
VARIABILITY IN COASTAL SHARK POPULATIONS ACROSS MULTIPLE 

SPATIOTEMPORAL SCALES 

 

 

 

 

 

Martin Tomas Benavides 

 

 

 

 

 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department 

of Marine Sciences in the College of Arts and Sciences. 

 

 

 

 

 

Chapel Hill 

2020 

 

 

 

 

 

         Approved by: 

         F. Joel Fodrie 

         Charles Peterson 

         Stephen Fegley 

         Johanna Rosman 

         Nathan Bacheler



 

 

 

 

 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2020 

Martin Tomas Benavides 

ALL RIGHTS RESERVED



 

iii 

ABSTRACT 

Martin Tomas Benavides: Variability in coastal shark populations across multiple spatiotemporal 

scales 

(Under the direction of F. Joel Fodrie) 

 

Variability across spatiotemporal scales has been recognized by ecologists as a fundamental 

issue in understanding ecosystem dynamics. Sharks emerged as a conservation concern as their 

populations declined and their influence on marine ecosystem dynamics became apparent. 

Efforts to better manage and understand shark populations and their response to anthropogenic 

pressures have been hindered by a lack of understanding of patterns across multiple scales of 

time and space. This dissertation aimed to describe patterns of variability in coastal shark 

populations across multiple spatiotemporal scales.  

Chapter 1 exploits a 45-year time series of shark monitoring to describe patterns of 

seasonality in the coastal shark community in Onslow Bay, North Carolina, and how seasonality 

shifted over long timescales (interannual-decadal). Seasonal turnover in coastal shark community 

composition was correlated with temperature changes, with spring/autumn species appearing 

first and subsequently being replaced by summer species before appearing again in autumn; both 

transitions occurred at approximately 25 °C. On interannual scales, this seasonal pattern was 

overshadowed by increases in abundance of the Atlantic sharpnose shark (Rhizoprionodon 

terraenovae), a non-seasonal species caught during all months of sampling. Chapter 2 utilizes the 

long-term data set to investigate within-species size structure over four decades. My analyses 

suggest declining trends in size for all species analyzed, with the strongest evidence for size
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declines in two small coastal shark species, Atlantic sharpnose shark and blacknose shark 

(Carcharhinus acronotus). These results provide insight on assemblage-level responses to 

anthropogenic pressure via environmental or genetic mechanisms. 

Chapter 3 employs acoustic telemetry to decipher bonnethead shark (Sphyrna tiburo) 

movement and behavior (e.g., residency and habitat use) over multiple spatiotemporal scales. My 

results suggest individual bonnethead sharks show fidelity across years to specific areas within 

estuaries in North Carolina and Georgia during seasonal residency and have affinity for areas 

nearest inlets. Finally, Chapter 4 evaluates shark detection probabilities from aerial drone surveys 

and how these were affected by environmental conditions in a temperate estuary. Shark detection 

from drone surveys was most influenced by depth, wind speed, and time of day; the highest 

detection probabilities occurred at shallow depth, low wind speed, and mid-day flight times. 



 

v 

ACKNOWLEDGEMENTS 

 

Many people influenced this work, too many to make an exhaustive list possible. First and 

foremost, I would like to thank my advisor and mentor Joel Fodrie, whose incisive intellect and 

patient guidance I depended on to complete this process. I thank my committee members Pete 

Peterson, Steve Fegley, Johanna Rosman, and Nate Bacheler for their thoughtful comments that 

helped focus my dissertation research and develop my thinking as a scientist. I thank my 

collaborators Matt Kenworthy, Jeb Byers, Dave Johnston, Amy Yarnall, and Giada Bargione for 

their critical assistance with fieldwork and data analysis for my dissertation chapters. I thank 

others who have been immensely helpful in the field or with data sharing/processing, specifically 

Danielle Keller, Shelby Ziegler, Max Tice-Lewis, Mayor Rett Newton, Julian Dale, Jacob 

Krause, Connor Neagle, Austin Moore, and Cameron Luck. 

Over the years many have contributed to the UNC-IMS shark survey program and without 

them this dissertation would not have been possible, above all Dr. Frank Schwartz, whose 

visionary efforts established the survey and oversaw it for nearly its entirety. I also thank 

Captains John Purifoy and Stacy Davis who ran the survey trips during my tenure at UNC-IMS, 

as well as the UNC-IMS shop crew who ran the gear: Glenn Safrit, Claude Lewis, and Phil 

Herbst. There were also innumerous undergraduate students, interns, and outside volunteers who 

assisted me, for which I am deeply grateful. 

I was funded for most of my graduate tenure at UNC-IMS through a doctoral scholarship 

awarded to me by the Peruvian National Council for Science and Technology (CONCYTEC),



 

vi 

without which this research would not have been possible. I am also grateful to the UNC 

Department of Marine Sciences for their support during the admissions process and providing 

funding during the last year of my dissertation research. Specifically, I would like to thank Marc 

Alperin, who was instrumental in navigating the admissions process, which was perhaps 

uniquely challenging for me due to my scholarship. The UNC-IMS shark survey was funded in 

its early years by the Carolina Power & Light Company and throughout by the University of 

North Carolina. I am also grateful to the North Carolina Aquarium Society for funding my 

research on bonnethead movement and drone surveys. I thank the Atlantic Cooperative 

Telemetry Network and the FACT Network, and the many members of these networks who 

shared acoustic telemetry data with me that greatly increased the spatial coverage of my 

bonnethead tracking efforts. 

Finally, I thank my family, who provided endless love and support that helped me through 

this experience.



 

vii 

ix 

x 

xii 

1 

5 

 

8 

8 

10 

10 

11 

14 

16 

20 

 

35 

35 

38 

38 

39 

TABLE OF CONTENTS 

 

LIST OF TABLES ……………………………………………………………………………... 

LIST OF FIGURES ……………………………………………………………………………. 

LIST OF ABBREVIATIONS AND SYMBOLS ………………………………………………. 

INTRODUCTION ……………………………………………………………………………... 

References ....……………………………………………………………………………….. 

CHAPTER 1: TEMPORAL PATTERNS OF COASTAL SHARK  

COMMUNITY STRUCTURE IN ONSLOW BAY, NORTH CAROLINA ………………….... 

Introduction ....…………………………………………………………………………….... 

Methods …………………………………………………………………………………….. 

Field Sampling ………………………………………………………………………….. 

Data Analysis ………………………………………………………………………….... 

Results …………………………………………………………………………………….... 

Discussion ………………………………………………………………………………….. 

References …………………………………………………………………………………... 

CHAPTER 2: SIZE CHANGES WITHIN A SOUTHEAST UNITED 

STATES COASTAL SHARK ASSEMBLAGE: 1975-2018 ………………………………….... 

Introduction ………………………………………………………………………………..... 

Methods ……………………………………………………………………………………... 

Field Sampling ………………………………………………………………………….. 

Data Analysis ……………………………………………………………………………



 

viii 

42 

44 

51 

 

61 

61 

63 

63 

64 

66 

68 

74 

 

91 

91 

93 

93 

94 

95 

97 

98 

100 

105 

Results …………………………………………………………………………………….. 

Discussion ………………………………………………………………………………… 

References ………………………………………………………………………………… 

CHAPTER 3: SEASONAL RESIDENCY AND MOVEMENT 

PATTERNS OF BONNETHEAD SHARKS (SPHYRNA TIBURO) IN 

NORTH CAROLINA AND GEORGIA ESTUARIES ……………………………………….. 

Introduction ……………………………………………………………………………….. 

Methods ....………………………………………………………………………………… 

Field Sampling ………………………………………………………………………... 

Data Analysis ………………………………………………………………………….. 

Results …………………………………………………………………………………….. 

Discussion ………………………………………………………………………………… 

References ………………………………………………………………………………… 

CHAPTER 4: SHARK DETECTION PROBABILITY FROM AERIAL 

DRONE SURVEYS WITHIN A TEMPERATE ESTUARY …………………………………. 

Introduction ……………………………………………………………………………….. 

Materials and Methods ....…………………………………………………………………. 

Shark Decoys ………………………………………………………………………….. 

Drone Flights ………………………………………………………………………….. 

Image Assessments ……………………………………………………………………. 

Data Analysis ………………………………………………………………………….. 

Results …………………………………………………………………………………….. 

Discussion ……………………………………………………………………………….... 

References ……………………………………………………………………………….... 

  



 

ix 

24 

26 

27 

55 

77 

78 

79 

80 

81 

109 

110 

 

LIST OF TABLES 

 

Table 1.1 - Annual summary of UNC-IMS shark survey ……………………………………... 

Table 1.2 - Summary of coastal shark species ………………………………………………… 

Table 1.3 - Summary of seasonality for 12 focal species ……………………………………... 

Table 2.1 - Size change summary for 12 focal species ………………………………………... 

Table 3.1 - Summary of 21 bonnethead sharks from NC ……………………………………... 

Table 3.2 - Summary of 16 bonnethead sharks from GA ……………………………………... 

Table 3.3 - Summary of ocean excursions for NC bonnethead sharks ………………………... 

Table 3.4 - Summary of NC bonnethead shark detections from other arrays …………………. 

Table 3.5 - Summary of GA bonnethead shark detections from other arrays …………………. 

Table 4.1 - Summary of drone flight conditions ………………………………………………. 

Table 4.2 - Summary of treatment factor-level combinations …………………………………. 

 

  



 

x 

28 

29 

30 

31 

32 

33 

34 

57 

58 

59 

60 

82 

83 

84 

85 

86 

87 

88 

89 

111 

112 

113 

LIST OF FIGURES 

 

Figure 1.1 - Annual CPUE scatterplots for 12 focal species ………………………………….. 

Figure 1.2 - Heat map of CPUE index for 12 focal species …………………………………… 

Figure 1.3 - Mean SST records aggregated by month ………………………………………… 

Figure 1.4 - CPUE by SST scatterplots for 12 focal species ………………………………….. 

Figure 1.5 - nMDS plot of daily mean CPUE …………………………………………………. 

Figure 1.6 - nMDS plot of annual mean CPUE ……………………………………………….. 

Figure 1.7 - Frequency of occurrence stacked barplots from monthly mean CPUE ………….. 

Figure 2.1 - Index of maximum FL for 12 focal species across years ………………………… 

Figure 2.2 - Mean FL for 12 focal species across years ……………………………………….. 

Figure 2.3 - Median FL for 12 focal species across years …………………………………….. 

Figure 2.4 - Stacked barplots of annual length frequency distribution for 12 focal species …... 

Figure 3.1 - Map of NC telemetry array ………………………………………………………. 

Figure 3.2 - Map of GA telemetry array ………………………………………………………. 

Figure 3.3 - NC detections over time ………………………………………………………….. 

Figure 3.4 - GA detections over time ………………………………………………………….. 

Figure 3.5 - NC detections by distance from Beaufort Inlet …………………………………... 

Figure 3.6 – NC hydrophones by distance from Beaufort Inlet………………………………... 

Figure 3.7 - nMDS plot of bonnethead sharks in NC array …………………………………… 

Figure 3.8 - nMDS plot of bonnethead sharks in GA array …………………………………… 

Figure 4.1 - Photograph of live bonnethead (bottom left corner) and bonnethead decoy…….... 

Figure 4.2 - Map of drone flight study area ………………………………………………….... 

Figure 4.3 - Factor-level comparisons of decoy detection probabilities ..……………………... 



 

xi 

Figure 4.4 - Regression tree …………………………………………………………………... 114  



 

xii 

LIST OF ABBREVIATIONS AND SYMBOLS 

 

BOFFFF Big old fat fecund female fish 

CPUE  Catch per unit effort 

df  Degrees of freedom 

FL  Fork length 

FLa  Florida 

GA  Georgia 

L90%  90th percentile of fork length 

N  Number or sample size 

NC  North Carolina 

NIR  Near-infrared filter 

nMDS  Non-metric multidimensional scaling 

NOAA  National Oceanic and Atmospheric Administration 

p  Probability value 

r2  Coefficient of determination 

RE  Red-edge filter 

RGB  Regular filter 

SC  South Carolina 

SE  Standard error 

SST  Sea surface temperature 

TL  Total length 

UNC-IMS University of North Carolina Institute of Marine Sciences 

UAS  Unoccupied aircraft system 



 

xiii 

US  United States 

Χ2  Chi-square value 

Z  Z value



 

 

1 

INTRODUCTION 

 

Biological oceanographers have long been aware of the importance of understanding 

variability across a spectrum of spatiotemporal scales as a fundamental issue in marine 

ecological dynamics, first illustrated by Stommel (1963). In deed the concept of pattern and scale 

in understanding organismal and environmental variability has become a unifying concept in 

ecology (Haury et al. 1978; Steele 1978; Vance and Doel 2010). An integrated approach to 

understanding marine ecosystem dynamics emerged, one that coupled the study of biological and 

physical processes of the oceans across scales (Legendre and Demers 1984). For example, in 

Legendre (1981), the alternation of stabilization and destabilization of the water column was 

proposed as a hydrodynamic mechanism conducive to enhancing primary productivity in an 

estuarine system, accounting for the variability documented on annual scales, such as the spring 

bloom and subsequent phytoplankton growth (Gilmartin 1964) , as well as small-scale turbulence 

(Savidge 1981). Importantly, however, this tight coupling of biological processes to physical 

processes for phytoplankton appears to break down at longer timescales (interannual to 

multidecadal), suggesting the increased variability on these timescales is under the control of 

other physical mechanisms or perhaps biological mechanisms such as zooplankton grazing 

(Barton et al. 2015). 

 For zooplankton, the pattern appears to be somewhat opposite, showing increases in 

variability relative to their resource (phytoplankton) at the finer scales (Mackas et al. 1985; 
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Weber et al. 1986; Levin 1992). Steele (1978) used the time and space scales of lifespan as a 

simplistic representation of relevant scales for trophic levels, including phytoplankton, 

zooplankton and fish. While useful for illustrating the conceptual problem of observational scale 

in resolving pattern at successively higher trophic levels, this simplistic depiction may not 

always be an accurate representation of true trophic dynamics of the system, which could cause 

the coupling of physical forcing and biological response to occur on widely divergent scales 

(Denman 1994). Moreover, as recognized by Haury et al. (1978) through the use of a variable 

time scale in the definition of ambit for long-lived organisms, pattern and its relationship to 

physical processes will vary depending on the temporal scale of the biological process of interest 

(e.g., daily foraging, annual migrations, lifetime distribution). For instance, in their study of scale 

dependent processes of marine birds, Hunt and Schneider (1987) showed that the distribution of 

birds on meso- to mega-scales (100 - 3,000 km+) is closely related to the presence and 

periodicity of upwelling systems (Brown 1979). Conversely, on the coarse-scale (1 – 100 km), 

concentrations of seabirds appear to be poorly correlated with conditions related to upwelling 

water masses (see Abrams and Griffiths 1981), with patchiness hypothesized to be related to 

species-specific responses such as prey preferences and foraging strategy (Schneider and Duffy 

1985). 

Sharks are one group of long-lived marine megafauna that have life history adaptations, such 

as slow growth and late maturity, that make them vulnerable to overexploitation and bycatch 

mortality (Musick 1999). This group has been given increasing conservation attention as 

populations have declined and due to their role as apex predators structuring marine food webs. 

In marine ecosystems, sharks can also serve as important indicators for responses to ecological 

disturbance as a result of their trophic position and relatively sensitive life history characteristics 
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(Fulton et al. 2005). Efforts to assess shark populations have been hindered by a paucity of 

quantitative information and the challenge of reconciling information on a number of relevant 

spatiotemporal scales to represent species dynamics  accurately (Dulvy et al. 2008; Pilling et al. 

2009). Understanding patterns in variability of shark populations across a spectrum of 

spatiotemporal scales is critical if we are to properly assess and conserve these species; this 

variability may also serve as a record of ecosystem responses to increasing anthropogenic 

pressures occurring over a range of scales in time and space. Only one published study has 

explicitly looked at variability across a broad range of spatiotemporal scales in a shark species, 

Cetorhinus maximus, which examined correlations of surface sightings with environmental 

parameters and found basking shark distribution to be determined largely by zooplankton 

abundance at local scales, whereas at larger scales it was significantly correlated with thermal 

boundaries characteristic of tidal and shelf-break fronts (Cotton et al. 2005). 

Sharks are a group of large, mobile, and generally uncommon species that can make 

predicting absolute densities from any single survey approach nearly impossible. An increasing 

array of emergent technologies can be used in combination with traditional survey approaches to 

provide new insights in investigations of almost every aspect of shark biology (Carrier et al. 

2018). Moreover, each survey approach is particularly suited for sampling at specific scales in 

time and space. By combining survey approaches there is the potential to synthesize information 

across spatiotemporal scales. As an example, traditional fishing surveys, suited for gathering 

long-term data at specific locations, can be combined with acoustic or satellite tracking data that 

provide potentially greater spatial coverage.  

This dissertation investigated patterns in variability of coastal shark populations across 

multiple spatiotemporal scales using a combination of observational studies and manipulative 
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field experiments. Chapters 1 & 2 both utilize the long-term dataset from the University of North 

Carolina at Chapel Hill Institute of Marine Sciences (UNC-IMS) shark survey. Chapters 3 & 4 

use acoustic telemetry and drone surveys, respectively, as part of a two-year effort to study 

bonnethead sharks (Sphyrna tiburo) in both North Carolina (NC) and Georgia (GA) estuaries. 

Chapter 1 focuses on seasonal patterns of the coastal shark community and how these patterns 

changed on decadal timescales. Chapter 2 focuses on within-species size changes at interannual 

and decadal timescales. Chapter 3 examines the residency and distribution of bonnethead sharks 

along the southeast United States (US) Atlantic coastline over multiple spatiotemporal scales. 

Finally, Chapter 4 assesses detection probabilities from drone surveys for sharks in temperate 

estuaries and the effects of different environmental variables on these detection probabilities. 
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CHAPTER 1: TEMPORAL PATTERNS OF COASTAL SHARK COMMUNITY 

STRUCTURE IN ONSLOW BAY, NORTH CAROLINA 

 

 

Introduction 

 

Understanding how biological communities are organized in time and space and how these 

patterns are related across scales is perhaps one of the most fundamental challenges for both 

theoretical and applied ecology (Levin 1992). With increasing global change brought about by 

anthropogenic pressures such as overexploitation and climate change, being able to detect shared 

patterns of variation in biological communities and extrinsic influences is an important first step 

in predicting consequences of these influences (McGowan 1990). Due to their ability to provide 

historical context or baselines, long-term data sets provide unique insight for disentangling the 

effects of anthropogenic effects operating on both global scales (e.g., climate change) and local 

or regional scales (e.g., overfishing), as well as segregating these effects from natural changes 

(Mieszkowska et al. 2014). Discerning the effects of human pressures, often coupled across 

scales, is complicated, as illustrated by recent studies suggesting a synergistic effect of climate 

and exploitation, with top predator removal and concurrent climate change causing complex and 

cascading top-down effects (Kirby et al. 2009; Planque et al. 2010). In marine ecosystems, 

sharks could serve as important indicators for system-wide responses to ecological disturbance as 

a result of their trophic position and relatively sensitive life history characteristics (Fulton et al. 

2005).  

Most shark species show patterns of seasonal migrations as a life history adaptation, which is 

thought to be related to reproduction, shifting prey distributions, and seasonal changes in water 
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temperatures (Springer 1967; Bres 1993; Heithaus 2004; Knip et al. 2010; Schlaff et al. 2014). 

For coastal shark species in the Atlantic, these migrations can range up to 3,800 km, a distance 

traveled by the dusky shark (Carcharhinus obscurus) between the waters off of Long Island, 

New York and the southwestern Gulf of Mexico (Casey and Kohler 1991). Of the 33 species of 

Atlantic sharks tagged as part of the National Marine Fisheries Service’s Cooperative Shark 

Tagging Program between 1962-1993, only the Greenland shark (Somniosus microcephalus) 

showed no evidence of migration from tag recaptures (Kohler et al. 1998). Understanding coastal 

shark migrations, and in particular the seasonal windows associated with these migrations, is 

critical to proper implementation of stock management (Bonfil 1997). Unfortunately, in many 

instances this information is lacking, depriving management agencies of the information required 

to coordinate local and regional management efforts (Speed et al. 2010). 

Establishing temporal patterns in coastal shark community structure across seasonal, 

interannual, and decadal scales can be used as a baseline for evaluating the effects of 

anthropogenic disturbances, such as climate change and fishing pressure, as well as aid in 

predicting the consequences of these disturbances to inform future management decisions. To 

that end, I used data from a 46-year shark monitoring program to explore temporal patterns of 

coastal shark community composition through a combination of univariate and multivariate 

analyses. The objectives of this study were to 1) investigate temporal patterns in coastal shark 

community structure of Onslow Bay, North Carolina across seasonal, interannual and decadal 

scales, and 2) examine any correlations of community structure with temperature changes 

throughout the survey period. 
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Methods 

Field Sampling 

To assess temporal variation in coastal shark community assemblage, I used species-specific 

time series data generated during the course of a 1973-2018 fishery independent shark survey in 

Onslow Bay. The survey was conducted by the University of North Carolina at Chapel Hill’s 

Institute of Marine Sciences (UNC-IMS) and since its inception, the UNC-IMS shark survey has 

employed standardized longline sampling gear at two fixed stations in Onslow Bay: 4 km 

(34.6338°N, 76.6306°W, 15 m depth) and 13 km (34.5512°N, 76.6237°W, 17 m depth) southeast 

of Beaufort Inlet. During each deployment at each station, a 7.6 mm braided nylon longline 

extended 1 km, with gangion lines attached to the mainline at every 10 m (N = 100). Each 

gangion consists of a 1.8 m long, #2-chain leader and a 9/0 Mustad tuna J hook. Polyball buoys 

are attached between every 10 gangions (100-m separation), allowing the longline gear to fish 

the entire water column at each station. 

In addition to standardized gears and stations, consistent deployment methods have been 

used since the first sets were made in 1973. Survey trips are conducted biweekly, between April 

and November each year, on 10-15-m research vessels operated by UNC-IMS. A demersal trawl 

is used at the start of each survey day to collect bait (e.g., spot Leiostomus xanthurus, Atlantic 

croaker Micropogonias undulatus), which are attached subsequently through the operculum onto 

hooks (one fish per hook). Longline deployment occurs between 0800 and 1300 hours, with the 

gear soaking for one hour during each set. Efforts are made to deploy at each station on each 

scheduled survey day (weather dependent), and the inshore set is typically, but not always, made 

first. Environmental variables (sea surface temperature [SST], wind conditions, tide, and sea 

state) are recorded for each set. All captured sharks are identified to species, sexed, and measured 
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for fork length (FL) and total length to the nearest mm. Live individuals are outfitted with an 

external dart tag and returned to the water (~90% of catch). The survey is conducted under UNC-

IMS Institutional Animal Care and Use Committee protocol 19-137.0. 

 

Data Analysis 

I selected 12 of the 21 shark species caught in the survey for seasonality analyses generally 

based on large overall sample sizes (N > 100 individuals captured): blacknose shark 

(Carcharhinus acronotus), spinner shark (Carcharhinus brevipinna), silky shark (Carcharhinus 

falciformis), finetooth shark (Carcharhinus isodon), blacktip shark (Carcharhinus limbatus), 

dusky shark, sandbar shark (Carcharhinus plumbeus), smooth dogfish (Mustelus canis), Atlantic 

sharpnose shark (Rhizoprionodon terraenovae), and scalloped hammerhead shark (Sphyrna 

lewini). Two species had lower sample sizes (bull shark Carcharhinus leucas, N = 26; tiger shark 

Galeocerdo cuvier, N = 46), but were added due to being large coastal sharks of general public 

interest. For each focal species, I evaluated catch per unit effort (CPUE) from all samples with 

non-zero catch (due to zero-inflation) as a function of day of year, as well as SST measurements 

taken during the survey, to reveal any seasonal trends or correlation with SST in the catch data. 

Visual inspection of abundances allowed me to categorize species for seasonality as 

spring/autumn (bimodal annual peaks in CPUE with absence during summer months) or summer 

(single annual peak in CPUE during summer months). Monthly mean CPUE values were 

computed for each of the 12 focal species across all years, and the maximum value identified for 

each species. I used these maxima to generate a ratio for each month, which was the proportion 

of the maximum monthly mean CPUE that each month represented. This ratio ranged from 0 to 

1, with 0 representing a month where no sharks were caught and 1 representing the month with 
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the maximum mean CPUE value. This index was examined across the 12 focal species to look 

for patterns of seasonal succession or turnover in community assemblage. 

To better understand how temperatures might be associated with different months of the year, 

I explored mean SST as a function of month. I also fit Gaussian curve models to CPUE data as a 

function of SST, using the ‘nls2sol’ algorithm from the Port library 

(https://netlib.sandia.gov/port/), to determine how the appearance or disappearance of particular 

species might be related to seasonal temperature changes. These models were used to calculate 

the inflection points (mean + 1 standard deviation) to infer temperatures associated with periods 

of entrance and exit for each species. Only the lower-temperature inflection point was utilized for 

non-seasonal and summer seasonal species since they both entered and exited during colder 

temperatures. Conversely, for spring/autumn seasonal species, both inflection points were 

utilized, since they first exited as waters warmed in summer, returning again in milder autumn 

months before their final exit. Model fit was assessed visually and using p-values of t-tests for 

model parameters (mean, standard deviation). Models that failed to converge, surpassed a p-

value of 0.1 for any parameter, or failed to accurately represent the data based on visual 

inspection (i.e., where a majority of data points fell outside the range of the Guassian curve) 

were not utilized. 

Catch data for all 21 species caught in the survey were aggregated into a species by set 

matrix with CPUE values calculated for each set and species as sharks per 100 hooks. I further 

aggregated samples by day (i.e., both inshore and offshore sets) as well as by year, separately, as 

mean CPUE values, to analyze seasonal and interannual community structure and potential 

correlation with SST. I chose to include only days in which two longline sets were conducted and 

a SST measurement was taken for daily aggregations, to remove the effects of differences in 
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effort between days and allow for correlation with SST. For both daily and yearly aggregations I 

calculated mean SST across longline sets within each grouping, for use in correlation analyses. 

The daily and annual mean CPUE data were then examined by non-metric multidimensional 

scaling (nMDS) analyses using the R package vegan (Oksanen et al. 2019), to examine patterns 

of community dissimilarity across multiple timescales free of assumptions of normality or other 

specific underlying distributions that constrain many other multivariate analyses. I performed a 

Wisconsin double standardization on the data, which first standardized CPUE values by each 

species’ observed maximum, followed by sample (i.e., daily or annual aggregations) total 

maximum. This allowed for a uniform basis for comparison, such that values for each species 

indicated relative contribution to the sample aggregate, in relation to its maximum contribution 

in the entire series (Bray and Curtis 1957). I excluded extremely rare species (i.e., 3 individuals 

or less over the entire survey interval, leaving a total of 15 species), which have considerably 

lower information content and could become over-weighted by the standardization, causing 

spurious results (Cao et al. 2001). I then constructed a dissimilarity matrix using the Bray-Curtis 

distance metric, which is widely used in analysis of community data, due to its robustness and 

ability to capture important assemblage relationships having ecological relevance (Faith et al. 

1987; Clarke et al. 2006). To further examine potential drivers of seasonal variation, I calculated 

and plotted species weighted average scores onto the daily nMDS plot, as well as fitting a vector 

for which changes in SST are most correlated with the ordination structure. Each data point was 

color coded by day of year to examine potential seasonal patterns. For the annual nMDS plot I 

defined clusters with 10% similarity, to examine where breaks in community structure occurred 

on interannual scales. 
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To examine for changes in seasonal community assemblage on decadal time scales, I parsed 

CPUE data, using the clusters from my annual mean CPUE nMDS analysis. These data were 

then aggregated as mean CPUE, binned by month, and frequency of occurrence was calculated 

for each species as the proportion of the total monthly mean CPUE across species. All statistical 

analyses were performed in R (R Core Team 2016). 

 

Results 

The UNC-IMS shark survey database consisted of a total of 596 trips with 1,134 longline sets 

made using 142,505 baited hooks and 9,266 individual sharks captured across 21 species (Table 

1.1). Atlantic sharpnose shark, blacknose shark, dusky shark, and blacktip shark were 

numerically dominant in terms of raw abundance, representing 77% of the catch (Atlantic 

sharpnose shark – 40%, blacknose shark – 16%, dusky shark – 11%, blacktip shark – 10%). 

Individuals from the 21 species caught in the survey ranged in size from 215-2860 mm in FL and 

represented eight distinct management groupings (Table 1.2).  

The majority of the 12 focal species caught in the survey exhibited a summer seasonal 

pattern (single annual peak in CPUE during summer months): blacknose shark, blacktip shark, 

bull shark, finetooth shark, scalloped hammerhead shark, spinner shark, and tiger shark. Four of 

the remaining species were bimodal in abundance with spring/autumn peaks: dusky shark, 

sandbar shark, silky shark, and smooth dogfish. Only Atlantic sharpnose shark was categorized 

as non-seasonal (Table 1.3; Figure 1.1). Overall, the pattern of seasonality in CPUE indices 

among the 12 focal species was characterized by early catches (April-May) of spring/autumn 

species, along with Atlantic sharpnose shark, before the appearance of summer species in June. 
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Spring/autumn species were mostly absent from catches during July and August, before 

reappearing in September or October (Figure 1.2). 

Monthly mean temperatures first climbed from 17.6 °C in April to 28 °C in August, before 

dropping back to 18.7 °C by November (Figure 1.3). Patterns of CPUE as a function of SST were 

similar among species, with all focal species exhibiting unimodal distributions of CPUE, 

although the temperature at which these peaks occurred, as well the distribution of points along 

the temperature axis varied (Figure 1.4). Entrance and exit periods for spring/autumn species 

were associated with temperatures of 14.2-17.2 °C for first entrance and last exit, as well as 21.3-

26.4 °C for first exit and second entrance (p < 0.01), although the model for silky shark was 

rejected upon visual inspection of model fit to data. Summer species (excluding bull shark and 

tiger shark) displayed entrance and exit temperatures of 19-27.3 °C, although model fit was not 

statistically clear in the case of blacktip shark and spinner shark (p < 0.1). Models for tiger shark 

and bull shark were rejected due to failure to converge and lack of statistical clarity (p > 0.5), 

respectively (Table 1.3).  

Community structure based on multivariate analysis of daily mean CPUE resulted in 

temporal patterns on both seasonal (shapes of points) and interannual (color of points) time 

scales, which could be related to specific species based on weighted average scores (Figure 1.5). 

Temperature was clearly correlated with dissimilarity in community structure along the first and 

second order axes (r2 = 0.37; p = 0.001; Figure 1.5). For community structure based on 

multivariate analysis of annual mean CPUE there were two clusters defined at the 10% similarity 

level, which was the level of similarity that gave the most informative split between clusters, 

since greater similarity resulted in single- or two-year clusters only. The first cluster included the 

years 1973-1989, while the second cluster included the years 1990-2018 (Figure 1.6).   
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 Community assemblage was dominated by spring/autumn and summer species during the 

early years of the survey that corresponded to the first nMDS cluster group (1973-1989). During 

the years corresponding to the second nMDS cluster (1990-2018) Atlantic sharpnose shark 

became the dominant species in all months except April, which was still dominated by smooth 

dogfish (Figure 1.7).  

 

Discussion 

This study analyzed the longest running shark survey program conducted on the US Atlantic 

coast to characterize temporal patterns in a diverse assemblage of sharks across multiple time 

scales and establish a baseline for future studies. Moreover, my analyses show that community 

structure is correlated with temperature changes on seasonal and perhaps interannual time scales. 

These data also provide a window into long-term change in the coastal shark community of 

Onslow Bay, showing an already altered baseline and the potential for future shifts in seasonal 

community composition as a result of climate change. 

Coastal shark community structure is correlated to temperature on seasonal time scales. The 

statistical clarity (p < 0.005) of SST vector fitting to nMDS structure for daily mean CPUE 

values indicates that temperature is correlated with seasonal changes in community structure 

(Figure 1.5). Species scores for the 12 focal species in the daily nMDS plot also appeared to 

separate into groups along the axis for SST in a manner consistent with seasonal categories or 

temperature preferences (Table 1.3; Figure 1.5). For example, summer species (i.e., blacknose 

shark, blacktip shark, bull shark, finetooth shark, scalloped hammerhead shark, spinner shark, 

tiger shark) were grouped together at higher x and lower y values, which correlates with higher 

SST values. Temperature has been implicated as a driving force for structuring coastal shark 
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community structure and distribution patterns, which this study supports (Ulrich et al. 2007; 

Froeschke et al. 2010; Ward-Paige et al. 2015; Plumlee et al. 2018). 

CPUE annual patterns of the 12 focal species revealed a transition between spring/autumn 

and summer species at a threshold of approximately 25 °C. The patterns revealed in the 

individual species scatterplots of CPUE as a function of time (day of year), as well as the 

monthly CPUE indices for all 12 species, suggest there is clearly definable seasonal turnover in 

the community assemblage (Figures 1.1 & 1.2). This appears to be correlated to temperature, as 

indicated by the calculations of periods of entrance and exit for each species as a function of 

SST, which align with the range of monthly mean temperatures during months that each species 

is observed (Table 1.3; Figures 1.1 & 1.3). Furthermore, the range of temperatures associated 

with periods of first exit in spring/autumn species (21.3-26.4 °C) roughly coincides with the 

range of temperatures associated with periods of entrance for summer species (19-27.3 °C), with 

a majority of the species turnover having taken place when temperatures reach 25-26 °C (Table 

1.3). Whereas previous work found that spring/autumn species (e.g., sandbar sharks) remained 

throughout summer months, I found that they were absent, which could be caused by differing 

sampling methodologies, with other studies sampling estuarine waters (Schwartz 2003; Ulrich et 

al. 2007; Drymon et al. 2010). Temperature thresholds have been hypothesized to stimulate 

migration in coastal sharks, often to or from nursery areas in estuarine waters, which may 

explain the discrepancy in results for sandbar sharks (e.g., Grubbs et al. 2007; Heupel 2007). 

Here, I document long-term changes to the coastal shark community, taking place across 

multiple temporal scales, while also highlighting the potential for future shifts in community 

structure as a result of climate change. Interannual community composition analyses suggest that 

perhaps species that have increased in abundance (i.e., Atlantic sharpnose shark) during the 
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survey period could continue to be numerically dominant (Figures 1.6 & 1.7). Two other meta 

analyses of survey data from these regions found population increases in Atlantic sharpnose 

shark on decadal timescales and attributed these to mesopredatory release as a result of the 

overfishing of large coastal sharks and implementation of bycatch reduction devices, 

mechanisms which could explain the dominance of this species (Myers et al. 2007; Peterson et 

al. 2017). In that context, the results of this study underscore the need for future, targeted studies 

to resolve potential causes of the rise in Atlantic sharpnose shark populations. Concurrently, I 

suggest clues to predicting future shifts as a result of climate change can be found on seasonal 

time scales, where if observed seasonal migration onsets/endpoints correlated with temperature 

changes continue to hold, I would hypothesize that all species would begin to show up slightly 

earlier in the year and stay later as water temperatures warm earlier and stay warm later. This 

could favor summer species to become more numerically dominant, as they expand their 

seasonal presence.  

Several assumptions guided the interpretation of my results related to CPUE as a measure of 

shark abundance. CPUE has been called into question as a measure of abundance, particularly 

from commercial and recreational fisheries. The use of standardized fishery-independent data 

from a research survey, however, as in this study, is less susceptible to biases associated with 

fishery-dependent CPUE data (Harley et al. 2001). Catchability, which is the coefficient relating 

CPUE to abundance, has also been shown to vary over time and may be related to various 

environmental variables, including water temperature (Ward 2008). While I acknowledge this 

may influence estimates of abundance, it is unlikely that this variability would be driving the 

seasonal patterns since examining monthly percent presence for each species showed similar 

seasonal patterns to those reported here. Due to the large number of samples with zero catch for 
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each species I chose to remove zero-catch data when examining seasonal patterns in the 12 focal 

species. I also used the delta approach, however, modeling presence/absence and abundance data 

separately and then combining these estimates (sensu Serafy et al. 2007), and seasonal patterns 

were nearly identical to those reported here when incorporating zero-catch data. 

By describing patterns of community structure of coastal sharks in Onslow Bay across 

temporal timescales, the present study both provides a baseline for future studies and evidence of 

long-term shifts that could inform future management efforts. Peterson et al. (2017) suggested 

past management efforts may have led to a recovery of coastal sharks that were overexploited; in 

that context, the temporal patterns of coastal shark community structure documented here serve 

as a record by which to judge ongoing recovery. My study is also an important first step in 

monitoring future assemblage shifts to tease apart the influences of harvest and climate change.  



 

 

20 

 

REFERENCES 

 

Bonfil, R. 1997. Status of shark resources in the southern Gulf of Mexico and Caribbean: 

implications for management. Fisheries Research 29(2):101–117. 

Bray, J. R., and J. T. Curtis. 1957. An ordination of the upland forest communities of southern 

Wisconsin. Ecological Monographs 27(4):325–349. 

Bres, M. 1993. The behaviour of sharks. Reviews in Fish Biology and Fisheries 3(2):133–159. 

Cao, Y., D. P. Larsen, and R. S.-J. Thorne. 2001. Rare species in multivariate analysis for 

bioassessment: some considerations. Journal of the North American Benthological Society 

20(1):144–153. 

Casey, J. G., and N. E. Kohler. 1991. Long distance movements of Atlantic sharks. Pages 87–91 

in S. H. Gruber, editor. Discovering sharks, 1st edition. American Littoral Society, 

Highlands, NJ. 

Clarke, K. R., P. J. Somerfield, and M. G. Chapman. 2006. On resemblance measures for 

ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis 

coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 

330(1):55–80. 

Drymon, J. M., S. P. Powers, J. Dindo, B. Dzwonkowski, and T. A. Henwood. 2010. 

Distributions of sharks across a continental shelf in the northern Gulf of Mexico. Marine 

and Coastal Fisheries 2(1):440–450. 

Faith, D. P., P. R. Minchin, and L. Belbin. 1987. Compositional dissimilarity as a robust measure 

of ecological distance. Vegetatio 69(1–3):57–68. 

Froeschke, J., G. Stunz, and M. Wildhaber. 2010. Environmental influences on the occurrence of 

coastal sharks in estuarine waters. Marine Ecology Progress Series 407:279–292. 

Fulton, E. A., A. D. M. Smith, and A. E. Punt. 2005. Which ecological indicators can robustly 

detect effects of fishing? ICES Journal of Marine Science 62(3):540–551. 



 

 

21 

 

Grubbs, R. D., J. A. Musick, C. L. Conrath, and J. G. Romine. 2007. Long-term movements, 

migration, and temporal delineation of a summer nursery for juvenile sandbar sharks in the 

Chesapeake Bay region. American Fisheries Society Symposium 50:87–107. 

Harley, S. J., R. A. Myers, and A. Dunn. 2001. Is catch-per-unit-effort proportional to 

abundance? Canadian Journal of Fisheries and Aquatic Sciences 58: 1760–1772. 

Heithaus, M. R. 2004. Predator-prey interactions. Pages 487–521 in J. C. Carrier, J. A. Musick, 

and Heith, editors. Biology of sharks and their relatives. CRC Press LLC, Boca Raton, FL. 

Heupel, M. R. 2007. Exiting Terra Ceia Bay: examination of cues stimulating migration from a 

summer nursery area. American Fisheries Society Symposium 50:265–280. 

Kirby, R. R., G. Beaugrand, and J. A. Lindley. 2009. Synergistic effects of climate and fishing in 

a marine ecosystem. Ecosystems 12(4):548–561. 

Knip, D., M. Heupel, and C. Simpfendorfer. 2010. Sharks in nearshore environments: models, 

importance, and consequences. Marine Ecology Progress Series 402:1–11. 

Kohler, N. E., J. G. Casey, and P. A. Turner. 1998. NMFS cooperative shark tagging program, 

1962-93: an atlas of shark tag and recapture data. Marine Fisheries Review 60(2):1. 

Levin, S. A. 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur Award 

lecture. Ecology 73(6):1943–1967. 

McGowan, J. A. 1990. Climate and change in oceanic ecosystems: the value of time-series data. 

Trends in Ecology and Evolution 5(9):293–299. Elsevier Current Trends. 

Mieszkowska, N., H. Sugden, L. B. Firth, and S. J. Hawkins. 2014. The role of sustained 

observations in tracking impacts of environmental change on marine biodiversity and 

ecosystems. Philosophical Transactions of the Royal Society A 372:20130339. 

Myers, R. A., J. K. Baum, T. D. Shepherd, S. P. Powers, and C. H. Peterson. 2007. Cascading 

effects of the loss of apex predatory sharks from a coastal ocean. Science 315(5820):1846–

1850. 

NMFS. 2006. Final Consolidated Atlantic Highly Migratory Species Fishery Management Plan. 

National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 



 

 

22 

 

Office of Sustainable Fisheries, Highly Migratory Species Management Division, Silver 

Spring, MD. 

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. 

B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner. 2019. 

vegan: community ecology package. https://cran.r-project.org/package=vegan. 

Peterson, C. D., C. N. Belcher, D. M. Bethea, W. B. Driggers, B. S. Frazier, and R. J. Latour. 

2017. Preliminary recovery of coastal sharks in the south-east United States. Fish and 

Fisheries 18(5):845–859. 

Planque, B., J. M. Fromentin, P. Cury, K. F. Drinkwater, S. Jennings, R. I. Perry, and S. Kifani. 

2010. How does fishing alter marine populations and ecosystems sensitivity to climate? 

Journal of Marine Systems 79(3–4):403–417. 

Plumlee, J. D., K. M. Dance, P. Matich, J. A. Mohan, T. M. Richards, T. C. TinHan, M. R. Fisher, 

and R. J. D. Wells. 2018. Community structure of elasmobranchs in estuaries along the 

northwest Gulf of Mexico. Estuarine, Coastal and Shelf Science 204:103–113. 

R Core Team. 2016. R: A language and environment for statistical computing. http://www.r-

project.org. 

Schlaff, A. M., M. R. Heupel, and C. A. Simpfendorfer. 2014. Influence of environmental factors 

on shark and ray movement, behaviour and habitat use: a review. Reviews in Fish Biology 

and Fisheries 24(4): 1089–1103. 

Schwartz, F. J. 2003. Sharks, skates, and rays of the Carolinas. The University of North Carolina 

Press, Chapel Hill, North Carolina. 

Serafy, J. E., M. Valle, C. H. Faunce, and J. Luo. 2007. Species-specific patterns of fish 

abundance and size along a subtropical mangrove shoreline: an application of the delta 

approach. Bulletin of Marine Science 80(3): 609–624. 

Speed, C. W., I. C. Field, M. G. Meekan, and C. J. A. Bradshaw. 2010. Complexities of coastal 

shark movements and their implications for management. Marine Ecology Progress Series 

408:275–293. 



 

 

23 

 

Springer, S. 1967. Social organization of shark populations. Pages 149–174 in P. W. Gilbert, R. F. 

Matthewson, and D. P. Rall, editors. Sharks, skates, and rays. The John Hopkins Press, 

Baltimore, MD. 

Ulrich, G. F., C. M. Jones, W. B. Driggers, J. M. Drymon, D. Oakley, and C. Riley. 2007. Habitat 

utilization, relative abundance, and seasonality of sharks in the estuarine and nearshore 

waters of South Carolina. American Fisheries Society Symposium 50:125–139. 

Ward, P. 2008. Empirical estimates of historical variations in the catchability and fishing power 

of pelagic longline fishing gear. Reviews in Fish Biology and Fisheries 18:408–426. 

Ward-Paige, C. A., G. L. Britten, D. M. Bethea, and J. K. Carlson. 2015. Characterizing and 

predicting essential habitat features for juvenile coastal sharks. Marine Ecology 36(3):419–

431. 

  



 

 

24 

 

Table 1.1: Summary of effort, date range, temperature and species-specific catch for each year of 

UNC-IMS survey. Temperature is shown as mean + 1 standard error. Catch is listed as raw catch 

for each species. 

 
Year Survey 

trips 

Longline 

sets 

Hooks Date 

range 

(day of 

year) 

Temperature 

(°C) 

Atlantic 

sharpnose 

Bigeye 

thresher 

Blacknose Blacktip Bull Dusky Finetooth 

1973 6 11 980 170-276 NA 9 0 40 26 3 6 0 

1974 9 17 1660 108-284 NA 5 0 21 15 1 70 0 

1975 15 26 2527 122-322 18 17 0 62 50 3 123 0 

1976 15 26 2192 106-307 20.7 + 1.2 7 0 37 29 0 52 0 

1977 16 30 2868 109-314 23.8 + 1.3 20 0 134 34 1 78 1 

1978 14 26 2382 102-311 22.1 + 0.8 31 0 61 39 0 12 1 

1979 15 29 3129 93-303 23.4 + 0.7 31 0 71 22 4 32 3 

1980 15 29 4953 94-288 22.3 + 1.2 60 0 85 83 0 93 0 

1981 16 31 4267 105-300 23.2 + 1 31 0 29 12 0 75 1 

1982 16 32 5533 110-328 22.8 + 1 16 0 65 33 4 116 2 

1983 16 31 5175 111-319 23.2 + 0.9 69 0 33 62 2 51 2 

1984 17 34 5340 110-304 24.6 + 0.6 44 0 79 83 1 81 0 

1985 16 30 4624 122-301 24.5 + 0.6 77 0 43 23 0 18 0 

1986 15 29 4601 104-314 21.1 + 2.1 50 0 24 40 0 35 0 

1987 13 25 4369 117-292 26.8 + 0.9 81 0 48 80 0 54 2 

1988 17 42 6217 109-291 25 + 0.8 151 0 127 50 0 31 6 

1989 16 36 6370 100-289 25 + 0.7 67 0 40 25 0 33 17 

1990 15 29 4655 106-302 26 + 0.6 60 0 15 2 0 3 0 

1991 14 27 3925 105-302 25.7 + 0.8 86 0 31 29 2 13 0 

1992 12 23 3080 118-301 24.3 + 0.9 121 0 45 7 0 0 4 

1993 11 21 3090 137-299 27.2 + 0.6 126 0 49 13 1 4 3 

1994 15 30 4102 108-304 NA 78 0 32 33 0 11 46 

1995 15 29 3803 115-299 25.9 + 0.7 148 0 42 20 1 0 3 

1996 12 23 3013 120-288 25.7 + 0.7 82 0 46 31 0 1 9 

1997 13 22 2702 119-301 24.3 + 1.1 85 0 12 11 0 3 5 

1998 13 24 3140 110-306 24.5 + 0.9 129 1 8 9 0 0 0 

1999 11 22 2700 116-299 24 + 0.7 87 0 3 6 0 2 0 

2000 13 24 2961 108-300 22.8 + 1.1 117 0 4 12 0 1 0 

2001 10 19 1866 135-295 25.5 + 0.7 104 0 11 2 0 1 0 

2002 12 24 2870 126-299 25.9 + 0.5 133 0 9 3 0 4 0 

2003 11 22 2224 118-286 24.3 + 0.6 138 0 3 1 0 1 0 

2004 10 18 1805 117-296 24.7 + 0.7 111 0 5 3 0 10 0 

2005 11 21 2118 118-297 24.6 + 1.1 104 0 8 5 0 0 6 

2006 14 27 2711 114-299 24.3 + 0.7 119 0 11 2 0 1 1 

2007 13 24 2416 116-302 24.3 + 0.7 125 0 25 8 0 3 2 

2008 8 15 1506 119-294 23 + 0.8 90 0 2 2 1 1 0 

2009 9 15 1497 121-300 24.3 + 0.9 64 0 8 2 0 0 0 

2010 11 18 1822 125-285 25.4 + 0.7 89 0 13 2 1 5 0 

2011 13 25 2529 111-305 24.1 + 0.9 79 0 16 11 1 5 0 

2012 14 25 2514 108-313 23.3 + 0.9 64 0 15 8 0 2 0 

2013 10 18 1799 127-295 23.6 + 0.9 93 0 9 4 0 0 0 

2014 12 20 2000 133-302 24.9 + 0.6 83 0 22 4 0 0 0 

2015 13 23 2283 38-310 24.1 + 1.1 112 0 8 0 0 2 0 

2016 14 22 2195 113-306 26.3 + 0.7 112 0 13 1 0 2 0 

2017 10 17 1699 108-311 25.4 + 0.8 81 0 6 1 0 0 0 

2018 10 23 2293 121-331 26.9 + 0.7 104 0 2 2 0 0 0 
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Great 

hammer

head 

Lemon Night Nurse Sand 

tiger 

Sand

-bar 

Scalloped 

hammer-

head 

Silky Smooth 

dogfish 

Smooth 

hammer

head 

Spin-

ner 

Spiny 

dog-

fish 

Tig-

er 

White 

0 1 0 0 0 0 16 0 0 1 0 0 2 0 

0 0 2 2 0 0 9 0 42 0 4 0 1 1 

2 0 0 0 0 6 34 0 2 1 6 0 2 0 

0 0 0 0 0 2 30 0 20 0 2 0 0 0 

1 0 0 0 0 33 36 0 44 0 12 0 1 0 

0 0 0 0 1 29 21 0 43 0 20 3 1 0 

0 1 0 0 0 36 27 1 62 0 27 5 9 0 

0 0 0 0 0 1 45 1 54 0 9 0 4 0 

0 0 0 0 0 3 34 0 69 0 2 0 1 0 

0 0 0 0 0 4 23 19 27 0 8 0 2 0 

0 0 0 0 0 43 34 31 36 0 7 0 1 0 

0 0 0 0 0 17 40 12 32 0 2 0 2 0 

0 0 0 0 0 19 10 3 4 0 1 0 2 0 

0 0 0 0 0 10 14 25 1 0 3 0 3 0 

0 0 0 0 0 43 19 16 30 0 12 0 3 0 

0 0 0 0 0 17 37 30 6 0 10 0 0 0 

0 0 0 0 0 15 4 18 21 1 11 2 0 0 

0 0 0 0 0 0 1 5 20 0 0 0 1 0 

0 0 0 0 0 2 1 4 7 0 12 1 0 0 

0 0 0 0 0 2 1 1 4 0 5 0 0 0 

0 0 0 0 0 2 3 1 4 0 4 0 1 0 

0 0 0 0 0 24 3 4 2 1 12 0 0 0 

1 0 0 0 0 1 0 1 7 0 7 0 0 0 

0 0 0 0 0 1 3 2 3 0 14 0 0 0 

1 0 0 0 0 3 0 0 0 0 7 0 0 0 

0 0 0 0 0 3 1 8 2 0 4 0 1 0 

0 0 0 0 0 2 1 0 0 0 9 0 0 0 

0 0 0 0 0 1 4 1 3 0 6 0 0 0 

0 0 0 0 0 0 1 0 0 0 2 0 0 0 

0 0 0 0 0 0 2 1 1 0 0 0 1 0 

0 0 0 0 0 0 2 6 3 0 6 0 0 0 

0 0 0 0 0 0 2 0 6 0 3 0 0 0 

0 0 0 0 0 0 4 2 5 0 5 0 0 0 

0 0 0 0 0 1 13 3 6 0 8 0 0 0 

0 0 0 0 0 0 8 1 2 0 2 0 1 0 

0 0 0 0 0 1 6 0 2 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 2 2 0 4 1 0 0 0 

0 0 0 0 0 0 10 1 0 0 10 0 0 0 

0 0 0 0 0 0 3 0 0 0 3 0 0 0 

0 0 0 0 0 0 12 0 0 0 2 0 0 0 

0 0 0 0 0 0 3 0 1 0 11 0 1 0 

0 0 0 0 0 0 5 0 1 0 0 1 1 0 

0 0 0 0 0 0 3 0 0 0 6 0 3 0 

0 0 0 0 0 0 4 0 0 0 0 0 1 0 

0 0 0 0 0 2 4 0 1 0 2 0 1 0 
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Table 1.2: Summary of coastal shark species; longline CPUE (mean + standard error); FL = fork 

length, f = female, m = male; management grouping according to NMFS 2006; individuals for 

which sex was not recorded were omitted for sex ratio calculations. 

 

Species N CPUE (sharks/100 

hooks) 

FL Range (mm) Sex Ratio (f:m) Management 

Atlantic sharpnose 3690 2.734 + 0.114 215-1315 1689:1936 Non-blacknose 

small coastal 

Bigeye thresher 1 0.001 + 0.001 2860 1:0 Prohibited 

Blacknose 1472 0.988 + 0.072 270-1850 289:175 Blacknose 

Blacktip 940 0.58 + 0.045 320-2000 343:549 Aggregated 

large coastal 

Bull 26 0.018 + 0.004 390-2370 2:9 Aggregated 

large coastal 

Dusky 1035 0.697 + 0.09 215-2550 283:220 Prohibited 

Finetooth 114 0.068 + 0.017 740-1350 15:41 Non-blacknose 

small coastal 

Great hammerhead 5 0.004 + 0.002 1640-2390 1:3 Hammerhead 

Lemon 2 0.002 + 0.001 2160 0:1 Aggregated 

large coastal 

Night 2 0.002 + 0.059 NA 1:0 Prohibited 

Nurse 2 0.001 + 0.001 1660-2073 0:2 Aggregated 

large coastal 

Sand tiger 3 0.003 + 0.002 1550-1980 0:2 Prohibited 

Sandbar 323 0.231 + 0.031 455-2290 283:220 Aggregated 

large coastal 

(research only) 

Scalloped 

hammerhead 

535 0.374 + 0.03 590-3048 229:270 Hammerhead 

Silky 199 0.11 + 0.02 280-1600 108:89 Aggregated 

large coastal 

Smooth dogfish 573 0.487 + 0.07 290-1500 16:9 Smoothhound 

Smooth hammerhead 8 0.006 + 0.003 840-1900 3:2 Hammerhead 

Spinner 277 0.204 + 0.023 600-2110 79:53 Aggregated 

large coastal 

Spiny dogfish 12 0.01 + 0.005 640-950 12:0 Spiny dogfish 

Tiger 46 0.032 + 0,006 710-2510 4:1 Aggregated 

large coastal 

White 1 0.001 + 0.001 NA 1:0 Prohibited 
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Table 1.3: Summary of seasonality (summer or spring/autumn), first entrance/exit sea surface 

temperature (SST) for each of the 12 focal species, and second entrance/exit for sprin/autumn 

seasonal species. Species for which no convergence was found or for which model fit was 

deemed inappropriate were removed from entrance SST and exit SST calculations. 

 

Species Seasonality 1st entrance/exit SST (°C) 2nd entrance/exit SST (°C) 

Atlantic sharpnose 

shark 

3 season 15.2 NA 

Blacknose shark summer 25 NA 

Blacktip shark summer 25.6 NA 

Bull shark  summer NA NA 

Dusky shark spring/autumn 17.2 25.4 

Finetooth shark summer 27.3 NA 

Sandbar shark spring/autumn 17 26.4 

Scalloped hammerhead 

shark 

summer 21.6 NA 

Silky shark spring/autumn NA NA 

Smooth dogfish spring/autumn 14.2 21.3 

Spinner shark summer 19 NA 

Tiger shark summer NA NA 



 

 

 

 

Figure 1.1: Scatterplots of CPUE by day of year for each of the 12 focal species. Axis for day of year has been converted to monthly 

scale to aid in interpretation. 

  

2
8
 



 

 

 

 

Figure 1.2: Heat map of CPUE index for each of 12 focal species across survey months. Index is calculated as monthly mean CPUE/ 

maximum of monthly mean CPUE values for each species. 

2
9
 



 

 

30 

 

Figure 1.3: Mean SST records aggregated by month. Values are shown as mean + 1 standard 

error. 



 

 

 

Figure 1.4: Scatterplots of CPUE by SST for each of the 12 focal species with guassian curve model fits and entrance/exit 

temperature calculations plotted as vertical lines. Species for which no convergence was found or for which model fit was deemed 

inappropriate are shown simply as scatterplots. 
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Figure 1.5: nMDS plot of daily mean CPUE and fitted vector for SST (Temp.). Three letter codes indicate weighted average points for 

each species. Colors represent year, while shapes represent month. Species codes (N = 15): DUS, dusky shark (Carcharhinus 

obscurus); FAL, silky shark (Carcharhinus falciformis); GHH, great hammerhead shark (Sphyrna mokarran); SAS, Atlantic sharpnose 

shark (Rhizoprionodon terraenovae); SBK, blacktip shark (Carcharhinus limbatus); SBN, blacknose shark (Carcharhinus acronotus); 

SBS, sandbar shark (Carcharhinus plumbeus); SBU, bull shark (Carcharhinus leucas); SDS, smooth dogfish (Mustelus canis); SFT, 

finetooth shark (Carcharhinus isodon); SHH, smooth hammerhead (Sphyrna zygaena); SPD, spiny dogfish (Squalus acanthias); SPL, 

scalloped hammerhead shark (Sphyrna lewini), SSP, spinner shark (Carcharhinus brevipinna); TIG, tiger shark (Galeocerdo cuvier).
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Figure 1.6: nMDS plot of annual mean CPUE. Colors represent clusters drawn at 10% similarity. 
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Figure 1.7: Stacked bar plots showing frequency of occurrence for mean CPUE values of each species aggregated by month. Top bar 

plot corresponds to annual mean nMDS cluster group 1 (1973-1989), while bottom bar plot corresponds to annual mean nMDS cluster 

group 2 (1990-2018). Species codes (N = 21): BTH, bigeye thresher (Alopias superciliosus); DUS, dusky shark (Carcharhinus 

obscurus); FAL, silky shark (Carcharhinus falciformis); GHH, great hammerhead shark (Sphyrna mokarran); LEM, lemon shark 

(Negaprion brevirostris); SAS, Atlantic sharpnose shark (Rhizoprionodon terraenovae); SBK, blacktip shark (Carcharhinus limbatus); 

SBN, blacknose shark (Carcharhinus acronotus); SBS, sandbar shark (Carcharhinus plumbeus); SBU, bull shark (Carcharhinus 

leucas); SDS, smooth dogfish (Mustelus canis); SFT, finetooth shark (Carcharhinus isodon); SHH, smooth hammerhead (Sphyrna 

zygaena); SNI, night shark (Carcharhinus signatus); SNR, nurse shark (Ginglymostoma cirratum); SPD, spiny dogfish (Squalus 

acanthias); SPL, scalloped hammerhead shark (Sphyrna lewini), SSP, spinner shark (Carcharhinus brevipinna); TIG, tiger shark 

(Galeocerdo cuvier); WSH, white shark (Carcharodon carcharias).
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CHAPTER 2: SIZE CHANGES WITHIN A SOUTHEAST UNITED STATES COASTAL 

SHARK ASSEMBLAGE 

 

 

Introduction 

 

Fishing can cause substantial changes within exploited fish populations, both as a result of 

selective removal of target species and bycatch of non-target species. Size-selective harvesting 

(either targeted or bycatch fishes, which is the process of differentially removing larger 

individuals of a particular species due to gear design (e.g., net mesh size) or management 

directive (e.g., minimum size limits), has been documented across diverse fishes, often leading to 

a reduction in mean or maximum observed body size within a stock (Fenberg and Roy 2008). 

Truncation of size structure towards smaller individuals is troubling on both economic and 

ecological levels. Growth overfishing - the harvesting of fish before they reach their growth 

potential - results in decreased yield-per-recruit, was the first form of overfishing to be 

conceptually resolved, and has been a concern throughout post World War II fisheries (Beverton 

and Holt 1957). Furthermore, some analysts have suggested that maintaining “old-growth” age 

structure is as important as spawning biomass levels in determining the sustainability of fished 

stocks (Berkeley et al. 2004). In particular, big old fat fecund female fish (BOFFFFs) are thought 

to disproportionately contribute to recruitment potential of a stock via both offspring quantity 

and quality, as well as diversity of larval source locations since fish can segregate spatially based 

on size. Both of these factors can help to stabilize the population dynamics of harvested species 

(Birkeland and Dayton 2005; Hixon et al. 2014). 
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There are multiple, somewhat competing mechanistic hypotheses regarding the response of 

fished species to harvest pressure vis-à-vis population-level size structure. Darwinian fisheries 

science has focused on the potential of harvest pressure to select for traits such as reduced 

growth or earlier size- or age-at-maturity (Law 2007).  In size-selective fisheries targeting large 

individuals, fish growing more quickly or reproducing at larger sizes and older ages may be 

captured before successfully contributing to the spawning population, greatly reducing their 

individual fitness relative to slower growers or earlier reproducers (Ratner and Lande 2001; 

Conover and Munch 2002). Over evolutionary scales, this could truncate the size structure of an 

exploited population towards smaller fish. Alarmingly, these potential evolutionary consequences 

may be hard to reverse with the relaxation of fishing pressure due to hysteresis, or a lag 

associated with relatively weak selection differentials in the opposing direction (Allendorf and 

Hard 2009). While evolutionary dynamics may drive fished populations towards smaller 

individuals, environmental selection within exploited stocks could have the opposite effect on 

fish. Reduction of stock abundance can cause a release from intraspecific competition, resulting 

in greater per-capita availability of resources and increased growth, as has also been documented 

in a number of marine fishes (Heino and Godo 2002). These latter observations support the 

hypothesis that such density-dependent growth could lead to an increase in body size of 

individuals through time via compensatory processes in harvested populations (Hilborn and 

Minte-vera 2008).  

The response of a harvested species/stock regarding individual life history vital rates and 

population-level size structure ultimately depends on the case-specific nature of density-

dependent resource competition, genetic correlates or heritabilities of relevant traits, and the 

intensity (including temporal consistency) of size-selective harvest (Law 2007). Common among 
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fished taxa/stocks, however, is the fundamental need to document patterns in size-based 

indicators over appropriate timescales (i.e., years to decades) to guide us in understanding the 

dynamics and root mechanisms of size-structure shifts (Shin et al. 2005). Sharks are an 

interesting and important test case for evaluating changes in size structure, as there are a mix of 

factors that might buffer or exacerbate harvest-driven changes. Within this group, many species 

are defined by relatively K-selected life histories (i.e., slower growth, larger maximum size, 

longer maximum age, lower fecundity), and as such are vulnerable to overfishing (Stevens et al. 

2000). The effects of maternal investment on offspring in sharks has received relatively limited 

attention and has yet to be fully explored; however, there is evidence suggesting that maternal 

size can affect both offspring quantity (litter size) and quality (fitness) (Carlson and Baremore 

2003; Hussey et al. 2010; Baremore and Passerotti 2013). Gears used to harvest sharks include 

those that are likely to be size selective (i.e., gill nets), but also some that are potentially less so 

(i.e., long lines) (Hovgård and Lassen 2000; ASMFC 2008). Because shark species are 

challenging to distinguish, management is often – but not always (e.g., blacknose shark 

Carcharhinus acronotus) - conducted at multispecies levels, such as the large coastal shark 

(seven species) and small coastal shark (3 species) complexes. These are jointly managed by the 

Atlantic States Marine Fisheries Commission in state waters (0-3 miles from shore) and the 

National Oceanic and Atmospheric Administration (NOAA) Fisheries Highly Migratory Species 

Management Division in the Exclusive Economic Zone (3-200 miles from shore) along the 

southeast United States (US) (ASMFC 2008). As a result, these multispecies commercial 

fisheries operate without minimum size limits that often drive size-selective fisheries. Finally, 

pressure on ‘great sharks’, such as bull shark Carcharhinus leucas and tiger shark Galeocerdo 

cuvier, has been hypothesized to have resulted in “mesopredator release” of smaller sharks and 
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rays, which could further complicate the patterns of size structure within some fished species 

such as blacknose shark (sensu Myers et al. 2007). 

With these dynamics in mind, we used a decades-running survey of the coastal shark 

assemblage in Onslow Bay, North Carolina, to document temporal patterns of population size 

structure among 12 commonly captured species. Our overarching goal was to evaluate the null 

hypothesis that size-structure has not changed appreciably over time, on a species-by-species 

basis. Observed patterns are discussed in the context of management strategies, potential genetic 

and environmental drivers of size structure within fished populations, and purported 

“mesopredator release”. 

 

Methods 

Field sampling 

To examine trends in size structure within coastal shark populations, we used species-specific 

time series size data generated during the course of a 1972-present fishery independent shark 

survey in Onslow Bay, North Carolina. The survey was conducted by the University of North 

Carolina at Chapel Hill’s Institute of Marine Sciences (UNC-IMS) and since its inception, the 

UNC-IMS shark survey has employed standardized longline sampling gear at two fixed stations 

in Onslow Bay: 4 km (34.6338°N, 76.6306°W, 15 m depth) and 13 km (34.5512°N, 76.6237°W, 

17 m depth) southeast of Beaufort Inlet. During each deployment at each station, the 7.6 mm 

braided nylon longline extends 1 km, with gangion lines attached to the mainline at every 10 m 

(N = 100). Each gangion consists of a 1.8 m long, #2-chain leader and a 9/0 Mustad tuna J hook. 

Polyball buoys are attached between every 10 gangions (100-m separation), allowing the 

longline gear to effectively fish the entire water column at each station. 
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In addition to standardized gears and stations, consistent deployment methods have been 

used since the first sets were made in 1972. Survey trips were conducted biweekly, between 

April and November each year, on 10-15-m research vessels operated by UNC-IMS. A demersal 

trawl was used at the start of each survey day to collect bait (e.g., spot Leiostomus xanthurus, 

Atlantic croaker Micropogonias undulatus), which were attached through the operculum on 

hooks (one fish per hook). Longline deployment occurred between 0800 and 1300 hours, with 

the gear soaked for one hour during each set. Efforts were made to deploy at each station on each 

survey day (weather dependent), and the inshore set was typically, but not always, made first. 

Upon gear recovery, all captured sharks were identified to species, sexed, and measured for fork 

length (FL) and total length (TL) to the nearest mm. Live individuals were outfitted with an 

external dart tag and returned to the water (~90% of catch). To date, more than 500 survey trips 

have been conducted, > 1,000 longline sets have been made, > 100,000 baited hooks have been 

set, and > 10,000 individual shark captures across 21 species have contributed to the UNC-IMS 

shark survey database. The survey is conducted under UNC-IMS Institutional Animal Care and 

Use Committee protocol 19-137.0. 

 

Data Analysis 

We selected 12 of the 21 shark species caught in the survey for analyses based on overall 

sample sizes, management context, and conservation interest: blacknose shark, spinner shark 

Carcharhinus brevipinna, silky shark Carcharhinus falciformis, finetooth shark Carcharhinus 

isodon, bull shark, blacktip shark Carcharhinus limbatus, dusky shark Carcharhinus obscurus, 

sandbar shark Carcharhinus plumbeus, tiger shark, smooth dogfish Mustelus canis, Atlantic 

sharpnose shark (Rhizoprionodon terraenovae), and scalloped hammerhead (Sphyrna lewini). 
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For each focal species, separately, we binned data by year, combining individuals across all 

months and both stations to describe the entire surveyed population. We utilized FL data as this 

measurement was the most consistently collected across the entire survey, and we focused on 

data collected during 1975 – 2018 since data from the first three survey years reported 

abundance and TL more heavily, rather than FL. For each species*year, we then used three 

different size indices to obtain a more holistic and robust assessment of potential size changes 

over time: mean FL, median FL, and an index of maximum FL (L90% or 90th percentile of FL). 

The advantage of using the mean is it provides a weighted center to the distribution and 

allows the application of parametric assumptions. The advantage of using the median is it is not 

sensitive to outliers. The advantage of using the 90th percentile is it is more sensitive to changes 

in the maximum values. These three metrics complement each other nicely as mean and median 

provide two measures of changes to the overall size distribution, one sensitive to outliers and the 

other insensitive, while L90%  quantifies the abundance of large individuals, relative to smaller 

individuals (Shin et al. 2005). We used R package Hmisc to implement the Harrell-Davis 

quantile estimator for our calculation of L90%, which is more robust at lower sample sizes and 

extreme percentiles than standard quantile calculations (Harrell and Davis 1982). Only species × 

years with three or more specimens captured and measured were included in the L90% 

calculations.  

We used linear regressions on each species and size metric (except L90% for bull shark and 

tiger shark, which lacked sufficient sample sizes) to assess the strength and ecological 

significance of relationships between year and shark size. Confidence intervals (CI; 95% level) 

were also computed for all linear regressions to better quantify certainty for each model. We used 

R package estimatr to implement a heteroscedasticity-consistent standard error estimator (HC3) 
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for computing confidence intervals and p-values for regression models, which is relatively 

insensitive to data heteroscedasticity (Hayes and Cai 2007). 

Using linear regression models and associated confidence intervals, we estimated the 

magnitude of long-term size increases or decreases for each species and each FL index. Firstly, 

we determined the difference between the regression model value for the first and last year in 

which each species was captured, both in raw change as well as percent difference. Secondly, as 

a conservative measure of size change, we estimated a minimum potential difference in sizes 

(mm and %) between the first and last year in which a species was recorded using the regression 

confidence intervals (i.e., using lower and upper CIs as appropriate to find the smallest potential 

difference between early and late records for apparent decreases in size).  Finally, as an indicator 

of maximum potential changes in size (mm and %) over time, (as a “worst-case scenario” in 

instances of apparent declines in size), we again compared regression confidence intervals 

between the first and last year in which each species was captured, but rather than selecting for 

the smallest potential change based on lower/upper CIs of early and late records, instead 

identified the largest potential change through time based on CIs.   

 As a last measure of species-specific size-structure through time, we calculated the number 

of individuals for each species × year in 200 mm size class bins. Two-hundred-mm bins appeared 

to provide valuable resolution for all species and was therefore used across all analyses. Due to 

the relative rarity of individuals over 2000 mm, we collapsed all bins above this value into a 

single size class. We also calculated mean catch per unit effort (CPUE) for each species across 

years to provide context regarding how population size/density and size structure may be related. 

We computed CPUE for each species × year as the number of sharks caught per 100 hooks set.  
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The power of our analytical approach is in the availability of a 40-year dataset on shark sizes 

across multiple species, despite some sample size limitations. To emphasize the ecological 

significance of the patterns we observed, our inferences were drawn from a suite of information 

that includes effect sizes (i.e., mean differences over time), confidence intervals, and measures of 

statistical clarity (Nakagawa and Cuthill 2007). Importantly, given the multiple size metrics we 

considered, it would be conceptually problematic within a species to default to “statistically 

significant” changes for one size metric, but “statistically insignificant” changes for another 

metric based solely on any arbitrary alpha (Amrhein et al. 2017; Hurlbert et al. 2019). All 

statistical analyses and plotting of data were conducted in R (R Foundation, Vienna, Austria). 

 

Results 

Survey results indicated > 9% relative decreases in L90% for all 10 species for which linear 

regression models were run (relative changes based on absolute trendlines; Figure 2.1). The 

largest relative declines were seen in sandbar shark (35%; 541 mm) and spinner shark (28%; 399 

mm) (Table 2.1). We found the strongest statistical support (p < 0.04) for L90% declines in four 

species: blacknose shark (10%; 115 mm), dusky shark (23%; 297 mm), smooth dogfish (17%; 

178 mm), and Atlantic sharpnose shark (10%; 88 mm) (Table 2.1). Using a conservative 

approach to account for intra- and interannual variability in observations, we still recorded small, 

but notable declines in L90% for blacknose shark (3%; 32 mm), smooth dogfish (2%; 24 mm), and 

Atlantic sharpnose shark (5%; 45 mm) (Table 2.1). Using a “worst-case scenario” framework, 

relative declines in L90% among species ranged between 15-63%, with five species potentially 

exhibiting > 45% relative decreases in L90% over time (Table 2.1). 
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Patterns in mean FL over time followed similar overall trends: 10 of 12 species were 

characterized by FLs that trended over time toward smaller average sizes (Figure 2.2). 

Exceptions included tiger shark and bull shark. Tiger shark were defined by the almost complete 

absence of catches from 1990 through 2010 – with the exception of three small (< 1000 mm FL) 

individuals – bracketed by the occurrence of relatively large individuals (1500-2500 mm FL) in 

the survey during the 1970’s-1980s and 2010s (Figure 2.2). Except for one small (390 mm FL) 

bull shark captured in 2008, which had significant leverage in the regression analysis, individuals 

routinely measured ~2000 mm FL throughout the survey. Using trendline patterns among species 

other than tiger shark and bull shark, the largest relative decline in mean FL was observed for 

sandbar shark (20%; 214 mm), while the range of declines across all other species was 2-17% 

(Table 2.1). The strongest statistical support (p = 0.001) for a mean FL decline was found in 

blacknose shark, which declined by 11% (116 mm) (Table 2.1). Blacknose shark was also the 

only species characterized by a potential decline (4%; 41 mm) in mean FL using a relatively 

conservative approach (Table 2.1). Using a “worst-case scenario”, mean FL declined 12-55% 

across 10 species (largest decline for sandbar shark), with average sizes potentially shrinking 

by > 32% in seven of those species (Table 2.1). 

Median sizes also trended toward smaller fish for nine of 12 species (Figure 2.3). For tiger 

shark and bull shark, mean and median FL values/patterns were virtually identical due to low 

overall sample sizes. Unlike mean FL, median FL values for spinner shark did not appear to 

change appreciably over time. Among the nine sharks with declining trendlines, changes in 

median FL ranged from 2-18%. Again, blacknose shark exhibited the best statistical support for a 

decline in median FL (p = 0.008) of 10% (104 mm) (Table 2.1), and viewed conservatively, only 

blacknose shark showed a potential decline in median FL (2%; 21 mm) (Table 2.1). Potential 
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declines in median FL ranged from 13-51% in a “worst-case scenario” among species other than 

spinner shark, tiger shark, or bull shark. As with mean FL, largest potential declines in median Fl 

were suggested for sandbar shark, with four species expressing > 31% reductions in median FL 

over time (Table 2.1).  

Several sharks exhibited obvious reductions in catches of individuals within the largest size 

class of that particular species through time, including blacknose shark, silky shark, blacktip 

shark, sandbar shark, smooth dogfish and scalloped hammerhead (Figure 2.4). Across these 

species, the loss of largest individuals was generally evident sometime during the 1990s, 

mirroring declines in overall CPUEs for those species over the same period. Atlantic sharpnose 

shark was also characterized by the loss of the largest size class (800-1000 mm FL) by the end of 

the survey period, but with a couple of important nuances. (1) Catches of 800-1000-mm FL 

individuals appeared highest in the years between 1980-2005, whereas for other species, highest 

catches of the largest size class tended to occur between 1975-1995. And (2) Atlantic sharpnose 

shark was the only species that showed an increasing trend in annual mean CPUE (all size 

classes combined), from one shark per 100 hooks in the 1970s to seven sharks per 100 hooks by 

the 2000s (Figure 2.4). 

 

Discussion 

Expanding on previous analyses that suggest the loss of “great sharks” from the coastal ocean 

over the last several decades (Myers et al. 2007; Powers et al. 2013), our analyses suggest that 

within-species size changes over time may be pervasive throughout the entire coastal shark 

assemblage visiting Onslow Bay (Table 2.1). Indeed, survey results indicated decreases in size 

structure among members of the Large Coastal Shark complex (blacktip shark, bull shark, silky 
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shark, spinner shark, tiger shark), Small Coastal Shark complex (Atlantic sharpnose shark, 

finetooth shark), Hammerhead Shark complex (scalloped hammerhead), Smoothhound complex 

(smooth dogfish), Harvest-Prohibited complex (dusky shark), Research-Only-Harvest species 

(sandbar shark) and individually managed species (blacknose shark). Below, we consider how 

observed decreases in sizes across species fit in the context of management, genetic versus 

environmental drivers of size structure within fished populations, and purported “mesopredator 

release.”  

We readily acknowledge that the nature of this long-term, two-station, observational dataset 

presents some logistical challenges for applying standard statistical approaches to assess changes 

in size structure among species. We have attempted to respect these constraints by evaluating 

multiple metrics of size structure for thoroughness, as well as using a ‘totality of evidence’ 

approach regarding size trends, confidence intervals, and statistical clarity to draw ecological 

inferences. We also conclude that there is important meaning at the assemblage level in the 

consistency of trends across species over decadal time scales. Across all 12 species for which we 

evaluated mean and median sizes (and all 10 species assessed using L90%), we recorded 

decreasing sizes through time based on the raw sign of fitted slopes. The probability of recording 

consistently negative slopes across 12 species – presuming size-structure was actually stable 

across species (i.e., a coin flip between the raw sign of slope being positive versus negative for 

each species [excluding zero slope]) – is only < 0.05% (< 1-in-4,000). Therefore, we conclude 

that the interpretation of across-assemblage decreases in sizes is likely robust. 

For nine species we evaluated, decreases in size over time co-occurred with long-term 

declines in catch rates in the IMS shark survey (Figure 2.4). Although shark-species-specific 

harvest records are patchy before the mid-1990s, we do speculate that fishing pressure was a 
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significant contributor to both the size and catch patterns we observed. At the assemblage level, 

commercial landings for sharks included in this study in the NOAA Fisheries South Atlantic 

region rose during the 1970s- 1980s to a peak of 4,324 metric tons in 1994 (NOAA 2019). Since 

that peak, landings have declined by ten-fold at the assemblage level, with similar declines in 

harvest for many species. Exceptions include blacknose shark and blacktip shark, which showed 

modest increases in landings, as well as Atlantic sharpnose shark, for which the pattern was 

reversed (landings increased by ten-fold). These recent, lower landings are presumed to result 

from harvest-induced reductions in shark abundances as well as reductions in allowable catches 

(Final Consolidated Atlantic Highly Migratory Species Fishery Management Plan; NMFS 2006). 

Notably, the mid-1990s peak in catches, and rapid decline in landings since, corresponds to the 

loss of the largest size classes of blacknose shark, silky shark, blacktip shark, sandbar shark, 

smooth dogfish, and scalloped hammerhead (Figure 2.4). 

While there is compelling evidence that tighter harvest management over the last two 

decades has begun to reserve trends in shark abundance towards recovery over the last few years 

(Peterson et al. 2017), the IMS survey data – particularly size-class breakdowns – would suggest 

these positive trends have largely not been manifest yet in intraspecific size structure. However, 

we do note that over the last five years, mean size of spinner shark, blacktip shark, dusky shark, 

tiger shark, and scalloped hammerhead potentially suggest the very earliest signs of increase – a 

pattern that deserves continued monitoring and inspection (Figure 2.2). Dusky shark has been 

prohibited from harvest since 2000 (SEDAR 2011), and therefore could be expected to be among 

the species to grow in mean size over time (sensu Fenberg and Roy 2008). Other species in this 

group belong to the Large Coastal Shark or Hammerhead Shark complexes, perhaps indicative of 

the effectiveness of these management units as a conservation framework. 
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Across management units, the consistent patterns of size decreases among species may also 

suggest something about mechanisms by which fishing impacts size structure. Shark 

management complexes generally operate without minimum size limits, thereby reducing the 

potential for this to drive size-selective fishing. Therefore, perhaps coastal shark population size 

shifts could be driven by the selectivity of fishing gear (Stevens et al. 2000), which often target 

larger individuals. Furthermore, recreational fisheries for Large Coastal Sharks and Hammerhead 

Shark complexes do operate with minimum size requirements, while commercial fisheries for 

“ridgeback” Large Coastal Sharks operated with a minimum size from 1999-2003 (NMFS 2006). 

If minimum size regulations were a primary driver of reductions in mean body size, it makes 

little sense that species within these management units would be showing the most notable signs 

of potential increase over the last few survey years. Finally, the lack of recovery in either catch 

rates or sizes of sandbar shark since the mid-1990s, despite its status as a research-only-harvest 

species, invokes several possibilities: (1) the life-history of this species does not allow recovery 

under current, presumably modest, rates of research harvest; (2) environmental conditions have 

shifted and do not support rapid recovery of this species; and (3) the life history of this species 

does not allow recovery under current, poorly quantified, rates of non-target bycatch mortality 

(Crowder and Murawski 1998). 

Regarding the dynamics of genetic versus environmental drivers of size structure within 

fished populations, our data indicate, at a minimum, that compensatory processes within the life 

history of sharks do not appear broadly capable of completely counteracting the effects of fishing 

on population size structure (Stevens et al. 2000). This, however, does not preclude the 

possibility that individual growth rates have increased for some species experiencing significant 

decreases in abundance over time (e.g., blacknose shark, blacktip shark, dusky shark). In this 
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context – simply reversed – Atlantic sharpnose shark was the lone species in our survey defined 

by increases in catch rates over time. Carlson and Baremore (2003) reported that Atlantic 

sharpnose shark exhibited increased juvenile growth rates in response to population declines, 

suggesting this may be a mechanism for density-dependent regulation. Thus, higher intraspecific 

competition for resources (i.e., lower growth rates) rather than just fishing pressure, could 

explain some of the decreases in sizes we observed for Atlantic sharpnose shark (sensu Cushing 

1995).  

While the assemblage-level decreases in size we observed may simply reflect the long-term 

press of continually removing the large(r) individuals from the stock, the opportunity for 

selective forces to impact shark populations and potential shark recovery appears present 

(Walker 1998). We are unable to arbitrate between these different and potentially co-occurring 

mechanisms within our analyses. Rather, the results presented here represent an important first 

step by documenting size-based indicators over appropriate timescales (i.e., years to decades), 

which should guide further exploration into the dynamics and root mechanisms of size-structure 

shifts. Despite the logistic challenges of examining sharks in the context of Darwinian fisheries 

(e.g., generation times of sharks, handling sharks for controlled experiments), we suggest this is 

an important area of investigation given the particular life histories and management approaches 

within this guild. 

Size decreases reported in this study represent possible changes in recruitment, given 

empirical evidence of maternal investment in sharks, and its relationship to maternal size/age. In 

teleost fish, BOFFFFs are known to contribute disproportionately to offspring growth and 

survival, with older or larger rockfishes showing increased maternal provisioning, in the form of 

enlarged oil globule volume of offspring (Sogard et al. 2008). The volume of oil globule present 
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at parturition was the larval trait that most highly correlated with larval performance in black 

rockfish, with larvae from cohorts with the largest oil globules displaying a three-fold increase in 

growth rate and two-fold increase in survival rate (Berkeley et al. 2004). Maternal provisioning 

in sharks appears to occur via enlarged livers of offspring, with neonatal carcharhinid sharks 

showing a declining trend in liver mass (as well as overall body mass) shortly after parturition, 

presumably the excess liver reserves provide a maternal head-start for offspring to use in the first 

weeks of life (Hussey et al. 2010). Hussey et al. (2010) also found a clear relationship between 

pup mass and maternal size, with mean pup mass increasing with maternal size, although there 

was evidence for a decline at the largest mother lengths. 

There has been increasing interest in the “rise of the mesopredator,” in which the loss of apex 

predators is accompanied by the expansion in density or distribution of middle-rank predators 

(i.e., mesopredator release Prugh et al. 2009). This has led to concerns of potential food-web-

level trophic cascades (Polis 1994), defined as inverse patterns of abundance at successive 

trophic levels that are transmitted down the food web (Brashares et al. 2010). Myers et al. (2007) 

found sharp declines in abundance for species of “great sharks” (> 2 m; e.g., bull shark, dusky 

shark, sandbar shark, tiger shark), using the UNC-IMS survey data, which they attributed to 

direct exploitation. Myers et al. (2007) linked this decline in great sharks to the abundance of 

characteristically smaller species such as Atlantic sharpnose shark. While our findings are not in 

direct conflict with the results of Myers et al. (2007) our results do suggest that the direct effects 

of fishing may be more pervasive throughout the shark assemblage, rather than focused on just 

the largest species with subsequent cascading impacts. In particular, Atlantic sharpnose shark 

(acknowledging potential density-dependent drivers of size shifts), blacknose shark, finetooth 

shark, and smooth dogfish are all relatively small-bodied, and aptly described as mesopredators. 
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For all four of these species, long-term trends suggest decreases in size, which runs counter to 

the notion of top-down “release.” Combined with the long-term declines in catch rates of 

blacknose shark and smooth dogfish, these results suggest that mesopredators also experience 

population responses to (“top-down”) fishing pressure. Indeed, Blacknose shark exhibited 

perhaps the clearest shift over time, with all of the indices examined showing declines of ~10% 

throughout the survey period with high statistical confidence (Table 2.1), as well as relatively 

lower proportions of larger size classes in later years of the survey (Figure 2.4). 

This study provides a baseline for future coastal shark size structure comparison, while also 

serving as a critical step for considering how shark populations may have responded to fishing 

via environmental versus genetic mechanisms. Over the next few decades, there is perhaps a 

unique opportunity to monitor size structure in populations of coastal sharks in the Fisheries 

Southeast regional as managers attempt to reverse past overharvest (Peterson et al. 2017). As in 

other fishery stocks, size structure is a critical component of monitoring and an indicator of stock 

health and resilience in the context of harvest pressure (Berkeley et al. 2004) and other, 

compounding perturbations (e.g., bottom disruption of resources [Duplisea et al. 2002], climate 

change syndromes [Morley et al. 2017]). 
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Table 2.1: Coefficient of determination and probability value, as well as decline, conservative 

decline and extreme decline (as defined in Methods section), in both millimeters and percentage, 

for each size index and species analyzed. 

 

Species:  Atlantic sharpnose Blacknose Blacktip Bull Dusky 

L90%      

R2 0.51 0.19 0.06 NA 0.11 

p < 0.001 0.002 0.299 NA 0.04 

decline (mm) 88 115 141 NA 297 

decline (%) 10 10 10 NA 23 

conservative decline (mm) 45 32 NA NA NA 

conservative decline (%) 5 3 NA NA NA 

extreme decline (mm) 132 199 440 NA 654 

extreme decline (%) 15 17 29 NA 45 

mean FL      

R2 0.01 0.28 0.01 0.17 0.04 

p 0.603 0.001 0.574 0.41 0.382 

decline (mm) 18 116 49 559 95 

decline (%) 2 11 4 27 10 

conservative decline (mm) NA 41 NA NA NA 

conservative decline (%) NA 4 NA NA NA 

extreme decline (mm) 93 192 240 2073 330 

extreme decline (%) 12 18 20 85 32 

median FL      

R2 0.12 0.2 < 0.01 0.18 < 0.01 

p 0.078 0.008 0.836 0.403 0.766 

decline (mm) 49 104 19 569 32 

decline (%) 6 10 2 27 4 

conservative decline (mm) NA 21 NA NA NA 

conservative decline (%) NA 2 NA NA NA 

extreme decline (mm) 107 188 222 2080 267 

extreme decline (%) 13 18 21 85 26 
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Finetooth Sandbar Scalloped hammerhead Silky Smooth dogfish Spinner Tiger 

       

0.1 0.35 0.06 0.15 0.23 0.14 NA 

0.647 0.096 0.266 0.115 0.007 0.177 NA 

133 541 294 83 178 399 NA 

12 35 19 9 23 28 NA 

NA NA NA NA 2 NA NA 

NA NA NA NA 0 NA NA 

804 1219 905 215 333 1035 NA 

56 63 49 22 30 61 NA 

       

0.23 0.07 0.03 0.03 0.06 < 0.01 < 0.01 

0.164 0.337 0.328 0.197 0.22 0.762 0.943 

166 214 131 66 149 45 NA 

15 20 11 8 17 4 NA 

NA NA NA NA NA NA NA 

NA NA NA NA NA NA NA 

430 693 439 200 421 377 857 

35 55 33 22 43 33 42 

       

0.24 0.05 0.02 0.03 0.07 < 0.01 < 0.01 

0.154 0.35 0.323 0.205 0.165 0.997 0.924 

171 193 117 65 166 NA 35 

16 18 10 8 18 NA 2 

NA NA NA NA NA NA NA 

NA NA NA NA NA NA NA 

434 643 397 201 436 352 988 

35 51 31 22 44 31 47 



 

 

 

 

Figure 2.1: Index of maximum FL + 1 standard error with linear regression models and 95% confidence intervals for each species. 
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Figure 2.2: Mean FL + 1 standard error with linear regression models and 95% confidence intervals for each species. 
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Figure 2.3: Median FL + 1 standard error with linear regression models and 95% confidence intervals for each species. 
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Figure 2.4: Stacked barplots displaying annual length frequency distribution, with mean CPUE shown as a line plot.
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CHAPTER 3: SEASONAL RESIDENCY AND MOVEMENT PATTERNS OF 

BONNETHEAD SHARKS (SPHYRNA TIBURO) IN NORTH CAROLINA AND 

GEORGIA ESTUARIES 

 

 

Introduction 

 

Many animals perform seasonal and life-history dependent movements related to foraging or 

reproduction, knowledge of which is crucial for predicting population and community dynamics 

(Morales et al. 2010). In fish, these movements can occur over a range of scales, such as among 

habitats, through coastal estuaries, or between management regions, as individuals attempt to 

maximize growth, survival, or reproductive success (i.e., fitness) (Mason and Brandt 1996). For 

many estuarine-associated species, tracking seasonal movements or migrations of fishes capable 

of transiting between offshore spawning/resting and inshore foraging habitats is critical for 

defining stock concepts and quantifying vital rates (Cadrin and Secor 2009). Most stock 

assessment models are unable to account for the fitness costs or benefits arising from movement 

or due to differences in habitat quality, resulting in fairly course resolution of location- and 

population- specific vital rates (i.e., growth, survivorship, fecundity). Understanding how 

movement and habitat utilization (together referred to as behavior) affects population ecology of 

fishes is important as we move toward ecosystem-based approaches for managing coastal 

resources (Crowder and Norse 2008).  

Bonnethead sharks (Sphyrna tiburo) appear seasonally in southeast United States (US) 

Atlantic coast estuaries, including in North Carolina (NC) and Georgia (GA), and are potentially  

important predators on other key estuarine species such as blue crabs (Callinectes sapidus) and 
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red drum (Sciaenops ocellatus) (Cortés et al. 1996). Although demography, social behaviors, and 

estuarine habitat use of bonnethead sharks has been studied in the Gulf of Mexico and along 

Florida (e.g., Myrberg and Gruber 1974; Cortés and Parsons 1996; Heupel et al. 2006), 

comparatively little work has been undertaken north of Florida, where climate change may 

contribute to increases in bonnethead occurrence as warming waters will likely expand the range 

of suitable habitat farther north along the US Atlantic coastline. Previous work has detected 

latitudinal variation in growth rates of bonnethead sharks (Carlson and Parsons 1997; Lombardi-

Carlson et al. 2003), as well as regional differences in age and growth (Frazier et al. 2014), 

highlighting the importance of understanding movement patterns throughout the entire range of 

this species. A recent tagging study on female bonnethead sharks in South Carolina found 

evidence of site fidelity to specific estuaries for this species, a pattern that remains to be 

confirmed from other locations within the northern extent of their range (Driggers et al. 2014). 

I employed acoustic telemetry to quantify the behavior of bonnethead sharks across 

spatiotemporal scales relevant to seasonal residency and migration patterns to better inform 

management of coastal habitats and resources. Due to the relative paucity of studies for this 

species north of Florida, this study also aims to expand the geographical range over which these 

seasonal patterns have been described. The objectives of this study were three-fold: 1) determine 

the seasonal residency period and return rates for bonnethead sharks in two spatially-distant 

estuaries (NC and GA) to assess site fidelity of bonnethead sharks to specific estuaries 

regionally, 2) identify areas of highest affinity for bonnethead sharks within these estuaries, and 

3) evaluate migration patterns to reveal migration routes and potential overlap between 

individuals from these estuaries.  
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Methods 

Field sampling 

To monitor bonnethead shark residency and distribution in NC and GA inshore waters, two 

separate diffuse arrays of VR2W hydrophones (Vemco, Nova Scotia, Canada) were deployed 

between June 2015 and September 2016. The VR2W is an omni-directional hydrophone with a 

detection range of approximately 350 m in these systems based on cursory onsite tests. The NC 

array consisted of 78 hydrophones placed in and around Beaufort Inlet: Morehead City shipping 

channel, Carrot Island, Middle Marsh, North River Marsh, Haystacks Marsh, Bogue Sound and 

Back Sound, which are waterways and marsh complexes between Beaufort Inlet and the lower 

estuary regions of the Newport and North Rivers (Figure 3.1). The GA array consisted of 8 

hydrophones placed in and around several marsh creeks within lower Wassaw Sound including 

Romerly Creek, Bull River, and Tybee Cut, as well as the lower Wilmington and Skidaway 

Rivers surrounding Skidaway Island (Figure 3.2). Acoustic arrays were maintained from 2015 – 

2019 in GA and 2016 – 2018 in NC. 

A total of 21 bonnethead sharks in NC and 16 in GA were captured for this study. 

Bonnethead sharks were captured using either hook and line, gill netting, cast net (1 individual), 

or bottom trawl (1 individual) from June 2015 through August 2017. Because bonnethead sharks 

segregate by sex, with those exhibiting seasonal residency in estuaries comprised almost entirely 

of females, all but a single bonnethead shark captured offshore by bottom trawl were females. A 

50 mm external “roto” tag (Premier 1 Supplies, Iowa, USA) was attached to the first dorsal fin of 

each shark. External tags had Vemco V13 acoustic transmitters affixed to them using marine 

epoxy, which ensured transmitters would remain attached to external tags. These ‘coded’ 

transmitters were set to transmit a signal from each shark (using a train of pings unique to each 
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individual tag) randomly once every 3-5 minutes, throughout the life of the tag (~ 4 years). I 

chose to use external attachment as this reduced the handling time for each shark and is perhaps 

much less invasive than surgery, thus likely increasing the survival rate for the encounter. Tagged 

sharks were observed prior to being released to assess condition, with bonnethead sharks 

exhibiting extreme distress retained to re-deploy tags, avoiding tracking of individuals likely to 

expire. Information on location, date and time captured, sex and size were collected for each 

tagged bonnethead shark (Tables 3.1 & 3.2). 

 

Data analysis 

To examine seasonal residency patterns, I looked for extended periods without detections to 

estimate periods of ingress and egress to and from the estuaries surrounding these periods of 

absence, which would define seasonal residency periods. Within periods of seasonal residency in 

the NC array I used hydrophones surrounding Beaufort Inlet to identify shorter-term excursion 

events outside of the inlet during more seasonal residency periods. An excursion was defined as 

any detection(s) occurring outside of Beaufort Inlet, with detections occurring within the estuary 

both before and afterwards. For excursions from the NC estuary, I also quantified the time 

elapsed between the last detection within Beaufort Inlet and the first detection occurring within 

Beaufort Inlet subsequent to outside detections, as the time spent outside of the estuaries during 

ocean excursions. For the GA array, the large embayment as well as hydrophone placement did 

not allow for examination of ocean excursions during seasonal residency periods. To further 

examine patterns of movement in relation to Beaufort Inlet and how these varied by distance 

from the inlet, I evaluated detection density as a function of distance from the inlet in 1,000 m 

increments, starting from 500 m distance as this was the distance for the hydrophone located 
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closest to the inlet. The number of hydrophones within each 1,000 m bin was also quantified to 

more fully evaluate how hydrophone density influenced the pattern of detection density by 

distance from inlet.   

I used non-metric multidimensional scaling (nMDS) in the R package vegan (Oksanen et al. 

2019) to examine hydrophone station visits by individual sharks and determine similarity in 

location of movement patterns across individuals. I generated a matrix with each hydrophone on 

the x-axis, ordered in decreasing longitude, and each shark on the y-axis. This matrix was filled 

in using the number of detections for each shark, at each hydrophone, standardized by total 

detections for each shark, such that each value represented the relative contribution of each 

hydrophone to an individual shark’s overall pattern of detections (Bray and Curtis 1957).  I then 

constructed a dissimilarity matrix using the Bray-Curtis distance metric, which is widely used in 

analysis of ecological data due to its robustness and ability to capture important relationships 

having ecological relevance (Faith et al. 1987; Clarke et al. 2006). I performed cluster analysis 

on the nMDS ordination, defining clusters with 10% similarity, to examine potential groupings 

of sharks based on hydrophone station visits. I also calculated weighted average scores for each 

hydrophone station to examine how visits to particular hydrophone stations influenced ordination 

structure among or between groupings or individuals. Due to the large number of hydrophone 

stations in the NC array (N = 68), I selected the 5% of hydrophone stations with the highest 

correlation to ordination axes using the R package goeveg (Goral and Schellenberg 2018). All 

statistical analyses were performed in R (R Core Team 2016). 

To determine if bonnethead sharks exhibited site fidelity to specific estuaries as has been 

documented previously in Florida (FLa) and South Carolina (SC), return rates were calculated 

for both arrays as the number of sharks returning each consecutive year after tagging. I also 
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evaluated detections from other arrays that were shared with me from areas in SC, GA, and FLa: 

Myrtle Beach (SC), Charleston (SC), Savannah (GA), Ossabaw Sound (GA), Gray’s Reef 

National Marine Sanctuary (GA), Brunswick (GA), St. Mary’s River (FLa), Cape Canaveral 

(FLa), and Pensacola (FLa), to determine broader regional patterns of residency and movement 

when sharks left the arrays in NC and GA. Number of detections outside of array where each 

shark was tagged were quantified and detection location (state) as well as range of dates detected 

outside were recorded for each bonnethead shark. This also allowed me to evaluate if sharks 

moved up the coast together as one big mixing stock, or if the GA-tagged sharks have a stop 

point that’s consistently south of the NC tagged sharks, by comparing the states visited by NC-

tagged sharks and GA-tagged sharks to see which states overlapped and which states differed 

between these groups.  

 

Results 

I recorded a total of 34,423 detections within the NC array and 43,204 detections from the 

GA array. In NC, an average of 1,639 + 292 (SE) detections per shark were recorded from the 21 

tagged sharks. In GA there was an average of 2,880 + 869 detections per shark recorded for 15 of 

16 tagged sharks. NC sharks visited 19 + 2 out of 78 total hydrophones, on average, whereas GA 

sharks visited an average of 2 out of 8 total hydrophones. In NC sharks were recorded within the 

array between 2 and 133 days from when they were tagged (excluding time between egress of 

tagging year and ingress the following year) with an average of 41 + 8 days at liberty (Table 3.1). 

In GA sharks were recorded within the array between 0 and 395 days from when they were 

tagged with an average of 84 + 24 days at liberty (Table 3.2).  
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Bonnethead sharks left the NC array between July 20th and November 19th in the year they 

were tagged, with half of tagged sharks having left by September 3rd. The sharks that returned to 

the NC array arrived between March 16th and June 5th of the following year, with half of the 

sharks returning by May 17th (Figure 3.3). In the GA array, bonnethead sharks left between June 

17th and November 21st on the year tagged, with half of tagged sharks having left by August 

29th. The sharks that returned to the GA array arrived between March 17th and May 2nd the year 

following tagging, with half of the sharks returning by April 26th (Figure 3.4). Assuming no tag 

loss, transmitter failure, or shark death, one quarter of bonnethead sharks tagged in this study 

returned to NC, with 5 of 20 sharks tagged in 2016 returning in 2017 (Figure 3.3). In GA, 19% 

of tagged bonnethead sharks returned (once again assuming no tag loss, transmitter failure, or 

shark death), with 2 of 8 sharks tagged in 2015 returning in 2016 and 1 of the 8 sharks tagged in 

2016 returning in 2017 (Figure 3.4). During their residency within the NC array, bonnethead 

sharks made an average of 8 + 2 excursions outside of Beaufort Inlet, with an average duration of 

7.5 + 2 hr (Table 3.3). 

Detection density in the NC array was concentrated in and around Beaufort Inlet, with the 

maximum number of detections per 1,000 m bin within the NC array of 21,411 occurring 

between 500-1,500 m from Beaufort Inlet. When normalized by the number of hydrophones, the 

maximum number of detections was 1,946, also occurring between 500-1,500 m from Beaufort 

Inlet (Figure 3.5). The maximum number of hydrophones per 1,000 m bin was 15, occurring 

between 6,500 and 7,500 m from Beaufort Inlet (Figure 3.6). 

There were three groupings or clusters with more than one shark defined at the 10% 

similarity level in the NC array. The three clusters were associated with Beaufort and Morehead 

City Channels, northeast Middle Marsh, or North River Channel, based on hydrophone weighted 
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average scores (Figure 3.7). In the GA array there were four groupings or clusters defined at the 

10% similarity level, associated with Bull River, west and central Romerly Creek, Tybee Cut, 

and Priest Landing (Figure 3.8). 

Thirteen of the 21 bonnethead sharks tagged in the NC array were detected outside of that 

array between the dates of 08/27/16 and 05/19/18. All 13 bonnethead sharks were detected in SC, 

11 of them were detected in GA, and six were detected in FLa (Table 3.4). Ten of the 16 

bonnethead sharks tagged in the GA array were detected outside of that array between the dates 

of 07/22/15 and 02/13/17. Nine of these bonnethead sharks were detected in GA and four were 

detected in FLa (Table 3.5). Whereas both NC-tagged sharks and GA-tagged sharks were 

detected in both GA and FLa, GA-tagged sharks were not found north of GA, where only NC-

tagged sharks were detected. 

 

Discussion 

This study further documents the site fidelity of bonnethead sharks to specific estuaries on 

intra- and inter-annual time scales and builds upon previous studies in the region by revealing 

individual patterns of within-estuary habitat use during seasonal residency. Moreover, by 

identifying critical habitat for bonnethead sharks within estuaries, my results contribute novel 

information important to the management of this species. These data also serve to arbitrate in the 

hypotheses established in previous studies of bonnethead sharks related to seasonal foraging 

habitat, countergradient variation in growth rate, population connectivity along the southeastern 

US Atlantic Coast, and social transmission of migratory routes. 

 Approximately 25% of bonnethead sharks tagged in this study were observed to return to 

NC or GA estuaries across years, suggesting that at least some individuals of this species 
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establish annual migration patterns of returning to the same estuaries (Figures 3.3 & 3.4). 

Fidelity rates for bonnethead sharks returning to estuaries may be higher since two acoustic 

transmitters attached to individuals caught within the NC array were returned to us by fishermen, 

who indicated they found the transmitters within their fishing gear (i.e., gillnets), revealing the 

potential for tag shedding or fishing mortality. Driggers et al. (2014) documented patterns of 

intra- and inter-annual site fidelity of bonnethead sharks to specific estuaries in South Carolina 

using mark-recapture, finding some individuals returned to the same estuary multiple times, up 

to 9 years subsequent to tagging. Results of the present study support this finding.  

Bonnethead sharks in both NC and GA displayed affinity to specific areas within estuaries in 

which they were seasonal residents, suggesting the potential for intraspecific habitat partitioning 

during periods of seasonal residency (Figures 3.7 & 3.8). These results contrast with those of 

other acoustic telemetry studies, which found that bonnethead sharks did not return to specific 

areas within estuaries (Heupel et al. 2006; Smith 2012). Heupel et al. (2006) deployed a smaller 

hydrophone array in one portion of Charlotte Harbor, Florida, therefore it is possible that on a 

larger scale bonnethead sharks exhibit site fidelity to specific areas of Charlotte Harbor estuary, 

since three sharks did return to use similar areas within their array. Smith (2012) deployed yet a 

smaller hydrophone array in Romerly Marsh Creek, GA and utilized a cordless drill to drill holes 

in the first dorsal fin of bonnethead sharks for transmitter attachment, which may have led to 

higher mortality rates for the 9 bonnethead sharks tagged as the author acknowledged that 2 of 

these sharks were observed to have slight bleeding from the holes and were not detected post-

release.  

In NC and GA estuaries, bonnethead sharks showed a preference for areas that were near an 

inlet or mouth. There was a concentration of detections at sites nearest Beaufort Inlet, suggesting 
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that the inlet is an important feature, restricting bonnethead shark movement within the estuary 

during seasonal residency (Figure 3.5). In Gulf of Mexico estuaries, bonnethead shark captures 

were highest near tidal inlets, suggesting the distribution pattern observed in this study is 

characteristic for this species (Froeschke et al. 2010). Proximity to inlets may be related to 

foraging; bonnethead sharks are known to feed primarily on blue crabs, making up greater than 

70% of the diet for bonnethead sharks by net weight and occurrence (Cortés et al. 1996). Female 

blue crabs migrate from low salinity estuarine regions to high salinity regions near the ocean, 

specifically areas surrounding Beaufort Inlet in North Carolina, using ebb-tide transport, to 

release larvae during summer months (Carr et al. 2004). This study therefore provides further 

evidence to support the hypothesis that bonnetheads use southeast US estuaries as seasonal 

foraging habitat, exploiting energetically-rich ovigerous blue crabs to meet higher energetic 

demands associated with reproduction (Driggers et al. 2014).  

The frequent ocean excursions performed by female bonnethead sharks in NC suggest that 

while they are seasonal residents to estuaries, they transit between inshore and offshore habitats 

to maximize fitness. This may be related to foraging as well, in the Gulf of Mexico increased 

signatures of offshore primary production were found in mature bonnethead sharks using stable 

isotope analysis and it was suggested this was related to foraging on blue crabs migrating 

offshore to spawn (Plumlee and Wells 2016). Towards the end of their seasonal residency, female 

bonnethead sharks could also be migrating offshore for reproduction, since mating wounds have 

been found in southeastern US Atlantic bonnethead sharks in September and October (Gonzalez 

De Acevedo 2014). 

By comparing seasonal residency patterns between estuaries at different latitudes, this study 

highlights the possibility of countergradient variation in bonnethead sharks, or the inverse 
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relationship between growth rates and length of growing season, determined by latitude 

(Conover 1990). Bonnethead sharks appear to arrive earlier to GA estuaries and remain later into 

the year, with many being detected either within the GA array or in other arrays in GA well into 

the fall and in late winter/early spring (Table 3.5; Figure 3.4), suggesting that seasonal migration 

patterns vary in timing by latitude of summer feeding grounds. This finding, combined with the 

fidelity to specific estuaries previously described, indicates that bonnethead sharks that are 

seasonal residents in Georgia are able to exploit foraging habitat for extended periods of time 

each year, providing a longer growing season. Previous studies have suggested that bonnethead 

sharks exhibit clinal variation in size and growth rate, with larger and faster growing individuals, 

particularly females, occurring at higher latitudes (Parsons 1993; Carlson and Parsons 1997). 

This was hypothesized to be related to countergradient variation, with faster growth rates acting 

as a mechanism for individuals at higher latitudes to compensate for shorter growing seasons 

(Lombardi-Carlson et al. 2003). While this study did not measure growth rates, average sizes for 

bonnethead sharks tracked in NC and GA estuaries were within 2 cm when compared between 

these two regions, suggesting that differences in growing season did not affect sizes overall and 

the possibility for a tradeoff that allows for both groups to maximize fitness (Tables 3.1 & 3.2).  

My results also indicate connectivity among populations of bonnethead sharks along the 

southeastern US Atlantic coast. Bonnethead sharks tagged within the NC array were detected in 

the GA array, and both NC and GA sharks were detected in the same arrays during their 

overwintering periods, which suggests that there is possible gene flow between populations 

along the Atlantic coast (Tables 3.4 & 3.5). Both NC and GA bonnethead sharks were only 

detected in arrays along the Atlantic coast, with the exception of one shark tagged in GA (GA04), 

which crossed into the eastern Gulf of Mexico (Table 3.5). This finding is supported by 
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differences in life-history parameters between bonnethead sharks along the southeast US Atlantic 

coast and the Gulf of Mexico, suggesting that these should be considered separate stocks (Frazier 

et al. 2014). Escatel-Luna et al. (2015) also found evidence of barriers to gene flow between US 

Atlantic waters and the Gulf of Mexico, contrasted with a lack of genetic differences along the 

Atlantic coast of Florida, which the present study supports. The occurrence of genetically distinct 

populations along the US Atlantic coast and the northern Gulf of Mexico was also found in 

another small coastal shark, the blacknose shark (Carcharhinus acronotus), as well as several 

other marine fishes, and has been attributed to surface currents in the Florida Straits or the 

absence of suitable habitat along the southern Florida coast (Gold and Richardson 1998; Gold et 

al. 2002, 2009; Portnoy et al. 2014). The fact that one bonnethead shark from the present study 

was able to traverse the Florida Straits suggests that to do so is possible, however this event was 

relatively infrequent and occurred outside of the months associated with mating in this species 

(Sep – Nov; Gonzalez De Acevedo 2014), anecdotally supporting the hypothesis of this feature 

acting as a barrier to gene flow. 

Conversely, the lack of overlap in migration structure between bonnethead sharks that are 

seasonal residents in NC and GA suggests that migrations are social behaviors that could serve to 

partition seasonal foraging habitat. Bonnethead sharks in NC and GA both migrated south during 

months when they were not seasonal residents and overlapped in the waters of GA and FLa, at 

least some of which subsequently returned, however only NC sharks were detected north of GA, 

in SC and NC (Table 3.4). Combined with the site-fidelity to specific areas within estuaries 

reported in this study, this is indicative of individual bonnethead sharks perhaps performing 

migrations in groups, where migration routes could be transmitted socially, as has been 

hypothesized in a previous study (Driggers et al. 2014). Several bonnethead sharks captured in 
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the present study were encountered in aggregations, with up to 8 individuals being tagged in the 

same location, on the same day, which further supports the idea of social transmission of 

behavior in this species (Table 3.1). 

This study is the first to document the site fidelity of bonnethead sharks to specific areas 

within estuaries on intra- and inter-annual time scales. By identifying critical foraging habitat 

within estuaries, these results also provide information crucial to effective management of this 

species and perhaps entire southeast US estuarine systems using ecosystem-based management 

due to the strong trophic link to a key estuarine species (i.e., blue crab). These data also build 

upon previous lines of research on bonnethead shark life history and population connectivity, 

while generating novel hypotheses. Specifically, bonnethead shark proximity to inlets during 

seasonal residency in estuaries is hypothesized to be related to blue crab foraging and differences 

in timing of bonnethead shark seasonal migration are hypothesized to be associated with 

countergradient variation in growth rates as a result of differences in length of growing season by 

latitude. These hypotheses must be resolved by future, targeted behavioral and life history studies 

of bonnethead sharks along the southeast US Atlantic coast. 
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Table 3.1: Summary of 21 bonnethead sharks tagged with acoustic transmitters and tracked 

within the array of hydrophones surrounding Beaufort Inlet, NC. Shark IDs marked with an 

asterisk are sharks that returned in 2017. Capture location indicates where fish were originally 

caught for this study: Beaufort Channel (BC), Morehead City Channel (MHCC), Northeast 

Middle Marsh (NEMM), Offshore of Shackleford Banks (OSSB), North River Channel (NRC). 

Days at liberty calculated as days between tagging date and date of last detection for 2016 or 

2017, for sharks returning in 2017 days between first and last detection for that year are added to 

reach total days at liberty. 

 

Shark ID Capture 

location 

Tagging date Sex Fork length 

(mm) 

Total 

detections 

Stations 

visited 

Days at 

liberty 

NC01 BC 06/24/16 F 800 2843 15 74 

NC02 BC 07/14/16 F 925 138 21 6 

NC03* MHCC 07/16/16 F 825 3785 23 73 

NC04 MHCC 07/16/16 F 855 68 9 4 

NC05 MHCC 07/16/16 F 885 2495 29 52 

NC06 MHCC 07/16/16 F 955 3042 24 49 

NC07 MHCC 07/16/16 F NA 3527 13 49 

NC08 MHCC 07/16/16 F 885 2529 30 48 

NC09* MHCC 07/16/16 F 845 3581 14 133 

NC10 MHCC 07/16/16 F 785 1953 11 27 

NC11 NEMM 08/15/16 F 830 2405 24 38 

NC12 NEMM 08/15/16 F 870 81 10 2 

NC13 NEMM 08/22/16 F 895 1057 26 14 

NC14 NEMM 08/22/16 F 815 316 9 27 

NC15 NEMM 08/22/16 F 865 541 31 15 

NC16 OSSB 08/23/16 M 715 45 5 3 

NC17 NRC 08/25/16 F 835 528 21 21 

NC18* NRC 08/25/16 F 865 837 33 43 

NC19* NRC 08/26/16 F 930 112 2 28 

NC20* NRC 08/26/16 F 850 1842 45 113 

NC21 MHCC 08/03/17 F 860 2698 13 36 
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Table 3.2: Summary of 16 bonnethead sharks tagged with acoustic transmitters and tracked 

within the array of hydrophones surrounding Wassaw Sound, GA. Shark IDs marked with an 

asterisk are sharks that returned in 2016 or 2017. Capture location indicates where fish were 

originally caught for this study: Bull River (BR), Priest Landing (PL), West Tybee Cut (WTC), 

West Romerly Entrance (WRC), East Romerly Entrance (ERC). Days at liberty calculated as 

days between tagging date and date of last detection for 2015 or 2016, for sharks returning in 

2016 and 2017 days between first and last detection for that year are added to reach total days at 

liberty. 

 

Shark ID Capture 

Location 

Tagging 

Date 

Sex Fork length 

(mm) 

Total 

Detections 

Stations 

Visited 

Days at 

Liberty 

GA1* BR 6/9/2015 F 820 11248 1 197 

GA2 BR 6/9/2015 F 790 4988 1 77 

GA3 BR 6/9/2015 F 840 816 2 76 

GA4 PL 6/10/2015 F 830 245 2 78 

GA5* WTC 6/10/2015 F 900 4502 6 395 

GA6 WTC 6/10/2015 F 890 51 1 28 

GA7 WRC 6/10/2015 F 900 2239 4 56 

GA8 ERC 6/10/2015 F 890 3400 1 84 

GA9 WTC 6/16/2016 F 820 13 2 1 

GA10 ERC 6/16/2016 F 780 0 0 0 

GA11 BR 8/3/2016 F 880 258 2 24 

GA12 PL 8/3/2016 F 700 25 1 30 

GA13 WTC 8/4/2016 F 830 2484 4 100 

GA14* WTC 8/4/2016 F 880 2168 3 54 

GA15 WRC 8/4/2016 F 880 1827 2 57 

GA16 WRC 8/4/2016 F 800 8940 6 89 
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Table 3.3: Summary of ocean excursions for 21 sharks tracked acoustically within the array of 

hydrophones surrounding Beaufort Inlet, NC. Excursions were identified as detections occurring 

outside of Beaufort Inlet. Duration was quantified as the time elapsed between last detection 

within the inlet, prior to detection outside, and the first detection within the inlet, after being 

detected outside. Value is shown as mean + 1 SE. 

 

Shark ID Number of excursions Mean duration (hr) 

NC01 17 7.4 + 3.5 

NC02 0 NA 

NC03 16 3 + 0.7 

NC04 1 78 

NC05 21 3.7 + 1 

NC06 8 1 + 0.3 

NC07 30 1.6 + 0.3 

NC08 11 1.7 + 0.4 

NC09 19 5.1 + 3.7 

NC10 6 2.8 + 1.2 

NC11 15 3.2 + 1 

NC12 0 NA 

NC13 7 12.2 + 8.8 

NC14 1 239.6 

NC15 3 23.2 + 22.6 

NC16 1 48 

NC17 1 168.1 

NC18 1 3.4 

NC19 0 NA 

NC20 4 8.1 + 1.9 

NC21 4 7.3 + 2.6 
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Table 3.4: Summary of detections for bonnethead sharks tagged within the NC array, received 

from other acoustic telemetry arrays. State codes are as follows: SC – South Carolina, GA – 

Georgia, FLa – Florida. Date range calculated as date first detected outside array to date last 

detected outside array, with detections occurring more than one year from date of first detection 

outside array separated by a comma. 

 

Shark ID Detections outside States visited Date range 

NC03 281 SC, GA 11/11/16 – 5/3/17 

NC05 36 SC, GA, FLa 09/24/16 – 03/03/17 

NC06 7 SC 09/18/16 – 09/19/16 

NC07 212 SC, GA 09/22/16 – 04/10/17 

NC08 407 SC, GA, FLa 09/07/16 – 05/06/17 

NC11 28 SC, GA 10/02/16 – 11/12/16 

NC12 186 SC, GA, FLa 09/12/16 – 12/29/16 

NC13 62 SC, GA 09/13/16 – 12/08/16 

NC17 41 SC 11/08/16 – 12/06/16 

NC18 161 SC, GA 09/22/16 – 05/04/17 

NC19 296 SC, GA, FLa 09/08/16 – 05/03/17 

NC20 87 SC, GA, FLa 09/19/16 – 05/04/17 

NC21 214 SC, GA, FLa 09/18/17 – 05/19/18 

  



 

 

81 

Table 3.5: Summary of detections for bonnethead sharks tagged within the GA array, received 

from other acoustic telemetry arrays. State codes are as follows: GA – Georgia, FLa – Florida. 

Date range calculated as date first detected outside array to date last detected outside array. 

 

Shark ID Detections outside States visited Date range 

GA01 275 GA, FLa 09/10/15 – 04/25/16 

GA04 1 FLa 01/11/17 

GA05 385 GA, FLa 07/22/15 – 01/29/16 

GA07 471 GA 06/13/16 – 09/09/15 

GA08 29 GA 06/15/15 

GA11 108 GA 11/16/2016 – 02/13/17 

GA13 20 GA 09/02/16 – 11/24/16 

GA14 35 GA 09/16/16 – 11/18/16 

GA15 206 GA, FLa 08/09/16 – 09/09/16 

GA16 354 GA 08/11/16 – 10/19/16 



 

 

 

Figure 3.1: Map of study site in North Carolina. Red diamonds indicate locations of each of the 78 hydrophones in the NC array, used 

for tracking bonnethead shark movement during residency in 2016 and 2017.   
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Figure 3.2: Map of study site in Georgia. Red diamonds indicate locations of each of the 8 hydrophones in the GA array, used for 

tracking bonnethead shark movement during residency in 2015, 2016, and 2017.  
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Figure 3.3: Abacus plot showing dates of all detections from each bonnethead shark tagged and detected in the NC array. 
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Figure 3.4: Abacus plot showing dates of all detections from each bonnethead shark tagged and detected in the GA array. 
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Figure 3.5: Number of detections of all bonnethead sharks tracked acoustically in the NC array 

(N = 21) by distance from Beaufort Inlet. Detections are aggregated in bins of 1,000 m. Black 

bars indicate raw detections, according to 1st y-axis scale. White bars indicate detections 

normalized by the number of hydrophones within each bin, according to 2nd y-axis scale.  

 

  



 

 

87 

 
 

Figure 3.6: Number of hydrophones (total N = 78) by distance from Beaufort Inlet. 

Hydrophones were aggregated in bins of 1,000 m. 



 

 

 

Figure 3.7: nMDS plot with each point representing one of the bonnethead sharks tracked acoustically within the NC array. Numbers 

represent shark IDs for individual bonnethead sharks and shapes represent capture locations. Group or clusters represent 10% 

similarity. Arrows show the weighted average scores for hydrophone stations ranked in the top 5%, based on correlation to ordination 

axes. Hydrophone label and capture location codes are as follows: BC – Beaufort Channel, MHCC – Morehead City Channel, NEMM 

– Northeast Middle Marsh,  NRC – North River Channel, OSSB – Offshore of Shackleford Banks. 
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Figure 3.8: nMDS plot with each point representing one of the bonnethead sharks tracked acoustically within the GA array. Numbers 

represent shark IDs for individual bonnethead sharks and shapes represent capture locations. Group or clusters represent 10% 

similarity. Arrows show the weighted average scores for each hydrophone station. Hydrophone label and capture location codes are as 

follows: BR – Bull River, CRC- Central Rommerly Creek, ERC – East Rommerly Creek, ETC – East Tybee Cut, GD – Gas Dock, PL 

– Priest Landing, WRC – West Rommerly Creek, WTC – West Tybee Cut. 
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CHAPTER 4: SHARK DETECTION PROBABILITY FROM AERIAL DRONE 

SURVEYS WITHIN A TEMPERATE ESTUARY1 

 

 

Introduction 

 

Distribution and abundance estimates of sharks have typically been obtained from capture 

methods, such as netting or hook-and-line, often in combination with tagging studies, which 

together have guided our understanding of shark population dynamics and movement patterns 

(Kohler and Turner 2001). While valuable, there are challenges to interpretation of data gathered 

by these methods related to the relatively low density and high patchiness of sharks compared to 

other taxa, and the need to sample over relatively large areas to reduce uncertainty with respect 

to shark numbers (Peterson et al. 2017). Additionally, capture methods may be inappropriately 

invasive in some situations for sampling sharks (e.g., mortality of endangered species), which 

has inspired the use of less-invasive methods, such as photo identification (Bansemer and 

Bennett 2008). Aerial visual surveys have also been employed over large spatial scales for 

estimating shark distribution and abundance (Rowat et al. 2009).  

Visual surveys via manned aircraft have also been utilized extensively to study other large 

marine animals. In the case of marine mammals and seabirds, aerial visual surveys, along with 

shipboard surveys, are perhaps the most widely used means of obtaining information on 

distribution and abundance globally (Buckland et al. 2001; Kaschner et al. 2012). With recent 

technological advances, the use of digital imagery has become competitive with visual methods 

in manned aerial surveys for these animals, resulting in similar to substantially larger estimates 

of abundance (Buckland et al. 2012; Koski et al. 2013). Importantly, the use of manned aircraft 
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has a number of logistical and scientific drawbacks, such as prohibitive cost, disturbances to 

wildlife, and the difficulty of covering smaller survey areas (Christie et al. 2016). 

Recently, there have been considerable advances in the use of unoccupied aircraft systems 

(UASs), creating an attractive platform for both terrestrial and marine ecological surveys 

(Anderson and Gaston 2013). These UASs are advantageous with respect to aerial manned visual 

surveys due to the remotely controlled, smaller, and quieter aircraft, as well as the digital 

imagery component, which could potentially lead to more reliable, reviewable estimates. Marine 

mammal surveys, which have traditionally been carried out via manned aircraft for many 

species, have been conducted with UASs for several species, such as dugongs, seals and sea lions 

(Jones et al. 2006; Hodgson et al. 2013; Sweeney et al. 2015). UASs are also used in a broad 

range of ecological studies on marine mammals from estimating size or body condition of 

individuals to collecting exhaled breath condensate for DNA and hormonal analyses (reviewed in 

Johnston 2019). Surveys for seabirds and sea turtles appear to benefit from the use of drones, 

particularly with respect to time and/or costs when compared to ground- or water-based counts 

(McClellan et al. 2014; Rees et al. 2018). Finally, Kiszka et al. (2016) examined shark and ray 

densities by drone surveys in shallow-water reef systems off Moorea, French Polynesia, 

demonstrating the potential value of this approach to survey for sharks and showing how the 

technology was not limited to only those species that are required to surface for respiration. 

The bonnethead shark, Sphyrna tiburo, is a small coastal shark species often found in 

estuaries, shallow bays, and channels, where pupping females are most common (Compagno et 

al. 2005). Bonnetheads are also commonly found in high densities, with multiple individuals 

encountered within an area of 50 m2 (Myrberg and Gruber 1974). The resulting patchiness in 

their distribution makes UASs an attractive survey platform. Drones are easy to operate over 
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mesoscale ranges (< 3 km) and at low altitude (< 100 m), making them potentially useful to 

monitor bonnethead distributions and habitat use in shallow-water estuarine habitats. Due to the 

widely varying environmental conditions found in temperate estuaries, determining the effects of 

particular environmental variables on detection rates of sharks from drone surveys is important 

for understanding the efficacy of this approach in estimating patterns of distribution and 

abundance. There is also mounting interest in utilizing drones in nearshore waters for public 

safety to help minimize interactions between larger sharks and humans, and thus understanding 

potential limitations of this approach in different environmental contexts also has very practical 

applications (Colefax et al. 2019). 

Visibility bias, which results from observers missing animals, has been a fundamental 

problem in the use of observer-based surveys, particularly in aerial surveys (Caughley 1974). 

The missing animals are either potentially visible to observers, but not seen (perception bias) or 

are concealed, often by turbid water (availability bias), although these two biases are difficult to 

separate in practice (Marsh and Sinclair 1989; Pollock et al. 2006; Barlow 2015). In mid-Atlantic 

estuaries, turbidity extremes due to frequent resuspension of sediment and plankton by wind and 

tides have obvious, large effects on light penetration throughout the water column (Kirby-Smith 

and Costlow 1989). We designed a series of field experiments using shark decoys photographed 

from overhead by drones to test effects of environmental parameters on visibility bias. Given the 

aforementioned effect of turbidity on potential visibility bias, even in shallow water columns, we 

hypothesized that the interaction between turbidity and decoy depth would have the greatest 

effect on detection probability.  
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Materials and Methods 

Shark Decoys 

To investigate the utility of UASs in surveying bonnethead sharks, we deployed decoys that 

were fashioned to have the appearance of bonnetheads from overhead. The decoys (N = 9) were 

cut from plywood using the outline from a ~ 1 m bonnethead shark that did not survive the 

transition to captive display at the North Carolina Aquarium at Pine Knoll Shores (NC 

Aquarium). This particular specimen was a gravid female and thus representative of the size 

range of bonnetheads typically found within the Newport River Estuary, North Carolina. The 

plywood decoys were epoxied (Nos. 105 & 207, West System®, Michigan, USA) to resist water 

damage. Decoys were then sanded and spray-painted to mimic the shark’s countershading pattern 

from above using a combination of colors: Nos. 86014, 68181, 84230, and 63000, Valspar®, 

Minnesota, USA. To confirm that the decoys had the appearance of bonnetheads, one was placed 

in a holding tank at the NC Aquarium with a live bonnethead while photos were taken from 

overhead with Cannon Powershot S110 digital cameras used during drone surveys (Figure 4.1). 

Finally, one decoy was made to have the shape of a more generic shark species, an Atlantic 

sharpnose, Rhizoprionodon terraenovae. This was accomplished by simply trimming the 

“rostrum” of the bonnethead-shaped decoy to produce a conical snout (i.e., without 

cephalophoil), thereby allowing us to assess the potential of identifying decoys as bonnetheads or 

non-bonnetheads. Decoys were positively buoyant, and had to be anchored during deployment 

by 20-cm lines at the head and caudal region, which were connected to standard bricks that 

rested on the seabed. 
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Drone Flights 

Bonnethead sharks are commonly found within the Newport River Estuary, a shallow water 

body (< 3 m average depth), so decoys were placed in two flight areas in shallow waters 

surrounding Pivers Island in Beaufort, NC, on five separate days during the fall of 2015 as well 

as in the spring and fall of 2016 (Figure 4.2). Selected quadrats (0.0001 degrees latitude x 0.0001 

degrees longitude, approximately 10 m x 10 m) within our flight areas targeted a depth range of 

0-2 m. Within the flight areas, we haphazardly positioned decoys across the available range of 

depths. Depth measurements (to the nearest 0.1 m) were taken using transect tape for each decoy 

that was deployed (8-9 decoys per flight day) at the time of deployment. GPS coordinates 

(decimal degrees) were also recorded for each decoy.  

Each day, environmental variables cloud cover and secchi disk depth were recorded. Cloud 

cover was recorded as a categorical variable, with either not cloudy (no clouds visible overhead 

on the days we conducted the surveys) or cloudy (cloud cover > 37% overhead on the days we 

conducted surveys, based on NOAA definition of partly cloudy), using the Weather Underground 

Forecast Android phone application, which used data from the Dakota station (KNCBEAUF23), 

approximately 2 km from our flight areas (Weather Underground 2011). Secchi depth was 

measured once within the flight area immediately before or after deploying decoys, using a 20 

cm secchi disk, which was lowered by a string with marks every 0.1 m into the water until the 

disk was no longer visible, at which point the depth measurement was recorded. Mean wind 

speed was also recorded for each flight using Weather Underground data (Weather Underground 

2011).  Each day, to the extent possible, we scheduled 3 flights (1 per spectral filter, see 

following paragraph) at low, mid, and high tide to make full use of the local tidal amplitude (~ 1 

m) and expand our depth interval coverage (Table 4.1). Depth measurements for decoys in 
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subsequent flights were recorded as the sum of the original depth measurement and change in 

tidal height, estimated from NOAA water level data for the Beaufort, Duke Marine Lab, NC 

station (8656483), less than 0.5 km from our flight areas (NOAA 2018). 

A total of 30 UAS flights were conducted using a fixed wing drone (eBee, senseFly®, 

Switzerland), equipped with either a Cannon IXUS 127 HS or Cannon Powershot S110 digital 

camera with one of three spectral filters: Regular (RGB), Red Edge (RE), and Near Infrared 

(NIR). Flight missions were designed and automated using the flight management software 

included with the eBee (eMotion, senseFly®, Switzerland). Each flight area (approx. 0.8 km2) 

was divided into eBee overpass transects that were 400-m-long and 25-m-apart. Flight altitude 

was 60 m, flight speed was 13 m s-1, and flights lasted about 15 minutes. eBee cameras captured 

a downward-facing image roughly every four seconds along each transect with an on-the-ground 

resolution of < 2.7 cm/pixel. Individual footprint area for digital images ranged from 4,200 – 

8,478 m2. 

 

Image Assessments 

Images were indexed for factor levels using four continuous variables: time of day (< 

10:30am, 10:30 – 1:30 pm), , mean wind speed (< 4 m s-1, 4 – 8 m s-1, > 8 m s-1), secchi depth (< 

1 m, 1 – 1.5 m, > 1.5 m) and decoy depth (< 0.6 m, 0.6 – 1 m, > 1 m). Images were also indexed 

by two categorical variables: filter (RGB, RE, NIR) and cloud presence (cloudy, not cloudy). For 

continuous variables, values were discretized into two- or three – level classifications, based on 

natural breaks in the data, which was done because the limited range of values observed during 

the 30 UAS flights didn’t allow for full exploration of these variables. This index was used to 

construct a matrix of 43 photographs, containing 0-9 shark decoys. Across the 43 photos, there 
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were 144 bonnethead decoys and 15 non-bonnethead decoys, representative of the full spectrum 

of combinations of factor levels (36 unique combinations, largely driven by multiple depths 

within any single photo) present within the days of sampling, with at least 2 replicates for each 

level of each factor.  The matrix was then utilized to construct a PDF file containing the 43 

images for distribution to be scored. Images were sent out to a group of fisheries and estuarine 

scientists (N = 15) who volunteered to score each photo for presence of sharks. Without being 

provided any prior information regarding the number or identity of decoys that were deployed in 

the field of view of each image, each scorer was asked to place symbols directly on top of where 

they thought sharks were in each image, with separate symbols denoting bonnethead or Atlantic 

sharpnose sharks. Scorers were also given the option to place a mark in a box denoting no sharks 

were present in the image. To standardize scoring efforts, a quadrant grid denoting maximum 

zoom frame as well as a 5-minute time limit per photograph were specified.  

We used a hierarchical coding system to evaluate the series of possible outcomes for each 

decoy and/or image after scoring. For images that contained decoys, each decoy was assigned a 

code of 0 if not detected, or a code of 1 if detected (symbol correctly placed). For a symbol to be 

considered correctly placed it could not be more than one body length away from the decoy (per 

instructions to scorers). Any symbol placed at a greater distance than 1 m from any decoy was 

considered a false detection. For decoys that were detected, a second layer of coding was applied 

to indicate if the species identification was correct (0 – incorrect, 1 – correct). Finally, images 

that contained no decoys were only evaluated for the number of false detections in each image. 
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Data Analysis 

Detection probability (number of times detected/number of scorers) was calculated for each 

decoy, a metric for the probability of detection by the “average” observer, which was the value 

that all subsequent tests were applied to, except in the case of false detections. To examine the 

range of detection probabilities, mean detection probability and standard error was computed 

across all decoys (across factor-levels) using the R package psych (Revelle 2017). The effects of 

5 parameters on detection probability were further explored via the Mann-Whitney U test (two-

level) or Kruskal-Wallis H test (three-level) among factor-level groupings: time of day, filter 

type, cloud presence, wind, and decoy depth, using the R package coin (Hothorn et al. 2008). 

Because wind and tide conditions changed across survey flights on each flight day, which would 

affect turbidity, and we failed to sample this variable frequently enough, we decided to exclude 

secchi depth from our analyses. These non-parametric rank-sum tests were utilized because 

detection probabilities could not be assumed to be normally distributed within groupings. We 

considered p values, patterns of detection probability and variances to evaluate strength of 

evidence for environmental conditions on detection probability (sensu Murtaugh 2014). 

We used regression tree analysis (in R package rpart Therneau et al. 2015) to rank the 

relative importance of environmental factors in explaining the variance in detection probabilities. 

In addition to their flexibility (i.e., non-parametric), these models have strengths in their 

robustness as well as their relative ease of use and interpretation, complementing traditional 

statistical techniques (De’Ath and Fabricius 2000). We considered 5 factors and chose 

continuous input for numerical variables (time of day, depth, and wind speed) as this provided 

more informative (i.e., variance reducing) splits of detection probabilities, along tree branches. 

We pruned the tree using the 1– SE rule (as in Breiman et al. 1984). 
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To determine if detected sharks could be reliably identified as bonnethead or non-

bonnethead, misidentification rates (number of times incorrectly identified/number of scorers 

who detected decoy) were calculated for all decoys detected by at least one scorer. 

Misidentification rates were segregated by species (bonnethead or non-bonnethead) to determine 

if misidentified decoys would lead to “class 1” or “class 2” misidentification. In this context, 

“class 1” would be the misidentification of a bonnethead as a non-bonnethead (Atlantic 

sharpnose), which would lead to a bias of underestimation of bonnethead abundance; whereas 

“class 2” would be the misidentification of a non-bonnethead as a bonnethead and lead to a bias 

of overestimation of bonnethead abundance. These rates were then aggregated by factor-level to 

look at effects of environmental parameters on misidentification. These groupings were also 

compared using non-parametric rank sum tests.  

False detections were summed across scorers for each image, aggregated by factor-level and 

compared using non-parametric rank sum tests to examine possible environmental effects on 

perceiving sharks when they were not actually present, excluding decoy depth as we had no way 

to determine at what depth a falsely identified decoy was perceived. All statistical analyses and 

plotting of data were conducted in R (R Core Team 2016), using the following packages: diplyr 

(Wickham and Francois 2016), tidyr (Wickham 2017), ggplot2 (Wickham 2009), and rpart.plot 

(Milborrow 2017). 

 

Results 

Detection probability for all 159 individual decoys ranged from 0 (never detected) to 1 

(always detected), with an overall mean value of 0.27 + 0.03 (mean and standard error). Mean 

detection probabilities for environmental factor combinations ranged from 0 to 0.96 (Table 4.2). 
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For the 73 decoys that were detected by at least one observer, individual misidentification rates 

also ranged from 0 (correctly identified by all scorers who detected) to 1 (misidentified by all 

scorers who detected), with an overall mean value of 0.24 + 0.03 SE. Mean false detections for 

individual images ranged from 0 to 0.4, with an overall mean value of 0.04 + 0.01 SE across 15 

inspections of each photo. 

Mean detection probability was negatively related to decoy depth (Χ2 = 49.61, df = 2, p < 

0.001), from 0.55 + 0.05 SE at depths less than 0.6 m to 0.03 + 0.02 SE at depths greater than 1 

m (Figure 4.3). Mean detection probability increased from 0.14 + 0.04 SE in the early morning 

period (before 10:30 am) to 0.38 + 0.04 SE in the mid-day period (10:30am to 1:30 pm; Z = -

4.34, p < 0.001) (Figure 4.3). Overall mean detection probability was higher on not cloudy days, 

0.40 + 0.08 SE compared to 0.26 + 0.04 SE on cloudy days, although not well supported 

statistically (Z = 1.5, p = 0.134) (Figure 4.3). Conversely, mean detection probability trended 

lower with increasing mean wind speed, from 0.4 + 0.08 SE at winds below 4 m s-1 to 0.14 + 

0.06 SE at winds above 8 m s-1, although due to the high overall variability in the data, we failed 

to detect a statistically consistent difference (Χ2 = 3.08, df = 2, p = 0.215) (Figure 4.3). The only 

factor that did not affect mean detection probability was filter (Χ2 = 0.67, df = 2, p = 0.713) 

(Figure 4.3).  

Higher detection probabilities (0.55 + 0.05 SE) were associated with shallow depths (< 0.72 

m). Within the shallow depths, the highest detection probabilities (0.78 + 0.05 SE) were 

associated with low wind speed (< 4.2 m s-1). At higher wind speeds (> 4.2 m s-1), there were 

also relatively high detection probabilities (0.62 + 0.14 SE) associated with the shallowest depths 

(< 0.35 m). Detection probabilities were lower (0.22 + 0.06 SE) when depths were intermediate 
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(< 0.72 m, > 0.35 m), and with high wind speed (> 4.2 m s-1). The lowest detection probabilities 

(0.05 + 0.01 SE) were associated with the deepest depths (> 0.72 m) (Figure 4.4).  

Misidentification rates yielded no clear patterns among factor-level comparisons or between 

‘species’: time of day (class 1: Z = 0.99, p = 0.320/ class 2: Z = 0.09, p = 0.932), filter (class 1: 

Χ2 = 1.08, df = 2, p = 0.582/ class 2: Χ2 = 0.22, df = 2, p = 0.896), cloud presence (class 1: Z = 

0.95, p = 0.342/class 2: Z = 0.26, p = 0.798), wind (class 1: Χ2
 
= 1.6, df = 2, p = 0.450/ class 2: 

Χ2 = 0.09, df = 2, p = 0.958), and decoy depth (class 1: Χ2
 
= 0.92, df = 2, p = 0.631/ class 2: Z = 

-0.09, p = 0.932). We also failed to detect any clear patterns or meaningful differences in false 

detections by factor-levels: time of day (Z = 0.76, p = 0.450), filter (Χ2 = 1.63, df = 2, p = 0.442), 

clouds (Z = 0.79, p = 0.427), and wind (Χ2 = 1.47, df = 2, p = 0.478). 

 

Discussion 

By deploying shark decoys across multiple environmental contexts in a temperate estuary we 

demonstrated that UAS surveys, with the ability to target smaller areas with greater precision and 

at higher sampling frequencies relative to manned aircraft, may have potential for answering 

specifically targeted ecological questions about sharks in this and similar environmental systems. 

The main factor influencing detection probabilities in our study was decoy depth, constraining 

surveys to shallow water to reliably detect sharks. This is likely due to visibility bias from 

turbidity, as increases in turbidity increase the rate of light attenuation throughout the water 

column (Brown 1984), presumably leading to greater concealment of decoys at depth. Robbins et 

al. (2014) used shark decoys that were slowly raised from depths of at least 5 m until they 

became visible to estimate the depth at which the decoy could be seen from aerial surveys 

conducted via manned aircraft. In that study, water turbidity measurements were taken across 
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flight days using a secchi disk and were deeper than the average depth at which the decoys were 

observed, suggesting turbidity may not be the only factor affecting visibility bias (Robbins et al. 

2014). Our study suggests time of day, wind, and cloud cover might be additional factors 

affecting visibility bias. 

The comparison of time of day (morning vs. mid-day) showed significant differences in 

detection probability, with mean detection probability during mid-day over two times as high as 

during the morning. This result was somewhat surprising as we had hypothesized that the high 

solar altitude at mid-day would create more glare when photos were taken from overhead, 

thereby increasing visibility bias as decoys become concealed beneath the glare. Total solar 

irradiance reaches a maximum at noon and the reflectance of incident solar radiation increases 

with increasing zenith angle of incidence (Kirk 1994). This means that while there might be 

more glare from overhead during mid-day solar angles, there is also more light available and 

greater penetration into the water, which could increase visibility. There was a notable effect of 

wind on detection probabilities during mid-day, however, with high winds leading to mean 

detection probabilities less than half of those at lower winds; this could possibly be explained by 

the increased scattering of light at the surface and thus lower availability and penetration of light 

in the water column. The availability and penetration of light into the water also likely explains 

the increased detection probabilities on days with fewer clouds in the sky. 

If a decoy was detected, it generally could be identified as a bonnethead or not in ~75% of 

cases, insensitive to environmental conditions at each decoy. Misidentification rates also do not 

appear to vary across bonnethead and non-bonnethead decoys, which means that biases towards 

overestimation and underestimation of bonnethead sharks would be driven mainly by imbalances 

in abundance of bonnethead vs. non-bonnethead species. Likewise, environmental variability 
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does not appear to significantly alter the possibility of a decoy being spotted where it does not 

actually exist. These results suggest that the main obstacle to reliable estimation of species 

abundance from aerial drone surveys is visibility bias due to shark depth, and the likely 

underestimation of true shark abundance in temperate estuaries based solely on aerial surveys.  

While our secchi depth measurements provided a description of the range of visibility across 

our flight days, the frequency at which they were taken (once per flight day) was not sufficient to 

provide a proxy for turbidity that could be correlated with each of our survey flights, not to 

mention the potential for spatial differences across our flight areas.  Nonetheless, our minimum 

secchi depth value (0.7 m) roughly coincides with the first split decision in our regression tree 

(0.72 m decoy depth). There is roughly a 5% chance that a decoy would be spotted at depths 

greater than 0.7 m; this is not surprising considering that this depth was the visibility minimum 

for our flight days.  

Our study is bounded by some constraints that guide the foci of our broader conclusions 

regarding the role of UASs in shark surveys. Due to our focus on bonnethead sharks, we only 

included decoys of small sharks (~1 m), which could have an effect on detection probabilities. In 

addition, we chose to use still images rather than video, which, especially in the case of 

surveying living sharks, could potentially influence rates of detections and/or false detections. 

We also were unable to test for the effects of different types of substrate beneath our decoys on 

the detection probability. Presumably, different colors/textures would influence visibility bias 

depending on how they contrasted with the shark’s countershading pattern, however it should be 

noted that in tropical high-transparency water, benthic characteristics had no effect on shark 

decoy detectability from drone surveys (Hensel et al. 2018). While our study was experimental in 

terms of our control of decoy placement, it was observational in terms of susceptibility to 
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unpredictable environmental changes, which limited our sample sizes for some environmental 

variables. Finally, mainly due to our study focusing on one UAS platform (fixed wing), the flight 

altitude was a variable we kept constant, which could certainly have an effect on detection 

probabilities due to changes in visibility and image resolution at increased altitudes. 

In summary, our decoys demonstrated that drone surveys for sharks in a turbid, temperate 

estuary, such as the Newport River Estuarine System, probably only work in very shallow water 

(< 0.7 m).  Because turbidity increases the rate of attenuation of light at depth, visibility bias of 

sharks is increased, particularly at depths that exceed the minimum visibility or secchi disk 

depth. Wind could be a mechanism that exacerbates this visibility bias as it causes further 

resuspension of solids and alters reflection and refraction of light at the surface. Increasing solar 

altitude, while potentially causing increased glare in photographs taken from overhead, also leads 

to increased light availability and penetration in the water column, which could positively affect 

the detection of sharks from UAS surveys. Our results are in agreement with Kiszka et al. 

(2016), who suggested that UASs are particularly attractive for investigating population trends 

and habitat use patterns where visibility enables animal detection from surface to bottom of the 

water column. As interest in this approach to monitor sharks in coastal environments for public 

safety is increasing, it is important to understand the limitations across different coastal 

environments, some of which can be quite turbid. We agree with Pollock et al. (2006), who 

suggest that standardized protocols and strict ceilings on acceptable survey conditions can reduce 

variation in detection probabilities. We suggest that in temperate estuarine systems, which can 

have high turbidity, UAS surveys may need to be restricted to areas where the depth is shallower 

than the visibility minimum. 
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ENDNOTES 

1This chapter previously appeared as an article in the Journal of Unmanned Vehicle Systems. The 

original citation is as follows: Benavides, M. T., F. J. Fodrie, and D. W. Johnston. 2020. Shark 

detection probability from aerial drone surveys within a temperate estuary. Journal of Unmanned 

Vehicle Systems 8(1):44–56.  
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Table 4.1: Summary of environmental conditions and flight times for each flight date. Times are 

either reported in Eastern Daylight Time (EDT) or Eastern Standard Time (EST). 

 

Flight date Cloud cover Wind speed (m s-1) Secchi depth (m) Approximate local 

flight times 

22 Oct 2015 N 2-5  1.24 9:30, 12:30, 16:00 

EDT 

11 Mar 2016 Y 4-9 1.6 10:00, 12:00 EST 

16 May 2016 N 2-5 1.15 10:40 EDT 

29 Sep 2016 Y 3-5 0.7 8:30, 11:30 EDT 

27 Oct 2016 Y 4 0.97 13:00 EDT 
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Table 4.2: Summary of treatment factor-level combinations with mean and standard error 

computed across all decoys within each treatment. 

 

Treatment Time of day Filter Clouds Mean wind 

speed (m s-1) 

Secchi 

depth 

(m) 

Decoy 

depth 

(m) 

Mean 

detection 

probability 

Standard 

error 

1 < 10:30 am NIR N < 4 1 - 1.5 < 0.6 0.17 0.17 

2 10:30 am - 1:30 pm NIR N < 4 1 - 1.5 < 0.6 0.87 0.11 

3 < 10:30 am RE N < 4 1 - 1.5 < 0.6 0.56 0.28 

4 10:30 am - 1:30 pm RE N < 4 1 - 1.5 < 0.6 0.87 0.13 

5 < 10:30 am NIR N < 4 1 - 1.5 0.6 - 1 0.00 0.00 

6 10:30 am - 1:30 pm NIR N < 4 1 - 1.5 0.6 - 1 0.24 0.21 

7 < 10:30 am RE N < 4 1 - 1.5 0.6 - 1 0.00 0.00 

8 10:30 am - 1:30 pm RE N < 4 1 - 1.5 0.6 - 1 0.00 0.00 

9 10:30 am - 1:30 pm NIR N < 4 1 - 1.5 > 1 0.02 0.02 

10 10:30 am - 1:30 pm RE N < 4 1 - 1.5 > 1 0.00 0.00 

11 10:30 am - 1:30 pm RGB Y > 8 > 1.5 < 0.6 0.18 0.09 

12 < 10:30 am RGB Y 4 - 8 > 1.5 0.6 - 1 0.01 0.01 

13 10:30 am - 1:30 pm RGB Y > 8 > 1.5 0.6 - 1 0.05 0.03 

14 < 10:30 am NIR Y 4 - 8 > 1.5 0.6 - 1 0.03 0.03 

15 < 10:30 am RE Y 4 - 8 > 1.5 0.6 - 1 0.12 0.12 

16 < 10:30 am RGB Y 4 - 8 > 1.5 > 1 0.00 0.00 

17 10:30 am - 1:30 pm RGB Y > 8 > 1.5 > 1 0.23 0.23 

18 < 10:30 am NIR Y 4 - 8 > 1.5 > 1 0.05 0.05 

19 < 10:30 am RE Y 4 - 8 > 1.5 > 1 0.00 0.00 

20 10:30 am - 1:30 pm RGB N < 4 1 - 1.5 < 0.6 0.96 0.02 

21 10:30 am - 1:30 pm RGB N < 4 1 - 1.5 0.6 - 1 0.0667 0.0667 

22 < 10:30 am RGB Y 4 - 8 1 - 1.5 0.6 - 1 0.67 0.33 

23 < 10:30 am RGB Y 4 - 8 1 - 1.5 > 1 0.01 0.01 

24 < 10:30 am RE Y 4 - 8 1 - 1.5 0.6 - 1 0.67 0.33 

25 < 10:30 am RE Y 4 - 8 1 - 1.5 > 1 0.00 0.00 

26 < 10:30 am NIR Y 4 - 8 1 - 1.5 0.6 - 1 0.64 0.32 

27 < 10:30 am NIR Y 4 - 8 1 - 1.5 > 1 0.05 0.04 

28 10:30 am - 1:30 pm RGB Y 4 - 8 < 1 < 0.6 0.80 0.20 

29 10:30 am - 1:30 pm RGB Y 4 - 8 < 1 0.6 - 1 0.07 0.05 

30 10:30 am - 1:30 pm RE Y 4 - 8 < 1 < 0.6 0.92 0.06 

31 10:30 am - 1:30 pm RE Y 4 - 8 < 1 0.6 - 1 0.10 0.08 

32 10:30 am - 1:30 pm NIR Y 4 - 8 < 1 < 0.6 0.68 0.14 

33 10:30 am - 1:30 pm NIR Y 4 - 8 < 1 0.6 - 1 0.11 0.08 

34 10:30 am - 1:30 pm RGB Y 4 - 8 1 - 1.5 < 0.6 0.51 0.18 

35 10:30 am - 1:30 pm NIR Y 4 - 8 1 - 1.5 < 0.6 0.26 0.12 

36 10:30 am - 1:30 pm RE Y 4 - 8 1 - 1.5 < 0.6 0.51 0.20 

  



 

 

111 

 

 

 

Figure 4.1: Photograph of live bonnethead (bottom left corner) and bonnethead decoy (slightly 

off-center) taken at the North Carolina Aquarium at Pine Knoll Shores. 
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Figure 4.2: Map of study area in Eastern North Carolina with flight areas highlighted in yellow. 

Map was created using QGIS (QGIS Development Team 2018). Map data: © 2018 Google; © 

OpenStreetMap contributors. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Factor-level comparisons for detection probabilities related to each of the 5 factors. Data are presented as mean detection 

probability + 1 SE. 
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Figure 4.4: Regression tree showing split decisions as well as mean detection probability (#.##) 

at each node and leaf. Also shown are the number of cases in each node as a raw number (n) and 

percentage (%) out of 159 total decoys in images. 

 

 


