITERATURE REVIEW 
2.1 Overview of Concussive Injury 

Repetitive head impact exposures and concussion are major athletic health concerns1 for 

which the physiological response and recovery dynamics are poorly understood. The 5th 

International Conference on Concussion in Sport defines concussion as: “A change in brain 

function following a force to the head, which may be accompanied by temporary loss of 

consciousness and is identified in awake individuals with measures of neurologic and cognitive 

dysfunction. Common concussion symptoms include: headache, feeling slowed down, difficulty 

concentrating or focusing, dizziness, balance problems/loss of balance, fatigue/loss of energy, 

feeling in a fog, irritability, drowsiness, nausea, memory loss, sensitivity to light/noise, and 

blurred vision.”9 Prolonged neurophysiological abnormalities in concussed individuals assessed 

using advanced imaging techniques suggest a prolonged over-excitatory period, when the brain 

remains physiologically-compromised requiring greater neural resource allocation and metabolic 

energy to balance task demands with available cognitive resources.8,19 Consequences of these 

persistent deficits suggest decreased cognitive efficiency which may leave the brain at an 

increased risk for repeat injury, new musculoskeletal injury, prolong recovery, neurocognitive 

impairment, and persistent symptom presence.4,22,50 

Despite growing evidence of persistent compensatory mechanisms and associated 

neurophysiological cost—dynamic clinical and physiological response dynamics for cognitive 

efficiency following concussion remains poorly characterized. Limited generalizability stems 

from the underlying issue of clinical feasibility and poor ecological validity. Below we review 
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relevant literature supporting the need for a physiological measure associated with task 

performance response dynamics of working memory, and sensitive to potential deleterious 

repetitive head impact exposures and concussion to better inform cognitive efficiency. We then 

propose pupillary response dynamics to cognitive task demands as a physiological index for 

neural resource utilization to meet these assessment needs and inform cognitive efficiency. We 

also suggest the simultaneous measurement and inclusion of heart rate variability to characterize 

cognitive efficiency as a secondary physiological measure in order to best account for cognitive 

effort input relative to task demands whist still accounting for task performance outcomes. 

Finally, we review relevant literature to support the methodological considerations associated 

with the proposed study in the context of design, instrumentation, and overall ecological validity 

to allow for interpretation of future directions in this space.   

2.1.1 Epidemiology 

Estimated prevalence for recreational and sport-related concussion (SRC) in the United 

States from the national injury databases report prevalence between 1.1 to 1.9 million, in 

pediatric and adolescent populations.12 Concussion injury rates for this population are 2.5 per 

10,000 athlete exposures and are higher in collision/high-contact sport athletes. Concussion 

among college aged athletes participating in National Collegiate Athletic Association (NCAA) 

sports is estimated around 10,560 nationally with the overall concussion rate of 4.47 per 10,000 

athlete-exposures.2  Recent literature regarding the effects associated with repetitive head impact 

exposures remains unclear—though studies suggesting greater functional impairments in those 

who have experienced multiple prior concussions and potentially greater long-term structural 

changes, relative to cumulative exposure provide sufficient evidence for further 

pathophysiological characterization.4,20,58 Contact and collision sport athletes (e.g., American 
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football, rugby, men’s lacrosse, etc.) are at the greatest risk, as they experience relatively high 

numbers of head impact exposures over the course of a single season and athletic career.5,6,21 

Many research- and clinically-based challenges limit the understanding for the true SRC 

epidemiology. Injury definitions lack consensus across disciplines and may contribute to 

decreased concussion injury-based knowledge among patient populations, and therefore athlete 

self-report/disclosure.2,59 

Annual participation rates for collegiate club sports is currently unknown though 

estimated to make up a large percentage of competitive athletes at risk for concussion given the 

discrepancy between high school varsity and college varsity level athletes.60,61 The majority of 

these athletes have prior experience participating in their respective sports and maintain a 

relatively high level of competition, though lack the medical coverage and clinical resources 

available to those rostered on varsity teams. These teams are also often larger than varsity 

collegiate sports and therefore still represent a large at-risk population. 

2.1.2 Injury Mechanics and Response 

Concussion is theorized to result from linear and/or rotational biomechanical forces 

(direct or indirect) to the head, neck, or body resulting in an impulsive force to the head and 

brain, causing axonal shearing and increased pressure gradients, resulting in diffuse axonal injury 

and subsequent altered neuronal function.7,62 The neuropathophysiological process that follows is 

described as a neurometabolic cascade, posited to drive clinical deficits and dysfunction. 

Moreover, there are growing concerns regarding the elevated risk of repeat injury following 

concussion and associations with slower recovery, prolonged symptoms, etc.63–65 

Additional concerns exist regarding potential effects of repetitive head impact exposure 

associated with contact and collision sport participation, in the absence of diagnosed injury.6,18,64 
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Studies examining these effects suggest greater functional impairments in those who have 

experienced multiple prior concussions and potentially greater long-term structural changes.3,58 

Attempts to better understand the cumulative effects between repetitive head impacts and long-

term neurological consequences (e.g., increased risk for neurodegenerative disease, 

neuropsychiatric deficits, etc.) demonstrate limited correlational associations and causal 

relationships have yet to be established.4,20,58 Continued investigation regarding physiological 

and clinical response dynamics following concussion with respect to symptoms, neuro-cognitive 

functioning, and motor control/postural stability, is needed to further inform these concerns. 

2.1.3 Physiological Response  

2.1.3.1 Neurometabolic Cascade 

The physiological response to concussion injury is multifactorial—primarily informed by 

animal models, and a few recent human studies.4,27,29 The neurometabolic cascade of events 

following the biomechanical insult mentioned above, has been described in detail by Giza et al. 

relative to associated clinical impairments.27 Initial potassium efflux causes a dramatic release of 

excitatory neurotransmitter glutamate causing neuronal depolarization and further ionic 

disruption. Initial hyperglycolysis supports sodium potassium pumps as they respond to 

homeostatic disruption, requiring additional adenosine triphosphate to restore ionic balance. 

Calcium influx is appropriated into mitochondria for short-term relief but eventually leads to 

mitochondrial dysfunction and decreased oxidative capacity. Glucose metabolism then shifts to 

support this energy demand, resulting in a state of hyperglycolysis. Concurrent reduction in 

cerebral blood flow during this time of high energy demands is posited to result in the ‘energy 

crisis’ associated with concussion injury. Mitochondrial dysfunction and impaired oxidative 
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metabolism further contribute to the crisis as neurons attempt to restore homeostatic intracellular 

calcium levels.27 

Post-concussion pathophysiological recovery is such that potassium and glutamate 

stabilization occur within 24 hours, and calcium levels within the first 3-4 days, and glucose 

levels and disruptions in cerebral blood flow within 7 to 10 days. Recent advanced imaging 

studies, however, suggest these physiological deficits indicating increased neural activity may 

persist beyond these timeframes. Implications of these prolonged physiological deficits indicate a 

window of cerebral vulnerability that extends beyond clinical measure normalization when the 

brain remains physiologically-compromised and at a greater risk of repeat injury.7,8 

2.1.3.2 Role of the Autonomic Nervous System 

Autonomic nervous system (ANS) function following concussion has been posited to 

play a role in the above-mentioned cerebrovascular-related alterations, with respect to 

sympathetic and parasympathetic activity balance.46,55 Balanced ANS function is essential from a 

neurocardiac perspective with respect to its role in regulating cerebral blood flow to meet 

neurometabolic demands. Dysfunction within this system following concussion may 

significantly influence the prolonged energy crisis and subsequent secondary injury—though the 

mechanism behind these alterations are unknown.7,8,50 Centers within the brain responsible for 

ANS regulation of neurocardiac function are suggested to be uncoupled following concussion, 

though more evidence is need to further elucidate its role in physiological injury response and 

recovery.18,49,53,55,66 

2.1.4 Clinical Response  

Clinical impairments are widely variable and often reflected in a multitude of subjective 

symptom reports, along with impaired motor control/balance, neurocognitive function, 
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visual/oculomotor, and vestibular function—all associated with the pathophysiological response 

to concussion injury.62,66 Given the complexities in clinical presentation, clinicians rely on a 

comprehensive assessment battery for injury identification and recovery monitoring (i.e., clinical 

measure normalization).9 The clinical recovery time course (e.g., symptoms, neurocognitive, 

balance) has been well documented in large prospective studies over the last 2 decades with 

current available measures. Specifically, balance deficits and neurocognitive function often 

recover to baseline levels within 3-5 days.11,12 Symptom severity scores are known to be the 

longest lasting clinical deficit, recovering around 7-10 days in most uncomplicated cases.7,65  

The prolonged energy crisis (i.e., decreased glucose levels and cerebral blood flow), 

reportedly lasting up to 10 days in the neurometabolic cascade is theorized to drive secondary 

injury in the brain and associated symptom reports and neurocognitive deficits.7 Subjective 

symptom reports post-concussion often include (e.g., headache, dizziness, fatigue, sensitivity to 

light, and difficulty with memory or concentration) though are widely varied. Symptom 

checklists including the most commonly reported post-concussion symptoms—and associated 

Likert scales for severity, are heavily relied upon by clinicians for recovery monitoring (i.e., 

clinical normalization).63,65 In those experiencing prolonged symptoms (beyond 7 to 10 days 

post-injury), recent studies suggest closer clinical examination to identify potential neurological 

sub-system involvement (i.e., visual/vestibular, cervicogenic, and physiologic/metabolic) and 

alternated management strategies.66 Additionally, concussion-like symptoms, in the absence of 

diagnosed injury, are common.67 This complicates clinical decision making around the 

recommended graded exertion protocol and eventual return to play (RTP), given protocol 

progression is contingent on symptom stabilization and resolution.9 This underscores the need for 



 

20 

objective physiological markers to aid in the further elucidation of the relationship between 

clinical and physiological response dynamics post-concussion.  

Visual and vestibular impairments are also common following concussion given axonal 

injury and impaired neurotransmission, or direct damage to their respective special sensory 

organs.68,69 Specifically, impairments associated with binocular visual skills such as 

accommodation, convergence, smooth pursuits, and saccadic eye movement, are common 

following concussion.69–71 Symptoms associated with these deficits specifically include blurred 

or double vision, headache, eyestrain, dizziness, nausea, and difficulty concentrating; which 

contribute to functional impairments such as difficulty reading and tracking, and trouble with 

near tasks.72,73 Given the impact post-concussion visual and vestibular impairments can have on 

daily activity levels and quality of life, and their association with prolonged recovery, clinicians 

are encouraged to incorporate earlier screening and management for these specific deficits.68 

Common assessments used to capture these impairments (e.g., King Devick, Vestibular Ocular 

Motor Screen, etc.) have demonstrated clinical utility as physiological measures for dysfunction 

within their respective sensory sub-systems—though provide little insight with respect to global 

neurophysiological dysfunction following concussion.69,74,75 

Neurocognitive deficits arise from initial axonal injury and impaired neurotransmission—

where common deficits involve information processing, attention and reaction time, often 

captured using neuropsychological assessments.16,76,77 These pathophysiologic factors may also 

affect the regulatory central and peripheral neural networks that contribute to motor control and 

balance.7,63,79 Slowed information processing and reaction time, along with attention deficits play 

major roles in the maintenance of balance and postural control whereby specific cognitive 

processes within the frontal lobe and dorsolateral prefrontal cortex are generally 
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responsible.9,11,78 Neurocognitive deficits are often identified using clinical measures such as the 

Standard Assessment for Concussion (SAC) or many of the different computerized 

neurocognitive testing platforms such as the Immediate Post-Concussion Assessment and 

Cognitive Test.9  

Motor control and balance deficits are most often assessed clinically using the balance 

error scoring system.9,78 Of noteworthy concern, these neurocognitive and balance assessments 

are known to lose signal detection as quickly as within the first 24 hours post-concussion and 

demonstrate ceiling effects.11,12 More advanced assessments using the Sensory Organization Test 

(SOT) or dual-task gait assessment protocols aim to examine more complex motor 

control/balance impairments with respect to higher order integration of sensory-motor 

information.79–82 Feasibility and ecological validity concerns associated with advanced balance 

assessments such as the SOT are limiting for further clinical consideration. Clinical utility of 

dual-task ‘cost’ outcomes as they relate to post-concussion physiological response dynamics 

continue to be examined though may be useful in later stages of concussion recovery with 

respect to functional testing.82,83 Overall, clinical response dynamics following concussion are 

complex and may not follow a fixed recovery time frame or be appropriately captured using the 

current assessment battery components. Combined dynamic clinical and physiological 

assessments may provide a better characterization of the neurophysiological concussion injury 

response and recovery to aid in improved concussion management paradigms.  

2.2 Clinical Versus Physiological Considerations 

While most individuals recover from concussion within 2-4 weeks, a substantial number 

may experience a prolonged recovery and persistent symptoms.65,66,84 Physiological deficits 

following concussion have also been shown to persist beyond normalization of clinical measures 
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suggesting that the current battery of assessments may not be sensitive enough to identify injury 

recovery.16,19 The clinical and physiological response to concussive injury, is best described in 

the context of the integrated recovery model proposed by Dr. Mike McCrea first in 2009 and 

revised in 2015.85 This model proposes a progression of recovery, characterized by an acute 

period of clinical signs and concurrent physiological dysfunction, followed by persistent 

physiological dysfunction in the sub-acute period, and finally, complete clinical and 

physiological recovery. This model has been further supported in a recent systematic review 

highlighting key physiological considerations in the context of concussion injury response and 

recovery.8 Persistent physiological deficits cultivate a neural environment in which the brain is 

susceptible to injury, during a time in which most athletes are actually beginning an RTP. Too 

much or too little physical and/or cognitive activity during this time may further delay the 

recovery process)51, therefore it is imperative that we understand the time course of the 

physiological response to injury in order to continue the development of appropriate 

management paradigms.  

2.2.1 Advanced Physiologic Measures 

2.2.1.1 Advanced Neuroimaging Techniques 

Numerous advanced assessment techniques have been examined to improve our 

understanding regarding the time course of clinical and physiological recovery following 

concussion. Further characterization of the relationships between physiological disturbance and 

clinical outcomes continue to be pursued by many researchers to identify more objective 

diagnostic and recovery criteria for improved concussion management paradigms. Neuroimaging 

techniques in particular have been used to examine widespread neural systems that cross 

multiple functions, with the intent to characterize the pathophysiology following concussion—
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though the level of evidence to support their clinical utility is low and therefore not 

recommended at this time.18 Results from a recent systematic review summarizes the 

contributions from neuroimaging modalities (e.g., functional magnetic resonance imaging 

(fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEG) to our current 

understanding regarding physiological and clinical responses following concussion. Specific 

results from fMRI studies report varied results regarding blood oxygen level dependent (BOLD) 

responses during resting state and task-based examinations following concussion.18 Task-based 

fMRI studies often examine this measure to describe neural activity in task related networks of 

working memory (e.g., dorsolateral prefrontal cortex)—as one of the most commonly affected 

neurocognitive processes following concussion.11,16,76 Varied results have been reported showing 

both lower and higher levels of activity have been exhibited in concussed individuals.18 

Prefrontal cortex (PFC) related activity is modulated by working memory cognitive loading,31,77 

where fMRI studies using a digit-span task show that higher digit sequence-lengths, representing 

a higher cognitive load is consistently associated with greater cortical activation, including 

critical PFC regions.8,18,19 Results from these fMRI studies provide support for compensatory 

neural resource utilization associated with prolonged physiological impairment as brain activity 

extends beyond regions of interest in the dorsolateral prefrontal cortex and inferior parietal areas 

in these studies. Resting state fMRI is currently the most extensively studied network in SRC –

though similar varied results have been reported where both increased and decreased 

connectivity between default mode network regions are observed following injury.8 

Similarly, the use of fluid biomarkers has advanced our understanding of concussion 

pathophysiology, though the validation of these markers is in the preliminary stages.18,86,87 

Continued research in this area attempt to aid in concussion diagnosis and recovery monitoring 
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by examining serum and blood biomarkers indicative of axonal injury.18,87 Additional 

investigations using genetic testing has sought to inform prognostic factors associated with 

concussion injury risk, prolonged recovery and long-term neurological heath with respect to 

potential life-long consequences of injury and repetitive head impact exposure.39,53 8,18The 

majority of these investigations have been completed in more traumatic brain injury cases, 

though increasing in athletic populations. The major limitations affecting fluid biomarkers 

pertain to the time needed for analysis and results and access to a basic science laboratory—thus 

currently not a feasible option for sports medicine clinical settings.18 Future studies with 

longitudinal designs to further elucidate the dynamic recovery of these compensatory neural-

mechanisms following concussion are not a viable option as fMRIs are very expensive.  

Overall, authors of a recent and comprehensive systematic review including biomarkers 

(e.g., blood serum and plasma markers, salivary cortisol, cerebrospinal fluid, etc.)8,18 highlight 

the current limitations challenging this research initiative to generalizability of findings 

including: small homogenous sample sizes across studies (primarily male participants), varied 

study designs, limited number of studies overall, differences in outcome measures and analytic 

methods, and lack of consistency post-injury data collection time points. Recommendations from 

this review emphasize continued research efforts to further characterize the pathophysiological 

response to concussion and repetitive head impact exposure in the absence of diagnosed 

concussion that include larger samples sizes inclusive of both sexes, standardized protocols, 

more stringent study designs that allow for baseline comparisons, appropriate controls, blinded 

analyses that include clinically applicable outcome measures.8,18 Moreover, limited 

generalizability in neuroimaging outcomes stems from the underlying issue of clinical feasibility 

where many of the measures used to identify physiological abnormalities lack ecological 
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validity. Investigations using outcomes known to be indirect measures associated with these 

advanced techniques such as heart rate variability and pupillary response may provide a more 

clinically feasible option that allows for the dynamic characterization of post-concussion 

physiological response and recovery. 

2.2.1.2 Heart Rate Variability 

Heart Rate Variability (HRV) measures function as indices of neurocardiac function used 

to inform the dynamic responses associated with ANS dysfunction following concussion.55 

These measures represent the fluctuation in the time intervals between adjacent heartbeats with 

respect these subsystem dynamics as individuals adapt to environmental and psychological 

challenges.54 Recent investigations have examined these measures at rest and in stressed states 

(both physically and psychologically), where specific outcomes have been linked to performance 

of executive functions like attention and emotional processing by the prefrontal cortex.41,45 

Common outcomes for HRV in the concussion literature space include heart rate and time- and 

frequency-domain indices of HRV. Heart rate (HR) is also a common metric used in concussion 

literature with respect to persistent cerebral metabolic deficiencies related to reduced cerebral 

blood flow at rest, and threshold determinants for exercise tolerance testing.47,48,53,66 Specifically, 

HR is represented as the average difference between the highest and lowest HRs during each 

respiratory cycle (HR Max − HR Min). Examination of HRV measures is less common in this 

population. Time domain measures are used to quantify the amount of variability in 

measurements of the inter-beat interval (IBI) (i.e., the time period between successive 

heartbeats); and Frequency-domain measurements estimate the distribution of absolute or 

relative power into four frequency bands.52 Overall, current understanding of the effects of 

concussion on ANS function as assessed with neurocardiac metrics (HR and HRV) are varied, 
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though generally suggest post-concussion increases in sympathetic activity and lower 

parasympathetic compared to controls.18,46  Individuals with concussion have been found to have 

higher rates of sympathetic nervous system output than controls, as exemplified by higher resting 

heart rates and higher heart rates during cognitive activity. 8,18,55 

Response dynamics associated with HRV measures may provide meaningful information 

regarding the concussion physiological response characterization given associations with clinical 

recovery and symptom resolution due to resolved metabolic impairment. Altered autonomic 

nervous system regulation is evident as individuals recover following concussion though when 

HRV measures are examined in isolation during task-based paradigms associated with working 

memory results are limited given the potential influence of the stress response associated with 

increasing cognitive demands.14 Therefore, examination of HRV as it relates to ANS activity 

may serve as a useful supplement to describe the resolution of compensatory mechanisms and 

physiological impairment, combined with an ecologically valid marker for neural resource 

utilization.6  

2.2.1.3 Current Visual Metrics 

Visual impairments are among the most prevalent following concussion occurring in up 

to 60% of children and adolescents.68,73 Visual disturbances following concussion are most often 

reported in oculomotor, and visual processing contexts,4,72,75 given the widespread, neural 

architecture of the visual system within the brain, with over half of neural pathways related to 

vision.71,75  This network widely expands fronto-parietal circuits and subcortical nuclei, cranial 

nerves, and interconnections between these areas, all of which are particularly vulnerable to head 

injury.26,33 88  
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Oculomotor deficits in accommodation, convergence, smooth pursuits, and saccadic eye 

movement, are commonly affected following concussion. Symptoms of these deficits include 

blurred or double vision, headache, eyestrain, dizziness, nausea, and difficulty 

concentrating.68,88,89 Moreover, recent studies identifying predominant visual impairments 

following concussion highlight their relationships with neurocognitive processes of memory and 

attention—also often impaired following concussion.68,73 

Additionally, deficits in the pupillary light reflex have been reported following 

concussion due to diffuse axonal injury resulting in abnormal static and dynamic responsivity.90 

Specifically, the pupillary light reflex following concussion has been showed to be symmetric, 

though delayed, slowed, and reduced; additionally smaller initial baseline pupil diameters have 

been reported following concussion, compared to uninjured controls.90,91 While there are limited 

studies published in this space, findings suggest dysfunction within afferent pupillary pathways, 

and the parasympathetic and sympathetic efferent pathways of the ANS. These findings 

underscore the role of the ANS in post-concussion physiological impairments and need for 

further response characterization.90 Overall, this review echoes results from two of the most 

recent and comprehensive systematic reviews regarding the concussion pathophysiological 

response in that clinical utility of a physiological marker is more likely to derive from 

measurement combinations rather than by any one in isolation. 18,43 

2.2.2 Considerations for Advanced Clinical and Physiological Assessments 

Task performance and physiological responses following concussion do not adhere to a 

fixed recovery time course, therefore assessments for impairment within these areas should 

match response dynamics to best monitor recovery trajectories post-injury.  
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2.2.2.1 Behavior Specific Considerations  

Neurocognitive impairment following concussion describes deficits in memory, attention 

and processing speed as a result of diffuse axonal injury and the energy crisis that results in 

secondary neuronal injury. Neurocognitive assessments are used to capture task performance 

responses associated with each of these cognitive constructs following concussion. Longitudinal 

examination of working memory (WM) task performance outcomes are theorized to provide 

insight regarding cognitive efficiency given their representation of task performance across 

varying levels of difficulty.25,77 Deficits in WM are common following concussion and are 

typically assessed using recall tasks in the Standard Assessment for Concussion (SAC).9,76 The 

digit-span task in the SAC in particular is sensitive to injury as a performance-based 

representation of working memory capacity and/or the relationship between task demands and 

available cognitive resources. 11,12 

The digit-span is one of the most commonly used tests of working memory in clinical 

research and practice and can include forward and backwards administration.  Backwards digit-

span administration typically involves digit-sequence presentation (verbal or visual), a brief 

retention period, followed by a recall period during which participants are asked to recite the 

presented digits in exact reverse order (e.g., 3-5-8 correctly recalled is 8-5-3). Task difficulty is 

characterized by digit-sequence length (i.e., number of ‘to be recalled’ digits) and increases, 

every 1 to 2 trials depending on recall accuracy. Individuals who fail to demonstrate perfect 

recall on the first trial attempt for a given sequence-length are typically permitted a second 

attempt—with a new digit sequence. Traditional task administration implements a ‘discontinue’ 

rule following sequence length at which both trials are inaccurately recalled.  This task  requires 

updating, reordering, and/or dual- processing to engage working memory—critical to its clinical 
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and theoretical utility.31,77 However, recent evidence suggests that current administration of the 

backwards digit-span task, using all or nothing scoring and discontinuing when behavior is less 

than 100% limits our ability to understand how working memory may be affected when demands 

exceed capacity. All-or-nothing scoring assigns credit only for perfectly recalled sequences, 

whereas partial-credit scoring counts each digit recalled in the correct serial position. These 

adaptations to this task are suggested is suggested as a more robust examination of task 

performance responses during the digit-span task with more scoring variability and increased 

ability to detect individual differences.27,92 Overall, this new evidence highlights the fluidity of 

working memory and cognitive efficiency, rather than having a fixed capacity)—worthy of 

examination in concussion populations with respect to known compensatory neural resource 

utilization post injury that demonstrate dynamic changes across recovery.27 

2.2.2.2 Physiologic Specific Measures 

Post-concussion physiological response and recovery remains poorly characterized by 

current clinical and advanced imaging techniques. Recent systematic reviews emphasize the 

dynamic nature of physiological changes following concussion injury that cannot be constrained 

within a single window of ‘physiological recovery’.8 Neurocognitive assessment paradigms that 

elicit a behavioral response are often used under advanced imaging to functionally characterize 

regional brain activity and neural resource utilization—though not feasible with respect to cost 

effectiveness for long term monitoring. Clinically based physiological measures such as heart 

rate variability have also been described in concussion literature to describe dynamic aspects of 

ANS function, though when used in isolation may not be adequate to give a full picture of the 

dynamic physiological and psychological processes. 
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2.3. Pupillary Response as a Potential Solution 

Examination of pupillary response during a cognitive control task of working memory 

may provide clinicians with a more sensitive assessment of functional neurophysiological 

impairment and recovery following concussion, ultimately bridging the gap between clinical and 

physiological recovery. While pupillary response to cognitive load has been described in healthy 

and other cognitively impaired populations,28,32,36 little is known about this measure in 

concussion populations. Clinical and advanced physiological evidence has described higher 

order cognitive impairment in attention, processing speed, and working memory utilization 

following concussion.9,12 Many of the common testing paradigms used to examine these 

cognitive constructs in concussion populations (e.g., digit-span)— both clinically and with 

fMRI— have also been examined using pupillometry to reflect pupillary response changes to 

cognitive load in healthy and diseased states.28,31,38,39 

2.3.1 Neurophysiological Underpinnings 

The neurophysiological underpinnings of this response suggest that pupil dilation 

response in particular, is modulated by the noradrenergic Locus Coeruleus neuromodulatory 

system (LC-NE).30,33,93 This system has widespread projections that extend to nearly all cortical 

and subcortical regions.94 The LC-NE is a small collection of nuclei in the brainstem’s 

pontomedullary reticular formation and plays a central role in behavioral adaptation, task 

performance, attention, functional reorganization of cortical activity when environmental 

contingencies change that allow for cognitive and behavioral adaptation, and working 

memory.33,95 Current evidence validates pupillary response to cognitive load across various 

cognitive processes –including those mentioned above—with brain activity and these studies 
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conclude that pupil dilation response to cognitive load is correlated with activity in brain regions 

engaged by current task demands.29,30,33,93 

2.3.2 Pupillary Response Correlates with Behavioral Outcomes 

Previous literature has shown that pupil dilation is associated with a broad range of 

cognitive processes (e.g. attention, memory, etc.) in healthy individuals. In this context, pupil 

dilation refers to a stimulus-induced increase in pupil diameter relative to a pre-stimulus baseline 

period, or a task-evoked pupillary response.96 Pupillary responses during cognitive control tasks 

have been extensively examined in healthy populations ages 10-83 years, where pupil dilation 

increases with increasing tasks demands.29,31,37,38 Previous studies have further supported pupil 

dilation as a valid physiological marker of cognitive load via comparison to EEG and fMRI 

measures of brain activity. 30,97 

2.3.3 Pupillary Response in Clinical Populations 

More recently, pupil dilation and cognitive processes have been examined across varying 

diseases states such as Alzheimer’s and Parkinson’s disease.38,39 One study examined pupillary 

response during a digit-span task in adults who are cognitively normal and those across varying 

levels of mild cognitive impairment (MCI), both single domain (S-MCI) and multiple 

domain(M-MCI). The results of this study suggested that pupillary responses during a digit-span 

task reflect compensatory effort —exhibited by greater pupil dilation—to achieve equal task 

performance in those with lower levels of MCI based on working memory capacity.38 

Additionally, those with M-MCI exhibited no significant changes in cognitive effort across 

varying levels of cognitive load suggesting that in later stages of this degenerative disease 

individuals lack the ability to appropriately adapt cognitive effort.38 One study has examined 

pupillary response to increasing cognitive load in non-demented individuals with Parkinson’s 
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disease with the intent to identify a valid measure of cognitive dysfunction in this population.39 

No significant differences were seen in cognitive load between healthy and non-demented 

individuals with Parkinson’s. This study was however underpowered, and the researchers 

reported that Parkinson’s patients exhibited greater cognitive workload compared to healthy 

controls throughout testing. Future research is needed to determine the utility of pupillary 

response during a working memory task in the assessment of cognitive load and cognitive 

impairment detection in non-demented individuals with Parkinson’s disease. 38,39 

Pupillary responses in those with mild traumatic brain injury (mTBI) is currently limited 

to examination of the light reflex. To our knowledge, the effect of concussion history on 

pupillary responses during cognitive control tasks such as working memory have not been 

examined or reported. Additionally, this physiological pupillary response has not been examined 

across concussion recovery or repeated exposure to head impacts. Pupillary response during 

cognitive control tasks of working memory has however been associated with activity in long 

range frontal norepinephrine networks, which we know to be commonly affected following 

SRC20,98 and following seasons of repeated head impact bouts.6 

Clinicians are currently limited in the ability to longitudinally assess neurophysiological 

measures to determine the course of physiological recovery. Examination of pupillary response 

during a cognitive control task of working memory may provide clinicians with a more sensitive 

assessment of functional neurophysiological impairment and recovery following concussion, 

ultimately bridging the gap between clinical and physiological recovery. Moreover, 

pupillometric assessment provides the most clinically viable option for monitoring physiological 

recovery following concussion compared to measures currently being investigated with respect 

to cost, time, space, and training.  
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2.4 Methodological Considerations 

Methodological considerations relative to the proposed study are essential in order to 

optimally meet the study aims. Relevant literature that provides support for each consideration is 

summarized below with respect to overall study design, digit-span task design, and response 

measures of interest. Additionally, we have provided preliminary analyses from our pilot project 

to further support the methodological considerations in the proposed study. 

2.4.1 Study Design and Participants 

Recent investigations in concussion research involving physiological biomarkers for 

concussion injury and recovery response have stressed the importance for providing ‘real-world’ 

significance of these measures relative to known clinical impairments.8,18 Therefore, we felt it 

most appropriate to pursue a cross-sectional design and first examine relationships between our 

task performance and physiological outcomes of interest, then probe potential effects of other 

biological and historical variables (e.g., sex, concussion history, etc.). This will allow us to better 

characterize the potential clinical utility of our proposed assessment paradigm along with future 

clinical considerations and implications.  

Club sport athletes represent a large population of college aged recreational and 

competitively active individuals who may be at risk for concussion.61 These athletes also have 

similar academic cognitive demands as those who play at the varsity level, and thus, the impact 

of concussion on their daily activities and requirements is also important.61,99 We propose to 

examine our response dynamics of interest in this competitive athletic sample as it closely 

represents a widely studied population in concussion literature (college-aged athletes) for which 

generalization of the our study may be possible. 
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2.4.2 Digit-Span Task Design and Administration Considerations 

 Working memory related cognitive impairments are among the most common deficits 

following concussion in athletic and military populations.9,12 The backwards digit-span working 

memory task within the SAC has demonstrated the greatest sensitivity to acute concussion 

compared to other clinic-based tests—however, continued signal detection is insufficient beyond 

the first 3-5 days post injury.11,12,100 Recent evidence suggests that task administration practices 

of the SAC’s backwards digit-span task, fail to elicit meaningful working memory 

processes.25,76,92 Minor administration adaptations have shown to engage adequate working 

memory processes and improve task performance response measurement precision.92  

 Standardized task design and administration considerations for the proposed study’s 

backwards digit-span task are therefore critical in order to elicit adequate working memory 

processes and characterize task performance and physiological response dynamics of cognitive 

efficiency—above and beyond our current clinical tools. 27,92 Specific adaptations include 

elimination of the ‘discontinue’ rule—instead requiring participants to complete an equal number 

of trials at all digit-sequence lengths included in the task, regardless of performance accuracy. 

Additionally, the digit-spans in the proposed study will include longer sequence-lengths beyond 

average short-term memory capacity (7 +/- 2) in order to engage sufficient working memory 

processes in the absence of additional processing demands.  

2.4.3 Task Performance and Physiological Response Considerations  

2.4.3.1 Task performance  

Adaptations to the scoring method of the digit-span task is also important in order to 

improve task performance response reliability. Various reliable and valid partial credit scoring 

approaches for task performance and clinical measures that generally assess item response/recall 
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accuracy during working memory tasks have been established in healthy and clinical 

populations.35,77,92 These approaches are typically pursued relative to their task-related/evoked 

design in order to capture improved response variability and precision.25,27,92  

A previously validated approach for partial credit scoring using a digit-span task that 

eliminates the discontinue rule and overloads working memory beyond the average short-term 

memory capacity (7 ± 2 items) will be assigned based accuracy by serial position will be used in 

the proposed study.92 This important adaptation allows for greater response variability and a 

more robust evaluation of working memory behavioral responses as they relate to cognitive 

efficiency.  

2.4.3.2 Physiological Responses 

Pupillary response data quality, reliability and precision of measure is dependent upon 

factors associated with task design, testing environment, and eye tracking instrumentation. 

Previous literature in this space stresses the importance of controlled environmental luminance 

and participant setup relative to the eye tracking technology (e.g., distance between participant 

and display, head fixation/movement during testing, etc.). This concept is further applied to task 

design elements such as background and stimuli contrast and brightness attributes.37,40,101  

Various instrumentation and eye tracking methods further complicate the issue (e.g., 

cumbersome and intrusive equipment and restricted head movement, etc.). Combined, the 

design, environmental and instrumentation related issues contribute to less scientific control, 

portability, and cost-effectiveness—and another poor ecologically valid option for physiological 

response characterization following concussion.  

Virtual reality (VR) headsets with embedded infrared eye tracking technology may 

provide an optimal method to assess pupillary response dynamics in a highly scientifically 
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controlled and portable environment that is relatively cost effective. Unlike desktop-based eye 

trackers, the head mounted display allows for freedom of head movement and a constant testing 

distance between the participants eyes and the display. Tasks design using Unity 3D® engine 

software further allows for complete control over environmental luminance and contrast 

elements within the headset.  

Recent psychophysiological investigations suggests monitoring multiple metrics when 

examining associations between physiological and task performance-based outcomes associated 

with complex cognitive constructs and processes.29,34,41,42 Dual physiological measurement 

monitoring has been suggested for future concussion related studies and posited to be better 

suited for capturing complexities associated with concussion.8,18 This is especially important 

when examining measures regulated by the ANS due to the many latent variables that may 

contribute to variability in response dynamics (e.g., stress, emotional response, etc.).41,43–45 

Therefore, we decided to examine pupillary response correlates with an established index of 

neurocardiac function (HRV) within concussion literature.44,46,47 Moreover, a validated and more 

feasible set-up for HRV measurement— using chest strap and watch—preserves the ecological 

validity of our overall proposed approach. 

2.5 Summary—Study Rationale 

Current concussion management practices emphasize post-injury clinical comparison to 

baseline measures for symptom resolution and neurocognitive and balance deficit normalization; 

though neurophysiological abnormalities in concussed individuals assessed via fMRI and EEG 

have been shown to persist beyond clinical recovery7,8 Moreover, clinical neuropsychological 

performance measures do not match neurophysiological response, therefore compromising 

clinical decision making with respect to return to play. This is concerning given current literature 
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suggesting the influence of repetitive concussive injury may result in neurodegenerative changes 

later in life.  

Clinicians are currently limited in the ability to longitudinally assess neurophysiological 

measures to determine the course of physiological recovery. Examination of pupillary response 

during a cognitive control task of working memory may provide clinicians with a more sensitive 

assessment of functional neurophysiological impairment and recovery following concussion, 

ultimately bridging the gap between clinical and physiological recovery. Moreover, combined 

examination of HRV as it relates to ANS activity may serve as a useful supplement to describe 

cognitive efficiency combined with pupillary response as an ecologically valid marker for neural 

resource utilization.28,29,31,32 
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CHAPTER 3: METHODS 
3.1 Experimental Design and Participants 

3.1.1 Experimental Design and Study Setting 

This was a quasi-experimental, cross-sectional study, conducted in a clinical laboratory 

setting, that included healthy club sport athletes at The University of North Carolina-at Chapel 

Hill. We examined within and between subjects group comparisons of associations between task 

performance- and physiological-based outcomes, across levels of digit-span task difficulty. This 

study was approved by the University’s Institutional Review Board, and participants provided 

written informed consent prior to any data collection. Upon study completion, participants were 

compensated $10 for their time. 

3.1.2 Participants 

3.1.2.1 Inclusion and Exclusion Criteria 

Study participation was available to all UNC club sport athletes, regardless of sport type 

and position within their respective competitive calendar (i.e., pre-, in-, and post-season). 

Specific inclusion criteria for study participation required all individuals to be between the ages 

of 18 and 30 and a rostered UNC club sport athlete. Individuals were excluded if they did not 

meet the above inclusion requirements and/or if they were unable to complete vision testing for 

whatever reason, had permanent vision loss in one or both eyes, had any visual surgery in the last 

year that would inhibit testing completion, were currently being treated to address balance or 

vision problems, and/or had strabismus or amblyopia. To support appropriate group designation 

using participants’ self-reported concussion history, we employed methods similar to those 
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reported by the NCAA–DOD CARE Consortium102—whereby all participants  reviewed a 

definition for concussion and common concussion signs and symptoms prior to reporting their 

concussion injury history. The concussion definition and associated signs and symptoms were 

informed by evidence-based guidelines and the latest international consensus statement on 

concussion in sport9 and read as follows:  

“A complex pathophysiological process resulting from traumatic biomechanical forces 

imparted to the head, face, neck, or elsewhere on the body, resulting in the onset of signs and/or 

symptoms of a concussion and/or changes in neurocognitive function.” Common concussion 

symptoms may include headache, feeling slowed down, difficulty concentrating or focusing, 

dizziness, balance problems/loss of balance, fatigue/loss of energy, feeling in a fog, irritability, 

drowsiness, nausea, memory loss, sensitivity to light/noise, and blurred vision. Participants were 

also informed that a concussion can occur without being “knocked out” or unconsciousness; 

getting your “bell rung” or “clearing the cobwebs” is a concussion.  

Following provision of the above definition the concussion history group included those 

who reported having sustained at least one concussion—via any mechanism (i.e., sports-related 

or not). Additionally, participants were also asked to report the amount of time since their most 

recent concussion—whereby study participation was limited to those who reported recency time 

frames during or since high school, but not in the past 6 months. 

3.1.2.2 Recruitment Strategy 

Various recruitment strategies were employed to achieve total participant enrollment of 

approximately 70 individuals (~21-28 with concussion history). Strategies included on-campus 

flyer distribution (e.g., postings near sporting venues and sports medicine facilities, within 

student common areas, etc.), campus-wide mass email distribution, and in person (e.g., pre/post 
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practice announcements, classroom announcements, word of mouth, etc.). Emails with study 

information were also distributed through the UNC club sports listserv to provide initial study 

information.  

3.2 Digit-span Working Memory Task 

3.2.1 Task Design 

The backwards digit-span task was developed for the proposed study in order to examine 

task performance and physiological response dynamics associated with working memory 

processes. Traditional task design and administration parameters were adapted to coincide with 

recent applications in healthy and clinical samples within psychophysiological and concussion-

based research domains.35,37,38,92 Specifically, these adaptations demonstrated the ability to elicit 

better working memory processes when cognitive and neural resources are limited.92,103 

Moreover, these adaptations provide a more robust examination of task performance given 

increased scoring variability and ability to detect individual differences.27,92 Preliminary study 

data (Appendix B) were also used to refine digit-span task design and administration parameters, 

in order to accommodate a university sample and future clinical applications, with respect task 

difficulty and duration. The preliminary study was conducted by the Principal Investigator. 

3.2.1.1 Traditional Design and Administration Parameters 

A backwards digit-span task typically involves auditory or visual presentation of digit-

sequences and requires individuals to recall digits in reverse serial order. Traditional design and 

administration parameters described by Wechsler et al.104 are clinically implemented within the 

digit-span task in the SAC—a mental status screening tool used in concussion assessment. Task 

difficulty typically (i.e., sequence-length) increases by one digit every 1 to 2 trials—where 

perfect recall is required for progression to longer sequence-length trials, otherwise a discontinue 
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rule is applied.  The digit-span task performance outcome is then recorded as the ‘longest 

sequence-length completed with perfect recall) –and has demonstrated sensitivity to concussion 

immediately following injury.11,12 Importantly, this injury sensitivity rapidly declines between 3-

5 days following injury—which might be explained by the inability of the task to capture 

compensatory neurophysiological resource allocation to achieve task performance normalization. 

The digit-span task design parameters employed within the SAC are likely responsible for the 

inability to fully elicit and capture working memory cognitive processes by limiting the task to 

perfectly recalled trials.25,92,103 Recent studies instead support digit-span task administration 

parameters that include longer sequence-lengths and eliminate the discontinue rule —improving 

tasks reliability and construct validity for examination of working memory processes. 25,92,103     

3.2.1.2 Present Study 

The backwards digit-span task used in the present study was refined to incorporate these 

administration parameters. Figure 3.1 depicts the overall task design—i.e., randomized blocked, 

containing 4 consecutive testing blocks of 5 randomized digit sequence-lengths (i.e., 3, 5, 7, 9, 

 

Figure 3.1 Digit-span randomized blocked design: Each block randomly presents a 
single trial at each level of difficulty. A random number generator was used to 
determine testing order for the first block and a Latin square was used to counterbalance 
trial order for each subsequent block. 
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and 11)—20 total trials. Sequence-length presentation order within the first testing block was 

determined using a random number generator followed by a Latin Square to counter-balance 

sequence-length presentation order for the remaining 3 blocks. The individual digits presented 

within each digit-sequence were randomly generated—consistent with previous literature that 

excludes within-trial immediate duplicates and consecutive integers.35–37  3.2.2 Instrumentation – 

VR Integration The custom developed digit-span task was developed using Unity 3D® engine 

software, to be visually presented within the HTC VIVETM VR head-mounted display (HMD) 

integrated with Tobii Eye Tracking retrofit hardware technology (Tobii Technology, Inc.). The 

HMD uses 10 infrared illuminators per eye and allows for tracking accuracy of 0.5%, with a 

trackable view of 110 degrees. Pupil size (diameter in mm) was continuously recorded in both 

eyes at 90Hz—equal to the display refresh rate. Tobii Pro VR Solution software, Unity 3D®, and 

infrared illuminators worked together to recorded event marker timestamps to ensure appropriate 

response time-locking for key digit-span task components including 1) trial number (1-20), 2) 

sequence-length (3, 5, 7, 9, and 11), 3) digits presented, 4) baseline and retention X displays, 5) 

response box display, and 6) recall completion and trial advancement.  

Previous studies have suggested that inaccuracy in camera-pupil distance measures may 

result in pupil size measurement error up to 5% though sample to sample changes in pupil size 

are more accurate. The use of the HMD also afforded us a solution to strict head fixation, 

implemented in other studies using remoted/desktop trackers in order to minimize pupil size 

measurement error.56,105 Based on previously published criteria for appropriate proper 

identification of participants’ eyes by the eye-tracker and gaze position, and consistent with other 

cognitive pupillometry studies, we ensured successful five-point calibration prior to each testing 

session for.40,101,106  
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3.2.1.3 Control Elements of Task Design  

Additional task design parameters were applied—consistent with previous cognitive 

pupillometry literature— in order to mitigate potential pupil size measurement error.101  These 

included standardized and equiluminant stimuli presentation, luminance considerations, and the 

use of a baseline corrected response outcome.37,101,107 

In order to further minimize the influence of non-intended effects associated with 

saccades, accommodation, and blinks on pupil size—all stimuli were centrally presented within 

participants’ field of view, and the user vision was fixated to imitate a 2D display.40,106 Baseline 

corrcted changes in pupil size have been reported as a reliable load-dependent measure in 

cognitive pupillommetery studies, and less vulnerable to signal noise as they serve as a trial-by-

trial pseudo-calibration. 40,101,106  Therefore, all stimuli were centrally presented and custom 

designed to ensure equiluminance (size= 200pixels, color= R:46 G:46 B:46 A: 255) throughout 

the duration of the task. Each trial began with a 5-second pre-stimulus baseline period. Digit-

sequences were then presented at the rate of one digit per second, followed by a 3-second 

retention pause.  A fixation ‘X’ was displayed for each trial baseline and retention periods 

(display time = 5 and 3 seconds respectively) to stimulus consistency during baseline corrected 

response intervals of interest. Participants were then prompted to verbally recall as many digits 

as they could remember in the exact reverse order. Recall was self-paced, and all trials were 

participant initiated. Figure 3.2 outlines presentation parameters for a single trial of a 5-digit 

sequence.37,40,101 Participants completed all trials until reaching an ‘end of trial’ slide, without 

reinforcement or feedback from study personnel.40, 102  
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3.3 Task Performance 

Participants’ verbal recall for each trail was manually recorded in real-time by study 

personnel and compared with digits presented, to determine accuracy for each trial.  Recorded 

trial responses were entered into separate spreadsheets for each participant. A custom Matlab 

script (MATLAB and Statistic Toolbox Release 2017b, The MathWorks, Inc., Natick, MA, 

USA) was used to extract trial level information (i.e., trial number, digit sequence length, and 

digit presented) from the pupillary response export, and compare with participant responses to 

calculate an accuracy score. Credit was assigned for each digit recalled in the correct serial 

position, and final trial accuracy measures were recorded as a percent correct i.e., total digits 

correct divided by digit-sequence length.92  These scoring methods are consistent with previous 

literature—and findings from our pilot project (Appendix B). 

 
Figure 3.2 Sample five-digit-sequence presentation. Sample illustrates the blocked design for a single 
trial within the digit-span task. Digits were displayed at a rate of one digit per second. Shaded areas 
represent response regions of interest within baseline and retention period, used to calculate pupil size 
change for each trial. 
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3.4 Heart Rate Variability 

Raw inter-beat interval data (RR interval) were continuously sampled during the digit-

span task at 1000Hz using a Polar H10 chest strap and exported for processing using Kubios 

HRV software, version 3.3 software (Biosignal Analysis and Medical Group, Kupio, Finland). A 

custom Matlab script was used to extract trial level information (i.e., trial start and end times) 

from the pupillary response export for each participant. Trial start and end times were then 

entered into a spreadsheet provided by Kubios—to time-lock RR interval raw data by trial (i.e., 

from baseline to baseline). The root mean square of successive differences (RMSSD), was 

calculated by trial for each participant, as a measure of beat-to-beat variance in HR.  This 

measure has been shown to reliably estimate vagally mediated changes in HRV, capturing acute 

mental stress during other cognitive tasks (e.g., Stroop), from ultra-short-term recorded durations 

between 10-30 s.54 Whereby, lower RMSSD measures are correlated with higher acute mental 

stress. 54  

3.5 Pupillary Response Measures 

Participants’ raw pupil data were directly exported into a spreadsheet and imported into 

Matlab (MATLAB and Statistic Toolbox Release 2019b, The MathWorks, Inc., Natick, MA, 

USA). A custom Matlab program was used for all pupil data processing and reduction in 

accordance with previously reported methods for response locked baseline-corrected pupillary 

responses.56 The adapted processing program followed 5 procedural levels: 1) removal of 

extreme (out of range) pupil diameters and signal noise from blinks, to identify valid samples 2) 

blinks and missingness <400ms were filled with linear interpolation, 3) pupil responses were 

averaged across left and right eyes, 4) response intervals of interest were segmented (i.e., the last 

40 samples of each baseline period and the first 200 samples of each retention period); and  
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5) baseline correction was performed for each trial (i.e., average pupil size during retention – 

average baseline pupil size).28,36,37  

Unilateral measures were used if/when there were instances of missingness in the other 

eye (e.g., eyelash blocking pupil, etc.).28,36,37 Segmented response intervals of interest with 

greater than 20% missing data due to signal loss and or long eye closure durations >400ms were 

excluded.  Following data processing and reduction, participants must exhibit at least 2 valid 

pupillary response trials for each sequence-length to be included in analyses. Finally, processed 

data were exported from Matlab, and SAS 9.4 (Cary, NC) was used for all descriptive statistics 

and inferential analyses. 

3.6 General Testing Session Procedures 

 Participants reported for a single testing session, that lasted approximately one hour. 

Written informed consent was completed first, followed by a demographics and health history 

questionnaire that was completed using an online Qualtrics survey—see Appendix A. 

Specifically, participants were asked to provide general demographics (age, sex, etc.), along with 

information regarding prior sport participation (type, duration, and competition level), general 

medical history and concussion history. Additional questions regarding various factors that may 

 
--Processing parameters were standardized for all participants and completed 
offline using a custom Matlab program.  The plot above is a 2 min sample 
from one participant and depicts raw diameter signals for the left (blue) and 
right (orange) eyes. The dark teal line represents the averaged signal across 
both eyes that was then segmented into response intervals of interest (i.e., 
baseline and retention periods) to calculate our pupillary response outcome 
measure.  

 

Figure 3.3 Pupil Data Preprocessing 
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influence study variables of interest were also be included—though not considered key outcome 

variables. These questions addressed prior contact/collision sport participation using questions 

from the estimated head impact exposure ( Head Impact Exposure Index—HIEI57), self-

perceived stress (Perceived Stress Scale—PSS-4108), anxiety/depression (Generalized Anxiety 

Disorder—GAD109), and self-reported task performance.  

Participants were seated and fitted with the heart rate monitor and VR headset—as 

depicted in Figure 3.4. Task familiarization and 

practice procedures were consistent with previous 

literature examining pupillary responses during a 

backwards working memory digit-span task.35,37,38,92 

In order to ensure appropriate top-down processing25, 

the task was explained to participants followed by 4 

practice trials (all 5-digits in length) in order to 

familiarize them with task presentation and 

sequencing—to ensure understanding of task demands and 

required responses.25,37,77,110 Participants were not informed of the digit sequence-length for each 

trial, though they were told that the task includes sequences between 3- and 11-digits long—and 

that they would be asked to recall as many digits as they could possibly remember (in exact 

reverse order), for each sequence. Recall periods were self-paced, and all trials were participant 

initiated using HTC VIVE handheld controller triggers. Participants were given compliance 

feedback (e.g., appropriate response timing, trial initiation accuracy, etc.) during practice, and 

encouraged to ask any questions they may have about the testing procedures prior to beginning 

the experimental trials. No feedback was given during experimental trials. All participants 

 
Figure 3.4 Participant set up 
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completed the same task as designed and task duration lasted approximately 20 minutes 

including calibration and task familiarization. 

3.7 Statistical Approach 

Continuous variables were summarized using means and standard deviations, and 

categorical variables were summarized using frequencies and associated percentages. Our main 

variables of interest were further summarized across sequence-lengths.  

To address Aim 1, bivariate correlations were used to first examine relationships among 

numeric variables such as age, our main variables of interest (i.e., pupillary response, accuracy, 

and RMSSD). Associations between continuous descriptors considered for additional covariate 

inclusion (contact/collision sport participation) and pupillary response greater than or equal to 

r=0.3 were considered for inclusion in the mixed effects model for Aim 2 (see below). Response 

were then summarized for each participant across levels of task difficulty, plotted and reviewed 

prior to inclusion in the mixed effects model.  

In order to examine the relationships among task related variables, with respect to 

cognitive efficiency, individuals must have demonstrated credible performance on the digit-span 

task. Participants’ average accuracy scores were plotted as a function of sequence-length and 

inspected for appropriate load dependent response dynamics, demonstrating credible 

performance. Average accuracy <80% on the 3-digit sequence-length served as the indicator for 

identifying participants demonstrating non-credible performance, and subsequent exclusion from 

analyses. Linear mixed effects models were employed to examine how individuals’ task 

performance and HRV outcomes, together may explain pupillary response changes across digit-

span sequence lengths. To account for latent heterogeneity between subjects and their responses 

to levels of task difficulty, the model included two random effects—one ‘by-subject’ effect of 
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participant, and sequence-length as a grouping variable. Task performance and HRV were 

included as fixed effects and pupillary response served as our outcome variable.   

Aim 2 employed a similar model, with an added fixed effect for concussion history 

groups. Additional demographic variables demonstrating adequate significance in preliminary 

bivariate correlations (r>0.03) were considered in the model and removed if they did not 

demonstrate significance.  

Distributive properties of mean pupillary response as a function of sequence length was 

examined for curvilinear relationships and the potential need for model adjustment to account for 

quadratic or cubic mean structure. An alpha (α) level of p < 0.05 was established a priori. A 

summary outline for the statistical analyses including dependent and independent variables of 

interest are provided in Table 3.1 by aim. 

3.7.1 Power Analysis  

Considering our planned statistical approach for each aim using linear mixed models, 

formal power analysis was not appropriate at this time. However, based on the traditional “rule 

of thumb” for determining sample size in multivariable models, of 10-15 participants for each 

candidate variable (i.e., concussion history, trial difficulty, task performance, HRV and 1-2 

additional covariates), our target sample size was considered sufficient to conduct the analyses 

for the proposed predictors/covariates for each aim. As such, we tested 62 total participants and 

we estimated approximately 30-40% of participants would report a prior concussion. 
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Table 3.1 Statistical Analysis Plan by Aim 

Aim 1: To examine associations between task performance accuracy, heart rate variability, 

and pupillary response dynamics, across levels of task difficulty within a digit-span working 

memory task in healthy collegiate club sports athletes 

DV IV Analysis Plan 

Pupillary Response: 

Change in pupil size from 

baseline to retention 

response periods 

Digit sequence length  

(5 levels; 3, 5, 7, 9, 11) 

 

Included Co-variates: 
Task performance  

Heart rate variability 

Linear Mixed effects model 
 

Random effect for subject 

 

Fixed effects: 

• Sequence length as a 

grouping variable 

• Task performance  

• Heart rate variability 

 

Aim 2: To examine the effect of prior concussion injury, and task performance accuracy and 

heart rate variability response dynamics on pupillary response dynamics, across levels of task 

difficulty within a digit-span working memory task in healthy collegiate club sport athletes. 

DV IV Analysis Plan 

Pupillary Response: 

Change in pupil size from 

baseline to retention 

response periods 

• Digit sequence length  

(5 levels; 3, 5, 7, 9, 11) 

• Concussion history group 

(yes versus no) 

Included Co-variates: 
Task Performance 

Heart Rate Variability 

Considered Co-variates: 
• Sex  

• Prior contact/collision 

sport participation 

Linear Mixed effects model 
 

Random effect for subject 

 

2 Fixed effects: 

• Sequence length as a 

grouping variable 

• Concussion history 

(yes/no) as a grouping 

variable 

• Task performance  

• Heart rate variability 
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CHAPTER 4: RESULTS 
4.1 Descriptive results 

Sixty-two Athletes from 18 club sports, participated in this study between December 

2019 and March 2020. Participants’ average age was 20.48 ± 1.86 years, and 34 (57.63%) were 

male. Twenty-four (40.6%) participants self-reported a concussion history, and subgroups 

representing total lifetime concussion injuries and injury chronicity (i.e., time since most recent 

injury in years), are further summarized in Table 4.1. Participants’ self-reported, average 

lifetime contact/collision sport participation was 7.2 ± 5.1 years, and 61.6 ± 57.9 total hours 

during high school—including all pre-, in-, and post-season practices and games. Self-perceived 

performance measures were completed by 58 participants (see Table 4.2), whereby most 

participants felt they performed ‘moderately well’ on the task (n=26, 44%).  

Following data processing, 39 (3.3%) pupillary response trials were excluded due to 

signal loss greater than 20% within response intervals of interest. One participant was excluded 

due to excessive signal loss within response intervals, that resulted in less than 10 total valid 

trials—and two participants were excluded following accuracy response inspection for non-

credible performance. A total of 59 participants had valid measures for pupillary response, task 

performance and heart rate variability and were included in all analyses.  

Average baseline-corrected pupillary responses are temporally summarized by sequence 

length for a single participant in Figure 4.1 to illustrate typical response dynamics. Grand 

average pupillary response means by sequence length followed expected response dynamics, 

consistent with previous observations by Klingner et al during a similar task.111 Participant’s 
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pupils gradually dilated as the digits were encoded with each presentation and reached a peak 

within the 3 seconds following final digit presentation—during the retention period—while 

digits were being reordered.  

Grand average pupillary response, task performance and HRV measures are summarized 

across sequence-lengths in Table 4.3. Consistent with prior work, mean baseline-corrected 

pupillary responses during the retention period systematically increased with longer sequence 

lengths (cognitive load) within resource availability (working memory capacity of 7 ± 2 digits) 

then declined with overload (11-digits).34,35,111 Mean accuracy scores exhibited a steady decline 

from 98% to 27% as sequence-lengths increased from 3- to 11-digits. Mean RMSSD measures 

exhibited little fluctuation across sequence-lengths, within previously established normal ranges 

(i.e., between 27-72 ms).112 Figures 4.2. and 4.3. overlay grand average pupillary response and 

heart rate variability measures (respectively) with task performance to further illustrate response 

dynamics in these clinical and physiological metrics.  

Bivariate correlations (Table 4.4) exhibited significant relationships between longer 

sequence-lengths and both larger pupillary responses (p<0.001) and lower accuracy scores 

(p<0.001). Higher accuracy scores were also weakly related to higher heart rate variability 

(p=0.04). Age, and both variables representing prior contact collision sport participation (i.e., 

average total years playing and average total hours participating in high school) demonstrated 

negligible relationships with pupillary response (p>0.05).  

4.2 Aim 1 Results 

Participants’ average pupillary response, task performance and heart rate variability 

measures—summarized across sequence-lengths— are depicted in Figures 4.4-4.6. Results from 

the mixed effects model are summarized in Table 4.5 (Type III model results) and Table 4.6 
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(Simple effects). There was a significant main effect of sequence-length on mean pupillary 

response (F4,232=3.69, p=0.006), whereby longer sequence-lengths elicited greater average 

dilation responses. Accuracy and RMSSD demonstrated non-significant effects in the model 

(F1,1076=0.00, p=0.974) and (F1,1076=1.58, p=0.208), respectively. Model-derived pupillary 

response means are plotted for each participant as a function of sequence-length in Figure 4.7. 

4.3 Aim 2 Results 

In table 4.7. pupillary response, task performance and heart rate variability grand means 

and 95% CIs are summarized as a function of sequence length for concussion history groups (yes 

versus no). Figures 4.8. and 4.9. overlay grand average pupillary response and heart rate 

variability measures (respectively) with task performance to further illustrate response dynamics 

in these clinical and physiological metrics for each group. While not statistically significant, 

mean pupillary responses in the concussion history group were smaller at the lower 3- and 5-

digit sequence lengths, and larger across sequence lengths between 7- and 11-digits—compared 

to those without a concussion history. In contrast, task performance and heart rate variability 

responses follow very similar response dynamics across sequence lengths (cognitive load) for 

both groups.  

For descriptive purposes only, pupillary response dynamics for the concussion history 

group were further summarized across sequence lengths, based on total lifetime concussion 

injuries and injury chronicity (i.e., time since most recent injury in years) (Table 4.8). 

Participants reporting only 1 prior concussion represented 54% of the concussion history group 

(n=13), 25% reported 2 (n=6), and 21% reported 3+ (n=5). Concussion chronicity ranging 

between 6months to 2 years prior to testing, was reported by 25% of those in the concussion 

history group (n=6), 25% reported chronicity between 2 to 3 years (n=5), and 54% reported 3 or 
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more years (n=13). Pupillary response dynamics within these subgroups are illustrated in 

Figures 4.10 and 4.11. Upon visual inspection, concussion injury dose and chronicity effects 

appear negligible at lower sequence lengths within resource availability, though diverge with 

higher loads that approach and exceed working memory capacity (7 ± 2 digits). Participants’ 

individually averaged pupillary response dynamics are also plotted as a function of sequence 

length and paneled by total lifetime concussion number and chronicity sub-groups in Figures 

4.12 and 4.13.  

For the primary analysis, participants’ average pupillary response, task performance and 

heart rate variability are plotted as a function of sequence length and grouped by concussion 

history in Figures 4.14—4.16 respectively. The significant main effect of sequence-length on 

greater average pupillary response outcomes was similar to the previous model (F4,232=3.67, 

p=0.006). Accuracy, RMSSD, and concussion history demonstrated non-significant effects in the 

model (F1,1076=0.00, p=0.972), (F1,1076=1.62, p=0.204), and (F1,57=0.04, p=0.833) respectively 

(Table 4.8). Aim 2 mixed effects model simple effects are also outlined in Table 4.9. Both aim 1 

and aim 2 models demonstrated significant random intercepts, though non-significant random 

responses across sequence lengths. With respect to random effects in both models, significant 

residual error and moderate variability were present, along with non-significant random load 

effects—which supports general load dependent pupillary response dynamics during the 

overloaded digit span task across participants. Model-derived pupillary response means are 

plotted by concussion history group for each participant as a function of sequence-length in 

Figure 4.17.  
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Table 4.1. Participant demographic information  
Demographics 

Age 20.48 ± 1.86 

Sex Males = 34 (58%) 
Females = 25 (42%) 

Concussion History 
Group  No = 35 (60%) 

Yes = 24 (40%) 
Lifetime Concussions 1 = 13 (54%) 

2 = 6 (25%), 
3+ = 5 (21%) 

*Concussion Chronicity   6 months to 2 years = 6 (25%) 
 2 to 3 years = 5 (21%) 

 3+ years =13 (54%) 
*Time since most recent injury 



 

56 

 

  

Table 4.2.  Self-reported performance 

Self-Performance Frequency Percent 

Not Well at All 11 18.6 

Slightly Well 20 33.9 

Moderately Well 25 42.4 

Very Well 1 1.7 

Extremely Well 0 0 
A total of 58 participants completed a question following task completion 
that asked how well they felt they performed on the digit span task with the 
following response options.   
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  Table 4.3. Average pupillary response, task performance, and heart rate  
variability summarized across sequence-length and 95% confidence intervals 

  N Mean 95% CI 

 
 
 

Average Pupillary Response 
(baseline corrected response in mm) 

Sequence-Length  

0.11 0.08 0.15 3-digits 233 

5-digits 233 0.14 0.10 0.18 

7-digits 227 0.22 0.18 0.26 

9-digits 223 0.25 0.21 0.30 

11-digits 225 0.23 0.18 0.28 

 
 
 

Average Task Performance 
(accuracy—percent correct) 

Sequence-Length  

98% 97% 100% 3-digits 236 

5-digits 236 80% 77% 84% 

7-digits 236 52% 48% 56% 

9-digits 236 34% 31% 36% 

11-digits 236 27% 25% 29% 

 
 
 

Average Heart Rate Variability 
(RMSSD in ms)  

Sequence-Length  

40.7 37.2 44.2 3-digits 236 

5-digits 236 41.7 38.0 45.5 

7-digits 236 39.3 35.6 43.0 

9-digits 236 40.9 37.4 44.3 

11-digits 236 39.6 36.2 43.0 
Average responses for each variable are summarized across all valid trials for all 59 participants. 
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Table 4.4. Bivariate correlation matrix among numeric variables of interest   

  

 Age 

aAverage 

Total Years 

aAverage 

Total Hours 

Pupillary 

Response 

Task 

Performance 

Heart Rate 

Variability 

Sequenc

e Length 

Age 1       

aAverage Total 

Years 

0.04 1      

bAverage Total 

Hours 

-0.11 0.64 1     

Pupillary 

Response  

(baseline 

corrected 

response in mm) 

0.06 -0.03 0.01 1    

Task 

Performance  

(accuracy--

percent correct) 

-0.01 -0.02 -0.03 -0.11 1  

 

 

 

Heart Rate 

Variability  

(RMSSD in ms) 

-0.04 -0.14 -0.09 -0.04 0.06 1  

 

Sequence Length 

 

0 0 0 0.15 -0.77 -0.02 1 

Correlations include total number of observations for all 59 participants. Bolded numbers represent 

significant relationships where p=0.05. RMSSD = root mean square of successive differences (in 

milliseconds).  

a Total Years = Lifetime (years) participating in contact/collision sport 

b Total Hours = total hours participating in contact/collision sport in high school—including 

practice and game hours in pre- in- and post-season. 
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  Table 4.5. Aim 1 mixed effects model for the effect of cognitive load,  
task performance, and heart rate variability on pupillary response (type III results) 

Variable   F Value p 

Sequence-Length   3.69 0.006 

Task Performance  
(accuracy--percent correct) 

  0.00 0.974 

Heart Rate Variability  
(RMSSD in ms) 

  1.58 0.208 

--RMSSD (root mean square of successive differences) in milliseconds. 
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  Table 4.6. Aim 1 mixed effects model for the effect of cognitive load, task 
performance, and heart rate variability on pupillary response (simple effects) 

 Estimate  DF t Value 95% CI p 

Sequence Length         

5-digits 0.03  232 .98 -0.03 0.09  0.326 

7-digits 0.10  232 3.03 0.04 0.17  0.003 

9-digits 0.14  232 3.50 0.06 0.21  0.001 

11-digits 0.12  232 2.58 0.03 0.19  0.010 

3-digits 0  . . . .  . 

Task Performance  
(accuracy--percent correct) 

-0.00  1076 -0.06 -0.08 0.08  0.974 

Heart Rate Variability  
(RMSSD in ms) 

-0.00  1076 -0.94 -0.00 0.00  0.208 

--RMSSD (root mean square of successive differences) in milliseconds. 
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  Table 4.7. Concussion history group differences in average study measures across sequence 
lengths and 95% confidence intervals 

  Concussion History Groups 
  No (n=35) Yes (n=24) 
  Mean 95% CI Mean 95% CI 

 
 
 

Average Pupillary 
Response 

(baseline corrected 
response in mm) 

Sequence-Length 

0.14 0.09 0.18 0.08 0.03 0.13 3-digits 

5-digits 0.17 0.11 0.22 0.10 0.04 0.17 

7-digits 0.20 0.15 0.25 0.26 0.19 0.32 

9-digits 0.24 0.18 0.31 0.27 0.21 0.34 

11-digits 0.22 0.15 0.29 0.24 0.17 0.31 

 
 
 

Average Task 
Performance  

(accuracy--percent 
correct) 

Sequence-Length 

98% 100% 96% 99% 100% 98% 3-digits 

5-digits 80% 85% 76% 79% 85% 74% 

7-digits 53% 58% 48% 51% 57% 44% 

9-digits 32% 35% 29% 36% 40% 32% 

11-digits 26% 28% 23% 28% 31% 25% 

 
 
 

Average Heart Rate 
Variability  

(RMSSD in ms) 

Sequence-Length 

43.4 48.4 38.4 36.8 41.0 32.7 3-digits 

5-digits 44.0 49.4 38.6 38.7 43.1 34.3 

7-digits 42.5 48.0 36.9 34.9 38.8 31.1 

9-digits 43.5 48.6 38.5 37.3 41.3 33.4 

11-digits 42.5 47.5 37.5 35.9 39.7 32.2 
Average responses for each variable are summarized above by concussion history group, for all 59 
participants. RMSSD (root mean square of successive differences) in milliseconds. 
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Table 4.8. Pupillary response means by sequence length for concussion history 

subgroups 

 Concussion History Group Means 

 Total Lifetime Concussions 

 

1 
n= 13 

2 
n=6 

3+ 
n=5 

 Mean   95% CI Mean 95% CI Mean    95% CI 

Sequence-Length 

0.03 

-0.03  

0.09 0.13 0.01  0.26 0.15 0.07  0.23 3-digits 

5-digits 0.10 0.00  0.20 0.13 0.02  0.24 0.09 

-0.06  

0.23 

7-digits 0.22 0.13  0.31 0.36 0.17  0.55 0.24 0.18  0.31 

9-digits 0.22 0.13  0.31 0.42 0.27  0.58 0.23 0.15  0.31 

11-digits 0.18 0.09  0.28 0.41 0.24  0.58 0.18 0.09 0.28 

 Concussion Chronicity 

 

6 Months to 2 
Years 
n=6 

2 to 3 Years 
n=5 

3+ Years 
n=13 

 Mean 95% CI Mean 95% CI Mean 95% CI 

Sequence-Length 

0.07 

-0.01  

0.15 0.05 

-0.06  

0.16 0.10 0.03  0.17 3-digits 

5-digits 0.05 

-0.08  

0.17 0.08 

-0.10  

0.26 0.14 0.05  0.23 

7-digits 0.21 0.09  0.34 0.32 0.19  0.45 0.25 0.15  0.35 

9-digits 0.15 0.06  0.23 0.28 0.14  0.42 0.32 0.23  0.42 

11-digits 0.12 0.04  0.21 0.12 0.00  0.24 0.35 0.24  0.46 
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Table 4.9 Aim 2 mixed effects model for the effect of concussion history, 
cognitive load, task performance, and heart rate variability on pupillary response 
(type III results) 

Variable   F Value p 

Sequence-Length   3.67 0.006 

Task Performance  
(accuracy--percent correct) 

  0.00 0.96 

Heart Rate Variability  
(RMSSD in ms) 

  0.97 0.32 

Concussion History   0.45 0.50 
--RMSSD (root mean square of successive differences) in milliseconds. 
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Table 4.10. Aim 2 mixed effects model for the effect of concussion history, cognitive 
load, task performance, and heart rate variability on pupillary response (simple effects) 

 Estimate DF t Value 95% CI p  

Sequence lengths        

5-digits 0.03 232 0.98 -0.02 0.82 0.326  

7-digits 0.10 232 3.02 0.04 0.17 0.003  

9-digits 0.14 232 3.50 0.06 0.21 <0.00 1 

11-digits 0.11 232 2.58 0.03 0.18 0.010  

3-digits 0 . . . . .  

Task Performance  
(accuracy--percent correct) 

-0.001 1076 -0.03 -0.09 0.08 0.973  

Heart Rate Variability  
(RMSSD in ms) 

-0.00 1076 -1.27 -0.00 0.00 0.204  

Concussion History 
(Yes v No) 

-0.01 57 -0.21 -0.1 0.08 0.838  

--RMSSD (root mean square of successive differences) in milliseconds. 
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Figure 4.1. Prototypical time trace for pupillary response dynamics by sequence-length. Similar to 
time trace representation described by Klingner et al.—numbered circles on each line represent 
digit presentation. Each curve is horizontally shifted to align at final digit presentation, with the 
11-digit sequence starting furthest to the left. Baseline-corrected pupillary response outcome 
response region of interest is within the last 2 seconds of the retention period (grey bars).  
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Figure 4.2. Grand means: pupillary response and task performance summarized across sequence-
lengths 
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 Figure 4.3. Grand means: task performance and heart rate variability summarized across sequence-
lengths 
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Figure 4.4. Participants’ pupillary responses by sequence-length 
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Figure 4.5. Participants’ task performance by sequence-length 
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Figure 4.6. Participants’ heart rate variability by sequence-length 
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Figure 4.7. Aim 1 model predicted pupillary response means by sequence-length 
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 Figure 4.8. Group differences in pupillary response and task performance by sequence-
length 
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Figure 4.9. Group differences in heart rate variability and task performance by sequence-length 
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Figure 4.10 Average pupillary response by sequence-length–split by total lifetime concussion 
subgroups (0, 1, 2, and 3+). Error bars represent 95% Confidence Intervals. 
Total participants per subgroup: 0 (n=35), 1 (n=13), 2 (n=6), and 3+ (n=5). 
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Figure 4.11 Average pupillary response by sequence-length–split by concussion chronicity 
subgroups. 
Total participants per subgroup: (6months to 2 years (n=6); 2 to 3 years (n=5); 3+ years (n=13). 
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Figure 4.12 Pupillary response by sequence-length for each participant– split by concussion history 
groups 
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Figure 4.13. Pupillary response by sequence-length for each participant–split by concussion history 
subgroups for lifetime concussions 
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Figure 4.14. Pupillary response by sequence-length for each participant–split by concussion history 
subgroups for concussion chronicity 
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Figure 4.15.  Task performance by sequence-length for each participant–split by concussion history 
groups 
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Figure 4.16 Heart rate variability by sequence-length for each participant–split by concussion history 
groups 
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Figure 4.17 Aim 2 model predicted pupillary response means by sequence-length—split by concussion 
history groups 
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CHAPTER 5: DISCUSSION 
We examined relationships between task-performance, heart rate variability, and 

cognitive load associated with a backwards digit-span task, and pupillary response measures—

followed by concussion history effects, in collegiate club sports athletes. Virtual reality eye 

tracking technology was used to record pupillary responses, as a more ecologically valid 

mechanism for cognitive pupillometry, compared to desktop-based trackers and neuroimaging 

techniques such as fMRI. Consistent with previous literature, using more invasive and costly 

instrumentation, our results demonstrated load dependent pupillary response dynamics. 

Specifically, participants demonstrated larger pupillary responses with greater cognitive loads 

(i.e., longer sequence lengths), within working memory capacity. As such, our findings support 

advancement for future cognitive pupillometry investigations to expand into more applied 

settings—which may have important clinical implications for concussion assessment future and 

management.  

5.1 General Findings Informing Cognitive Efficiency 

5.1.1 Overall descriptives 

Combined examination of clinical task performance and physiological metrics for 

resource allocation relative to imposed cognitive demands, are essential to assess neurocognitive 

processing effectiveness, and efficiency. Clinical task performance (accuracy) in our study 

demonstrated a steady decline from 98% to 27% in response to increasing cognitive loads from 

3- to 11-digits. Our accuracy response dynamics are consistent with previous literature and 

support appropriate task design, whereby cognitive load was adequately modulated beyond 
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working memory capacity and resource availability.28,34,35 Our pupillary response outcomes were 

similar to previous cognitive pupillometry studies whereby greater cognitive load elicited larger 

dilation responses, when the load was within resource availability (working memory capacity of 

7 ± 2 digits), then declined with overload (11-digits).34,35,111 Task performance measures alone 

(e.g., accuracy), provide little insight relative to participants’ neural resource utilization to meet 

task demands and achieve a specific level of accuracy or performance.29,31 Task performance 

measures from neuropsychological tests may be indirect measures of the applied cognitive 

demands—though they are not continuous. Our pupillary response measure on the other hand, 

illustrated the ability to assess the cognitive load and associated neural resource allocation in-real 

time and provided a continuous recording of data over time. 29 Therefore, the neurophysiological 

measure in our study may capture cognitive change which may appear before manifestation of 

cognitive symptoms and decreased task performance.29,34 Future work should examine such 

outcomes in clinical populations as well as extend this work from a human performance 

perspective. 

5.1.2 Heart Rate Variability 

Average heart rate variability measures did not descriptively demonstrate a load 

dependent response and exhibited negligible relationships with pupillary responses. Our findings 

indicate that on average participants’ HRV was within normal range (i.e., RMSSD between 27-

72ms), with little to no change in mean RMSSD across sequence lengths.54,112 Previous studies 

have examined changes in short-term HRV measures to examine relationships with cognitive 

load and task performance.113–115 However, differences in trial durations, study samples, and the 

explored cognitive domains likely explain the disagreement with the findings of the present 

study.45,54  



 

84 

Other studies such as that by Hess and Ennis have examined other working memory tasks 

such as mental arithmetic, that were shorter in nature to assess 3 measures for cardiac 

physiological resource allocation (i.e., Heart rate—HRV, and systolic and diastolic blood 

pressure)—whereby systolic blood pressure demonstrated greater sensitivity to age related 

differences.29 Moreover, the short measurement duration of our heart rate variability outcome 

may not have been long enough to capture vagally mediated changes in HRV, by the autonomic 

nervous system due to acute mental stress during our task.54 Additionally, not all measures were 

of the same duration in this study, given the prioritization of self-paced recall periods in our task.  

Evidence suggesting cardiac measures’ ability to reflect changes in cognitive load, also 

highlight their sensitivity to experience levels and training, the type of task observed and the time 

of day—consequently these measures require high levels of task demand in order to be reflected 

in HRV.113 Much of the HRV literature however, has examined cardiac activity measurements 

over longer durations i.e., more “chronic” cognitive or physical loads (>5min), and suggest that 

more extreme cognitive demands are needed to elicit more prominent responses during shorter 

measurement durations—similar to trial durations in our study.  A few studies have shown 

elevated HR and subsequently lower HRV during logical and dynamic reasoning tasks 

demanding high levels of verbal working memory and high visual attention, though HRV 

measurements were recorded over longer trial durations ≥30s.45,54 One particular study by 

Rivecourt et al examined HRV measures during a flight simulation task and measures were 

recorded over longer durations.54 This task likely elicited a greater cardiac and autonomic stress 

response relative to our digit-span task due to the task nature, which might explain the lack of 

significance in the present study. These findings combined with those from the present study, 

may also suggest that pupillary responses are more sensitive to real time changes in neural 
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resource utilization and therefore a better measure for clinical monitoring in with respect to 

cognitive testing than this specific HRV outcome.  

5.2 Discussion for Specific Aim 1 

Aim 1 examined the relationships between measures of task performance, heart rate 

variability, and pupillary response across digit-span levels of task difficulty in healthy collegiate 

club sports athletes. Our mixed effects model demonstrated a significant effect of load on 

pupillary response –consistent with previous literature.28,34,35  However, neither task performance 

or heart rate variability demonstrated significant effects on pupillary response. While 

descriptively we saw the expected load dependent relationship between task performance and 

digit-sequence-length, the negligible effect of task performance on pupillary response in the 

model suggests that resource utilization is not influenced by overall task performance.  

Performance effects on pupillary response have been reported during other cognitive 

control and/or working memory tasks such as the Stroop or n-back tasks, whereby some 

physiological responses increase after a poor performance trial indicating compensatory neural 

recruitment for sustained performance.25,32 These tasks typically maintain a static level of 

cognitive load for several trials, (e.g., Stroop task will first assess correct identification on both 

color and word, before the assessing the Stroop effect when asking participants to respond when 

these things are congruent versus incongruent). 32 The task in the present study requires different 

aspects of working memory processing given the load is constantly changing.32 The aspects of 

cognitive control for our task instead include encoding, and manipulation of information which 

may make it more difficult—especially on the longer trials—for individuals ascertain their trial-

by-trial-performance accuracy. Self-performance and subsequent compensatory recruitment for 
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sustained performance may be more prevalent in tasks that require updating and inhibition such 

as is Stroop or n-back tasks.32  

 Heart rate variability also demonstrated negligible effects in the model. To our 

knowledge this is the first study to examine the relationship between pupillary responses and 

heart rate variability as physiological markers for resource allocation to meet task demands 

during a digit span task. Previous studies have examined the effects of cognitive load on each of 

these measures independently as separate dependent variables.41,113 The negligible effect of heart 

rate variability on pupillary response may be explained by poor sensitivity of our chosen HRV 

measure to detect acute changes in cognitive load, as described above, or may support the 

independence in these two physiological measures to capture aspects of physiological resource 

mobilization to meet cognitive task demands.113  Future studies should consider splitting these 

two physiological metrics to inform cognitive efficiency given they likely reflect different 

aspects of ANS activity. Moreover, additional studies are needed to determine the utility of 

various short-term HRV measures to capture acute cognitive load. The lack of convergence 

between pupillary response and this particular cardiovascular measure for resource mobilization 

may be further explained by the differing sensitivity of these measures to various factors, as 

outlined in Table 5.1. In light of our findings, and those of previous literature, it is important to 

note the sensitivity in both pupillary response and HRV measures relative to their ANS 

foundations to various confounding factors. However, our findings suggest pupillary responses 

may be a more sensitive measure—especially to acute, short-term changes in cognitive load—

given our ability to mitigate potential confounds through vigorous environmental control in VR.  
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5.3 Discussion for Specific Aim 2 

Aim 2 investigated the potential added effect of a prior concussion injury on the 

relationships examined in aim 1. Model results for cognitive load, task performance and HRV 

were similar to those observed in Aim 1 and were relatively unchanged with the addition of 

concussion history in the model. Concussion history groups did not demonstrate statistically 

significant differences in pupillary response dynamics across levels of task difficulty. Our study 

results differ from previous cognitive pupillometry studies reporting group differences in 

pupillary response outcomes, within clinical populations with cognitive deficits. Additionally, 

our model findings differ from those concerning the pupillary light reflex as well as other eye 

tracking methodologies that identified differences in those with and without a concussion 

history.90,91 Discrepancies between our findings and previous work in clinical populations may 

be explained by differences in task design and the selected pupillary response outcome.  

A recent study by Hershaw et al. examined several pupillary response metrics (e.g., cue- 

and response-locked means, peaks, peak latencies) during an n-back cued attention task, to 

describe variability and reliability across concussion history groups, with respect to cognitive 

load sensitivity. Results from the Hershaw’s study showed greater pupillary responses outcomes 

at higher cognitive loads in the concussion history group—whereby, dilation response latencies 

demonstrated the greatest sensitivity to group differences.101 Few cognitive pupillometry studies 

have examined dilation/constriction latency outcomes, more often used when evaluating the 

pupillary light reflex. However, Hershaw’s results warrant future consideration and examination 

of latency outcomes, especially in clinical populations. 

Granholm and colleagues reported similar findings when examining pupillary responses 

during a digit span task in those with amnestic single domain-mild cognitive impairment 
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associated with Alzheimer’s, compared to healthy controls. 38 Participants in the Granholm study 

exhibited similar task-performance measures though greater pupil responses at lower cognitive 

loads (i.e., shorted digit-sequences) were exhibited in those with mild cognitive impairment, 

compared to cognitively normal participants.38 Suggesting compensatory neurophysiological 

resource utilization and decreased cognitive efficiency when cognitive load is lower in this 

unique population with mild cognitive impairment.116 Response visual examination suggests a 

potential trend developing and group by load interaction which warrants future examination, as 

differences may be isolated to a certain cognitive load level.  

Preliminarily, we examined pupillary response dynamics as a function of cognitive load, 

within concussion history subgroupings to probe potential dose and concussion chronicity 

responses. Visual examination shows a potential dose response, whereby those with more than 

on prior concussion may be utilizing greater neural resources when cognitive loads exceed 

capacity. Plot inspection for average pupillary responses by cognitive load for concussion 

subgroups representing time since most recent injury also warrants further examination, as they 

depict potential response differences with respect to overall resource utilization and response 

change points for working memory capacity. Specifically, those reporting shorter chronicity 

exhibit more distinct change points at capacity, that might suggest overall limited resource 

availability. Given these preliminary reviews, future studies should further elucidate potential 

dose and concussion chronicity responses through within group analyses.  

5.4 Summary of Findings Related to Original Hypotheses 

Our hypotheses that greater cognitive load (e.g., sequence length) would elicit larger 

pupillary responses (dilation) were supported by our findings. Null findings were exhibited in 

our hypothesized effects of our other independent variables, including task performance, heart 
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rate variability, and concussion history, on pupillary responses. It is important to recognize the 

utility in the results of our study despite these negligible effects, especially as it pertains to the 

robustness and potential sensitivity and specificity pupillary responses may offer when 

examining cognitive efficiency in future studies using a more parsimonious model.  

5.5 Limitations 

Our study was not without limitations. Shifting cognitive pupillometry assessments into a 

VR headset helped to mitigate potential non-cognitive environmental influence on pupillary 

response outcomes. However, other potential confounds for pupillary response metrics and heart 

rate variability relative to ANS function may have played a role in measurement variability. 28,29 

For example, we did not examine effects of daily medication and other co-morbidities (e.g., 

anxiety, depression, etc.) on these measures, or standardized the testing time of day. 28,29,101 

The pupillary response outcome measure used in this study, while common in cognitive 

pupillometry studies examining working memory, may not have been sensitive to concussion 

group differences. Future studies should consider using alternative pupillary response outcomes 

given recent Hershaw et al. results demonstrating greater sensitivity in latency metrics to 

concussion group differences compared to baseline-corrected responses.101 Consensus around 

metric selection will eventually lend towards normative values, and improved generalizability of 

study findings. Participant heterogeneity and differences in task design within previous literature 

further complicate generalizability of our findings. Despite these limitations, we sought to 

control many confounders by enrolling a sample within a tight age range, similar athletic 

demands, and in a virtual reality environment. 
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5.6 Future Research 

 There is a great paucity of cognitive pupillometry studies in applied clinical settings 

comparing healthy and clinical groups (e.g., post-concussion) which greatly compromises the 

generalizability of our findings. Our findings do however, support advancement for cognitive 

pupillometry investigations to expand into applied settings in the future—which may have 

important clinical implications for concussion assessment and management.  

Longitudinal examination of within and between subjects’ comparative analyses among 

pupillary response and other relevant clinical performance-based metrics. This will provide 

initial information to establish normative values around intra-individual changes and inter-

individual variation in cognitive processing. Studies aimed to discriminate among clinical 

populations should consider more discriminatory inclusion criteria, clinically meaningful 

assessment timepoints and within group analyses to control for potential injury comorbidities 

and/or confounding variables which may include injury frequency and chronicity. 

5.6 Conclusions 

 Our study was the first to examine an assessment for cognitive efficiency that accounts 

for both physiological and performance-based response dynamics, using VR and eye tracking 

technology, which may have implications for clinical practice and future cognitive interventions. 

Our study findings support pupillary responses’ sensitivity to cognitive load beyond 

performance-based measures alone, in an athletic population. These findings provide additive 

evidence for the need to include ecologically valid and cost-efficient neurophysiological metrics 

when assessing cognitive performance and efficiency. Employing VR and eye tracking 

technologies to examine these responses may be useful for human performance and concussion 

management paradigms.   
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Table 5.1 Factors Know to Influence Heart Rate Variability versus Pupillary Response Measures  
 Heart Rate Variability Pupillary Response 
 Respiration versus paced breathing ** Environmental luminance 
 Health/training status ** Testing distance (distance between camera & eyes) 
 Testing position (supine, seated, etc.) ** Accommodation response 
 Movement during testing ** Environmental distractions and saccadic eye 

movement 
 Recency of physical activity Medication/Alcohol/Drug use 
 Medication/Alcohol/Drug use Emotional state 
 Emotional state  

--Due to the modulation of each of these measures by the autonomic nervous system, each are uniquely 
sensitive to latent variables that could influence outcomes. Different factors identified by previous literature 
to influence heart rate variability and pupillary response measures are outlined above. 
** Indicates the factors we are able to potentially mitigate with pupillary response testing in a VR 
environment.  



 

92 

APPENDIX A. TESTING SESSION MATERIALS 

Testing Session Materials -- Questionnaire 

 

1 

Q1� Participant ID 

_______________ 

Q2� Age 

_______________ (years) 

Q3� Sex 

o Male

o Female
Q4� Have you been diagnosed with ADHD? 
o Yes

o No

Q5� Have you been diagnosed with any other learning disabilities? 
o Yes

o No

Q6� Do you have a history of consistent migraines? 
o Yes

o No

Q7� Have you been diagnosed with anxiety? 
o Yes

o No

Q8� On average, how many hours of sleep do you get a night?�

 Sunday – Thursday�   

Friday – Saturday� 

95�&RQFXVVLRQ�6WXG\�_�6XUYH\��

_______ KRXUV 

_______ KRXUV 
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2 

Q9� &RQFXVVLRQ   

A FRQFXVVLRQ is a change in brain function following a force to the head, which may 
be accompanied by temporary loss of consciousness and is identified in awake 
individuals with measures of neurologicDO and cognitive dysfunction.   

&RPPRQ�FRQFXVVLRQ�V\PSWRPV�LQFOXGH�  
headache  dizziness 
irritability   feeling in a fog 
nausea  loss of balance 
poor balance   memory loss   
fatigue  loss of energy  
drowsiness   blurred vision  
feeling slowed down difficulty focusing 
sensitivity to light/noise  difficulty concentrating 

Q10 Have you ever had a concussion? 

o Yes

o No

���

Q11 How many concussions have you had in your lifetime? ( &,5&/( one) 

���� � � �� � � �� � � ��

Q12 How long ago was your most recent concussion? (Days) 

 _______ Days 
Q13 How long ago was your most recent concussion? (Months) 

_______ Months 

Q14 How long ago was your most recent concussion? (Years) 
_______ Years 

,I�
1R
�*R�WR�3DJH���
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3 

Please answer the following questions regarding your PRVW�UHFHQW�FRQFXVVLRQ�
(if applicable)��

Q15� Date of prior concussion: (mm/dd/yyyy) 

___ __/__ __/__ __ __ __ 

Q16� How long did it take for you to recover? 

o Within 2 Weeks

o Within a month

o > one month

o > one year

Q17� Did you lose consciousness upon injury? 

o Yes

o No

Q18� 'escribe EHORZ�how you sustained your concussion: 
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4 

Please answer the following questions regarding your VHFRQG��PRVW�UHFHQW��FRQFXVVLRQ�
(if applicable)��

Q19� Date of prior concussion: (mm/dd/yyyy) 

___ __/__ __/__ __ __ __ 

Q20� How long did it take for you to recover? 

o Within 2 Weeks

o Within a month

o > one month

o > one year

Q21� Did you lose consciousness upon injury? 

o Yes

o No

Q22�  'HVFULEH�EHORZ how you sustained your concussion : 
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5 

 6SRUW�+LVWRU\ 

 Below is a list of contact/collision sports: 
Football  Lacrosse Wrestling   
Baseball  Field Hockey Basketball   
Soccer  Field Hockey Ice Hockey   
Pole Vault Rugby  Cheerleading 
Diving  Equestrian  Gymnastics   
Softball  Water Polo  

Q2��  How many of these sports listed above have you played competitively (club, 
school, etc.)? Please &,5&/( one: 

�� �� ��� ���

If you feel as though you have participated in a collision sport that is 127�listed, please 
let the research assistant know.  

<RX�ZLOO�QRZ�DQVZHU�TXHVWLRQV�UHJDUGLQJ�WKH�VSRUWV�\RX�KDYH�SOD\HG�
FRPSHWLWLYHO\��3OHDVH�XVH�RQH�VKHHW�SHU�VSRUW��UHSRUWLQJ�RQ�XS�WR���VSRUWV�
PD[�

,I�\RX�KDYH�QRW�SOD\HG�DQ\�RI�WKH�VSRUWV�OLVWHG�DERYH�FRPSHWLWLYHO\��
SOHDVH�JR�WR�SDJH�����
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6 

6SRUW��)�Please circle which sport you are referring to when completing this page: 

Football Lacrosse  Wrestling   
Baseball Field Hockey Basketball   
Soccer Field Hockey Ice Hockey   
Pole Vault Rugby  Cheerleading 
Diving Equestrian  Gymnastics   
Softball Water Polo  

Q24� What position did you play? ��
� � � � � BBBBBBBBBBBBBBBBBBBBB

Q25� How old were you when you participated in your FIRST competitive season? 
_______________ (years) 

Q26� How many years did you spend playing competitively? 
_______________ (years) 

Q27� Please provide your average number of 35$&7,&( contact hours per week in 
high school. If not applicable, please leave the field blank.  

Q28� Please provide your average number of *$0( contact hours per week in 
high school. If not applicable, please leave the field blank.  

Freshman Sophomore Junior Senior Other 
Pre-Season 
Contact 
Hours 
Regular 
Season 
Contact 
Hours 
Post-Season 
Contact 
Hours 

Freshman Sophomore Junior Senior Other 
Pre-Season 
Contact 
Hours 
Regular 
Season 
Contact 
Hours 
Post-Season 
Contact 
Hours 
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�

'HPRJUDSKLFV

3DUWLFLSDQW�,'

6HOI�$VVHVVPHQW�RQ�'LJLW�6SDQ�7DVN

3OHDVH�XVH�WKH�IROORZLQJ�VFDOHV�WR�VXPPDUL]H�WKH�FODULW\�RI�WKH�WDVN�LQVWUXFWLRQV�$1'�\RXU�FRPSOLDQFH�ZLWK�WKH�
WDVN�LQVWUXFWLRQV�

+RZ�FOHDU�ZHUH�WKH�IROORZLQJ�LQVWUXFWLRQV" +RZ�RIWHQ�ZHUH�\RX�FRPSOLDQW�ZLWK�WKH
IROORZLQJ�LQVWUXFWLRQV"

([WUHPHO\
&OHDU

6RPHZKDW
FOHDU

1HLWKHU
FOHDU
QRU

XQFOHDU

6RPHZKDW
XQFOHDU

([WUHPHO\
XQFOHDU $OZD\V

0RVW
RI
WKH
WLPH

$ERXW
KDOI
RI�WKH
WLPH

6RPHWLPHV 1HYHU

/RRN�VWUDLJKW�DKHDG

7U\�WR�DYRLG�ORRNLQJ
XS�ZKLOH
UHPHPEHULQJ

7U\�WR�DYRLG�FORVLQJ
\RXU�H\HV�ZKLOH
UHPHPEHULQJ

3UHVV�WKH�KDQGOH
JULSV�ZKHQ�\RX�KDYH
ILQLVKHG�UHSRUWLQJ�DOO
RI�WKH�GLJLWV�\RX
UHPHPEHU

3XOO�ERWK�KDQGOH
WULJJHUV�ZKHQ�\RX
DUH�UHDG\�WR�DGYDQFH
WR�WKH�QH[W�WULDO

95�&RQFXVVLRQ�6WXG\�_�6XUYH\��
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+RZ�ZHOO�GR�\RX�WKLQN�\RX�GLG�RQ�WKH�GLJLW�VSDQ�WDVN�RYHUDOO"

<RX�VDZ�GLJLW�VHTXHQFHV�EHWZHHQ���DQG����GLJLWV�ORQJ��:KDW�LV�WKH�
PD[LPXP�QXPEHU�RI�GLJLWV�\RX�WKLQN�\RX�ZHUH�DEOH�WR�DFFXUDWHO\�UHSRUW�
EDFNZDUGV"�
� � BBBBBBBBB'LJLWV

:KDW�VWUDWHJ\�VWUDWHJLHV�GLG�\RX�XVH�WR�KHOS�\RX�UHPHPEHU�WKH�GLJLWV�WKDW�
ZHUH�SUHVHQWHG"��3OHDVH�6(/(&7�$//�WKDW�DSSO\�

'LG�\RX�H[SHULHQFH�DQ\�GLVFRPIRUW�LQ�WKH�YLUWXDO�
HQYLURQPHQW�GXULQJ�WKH�WHVWLQJ�VHVVLRQ"��&,5&/(�RQH�

3OHDVH�SURYLGH�DQ\�DGGLWLRQDO�LQIRUPDWLRQ�\RX�IHHO�LV�LPSRUWDQW�
ZLWK�UHVSHFW�WR�\RXU�SHUIRUPDQFH�RQ�WKH�WDVN�

P ([WUHPHO\�
ZHOO

P 9HU\�ZHOO
P 0RGHUDWHO\�

ZHOO
P 6OLJKWO\�ZHOO
P 1RW�ZHOO�DW�DOO

P 5HKHDUVDO��UHFLWLQJ�WKHP�RYHU�DQG�RYHU�

P :ULWLQJ�WKHP�GRZQ�LQ�\RXU�PLQG�

P &KXQNLQJ�WKH�QXPEHUV�WRJHWKHU�

P 2WKHU�BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

1R <HV�

,I�
<HV
���3OHDVH�GHVFULEH��BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

�BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
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1RW�%RWKHUHG�$W�$OO1RW�%RWKHUHG�$W�$OO %RWKHUHG�$�/LWWOH%RWKHUHG�$�/LWWOH %RWKHUHG�$�/RW%RWKHUHG�$�/RW

6WRPDFK�SDLQ

%DFN�SDLQ

3DLQ�LQ�\RXU�DUPV��OHJV��RU�MRLQWV��NQHHV�
KLSV��HWF���

+HDGDFKHV

&KHVW�SDLQ

'L]]LQHVV

)DLQW�VSHOOV

)HHOLQJ�\RXU�KHDUW�SRXQG�RU�UDFH

6KRUWQHVV�RI�EUHDWK

3DLQ�RU�SUREOHPV�GXULQJ�VH[XDO
LQWHUFRXUVH

&RQVWLSDWLRQ��ORRVH�ERZHOV��RU�GLDUUKHD

1DXVHD��JDV��RU�LQGLJHVWLRQ

)HHOLQJ�WLUHG�RU�KDYLQJ�ORZ�HQHUJ\

7URXEOH�VOHHSLQJ

3+4����'XULQJ�WKH�SDVW���ZHHNV��KRZ�PXFK�KDYH�\RX�EHHQ�ERWKHUHG�E\�DQ\�RI�WKH�IROORZLQJ�SUREOHPV"
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*$'����,I�\RX�FKHFNHG�RII�DQ\�SUREOHPV��KRZ�GLIILFXOW�KDYH�WKHVH�PDGH�LW�IRU�\RX
WR�GR�\RXU�ZRUN��WDNH�FDUH�RI�WKLQJV�DW�KRPH��RU�JHW�DORQJ�ZLWK�RWKHU�SHRSOH"

1RW�GLIILFXOW�DW�DOO� ���6RPHZKDW�'LIILFXOW 9HU\�'LIILFXOW ([WUHPHO\�'LIILFXOW

*$'���ɾ2YHU�WKHɾODVW���ZHHNV��KRZ�RIWHQ�KDYH�\RX�EHHQ�ERWKHUHG�E\�WKH
IROORZLQJ�SUREOHPV"

1RW�DW�DOO 6HYHUDO�GD\V 2YHU�KDOI�WKH�GD\V 1HDUO\�HYHU\�GD\

)HHOLQJ�QHUYRXV��DQ[LRXV��RU
RQ�HGJH

1RW�EHLQJ�DEOH�WR�VWRS�RU
FRQWURO�ZRUU\LQJ

:RUU\LQJ�WRR�PXFK�DERXW
GLIIHUHQW�WKLQJV

7URXEOH�UHOD[LQJ

%HLQJ�VR�UHVWOHVV�WKDW�LW
V
KDUG�WR�VLW�VWLOO

%HFRPLQJ�HDVLO\�DQQR\HG�RU
LUULWDEOH

)HHOLQJ�DIUDLG�DV�LI
VRPHWKLQJ�DZIXO�PLJKW
KDSSHQ
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+RZ�RIWHQ�GR�\RX�IHHO
FRQILGHQW�DERXW�\RXU
DELOLWLHV�WR�KDQGOH�\RXU
SUREOHPV"

+RZ�RIWHQ�GR�\RX�IHHO�WKLQJV
ZHUH�JRLQJ�\RXU�ZD\"

+RZ�RIWHQ�GR�\RX�IHHO�WKDW
GLIILFXOWLHV�ZHUH�SLOLQJ�XS�VR
KLJK�WKDW�\RX�FRXOG�QRW
RYHUFRPH�WKHP"

366���7KH�IROORZLQJ�TXHVWLRQV�DVN�\RX�DERXW�\RXU�WKRXJKWV�DQG�IHHOLQJV�RYHU�WKH�ODVW�PRQWK��,Q�HDFK�FDVH��LQGLFDWH�
KRZ�RIWHQ�\RX�IHOW�RU�WKRXJKW�D�FHUWDLQ�ZD\��$OWKRXJK�VRPH�TXHVWLRQV�DUH�VLPLODU��WKHUH�DUH�GLIIHUHQFHV�EHWZHHQ�WKHP�
DQG�\RX�VKRXOG�WUHDW�HDFK�RQH�DV�D�VHSDUDWH�TXHVWLRQ�

1HYHU $OPRVW�QHYHU 6RPHWLPHV )DLUO\�2IWHQ 9HU\�2IWHQ
+RZ�RIWHQ�GR�\RX�IHHO�WKDW�
\RX�DUH�XQDEOH�WR�FRQWURO�WKH�
LPSRUWDQW�WKLQJV"
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(5���3OHDVH�UHDG�WKH�EHORZ�VWDWHPHQWV�DERXW�\RXUVHOI�DQG�LQGLFDWH�KRZ�ZHOO�LW�DSSOLHV�WR�\RX��,QGLFDWH�KRZ�WUXH�WKH�
IROORZLQJ�FKDUDFWHULVWLFV�DUH�DV�WKH\�DSSO\�WR�\RX�JHQHUDOO\�

'RHV�QRW�DSSO\�DW�DW
DOO $SSOLHV�VOLJKWO\ $SSOLHV�VRPHZKDW

$SSOLHV�YHU\
VWURQJO\

,�DP�JHQHURXV�ZLWK�P\
IULHQGV

,�TXLFNO\�JHW�RYHU�DQG
UHFRYHU\�IURP�EHLQJ�VWDUWOHG

,�HQMR\�GHDOLQJ�ZLWK�QHZ
DQG�XQXVXDO�VLWXDWLRQV

,�XVXDOO\�VXFFHHG�LQ�PDNLQJ
IDYRUDEOH�LPSUHVVLRQV�RQ
SHRSOH

,�HQMR\�WU\LQJ�QHZ�IRRGV�,
KDYH�QHYHU�WDVWHG�EHIRUH

,�DP�UHJDUGHG�DV�D�YHU\
HQHUJHWLF�SHUVRQ

,�OLNH�WR�WDNH�GLIIHUHQW�SDWKV
WR�IDPLOLDU�SODFHV

,�DP�PRUH�FXULRXV�WKDQ
PRVW�SHRSOH

0RVW�RI�WKH�SHRSOH�,�PHHW
DUH�OLNHDEOH
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APPENDIX B. REFINEMENT PROJECT RESULTS  

Preliminary Analyses: 

Pupillary response evoked by a digit-span working memory task 

Our pilot data were summarized and referenced in order to determine various task 

refinement parameters. We examined the qualitative shape of our pupillary response time traces 

for each digit-sequence length—to ensure consistency with previous literature. Within each digit-

sequence length, we identified appropriate response curves across the task, whereby pupil size 

demonstrated incremental increases as digits were presented in sequence, until reaching a point 

of capacity at which point, they would begin to constrict. In cases of longer sequence-lengths, 

this point would occur prior to the retention phase—resulting in smaller ‘change scores’ during 

retention.  

A)               

 
Figure 1. Pupillary Response. A) Average change in pupil diameter (mm) during a digit-span working 
memory task. The numbered circles represent the time each digit was presented, and time traces are 
shifted horizontally to align at ‘final digit presentation’ for each level of difficulty (sequence-length). 
Therefore, the longest sequence (14-digits) is depicted the furthest to the left.  
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Task performance—Digit-span Working Memory Task 

Task refinement was largely informed by our task performance data. Our first refinement 

being to adjust our scoring method of this response to allow for greater granularity and precision 

of measure. Our initial ‘all or nothing’ scoring approach was been previously described and 

recognized as standard practice when evaluating working memory digit-span tasks. However, 

consistent with recent literature, our initial summary of these data revealed blunted response 

variability, especially at higher sequence-lengths (Table 1). Therefore, we adapted our scoring 

approach to allow for partial credit assignment for each correctly identified digit by serial 

position. Greater variability in task performance data where partial credit scoring is applied 

(Table 2) compared to that of traditional ‘all or nothing’ scoring (Table 1). Greater variability 

allows for more robust analyses and ability to detect individual differences—also more 

appropriate considering the fluidity of working memory rather than a fixed capacity by reporting 

task performance dynamics within and beyond capacity for perfect performance. 

All or Nothing Scoring    Partial Credit Scoring 

   

Following this adaptation, we were able to then use these data to understand the 

maximum level of task difficulty we would include in the refined task, in order to sufficiently 

Table 1.  Overall behavioral response by sequence 
length for all trials (proportion perfectly recalled trials) 

Sequence 
Length 

Proportion of perfectly 
recalled sequences Percent 

4-digits 205/240 85% 
5-digits 170/240 71% 
6-digits 95/240 40% 
7-digits 42/240 18% 
8-digits 26/240 11% 
9-digits 15/240 6% 
10-digits 6/240 3% 
11-digits 2/240 1% 
12-digits 1/240 1% 
13-digits 0/240 0 
14-digits 0/240 0 

 

Table 2. Overall behavioral response by sequence 
length for all trials (avg. correctly recalled digits) 

Sequence Length Mean SD 
4-digits .91 0.23 
5-digits .85 0.25 
6-digits .70 0.31 
7-digits .55 0.29 
8-digits .48 0.26 
9-digits .41 0.24 
10-digits .34 0.21 
11-digits .29 0.17 
12-digits .26 0.15 
13-digits .24 0.13 
14-digits .23 0.12 
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overload working memory. Participant task performances were plotted across sequence-lengths 

for each group in our pilot study to again examine qualitative shape. Each plot demonstrates 

deteriorating task performances as sequence-length increases, as expected. However, beyond the 

11-digit sequence-length responses appear to plateau. Therefore, we determined that including 

sequences beyond this length may not provide any additional information in either group.  

          

 

 

Figure 2. Individual behavioral responses across sequence-lengths in those with and without 
a concussion history.  
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Sex Differences in Pupillary Response 

Our preliminary analyses showed significant sex differences in pupillary response as our 

primary outcome of interest mean differences outlined in Table 3. And depicted in Figure 3. 

Whereby females demonstrated overall smaller pupil size changes across sequence-lengths—

especially at lengths at and above 11. Therefore, we plan to continue to investigate this effect in 

the proposed study as a potential model covariate.  

Table 3. Sex differences in pupillary responses by 

sequence-length 

Sequence-Length Male Female 
Mean std Mean std 

4-digits 0.17 0.35 0.09 0.36 

5-digits 0.32 0.44 0.13 0.39 

6-digits 0.19 0.38 0.12 0.40 

7-digits 0.22 0.45 0.18 0.40 

8-digits 0.22 0.55 0.04 0.50 

9-digits 0.23 0.48 0.09 0.38 

10-digits 0.20 0.48 0.13 0.44 

11-digits 0.15 0.48 0.01 0.43 

12-digits 0.12 0.37 0.01 0.46 

13-digits 0.14 0.52 -0.01 0.46 

14-digits 0.13 0.48 -0.07 0.47 

 

 

Figure 3. Sex differences in average pupillary response 

measures by sequence length 
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Purpose: To examine effects of cognitive load, task performance, heart rate variability (HRV), 

and concussion history on pupillary responses in healthy collegiate club sports athletes using 

virtual reality (VR) and eye track and technology. 

Methods: Participants (n=59) self-reported concussion history (yes vs. no) and completed a 

backwards digit-span task in a single testing session. A virtual reality headset with 90Hz infrared 

eye tracking displayed the task and recorded pupil size diameter (mm), and participants were a 

chest strap heart rate monitor. Cognitive load was represented as the levels of difficulty with in a 

backwards overloaded digit span task i.e., digit sequence-length). Heart rate variability and pupil 

size were continuously recorded throughout the duration of the cognitive task. Pupillary 

responses were calculated as the baseline corrected mean size during the retention period of each 

digit-span trial. Task performance was calculated as accuracy (proportion of correctly recalled 

digits by serial position) and HRV as the root mean square of successive differences in R-R 

intervals (RMSSD). A linear mixed effects model examined accuracy, HRV and concussion 

history effects on PR across sequence lengths (a priori α=0.05).  

Results: 59 participants were included [age=20.48 ± 1.86years; males=58%; 24 (40%) with 

concussion history]. There was a significant effect of cognitive load (F4,232=3.67, p=0.006) on 

pupillary response. Specifically, higher loads exhibited larger mean pupillary responses (i.e., 

greater neural resource utilization). Task performance, heart rate variability, and concussion 

history demonstrated non-significant effects in the model (F1,1076=0.00, p=0.972), (F1,1076=1.62, 

p=0.204), and (F1,57=0.04, p=0.833) respectively. 

Conclusion: Our study findings support pupillary responses’ sensitivity to cognitive load beyond 

performance-based measures alone, in an athletic population. Our assessment for cognitive 

efficiency accounts for both physiological and performance-based response dynamics, using VR 
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and eye tracking technology, which may have implications for clinical practice and future 

cognitive interventions.  

Key Words: cognitive load, mTBI, cognitive efficiency, cognitive pupillometry 
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INTRODUCTION 

Recent literature favors symptom limited physical and cognitive activity following 

concussion over strict rest to support injury recovery.117,118 While moderate levels of cognitive 

activity following concussion are recommended, clinicians are in need of evidence-based 

guidance to ensure appropriate post-injury management of cognitive load, within return to learn 

and activity paradigms. Specifically, cognitive load refers to the inherent demands of a cognitive 

task, often represented clinically with respect to levels of task difficulty (e.g., sequence-lengths 

of a digit-span task). 24,29,31 Importantly, cognitive load can also represent the extent to which 

cognitive resources are allocated to meet task demands and is typically informed using various 

physiological metrics. As such, when combined with task performance outcome measures (i.e., 

score on digit-span task) these two aspects of cognitive load, may inform the broader construct of 

cognitive efficiency, (e.g., the relationship between neural resource utilization and task 

performance-based outcomes).24,29,31 Clinical examination of cognitive efficiency is currently 

limited due to the complexities associated with physiological assessment and monitoring in this 

setting (e.g., costly equipment, processing time, difficulty interpreting results, etc.).  

Cognitive pupillometry has been extensively examined and responses validated as 

indirect neurophysiological markers for global neural resource utilization in healthy and clinical 

populations with mild cognitive impairment. 28,29 Simultaneous pupil size recording, with other 

spatial and temporal brain activity measures such as electroencephalography (EEG) and 

functional magnetic resonance imaging (fMRI) demonstrate significant temporal associations 

with pupillary responses, relative to varying cognitive demands.29–33  

Pupillary response dynamics across a single digit-span trial include incremental dilation 

as each digit is encoded, reaching maximum dilation during the retention period following final 
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digit presentation (while manipulating and reordering information), when individuals have been 

fully loaded for a given sequence-length.28,32,35 Greater pupillary responses during the retention 

window are exhibited with increasing cognitive load levels within resource availability/capacity 

.28,34 Baseline corrected average pupil size during retention therefore reflects the neural resource 

utilization for each trial as the physiological aspect of cognitive load.30,35 Greater pupillary 

dilation responses,  and degrading task performance25,27 are typically demonstrated under 

conditions of high cognitive load. However, as cognitive load exceeds neural resource 

availability—or individuals reach working memory capacity, pupillary responses exhibit a 

plateau followed by constriction. 28,34,35 Few studies have examined pupillary responses and 

associated task performance measures under overloaded conditions (e.g., digit sequence-lengths 

> 9-digits) when neural resources are limited. This may be an important area to investigate as we 

consider such measures for cognitive load and efficiency in human performance and clinical 

management paradigms.31,41  

Pupillary response dynamics may be useful to inform cognitive efficiency in isolation—

though recent psychophysiological investigations suggests monitoring multiple metrics when 

examining associations between physiological and performance outcomes associated with 

complex cognitive constructs and processes.29,34,41,42 Juxtaposed with concussion literature, 

recent systematic reviews regarding the physiological response to injury concludes that a single 

‘perfect metric’ that accounts for the complexities associated with concussion is highly 

unlikely—rather, a combination of measures may be more appropriate.8,18 Moreover, 

physiological metrics regulated by the ANS require careful consideration given the many latent 

variables that may contribute to variability in response dynamics (e.g., stress, emotional 

response, etc.).41,43–45 Heart rate variability (HRV) may be a meaningful supplement to pupillary 
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response monitoring during an overloaded digit-span task to inform cognitive efficiency, as a 

secondary marker for resource allocation.44,46,47 Significant effects of acute cognitive load on 

HRV measures have been reported in healthy populations. 18,50,51  However, few studies have 

examined relationships between HRV and pupil measures in response to cognitive 

demands.18,50,51 Simultaneous monitoring of pupillary and HRV response dynamics may be more 

sensitive to cognitive load in healthy and clinical populations when task demands exceed 

resource availability and compensatory mechanisms are pursued to maintain performance. 

Examining cognitive efficiency as the dynamic interplay between physiological 

indicators of individuals’ cognitive effort—alongside the cognitive task demands (task 

difficulty), and performance-based outcomes—may expand our understanding of post-

concussion cognitive impairment and clinical management paradigms 24,25. However, 

considerations for ecological validity are equally, if not more important than measurement 

sensitivity when investigating physiological markers for potential clinical applications. Previous 

literature clearly acknowledges the importance of experimental control when investigating 

physiological metrics such as pupillary responses and HRV, given the various potential 

confounds.32 Recent advancements in virtual reality (VR) head mounted displays with embedded 

infrared eye tracking technology provide a controlled, portable, and cost-effective solution to this 

problem and improved ecological validity for pupillary response parameter assessment to inform 

cognitive efficiency.  

Therefore, the purpose of this study was to examine relationships among physiological 

(pupillary response and heart rate variability) and performance-based (task accuracy) measures, 

in collegiate club sports athletes, during an overload backwards digit-span task, in the context of 

cognitive efficiency. We also investigated potential concussion history effects on these 
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relationships as a preliminary examination of the sensitivity of these assessments collected using 

VR and eye tracking technology, to group differences. We anticipated significant associations to 

exist across participants between task performance accuracy, heart rate variability, and pupillary 

response dynamics with respect to the levels of task difficulty within an overloaded backwards 

digit-span task. Whereby individuals would demonstrate decreasing heart rate variability and 

task performance accuracy across increasing digit sequence-lengths—while pupillary responses 

would increase to a point, then plateau or decrease beyond resource availability.  

METHODS 

We completed a quasi-experimental cross-sectional study with club sports athletes at a 

single university during the spring or 2020. Participants reported for a single testing session that 

lasted approximately 1 hour. This study was approved by the institution’s Office of Human 

Research Ethics board. 

Participants 

All athletes included in the present provided written informed consent prior to 

participation. Specific inclusion criteria for study participation required all individuals to be 

between the ages of 18 and 30 and a rostered UNC club sport athlete. Individuals were excluded 

if they did not meet the above inclusion requirements and/or if they were unable to complete 

vision testing for whatever reason, had permanent vision loss in one or both eyes, had any visual 

surgery in the last year that would inhibit testing completion, were currently being treated to 

address balance or vision problems, and/or had strabismus or amblyopia. To support appropriate 

group designation using participants’ self-reported concussion history, we employed methods 

similar to those reported by the NCAA–DOD CARE Consortium102—whereby all participants  

reviewed an injury definition and common signs and symptoms prior to reporting. The 



 

 115 

concussion definition and associated signs and symptoms were informed by evidence-based 

guidelines and the latest international consensus statement on concussion in sport.9  

Following provision of the definition the concussion history group included those who 

reported having sustained at least one concussion—via any mechanism (i.e., sports-related or 

not) and those who reported concussion recency time frames during or since high school, but not 

in the past 6 months.  

Digit-Span Working Memory Task 

Task Design 

The backward digit-span task was developed for the proposed study in order to examine 

task performance and physiological response dynamics associated with working memory 

processes. Traditional task design and administration parameters were adapted to coincide with 

recent applications in healthy and clinical samples within psychophysiological and concussion-

based research domains.35,37,38,92 The task design was randomized blocked, containing 4 

consecutive testing blocks of 5 randomized digit sequence-lengths (i.e., 3, 5, 7, 9, and 11)—20 

total trials. Sequence-length presentation order within the first testing block was determined 

using a random number generator followed by a Latin Square to counter-balance sequence-

length presentation order for the remaining 3 blocks. The individual digits presented within each 

digit-sequence were randomly generated—consistent with previous literature that excludes 

within-trial immediate duplicates and consecutive integers.35–37 

Task Presentation and VR Integration 

The custom developed digit-span task was designed using Unity 3D® engine software, to 

be presented within the HTC VIVETM VR head-mounted display integrated with Tobii Pro VR 

infrared eye tracking technology (Tobii Technology, Inc.). Pupil size (diameter in mm) in both 
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eyes was continuously recorded at 90Hz during the task. Tobii Pro VR Solution software and 

infrared illuminators (dark pupil tracking) worked together to record time-locked pupillary 

response and specific digit-span task event markers for each trial (i.e., baseline, loading phase, 

retention period, and recall). 

Each trial begins with a 5-second pre-stimulus baseline period. Digit-sequences are then 

presented at the rate of one digit per second, followed by a 3-second retention pause.  

Participants are then prompted to verbally recall as many digits as they can remember in the 

exact reverse order. Recall was self-paced, and all trials were participant initiated. Figure 1 

presentation parameters for a single trial of a 4-digit sequence. The VR design parameters 

applied in the present study were consistent with previous pupillary response literature that 

highlight the importance of strict environmental control and equiluminant conditions for 

sufficient measurement precision and accuracy.101  

All stimuli were custom designed to ensure equiluminance (size= 200pixels, color= R:46 

G:46 B:46 A: 255). A fixation ‘X’ was displayed for each trial baseline and retention periods 

(display time = 5 and 3 seconds respectively) to ensure consistency in environmental luminance 

during baseline corrected response intervals of interest. Digits were then displayed at a rate of 1 

digit per second. Final digit presentation for each trial, was followed by a 3 second retention 

period before participants were promoted to provide their response. Participants completed all 

trials until reaching an ‘end of trial’ slide, without reinforcement or feedback from study 

personnel.40,102 In order to further minimize the influence of non-intended effects associated with 

saccades and blinks on pupil size, the task was centrally presented within participants’ field of 

view and participants’ vision within the headset was fixated to imitate a 2D display, and avoid 
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any potential accommodative effects.40,106  

Task Performance 

Participants’ verbal recall for each trail was recorded in real-time by study personnel and 

compared with digits presented, to determine accuracy for each trial.  Each trial was scored 

separately and credit was assigned as a percent correct, for each digit recalled in the correct serial 

position, i.e., total digits correct divided by digit-sequence length.   

Heart Rate Variability 

Heart rate and inter-beat interval data (RR interval) were continuously sampled during 

the digit-span task at 1000Hz using a Polar H10 chest strap. Raw unfiltered RR data were then 

processed using Kubios HRV software, version 3.3 software (Biosignal Analysis and Medical 

Group, Kupio, Finland). Trial event markers exported from Unity were used to time-lock RR 

interval data for each participant. Average HRV via the root mean square of successive 

differences (RMSSD), as previously reported by Mandrick et al41 was determined for each trial. 

Specifically, the signal was derived into RR intervals to across each trial (from baseline to 

baseline). Kubios HRV software 2.2 (University of Eastern Finland, http:// kubios.uef.fi) was 

then used to preprocess RR data for each participant and calculate mean RMSSD for each trial.64  

Pupillary Response  

Pupillary response data were sampled at 90 Hz and exported variables included left and 

right absolute pupil size (mm). Timestamps for key components within the digit-span task were 

recorded by Unity including 1) trial number (1-20), 2) sequence-length (3, 5, 7, 9, and 11), 3) 

digit presentation(s), 4) baseline and retention X displays, 5) response box display, and 6) recall 

completion and trial advancement, to ensure appropriate time-locking across pupillary and HRV 

variables of interest.  
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Raw data were directly exported into a spreadsheet and imported into Matlab (MATLAB 

and Statistic Toolbox Release 2017b, The MathWorks, Inc., Natick, MA, USA). A custom 

Matlab program adapted from the suggested procedures for processing pupil size data by Kret 

and colleagues in 201856 was then used to complete all pupil size data processing and reduction. 

The adapted processing program employs 6 procedural levels as follows: 1) raw data are 

prepared for filtering by removing identified blinks; 2) additional artifacts are identified and 

removed (e.g., signal noise, longer eye closures, etc.) to identify valid samples (i.e., pupil 

measurements not interrupted by blinks or noise); 3) the remaining valid samples are then 

smoothed using linear interpolation; 5) pupil response regions of interest are segmented (i.e., the 

last 40 samples of each baseline period and the first 200 samples of each retention period) and 

individually averaged; and 6) segment averages for both tonic and phasic responses are baseline 

corrected to represent pupil size change within response regions of interest for each trial (i.e., 

average pupil size during retention – average baseline pupil).28,36,37 Finally, processed data were 

exported from Matlab and SAS 9.4 (Cary, NC) was used for all descriptive statistics and 

inferential analyses. 

General Testing Procedures 

Participants completed a single testing session, that lasted approximately one hour. A 

demographic and health history questionnaire was completed first—including questions 

regarding participant’s sport and medical history. Participants then fitted themselves with the 

heart rate monitor and were then seated and fitted with the VR headset. A five-point calibration 

sequence was completed before each testing session for all participants.40,101,106 Additionally, 

parameters within our task design (e.g., standard and equiluminant baseline/accommodation 
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periods before each trial) allow for pseudo-calibration via trial by trial standard baseline 

subtraction procedures and reliable/valid assessment of our pupillary response outcome. 40,101,106 

Participants were then familiarized with the task and allowed at least 4 practice trials (all 

5-digits in length) in order to familiarize them with task presentation and sequencing—and to 

ensure understanding of task demands and required responses.25,37,77,110 Participants were not 

informed of the digit sequence-length for each trial, though they were told that the task includes 

sequences between 3- and 11-digits long. Emphasis was placed on participants do their best to 

recall as many digits as they can possibly remember (in exact reverse order), for each trial. 

Recall periods were self-paced, and all trials were participant initiated using HTC VIVE 

handheld controller triggers. Participants were given compliance feedback (e.g., appropriate 

response timing, trial initiation accuracy, etc.) during practice, and encouraged to ask any 

questions they may have about the testing procedures prior to beginning the experimental trials. 

No feedback was given during experimental trials.  

Statistical Analysis  

Continuous variables are summarized using means and 95% confidence intervals, and 

categorical variables are summarized with frequencies and associated percentages. Bivariate 

correlations were used to examine the strength of association between continuous variables. 

We then used a linear mixed effects model to examine how HRV and task performance 

together may influence pupillary response changes across sequence lengths of a digit-span task—

in the context of cognitive efficiency. To account for latent heterogeneity between subjects and 

their responses to each trial, the model will include two random effects—one ‘by-subject’ effect 

of participant, and sequence-length as a grouping variable. Behavior and HRV were added as 

fixed effects and tonic pupillary response will serve as the outcome variable as an index of neural 
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resource utilization.  Finally, we employed a second linear mixed effects model with an 

additional random effect of concussion history as a grouping variable. Correlation and 

distributive properties of pupillary response outcomes by sequence length were examined for 

curvilinear relationships and the potential need for model adjustment to account for quadratic 

mean structure in both models.  

RESULTS 

Sixty-two athletes from 18 club sports participated in this study between December 2019 

and March 2020. Men’s Rugby athletes made up 18.33% of our study sample (n=11), followed 

by Softball (n=10), Hockey (n=8), and Men’s Soccer (n=7).  Four participants were participated 

in Rock Climbing (6.67%), and Cheer, Swimming and Diving, and Women’s Soccer each 

represented 5% (n=3) of our sample. The remaining 9 participants each represented 1.67% of our 

sample (n=1) from the following sports: Baseball, Golf, Gymnastics, Jiu Jitsu, Jump Rope, 

Marathon Running, Racquetball, Women’s Lacrosse, and Cross Country. Participants’ average 

age was 20.48 ± 1.86 years, and 34 (57.63%) were male. Twenty-four (41%) participants self-

reported a concussion history, average lifetime contact/collision sport participation was 7.2 ± 5.1 

years, and 61.6 ± 57.9 total hours during high school—including all pre-, in-, and post-season 

practices and games. Task perception measures were completed by 58 participants, whereby the 

greatest proportion of participants felt they performed ‘moderately well’ on the task (n=26, 

44%).  

Following data processing, 39 (3.3%) pupillary response trials were excluded due to 

signal loss greater than 20% within response intervals of interest. One participant was excluded 

due to excessive signal loss within response intervals, that resulted in less than 10 total valid 

trials—and two participants were excluded following accuracy response inspection for non-
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credible performance. A total of 59 participants had valid measures for pupillary response, task 

performance and heart rate variability and were included in all analyses. 

General Descriptives 

Grand average pupillary response means by sequence length followed expected response 

dynamics, consistent with previously reported observations by Klingner et al. who examined 

pupil size changes during a visually presented digit-span task.111 Participant’s pupils gradually 

dilated as the digits were encoded with each presentation and reached a peak within the 3 

seconds following final digit presentation—during the retention period—while digits were being 

reordered. 

Grand means and 95% confidence intervals for pupillary response, task performance and 

HRV, are summarized across sequence-lengths in Table 1. Consistent with prior work, mean 

baseline-corrected pupillary responses during the retention period exhibited systematic increases 

with longer sequence lengths (cognitive load) within resource availability (working memory 

capacity of 7 ± 2 digits), then declined with overload (11-digits).34,35,111 Mean accuracy scores 

exhibited a steady decline from 98% to 27% as sequence-lengths increased from 3- to 11-digits. 

Mean RMSSD measures exhibited little fluctuation across sequence-lengths, within previously 

established normal ranges (i.e., between 27-72 ms). 

Bivariate correlations demonstrated significant relationships between longer sequence-

lengths and both larger pupillary responses (r= 0.13; p=<0.001) and lower accuracy scores (r=-

.77; p=<0.001). Higher accuracy scores were also weakly related to higher heart rate variability 

(r=0.06; p=0.04). Age, and both variables representing prior contact collision sport participation 

(i.e., average total years playing and average total hours participating in high school) 

demonstrated negligible relationships with pupillary response (p>0.05).  
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Original Model 

There was a significant main effect of sequence-length on mean pupillary response 

(F4,232=3.69, p=0.006), whereby longer sequence-lengths elicited greater average dilation 

responses. Accuracy and RMSSD demonstrated non-significant effects in the model 

(F1,1076=0.00, p=0.974) and (F1,1076=1.58, p=0.208), respectively. 

Concussion History Model 

The significant main effect of sequence-length on greater baseline corrected pupillary 

response outcomes was retained in the second model (F4,232=3.67, p=0.006). Concussion history 

group means and 95% CIs for pupillary response, task performance and heart rate variability are 

summarized as a function of sequence length for concussion history groups (yes versus no) in 

Table 2. Accuracy, RMSSD, and concussion history demonstrated non-significant effects in the 

model (F1,1076=0.00, p=0.972), (F1,1076=1.62, p=0.204), and (F1,57=0.04, p=0.833) respectively. 

Model results are summarized in Table 3.  While not statistically significant, mean pupillary 

responses in the concussion history group were smaller at the lower 3- and 5-digit sequence 

lengths, and larger across sequence lengths between 7- and 11-digits—compared to those 

without a concussion history. In contrast, task performance and heart rate variability responses 

follow very similar response dynamics across sequence lengths (cognitive load) for both groups. 

Participants’ averaged responses for pupillary response, task performance and heart rate 

variability are depicted by concussion history group in Figures 1-3.  

DISCUSSION 

We examined relationships between task-performance, heart rate variability, and 

cognitive load associated with a backwards digit-span task, and pupillary response measures—

followed by concussion history effects, in collegiate club sports athletes. Virtual reality eye 
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tracking technology was used to record pupillary responses, as a more ecologically valid 

mechanism for cognitive pupillometry, compared to desktop-based trackers and neuroimaging 

techniques such as fMRI. Consistent with previous literature, using more invasive and costly 

instrumentation, our results demonstrated load dependent pupillary response dynamics. 

Specifically, participants demonstrated larger pupillary responses with greater cognitive loads 

(i.e., longer sequence lengths), within working memory capacity. As such, our findings support 

advancement for future cognitive pupillometry investigations to expand into more applied 

settings—which may have important clinical implications for concussion assessment future and 

management.  

General Findings Informing Cognitive Efficiency 

Combined examination of clinical task performance and physiological metrics for 

resource allocation relative to imposed cognitive demands, are essential to assess neurocognitive 

processing effectiveness, and efficiency. Clinical task performance (accuracy) in our study 

demonstrated a steady decline from 98% to 27% in response to increasing cognitive loads from 

3- to 11-digits. Our accuracy response dynamics are consistent with previous literature and 

support appropriate task design, whereby cognitive load was adequately modulated beyond 

working memory capacity and resource availability.28,34,35 Our pupillary response outcomes were 

similar to previous cognitive pupillometry studies whereby greater cognitive load elicited larger 

dilation responses, when the load was within resource availability (working memory capacity of 

7 ± 2 digits), then declined with overload (11-digits).34,35,111 Task performance measures alone 

(e.g., accuracy), provide little insight relative to participants’ neural resource utilization to meet 

task demands and achieve a specific level of accuracy or performance.29,31 Task performance 

measures from neuropsychological tests may be indirect measures of the applied cognitive 
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demands—though they are not continuous. Our pupillary response measure on the other hand, 

illustrated the ability to assess the cognitive load and associated neural resource allocation in-real 

time and provided a continuous recording of data over time. 29 Therefore, the neurophysiological 

measure in our study may capture cognitive change which may appear before manifestation of 

cognitive symptoms and decreased task performance.29,34 Future work should examine such 

outcomes in clinical populations as well as extend this work from a human performance 

perspective. 

Heart Rate Variability 

Average heart rate variability measures did not descriptively demonstrate a load 

dependent response and exhibited negligible relationships with pupillary responses. Our findings 

indicate that on average participants’ HRV was within normal range (i.e., RMSSD between 27-

72ms), with little to no change in mean RMSSD across sequence lengths.54,112 Previous studies 

have examined changes in short-term HRV measures to examine relationships with cognitive 

load and task performance.113–115 However, differences in trial durations, study samples, and the 

explored cognitive domains likely explain the disagreement with the findings of the present 

study.45,54  

Other studies such as that by Hess and Ennis have examined other working memory tasks 

such as mental arithmetic, that were shorter in nature to assess 3 measures for cardiac 

physiological resource allocation (i.e., Heart rate—HRV, and systolic and diastolic blood 

pressure)—whereby systolic blood pressure demonstrated greater sensitivity to age related 

differences.29 Moreover, the short measurement duration of our heart rate variability outcome 

may not have been long enough to capture vagally mediated changes in HRV, by the autonomic 



 

 125 

nervous system due to acute mental stress during our task.  Additionally, not all measures were 

of the same duration in this study, given the prioritization of self-paced recall periods in our task.  

Evidence suggesting cardiac measures’ ability to reflect changes in cognitive load, also 

highlight their sensitivity to experience levels and training, the type of task observed and the time 

of day—consequently these measures require high levels of task demand in order to be reflected 

in HRV.113 Much of the HRV literature however, has examined cardiac activity measurements 

over longer durations i.e., more “chronic” cognitive or physical loads (>5min), and suggest that 

more extreme cognitive demands are needed to elicit more prominent responses during shorter 

measurement durations—similar to trial durations in our study.  A few studies have shown 

elevated HR and subsequently lower HRV during logical and dynamic reasoning tasks 

demanding high levels of verbal working memory and high visual attention, though HRV 

measurements were recorded over longer trial durations ≥30s.45,54 One particular study by 

Rivecourt et al examined HRV measures during a flight simulation task and measures were 

recorded over longer durations.54 This task likely elicited a greater cardiac and autonomic stress 

response relative to our digit-span task due to the task nature, which might explain the lack of 

significance in the present study. These findings combined with those from the present study, 

may also suggest that pupillary responses are more sensitive to real time changes in neural 

resource utilization and therefore a better measure for clinical monitoring in with respect to 

cognitive testing than this specific HRV outcome 

Our initial mixed effects model examined the relationships between measures of task 

performance, heart rate variability, and pupillary response across digit-span levels of task 

difficulty in healthy collegiate club sports athletes. Our mixed effects model demonstrated a 

significant effect of load on pupillary response –consistent with previous literature.28,34,35  
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However, neither task performance or heart rate variability demonstrated significant effects on 

pupillary response. While descriptively we saw the expected load dependent relationship 

between task performance and digit-sequence-length, the negligible effect of task performance 

on pupillary response in the model suggests that resource utilization is not influenced by overall 

task performance.  

Performance effects on pupillary response have been reported during other cognitive 

control and/or working memory tasks such as the Stroop or n-back tasks, whereby some 

physiological responses increase after a poor performance trial indicating compensatory neural 

recruitment for sustained performance.25,32 These tasks typically maintain a static level of 

cognitive load for several trials, (e.g., Stroop task will first assess correct identification on both 

color and word, before the assessing the Stroop effect when asking participants to respond when 

these things are congruent versus incongruent). 32 The task in the present study requires different 

aspects of working memory processing given the load is constantly changing.32 The aspects of 

cognitive control for our task instead include encoding, and manipulation of information which 

may make it more difficult—especially on the longer trials—for individuals ascertain their trial-

by-trial-performance accuracy. Self-performance and subsequent compensatory recruitment for 

sustained performance may be more prevalent in tasks that require updating and inhibition such 

as is Stroop or n-back tasks.32 

Heart rate variability also demonstrated negligible effects in the model. To our 

knowledge this is the first study to examine the relationship between pupillary responses and 

heart rate variability as physiological markers for resource allocation to meet task demands 

during a digit span task. Previous studies have examined the effects of cognitive load on each of 

these measures independently as separate dependent variables.41,113 The negligible effect of heart 
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rate variability on pupillary response may be explained by poor sensitivity of our chosen HRV 

measure to detect acute changes in cognitive load, as described above, or may support the 

independence in these two physiological measures to capture aspects of physiological resource 

mobilization to meet cognitive task demands.113  Future studies should consider splitting these 

two physiological metrics to inform cognitive efficiency given they likely reflect different 

aspects of ANS activity. Moreover, additional studies are needed to determine the utility of 

various short-term HRV measures to capture acute cognitive load. The lack of convergence 

between pupillary response and this particular cardiovascular measure for resource mobilization 

may be further explained by the differing sensitivity of these measures to various factors. In light 

of our findings, and those of previous literature, it is important to note the sensitivity in both 

pupillary response and HRV measures relative to their ANS foundations to various confounding 

factors. However, our findings suggest pupillary responses may be a more sensitive measure—

especially to acute, short-term changes in cognitive load—given our ability to mitigate potential 

confounds through vigorous environmental control in VR. 

Our follow-up mixed effects model investigated the potential added effect of a prior 

concussion injury. Concussion history groups did not demonstrate statistically significant 

differences in pupillary response dynamics across levels of task difficulty, however upon visual 

examination alone, we see a potential trend developing and a group by load interaction which 

may warrant future examination of such interactions in a larger sample. Our findings concerning 

load, task performance and HRV were similar to those observed in the initial model and were 

relatively unchanged after including concussion history. These results differ from previous 

cognitive pupillometry studies reporting group differences in pupillary response outcomes, 

within clinical populations with cognitive deficits. Additionally, our model findings differ from 
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those concerning the pupillary light reflex as well as other eye tracking methodologies that 

identified differences in those with and without a concussion history.90,91 Discrepancies between 

our findings and previous work in clinical populations may be explained by differences in task 

design and the selected pupillary response outcome.  

A recent study by Hershaw et al. examined several pupillary response metrics (e.g., cue- 

and response-locked means, peaks, peak latencies) during an n-back cued attention task, to 

describe variability and reliability across concussion history groups, with respect to cognitive 

load sensitivity. Results from the Hershaw’s study showed greater pupillary responses outcomes 

at higher cognitive loads in the concussion history group—whereby, dilation response latencies 

demonstrated the greatest sensitivity to group differences.101 Few cognitive pupillometry studies 

have examined dilation/constriction latency outcomes, more often used when evaluating the 

pupillary light reflex. However, Hershaw’s results warrant future consideration and examination 

of latency outcomes, especially in clinical populations. 

Granholm and colleagues reported similar findings when examining pupillary responses 

during a digit span task in those with amnestic single domain-mild cognitive impairment 

associated with Alzheimer’s, compared to healthy controls. 38 Participants in the Granholm study 

exhibited similar task-performance measures though greater pupil responses at lower cognitive 

loads (i.e., shorted digit-sequences) were exhibited in those with mild cognitive impairment, 

compared to cognitively normal participants.38 Suggesting compensatory neurophysiological 

resource utilization and decreased cognitive efficiency when cognitive load is lower in this 

unique population with mild cognitive impairment.116 Response visual examination suggests a 

potential trend developing and group by load interaction which warrants future examination, as 

differences may be isolated to a certain cognitive load level.  
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Overall, our hypotheses that greater cognitive load (e.g., sequence length) would elicit 

larger pupillary responses (dilation) were supported by our findings. Null findings were 

exhibited in our hypothesized effects of our other independent variables, including task 

performance, heart rate variability, and concussion history, on pupillary responses. It is important 

to recognize the utility in the results of our study despite these negligible effects, especially as it 

pertains to the robustness and potential sensitivity and specificity pupillary responses may offer 

when examining cognitive efficiency in future studies, using a more parsimonious model.  

Limitations 

Our study was not without limitations. Shifting cognitive pupillometry assessments into a 

VR headset helped to mitigate potential non-cognitive environmental influence on pupillary 

response outcomes. However, other potential confounds for pupillary response metrics and heart 

rate variability relative to ANS function may have played a role in measurement variability. 28,29 

For example, we did not examine effects of daily medication and other co-morbidities (e.g., 

anxiety, depression, etc.) on these measures, or standardized the testing time of day. 28,29,101 

The pupillary response outcome measure used in this study, while common in cognitive 

pupillometry studies examining working memory, may not have been sensitive to concussion 

group differences. Future studies should consider using alternative pupillary response outcomes 

given recent Hershaw et al. results demonstrating greater sensitivity in latency metrics to 

concussion group differences compared to baseline-corrected responses.101 Consensus around 

metric selection will eventually lend towards normative values, and improved generalizability of 

study findings. Participant heterogeneity and differences in task design within previous literature 

further complicate generalizability of our findings. Despite these limitations, we sought to 
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control many confounders by enrolling a sample within a tight age range, similar athletic 

demands, and in a virtual reality environment. 

Future Research 

There is a great paucity of cognitive pupillometry studies in applied clinical settings 

comparing healthy and clinical groups (e.g., post-concussion) which greatly compromises the 

generalizability of our findings. Our findings do however, support advancement for cognitive 

pupillometry investigations to expand into applied settings in the future—which may have 

important clinical implications for concussion assessment and management.  

Longitudinal examination of within and between subjects’ comparative analyses among 

pupillary response and other relevant clinical performance-based metrics. This will provide 

initial information to establish normative values around intra-individual changes and inter-

individual variation in cognitive processing. Studies aimed to discriminate among clinical 

populations should consider more discriminatory inclusion criteria, clinically meaningful 

assessment timepoints and within group analyses to control for potential injury comorbidities 

and/or confounding variables which may include injury frequency and chronicity. 

Conclusions 

Our study was the first to examine an assessment for cognitive efficiency that accounts 

for both physiological and performance-based response dynamics, using VR and eye tracking 

technology, which may have implications for clinical practice and future cognitive interventions. 

Our study findings support pupillary responses’ sensitivity to cognitive load beyond 

performance-based measures alone, in an athletic population. These findings provide additive 

evidence for the need to include ecologically valid and cost-efficient neurophysiological metrics 

when assessing cognitive performance and efficiency. Employing VR and eye tracking 
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technologies to examine these responses may be useful for human performance and concussion 

management paradigms. 
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MANUSCRIPT TABLES AND FIGURES 

 

  
Table 1. Average pupillary response, task performance, and heart rate variability summarized across 
sequence-length and 95% confidence intervals 

  N Mean 95% CI 

 
 
 

Average Pupillary Response 
(baseline corrected response in mm) 

Sequence-Length  

0.11 0.08 0.15 3-digits 233 

5-digits 233 0.14 0.10 0.18 

7-digits 227 0.22 0.18 0.26 

9-digits 223 0.25 0.21 0.30 

11-digits 225 0.23 0.18 0.28 

 
 
 

Average Task Performance 
(accuracy—percent correct) 

Sequence-Length  

98% 97% 100% 3-digits 236 

5-digits 236 80% 77% 84% 

7-digits 236 52% 48% 56% 

9-digits 236 34% 31% 36% 

11-digits 236 27% 25% 29% 

 
 
 

Average Heart Rate Variability 
(RMSSD in ms)  

Sequence-Length  

40.7 37.2 44.2 3-digits 236 

5-digits 236 41.7 38.0 45.5 

7-digits 236 39.3 35.6 43.0 

9-digits 236 40.9 37.4 44.3 

11-digits 236 39.6 36.2 43.0 
Average responses for each variable are summarized across all valid trials for all 59 participants. 
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  Table 2. Concussion history group average study measures across sequence lengths and 95% 
confidence intervals 

  Concussion History Groups 
  No (n=35) Yes (n=24) 
  Mean 95% CI Mean 95% CI 

 
 
 

Average 
Pupillary  
Response 

Sequence-Length 

0.14 0.09 0.18 0.08 0.03 0.13 3-digits 

5-digits 0.17 0.11 0.22 0.10 0.04 0.17 

7-digits 0.20 0.15 0.25 0.26 0.19 0.32 

9-digits 0.24 0.18 0.31 0.27 0.21 0.34 

11-digits 0.22 0.15 0.29 0.24 0.17 0.31 

 
 
 

Average 
Task 

Performance 

Sequence-Length 

98% 100% 96% 99% 100% 98% 3-digits 

5-digits 80% 85% 76% 79% 85% 74% 

7-digits 53% 58% 48% 51% 57% 44% 

9-digits 32% 35% 29% 36% 40% 32% 

11-digits 26% 28% 23% 28% 31% 25% 

 
 
 

Average 
HRV 

Sequence-Length 

43.4 48.4 38.4 36.8 41.0 32.7 3-digits 

5-digits 44.0 49.4 38.6 38.7 43.1 34.3 

7-digits 42.5 48.0 36.9 34.9 38.8 31.1 

9-digits 43.5 48.6 38.5 37.3 41.3 33.4 

11-digits 42.5 47.5 37.5 35.9 39.7 32.2 
Average responses for each variable are summarized above by concussion history group, for all 59 
participants. 
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  Table 3. Mixed effects model results for the effect of concussion history, cognitive  
load, task performance, and heart rate variability on pupillary response  

 Estimate DF t Value 95% CI p  

Sequence lengths        

5-digits  0.03 232 0.98 -0.02 0.82 0.326  

7-digits 0.10 232 3.02 0.04 0.17 0.003  

9-digits 0.14 232 3.50 0.06 0.21 <0.00 1 

11-digits 0.11 232 2.58 0.03 0.18 0.010  

3-digits 0 . . . . .  

Task Performance  
(accuracy--percent correct) 

-0.001 1076 -0.03 -0.09 0.08 0.973  

Heart Rate Variability  
(RMSSD in ms) 

-0.00 1076 -1.27 -0.00 0.00 0.204  

Concussion History- 
          Yes v No 

-0.01 57 -0.21 -0.1 0.08 0.838  

--RMSSD (root mean square of successive differences) in milliseconds. 
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Figure 1. Pupillary response by sequence-length for each participant – split by concussion 
history groups 
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Task Performance by Sequence Length -- Concussion History Groups

Sequence-Length

YesNo

3 5 7 9 113 5 7 9 11

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (p
er

ce
nt

 c
or

re
ct

)

Figure 2. Task performance by sequence-length for each participant – split by concussion 
history groups 
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Heart Rate Variability by Sequence Length -- Concussion History Groups
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Figure 3. Heart rate variability by sequence-length for each participant – split by  
concussion history groups 
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SUPPLEMENTARY MATERIAL 

  

 

 Digit-span randomized blocked design: Each block randomly presents a single trial at 
each level of difficulty. A random number generator was used to determine testing order 
for the first block and a Latin square was used to counterbalance order for each subsequent 
block. 
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Sample Trial: Sample five-digit-sequence presentation illustrating the block design for a single trial 
within the digit-span task. Digits were displayed at a rate of one digit per second. Shaded areas 
represent response regions of interest within baseline and retention period, used to calculate pupil size 
change for each trial. 
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APPENDIX D. EXECUTIVE SUMMARY  
 

Background: 

Clinicians and researchers need objective measures to better characterize behavioral and 

physiological response dynamics associated with cognitive inefficiency following concussion. 

While cognitive efficiency can be described relative to various cognitive processes, working 

memory is most often examined with respect to relationships between task demands and 

available cognitive resources. Working memory is also one of the most common cognitive 

impairments following concussion—where associated post-injury clinical measures (digit-span 

task) demonstrate high diagnostic sensitivity.11,12  Task Performance and physiological response 

dynamics associated with cognitive efficiency are difficult to characterize following concussion 

due to rapidly deteriorating signal detection and poor ecological validity of current clinical 

assessments and advanced neuroimaging modalities.8,18 Dynamic cognitive efficiency 

characterization via physiological and task performance metrics may better inform concussion 

recovery response dynamics—which may hold important implications for improved concussion 

clinical assessment and management regarding readiness to return to athletic and or military 

activity. The study aims were to first examine relationships among behavioral and physiological 

metrics of heart rate variability and pupillary response during a working memory digit-span task 

to inform cognitive efficiency, and 2) determine the effects of concussion injury on these 

response dynamics.  
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Methods Overview:  

a. Design: Cross sectional  

b. Participants: UNC Club Sports Athletes 

c. Instrumentation & Study Measures:  

Digit-Span Task –Task Design 

• 20 Trials (4 blocks / 5 trials). Sequence Lengths -- 5 Levels (3, 5, 7, 9, 11) 

• Backwards Recall  

Task Presentation, VR and Eye Tracking Integration  

• HTC VIVE Virtual reality – Head mounted display 

• Infrared Eye tracking--Tobii Technologies 

Task Performance/Accuracy 

• Participant responses recorded  

• Credit assigned for accurate digit recall, by serial position 

• Represented as % correct for each trial [Higher = Better] 

Hear Rate Variability 

• Inter-beat intervals (RR intervals) recorded during task 

• HRV represented as the RMSSD -- calculated for each trial [Higher = Better] 

• Pupillary Response represented as the baseline corrected pupil diameter in mm, 

during the retention period– for each trial. [Larger diameter = Greater neural 

resource utilization] 

d. General Testing Procedures 

Participants presented for a single testing session where they filled out a demographics 

and sport participation questionnaire, were then fitted with a chest strap heart rate monitor and 

VR headset, then completed the digit-span task.  



 

 142 

e. Statistical Approach 

We first examined relationships among pupillary response, task performance, and heart 

rate variability measures across levels of cognitive load (i.e., digit-sequence lengths). Then we 

employed two separate linear mixed effects models to first examine the effects of cognitive load, 

task performance, and heart rate variability on pupillary responses during our overloaded 

backwards digit span task—then the added effect of a prior concussion history. 

Summary Results and Discussion Points: 

There was a significant effect of cognitive load on our pupillary response outcomes. 

Specifically, higher cognitive load elicited greater pupillary dilation responses indicating greater 

neural resource utilization. Measures of task performance, heart rate variability, and concussion 

history group effects were non-significant.  

Overall, our study was the first to examine an assessment for cognitive efficiency that 

accounts for both physiological and performance-based response dynamics, using VR and eye 

tracking technology, which may have implications for clinical practice and future cognitive 

interventions. Our study findings support pupillary responses’ sensitivity to cognitive load 

beyond performance-based measures alone, in an athletic population. These findings provide 

additive evidence for the need to include ecologically valid and cost-efficient neurophysiological 

metrics when assessing cognitive performance and efficiency. Employing VR and eye tracking 

technologies to examine these responses may be useful for human performance and concussion 

management paradigms.  
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