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ABSTRACT

Fan Jiang: On Improving Efficiency of Data-Intensive Applications in Geo-Distributed Environments
(Under the direction of Stan Ahalt and Claris Castillo)

Distributed systems are pervasively demanded and adopted in nowadays for processing data-intensive

workloads since they greatly accelerate large-scale data processing with scalable parallelism and improved

data locality. Traditional distributed systems initially targeted computing clusters but have since evolved to

data centers with multiple clusters. These systems are mostly built on top of homogeneous, tightly integrated

resources connected in high-speed local-area networks (LANs), and typically require data to be ingested

to a central data center for processing. Today, with enormous volumes of data continuously generated

from geographically distributed locations, direct adoption of such systems is prohibitively inefficient due

to the limited system scalability and high cost for centralizing the geo-distributed data over the wide-area

networks (WANs). More commonly, it becomes a trend to build geo-distributed systems wherein data

processing jobs are performed on top of geo-distributed, heterogeneous resources in proximity to the data

at vastly distributed geo-locations. However, critical challenges and mechanisms for efficient execution of

data-intensive applications in such geo-distributed environments are unclear by far.

The goal of this dissertation is to identify such challenges and mechanisms, by extensively using the

research principles and methodology of conventional distributed systems to investigate the geo-distributed

environment, and by developing new techniques to tackle these challenges and run data-intensive applications

with efficiency at scale. The contributions of this dissertation are threefold.

Firstly, the dissertation shows that the high level of resource heterogeneity exhibited in the geo-distributed

environment undermines the scalability of geo-distributed systems. Virtualization-based resource abstraction

mechanisms have been introduced to abstract the hardware, network, and OS resources throughout the system,

to mitigate the underlying resource heterogeneity and enhance the system scalability.

Secondly, the dissertation reveals the overwhelming performance and monetary cost incurred by indulgent

data sharing over the WANs in geo-distributed systems. Network optimization approaches, including linear-

programming-based global optimization, greedy bin-packing heuristics, and TCP enhancement, are developed

iii



to optimize the network resource utilization and circumvent unnecessary expenses imposed on data sharing

in WANs.

Lastly, the dissertation highlights the importance of data locality for data-intensive applications running

in the geo-distributed environment. Novel data caching and locality-aware scheduling techniques are devised

to improve the data locality.
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CHAPTER 1: Introduction

1.1 Data-Intensive Applications

A data-intensive application performs massive data processing activities upon vast amounts of raw data to

gain insights into the data and unearth valuable facts to advance research and business, e.g., genomic sequence

workflows, business intelligence analytics, among others. The data activities performed by data-intensive

applications involve every phase of data processing, including but not limited to acquisition, warehousing,

mining, cleansing, aggregation, integration, analysis, and modeling of data. The data being processed

and analyzed is also stored and presented in a multiplicity of forms ranging from binary (e.g., program

executables) to multimedia content (e.g., videos). The large scale of data, diversity of data activities, and

intricacy of data composition characterize a typical data-intensive application nowadays. More specifically,

data-intensive applications run on data sets with 3Vs (Assunção et al., 2015; Shah et al., 2015): volume,

velocity, and variety – the volume means the sheer amount of data being processed; the velocity indicates the

high rate of newly produced inflow data; the variety represents the various data formats and varying levels of

data noise. These three factors have a profound influence on the performance of data-intensive applications

and deeply impact the architectural and algorithmic design of data-intensive applications and the platforms

they are executed on. Hence, our discussion on data-intensive applications in this dissertation centers on

these three key factors of data.

1.1.1 Data Volume

The enormity of data by itself poses unprecedented challenges to data-intensive applications and their

underlying infrastructure: Dobre and Xhafa (2014) report that around 2.5 exabytes of raw data are being

produced in the world on a daily basis – YouTube receives 48 hours of video uploads per minute and the

cumulative data volume uploaded in two months surpasses the total of three major television broadcast-

ers (Fox, 2011); Walmart reportedly collects more than 2.5 petabytes of transaction data every hour from its

customers (Sivarajah et al., 2017). The colossal amounts of data can rapidly overwhelm data storage capacity
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in any single data center, prohibiting traditional centralized data processing (Corbett et al., 2013; Gupta et al.,

2014; Hwang et al., 2007). Furthermore, the data is highly distributed, generated by devices, individuals and

organizations from around the world. The ubiquity of data sources and sparse distribution of data necessitate

data transport for data analytics, which is hindered by the lack of network bandwidth in WANs – massive

data transfers can easily oversubscribe network capacity and stall due to severe network congestion (Pu

et al., 2015; Vulimiri et al., 2015a,b). This phenomenon, referred to as Data Deluge, is recognized as a clear

trend (Fox, 2011) and calls for highly scalable design of data-intensive applications and the underpinning

infrastructure to cope with the ever-growing data volume.

Further, traditional scaling models (Amdahl, 1967; Gustafson, 1988; Sun and Chen, 2010) have inadequa-

cies in modeling data-intensive applications because of their oversight of the huge data volume. Traditional

models mostly focus on the speedup achieved by data parallelism but ignoring the overhead induced by

scaling, e.g., task dispatching, inter-task communication, among others (Li et al., 2019). This state of

affairs is due to the fact that these models are designed for high-performance computing (HPC) systems

wherein it is assumed that the high-speed local area network (LAN) has abundant network capacity and

transmission of moderate volume of data takes a trivial amount of time as compared to data processing time.

This assumption does not hold true for the majority of data-intensive applications since data processing

activities are mostly I/O-bound in nature and thereby up to an order of magnitude more time-consuming than

their memory-intensive counterpart. Consequently, it is common for data transmission time to dominates

the end-to-end execution time of data-intensive applications due to the slowness of frequent data processing

activities.

Moreover, the massive data volume also has significant financial implications in the era of cloud

computing, since data-intensive applications are migrating from on-premise systems to cloud platforms to

utilize computing resources in an on-demand manner (Buyya et al., 2009). As cloud providers monetize data

by units being stored, transmitted, and processed in the cloud, cloud expenses skyrocket for data-intensive

applications. Hence, a plethora of researches (Wu et al., 2013, 2015; Hsieh et al., 2017; Chung et al., 2018)

concentrate on improving cost effectiveness of data-intensive applications in the cloud by saving superfluous

network traffic and data dumps in store.
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1.1.2 Data Velocity

Despite the gigantic data volume, the high rate of data influx is another major challenge faced by

data-intensive applications. For instance, Walmart processes over a million transactions per hour (Cukier,

2010); Square Kilometer Array Telescope generates 100 terabits per second; exascale simulation produces

result dumps at the rate of terabytes per second (Fox, 2011). The torrent of data continuously stresses the

applications and infrastructure underneath. Therefore, it is imperative for data infrastructures to guarantee

high reliability and fault tolerance for data-intensive applications.

With data constantly flooding in, some applications impose more stringent time constraints on the

processing of data to pace up with the rapid data arrival and capture momentary changes in data. For instance,

automatic trading systems continuously monitor stock prices and need to react to instant price spikes in

seconds; retail stores need to analyze data collected from users’ mobile devices (e.g., location) to generate

personalized promotion offers in minutes (Gandomi and Haider, 2015); online robotic dialog systems (e.g.,

Slackbot1) are required to comprehend and respond to user interactions promptly. Assunção et al. (2015)

categorize data-intensive applications into four types based on the strictness of time constraints, which are

batch, near-time, real-time, and streams. Particularly, data velocity has the most salient impact upon real-time,

e.g., data analytics queries (Rabkin et al., 2014; Pu et al., 2015; Vulimiri et al., 2015a), and streams, e.g., data

streaming applications (Xu et al., 2014; Peng et al., 2015; Caneill et al., 2016). Given more rigorous time

constraints, low latency is of greater importance to these time-critical applications than high throughput due

to costly penalties for delays in data processing.

Latency arises mainly due to shortage in processing ability and data movements – data processing

tasks may contend for limited computing cycles and forcibly queue up to wait for next available ones,

causing queuing delay; communication and data sharing among the tasks initiate data movements and

unavoidably incur data propagation delay. To mitigate the queuing delay, it is requisite to invest more in

computing resources to resolve the bottleneck in resource provisioning and guarantee abundant computing

cycles. More importantly, applications should be highly scalable by design, able to scale out and exploit

additional resources. Data propagation delay is a product of round trip time (RTT) between tasks and network

congestion. The RTT is largely determined by the speed of light and therefore it is difficult to overcome, while

1An Introduction to Slackbot: https://slack.com/help/articles/202026038-An-introduction-to-
Slackbot
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network congestion forces packet loss and retransmission, bogging down data transfers over the network. To

reduce data propagation delay, computer networking studies have proposed a series of network optimization

approaches to circumventing or alleviating network congestion (Al-Fares et al., 2010; Hong et al., 2013;

Alizadeh et al., 2014; Cai et al., 2016; Cardwell et al., 2016; Langley et al., 2017). On other alternative

approach that has gained much attention in the community for its effectiveness in enabling low-latency data

analytics is to retain data locality and shorten the traveling distance of data movements (Hindman et al., 2011;

Zaharia et al., 2012; Pu et al., 2015; Caneill et al., 2016).

1.1.3 Data Variety

Data variety refers to the heterogeneity found in data forms, provenance, crudity and quality of data-

intensive applications (Sivarajah et al., 2017). Data to be processed ranges from unstructured free text to

annotated video snippets; some data sets are provided in raw formats, while others are excerpts of original

data. To make things worse there are also different levels of noise across various data sets. This heterogeneity

adds to the difficulty for data-intensive applications to comprehend and make sense of data. Further, the data

variety forces applications to use a diversity of data processing frameworks among which interoperability is

absent and data formats are incompatible, therefore further worsening the heterogeneity challenge. Hindman

et al. (2011) reveal that lack of interoperability among data processing frameworks prevents applications

from scaling out and harms data locality. From the perspective of system administration, maintaining a large

number of frameworks is laborious and error-prone, costing a non-trivial, increase in IT investment.

Additionally, in this dissertation, we consider data variety to encompass the highly variable patterns of

data generation and processing that results in load spikes that affect performance of data-intensive applications.

Particularly, for most user-driven applications (e.g., mobile applications), data load is unpredictable because

of spontaneous user behaviors. This variety induces a radical implication on system elasticity and scalability.

Without an elastic infrastructure, traditional approaches address workload bursts by overprovisioning, which

wastes resources and energy. Today, enabled by cloud computing, data-intensive applications can use

computing resources as a utility (Buyya et al., 2009) allowing data processing systems to scale dynamically

to accommodate varying resource demands of applications. Meanwhile, data-parallel models (Isard et al.,

2007; Dean and Ghemawat, 2008) immensely improve the application scalability across commodity servers.

However, the system elasticity and scalability are currently limited by the capacity of individual cloud

providers Buyya et al. (2010); Varghese and Buyya (2018). Vendor lock-ins and business barriers among
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providers prevent applications from scaling across cloud platforms to gain access to and make use of more

resources across cloud platforms. As cloud competitors inherently lack the initiative to promote inter-cloud

application scaling, broker services that orchestrate applications across clouds need to be developed to achieve

higher level of elasticity and scalability (Grozev and Buyya, 2014).

1.2 Geo-Distributed Computing

A massive scale of data is being generated at very high rates all over the world every day, e.g., emails,

ad clicks, online purchases, social media posts, temperature readings, and many others. Particularly, with

the development of mobile technologies and the emergence of Internet of Things (IoT) (Li et al., 2015),

intelligent portable devices, e.g., smart phones, smart home devices and sensors, are widely equipped and

increasing the already formidable data volume worldwide. Major IT service providers, e.g., Google (Calder

et al., 2013; Jain et al., 2013), Microsoft (Hong et al., 2013), Amazon2 and AT&T (Hung et al., 2015), deploy

tens to hundreds of global data centers to acquire, store and analyze geo-distributed data sets. Example

analyses include querying user clicks to aid advertisement recommendation (Corbett et al., 2013), querying

server logs to monitor system health, querying network logs to detect malicious attacks, etc. These data

analytics applications are data-intensive in nature, producing a large scale of intermediate and output data

from distributed geo-locations.

Traditional data analytics frameworks still adopt the centralized data processing model (Pietzuch et al.,

2006; Corbett et al., 2013; Gupta et al., 2014; Kraska et al., 2013). With this model, geo-distributed data

sets are transferred to a single central data center over WANs for aggregation and analysis. The centralized

model has several critical disadvantages in a geo-distributed setting. First, centralized data processing heavily

stresses the central data center in computing, storage and power provisioning, and greatly limits scalability

of applications to the capacity of the data center, which is nontrivial to scale on demand to handle load

bursts. Second, backhauling data over WANs is inefficient from the perspective of resource utilization and

application performance. Transferring large amounts of data between geo-distributed data centers incurs

substantial network traffic and wastes valuable WAN bandwidth. On the other hand, application performance

will be impeded by remote data transfers over scare network resources prolonging the application execution

time. In addition to the bandwidth shortage, the huge volume of data may overflow buffers of top-of-the-rack

2Global Infrastructure – Amazon Web Services: https://aws.amazon.com/about-aws/global-infrastructure/
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switches in data centers, causing a known network problem referred to as TCP incast (Chen et al., 2012b) and

further degrading the performance of TCP data transfers. Third, centralized data processing is susceptible

to single point of failure upon data center outage and affects reliability of applications. Last but not least, a

centralizing approach is often prohibited by data privacy and sovereignty laws, which limit data movements

within only authorized domains or locations.

Geo-distribured computing has emerged as the de-facto model for performing geo-distributed data

analytics since it addresses the limitations of the centralized model. Following, we elaborate on the benefits

of geo-distributed computing for data-intensive applications.

1.2.1 High Scalability

Geo-distributed computing model allows data-intensive applications to scale out across multiple geo-

distributed data centers rather than be confined to a single one. The ability to scale out is essential to

data-intensive applications since their workloads are bursty, and unexpected workload spikes may exceed

the capacity of a well resourced data center. For instance, in our experiments we have encountered such

resource shortage in Google’s us-east4 data center at North Virginia. More specifically, a RNA sequence

alignment workflow we use to drive experiments was frequently unable to scale out to other data centers in

Google Cloud due to insufficient resources. Upon this situation, pending jobs would block long periods of

time impacting significantly the overall execution time of the workflow. Data centers typically overprovision

resources to cope with workload bursts (Grozev and Buyya, 2014), leaving data centers underutilized for the

majority of time and incurring wasteful power consumption. In the geo-distributed model, applications gain

access to a large pool of resources from multiple geo-distributed data centers. If resources in a data center are

depleted, applications can scale out to other data centers to continue making progress instead of halting for

long periods of time. Hence, geo-distributed computing enhances the scalability of applications and lowers

the risk of resource shortage.

1.2.2 Low Latency

Geo-distributed computing offer low latency capabilities not possible with other computing models

in similar environments. An outstanding characteristic of geo-distributed computing is the low latency it

achieves for data-intensive applications running on top of geo-distributed data sources and data sets. By

spreading data processing jobs across the geo-distributed data centers, applications gain proximity to the data
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they need and reduce or even eliminate the latency they would have experienced otherwise. As discussed

in the prior section, low latency is crucial for time-critical, data-intensive applications such as real-time

data analytics queries and data streaming applications. A plethora of studies (Wu and Madhyastha, 2013;

Pu et al., 2015; Hung et al., 2015; Wu et al., 2013) have shown that increasing density of geo-distributed

data centers is conducive to lowering network latency for geo-distributed applications. In practice, using

multiple cloud platforms is a viable way to improve geospatial coverage of data centers since cloud providers

collectively have widespread data center deployments globally. It is worth mentioning that certain data

operations such as aggregation must always be done in a centralized manner. However, the geo-distributed

model can support data cleansing, selection and partial data aggregation at the edge to reduce the amount

of data to be backhauled for final centralized processing, therefore greatly shortening the time for data

transmission over WANs (Rabkin et al., 2014). This has a huge implication on user-perceived latency of

applications since time for data transfers often dominates the end-to-end runtime of applications.

1.2.3 Strong Resilience

Relying on a single data center exposes data-intensive applications to potential breakdown caused by

data center failures, which are not uncommon as observed in recent years. Major cloud providers, including

Amazon Web Services (AWS)3, Microsoft Azure4 and Google Cloud Platform (GCP)5, have all experienced

disruptive data center outages in the past few years. A post-mortem analysis performed by Amazon6 even

advised their clients to distribute their applications across multiple data centers for fault tolerance. Although

cloud providers today deploy multiple independent clusters at every single region, referred to as availability

zones (AZs), to lower the risk of total data center breakdown, site-wide failures are still possible due to

unexpected disasters. The geo-distributed computing model uses multiple geo-distributed data centers as

insurance against potential breakdown of one or multiple data centers, greatly lowering the risk of application

breakdown and ensuring strong resilience of applications.

3Summary of the AWS Service Event in the US East Region: http://aws.amazon.com/message/67457
4Windows Azure Service Disruption Update: http://blogs.msdn.com/b/windowsazure/archive/2012/03/01/
windows-azure-service-disruption-update.aspx

5Post-mortem for February 24th, 2010 outage: https://groups.google.com/group/google-appengine/browse_
thread/thread/a7640a2743922dcf?pli=1

6Summary of the Amazon EC2 and Amazon RDS Service Disruption: http://aws.amazon.com/message/65648
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1.2.4 Regulatory Compliance

Valuable data sets are mostly sensitive and proprietary. Regulatory constraints are commonly imposed

on these data sets to protect the intellectual properties and data sovereignty (Mohan et al., 2012; Vulimiri

et al., 2015b). These regulatory policies typically prevent protected data sets from being physically moved

around at will to ensure data security. For instance, European Union forbids transfer of personal data

to non-member countries without an adequate level of protection measures (Varghese and Buyya, 2018);

most cloud providers are compliant to Healthcare Insurance Portability and Accountability7, prohibiting

sensitive patient health information from being disclosed without the patient’s consent and knowledge. These

legislative and regulatory constraints prevent centralized data aggregation and processing for data-intensive

applications running on top of the most sensitive and proprietary data. Instead of moving sensitive data to a

central data center, geo-distributed computing has the flexibility to distribute data processing tasks to data

centers with proper security clearance and authorization to perform in-place data analytics without violating

regulatory constraints. This capability ensures regulatory compliance of data-intensive applications.

1.2.5 Cost Effectiveness

Despite performance degradation, transferring colossal amounts of data sets over WANs is prohibitively

expensive due to the huge consumption of WAN bandwidth it incurs, which is scarce and charged for usage

at a high unit price. Most cloud providers charge for egress network traffic produced by applications, which

is the outbound network traffic from a geo-location such as a data center in the cloud; the rate is increased if

the traffic goes outside the cloud platform to the Internet. For instance, GCP charges $0.01 per gigabyte for

network traffic traveling among its cloud regions in United States and Canada but penalizes egress Internet

traffic by a rate of $0.12 per gigabyte – a 12x price increase. Other providers such as AWS and Microsoft

Azure have a similar pricing model for egress network traffic. Reserving dedicated network links between

geo-locations can reduce egress network traffic cost, since cloud providers usually charge a one-time fee

for setting up network circuits independently of the network traffic. However, the initial investment for

such dedicated network links is typically too high to be amortized for applications at small to medium scale.

Hence, a large number of research efforts focus on reducing the amount of data transferred over WANs for

7Health Insurance Portability and Accountability Act of 1996 (HIPAA): https://www.cdc.gov/phlp/publications/
topic/hipaa.html
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data-intensive applications in geo-distributed environments to save the monetary cost associated with egress

network traffic (Wu et al., 2013, 2015; Pu et al., 2015; Kloudas et al., 2015; Hsieh et al., 2017). With the

geo-distributed model, data pre-processing and partial aggregation are performed at the edge, significantly

reducing the amount of data being transferred among geo-distributed data centers and, thus, saving the egress

network traffic cost (Rabkin et al., 2014). Additionally, as data-intensive applications are being migrated to

the cloud in nowadays, geo-distributed computing can take advantage of the price discrepancies among cloud

providers to minimize the cloud expenses for resource subscription (Wu et al., 2013). For instance, AWS

offers resources with variable prices, i.e., Spot Instances8, which change based on the supply and demand in

the market can be exploited for cost saving.

1.3 Challenges for Data-Intensive Applications in Geo-Distributed Environments

In the prior sections, we elaborate on the characteristics of data-intensive applications and advantages

of a geo-distributed computing model for running these applications upon large-scale, geo-distributed data

sets. In this section we focus on three key challenges we have identified which hinder running data-intensive

applications in geo-distributed environments.

1.3.1 High Degree of Heterogeneity

Geo-distributed environments are intrinsically heterogeneous. They typically consist of loosely-coupled,

geo-distributed infrastructures, which are designed, built and maintained independently from each other. At

low level, geo-distributed data centers employ heterogeneous hardware and software from central processing

units (CPU) to operating systems (OS). Servers in different racks even use disparate CPU platforms; some

nodes are equipped with accelerators such as graphic processing units (GPU), field-programmable gate

array (FPGA) and many-core processors (e.g., Intel Xeon Phis) – a variety of OS, including Microsoft

Windows Server, Solaris, BSD family, and miscellaneous Linux distributions, are running on different servers.

Standardization of Application Programming Interfaces (APIs) is limited thus impeding interoperability across

data intensive applications running on diver high-level frameworks. Furthermore, network heterogeneity is

even more severe in geo-distributed environments as WANs are made of heterogeneous subnets backed by

various network providers – despite the high level of heterogeneity in network devices (e.g., assorted models

8Amazon EC2 Spot Instances:https://aws.amazon.com/ec2/spot

9

https://aws.amazon.com/ec2/spot


of network switches and routers), there are plenty of discrepancies in network architecture and management

among providers. Consequently, heterogeneous WANs are susceptible to connectivity issues and network

congestion, causing underwhelming and unpredictable network performance. As summarized by Varghese

and Buyya (2018), heterogeneity exists in nine layers of a geo-distributed system from bottom up, including

network, storage, servers, virtualization, OS, middleware, runtime, data, and application.

Particularly, as geo-distributed computing is often realized on top of multiple cloud platforms in prac-

tice (Stefanov and Shi, 2013; Wu et al., 2013; Jonathan et al., 2016), there is also heterogeneity in cloud

services and pricing models. Different cloud providers expose heterogeneous APIs for subscribing, managing

and releasing miscellaneous resources, impeding data-intensive applications from scaling across clouds to

leverage featured services offered by specific vendors and alleviate platform-wide risks (e.g., political or

legislative restrictions). Furthermore, cloud providers are disincentivized to improve interoperability among

cloud platforms, relying on lock-in strategists to discourage clients from migrating to the competitors. This

further exacerbates the heterogeneity in the cloud. Although plenty of efforts have been made to bridge the

gap between cloud platforms (Grozev and Buyya, 2014), they are still preliminary, and deeper integration

among cloud platforms is needed to mitigate the heterogeneity.

1.3.2 Loss of Data Locality

As discussed in prior sections, geo-distributed computing has the potential to improve data locality

for data-intensive applications by co-locating computation and data. Nevertheless, it is difficult to directly

adapt well-known data processing frameworks, e.g., Hadoop (Shvachko et al., 2010), Spark (Zaharia et al.,

2010b), and others (Isard et al., 2007; Malewicz et al., 2010), to geo-distributed environments. Although

these frameworks are originally designed to optimize for data locality, they are oblivious to the heterogeneity

commonly found in compute infrastructure and therefore are only suitable for cluster computing within

single data centers. Consequently, they may worsen data locality for geo-distributed environments thus

affecting the performance of data-intensive applications. Figure 1.1 shows the egress network traffic and cloud

expenses incurred when deploying a Mesos (Hindman et al., 2011) instance into a multi-cloud, geo-distributed

environment. Without taking into consideration the geographic distribution of resources and egress network

traffic cost, the default scheduler of Mesos spreads out compute tasks across the geo-distributed resources

incurring a prohibitive amount of costly egress network traffic. In fact, our experiments show that almost

90% network traffic travels across cloud regions and platforms, inducing 98.5% of total cloud expenses. As
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expected, long-distance data transfers slow down data-intensive applications given the large volume of data

to be transferred over the WAN. We will further demonstrate the negative impact on application performance

caused by loss of data locality in the experimental evaluation introduced in the following chapters.

Figure 1.1: Excessive egress network traffic and cloud expenses caused by loss of data locality

There are two lines of work in improving data locality in geo-distributed environments. One line of

work focuses on task scheduling optimization (Vulimiri et al., 2015a; Pu et al., 2015; Viswanathan et al.,

2016; Jonathan et al., 2016). Another line of work focuses on data caching and replication (Wu et al., 2013;

Corbett et al., 2013; Stefanov and Shi, 2013; Gupta et al., 2014) to improve data locality in geo-distributed

environments. These approaches have a piecemeal nature, while comprehensive and generalizable solutions

are still absent. We believe that proper abstraction of compute resources is fundamental to preserving

data locality in geo-distributed environments since it can standardize and enrich information about the

environments for high-level scheduling processes.

1.3.3 Inefficiency in Data Sharing

Large data transmission over the network is inevitable for data-intensive applications even with optimal

data locality, since data processing tasks generate and share a large amount of intermediate output with

each other. For instance, for MapReduce (Dean and Ghemawat, 2004) applications, the shuffle phase

shuffles the output data of mappers among reducers, resulting in intensive data sharing over the network.

Further, machine learning models commonly create huge parameter matrices, which are frequently updated
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by distributed processes (Hsieh et al., 2017). In addition, tasks of genomic alignment workflows generate

pre-aligned intermediate results consumed by its next steps running on distributed nodes. Hence, it is

crucial to ensure the efficiency of data sharing to satisfy quality-of-service (QoS) requirements imposed on

data-intensive applications.

WAN performance is key to achieving high efficiency of data sharing in geo-distributed environments

since the majority of data transmissions rely on WANs. However, it is common for geo-distributed applications

to encounter performance issues in WANs. First, most WANs suffer from constrained bandwidth and high

latency, therefore increasing the likelihood to network congestion. Second, traditional WAN architecture

has design limitations that hinder network optimization, leading to several performance challenges in the

operation and use of WANs (McKeown et al., 2008; Braun and Menth, 2014). Finally, infrastructure for

supporting high-speed WAN is lacking. More specifically, advanced WAN solutions such as Multi-Protocol

Label Switching Traffic Engineering (MPLS-TE) (Meyer and Vasseur, 2010) are proprietary and expensive

to adopt; and, data transfer infrastructures such as SDX (Gupta et al., 2015), are only available in highly

specialized settings. Commonly, data-intensive applications resort to the Internet for remote data transfers,

which is extremely inefficient. It took us over two weeks to transfer 5 terabytes of hydrology data sets

between two institutions in the United States. On the other hand, data processing frameworks lack WAN

awareness to circumvent performance bottlenecks, since limited bandwidth, high latency and high probability

of packet loss are unique in WANs and rarely considered in the design of data center solutions. Enhancing

network awareness in data-intensive applications can facilitate the efficiency of data sharing in geo-distributed

environments.

1.4 Thesis Statement

In the recognition of these critical challenges, we seek to address each of these challenges systematically

in this dissertation. This leads to the following thesis statement:

Data-intensive applications face high levels of heterogeneity, loss of data locality and inef-

ficiency in data sharing in geo-distributed environments, which create significant detriments

to application efficiency. To improve the efficiency, these challenges ought to be tackled via

resource abstraction, preservation of data locality and network optimization.
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1.5 Contributions

To support the aforementioned thesis, we summarize the contributions made in this dissertation in the

following three aspects.

1.5.1 Resource Abstraction

As explained in Section 1.3.1, heterogeneity exists in many aspects of geo-distributed computing

from low-level infrastructure to high-level representation of data-intensive applications. Heterogeneity is

recognized as the major culprit impeding data-intensive applications from running smoothly in geo-distributed

environments. Hence, it is imperative to first address all issues related to heterogeneity in order to further

improve the efficiency of data-intensive applications.

In this dissertation, we develop resource abstraction mechanisms across different levels of geo-distributed

computing systems to mitigate the aforementioned heterogeneity. Specifically, in Chapter 3, we introduce

a high-level abstraction based on the data-flow diagram (DFD) model to simplify the description of data-

centric scientific collaborations and bridge the gap between computing and data in scientific collaborative

applications. We develop a virtual network layer using software-defined networking (SDN) to abstract the

highly heterogeneous WANs connecting geo-distributed, participating research institutions, addressing not

only the heterogeneity found in the WAns but also opening the door to complex network optimization. In

order to generalize caching of computation, in Chapter 4, we characterize jobs of data-intensive applications

based on their key properties. Further, we create an abstraction layer to standardize access and use of cache

spaces contributed by a multiplicity of geo-distributed servers. In Chapter 5, we achieve cloud agnosticism

across geo-distributed cloud regions by creating an abstraction of compute resources provisioned by multiple

cloud providers, allowing seamless scaling and migration of data-intensive applications across geo-distributed

cloud regions and multiple clouds. These pieces of work lay the groundwork for other contributions, which

would otherwise be intractable in geo-distributed environments.

1.5.2 Preservation of Data Locality

Data locality is central to data-intensive applications, especially in geo-distributed environments, because

of its enormous impact on application performance and associated monetary cost as described in Section 1.3.2.
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In this dissertation, we are committed to preserving data locality for data-intensive applications in geo-

distributed environments.

In Chapter 3, we develop a mechanism that allows users to create data stores at geo-locations in proximity

to their applications to ensure data locality. In Chapter 4, we develop a network-aware cache network spanning

multiple geo-locations to cache and reuse intermediate and output data of repeatedly executed data-intensive

jobs thus retaining data locality for applications. As part of this work, we devise an intelligent, network-aware

cache algorithm that dynamically caches and replicates data across geo-distributed cache servers to achieve

global optimum of data locality and shorten job completion time. Additionally, in Chapter 5, we introduce

a novel cost-aware scheduling algorithm that factors in cloud expenses incurred by resource subscription

and egress network traffic and co-locates application tasks intelligently across cloud platforms, therefore

preserving data locality and minimizing cloud expenditures. These solutions can jointly preserve data locality

for data-intensive applications in geo-distributed environments and improve their efficiency.

1.5.3 Network Optimization

We also contribute to the field of network optimization to improve data transfers over WANs. The Internet

is unreliable for supporting critical applications, while specialized high-speed WANs are rarely available

to the public sector. Furthermore, most applications are oblivious to the unique characteristics of WANs

and geo-distributed environments, thus unable to fully utilize the network resources offered by WANs. Last,

heterogeneity in WANs aggravates the inefficiency in WANs.

Hence, our contribution in network optimization is three-fold. First, we propose feasible approaches

to establish efficient virtual WANs over commodity resources and public cloud services as introduced in

Chapter 3 and 5, respectively; these approaches create the engineering fabric for various advanced network

optimizations on top. Second, we enhance the network awareness of applications to optimize WAN utilization.

Specifically, in Chapter 3, we develop an SDN-based mechanism that maximizes bandwidth utilization in the

WAN with respect to priorities of applications. We also pioneered TCP MARIO, a sender-side TCP congestion

control variant, which takes explicit bandwidth allocation to TCP connections to maximize throughput of

data transfers. In Chapter 4, we introduce network awareness into the caching process of geo-distributed

computing, which makes dynamic decisions of data caching and replication in response to ever-changing

network conditions. In Chapter 5, we consider the significance of egress cost in budgeting data-intensive

applications and enhance the bin-packing task scheduling algorithm by introducing cost awareness with
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respect to resource subscription and egress network traffic in the cloud. Last, as explained in Section 1.5.1, we

rely on network abstraction to mitigate the heterogeneity in WANs and therefore clear the path for complex

network optimization.

1.6 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we provide the background and

prior works related to improving efficiency of data-intensive applications and geo-distributed computing. In

Chapter 3, we introduce our work on RADII in which we tackle the challenges in describing data-centric

scientific collaboration and performing efficient remote data transfers through resource abstraction and

network optimization. Next, we present CACHALOT in Chapter 4, in which we develop a network-aware

cache network and algorithm for geo-distributed, data-intensive applications to improve applications’ data

locality. In Chapter 5, we elaborate on our cloud-agnostic solution named PIVOT for geo-distributed,

data-intensive applications in the cloud. Lastly, we conclude this dissertation and propose potential future

works in Chapter 6.
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CHAPTER 2: Background and Prior Work

In this chapter, we present the background for this dissertation by surveying the related prior work.

The organization of this chapter is as follows: we first introduce resource abstraction techniques in

Section 2.1; then, we focus on approaches to achieving data locality in distributed systems in Section 2.2;

lastly, we present the related works on TCP optimization in WANs in Section 2.3.

2.1 Virtualization-Based Resource Abstraction

Virtualization is a technique of creating software-based virtual resources on the basis of their physical

counterparts such as computing, storage, and networking devices and platforms. It is commonly adopted

in distributed systems and cloud computing to achieve resource abstraction and enable dynamic, scalable

distributed applications.

The idea of virtualization originates as a time-sharing solution on mainframe computers, which creates

logically isolated environments for users and applications to share the resources with minimal interference

with each other. Today, virtualization has been extensively applied to abstracting other types of resources such

as memory, storage, network, among others. Particularly, network virtualization abstracts network devices

using software components and creates virtual network spaces, creating opportunities for more dynamic and

sophisticated network optimization and enhancement. Recently, lightweight virtualization approaches, e.g.,

containerization, have emerged to enhance the granularity and agility of distributed application deployment.

These modern virtualization technologies lay the groundwork for national cyberinfrastructures (CIs) and

cloud computing platforms of today, where geo-distributed, data-intensive applications are primarily deployed

and executed on a mass scale.

2.1.1 Hardware Virtualization

Hardware virtualization abstracts a portion or the entirety of physical resources on a computer to

multiplex the resources among multiple users and applications. It is initiated on mainframe computers to
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enable time-sharing of resources among users and applications. Modern hardware virtualization extends the

technique to commodity computers using hardware emulation and software simulation. Specifically, full

virtualization techniques rely on 100% binary translation to emulate privileged instruction sets embedded in

the hardware and create isolated virtual environments referred to as virtual machines (VMs) in parallel on

a single machine, which allows the OS and applications to run on top without any modification as if on a

bare-metal machine. Magnusson et al. (1998) first demonstrate the full virtualization of unmodified Linux

and Solaris on the SPARC v8 architecture. Devine et al. (2002) propose a virtual machine monitor (VMM)

that enables full virtualization on the x86 architecture. Bellard (2005) develops a portable machine emulator

that supports full virtualization across multiple CPU architectures. Kivity et al. (2007) introduce a Linux

kernel-based VMM named kvm specialized for full virtualization on Linux platforms. These works built

the foundation for hardware virtualization of today. However, full virtualization is recognized heavyweight

by Barham et al. (2003) due to the substantial overhead caused by the full binary translation – certain

operations and tasks are significantly time-consuming when performed in the virtual domain as compared

to the physical domain. To alleviate the overhead, hardware enhancement, e.g., Intel VT-x (Uhlig et al.,

2005), has been developed to provide extra support for circumventing the inefficient binary translation. As

an alternative to full virtualization, Whitaker et al. (2002) and Barham et al. (2003) propose the concept of

para-virtualization, which presents hardware instructions in the form of a software interface and defers the

implementation of resource abstraction to the OS running on top. This approach mitigates the performance

overhead and can be ported to commodity hardware without any specialized assistance. However, it requires

OS modifications to make the OS aware of the virtualized environment and interface to properly execute

instructions. Hwang et al. (2013) compare the aforementioned virtualization approaches as depicted in

Figure 2.1.

Hardware virtualization underpins most well-known Infrastructure-as-a-Service (IaaS) providers includ-

ing mainstream cloud platforms and academic cloud testbeds, providing the fundamental low-level resource

abstraction for modern distributed computing, especially cloud computing. The infrastructure we have built

in this dissertation is laid on hardware-virtualized resources provisioned from distributed geo-locations.

2.1.2 OS-Level Virtualization

The OS-level virtualization, idiomatically referred to as containerization, further abstracts the essential

functionalities provided by the OS kernel, i.e., system calls, to allow sharing of an OS kernel among user-space
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Figure 2.1: Comparison of hardware virtualization approaches (Hwang et al., 2013)

applications running on top. Specifically, it encapsulates applications in a compact and fine-grained fashion,

by packaging only application-specific assets, e.g., executables, runtime, and libraries, into isolated containers

but sharing other OS resources, e.g., kernels, among applications. In contrast with hardware virtualization, the

OS-level virtualization eliminates the overhead for hardware emulation and software simulation; meanwhile,

it also avoids resource waste caused by redundant loading of duplicate OS resources as commonly practiced

in the one-task-per-instance model (Mao et al., 2010; Van den Bossche et al., 2010; Bittencourt and Madeira,

2011; Mao and Humphrey, 2011), achieving agile application scaling and fast failover in distributed systems.

There have been many academic and industrial efforts devoted to realizing and improving OS-level

virtualization. Pahl et al. (2017) conduct a comprehensive taxonomical review of state-of-the-art techniques

and methods of containerization and its orchestration. Notably, the introduction of cgroups1 enables the

isolation of resource usage by processes in Linux, laying the foundation for modern container techniques.

Docker2 streamlines the use of containers and boosts the development of microservices architecture (Dragoni

et al., 2017). containerd3 is an active open-source project in which industry standards for container

runtime are being defined and adopted. These containerization techniques facilitate resource abstraction

1cgroups: http://man7.org/linux/man-pages/man7/cgroups.7.html
2Docker: https://www.docker.com/
3containerd: https://containerd.io
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for data-intensive applications. Hindman et al. (2011) propose to encapsulate data processing tasks of data-

intensive applications using containers in order to remove the coupling between computing clusters and

application frameworks and allow multiple application frameworks to co-exist on a single cluster to improve

resource utilization.

Figure 2.2: Comparison between container-based and traditional virtualization (Zhang et al., 2010)

Zhang et al. (2010) conduct an in-depth survey on virtualization technologies adopted in the cloud and

compare different virtualization strategies as illustrated in Figure 2.2. With traditional hardware virtualization,

applications are running in units of VMs loaded with full-featured OS. Consequently, it takes extra time to

load OS assets before starting applications, slowing down application start-up. In the meantime, application

migration and failover are time- and resource-consuming, since the VM hosting the migrating application

needs to be transferred from one machine to another in its entirety. In comparison, the container-based

solutions enabled by services, such as Amazon Elastic Container Service4 and Google Kubernetes Engine5,

are more lightweight since they deploy and migrate only application assets, which are typically smaller than

an entire OS in size. Further, by combining OS-level and hardware virtualization as shown in Figure 2.2,

users can have more freedom in customizing resource management for applications running in the cloud –

they can develop custom algorithms for scheduling VMs and containers rather than delegate the resource

management to cloud providers, and therefore reap more benefits granted by resource abstraction. We

4Amazon Elastic Container Service: https://aws.amazon.com/ecs
5Google Kubernetes Engine: https://cloud.google.com/kubernetes-engine/
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leverage the combination of OS-level and hardware virtualization to enable the cost-aware cloud agnosticism

as introduced in Chapter 5.

2.1.3 Network Virtualization

Network virtualization abstracts network resources and functionalities of physical networks by creat-

ing virtual networks connecting distributed, virtualized resources and enabling dynamic software-defined

networking (SDN). A virtual network is established over segregated physical network partitions, providing

connectivity for distributed applications and presenting a simple logical network topology. It can be created

using techniques including virtual local area network (VLAN) (McPherson and Dykes, 2001) and virtual

private network (VPN) (Gleeson et al., 2000), which are offered as standard services by mainstream cloud

vendors for creating virtual networks in the cloud. A number of prior works adopt virtual networks in the

geo-distributed environment to connect applications running in geo-distributed, isolated network domains

and improve the network performance among them. Baldine et al. (2012) build the ExoGENI on top of a

federation of geo-distributed cloud sites and network circuit providers, allowing users to create dedicated

virtual networks for deeply networked, multi-domain, multi-site applications at scale. Cai et al. (2016) develop

the cloud-routed overlay networks using VMs provisioned by cloud providers to re-route the Internet traffic

and bypass the Internet core, avoiding the congestion at the Internet core and therefore improving the network

performance over the Internet. Pfaff et al. (2009) and Pfaff et al. (2015) abstract the network switching and

routing functionalities into a software component, further facilitating the creation and deployment of virtual

networks on commodity servers and VMs.

Furthermore, the emergence of SDN advances network virtualization by enabling the programmability of

networks and presenting a flexible network architecture on which complex algorithms and configurations are

made possible. Casado et al. (2007) propose an early architectural design of the SDN of today. McKeown

et al. (2008) extend it into the OpenFlow protocol, which evolves as a major SDN communication protocol of

today. Gude et al. (2008) develop the first network OS implementing the OpenFlow protocol, which serves

as the reference implementation for OpenFlow controller frameworks. Koponen et al. (2010) introduce a

distributed network control platform for SDN networks.

Figure 2.3 (Braun and Menth, 2014) shows the SDN architecture. In traditional networks, the control

layer is embedded in the physical switches together with the data layer; since the switches are autonomous

and lack information about the network and applications, the control layer can only implement simple
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decentralized algorithms to improve network performance in a best-effort manner. SDN abstracts the control

layer into a centralized, stateful software component, referred to as an SDN controller, which can be fed

with internal and external states of the network and uses them to drive complex routing algorithms. An SDN

controller is equipped with a northbound and southbound APIs – the controller interacts with applications

via the northbound API to acquire external states, and communicates with SDN-compatible switches via the

southbound API to learn of the network states and install network flows. By centralizing the control layer, the

SDN controller can gain a global view of the entire network and perform optimization for network routing.

Additionally, with the northbound API, it is more knowledgeable about applications running on top than its

counterpart in traditional networks.

Figure 2.3: SDN Architecture (Braun and Menth, 2014)

The advance of SDN standards and technologies propels its adoption in acamdemia and industry, such as

GENI (Berman et al., 2014), ExoGENI (Baldine et al., 2012), B4 (Jain et al., 2013), SWAN (Hong et al.,

2013), Jupiter (Singh et al., 2015), among others. It also stimulates the innovation of SDN-based network

scheduling algorithms, which are impossible in the traditional network architecture without the network

abstraction. For instance, Hong et al. (2013) model the bandwidth allocation among geo-distributed data

21



centers as a multi-commodity (MCF) problem and develop a global optimization approach to maximize the

bandwidth utilization in WANs. In Chapter 3, we introduce our approach based on this work to address

priority-based bandwidth allocation in WANs.

2.2 Data Locality in Distributed Computing

Data locality refers to the property of keeping computation in proximity to the data it needs. Preserving

data locality is crucial for distributed data-intensive applications, since it avoids the significant performance

overhead for massive data movement and therefore boosts application execution. Particularly, we treat the

absence of data immediately needed by a computational task as the loss of data locality, since it costs extra

time to retrieve the data by performing disk or network I/O or generate the data by executing associated

computation. More importantly, preserving data locality for applications may also have financial implications,

especially in the cloud, as cloud providers monetize the resources needed for storing and transferring data in

the geo-distributed environment, and preserving data locality may avoid certain unnecessary cloud expenses.

Traditional HPC resource managers (Zhou, 1992; Staples, 2006) neglect the importance of data locality,

since HPC clusters are equipped with high-speed LANs and storage area networks, and performance overhead

caused by local data transmissions is trivial due to small data volume; meanwhile, these clusters rarely scale

and thus incur predictable overhead for data movement. However, as the size of clusters scales and data

volume grows, the overhead due to loss of data locality is magnified and causes significant performance

degradation for data-intensive applications. Herein, there is a great amount of efforts committed to developing

resource management mechanisms for preserving data locality for distributed applications. Raman et al.

(1999) invent a formal language that describes custom node matching policies in Condor (Litzkow et al.,

1987) clusters, which can be used for specifying explicit data locality constraints. However, the policies

described in this language are relatively rigid and have limitations on expressing data locality requirements

inclusively. Hindman et al. (2011) develop a two-level scheduling model in Mesos, which abstracts resources

in a cluster in the form of resource offers at the lower level and delegates the application-specific task

scheduling to the schedulers of application framework ported at the higher level. The advantage of this model

is that it eliminates the coupling between application frameworks and underlying resources, allowing tasks to

be scheduled freely in proximity to the needed data and therefore achieving data locality.
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2.2.1 Computation Caching

A plethora of studies (Agrawal et al., 2008; Olston et al., 2008; Logothetis et al., 2010; Gunda et al.,

2010) reveal that redundant computations are commonly performed within data centers, especially by

data-parallel workloads, causing severe waste of computing resources and affecting data locality as local

computational results cannot be reused but are unnecessarily re-computed. To tackle this problem, the

concept of computation caching is proposed (Popa et al., 2009; Zaharia et al., 2010b) to reuse working

sets of applications and avoid duplicate computation execution for improved data locality. Chambers et al.

(2010) defer evaluation of data-parallel pipelines to seek for opportunities for reusing existing computational

results. Zaharia et al. (2012) identify that computation caching serves well for iterative (e.g., machine learning

algorithms) and interactive (e.g., data analyses) workloads in data-intensive applications and develop a

fault-tolerant, in-memory data structure that retains working sets for reuse within applications. Gunda et al.

(2010) and Li et al. (2014) break the boundary between applications and allow the in-memory data sets to be

shared across applications. Gunda et al. (2010) implement computation caching by caching intermediate data

of application jobs in a central server and employing a utility function for cache replacement. Rabkin et al.

(2014) first extend this concept into the geo-distributed environment to cache intermediate results of data

analytics queries and accelerate repeated queries initiated by geo-distributed clients.

However, existing computation caching approaches only adopt simplistic caching strategies, e.g., least-

recently-used (LRU) (Zaharia et al., 2012), which are insufficient for environments with a high level of

heterogeneity, e.g., the geo-distributed environment (Pu et al., 2015). On the other hand, there are plenty

of complex data caching and replication strategies invented for geo-distributed environments. Herein,

exploring existing caching and replication strategies may be conducive to improving computation caching in

geo-distributed environments.

2.2.2 Distributed Data Caching and Replication

The ultimate goal of caching is to capture the most reusable data with limited cache space and speed up

applications by reusing the cached data. It is particularly effective for workloads with a long-tail distribution,

which are prevalent in geo-distributed environments. Glassman (1994) first recognizes that web requests

follow the Zipf’s distribution (Zipf, 1929) and concludes that caching frequently used web pages reduces

user-perceived latency. Later studies (Breslau et al., 1999; Nygren et al., 2010; Fricker et al., 2012; Shafiq
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et al., 2014) confirm that the Zipf’s distribution is extensively applicable to modeling data distribution and

access pattern in the geo-distributed environment. This insight provides important guidance for designing

effective and generalizable distributed caching strategies and algorithms.

As suggested by Fricker et al. (2012) and Shafiq et al. (2014), LRU, least-frequently-used (LFU), and their

minor variants are commonly used in geo-distributed environments for their simplicity and stability. Cao and

Irani (1997) extend the LFU algorithm by factoring data size into cache replacement decisions and favoring

the retention of small-sized data objects in cache. Rizzo and Vicisano (2000) propose the least-relative-value

(LRV) algorithm in which a utility function is used to evaluate the relative values of data objects in cache

and ones with the least relative value will be evicted from a full cache. Lee et al. (2001) combine the LRU

and LFU algorithms to handle both recently and frequently used data objects in a weighted manner. Gunda

et al. (2010) devise a novel utility function that factors in the cost for generating data objects by executing

associating computational jobs, which is unique in the scenario of computation caching. However, Shafiq

et al. (2014) argue that using these simplistic algorithms is insufficient for effective data caching in the

geo-distributed environment considering the unique workload characteristics and geo-distributed system

settings. This argument is supported by our experimental results shown in Chapter 4. Hence, it is compelling

to investigate more delicate caching strategies and algorithms suitable for geo-distributed data caching.

Cooperative caching is considered as an efficacious caching strategy capable of fully utilizing geo-

distributed cache storage and co-locating data in proximity to their consumers. In general, cooperative

caching caches popular data sets in the cache space contributed by distributed nodes in a system and

coordinates the distributed cache to make them function as a unified, gigantic global cache. This strategy

is widely adopted in distributed systems at varying scales (Chand et al., 2007; Cao et al., 2007; Cho et al.,

2012a). For instance, as indicated by Nygren et al. (2010), Akamai adopts a form of cooperative caching

to cache popular content at the geo-distributed edges for rapid content rendering. Dahlin et al. (1994) first

introduce this strategy to distributed file systems, caching popular files in the memory of distributed clients to

improve the system responsiveness. However, they omit the discussion on data replica management, which is

crucial in cooperative caching since data duplication is inevitable, and unregulated data replication may cause

waste of valuable cache space. Sourlas et al. (2013) focus on managed data replication in cooperative caching,

proposing online, autonomic algorithms that makes intelligent decisions on data replication and replica

placement. Ming et al. (2014) develop a lightweight, age-based collaboration mechanism for cooperative

caching, reducing the overhead for coordination of distributed cache.
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As a complementary measure to data caching, data replication creates multiple replicas of popular

data sets across geo-distributed data stores, trading storage space for avoidance of expensive remote data

transfers over WANs. Although few works integrate geo-distributed data caching and replication, there

is a bulk of literature on geo-distributed data replication. Kangasharju et al. (2002) formulate data object

replication in content distribution networks as a combinatorial optimization problem and propose heuristics

for approximating the optimal replication plans. Chervenak et al. (2002) build a scalable metadata service

that keeps track of locations of geo-distributed replicas. This work inspires our development of the logically

centralized metadata service for CACHALOT as introduced in Chapter 4. Corbett et al. (2013) introduce

Google’s globally distributed database named Spanner, which implements synchronous data replication at

the global scale. Gupta et al. (2014) present Google’s geo-replicated data warehousing system named Mesa,

which serves billions of data analytics queries in a near real-time manner. Muralidhar et al. (2014) develop a

large-scale, geo-replicated storage system for storing binary large objects (BLOBs) in Facebook, and focus

on the mechanism for dynamically tuning the replication factor. Wu et al. (2013) construct a cost-effective,

geo-replicated key-value store spanning across multiple cloud platforms.

Last but not least, network factors have a non-trivial impact on the performance of geo-distributed

caching due to frequent data transmissions over WANs among the distributed cache. Rizzo and Vicisano

(2000) develop a network-aware cache algorithm based on the assumption that the data transfer rate is uniform

throughout the network, which is unrealistic in WANs. Kalnis et al. (2002) build a peer-to-peer cache network

that relies on static, coarse-grained network metrics to capture network factors at low accuracy. Borst et al.

(2010) and Sourlas et al. (2013) take optimization approaches to incorporate network factors for optimal

cache management decisions. However, it is debatable whether these heavyweight approaches are scalable.

2.2.3 Locality-Aware Scheduling

Opposite to data caching and replication, locality-aware scheduling gains data locality by placing

computation in proximity to data it needs. This approach has been thoroughly studied in data-parallel

computing and event processing systems.

Isard et al. (2009) introduce a locality-aware scheduling algorithm for Dryad (Isard et al., 2007) that

optimizes for data locality and fairness requirements imposed on applications using the min-cost flow

algorithm. Based on the optimal algorithmic result, the algorithm preempts and relocates tasks in progress,

wasting the work done by the preempted tasks and potentially delaying their completion. Despite the optimal
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task placement for data locality, this intrusive approach can be detrimental to applications since the speedup

gained from improved data locality may be overrun by the delay caused by task preemption. Instead, Zaharia

et al. (2010a) propose to intentionally delay the scheduling of tasks that cannot launch immediately on nodes

with needed data for a predetermined amount of time, expecting the desired nodes to be available shortly

during the waiting and therefore preserving data locality. This approach passively co-locates tasks with data

and retains data locality. However, it is only feasible for workloads with mostly short tasks, in which case the

delay scheduling will be rewarded by improved data locality but defers task execution otherwise. Instead

of the static data locality constraint, Boutin et al. (2014) develop a function that gradually relaxes the data

locality constraint as the delay of task scheduling increases to accommodate data locality and scheduling

timeliness dynamically. Similarly, Jonathan et al. (2016) introduce a minimum locality level for every task

that allows a task to be scheduled on time with suboptimal but acceptable data locality, trading the optimality

of data locality for timely task scheduling.

Locality-aware scheduling has also been adopted in geo-distributed environments to reduce the costs for

bandwidth usage while improving performance by limiting inefficient data transfers over WANs. Hung et al.

(2015) concentrate on the coordination of tasks among geo-distributed data centers to gain data locality. They

realize that skewed distribution of task completion time among data centers tends to prolong job execution,

since job completion time is determined by the last finished task. To address the problem, the authors propose

to reorder tasks among data centers with respect to their completion time in order to eliminate outliers and

balance task completion time across data centers. They also propose a greedy scheduling heuristics that

prioritize the scheduling of the shortest tasks, which significantly improves the average job completion

time. Pu et al. (2015) and Viswanathan et al. (2016) focus on network factors in geo-distributed environments,

which greatly impact application performance. Pu et al. (2015) propose to jointly schedule tasks and data to

achieve data locality for data analytics queries in geo-distributed Spark deployment. The authors develop

an online heuristic that redistributes data sets and co-locates tasks with the data to circumvent network

bottlenecks during query execution. Viswanathan et al. (2016) build WAN awareness into query optimizers

for data analytics, which make joint decisions on the optimal query execution plan that places tasks in

proximity to data in consideration of WAN factors.

The aforementioned approaches are based on the common assumption that the locality of data is clearly

known to applications. This assumption rarely holds true for applications that process dynamic data, e.g.,

data streaming applications, in which data processing components are deployed before ingesting data.
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Therefore, these applications must infer data locality in order to optimize task scheduling. For instance, Peng

et al. (2015) adopt a bin-packing approach that greedily consolidates processing operators of every data

streaming application into a few machines in a cluster to increase the chance to co-locate interacting operators.

However, this approach packs operators based on resource demand and availability with little insight into

communications between operators. In contrast, Xu et al. (2014) monitor network traffic between operators

and dynamically co-locate those with heavy traffic exchanges. Caneill et al. (2016) take a data-oriented

approach, uncovering correlations between keys processed by successive operators and using the correlations

as evidence to guide the co-location of operators.

2.2.4 Data Locality and Cost Awareness in the Cloud

Only preserving data locality is insufficient for data-intensive applications running in geo-distributed

environments, especially in the cloud, since cloud vendors impose charges on resources for running data-

intensive applications, and there are price discrepancies among different types of resources and providers.

Without the awareness of costs associated with resource subscription, running data-intensive applications

in the cloud can incur substantial cloud expenses unnecessarily and increase the financial burden. Further,

retaining data locality is mostly aligned with saving cost in the cloud, since it deters unnecessary VM

subscription and remote data transfers that are heavily charged by cloud vendors. In the meantime, it entails

certain costs necessary for co-locating computation and data. Hence, it is crucial to preserve data locality

while gaining cost awareness for data-intensive applications in the cloud.

Remote data transfers contribute a major portion of cloud expenses since they tend to incur egress

network traffic, which is the traffic propagated across different geo-locations or over the Internet and heavily

charged by mainstream cloud providers. Hence, avoiding unnecessary remote data transfers is conducive to

reducing cloud expenses as well as maintaining data locality. To save the cost for egress network traffic, Wu

et al. (2013) gain insight into disparate charge rates of egress network traffic among cloud regions and

providers and exploit the discrepancies to select most cost-effective geo-locations and cloud platforms for

data replication. Pu et al. (2015) enable a mechanism for budgeting WAN usage, trading off data locality

and WAN usage expenses by limiting the amount of WAN bandwidth used for data redistribution and task

execution to a predetermined budget. Kloudas et al. (2015) introduce an auxiliary topology abstraction for

data-parallel workflows that groups nodes in a cluster by their geo-locations. The abstraction facilitates the

task scheduler to assign closely communicating tasks of a workflow to nodes at the same geo-locations in
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order to minimize data transfers over WANs and restrict costs for WAN usage. Hsieh et al. (2017) propose a

cost-effective, geo-distributed machine learning model that can converge with approximately synchronous

parameters and eliminates unnecessary cross-region communications, significantly saving the monetary cost

associated with parameter synchronization across geo-distributed data centers.

In addition, VM subscription costs are also a major source of cloud expenses. Traditional elastic

computing solutions adopt the one-task-per-instance model (Mao et al., 2010; Van den Bossche et al., 2010;

Bittencourt and Madeira, 2011; Mao and Humphrey, 2011) to attain dynamic resource provisioning in the

cloud, which harms data locality since inter-task communication is limited to inter-node data transmission

and therefore slows down application execution. Further, the coarse-grained task scheduling model tends

to result in low utilization of subscribed VM instances, especially for data-intensive workloads, as the

predominant IO-bound tasks can hardly saturate the capacity of every single VM but wastes computing

resources allocated with each VM instance. Chung et al. (2018) and Gunasekaran et al. (2019) propose

to adopt lightweight task encapsulation with containers and serverless functions, respectively, opening the

door to packing multiple tasks into a single VM and saving VM subscription cost. Specifically, Chung et al.

(2018) develop a cost-aware task scheduler that dynamically scales the VM cluster at a fine granularity of

VM size and consolidates tasks in the form of containers into VM instances in the cluster based on the

estimation of task runtime. The task consolidation technique used by Chung et al. (2018) stems from the

general multi-dimensional vector bin packing (MDVBP) problem, which has been thoroughly studied in

energy-conserving task scheduling (Li et al., 2009; Beloglazov and Buyya, 2010, 2012; Knauth and Fetzer,

2012) and VM packing (Sindelar et al., 2011; Corradi et al., 2014; Ahmad et al., 2015). The optimization for

this problem is proven NP-hard (Frenk et al., 1990). Panigrahy et al. (2011) conduct an inclusive survey on a

variety of approximate heuristics for the MDVBP problem.

2.3 TCP Optimization for Remote Data Transfer

Despite preservation of data locality, the efficiency of remote data transfers in WANs is vital to the perfor-

mance of data-intensive applications, since they are inevitable in geo-distributed environments. Importantly,

TCP/IP is still the dominant Internet protocol suite enabling remote data transfers. However, since initially

designed for LANs, TCP exhibits its shortcomings in WANs which cause serious performance deterioration.

Lakshman and Madhow (1997) recognize that the classic TCP design (Jacobson, 1988) discriminates against
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connections with high latency and overreacts to random packet loss. This behavior is unfriendly to remote data

transfers as they typically show high latency and the tendency of packet loss. Further, the authors reveal that

large product of bandwidth and network delay on a TCP connection, referred to as bandwidth-delay product

(BDP), may overflow buffers of network devices along the network path and further deter TCP performance

with increasing packet loss. Mathis et al. (1997) manifest the problem by formulating a mathematical model

to describe the TCP fast retransmit mechanism as follows:

BW =
MSS · C
RTT · √p

(2.1)

In this equation, BW , RTT , and p denote bandwidth, round trip time (RTT), and the probability of

packet loss, respectively. MSS and C are constant values, representing maximum segment size (MSS)

and constant of proportionality. As reflected in the equation, the probability of packet loss is inversely

correlated with bandwidth and RTT. In other words, high BDP will amplify packet loss, which in turn hurts

throughput and degrades TCP performance. Padhye et al. (1998) refine the model of Mathis et al. (1997) by

incorporating the TCP timeout mechanism. Floyd et al. (2000) propose the equation-based congestion control

as a replacement for the best-effort, additive-increase/multiplicative-decrease (AIMD) mechanism using such

mathematical models, which adjusts the sending rate as a function of measured rate of packet loss.

Centering on the macroscopic behavior of TCP congestion control, an array of TCP variants are devel-

oped to cope with performance degradation observed in long-distance data transfers in WANs. The TCP

Westwood (Mascolo et al., 2001) focuses on TCP congestion control for wireless networks with lossy links. It

introduces a fast recovery mechanism that readjusts the congestion window consistently with the sender-side

bandwidth measurement, in contrast with blindly halving the congestion window as performed by the TCP

Reno, upon packet loss. In effect, it reduces the false positives of congestive packet loss and therefore

alleviates the disturbance of packet loss to TCP throughput. The TCP Veno (Fu and Liew, 2003) adopts a

similar approach to distinguish between congestive and random packet loss in wireless networks. Leith and

Shorten (2004) devise the H-TCP for high-speed, homogeneous networks – they observe that the additive

increasing factor in a high-speed, homogeneous network diverges from that in a conventional network, and

they dynamically adjust the factor to accommodate different network settings and fully utilize available

bandwidth. Xu et al. (2004) and Ha et al. (2008) propose to accelerate the additive increasing phase to

overcome the lag in congestion window recovery caused by high network delay.

29



The prevailing approaches share a common assumption that packet loss is an indication of network

congestion. The rationale behind this is that network congestion causes bandwidth oversubscription, and

certain packets are forcibly dropped due to buffer overflow on intermediate network devices. However,

as network capacity exponentially grows, the relationship between packet loss and network congestion

becomes tenuous as identified by Cardwell et al. (2016). Hence, Cardwell et al. (2016) build a non-loss-based

congestion avoidance model based on bandwidth and RTT and devise a new distributed congestion control

mechanism named BBR which achieves optimal bandwidth utilization as a result.

An alternative to tackling TCP performance degradation caused by large BDP is to use multi-path

TCP (MPTCP) initially proposed by Ford et al. (2013). The core idea is to perform a data transfer using

parallel TCP sub-flows simultaneously to alleviate the negative impact of high latency and packet loss –

congestion window growth is multiplied by parallel TCP sub-flows, while slowdown caused by packet

loss is diluted among the multiple TCP sub-flows. This approach is commonly adopted by data transfer

tools for long-distance data transfers. Raiciu et al. (2012) provide an in-depth explanation of the MPTCP

implementation.
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CHAPTER 3: Advancing Data-Driven Scientific Collaboration in Geo-Distributed Environment

In this chapter1, we present our work in the RADII project that facilitates data-driven scientific collabo-

rations among geo-distributed research institutions. These scientific collaborations are common, especially in

multidisciplinary projects, in which domain scientists are committed to specific areas but put forward the

project collaboratively. Typically, the collaborations are realized in the form of data-intensive applications

such as data processing workflows and pipelines consisting of computational jobs running in a geo-distributed

fashion among the participating institutions, which desperately call for streamlined infrastructure support in

the geo-distributed environment.

The advance in national CI and cloud computing has dramatically improved the accessibility of physical

infrastructure in the geo-distributed environment. However, domain scientists still face the prevalent chal-

lenges in geo-distributed systems when deploying and executing data-intensive applications for scientific

collaborations. Mainly, they lack the high-level abstraction and mechanism for describing, constructing, and

managing such collaborations with simplicity and accuracy. Furthermore, data sharing among geo-distributed

locations tends to create the significant performance bottleneck due to the absence of network abstraction and

optimization.

Hence, we have developed RADII as an integrated solution to address these challenges. We have

introduced a simple yet powerful data model for describing scientific collaborations. We have also built the

software infrastructure that maps the high-level collaboration description to low-level, virtualized infras-

tructure primitives for deploying and orchestrating the collaboration on the physical infrastructure at a fine

granularity. In particular, we use software-defined networking (SDN) to abstract the network. On top of that,

we have devised an MCF-based optimization approach and developed a TCP enhancement to improve the

bandwidth utilization and accelerate remote data transfers in the collaboration.

1Content of this chapter previous appeared in preliminary form in the following paper:
Jiang, F., Castillo, C., and Schmitt, C. (2016). RADII: Bridging the Divide Between Data and Infrastructure Management to Support
Data-Driven Collaborations. In Big Data (Big Data), 2016 IEEE International Conference on, pages 370–377. IEEE.
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For the rest of this chapter, we first introduce the high-level data model (Section 3.1) and the software

infrastructure (Section 3.2) that support the scientific collaborations. Then, we dive into the SDN-based

network abstraction (Section 3.3) and explain the MCF-based network optimization (Section 3.4) and TCP

enhancement (Section 3.5) in detail. Lastly, we present the experimental evaluation (Section 3.6) and

summarize this chapter (Section 3.7).

3.1 Collaboration Representation

3.1.1 Scope

First, we define the scope of the collaboration discussed in this chapter. At a high level, a collaboration is

a type of scientific project in which researchers from different institutions, referred to as collaborators, work

together by sharing the computational workloads and related data sets to achieve the common goal of the

project. In detail, it embodies a large-scale data processing application developed and executed collaboratively

by the collaborators, which consists of data processing and analytical jobs running upon raw data hosted at

the geo-distributed institutions. A collaboration also encapsulates a full-fledged, tailored infrastructure on

which the collaborators can develop, deploy, and execute the data processing jobs, and share data among them.

Furthermore, a collaboration enforces data policies to protect data from unauthorized personnel. In a nutshell,

a collaboration is a comprehensive, end-to-end encapsulation of a distributed system for collaborative works

among multiple institutions. Consequently, it is a non-trivial task to describe a collaboration with clarity and

accuracy.

3.1.2 Collaboration Model

To assist with the description of collaborations, we have developed a data model based on the DFD,

referred to as the Collaborative Language User interfacE (CLUE) object, which encodes the core artifacts in

a collaboration including the collaborators, data policies, and the data flow (left box in Figure 3.1).

3.1.2.1 Collaborator

A collaborator represents a uniquely identified user who participates the collaboration. Each collaborator

owns assets related to authentication and authorization, among which the most important ones are the public
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Figure 3.1: CLUE Object

and private keys. The key pair is used for a wide range of activities throughout the collaboration, e.g., data

encryption and decryption, access authentication, among others.

3.1.2.2 Data Policy

The data policies authorize the collaborators for their operations upon data sets in the collaboration.

Each data policy has a unique identifier called tag. To protect a data set with a data policy, the authorized

collaborator associates its tag with the data set, so that the rules specified in the policy can be enforced. Each

data policy functions as the POSIX access control list (ACL), comprising a list of rule entries in the form

of <operation, collaborator, location>, which is interpreted as the operation is permitted

to perform by the collaborator upon the protected data set if it is stored at the location”. For the

preliminary implementation of data policies, we only consider the basic CRUD (Create, Retrieve, Update,

and Delete) operations to realize the rudimentary access control. Enhancing the data policies with a more

sophisticated scheme, although highly feasible, is out of the scope of this dissertation.
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3.1.2.3 Data Flow

The data flow is captured in a DFD, which consists of four types of entities as illustrated in Table 3.1.

Each entity encompasses the software and hardware resources related to it, which are embedded as its

attributes in the entity.

Legend Name Description Key Attributes

process One or a group of data pro-
cessing jobs

cpus, ram, location,
anti-locations

datastore A data storage protected
by data policies

capacity, location

external An external data source or
repository

url, credentials

dataflow A network path connect-
ing a pair of entities for
data transfers

bandwidth,
anti-providers

Table 3.1: DFD entities

A process represents one or a group of homogeneous data processing jobs in a collaboration, which

mainly specifies the software stack (e.g., program, runtime, OS) and computing capacity (e.g., number of

CPUs and GPUs, RAM size) for executing the jobs. It usually serves an intermediate entity in the data flow,

consuming input data from the upstream entities and producing output data for the downstream ones. Further,

it has a location attribute, which indicates the geo-location where the process will be performed.

Under the hood, this attribute determines the physical infrastructure at a specific geo-location where the data

processing jobs will be deployed and executed. With this attribute, a collaborator can place a process

in a preferred physical location, which is close to the input data or in an authorized domain. Beyond that,

a process also has an anti-locations attribute that indicates the geo-locations to avoid, which can

signal the underlying scheduling mechanism to skip resources at the specified locations.

A datastore specifies the data storage where the data policies are enforced. Each datastore is

associated with one or several data policies defined for the collaboration, which protect the data stored inside.

A datastore typically stores the input and intermediate data shared among the processes. Like the
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process, it also has an explicit location attribute that determines the geographical placement of the

underlying storage unit, which can be used by the collaborators to control the physical data placement.

An external is a data source or repository external to the collaboration, which is accessible but not

controlled by any collaborator, e.g., Google Drive, Dropbox. It works as a black box for other entities to

read and write data, typically serving input data and archiving the final output data for a collaboration. An

external is identified by the URL, which is invoked by other entities in the collaboration to read or write

data.

A dataflow defines a bidirectional network path connecting a pair of entities for data transfers. It has

an attribute bandwidth for setting the bandwidth requirement on the path, which can be used to throttle

network traffic between entities. Optionally, collaborators can also specify the anti-providers on a

dataflow, which are the network providers the network path will bypass when being deployed.

3.1.2.4 Template

With the high-level artifacts, researchers can easily initiate a collaboration without diving into the

technical details. However, they are barely omitted but embedded as the attributes of the DFD entities

instead. In particular, describing a complex collaboration is still laborious to properly address the numerous

attributes. Hence, we introduce templates (Figure 3.1) for the DFD entities to further simplify the description

of collaborations.

A template is a DFD entity of which the attributes are pre-populated with sane default values. It

usually maps to a commonly used process or datastore and can be directly instantiated without any

modifications. With templates, a researcher can create a DFD entity by selecting a needed template from a list

of pre-built ones and only modifying the values of attributes of interest, rather than building it from scratch.

Furthermore, the pre-populated attributes in templates provide extra guidance to construct the entity properly.

3.1.3 Collaborative Infrastructure

A CLUE object comprises the software and hardware specifications for a collaboration and will eventually

be instantiated on the underlying infrastructure. This physical instance forms a virtual infrastructure dedicated

to the collaboration, in which the software and hardware resources are deployed and configured according to

the CLUE object to serve the collaboration. Moreover, the virtual infrastructures of different collaborations
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are mutually isolated to prevent potential security loopholes and performance interference. We refer to such

infrastructure as collaborative infrastructure (Figure 3.2).

The implementation of a collaborative infrastructure is loosely coupled with the underlying computing

platform - despite the huge IT investment and performance overhead, traditional on-premise campus clusters

can serve as a collaborative infrastructure if they can implement the functionalities specified in the CLUE

object. However, IaaS offered by national CIs and cloud computing platforms, as introduced in Section 2,

is preferable because of its elasticity, high availability, and programmability – it provisions resources

elastically based on the varying demand in a collaboration; resources are rarely exhausted and can be

instantly replaced upon failures; and most mainstream IaaS platforms provide API for automatic resource

subscription and management. These merits of IaaS greatly smooth the construction and maintenance of a

collaborative infrastructure. In RADII, we have built our system on top of the networked IaaS platform

named ExoGENI2 (Baldine et al., 2012) for its worldwide accessibility and versatility in resource provisioning.

In this section, we elaborate on the data model for the formal representation of collaboration and its

embodiment at the infrastructure level. In the next section, we introduce the system design of RADII, which

orchestrates the translation, deployment, and management for collaborations.

3.2 System Design

RADII serves as the middleware that translates a high-level collaboration representation into a low-level

collaborative infrastructure and orchestrates its deployment and management on the underlying computing

platform. It also deploys an SDN network for each collaborative infrastructure, lending the opportunity for

custom network optimization.

The system design of RADII follows the service-oriented architecture (SOA), composed of software

components in the form of loosely coupled services that interact with each other through their defined REST

APIs. As illustrated in Figure 3.2, RADII consists of four major services: CLUE, Orchestrator, Compute To

Infrastructure (C2I), and Data To Infrastructure (D2I).

2ExoGENI testbed: http://www.exogeni.net
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Figure 3.2: RADII architecture
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3.2.1 CLUE

The CLUE is the user interface for creating and interacting with a collaboration. It serves as the

external API of RADII, exposing a rich set of endpoints for composing and manipulating a collaboration

programmatically. The CLUE uses the CLUE object introduced in Section 3.1 to represent a collaboration,

which reflects the current state of the collaboration. The API streamlines the integration of RADII with other

systems; however, it is less user-friendly since interacting with a collaboration directly through the API can

be obscure and error-prone for end users. Hence, we have developed a web-based graphical user interface

(GUI) as an auxiliary part, as shown in Figure 3.3, to provide an animated, drag-and-draw dashboard for

users to interact with a collaboration with clarity.

Figure 3.3: Web GUI of CLUE

3.2.2 Orchestrator

The Orchestrator orchestrates every activity and event related to a collaboration throughout its lifetime

from creation to termination. Its chief responsibility is to coordinate between the computing- and data-related

activities and events in a collaboration. Upon receipt of a CLUE object, the Orchestrator recognizes the

computing- and data-related activities and convert them into requests consumable by the C2I and D2I

downstream; when notified of any event by C2I or D2I, it updates the corresponding CLUE object of the
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collaboration and sends a notification to the end user through CLUE. The Orchestrator is a stateful service

that keeps track of the latest CLUE objects of collaborations. Since it is a key service connecting other

components in the system, it is crucial to guarantee its high availability and reliability. Hence, by design, we

decouple the database for storing CLUE objects from the Orchestrator to ensure its scalability and avoid the

single point of failure. Thus, multiple instances of the Orchestrator can be launched in parallel on top of

the same database, and failure of any instance, if not all, will not lead to a breakdown of the entire system.

For the reliability and availability of the database, we resort to the known fault-tolerance solutions, such as

Paxos (Lamport, 1998) and Raft (Ongaro and Ousterhout, 2014), and their implementations in data storage,

such as Apache ZooKeeper3 and etcd4.

3.2.3 C2I

The C2I sets up the collaborative infrastructure for a collaboration as specified in the CLUE object. It

has the logic built in for mapping the high-level artifacts in the CLUE object to specific resources provisioned

by the underlying computing platform. Typically, with an IaaS platform underneath, C2I creates an array of

VMs for a process, which are loaded with a self-contained VM image pre-configured with the software

stack for running the specified data processing job; for a datastore, it deploys a data management system

for storing and sharing data sets used in the collaboration; for an external, it spins up a lightweight API

in front of the corresponding external resource to ensure other resources in the infrastructure being able to

communicate with it; for a dataflow, it sets up a network path between the specified ends, on which the

bandwidth can be reserved as specified.

The C2I communicates with the underlying platform through its standard API to subscribe, query, and

control the resources. Particularly, for IaaS platforms, instruments such as the Network Description Language

(NDL) (Van der Ham et al., 2006), Apache Libcloud5, and Terraform6 are developed to streamline the use

of the API and facilitate the integration between C2I and the platforms. Besides, the C2I also interacts

with certain resources in the infrastructure to bootstrap and maintain subsystems, e.g., data management

3Apache ZooKeeper: https://zookeeper.apache.org
4etcd: https://github.com/etcd-io/etcd
5Apache Libcloud: https://libcloud.apache.org
6Terraform by HashiCorp: https://www.terraform.io
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subsystem, using DevOps tool stack such as Ansible7 and SaltStack8. It is worth noting that the C2I is

unnecessarily bound to a single computing platform but able to span across multiple platforms to acquire

more diversified and geo-distributed resources. We will expand on this potential in Chapter 5.

Notably, the C2I also creates an SDN virtual network for each collaborative infrastructure to abstract

the network layer, which provides extra control of the network and thus opens the door to potential network

optimization for data sharing within the collaboration. We will elaborate on the design and mechanism of the

virtual network in Section 3.3.

3.2.4 D2I

The D2I is responsible for translating and enforcing the data policies specified for a collaboration. It

translates the data policies into data security rules compatible with the data management system underpinning

the datastore, and installs the rules onto the data management system by invoking its API to secure the

data sets stored inside.

As with the C2I, D2I is barely bound to any data management system underneath. However, as data

is produced and consumed by geo-distributed jobs in most collaborations, the underlying data manage-

ment system must be a distributed storage system, which can store and manage data in proximity to the

jobs in a geo-distributed fashion. The mainstream distributed storage system, such as Network File Sys-

tem (NFS) (Sandberg et al., 1985), Ceph (Weil et al., 2006a), and the Hadoop Distributed File System

(HDFS) (Shvachko et al., 2010), implement the POSIX ACL or alike, which suffices the basic access con-

trol with simplicity. For advanced access control, we can either introduce a shim layer implementing the

sophisticate access control mechanism in front of the data management system, e.g., Lightweight Directory

Access Protocol (LDAP) (Sermersheim, 2006), or opt for a distributed storage system with the advanced data

security mechanism built in, e.g., iRODS (Rajasekar et al., 2010).

In our implementation, we select the iRODS as the data management system underpinning collaborations

for its versatile rule engine, which provides a rule language resembling a full-featured programming language

that allows users to define complex rule procedures to protect data at fine granularity. Specifically, in RADII,

the datastores in a collaboration are deployed as an iRODS data grid consisting of a metadata server,

which controls the access to any data stored in the grid, and a number of storage servers, which have the

7Ansible: https://www.ansible.com
8SaltStack: https://www.saltstack.com
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actual data stored inside. The D2I interprets the data policies embedded in a collaboration to formulate

the iRODS rule procedures accordingly, which are then installed on the metadata server to enforce the data

policies and safeguard the data.

3.3 SDN-Based Network Abstraction

Massive data transfers among geo-distributed resources can be extremely slow, causing unpredictably

long delay for data-intensive applications. The culprit of the slowness is mostly the inefficiency of the

underlying WAN, which may have limited bandwidth, high latency, and severe network congestion. This

problem also recurs in scientific collaboration, in which large data sets are commonly shared over the WANs,

if not the Internet. However, the rigidity of the traditional network architecture, as explained in Section ??,

restricts the access to and control of the network infrastructure, and thus makes it impossible for researchers

to improve the WAN performance to accelerate data transfers in the collaboration. Hence, we introduce

a network abstraction layer in the collaborative infrastructure by creating an SDN virtual network over

the geo-distributed resources, to grant more control of the network to applications and make it possible to

customize network optimization schemes for different collaborations.

Figure 3.4 depicts the network architecture in a collaborative infrastructure. At the bottom, the physical

network lays the groundwork to provide the core connectivity among distributed resources. On top of it, there

is a flat virtual network dedicated to the specific collaboration, routing network traffic among the resources

subscribed in the collaborative infrastructure. Above that, the network control plane, which is programmed

with the custom network routing algorithm, directs the network traffic in the virtual network.

3.3.1 Physical Network

The physical network is the foundation of the network system in a collaborative infrastructure. It can

consist of a single network or a federation of multiple networks of the underlying computing platforms.

Specifically, in the context of cloud computing, the physical network can be a federated network composed

of geo-distributed virtual private clouds (VPCs) provisioned by multiple cloud vendors as we will introduced

in Chapter 5. In general, the physical network is the network infrastructure that supports the fundamental

networking capabilities in Layer 1 and 2, which underpin the functionalities enabled in the virtual network

on top.
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Figure 3.4: Network architecture in a collaborative infrastructure

3.3.2 Virtual Network

The virtual network is an abstraction of the network used in a collaboration for data transfers, which

hides the complexities in the underlying physical network and provides a simple view of the network to ease

the network management. Each collaboration has an instance of virtual network isolated from others, which

only connects the resources reserved for the collaboration. Since we construct the virtual network as an SDN

network, the control and data planes of the network are separated – the network control plane abstracts the

control plane, while the virtual network serves as the data plane. A virtual network consists of clients and

switches.

A client is a resource that can generate and receive data transfer traffic. To clarify the addressing, each

client is uniquely addressed by a media access control (MAC) address and a private IP address. A daemon

process runs on each client to monitor the network traffic and take network control directives to limit the

sending rate of traffic through a REST API (Table 3.2). We implement the rate limiting using the hierarchical

token bucket (HTB) algorithm in the Linux traffic control utility tc9.

9tc Linux manual page: https://linux.die.net/man/8/tc
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A switch is an SDN-enabled network switch with only the data plane, which forwards network traffic

according to the network flows installed on it. It is deployed at each geo-location where resources are

provisioned for the collaboration, serving as a network gateway for the resources at each geo-location.

For instance, as shown in Figure 3.4, three switches are deployed at Texas, Florida, and North Carolina in

proximity to the resources provisioned for the collaboration. The switch does not own any logic but takes

directives from the network control plane to route network traffic. In our implementation, we follow the norm

in the SDN implementation by using OpenFlow (OF) (McKeown et al., 2008) as the communication protocol

between the network control plane and the switches. Besides, since OF-compatible switches are rare, we

implement the switch using the Open vSwitch (OVS) (Pfaff et al., 2015) instead, which is a kernel-based, OF-

compatible network switch running on commodity servers. The use of OVS greatly improves the flexibility

of virtual network deployment, as the switches can be deployed on any baremetal or VMs, which are widely

available across many locations and platforms. Optionally, the switches are also responsible for bandwidth

probing if bandwidth provisioning is not guaranteed and variable in the network. We employ a non-intrusive

bandwidth estimation tool named Assolo (Goldoni et al., 2009) to probe network bandwidth with minimal

bandwidth wastage and acceptable accuracy. The switches perform the bandwidth probing periodically and

report the results along with other metrics, e.g., network latency, packet loss rate, to the network control plane

to drive the network routing algorithm.

3.3.3 Network Control Plane

The network control plane controls the network traffic flows in the virtual network underneath. It runs a

custom network routing algorithm to create network flows and send network control directives to install them

on the switches. The network control plane owns a global view of the virtual network, kept updated by the

switches of vital information about the virtual network, such as network topology, latency, and bandwidth

utilization, which are partially or wholly used as the input parameters of the network routing algorithm. The

network control plane is composed of the network planner and the SDN controller.

The network planner is an extensible, stateless service that runs network routing algorithms. It takes

requests with a comprehensive snapshot of the virtual network from the SDN controller and generates plans

as the algorithmic output, each of which is a set of network flows and bandwidth allocations to be executed

on the virtual network (Figure 3.5(b)). The network planner accepts the installation of new algorithms

through the REST API (Table 3.2). As the SDN controller provides only the abstract network state, the
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algorithm implementation is decoupled from any specific network implementation. To install a new algorithm,

the network planner captures its binary in the payload of the API call and convert it into an executable of

the algorithm. The algorithm implementation must comply with the input and output schema, such that it

can accurately capture the state of the virtual network and create results executable by the SDN controller.

Figure 3.5 shows the examples of input and output of the network planner.

The SDN controller is the mediator between the network planner and the virtual network. It has a

northbound and a southbound API to communicate with the network planner and the virtual network,

respectively. Through the northbound API, the SDN controller submits the latest state of the virtual network

to the network planner and receives the algorithmic result from it; through the southbound API, the SDN

controller collects the network metrics from the virtual network and sends directives to control network flows.

Internally, the SDN controller filters and organizes the network metrics into the state compliant with the input

schema of the network planner, and translates the algorithmic results into clear directives executable on the

virtual network. To align with the virtual network, we implement the SDN controller as an OF controller

using the RYU framework10. The network control directives are encoded in OF flows, which are installed in

the flow table of OVS to forward packets accordingly. With the OF 1.3 used in RADII, bandwidth limit can

be set on an OF flow, which enables flow-level bandwidth allocation and thus sophisticate network routing

algorithms can be applied in the virtual network. The algorithm we will introduce in Section 3.4 partly

depends on this feature.

3.3.4 Data Transfer Mechanism

Here we mainly focus on TCP data transfers as TCP is dominantly used for remote bulk data transfers.

In a collaboration, a data transfer is initiated from one client to another in the virtual network. We refer

to the client initiating the transfer as source and the one accepting the transfer as destination. A TCP data

transfer takes place on a TCP connection established between the source and destination, which is uniquely

identified, as shown in Figure 3.5(a), by a quadruple of source and destination IP addresses and port numbers.

To perform a data transfer, the virtual network and network control plane need to interact with each other to

reliably build the connection and route packets between the resources.

10RYU framework: https://osrg.github.io/ryu/
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Service Endpoint Method Description

Client
/limit PUT Set a rate limit for a transfer

/limit/<id>
POST Update the rate limit of transfer <id>
DELETE Lift the rate limit of transfer <id>

SDN
Controller

/transfer PUT Add a transfer
/transfer/<id> DELETE Delete a transfer

/transfer/<id>/meta
GET List the metadata entries of a transfer <id>
POST Associate a metadata key-value entry to a

transfer <id>
/transfer/<id>/meta/<key> DELETE Delete a metadata entry of the transfer

<id> by <key>
/metrics POST Report network metrics

Network
Planner

/algorithm
GET List the supported network routing algo-

rithms and their specifications
PUT Install a new network routing algorithm in

binary format in the payload
/algorithm/<id> POST Invoke the network routing algorithm <id>

Table 3.2: REST API of key components in the network of collaborative infrastructure

Figure 3.4 illustrates the interactions between the virtual network and the virtual network. A data transfer

starts from a client notifying the SDN controller of the new transfer – it creates an instance of data transfer

in the SDN controller through its API (Step 1). The SDN controller then initiates a request to the network

planner, which contains all the ongoing data transfers and the latest state of the network (Figure 3.5(a)), to

invoke the network routing algorithm (Step 2). Once the algorithm finishes, the network planner sends the

result (Figure 3.5(b)) in the response back to the SDN controller (Step 3). The SDN controller converts the

algorithmic results into network control directives, i.e. OF flows, and populates them into the flow tables of

the switches, i.e., OVSs, such that packets of the data transfer will be forwarded along the assigned network

path at a rate capped by the allocated bandwidth (Step 4). Lastly, the SDN controller sends an ACK to the

source, indicating whether the network flow for the data transfer is successfully deployed and its bandwidth

allocation (Step 5).

Despite the per-flow bandwidth limit in the switches, the source also limits its sending rate to comply

with the bandwidth allocation made by the network control plane. The goal of the bandwidth throttling at

the client side is to avoid unnecessary packet loss, since excessive packets tend to overflow the buffer of

switches along the path and force packet loss, which is detrimental to a TCP data transfer. Due to the AIMD

congestion control mechanism, TCP is sensitive to packet loss and drastically shrink its congestion window
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{
” t r a n s f e r s ” : [

. . .
{

” s r c ” : ” 1 0 . 0 . 0 . 1 ” ,
” s r c p o r t ” : 10000 ,
” d s t ” : ” 1 0 . 0 . 0 . 2 ” ,
” d s t p o r t ” : 10001 ,
” m e t a d a t a ” : [
{

” key ” : ” bw demand ” ,
” v a l u e ” : 300

} ,
{

” key ” : ” p r i o r i t y ” ,
” v a l u e ” : 1

}
]

}
. . .

] ,
” ne twork ” : [

. . .
{

” from ” : ” s1 ” ,
” t o ” : ” s2 ” ,
” bandwid th ” : 1 0 0 . 5 ,
” l a t e n c y ” : 2 0 . 3 ,
” p a c k e t l o s s ” : 0 . 1

}
. . .

]
}

(a) input

{
” f l o w s ” : [
{

” s r c ” : ” 1 0 . 0 . 0 . 1 ” ,
” s r c p o r t ” : 10000 ,
” d s t ” : ” 1 0 . 0 . 0 . 2 ” ,
” d s t p o r t ” : 10001 ,
” p a t h ” : [ ” s1 ” , ” s2 ” , ” s3 ” ] ,
”bw ” : 5 0 . 0

}
. . .

]
}

(b) output

Figure 3.5: Examples of input and output of the network planner

to reduce throughput upon packet loss. Consequently, it leads to bandwidth underutilization even though

the bandwidth is pre-allocated to the data transfer. This issue has a profound impact on the performance

of remote TCP data transfers on bandwidth-reversed networks. As we will discuss in Section 3.5, we have

developed a sender-side TCP enhancement to alleviate the problem.

It is also worth noting that bandwidth allocation is optional for network routing algorithms adopted in the

network control plane. The SDN network barely sets any limitations on the selection of the network routing

algorithm, and can adapt to conventional algorithms designed for the traditional network architecture, e.g.,

equal-cost multi-path (ECMP) (Hopps, 2000). Nevertheless, in the next section, we will introduce a network

optimization solution built on top of bandwidth allocation.
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3.4 Priority-Based Global Network Optimization

The SDN network enables network management in collaborations and offers the flexibility to adopt

custom network management algorithms. However, the poor efficiency of data sharing in collaborations has

yet to be addressed.

The root cause of inefficient data transfers in collaborations is the potentially severe network congestion.

Since geo-distributed resources in a collaboration mostly communicates over WANs wherein bandwidth

is relatively constrained, network paths can be easily saturated and thus network congestion occurs. More

commonly, without a global view of the network, traditional routing algorithms tend to greedily allocate

network paths to network traffic, creating congestion on certain paths while leaving others idle. The

suboptimal resource allocation model leads to serious bandwidth wastage and thus aggravates the network

congestion.

With the abstraction of the network control plane, SDN allows the routing algorithm to acquire compre-

hensive metrics of the entire network (as shown in Section 3.3) and perform global network optimization in a

centralized manner. Hence, we propose a linear program (LP) extended from (Hong et al., 2013) to optimize

bandwidth allocation and eliminate network congestion.

The original LP by Hong et al. (2013) is a multi-commodity flow (MCF) function at its core as follows:

max
∑
i

bi − ε(
∑
i,j

wj · bi,j)

s.t. bLow ≤ bi ≤ min{di, bHigh}, ∀i /∈ F (3.1)

bi = fi, ∀i ∈ F (3.2)∑
i,j

bi,j · Ij,l ≤ cremainl , ∀l (3.3)

bi,j ≥ 0, ∀(i, j) (3.4)

In this function, i and j denotes a data transfer between a pair of source and destination and a network

path between them, respectively. F is a set of data transfers with bandwidth allocated before the function

invocation, and fi represents the bandwidth allocation to each pre-existing data transfer i in F . cl represents

the capacity of a network link l and Ij,l indicates whether a network path j uses the network link l. di and bi
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stand for the bandwidth demand of and allocation to a new data transfer i. Since a data transfer can consist

of multiple network flows by using multipathing techniques, e.g, MPTCP (Raiciu et al., 2012), bandwidth

allocation to a data transfer i is a sum of allocations to its network flows assigned to every network path j,

i.e., bi =
∑
j
bi,j . wj is the latency of a network path j and ε is a small constant.

The MCF is a multi-objective LP, maximizing the total bandwidth allocation to data transfers in the

network while minimizing the total latency of network paths being selected. In other words, the MCF tends

to assign a data transfer to a network path with lower latency if its bandwidth demand can be satisfied.

To guarantee the fairness among data transfers, an upper and lower bound of bandwidth allocation to a

data transfer, bLow and bHigh, are pre-calculated by a max-min fairness function (Nace et al., 2006). The

Constraint 3.1 specifies that, for any data transfer i without bandwidth allocation, its bandwidth allocation

must fall between the max-min fairness bounds; if its demand di is less than the upper bound bHigh, its

allocation should be capped by its demand. The Constraint 3.2 indicates that the bandwidth allocation to

pre-existing data transfers should remain unchanged. The Constraint 3.3 is a capacity constraint that ensures

the total bandwidth allocation on a network link l will not exceed the remaining bandwidth available on it.

Constraint 3.4 guarantees that bandwidth allocation to any network flow of any data transfer, i.e., bi,j , must

be non-negative.

By solving the MCF iteratively, this approach can reach a global optimum of bandwidth allocation to

data transfers in the network, at which bandwidth utilization is maximized and network flows of data transfers

are coordinated such that network congestion is mostly prevented, as proven by Hong et al. (2013).

The basis of the MCF is the assumption that bandwidth demand of each data transfer is clearly known,

which is valid for services with defined service-level agreements (SLAs) – they are required to meet the

minimum throughput requirement imposed in the SLAs. However, this assumption can barely hold in the

context of collaboration, wherein data transfers are mostly spontaneous and the bandwidth demands are

unclear. Instead, data transfers may have different priority – data transfers of time-critical data processing jobs

have higher priority over data backup workloads. The priority can be quantified by levels; for instance, Level

9 stands for the highest priority, while Level 1 means the lowest one. The level of priority can be embedded

in the metadata of a data transfer and used as an evidence for the network optimization, as introduced in

Section 3.3.

Hence, we have extended the MCF proposed by Hong et al. (2013) with priority levels of data transfers.

The extended MCF, referred to as MCF+, is formulated as follows:
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max
∑
i

bi − ε(
∑
i,j

wj · bi,j)

s.t.
bi
pi

=
bi′

pi′
, ∀i, i′ /∈ F (3.5)

bi = fi, ∀i ∈ F (3.6)∑
i,j

bi,j · Ij,l ≤ cremainl , ∀l (3.7)

bi,j ≥ 0, ∀(i, j) (3.8)

We use pi to denote the priority level of a data transfer i. Data transfers with greater value of pi tend to

have a higher priority level. The extension is made at the Constraint 3.5. Instead of allocating bandwidth as

per demand, the MCF+ allocates the bandwidth to data transfers in proportion to their priority levels. As a

result, for new data transfers, higher-priority data transfers will acquire more bandwidth than lower-priority

ones proportionally to their priority levels. The rest of this function remains the same as the original MCF.

However, the MCF+ may cause starvation – low-priority data transfers may hog the bandwidth and

starve high-priority ones if they enter the network earlier. The root cause is that the bandwidth allocation is

uncapped but only proportional to the priority levels of data transfers. For instance, when low-priority data

transfers are initiated in an idle network, they have the relatively highest priority in the network and will fully

utilize the network bandwidth on the assigned network paths. Due to the Constraint 3.6, when a high-priority

data transfer entering the network, it cannot acquire the bandwidth allocation in the amount proportional to

its priority level, since the constraint guarantees the pre-existing bandwidth allocation remains unchanged.

To address this issue, we cap the bandwidth allocation to pre-existing data transfers using the following

formula in prior to invoking the MCF+:

bi = max{bi,
pi∑

i′∈F ′
pi′
·
∑
i′′∈F

bi′′} (3.9)

Here we use F ′ to denote the set of network flows of both pre-existing and new data transfers, i.e.,

F ′ = {i|i ∈ F} ∪ {i|i /∈ F}. The formula hypothetically reallocate the previously allocated bandwidth
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among all the data transfers, such that the pre-existing data transfers will spare certain amount of bandwidth

for the new ones in proportion to their priority levels. Thus, bandwidth allocation to pre-existing data transfers

is capped to their fair share regarding their priority levels and new data transfers will never be starved.

The MCF+ optimizes the network based on the priority of data transfers, maximizing the bandwidth

utilization and avoiding network congestion in the network. From the perspective of data transfers, they

no longer need to contend for bandwidth with others but acquire a fair share of bandwidth allocation, thus

resulting higher and more stable throughput on average. We will show the evaluation of the MCF+ in

Section 3.6.

3.5 TCP Mario For Bandwidth-Reservable Networks

With MCF+, data transfers are designated to optimal network paths and allocated with a fair amount

of bandwidth. The bandwidth allocation can be guaranteed in bandwidth-reservable networks, in which

dedicated network connections are established with guaranteed bandwidth provisioning, such as ExoGENI,

AWS Direct Connect11, GCP Dedicated Interconnect12, among others.

However, TCP data transfers in such networks inherit the classic congestion control mechanism, which

probes the maximum fair throughput in an AIMD manner. The throughput can be estimated using the

equation as follows:

throughput ≤ C ·MSS · cwnd
RTT

(3.10)

In this equation, C denotes a constant. As illustrated, the throughput is positively correlated with the

MSS and the size of the congestion window denoted by cwnd, and negatively with the RTT between the two

ends of the TCP connection.

The equation is derived based on the behavior of the TCP congestion control mechanism – the sender

increases the cwnd in an additive manner upon the receipt of every acknowledgement (ACK), which takes

an RTT to travel from the receiver to the sender; therefore, the sender takes at least one RTT to expand the

cwnd and reach the maximum size. Additionally, the TCP congestion control recognizes packet loss as the

11AWS Direct Connect: https://aws.amazon.com/directconnect
12GCP Dedicated Interconnect: https://cloud.google.com/interconnect/docs/concepts/dedicated-
overview
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signal of network congestion – it reduces the cwnd in a multiplicative manner upon packet loss to throttle the

throughput to a fair rate.

With bandwidth pre-allocated, bandwidth probing is no longer necessary for data transfers; instead,

they should send traffic at a rate that fully utilizes the allocated bandwidth. However, the throughput of

TCP data transfers is still constrained by the RTT and random packet loss due to the congestion control

mechanism, which is unrelated to the throughput in a bandwidth-reservable network. Herein, we devise

the TCP MARIO to decouple TCP data transfers from the traditional congestion control mechanism and

maximize the throughput using pre-allocated bandwidth.

Let b denote the bandwidth allocation to a data transfer and replace the throughput with it in the Mathis

equation, we can derive the following equation:

cwnd ≥ b ·RTT
C ·MSS

(3.11)

TCP MARIO uses this equation to calculate the cwnd on the sender side during the establishment of the

TCP connection. Thus, it skips the bandwidth probing phase but reaches the maximum throughput instantly.

Further, since bandwidth is pre-allocated and guaranteed, TCP MARIO assumes any packet loss is a random

loss and will never back off the cwnd upon packet loss. It only readjusts the cwnd when the bandwidth

allocation changes.

In the implementation, TCP MARIO is developed as a sender-side TCP congestion control module in

the Linux kernel13. It is installed on the client in the virtual network, which tends to initiate data transfers.

The kernel module learns of the bandwidth allocation to data transfers from the daemon process running on

each client, which updates the bandwidth allocation based on the response from the network control plane.

In Section 3.6, we compare TCP MARIO to other baseline TCP variants to evaluate its performance in data

transfers.

3.6 Experimental Evaluation

In this section, we present the experimental evaluation on RADII as a full-fledged geo-distributed

system for performing data-centric collaborations. Specifically, we have run bulk data transfers on a geo-

distributed deployment to evaluate the effectiveness of the global network optimization, MCF+, and the

13TCP MARIO: https://github.com/dcvan24/tcp-mario
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TCP enhancement, TCP MARIO, proposed in Section 3.4 and 3.5, respectively. First of all, we introduce the

experiment setup.

3.6.1 Experiment Setup

The experiment is conducted on an instance of RADII deployed across four geo-locations in ExoGENI

as shown in Figure 3.6, which are UH (Houston, TX), UFL (Gainesville, FL), UMass (Amherst, MA),

and PSC (Pittsburgh, PA). At each location, we have deployed an iRODS resource node on a VM with 4

CPU cores, 12GB RAM and 75GB disk space, which serves as a client sending and receiving files over the

WAN. The virtual network is built on top of four switches powered by Open vSwitch, each of which runs

at a geo-location on a VM with 2 CPU cores, 6GB RAM, and 50GB disk space. The virtual switches are

interconnected with 600 megabits per second virtual network links, on which the bandwidth provisioning is

guaranteed. The bandwidth between the client and switch is 1.8 gigabits per second. The network control

plane is deployed at SL (Chicago, IL), in which the SDN controller and network planner run separately

on VMs with 4 CPU cores, 12GB RAM, and 75GB disk space. The SDN controller and network planner

are implemented using RYU SDN framework and SageMath14, respectively. The middleware of RADII is

mainly developed using Python 2.715.

Figure 3.6: Network topology for evaluation

14SageMath:http://www.sagemath.org
15Python 2.7.0 Release: https://www.python.org/download/releases/2.7
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To evaluate the MCF+, we use the ECMP as the baseline algorithm, which is representative of traditional

network routing algorithms adopting the distributed resource allocation model. The experimental workload

consists of data transfers of file in three different sizes: 256MB, 1GB, and 4GB. The priority level of a data

transfer is inversely correlated with the file size – a data transfer of a smaller file has a higher priority level.

The intuition of this workload design is that transfers of smaller files, e.g., ad-hoc files transfers, usually

have higher urgency than those of larger ones, e.g., daily data backup, which is aligned with the real-world

workloads at Microsoft (Hong et al., 2013). Specifically, we assign priority levels of 3, 5, and 7 to data

transfers of 4GB, 1GB, and 256MB files, respectively. For TCP congestion control, we use TCP CUBIC on

both ends of each data transfer. We use throughput of data transfers and overall bandwidth utilization as the

metrics to evaluate the effectiveness of the MCF+.

Figure 3.7: The ECMP algorithm

To evaluate TCP MARIO, we select the TCP congestion control algorithms listed in Table 3.3 as baselines,

which have also been briefly introduced in Section 2. In the experiment, we compare TCP MARIO to the

baselines in network conditions with varying bandwidth (100Mbps−5Gbps), latency (0−100ms), and packet

loss rate (0-0.05%). We use NetEm (Hemminger, 2005) to emulate the varying network conditions. We

use two workloads to drive the experiment and investigate the different aspects of TCP MARIO. In the first

workload, we use iperf316) to generate and transmit synthetic data over the network for 60 seconds, which

emulates regular bulk data transfers from 750MB to 37.5GB. In this experiment, we focus on the bandwidth

utilization of data transfers resulted by different algorithms.

16iperf3: http://software.es.net/iperf/
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Algorithm Description
Reno (Jacobson, 1988) An implementation with fast recovery and fast retrans-

mission
Veno (Fu and Liew, 2003) A Reno extension for wireless network
Vegas (Brakmo and Peterson, 1995) A Reno extension with proactive congestion estimation
Westwood (Mascolo et al., 2001) A TCP variant that estimates bandwidth
H-TCP (Leith and Shorten, 2004) An implementation that aggressively utilizes band-

width on network paths with large BDP
CUBIC (Ha et al., 2008) An implementation that utilizes available bandwidth

in real time

Table 3.3: Baseline TCP congestion control algorithms

3.6.2 Evaluation of MCF+

First, we evaluate the MCF+. Figure 3.8 shows the comparison of data transfer throughput between

the ECMP and MCF+. As shown, the MCF+ outpeforms ECMP in throughput for data transfers with

any priority level. The result is expected since the MCF+ optimizes the path assignment for data transfers

to avoid network congestion; in contrast, the ECMP distributes network flows among network paths in a

non-deterministic fashion (as shown in Figure 3.7), likely to cause network congestion and thus affect the

throughput of data transfers. The non-deterministic path assignment of the ECMP also affects the stability

of data transfer throughput. As reflected in Figure 3.7, the ECMP results larger variation of throughput

among data transfers than the MCF+. Figure 3.9 further clarifies the instability by showing the throughput

variation of 50 data transfers between UFL and UMass resulted by the ECMP and MCF+, respectively. The

observation is intuitive as the throughput will be high when the data transfers are evenly distributed without

collisions, but low when they are packed onto only a few network paths where network congestion occurs. In

comparison, the MCF+ always distributes data transfers across network paths and prefers those with smaller

network latency, and thus the data transfer throughput is more stable and predictable.

The optimal bandwidth allocation performed by the MCF+ also contributes to the higher throughput. The

bandwidth allocation is enforced in the virtual network by rate limiting, such that data transfers can only utilize

their allocated bandwidth but rarely contend with each other. In comparison, the ECMP does not perform

bandwidth allocation but allows data transfers to send traffic into the network indulgently. Consequently,

the excessive network traffic aggravates the network congestion and further harms the throughput of data

transfers.
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Figure 3.8: Comparison of average data transfer throughput between ECMP and MCF+

Besides, as illustrated in Figure 3.8, the MCF+ favors data transfers of smaller files (i.e., higher-priority)

to attain higher throughput than those of larger ones (i.e., lower-priority). This behavior is consistent with the

design of the MCF+ in overall, although the throughput is not strictly proportional to the priority levels as

expected. The intuition behind this is that these TCP data transfers of small files have shorter duration and

thus are more vulnerable to random packet loss. The random packet loss falsely forces the TCP congestion

control to reduce the throughput, which may not recover till the end of the data transfers. Consequently, they

fail to fully utilize the allocated bandwidth due to the unexpected slowdown and thus result low throughput. In

contrast, data transfers of larger files have sufficient time to recover from the slowdown and stay at a high level

of bandwidth utilization. Herein, the slowdown caused by random packet loss leads to the disproportionate

throughput of data transfers as compared to their priority levels.
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Figure 3.9: Throughput variation of 50 data transfers between UFL and UMASS

We also evaluate the MCF+ from the system perspective by investigating the overall bandwidth utilization

as illustrated in Figure 3.10. We can observe that the MCF+ defeat the ECMP in overall bandwidth utilization

by roughly 25% on average because of the optimization of bandwidth allocation and path assignment for data

transfers. Moreover, the bandwidth utilization of the MCF+ is more consistent than the ECMP during the

observation period. The experimental results reveal that RADII benefits from the global view of network

enabled by the SDN network to improve the resource utilization in the system.

3.6.3 Evaluation of TCP MARIO

Next, we evaluate TCP MARIO. Figure 3.11 shows the bandwidth utilization of TCP MARIO and the

baselines in varying network conditions. In overall, we observe that TCP MARIO is more resilient to network
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Figure 3.10: Variation of overall bandwidth utilization in 30 minutes

latency and packet loss than the baselines, especially with large bandwidth allocation (e.g., 5 gigabits per

second). Specifically, in the network condition with minimal packet loss (leftmost column in the figure), the

bandwidth utilization of the baselines is still affected by the increasing BDP as the latency increases – the

bandwidth utilization of the baselines drops under 40% when the network latency is 40ms. As expected, the

bandwidth utilization of TCP MARIO merely drops by 10% but constantly stays above 70% as the network

latency increases. This is because TCP MARIO uses explicit bandwidth allocation instead of waiting on

ACKs to estimate congestion window, and thus no longer subject to the Mathis’s equation, i.e., the throughput

of TCP MARIO is not correlated with the network latency. Hence, the results demonstrate that TCP MARIO

is able to achieve high throughput for remote data transfers over WANs.

In addition, as reflected in Figure 3.11, TCP MARIO is more tolerable to packet loss than the baselines,

especially in a WAN (bottom row in the figure) – the bandwidth utilization of the baselines decreases below

10%, while TCP MARIO keeps the bandwidth utilization above 50% as the packet loss rate increases to

0.05%. This follows the intuition since TCP MARIO has the knowledge of bandwidth allocation and thus

does not falsely shrink the congestion window as the baselines do; hence, it retains high throughput with the

packet loss rate increasing. However, the bandwidth utilization of TCP MARIO is still affected noticeably by

packet loss when the bandwidth is large. The rationale behind is that packet loss forces retransmission of the

current congestion window, of which the size is positively proportional to the bandwidth allocation; therefore,

the overhead for retransmission is large with large bandwidth allocation, which lowers the throughput of

TCP MARIO. Herein, it reveals that TCP MARIO is tolerable to packet loss during data transfers.
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Figure 3.11: Comparison of bandwidth utilization among the selected TCP congestion control algorithms in
different network conditions with varying bandwidth, latency and packet loss rate

3.7 Chapter Summary

In this chapter, we have introduced RADII, a full-fledged distributed system that enables scientific

collaboration in the geo-distributed environment. We have proposed a DFD-based data model to abstract col-

laboration and computing infrastructure, bridging the gap between the high-level description of collaboration

and low-level resource provisioning. Moreover, we have also recognized the inefficiency of data sharing in

geo-distributed collaboration. As a solution, we have built an SDN-based virtual network for collaboration

and devised MCF-based global network optimization and TCP MARIO on top, to improve the efficiency of

data sharing in the geo-distributed environment. The experimental results demonstrate that RADII is able to

support complex geo-distributed collaboration with efficient data sharing.
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CHAPTER 4: Geo-Distributed, Network-Aware Caching for Data-Intensive Applications

In this chapter1, we investigate caching strategies for improving the performance of data-intensive

applications in geo-distributed environments and present our work CACHALOT in detail. As discussed in the

prior chapter, we have recognized that scientific research of today is increasingly data-driven, collaborative

and dependent on huge data sets that require geo-distributed computing and data sharing infrastructure. For

data processing, scientists rely on a myriad of geo-distributed computing resources, such as high-performance

computing (HPC) clusters, cloud-hosted data analytic services, and national CI. To use these resources, they

move large volumes of data over the WAN.

However, performance overhead for data movement over the WAN is considered the root cause of poor

performance of geo-distributed applications as recognized in JetStream (Rabkin et al., 2014), geo-distributed

Spark (Pu et al., 2015), Geode (Vulimiri et al., 2015b), and other studies. Network-driven approaches, such

as the SDN-based approach introduced in the prior chapter, have emerged as viable solutions to improve data

transfer efficiency in these environments. Nevertheless, given the slowdown in network capacity expansion

and the rapid growth of data volumes, adopting network-based approaches solely may not be sufficient to

overcome the aforementioned challenges.

Alternatively, caching has the potential to alleviate the problem of massive data movement over WAN by

trading off storage at the network edge for bandwidth saving at the network core. Specifically, they exploit

cache space at the network edge to absorb network traffic by maintaining replicas of repeatedly used data

objects near their frequent consumers. Furthermore, computation caching has been recently introduced to data

processing frameworks, such as Spark (Zaharia et al., 2012), Nectar (Gunda et al., 2010), and Tachyon (Li

et al., 2014), to avoid redundant re-execution of common computations, thus reducing network traffic and

enabling efficient use of compute resources within the data center. Consequently, data-intensive applications

perceive significant speedup and users observe noticeable time savings. Cooperative caching (Dahlin et al.,

1Content of this chapter previous appeared in preliminary form in the following paper:
Jiang, F., Castillo, C., and Ahalt, S. (2018). Cachalot: A network-aware, cooperative cache network for geo-distributed, data-intensive
applications. In NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium. IEEE.
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1994) extends the caching techniques to the WAN, which are proven effective in the Internet (Chand et al.,

2007; Cao et al., 2007), mobile networks (Shafiq et al., 2014; Ming et al., 2014), and CDNs (Sourlas et al.,

2013; Zhang et al., 2013). However, these approaches mainly optimize for network and disk I/O, but seldom

consider the cost for generating new data sets not found in cache.

We develop CACHALOT, a novel network-aware, cooperative cache network that amortizes the cost of

data transfers by means of caching output data sets of redundantly executed computation jobs; and, makes

cache placement and replication decisions based on the availability of network resources. CACHALOT is

utility-driven and builds on a combination of techniques that together perform intelligent trade-off decisions.

CACHALOT retains in cache the data of highest user-defined utility value while simultaneously balancing

the use of network and storage resources; and, improves completion time of data-intensive applications by

taking into account the cost of executing jobs and generating data. To adapt to the ever-changing conditions

of shared infrastructure, CACHALOT dynamically revises previous caching and replication decisions based

on resource availability and data access history. Finally, CACHALOT builds on dynamic logical artifacts that

enable the efficient design and development of caching algorithms.

For the rest of this chapter, we first formulate the problem formally (Section 4.1). Then, we describe

the system design and its core network-aware cache algorithm (Section 4.2). Next, we present the results of

a comparative evaluation of CACHALOT against several state-of-the-art baseline algorithms (Section 4.3).

Finally, we summarize this chapter (Section 4.4).

4.1 Problem Formulation

We consider an environment where users, compute and data resources are geo-distributed over the WAN.

Users submit jobs to compute resources. A job can be an instance of any kind of program specification,

e.g., MapReduce (Dean and Ghemawat, 2008). Compute resources are hosted on premise or on public

infrastructure, e.g., cloud platforms, and support big data processing frameworks, e.g., Spark. Similarly, data

sets are available via public data repositories, e.g., National Center for Biotechnology Information (NCBI)2,

or on-premise databases. Users are located at institutions or sites with moderate storage resources for caching

data products that may be reused in the future. We refer to these data sets or data objects interchangeably

in this paper. A data object is uniquely identified by the computation job that produces it. Similarly, a job

2National Center of Biotechnology Information: http://www.ncbi.nlm.nih.gov/
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is uniquely identified by information such as executable binary, input data set and execution parameters.

The utility associated with a data object is not only a function of its potential demand or usage but also

the performance improvement that it provides to users by virtue of its placement, and the impact on the

corresponding network performance, as well as its size and the cost associated with generating it. Intuitively,

caching a data object that can be quickly recomputed in a cache node with poor network connectivity does

not bring much utility to future requesters.

To process data, users transfer input and output data sets over the WAN connecting compute and storage

infrastructure. Thus, the end-to-end completion time of a single job consists of the time needed for processing

and transferring data. Both, the sharing of oversubscribed compute resources and lossy and high-latency

network paths result in unpredictable long execution times. By adopting an advanced caching strategy, data

sets can be reused and transferred from near-by cache resources instead of recomputing jobs thus effectively

reducing completion time and cost on behalf of the users.

We represent the cache system as a complete graph G=(V,E), where V and E denote the set of cache

nodes and network links between them, respectively. The capacity of each node v ∈ V is denoted by Cv. The

bandwidth and latency of each link e ∈ E is denoted by be (be > 0) and le (le ≥ 0), respectively. We use M

to denote the set of data objects cached in G, in which size of each object m ∈M is denoted by sm. We use

um,v to denote utility value of data object m on cache node v. The placement of data objects are represented

by a binary matrix P : Pm,v is 1 if data object m is placed in cache node v and 0 otherwise;
∑
v∈V

Pm,v = 0 if

a data object m′ ∈M is no longer in cache. Since data objects can be transferred between cache nodes, we

use binary matrix T to denote all possible data transfers: Tm,e is 1 if data object m is transferred over link e

and 0 otherwise. We aim at maximizing the total utility value of data objects in cache while minimizing cost

for data transfers due to relocation and replication of data objects. The problem can be formulated as follows:
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max
∑
m∈M

∑
v∈V

Pm,v · um,v −
∑
m∈M

∑
e∈E

Tm,e ·
(
sm
be

+ le

)
s.t.

∑
m∈M

Pm,v · sm ≤ Cv ∀v ∈ V (4.1)

∑
v∈V

Pm,v ≥ 1 ∀m ∈M (4.2)

Pm,v ∈ {0, 1} ∀m ∈M,∀v ∈ V (4.3)

Tm,e ∈ {0, 1} ∀m ∈M,∀e ∈ E (4.4)

Constraint (4.1) is the capacity constraint that ensures the total size of data objects cached in each node

will not exceed the capacity of the node. Constraint (4.2) is the placement constraint that guarantees that

every data object in cache has at least one copy available in certain cache nodes. Constraint (4.3) and (4.4)

are binary constraints with P and T being binary matrices. We note that the binary constraints transform the

problem into a 0-1 multiple knapsack problem (MKP), which is proven NP-complete (Kangasharju et al.,

2002). We introduce an advanced network-aware caching algorithm to address this problem.

4.2 System Design

CACHALOT is a distributed, cooperative cache system that temporarily stores output data of executed

jobs to avoid redundant job executions. It adopts an adaptive network-aware cache algorithm, which adjusts

to ever-changing network conditions and exploits distributed cache capacity to reduce job completion time

and better utilize resources. More importantly, CACHALOT is utility driven in that a utility value associated

with data objects drives all cache activities including eviction, replication and placement of data objects. In

CACHALOT, the utility captures the performance gain resulting from caching data objects based on their

placement, usage and availability of network resources.

4.2.1 Architecture

CACHALOT is a cache network that consists of a Cache Manager (CM) and a number of interconnected

Cache Agents (CAs) (Figure 4.1). Each CA is equipped with storage to cache data and runs an instance of a

network-aware cache algorithm to manage its local cache. Its primary role is to serve as a first-level cache for

62



clients that are co-located with the CA, which are typically deployed in proximity to computing resources

for running data-intensive computational jobs, such as HPC clusters, on-premise infrastructure, and cloud

services. The CAs work cooperatively on data placement, retrieval, and replication decisions to reduce the

completion time of jobs, while relying on the CM for bookkeeping of metadata of cached data sets such as

location, size, access frequency, among others.

CM

CAClient WAN

Figure 4.1: CACHALOT physical infrastructure

CACHALOT uniquely identifies a data set by the specification of the job producing it, which contains the

vital information such as executable binary, input data set, parameters, among others. This information can

be encrypted into a unique fingerprint, which is used as the digital object identifier (DOI) of the associated

data set. Specifically, we use the SHA-1 algorithm (Eastlake and Jones, 2001) to generate a 160-bit DOI for

each data set stored in CACHALOT. Other cryptographic algorithms, such as Rabin fingerprint (Broder, 1993)

and message-digest algorithm 5 (MD5) (Rivest, 1992), can be used as the alternative for encoding data sets.

Figure 4.2 illustrates the interaction among the components in CACHALOT. Before executing a new

job, the client contacts its local CA to check whether the output data set of the job exists in the local cache.

If a replica of the data set exists, it is returned to the client immediately such that the full execution of the

job is avoided (Step 2); otherwise, the local CA reaches the CM to find whether the target data set exists in

any other remote CA (Step 3). If failed to locate the data set, the CM informs the local CA that initiates the

request (Step 4), and the local CA then responds to the client that the output data set of the new job is not
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Figure 4.2: Interaction among the client, CA and CM in CACHALOT

cached (Step 5). In this case, the client sends the job to the local computing cluster for execution (Step 6) and

receives the output data set once the job finished (Step 7). Then, the client voluntarily caches the output data

set in CACHALOT for future reuse (Step 8). If the desired data set does exist in a remote CA, the CM returns

the location of the remote CA, e.g., IP address, to the local CA (Step 3). The local CA directly requests for a

replica of the data set from the remote CA and decides whether to replicate the data set locally (Step 10).

Lastly, the local CA returns the output data set to the client (Step 11).

As CACHALOT running on top of geo-distributed CAs with cache space, it is critical to develop an

efficient distributed algorithm to coordinate among the CAs and thus maximize the utilization of the geo-

distributed cache. Furthermore, we realize that running the algorithm in a central manner creates a heavy load

on the centralized server, e.g., CM, and consequently affects the system scalability. Further, the centralized

algorithm execution can also cause single point of failure, compromising the system availability.
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Hence, we distribute the execution of cache algorithm across CAs in CACHALOT. By design, each CA

runs the cache algorithm independently of others – it reaches the CM only for the information about other

CAs and the data sets of interest, which serves as the evidence for making algorithmic decisions. The cache

algorithm running on the CA is customizable and pluggable – custom cache algorithms can be installed

in CACHALOT in a hot-plug manner if they implement the API shown in Algorithm 1− 4. We have also

developed a network-aware, distributed cache algorithm to improve the opportunity for finding desired data

sets in cache. Before diving into the details of the algorithm, we first introduce the logical artifacts that

support the cache algorithm.

4.2.2 On datapods, dataserver and dataclients

In CACHALOT, we refer to a data set in cache as a data object. Figure 4.3 illustrates the logical repre-

sentation and artifacts introduced in CACHALOT for driving the network-aware cache algorithm. Naturally,

clients retrieve replicas from the cache node that offers better network connectivity, i.e., bandwidth. Thus,

CAs can be organized into logical clusters, each of which serves and manages one replica. Since replicas

are created on demand, there can be multiple replicas for a given data object d at any point of time. We

refer to such logical cluster as a datapod. There is a datapod for every replica. Each datapod consists of

a dataserver and a group of dataclients, which are CAs at the backend. The dataserver hosts and serves

the replica to its dataclients. The membership of a datapod consists of CAs that observe good network

connectivity, e.g., bandwidth availability, with the dataserver node, as compared with other dataserver nodes

hosting a replica of d. The CM maintains a catalog of cached data object records, each of which is mapped to

a set of datapods. The record of a datapod specifies the address of the dataserver, a list of its dataclients and

their retrieval history. As explained later, the CM also maintains network monitoring information to support

decision-making processes and the membership of datapods. Intuitively, a datapod represents an optimized

cluster of consumers (dataclients) and a producer (dataserver) of a replica whose membership varies as a

function of the utility that the replica brings to the cluster.

The CM maintains network monitoring information about the cache network. Technically, this informa-

tion is collected by distributed network monitoring tools and reported to a central server, e.g., the CM, as

introduced in Section 3.3. When a CA, C, requests a data object d remotely, the CM looks up the catalog

for datapods that host a replica of d; if such datapods exist, the CM respond to C with the address of the
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Figure 4.3: CACHALOT architecture. The bottom layer is the physical infrastructure in which CAs are
interconnected via WAN and co-located with clients. The CM coordinates cache operations among CAs.
The upper layers are datapod the topology of different data objects. CAs with a crown are the dataservers
and dataclients fetch replicas from the dataserver of datapods. Note that a dataclient of one datapod may
migrate to another datapod (shown in the middle layer) due to changes in replica distributions and network
conditions.

datapod P that incurs the least time to transfer the replica to C together with the aggregate retrieval history

of d. Logically, C joins the P after fetching the replica from the dataserver of P , denoted by S.

When C joins P , S updates its membership and estimates the available throughput to the new dataclient

based on the network monitoring information provided by the CM. The dataserver also maintains retrieval

history of its replica, which includes retrieval frequency and recency (time elapsed since last retrieval) of the

replica for each dataclient. S uses the retrieval history together with the metadata of data objects, e.g., size,

number of replicas, as the metrics to run the cache algorithm and make decisions on the retention of replica

in cache. Upon the eviction of a replica, the datapod P is dismissed, and thus S requests the CM to delete its

record. It is also possible that the cache algorithm triggers the migration of dataclients among datapods in
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observation of changes in network conditions or replica distribution. We will describe this process in detail

later in this section.

4.2.3 Network-Aware Cache Algorithm

Following, we describe the network-aware caching algorithms adopted in CACHALOT as explained in

Algorithm 1–4 in the form of pseudo code.

Algorithm 1: insert function that determines whether to insert a data object on CA

/* Note: self is the cache node that invokes the cache algorithm.

Some implementation details are omitted due to space

constraint. */

Func insert(key, obj):

1 pod← cm.getPod(key)

2 if pod 6= ∅ and ¬filter(obj) then
return

3 self.evictForSpace(obj.size)

4 pod← cm.createPod(obj)

5 pod.replica← obj

6 pod.util← calcUtil(pod)

7 self.pods← self.pods+ {pod}

The network-aware cache algorithm seeks to retain in cache data objects that provide high utility to the

entire system. Since there is a one-to-one mapping between a replica and a logical datapod, the formation

and dismissal of a datapod are fulfilled by the insertion and eviction of a replica, respectively. In addition, as

explained earlier in this section, the topology and membership of a datapod are determined by the network

condition observed by its dataclients. Hence, we first introduce an utility function that captures the utility of

a data object as a function of its generation cost (i.e., computational cost for generating a replica of the data

object in units of time), transfer cost (i.e., cost for transferring a replica from a dataserver to a dataclient in

a datapod), and usage (e.g., retrieval frequency and recency). This utility function, as formally presented

below, drives all the caching and replication decisions on each CA.

U(d) =
∑
m∈M

fdm ·min{gd, tdκm}
sd · rdm · tdm

(4.5)
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The utility function is built upon a cost/benefit model (Cao and Irani, 1997) and extended to consider

dynamic network conditions in the cache network. It is invoked by the dataserver of each datapod to evaluate

the utility of data objects in cache. From the standpoint of a dataserver, we use d and M to represent the data

object being evaluated and the set of dataclients belonging to the datapod centering around the dataserver.

The utility of a data object is the sum of its utility to each dataclient in the datapod, i.e., m ∈M . Overall,

the numerator and denominator of the function represent the benefit and cost for caching the data object d in

the current dataserver, respectively. The benefit is a product of two factors. fdm represents the frequency of d

being accessed by m, implying the popularity of d. The second term indicates the opportunity cost for not

caching d in the current dataserver – if d not cached in the dataserver, the dataclients are forced to either

execute the associated computational job to generate it, which incurs gd time units to complete the job, or

fetch a replica of d from the nearest datapod κm, which incurs tdκm time units to transfer the replica over the

network; each dataclient will opt for whichever incurs the less time cost for acquiring a replica of d. The

cost is a composite of size, access recency, and time cost for transferring the replica from the dataserver to

each dataclient, which are denoted by sd, rdm, and tdm, respectively. The access recency rdm is formatted as

the time elapsed (in seconds) from the last access to d by m. As suggested by the utility function, a replica of

d is preferable in cache if it is small in size and recently accessed; in addition, it is worthwhile to cache a

replica of d in the dataserver only if the cumulative time cost for serving the replica to the dataclients can be

balanced out by the benefit.

The utility function is at the heart of all caching activities. Upon receipt of a replica, a CA decides

whether to insert the replica into the local cache and form a new datapod as illustrated in Algorithm 1.

To spare space for the new replica, the CA may need to evict other replicas from the local cache and

thus dismiss the associated datapod. To make the eviction decision, it first calls the filter function

(Algorithm 3) to evaluate if the new replica can potentially contribute extra utility. Specifically, the CA forms

a hypothetical datapod for the new replica (Line 2 in Algorithm 3) and invokes the calcUtil function

(Algorithm 4) to calculate its potential utility using the aforementioned utility function. If the potential

utility surpasses the utility loss caused by evicting replicas with the least utility (Line 1−5 in Algorithm 3),

CA moves forward to evict the least-utility replicas (Line 3 in Algorithm 1) and then insert the new replica

(Line 4−7 in Algorithm 1).

To retrieve a data object, the CA first looks up the local cache by the key of the data object (Line 1 in

Algorithm 2) – if a datapod is located, i.e., a replica of the target data object exists, the CA re-calculates the
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utility of the replica (Line 3 in Algorithm 2) and returns the replica immediately. If the target data object

is not found in the local cache, the CA opts to fetch it from the remote CA with a replica of it in cache.

Specifically, it queries against the CM for the nearest dataserver of a datapod holding a replica of the target

data object (Line 5 in Algorithm 2). Note that we define the distance between CAs as the time spent for

transferring a single unit of data. If such datapod does not exist, the CA returns an empty response as the hint

for the caller (i.e., the local client) to executing the associated job in order to generate the desired data object.

Notably, the algorithm is observant of the trade-off between re-executing the job and reusing a remote replica

(Line 7-10; when fetching a remote replica incurs higher cost, the algorithm raises a dummy cache miss to

force the re-execution of the associated job rather than unnecessarily stress the network by reusing the remote

replica. This step avoids the unnecessary caching of data objects that generates massive output data instantly,

thus achieving efficient utilization of cache space and network bandwidth. Lastly, the insert function is

invoked for every remote retrieval as an attempt to replicate the data object locally (Line 11 in Algorithm 2).

Algorithm 2: retrieve function for retrieving a data object by key on CA

Func retrieve(key):

1 if key ∈ self.pods then

2 pod← self.pods.getPod(key)

3 pod.util← calcUtil(pod)

4 return pod.replica

5 pod← cm.getPod(key)

6 if pod = ∅ then
return ∅

7 t← pod.server.estimateDelay(key)

8 g ← cm.getExecTime(key)

9 if t > g then
return ∅

10 obj ← pod.server.retrieve(key)

11 insert(key, obj)

12 return obj

The membership of datapods dynamically changes in response to three events: 1) upon retrieval of a

replica, a dataclient may replicate the received data object, forming a new datapod on its own and leaving
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the one it belonged to; 2) upon eviction of a replica, the associated datapod is dismissed and thus dataclients

of this datapod are forced to join others; 3) more commonly, a dataclient observes changes in network

conditions and migrates from one datapod to another accordingly for shortened distance to the dataserver

that holds the desired replica. In the last case, a dataclient can learn from the CM of the nearest datapod

by calling the getPod function in a passive manner during the retrieval of a remote replica (Line 5 in

Algorithm 2). In the implementation, the CM maintains and periodically updates the pairwise distance of CAs

in a number of binary heaps indexed by the address of each CA, in which the nearest CA is always at the root
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of the corresponding binary heap. To find the nearest datapod, a dataclient locates the binary heap by its own

address and keeps checking the root of the binary heap until a CA that hosts the desired data object is found.

Algorithm 3: filter function for filtering out incoming data objects with low utility on CA

Func filter(obj):

1 pod← cm.createHypoPod(obj)

2 gain← calcUtil(pod)

3 if gain = 0 then
return false

4 loss←estimateEvictionLoss(obj.size)

5 return gain > loss

Algorithm 4: calcUtil function for calculating the utility value of data object on CA

Func calcUtil(pod):

1 util← 0

2 obj ← pod.replica

3 for c ∈ pod.clients do

4 g ← cm.getExecTime(obj.key)

5 sp← cm.getSecondaryPod(obj.key)

6 t1 ← pod.server.estimateDelay(obj.key)

7 t2 ← sp.server.estimateDelay(obj.key)

8 benefit← c.freq∗min(g, t2)

9 cost← c.recency ∗ obj.size ∗ t1

10 util← util + benefit/cost

11 return utilm

4.2.4 Computation Sharing

Data-intensive jobs are typically time- and resource-consuming due to the potentially massive I/O and

computational work. These jobs are the norm in the scenarios considered in CACHALOT. Particularly,

concurrent requests for the output data of such jobs tend to incur a burst of cache misses and duplicate job

execution. That is, when the output data of a job not yet available in CACHALOT, concurrent submissions of
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the job will cause cache misses and trigger multiple job executions simultaneously, although only a single

execution is needed, and other job submissions can share its result in the optimal case. Furthermore, the

duplicate job executions at geo-distributed resources may unnecessarily replicate a data object, wasting the

valuable cache space. The mechanism we have introduced by far can hardly avoid the duplicate job executions

triggered by such concurrent requests.

Inspired by the delay scheduling technique proposed in (Zaharia et al., 2010a), we devise a computation

sharing mechanism in CACHALOT that delays concurrent requests of identical jobs but only allow one request

to hit the system – if it results a cache hit, the system lets in the rest of concurrent requests to reuse the cached

output data; otherwise, CACHALOT responds with a cache miss to trigger the job execution and keeps the

other requests awaiting the output data to be generated. In specific, the CM takes explicit hints from clients to

mark data objects to be generated by jobs in execution; for each request for such data objects, a CA registers

a callback function on the CM, which fetches the requested data objects when they are available in cache;

once the associated job finishes, the client submits the output data to CACHALOT for caching and the CM

invokes the associated callback functions to deliver the data object to its awaiting clients. As demonstrated

later, this mechanism has a significant impact on the performance of CACHALOT.

4.3 Evaluation

We evaluate the performance of CACHALOT through simulation using both synthetic and real-world data

sets. We consider two user-driven performance metrics: cache hit rate and job completion time saving. The

cache hit rate is the percentage of data accesses satisfied by cache; the job completion time saving for each

job is mathematically defined as follows.

Sj = 1− cj · Ij
ej

(4.6)

We use c, e and I to denote cache access time, job completion time for job j and whether the job j has

a cache hit, respectively. Intuitively, the job completion time saving is the fraction of job completion time

saved as a result of a cache hit as compared to fully executing the job. We have developed an event-based

simulation3 using SimPy4.

3Cachalot simulator: https://github.com/dcvan24/cachalot
4Simpy: https://simpy.readthedocs.io/en/latest/index.html
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4.3.1 Experiment Setup

4.3.1.1 System Configuration and Environment

In the synthetic data set, we simulate a cache network with 100 CAs. The total cache capacity available

in the network is 20% of the total size of unique data objects in the workload. The bandwidth of network

links follows log-normal distributions (Crow, 1987) with mean µ ∈ {1, 2, 3, 4, 5} and standard deviation

σ=1, ranging between 50 and 600Mbps.

The real-world data set consists of network bandwidth traces obtained from ExoGENI, which has more

than 14 sites distributed worldwide and connected via more than 10 network providers. To simulate a

representative WAN environment, we collected the bandwidth statistics using iperf3 during the week of

July 22−29, 2017.

In both data sets, we assume network latency and packet loss are negligible and computing resources are

infinite. All experiments start with a cold cache on each CA in the network.

4.3.1.2 Workloads

To drive our evaluation, we use a synthetic and a real-workload data set.

Our synthesized workloads consist of 106 computational jobs with 105 unique jobs. Both job popularity

and input data size distribution follow a Zipf distribution with α ∈ {0.1, 0.3, 0.5, 0.8, 1.2} which is consistent

with characteristics of data-intensive applications in production environments (Breslau et al., 1999; Fricker

et al., 2012; Reiss et al., 2012; Chen et al., 2012a). Input data set sizes range between 1.25MB and 125GB

which is large enough to cover a broad range of requirements. We assume that the execution time and output

data size of jobs are proportional to their input data size which is representative of the vast majority of use

cases driving our work. Finally, inter-arrival time of job submissions follows a Poisson distribution with

λ=200 seconds.

To gain insight into the performance of CACHALOT against real workloads, we use the OpenCloud5 data

set. This data set consists of a 31-month log of Hadoop jobs running on a research cluster in the Carnegie

Mellon University and contains 19,198 unique jobs. We have created a workload with 200,000 jobs following

the job distribution in this data set.

5OpenCloud trace: http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html
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4.3.1.3 Baseline Algorithms

We compare the network-aware algorithm in CACHALOT against three cache algorithms adopted in

state-of-the-art distributed computing platforms as below:

• Least-Frequently-Used (LFU) favors frequently accessed data objects in cache

• GreedyDual-Size (GD) (Cao and Irani, 1997) extends LFU by favoring small-sized data objects that

are frequently accessed

• Nectar (Gunda et al., 2010) adopts a cost/benefit model and favors data objects with high benefit but

low cost. The benefit is defined as a product of access frequency and completion time savings, while the

cost is a product of data size and time elapsed since the data object was last accessed (recency). Notice

that Nectar does not take into account network factors

Since both LFU and GD are frequency-based algorithms and GD outperforms LFU, we only show results

of GD. We also consider two common replication strategies:

• Single-copy: there can be only a single copy for each data object existing in the system at any point of

time.

• Replication-based: data objects can be replicated across CAs with or without constraints.

4.3.2 Synthetic Data Set

We start our evaluation with the synthetic data set.

4.3.2.1 Network-Awareness and Performance Breakdown

We investigate the impact that each mechanism introduced in CACHALOT has on the two performance

metrics. We also consider the performance of CACHALOT under three different replication-based strategies:

relaxed, filtered and random. In the relaxed replication strategy, a CA replicates every data object it retrieves.

This strategy is common in production environments. Filtered replication relies on the filter function

introduced in Section 4.2 to make replication decisions. In the random replication, a CA makes replication

decisions following a uniform random function. Figure 4.4 shows the results of this experiment.
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It is observed that when CACHALOT does not take into consideration network monitoring information

(static network in Figure) the completion time saving obtained is less than 20% which is significantly lower

as compared to all the other cases. Notably, incorporating network information into the scenario with the

single-copy replication strategy results in an improvement of almost 100% and 50% in completion time

saving and hit rate, respectively. Intuitively, without network information CACHALOT is unable to adjust its

replication and caching strategies to network congestion conditions resulting from transferring data across

CAs. Our experiments show that in the absence of network information CACHALOT exacerbates network

congestion by sending data over congested network links, thus negatively impacting the completion time of

jobs.

We then investigate the performance of CACHALOT under the filtered, relaxed and random replication-

based strategies. These strategies present interesting trade-offs between data availability, i.e., larger number of

replicas, and cache capacity efficiency. Both the relaxed and random replication strategies exhibit comparable

performance for both metrics with hit rate under the random strategy being slightly better (25%). This can

be explained by the reduction in effective cache capacity resulting from aggressive replication. The filtered

replication strategy yields additional 6% time saving in average as compared to the single-copy strategy.

Recall from Section 4.2 that the filter function in CACHALOT only replicates data when there is a significant

gain in utility, hence it only trades off an acceptable amount of cache capacity for improved data locality

and network performance. We conclude that the filter function introduced in CACHALOT offers the best

performance overall as compared to the other strategies.

Finally, we evaluate the impact that the optimization mechanism computation sharing has over both

user-driven performance metrics. Recall that this optimization effectively delays concurrent requests for data

objects soon to be available in the cache network. This technique yields roughly 65% and 18% improvement

on job completion time saving and hit rate, respectively. Note that without this optimization, CACHALOT

would blindly replicate the same data objects, thus hindering the efficient use of network resources in the

system.

4.3.2.2 Impact of Network Bandwidth

In the following experiment, we investigate the effect that network bandwidth has over CACHALOT as

compared to the baseline techniques. Figure 4.5 depicts the results of this investigation. Note that [s] and [r]

refer to single-copy and relaxed replication strategies, respectively.
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Figure 4.4: CACHALOT cache algorithm performance breakdown

Notably, the time savings achieved under the single-copy replication strategy increases as available

bandwidth increases. This is because single-copy algorithms take advantage of increased network band-

width to transfer remote replicas. In contrast, replication-based algorithms achieve higher local cache hits.

Nevertheless, they experience worse time savings due to the reduced effective cache capacity.

As observed, all the other strategies are more or less insensitive to variations in network bandwidth

except under extremely constrained conditions (50 Mbps). CACHALOT achieves up to 50% completion time

saving as compared to up to 30% and 25% for Nectar[s] and GD[s], respectively, thus demonstrating its

ability to efficiently leverage network information.

Similarly, the hit rate for CACHALOT increases with increasing available bandwidth. This is the

result of CACHALOT adapting its replication strategy to bandwidth variations while the other strategies are

network-agnostic. More importantly, CACHALOT achieves up to 75% hit rate followed by GD[s], GD[r],

Nectar[s] and Nectar[r] with 62%, 51%, 50% and 40%, respectively. In-depth analysis of the data shows that

CACHALOT replicates more aggressively under constrained conditions and more conservatively otherwise.
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When bandwidth is constrained, it trades cache capacity for data locality by keeping popular data objects

locally and avoiding data transfers.

Moreover, CACHALOT saves up to 60% network traffic which is in contrast to 35% and 39% savings

achieved by GD and Nectar, respectively. This experiment is included in Figure 4.5. In addition, it is observed

that the network traffic savings are indirectly proportional to the available bandwidth. This is by virtue

of CACHALOT being network-aware and keeping replicas of large data objects local to clients, therefore

reducing traffic into the network.

Figure 4.5: Performance with varying bandwidth

4.3.2.3 Stability of datapods and replicas

To confirm our previous observation and assess the stability of datapods (replicas) in Figure 4.6(a)

and Figure 4.6(b), we plot the cumulative distributed function (CDF) of the lifetime of datapods and their

cardinality, for various values of network bandwidth. As observed earlier, under constrained bandwidth

conditions, CACHALOT replicates more aggressively resulting in larger number of datapods (See Figure 4.6(a))

with shorter lifetime (See Figure 4.6(b)).

Figure 4.6 also includes graphs for different replication-based algorithms. Single-copy algorithms

maintain one long lived replica (datapod in CACHALOT) for each data object as compared to replication-
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based algorithm. Furthermore, this strategy can lead to the creation of network hot spots which have

detrimental impact on the overall performance of geo-distributed and data-intensive environments. We do not

include graphs for single-copy algorithms due to the lack of space.

As shown, GD[r] creates the largest number of replicas; 40% data objects have more than 5 replicas

on average. However, most replicas have a very short lifetime. Likewise, although Nectar[r] creates much

fewer replicas than GD[r], their average lifetime is also short. In comparison, CACHALOT effectively trades

replica availability by intelligently controlling the creation of datapods based on the overall utility that they

bring into the system. This observation is particularly important for reducing the management overhead in

production environments.

Figure 4.6: Distribution of datapod number and lifetime

In the next experiment, we evaluate the impact that the data size distribution has on the performance

of CACHALOT. Figure 4.7 depicts hit rate and average time saving as a function of α for GD[s], GD[r],
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Nectar[s], Nectar[r] and CACHALOT. The larger α the larger the fraction of small data objects. The graph

shows that the hit rate is less sensitive to the data size distribution under CACHALOT as compared to the other

techniques. This follows intuition since the data size factor is outweighed by the network factor in the utility

function of CACHALOT.

We also observe that the job completion time saving decreases when α=1.2 for all algorithms including

CACHALOT. This is due to the fact that the majority of data objects are small and hence their corresponding

jobs have short execution times. As a result, these jobs observe marginal gain from caching since the time for

fetching data from remote CAs may be comparable to the time it takes to generate the data. For instance,

GD and Nectar cache aggressively when data objects are small (reflected on the increasing hit rate in the

figure), but fail to produce significant time saving. To make matters worse, they generate more network traffic

and fail to efficiently use network bandwidth. In contrast, CACHALOT outperforms all baseline algorithms

achieving up to 50% completion time saving for all values of α due to its unique ability to take into account

network monitoring information and demand.

Figure 4.7: Performance with varying sizes

Naturally, as some data objects become very popular, it becomes more difficult to balance the use of

cache and network resources in the system. To investigate this observation, we evaluate the performance of

the replication algorithms as a function of data popularity. More specifically, we vary α to skew the popularity
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of data objects. Figure 4.8 depicts the results of this evaluation. As expected, since caching top-ranked data

objects can fulfill most data requests, hit rate increases as increasing function of α. Particularly, algorithms

with replication-based strategy outperform algorithms with single-copy replication strategy for large values of

α (α=1.2). This follows intuition since aggressive replication effectively improves data locality of top-ranked

data objects and thus reduces the need for data transfers. This reasoning is confirmed in the plot depicting the

fraction of local hits in Figure 4.8 which shows that both GD[r] and Nectar[r] have a higher fraction of local

cache hits as compared to CACHALOT, Nectar[s] and GD[s]. This result is important because it demonstrates

that CACHALOT outperforms the baseline algorithms in hit rate and average job completion time by virtue

of its network awareness as demonstrated by the modest fraction of local cache hits (less than 20%). We

conclude that CACHALOT is able to more effectively utilize cache and network resources while observing

user-driven metrics by deciding when to replicate (via the utility function) and which replica to select in a

network-aware fashion.

Figure 4.8: Performance with varying popularity distribution
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4.3.3 Real-World Data Set

Finally, we simulate a real-world environment by merging the workload characteristics of the OpenCloud

data set – to simulate workload – with the network bandwidth collection from ExoGENI – to simulate a

realistic network as explained in Section 4.3.1. Figure 4.9 depicts four dimensions of the data set: output data

size, popularity distribution of data, network bandwidth and job execution time. We observe that the majority

of jobs in the workload have relatively short execution times and generate small data output. The size and

popularity of data objects follow Zipf-like distributions. In contrast with the assumption made in our earlier

experiments, the job execution time is independent of the output data size. The network consists of 14 CAs

interconnected with network links with an average bandwidth of 215Mbps.

Figure 4.9: Characteristics of OpenCloud and ExoGENI trace data set

4.3.3.1 Impact of Cache Capacity on Performance

In a production federated deployment there is no control over the amount of cache resources that each

site (CA) contributes with to CACHALOT. In this experiment we study the impact that total cache capacity
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Figure 4.10: Performance with varying capacity

has on performance for all the algorithms. Our results are plotted in Figure 4.10. We make three observations.

First, all algorithms perform well in terms of hit rate for a sufficiently provisioned cache (hit rate varies

between 80% and 85%). This is a due to the fact that most popular data objects are small in size hence the

algorithms take advantage of statistical multiplexing of cache resources even when the cache capacity is

limited. In particularly, replication-based strategy can efficiently utilize storage cache capacity by packing

replicas of small data objects. Second, CACHALOT exhibits the lowest hit rate. A deeper look into the results

shows that CACHALOT tends to evict jobs that although small in duration generate large output (bottom-right

sub-figure in Figure 4.9). Notice that these jobs cannot take advantage of caching due to their prohibitive

transfer cost which in turn exacerbates congestion in the network. Third, as a consequence of our previous

observation, CACHALOT achieves the largest completion job saving as compared to the other algorithms. GD

performs the worst in terms of completion time saving since it favors caching small data objects regardless of

their overall completion time.
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4.4 Chapter Summary

In this chapter, we have introduced CACHALOT, a geo-distributed cache network for caching repeatedly

used output data sets of frequent data-intensive jobs, thus avoiding unnecessary job re-execution. Specifically,

we have proposed a system design on top of the WAN-based, geo-distributed infrastructure as discussed

in the prior chapter, and designed a network-aware cache algorithm that incorporates the dynamic network

factors into the algorithmic decisions. Furthermore, we have introduced a computation sharing mechanism

that elegantly handles bursts of concurrent requests for identical data objects. The experimental evaluation

shows that CACHALOT can effectively save the time and resource wastage on duplicate job execution by

caching and dynamically adapt to varying network conditions for high utilization of cache space.
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CHAPTER 5: Enable Cost-Aware Scheduling of Applications in a Multi-Cloud Environment

In this chapter1, we explore the potential of building a geo-distributed computing system on top of

multiple public or private cloud platforms and introduce our cloud-agnostic, cost-efficient framework PIVOT

in detail. In prior chapters, we focused on geo-distributed, data-intensive applications running on top of a

single computing platform. For instance, we have developed RADII on top of ExoGENI as introduced in

Chapter 3. However, binding with a single platform imposes a huge limitation on data-intensive applications

as the demand for cloud computing continues to grow. We have observed valuable data sets distributed across

cloud platforms. On the other hand, every cloud platform provides unique capabilities and service offerings

essential to different data analytic applications, such as Google Cloud Spanner2 and AWS Redshift3, which

force researchers and developers to switch among cloud platforms in order to execute various applications.

The distribution of critical data sets and services across cloud platforms imposes three major challenges

for data-driven analyses and applications. Firstly, the heterogeneity in resources, networking, APIs and

runtime among cloud vendors prevents applications from scaling out across platforms to leverage the unique

services and execute in proximity to data; in other words, an application is limited to a single cloud platform

for execution. Secondly, without the ability to scale across cloud platforms in a seamless fashion, applications

are forced to initiate data movements across geographical regions and cloud platforms, which may hinder the

application performance due to poor throughput over the WAN. Lastly, since commerical cloud platforms

monetize egress network traffic, i.e., outbound traffic from a cloud region or platform, cross-region and

cross-cloud execution of data-intensive applications can incur prohibitive cloud expenses for massive data

transfers.

To address the aforementioned challenges, we have developed PIVOT, a cloud-agnostic framework

that creates an abstraction layer over computing, storage, and networking resources distributed across cloud

1Content of this chapter previous appeared in preliminary form in the following paper:
Jiang, F., Ferriter, K., and Castillo, C. (2020). A Cloud-Agnostic Framework to Enable Cost-Aware Scheduling of Applications in a
Multi-Cloud Environment. In NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium. IEEE.
2Google Cloud Spanner: https://cloud.google.com/spanner
3AWS Redshift: https://aws.amazon.com/redshift
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platforms to create an illusion of a single monolithic computer, thus hiding the heterogeneity and complexity

in many aspects among cloud vendors. PIVOT presents these resources through a unified API with wiich data

processing applications, e.g., genomic workflows, can execute and scale across resources independently of the

geo-location and cloud platform where the data is stored and critical services are provided. To achieve this,

we have built a middleware mechanism that orchestrates the joint utilization of multi-cloud, geo-distributed

resources and services with acceptable performance, while also taking into account cloud expenses it incurs.

Specifically, we have developed a simple yet powerful cost-aware resource scheduling algorithm that factors

in egress network traffic cost to cope with scenarios wherein applications consume data and services from

multiple cloud regions and platforms.

For the rest of this chapter, we first elaborate on the system design and implementation of PIVOT

(Section 5.1). Then, we explain the cost-aware scheduling algorithm in detail (Section 5.2). Lastly, we present

a thorough evaluation of the proposed algorithm (Section 5.3) and summarize this chapter (Section 5.4).

5.1 System Design

In PIVOT, we seek to support cross-cloud, cross-region execution of data-intensive applications while

hiding the complexity of the underlying heterogeneous systems and respecting cost and performance re-

quirements of the application. We achieve this through a cloud-agnostic framework introduced in PIVOT

that abstracts virtual infrastructure provided by IaaS across clouds, and a customizable two-level scheduling

framework that minimizes cost by optimizing job placement for data locality. In this section, we describe the

system design of PIVOT in detail.

5.1.1 PIVOT Application

We first define the application running in PIVOT. Different from applications in most systems, an

application in PIVOT is composed of a mixture of logically organized services and jobs instead of a single

kind – a service is a long-running process that handles ad-hoc requests, e.g., online analytical processing

(OLAP) queries; a job is a procedure with limited repetitions for processing the assigned workload, e.g.,

workflow jobs. The services and jobs of an application have dependencies among each other, which are

internally represented in a directed acyclic graph (DAG) in PIVOT. Each service or job can be split into

a number of atomic tasks in parallel, each of which takes a portion, if not the entirety, of the workload
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designated to the service or job. A task specifies the program to execute as well as explicit resource demand

for CPUs, RAM, disk space, and GPUs. As discussed shortly in Section 5.1.2.3, the global scheduler of

PIVOT performs application scheduling at the granularity of tasks.

Database
Launch

Workflow
Cache Server

Analyze
Data

Analyze
Data

Analyze
Data

Visualize
Data Web Server

Figure 5.1: An example of PIVOT application

Figure 5.1 shows an example of PIVOT application with both services and jobs, which supports a

repeatable data analytical workflow. The Database and Cache Server are services that feed and

cache input data for the workflow, respectively. The Launch Workflow is a job that starts the workflow,

which will be triggered following the precedent services being active and stable. The workflow is simplistic

in structure, containing a number of Analyze Data jobs in parallel for data analysis followed by a

Visualize Data job for visualizing the output data of the data analysis. At the last step, a Web Server

service is spun up to render the visual generated by the last job.

5.1.2 PIVOT Architecture

The PIVOT architecture is designed with cloud agnosticism at its core as illustrated in Figure 5.2. At the

bottom, we have built a cross-cloud virtual infrastructure across multiple cloud platforms, in which we have

enabled seamless network connectivity across the geo-distributed cloud regions and platforms. On top of

that, we have introduced an abstraction layer, which abstracts the heterogeneous resource offerings from the

various cloud vendors into fine-grained, on-demand resources that can be flexibly utilized by applications.

On the basis of the abstraction layer, we have developed the scheduling layer that employs a pluggable
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two-level scheduling framework to schedule computational tasks in consideration of both the system-wide

and application-level scheduling goals. At the top, PIVOT exposes a REST API to interact with users and

external systems.
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Figure 5.2: PIVOT architecture

5.1.2.1 Cross-Cloud Virtual Infrastructure

The cross-cloud virtual infrastructure unifies IaaS resources provisioned in different cloud regions and

platforms and offers them to applications in standard units at a fine granularity (e.g., a tenth of a CPU cycle,

kilobyte-level memory allocation), creating a federation of resource pools and orchestrating all aspects of

resource management and communication across cloud regions and platforms. The virtual infrastructure

provisions computing and storage resources to the upper layer, i.e., the abstract layer. The computing
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resources are backed by VM instances mainly configured with computing units such as CPUs, GPUs and

RAM, while the storage resources are VM instances with high-capacity storage devices attached. By default,

these geo-distributed VM instances reside in isolated private networks and communicate with each other

via the Internet. This default network configuration can lead to suboptimal network performance due to

the bandwidth limitation and instability of the Internet. More importantly, it potentially incurs unnecessary

expenses for network traffic as most cloud vendors charge for egress network traffic through the Internet

at a high rate, which can be avoided for network traffic within a cloud region by using the private network

instead. Furthermore, it is hazardous to expose the VM instances to the Internet, which potentially exhibits

vulnerabilities to malicious attacks.

To address these issues, we have constructed a virtual supernet spanning across cloud regions and

platforms to connect the VM instances. To connect VM instances on the same platform, we rely on the

virtual private cloud (VPC) or product alike, which is provided by mainstream cloud vendors. Specifically,

we have set up a VPC for each availability zone (AZ) in a cloud region and peer up the VPCs in different

regions to establish a platform WAN. The major advantage of the platform WAN is that it leverages the

specialized network infrastructure provided by the platform and tends to yield performance improvement

over the Internet. Moreover, network traffic in the WAN will be charged at a significantly lower rate (up to

12x) or even free, since it is no longer carried over through the Internet. Furthermore, by using VPCs, we

have many options to secure VM instances, e.g., restricting their public accessibility, configuring a firewall in

front of each VPC. Last but not least, since VPCs are highly customizable, the use of VPCs lends a plenty of

opportunities to PIVOT for network customization and optimization, e.g., building an SDN virtual network

as we have discussed in Chapter 3.

To federate the platform WAN, we have set up a virtual private network (VPN) tunnel over the Internet

between each pair of regional VPCs across platforms, creating an illusion of a single flat supernet to

applications running on top. Although transferring data over the Internet, the VPN tunnels encrypt the

data using AES-256 (Daemen and Rijmen, 2001) and thus secure cross-cloud communications. Moreover,

the VPN tunnels can be deployed automatically and dynamically, requiring minimum time and monetary

investment and therefore suitable for short-term, dynamic research projects. However, the VPN tunneling

can hardly resolve the performance issue with the Internet but may introduce extra delay for data encryption.

Alternatively, for a long-term deployment of PIVOT, we can opt to reserve dedicated network circuits between
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cloud platforms using cloud services, such as AWS Direct Connect4 and GCP Dedicated Interconnect5, which

requires non-trivial manual configurations and cloud expenses but greatly improves network performance for

cross-cloud data transfers.

Built on top of essential IaaS components widely available across platforms, the cross-cloud virtual

infrastructure is not only limited to the mainstream public cloud platforms but can also incorporate computing

clusters offering IaaS services. For instance, the virtual infrastructure can be extended to any OpenStack6

deployment on which all the capabilities it requires can be enabled in the form of VM instances. We have

experimented such integration with the Chameleon Cloud7, which is powered by OpenStack at the backend.

That said, it is possible to federate geo-distributed computing clusters on campus to serve as the cross-cloud

virtual infrastructure for PIVOT.

5.1.2.2 Abstraction Layer

The cross-cloud virtual infrastructure lays the foundation for PIVOT, provisioning geo-distributed,

standard virtual resources for data-intensive applications. However, there are still substantial technical and

business barriers between cloud regions and platforms that impede the applications from scaling across.

Hence, we have introduced the abstraction layer that abstracts the resources provisioned from disparate

cloud regions and platforms, to break the boundaries among the resources and thus enable applications

to seamlessly scale across regions and platforms. By design, the abstraction layer is composed of the

container orchestration and unified storage components for abstracting the computing and storage resources,

respectively.

To abstract computing resources, we leverage the OS-level virtualization technique to encapsulate

application components into generic, lightweight user-space units, referred to as containers, which can scale

and migrate across heterogeneous, distributed resources with little friction. Specifically, we enclose every

task into a dedicated container, which is assigned to specific VM instance for execution. Furthermore, we

resort to the container orchestration framework to orchestrate containers for application execution. Instead

of scheduling containers using the built-in algorithms of the framework, the abstraction layer delegates

4AWS Direct Connect: https://aws.amazon.com/directconnect
5GCP Dedicated Interconnect: https://cloud.google.com/interconnect/docs/concepts/dedicated-
overview

6OpenStack: https://www.openstack.org
7Chameleon Cloud: https://www.chameleoncloud.org
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the container scheduling to its upper layer, i.e., the scheduling layer, by exposing to it the scheduling

”knobs” provided by the framework, e.g., the API for assigning a container to a specific VM instance. In the

implementation, we use Docker8 and DC/OS9 as the container runtime and container orchestration framework,

respectively.

To abstract storage resources, we have built the unified storage on top of the fault-tolerant distributed

storage system to store and share data for applications in the form of volumes. A volume is a data storage unit

that stores data produced and consumed by containers. It implements strong consistency and provides global

accessibility to the distributed containers throughout the system. Detached from local storage of underlying

computing resources, containers use the volumes instead to keep persistent states for high scalability and

fault tolerance – they can freely scale in and out without being restricted to specific resources; upon failures,

they can restore elsewhere from the states stored in the associated volumes. A volume can also serve as the

data sharing medium among containers; it can be attached to multiple containers and allows the containers to

read and write data simultaneously with consistency. In essence, we implement the volume as an instance of

a POSIX-compliant distributed file system, on which containers can perform the identical I/O operations

as on a local file system. Under the hood, we select Ceph (Weil et al., 2006a) as the distributed storage

system backing the unified storage and CephFS10 to implement the volumes. To bridge the gap between

the containers and volumes, we have developed Docker storage plugin for CephFS11, which maps CephFS

instances to volumes attachable to Docker containers. In addition, we have also enabled custom volume

placement using the CRUSH rules (Weil et al., 2006b) to place volumes in proximity to containers and thus

improve the data locality. Nevertheless, the configuration of CRUSH rules is rigid in the implementation of

Cpeh, which hinders the dynamic placement of volumes in the unified storage. Hence, PIVOT largely relies

on proper task placement to retain data locality for applications but only enforces specific volume placement

as explicitly specified in an application during its initial deployment.

8Docker: https://www.docker.com
9DC/OS: https://dcos.io

10CephFS: https://docs.ceph.com/docs/master/cephfs
11Docker volume plugin for CephFS: https://github.com/dcvan24/cephfs-docker-volume-plugin
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5.1.2.3 Scheduling Layer

The scheduler layer is the brain of PIVOT, geared with the logic for properly scheduling tasks onto

the underlying resources. It only concentrates on the scheduling logic as the abstraction layer underneath

guarantees that tasks can execute, scale, and migrate freely across cloud regions and platforms. Since PIVOT

hosts a variety of applications with diverse scheduling goals, we have designed the scheduling layer as a

modular and extensible two-level scheduling framework, which accepts custom scheduling algorithms to

accommodate both the system-wide and application-specific scheduling goals.

The framework consists of a single global scheduler and an extensible array of application schedulers

as shown in Figure 5.2. Each application has an instance of application scheduler for scheduling its tasks

throughout its lifetime to meet the application-specific scheduling goal. Specifically, it makes decisions

on task placement based on its scheduling goal and resource availability in the system. For instance, the

default application scheduler in PIVOT implements the rudimentary dependency resolution algorithm to

ensure the dependencies among tasks are not violated. A custom application scheduler can be developed by

extending the abstract application scheduler, in which critical functionalities and API are pre-defined. Every

application scheduler is installed as a pluggable module in the framework and can be reused by applications

by creating a dedicated instance of it for each application. The application scheduler operates in a phased

fashion, dispatching tasks to the global scheduler periodically in observation of current states of tasks and

resource availability in the system.

The global scheduler is responsible for achieving the system-wide scheduling goal. It implements a

task queue wherein tasks submitted by application schedulers are queued up for the final dispatch to the

underlying layers for execution. The global scheduler polls tasks from the queue periodically, validating

the task placement decisions made by application schedulers against the system-wide scheduling goal and

resolving conflicts if any; upon any conflict, the global scheduler finalizes the task placement decision

based on the system-wide scheduling goal and current resource availability. It is possible that the conflict in

scheduling goal is unresolvable – in this case, the global scheduler fails the involved tasks on purpose to let

the application scheduler adjust the task placement decision and reschedule the tasks.

The two-level design of the scheduling framework enhances the versatility and robustness of the schedul-

ing layer by offloading application-specific scheduling logic to the application scheduler and keeping the

simplicity of the global scheduler. New application scheduling algorithms can be added to the scheduling
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layer without interfering with the core global scheduler, therefore lowering the risk of system breakdown

caused by scheduler failures.

5.2 Cost-Aware Scheduling Algorithm

Running data-intensive applications across geo-distributed cloud regions and platforms tends to create

significant financial burden due to the high cost for egress network traffic and resource subscription. On

the other hand, it is inevitable to run applications in the cross-cloud, geo-distributed fashion to gain data

locality and thus improve the application efficiency. To strike a balance between these two factors, we

propose a cost-aware scheduling algorithm for the global scheduling of applications in PIVOT, which aims at

saving cloud expenditures for running cross-cloud, geo-distributed applications while improving data transfer

efficiency in a best-effort manner.

5.2.1 Problem Definition

We first formulate the problem mathematically. We consider the model of PIVOT application as

described in Section 5.1.1, in which there are a number of tasks with dependencies among each other.

A set of tasks T are placed and executed on geo-distributed VM instances H distributed across cloud

regions and clouds. Each task τ ∈ T has the resource demand dτ , which is a 4-dimensional vector that

includes the amount of CPUs, RAM, disk space, and GPUs. Likewise, each VM instance η ∈ H is also

associated with a vector Rη that represents the resource capacity in the aforementioned dimensions. Here

we use K to denote the resource dimensionality. With the IaaS service model, subscribing a VM instance

η incurs a VM subscription cost of iη dollars per hour. We use a bit array u|H| to indicate whether η is in

use and assume that idle VM instances will be timely shut off to save the unnecessary subscription cost. In

addition, transmitting data between η and η′ incurs egress network traffic cost eη,η′ dollars per GB. We use a

binary matrix P|T |×|H| to represent whether the data transfer between tasks τ on η and τ ′ on η′ is possible.

Lastly, since the problem is a multi-objective optimization, we introduce α and β as coefficients. The problem

is formulated as below.
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min α ·
∑
η∈H

iη · uη + β ·
∑
τ∈T

∑
τ ′∈T

∑
η∈H

∑
η′∈H

(Pτη + Pτ ′η′) · eηη′ (5.1)

s.t.
∑
τ∈T

dτk · Pτη ≤ Rηk ∀η ∈ H, k ∈ K (5.2)

∑
η∈H

Pτη = 1 ∀τ ∈ T (5.3)

uη ∈ {0, 1} ∀η ∈ H,∀v ∈ V (5.4)

Pτη ∈ {0, 1} ∀τ ∈ T, ∀η ∈ H (5.5)

The objective is to minimize the total expense for VM subscription and egress network traffic. The

constraint 5.2 is the capacity constraint that limits the total resource demand of tasks placed on a host to the

resource capacity of the host in any dimension. The constraint 5.3 ensures that a task can only be placed on

one host at any point of time. The constraints 5.4 and 5.5 indicate that U and P are binary vector and matrix,

respectively. We recognize the problem as a variant of the MDVBP (Chekuri and Khanna, 1999; Frenk et al.,

1990), which is proven NP-hard. Hence, we propose a cost-aware heuristic instead to tackle the problem.

5.2.2 Algorithm Design

As identified in the prior section, the expenses for running data-intensive applications in the cloud

primarily comprise the cost for VM subscription and egress network traffic among cloud regions and

platforms. Therefore, resource underutilization and excessive cross-cloud and cross-region data transfers will

impose a huge financial burden. Cross-cloud and cross-region data transfers tend to exhibit low efficiency due

to the constrained bandwidth and high latency between the cloud regions and platforms, therefore slowing

down applications in overall. To lower the cloud expenses while improving application performance, we

design the cost-aware scheduling algorithm that consolidates applications into the least number of VM

instances to improve resource utilization and eliminate unnecessary egress network traffic.

We recognize that the problem of application consolidation is analogous to the vector bin packing (VBP)

problem – tasks and VM instances are items and bins in the VBP problem, respectively; and we aim at placing

items into the fewest bins considering sizes of items and capacity of bins. The problem is an NP-hard problem

in general (Karp, 1972), and greedy approximation heuristics, such as first fit (FF) (Panigrahy et al., 2011)
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and best fit (BF) (Beloglazov and Buyya, 2010), and their variants have been developed and proven effective

in approximating the optimum. We refer to the family of FF and BF algorithms as VBP algorithms, and refer

readers to Dósa (2007) and Panigrahy et al. (2011) for the in-depth analysis of VBP algorithms.

In the classic VBP problem, items may have different sizes while bins are presumably homogeneous

in capacity. Therefore, by design, existing heuristics assume that the ordering of bins has no impact on the

algorithmic result and assign bins to items in an arbitrary order. However, in the settings of PIVOT, VM

instances are distinguished by a number of factors such as VM subscription cost, egress network traffic cost,

inbound and outbound network bandwidth, data locality, among others. Hence, the ordering of VM instances

entails cost and performance implications for task assignment – it is preferable to place a task onto a VM

instance in proximity to its input data, which we refer to as the anchor, to gain data locality; if such anchor is

unavailable for placing the task, the algorithm searches for another VM instance radially surrounding the

anchor based on a function of resource availability, VM subscription cost, egress network traffic cost, and

network bandwidth from and to the anchor. Intuitively, by scores calculated by the function, the VM with the

highest score will be elected for the task placement, which potentially yields optimal cost saving and data

transfer efficiency.

Algorithm 5: Cost-aware scheduling

Func schedule(T , H):

1 G← GroupTasks(T)

2 for g ∈ G do

3 g ←SortTasks(g)

4 H ←SortVMs(H , θ)

5 FirstFit(g, H)

6 return T

Following this intuition, we design our cost-aware scheduling algorithm as shown in Algorithm 5: 1)

during each scheduling epoch, tasks to be scheduled are divided into groups based on the location of their

input data, i.e., anchor (Line 1); 2) for each group, the algorithm sorts the tasks in the group (Line 3) and VM

instances (Line 4) with reference to the anchor, respectively; the algorithm applies the FF algorithm to pack

tasks in each group into VM instances in order (Line 5). Following, we describe each step of the algorithm in

detail.
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5.2.3 Task Grouping and Data Locality Inference

Algorithm 6: Task grouping

Func GroupTasks(T):

1 G← {}

2 θ ← ∅

3 for τ ∈ T do

4 if τ.dataP lacement 6= ∅ then

5 θ ← τ.dataP lacement

else if τ.dependencies 6= ∅ then

6 θ ← Host η where most of τ ’s predecessors are placed

else if τ.application.anchor 6= ∅ then

7 θ ← τ.application.anchor

else

8 θ ← Random host

9 τ.application.anchor ← θ

10 if gθ = ∅ then

11 gθ ← {}

12 τ.anchor ← θ

13 gθ ← gθ ∪ {τ}

14 G← G ∪ {gθ}

15 return G

The algorithm first groups the tasks by the location of their input data if any, i.e., the anchor of the tasks

by definition. In effect, each task group is formed centering around an anchor. However, finding the anchor

for a task is difficult when the location of input data is not explicitly given – it is common among tasks

performing ad-hoc data transfers with each other instead of using the unified storage, in which the locations

of volumes are visible to the algorithm.

To handle this case, we have developed the data locality inference approach to infer the anchor of a task

from implicit information embedded in its specification. Specifically, we primarily use application locality
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and task dependencies as evidences. Intuitively, we assume that tasks belonging to the same application are

likely to have data exchanges for inter-operations and communication; therefore, co-locating these tasks is

conducive to retaining the data locality. Furthermore, task dependencies implicitly indicate the data flow

among tasks – they tend to consume output data from their predecessors and produce intermediate data

for their descendants; therefore, placing tasks with dependencies among each other may improve the data

locality.

Algorithm 6 shows the logic of task grouping phase of the algorithm. If the location of the input data

is explicitly given, the algorithm will directly use it as the anchor (Line 4−5); otherwise, it takes task

dependencies (Line 5−6) in priority over the application locality (Line 6−7) as the evidence for finding the

anchor, since we consider the former as a stronger signal indicating that data transfers are likely to occur

between tasks. If neither evidence is available, which is common for the initial task of an application, the

algorithm will randomly select an anchor for the task and the application as well, such that peer tasks will be

scheduled accordingly to the application locality(Line 7−9).

5.2.4 Task Ordering

With the tasks grouped up properly, the algorithm starts the task placement iteratively for each group.

Essentially, it adopts the first fit decreasing (FFD) algorithm to each group by sorting the tasks in the

decreasing order of their resource demand, since FFD is able to pack the tasks into fewer VM instances than

FF (Dósa, 2007), therefore reducing the VM subscription cost.

However, different from the size of an item, the resource demand of a task is a 4-dimensional vector

as introduced in Section 5.2.1, which cannot be compared in the one-dimensional space. To reduce the

dimensionality, we calculate the L2-norm of the resource demand vector, i.e., ||dτ ||2, as the ”size” of a task.

Algorithm 5.2.4 illustrates the comparator function for comparing the resource demand between tasks. This
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dimension reduction approach is identified effective in the realm of VBP as revealed in (Panigrahy et al.,

2011).
Algorithm 7: Comparator function for task ordering

Func CompareTask(τα, τβ):

1 dτα ← τα.cpus
2 + τα.ram

2 + τα.disk
2 + τα.gpus

2

2 dτβ ← τβ.cpus
2 + τβ.ram

2 + τβ.disk
2 + τβ.gpus

2

3 if dτα = dτβ then

4 return 0

5 if dτα > dτβ then

6 return −1

7 return 1

5.2.5 VM Ordering

Unlike bins in the classic VBP, VM instances are distinct in several aspects and from the perspective

of different tasks. Hence, the ordering of VM instances makes a critical impact on the effectiveness of the

scheduling algorithm. Generally, the algorithm tends to place a task onto a VM instance with the most

resources but the least cost. To capture these factors quantitatively, we introduce a function as below to give

scores to VM instances, which indicate their priority in task placement, i.e., VM instances with higher scores

will be used for placing tasks in prior to those with lower scores.

Score(η, θ) =
||Rη||2 · (bηθ + bθη)

Cηθ + Cθη + ε
(5.6)

In this function, we factor in bidirectional network bandwidth (b) and egress cost (C) between the host

η and the anchor (θ). The score is positively correlated with the network bandwidth but inversely with the

egress network traffic cost from and to the anchor. Further, we use the L2-norm of the resource capacity

vector, i.e., ||Rη||2, to capture the resource availability of a VM instance in the one-dimensional space, which

is also positively correlated with the score. The algorithm sorts the VM instances in the decreasing order
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of their scores, such that tasks can land on high-score VM instances first. Algorithm 5.2.5 describes the

comparator function for sorting the VM instances.

Algorithm 8: Comparator function for sorting VM instances

Func CompareVM(ηα, ηβ , θ):

1 sηα ←
||Rηα ||2·(bηαθ+bθηα )

Cηαθ+Cθηα+ε

2 sηβ ←
||Rηβ ||2·(bηβθ+bθηβ )

Cηβθ+Cθηβ+ε

3 if sηα = sηβ then

4 return 0

5 if sηα > sηβ then

6 return −1

7 return 1

5.2.6 First-Fit Vector Bin Packing

After sorting the tasks in the group and VM instances accordingly, the algorithm uses the FF algorithm

to fit the tasks into the VM instances as shown in Algorithm 9. It iterates over the tasks and VM instances in

their given order (Line 1−2) and makes the task placement when finding the first fit (Line 3−4); lastly, it

deducts the resources allocated to the task from the VM instance where it is placed (Line 5−8).

Algorithm 9: First-Fit algorithm

Func FirstFit(g, hosts):

1 for τ ∈ g do

2 for η ∈ hosts do

3 if τ.cpus ≤ η.cpus and τ.ram ≤ η.ram and τ.disk ≤ η.disk and τ.gpus ≤ η.gpus

then

4 τ.placement← η

5 η.cpus← η.cpus− τ.cpus

6 η.ram← η.ram− τ.ram

7 η.disk ← η.disk − τ.disk

8 η.gpus← η.gpus− τ.gpus
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5.3 Evaluation

To evaluate the effectiveness and feasibility of our approach in PIVOT, we deploy PIVOT across AWS

and GCP. We drive the experiments with simulations on Alibaba production cluster trace and real-world big

data applications to investigate the system and proposed algorithm in depth. For performance metrics, we

focus on the cost savings in VM subscription and egress network traffic, but also observe the efficiency of

application executions and data transfers.

5.3.1 Experiment Setup

5.3.1.1 Alibaba Cluster Trace and Simulation

The Alibaba cluster trace provides an 8-day collection of batch job trace in their data centers in 2018.

Each job consists of a number of tasks with data dependencies among them specified in the data set. In this

evaluation, we randomly sample a total of 35,000 batch jobs (3,181,620 tasks) from the trace data set. Each

job is run as an application of PIVOT respecting the data dependencies among the tasks. Each task produces

and transfers 10− 400MB data. The data size is proportional to the RAM demand of each task. We simulate

the PIVOT deployment on 600 VM instances evenly distributed among 31 AZs of the 11 North America

regions on AWS and GCP as shown in Figure 5.3. Table 5.1 reflects the egress network traffic among cloud

regions in AWS and GCP as of the evaluation. Each VM instances is configured with 16 CPUs and 128GB

RAM (r5.4xlarge and alike instance/machine type). The network is constructed based on a two-week network

trace collection among regions and clouds in AWS and GCP using iperf3. The simulator is written in

Python using Simpy and available on Github12.

Cloud
Vendor

Traffic Type Cost

AWS
us-east-1↔ us-east-2 0.01
Between AWS regions 0.02
To GCP regions 0.09

GCP
Between GCP regions 0.01
To AWS regions 0.11

Table 5.1: Egress network traffic cost within and between AWS and GCP

12PIVOT Scheduling Simulator: https://github.com/heliumdatacommons/pivot-scheduling
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us-west-1

us-west-2
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Figure 5.3: Cloud regions in AWS and GCP used for evaluating PIVOT

5.3.1.2 Big Data Applications and Real Deployment

We also replicate the PIVOT deployment in the real world to evaluate the system and algorithm in depth

with big data applications. Different from the simulation, each VM is configured with 4 Skylake CPUs, 8GB

RAM and 150GB disk space (c5.xlarge and alike). In this deployment, there are 100 VM instances evenly

distributed across the 31 AZs.

We introduce two featured, real-world use cases - 1) the Hail13 genomic analysis and 2) the TOPMed

alignment workflow14. Both workloads exhibit high-level of parallelism, computation intensity and data

dependencies thus stressing the challenges encountered in the cloud-distributed environments we consider in

this work. Hail is an open-source genomic analytical tool running on Spark15 to enable large-scale genomic

analysis; the TOPMed alignment workflow is an example of workflows encoded in Common Workflow

13Hail: https://github.com/hail-is/hail
14DataBiosphere/topmed-workflows: https://github.com/DataBiosphere/topmed-workflows
15Apache Spark: https://spark.apache.org/
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Language (CWL) (Amstutz et al., 2016) and publicly available at Dockstore16. The Hail workload are

executed as regular Spark applications atop containerized Spark clusters scheduled and run by PIVOT,

in which data processing tasks are executed and the intermediate data is exchanged among distributed,

containerized workers. The TOPMed workflow used for this experiment consists of parallel data processing

tasks with dependencies among each other. The number of parallel tasks varies between 10−70. The topology

of the dependency graph is a MapReduce structure starting with splitting the input, two intermediate phases

processing the chunks, and a final aggregation phase. The high level of parallelism and data dependencies

lends itself well to analysis of distributed scheduling algorithms. We have ported both Hail cluster and CWL

workflows as applications runnable on PIVOT to serve the biomedical community and enable them to take

advantage of the cross-cloud scalability.

5.3.1.3 Baseline

In our evaluation, we compare our cost-aware to the following baseline algorithms.

• Opportunistic is a common scheduling strategy that assigns tasks to VM instances with sufficient

resources opportunistically for high resource utilization in overall as adopted in Hindman et al. (2011)

and Boutin et al. (2014). In our implementation, the scheduler assigns tasks randomly to the VM

instances where they can fit in.

• VBP consists of the FF and BF family of algorithms.

• Mesos (Hindman et al., 2011) uses a resource offer mechanism that achieves high data locality and

scalability within the data center. It is a sophisticated adaptation of the Opportunistic algorithm. In

the evaluation, we compared our algorithm to Mesos with real applications.

5.3.2 Results

5.3.2.1 Simulation on Alibaba Cluster Trace

Figure 5.4 compares our algorithm to the baseline algorithms across several aspects. As shown in the

figure, the Opportunistic strategy performs the worst in cost efficiency since it does neither task packing

nor is cost aware. This follows intuition since this scheduling strategy tends to spread out tasks randomly

16Dockstore: https://dockstore.org/
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across regions, thus fragmenting resource utilization on the VM instances and leading to high cost in host

subscription and egress cost. In contrast, the cost-aware strategy saves up to 90.8% and 99.2% of the

host subscription and egress cost respectively as compared to the Opportunistic algorithm. Although

saving comparably 92.1% in host subscription cost due to the effective consolidation of tasks into fewer

VM instances, the VBP only reduces 15.9% of the egress cost. This is mainly because VBP is oblivious to

data locality and the egress cost model and blindly scales out applications across regions and clouds, thus

causing excessive egress cost. In comparison, by grouping tasks and sorting VM instances respecting data

locality, cost-aware is able to schedule tasks in proximity to their input data and radially scales out

applications centered around their anchor. Effectively, the algorithm favors cost-efficient VM instances when

placing tasks and therefore achieves the greatest cost saving. As the result of the high level of data locality

achieved by the algorithm, cost-aware incurs the least application runtime on average.
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Figure 5.4: Comparison of egress cost, host subscription cost, average number of VM instances used and
application runtime. cost-aware saves up to 90.8% and 99.2% of the cost for host subscription and egress
traffic.

Interestingly, we observe cost-aware also achieves the least average application runtime as compared

to the baselines. In further analysis, we find that the runtime improvement is mostly due to the reduced data

transfer time. As illustrated in Figure 5.5, cost-aware saves up to 82.8% of the data transfer time per
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task. Notably, VBP performs the worst due to the significant delay caused by network congestion, which

represents 85% of the data transfer time. Moreover, we find that the congestion exacerbates when the VM

instances are upgraded with more CPUs and RAM. This is because the increase of network bandwidth can

rarely keep up with the increase of CPUs and RAM during VM upgrade in the cloud. More concurrently

running tasks tend to compete for the limited bandwidth and aggravate the network congestion. Hence, we

argue that adopting naive bin-packing strategy can be detrimental to application scheduling in the distributed

cloud environment. The result also highlights the importance of the awareness of network bandwidth and data

locality for the scheduling algorithm to make wise scheduling decisions in the distributed cloud environment.

More specifically, without the awareness of network bandwidth and data locality, VBP can place tasks onto

VM instances with bandwidth-limited network paths to their anchor and increase the data transmission delay.

To worsen the situation, the task packing further stresses the constrained network path and thus creates hot

spots, where excessive network traffic overwhelms the congested path. As a consequence, VBP greatly slows

down the application execution as shown in Figure 5.4. In contrast, since the bandwidth factor outweighs other

factors in the host scoring function when the network bandwidth being oversubscribed, the cost-aware

algorithm is able to avoid the congestion dynamically and trade reasonable resource fragmentation for load

balancing in the long run.
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Figure 5.5: Average data transfer time per task. cost-aware saves up to 82.8% of data transfer time due to
strategic selection of fast network path and avoidance of network congestion.

Figure 5.6 shows the financial cost as a function of the number of applications running in PIVOT. As

observed, cost-aware incurs trivial egress cost – it incurs at most $13.62 as compared to>$1,000 incurred
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by the baselines. More importantly, the cost increases at the lowest rate with the increasing system load.

The results demonstrate that cost-aware is able to limit the footprints of applications within the fewest

regions and scales out the applications strategically to minimize the egress cost. Furthermore, as the number

of applications increases, all the evaluated algorithms inevitably scale out the applications as reflected in

the increasing cost for host subscription. However, cost-aware exhibits the comparable efficiency in

task packing to VBP – it incurs only 16.3% additional host subscription cost on average for improved load

balancing and congestion avoidance as shown in Figure 5.5.
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Figure 5.6: Variation of cloud expenses with increasing number of running applications. Despite the lowest
egress and host subscription cost, cost-aware achieves mildest cost increase as applications scale up.

5.3.2.2 The Hail Cluster

A Spark cluster consists of a set of worker processes (workers) that execute data processing jobs.

In PIVOT, Hail workers are considered long-running tasks in our workload model. The management of the

Hail workload is managed by the Spark framework and therefore is completely opaque to PIVOT. Therefore,

our cost-aware algorithm only takes into account information about the application locality, i.e., all Hail tasks

(workers) are grouped, when making scheduling decisions. To compare the effectiveness of our algorithm
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Figure 5.7: CDF of worker co-locations/data transferred for Hail clusters/CWL workflows in different scopes,
respectively. cost-aware effectively co- locates the workers/tasks for improved data locality and less egress
cost.

against VBP and Mesos, we launch Hail clusters with 10− 100 workers; following we discuss the results of

this experiment.

Figure 5.7(a) illustrates the placement distribution of workers for Hail clusters of varying sizes. As

observed, the cost-aware algorithm co-locates the majority of the workers within the same region and

cloud (50.8% and 90.3%, respectively).

Additionally, in Figure 5.8 we show a cost-throughput trade off analysis for all three scheduling al-

gorithms. Notice that the origin of the graph represents the optimum point at which data transfers can

be completed instantly without any monetary cost, and every point represents the average data transfer

throughput and egress cost for a Hail cluster instance. As observed, most scheduling decisions under the

cost-aware algorithm are close to the optimum while those under Mesos and VBP are concentrated on

the top right corner of the graph. This follows intuition since by co-locating workers the cost-aware
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algorithm improves data locality (as reflected in throughput) and reduces egress cost. This is in contrast to

the low throughput resulting from the sparse distribution of workers when using Mesos and VBP. Note the

outlier placement decisions landing at the far top right corner under the cost-aware scheduler. These

outliers reveal the limitation of application-locality-based scheduling as application-locality does not imply

data-locality in a distributed system (an assertion valid in centralized environments, e.g., single node). We

argue that considering the limited information provided by the application to the scheduler, cost-aware

strikes a good trade-off between cost and data locality improvement.
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Figure 5.8: Footprints of the Hail cluster deployments in the cost-throughput space. Most deployments by
cost-aware are clustered in proximity to the optimum, while those by the baselines mostly distributed at the
far end.
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Figure 5.9: Average egress cost incurred by running the CWL workflows. cost-aware saves up to $2,092
(92.2%) in total for 30 workflow runs

5.3.2.3 CWL Workflows

CWL workflows are representative of the applications considered in our earlier simulation analysis.

More specifically, data dependencies among workflow jobs are defined in the CWL workflow description17 –

described as input and output files for each step of the workflow. Thus, the scheduling algorithm can take

advantage of this additional information to infer data locality accurately when making placement decisions.

In Figure 5.7, we notice that the locality of interdependent tasks which read their input data from a

preceding task increases significantly under the cost-aware scheduler. A more detailed analysis of our results

shows that once the anchor tasks are placed, the scheduling strategy makes a best effort to balance locality

and performance as reflected by the clustering of descendent tasks.

Recall that cross-region cost is significant, therefore we are concerned with keeping data transfers

within cloud regions. Note that in Figure 5.7, 9.1%, 20.4%, and 72.1% of data transfers were kept within

a region using the Mesos, VBP, and cost-aware schedulers, respectively. The steep CDF slope of the

cost-aware strategy demonstrates the effectiveness of our algorithm; only 4.9% of transfers span clouds

compared to 18.9% and 49.0% for VBP and Mesos, respectively. Turning to Figure 5.9 we see a drastic

reduction in egress charges, and a shift from charges mostly being from cross-cloud in Mesos (89.2%) and

VBP (60.2%), to charges being mostly from cross-region within a cloud in cost-aware (53.4%).

17CWL Workflow Description, v1.0.2: https://www.commonwl.org/v1.0/Workflow.html
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5.4 Chapter Summary

In this chapter, we have introduced PIVOT, a cloud-agnostic computing platform for enabling execution

and scaling of data-intensive applications across geo-distributed cloud regions and platforms. Specifically, we

elaborate on the resource abstraction mechanism that overcomes the technical and business barriers between

cloud regions and platforms, which facilitates the seamless application scaling across cloud. Additionally,

we have devised a two-level scheduling framework that allows the co-existence of applications with various

scheduling goals. Furthermore, in recognition of the substantial cloud expenses incurred by running geo-

distributed, data-intensive applications across cloud, we have proposed a cost-aware scheduling algorithm

that optimally places applications to minimize the cloud expenses and improves application performance

in a best-effort manner. The experimental evaluation indicates that PIVOT is able to host large-scale,

data-intensive applications composed of hundreds of parallel computing tasks; the cost-aware scheduling

algorithm also achieves significant cost saving and performance improvement as compared to the baselines.
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CHAPTER 6: Conclusion and Future Work

Data-intensive applications are commonly run in the geo-distributed environment since numerous masses

of data are generated and stored at widely distributed geo-locations, and their efficiency is of the utmost

importance. Although significant work has been done to improve efficiency of data-intensive applications

within data centers, there is an inadequacy of literature on scaling these applications efficiently in the geo-

distributed environment. The main objective of this dissertation is to identify and tackle core challenges in

ensuring efficiency of data-intensive applications in the geo-distributed environments. Towards this goal,

we take a combined approach of system analysis, design and engineering to clarify and address the key

challenges of resource heterogeneity, data locality and network efficiency.

This chapter is organized as follows. In Section 6.1, we provide a brief summary of the results made in

this dissertation. In Section 6.2, we briefly introduce work done by the author during his doctoral study in

addition to those included in this dissertation. In Section 6.3, we propose potential future work related to this

dissertation.

6.1 Summary of Results

Centering on the key challenges identified in the thesis statement, the results presented in this dissertation

can be summarized as follows.

Cross-layer resource abstraction for easing heterogeneity. We have performed resource abstraction

throughout a geo-distributed system across multiple layers to mitigate the heterogeneity in geo-distributed

environments and simplify the procedures for users and services to use the system. In the meantime, the cross-

layer resource abstraction serves as the foundation for the systematic and algorithmic optimizations on top.

Specifically, in Chapter 3, we introduce a DFD-based model at the API level to inclusively represent complex,

data-centric scientific collaboration, simplifying the usage of virtualized geo-distributed infrastructure for

domain scientists without technical backgrounds in scientific research. In addition, the SDN-based WAN

abstraction at the infrastructure level creates the basis for the global WAN optimization for remote bulk data
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transfers. In Chapter 4, we introduce a middleware-level abstraction for reusable tasks that can be cached in a

geo-distributed cache network, guiding the implementation of reusable tasks and encapsulation mechanism

for such tasks. Meanwhile, we also define the interface for the underlying geo-distributed caching system

at the infrastructure level. In Chapter 5, we abstract computing and storage provisioned by multiple cloud

providers at infrastructure and middleware levels to achieve cloud agnosticism, therefore enabling the flexible

cost-aware task scheduling on top. In a nutshell, these cross-layer resource abstraction approaches can be

adopted partially or collectively in a geo-distributed system to facilitate data-intensive applications.

Network-aware mechanisms for improved data locality. We recognize the importance of data locality for

data-intensive applications, especially in geo-distributed environments, as indicated by a bulk of literature

presented in Chapter 2. Further, we realize the inadequacy of research on the impact of networks on

decision making pertaining to preserving data locality in the geo-distributed environment – prior work mostly

focuses on data center environments wherein networks are homogeneous and efficient, which contrasts with

variable, unpredictable WANs in geo-distributed environments. Hence, we enhance network awareness in

our approaches to improving data locality for geo-distributed, data-intensive applications. In Chapter 3,

the proposed optimization algorithm favors network paths with lower latency between two ends of a data

transfer. In Chapter 4, we factor bandwidth availability among cache servers into the decision making for

cache replacement and replication to ensure data locality for high-value, frequently-repeated tasks. The

experimental evaluation reveals the enormous impact of network awareness on cache hit rate and saving in

job completion time. In Chapter 5, the global task scheduling algorithm also takes into account real-time

bandwidth measurements in addition to cost factors for prioritizing hosts during task assignment, effectively

placing tasks in proximity to their input data for data locality and cost saving. The experiment also reflects

that the network awareness contributes to the reduction of end-to-end runtime of data-intensive applications.

WAN optimization for remote bulk data transfers. We also contribute to WAN optimization for perfor-

mance improvement in remote bulk data transfers, which are predominantly performed in geo-distributed,

data-intensive applications, since it resolves low-level performance bottlenecks at the root that can hardly be

circumvented through high-level mechanisms. Specifically, in Chapter 3, we developed a combined network

optimization solution comprising MCF-based global optimization and TCP enhancement on top of the

network abstraction, which optimizes bandwidth allocation and path assignment to individual data transfers

based on their specified priority levels and ensures the maximal utilization of the allocated bandwidth. The

experimental evaluation shows significant improvement in bandwidth utilization in WANs, which eventually
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benefit remote data transfers as they gain speedup from increasing usable bandwidth in the networks. Further,

this work also exemplifies the success of resource abstraction in eliminating the heterogeneity in WANs,

since such optimization is hardly possible in traditional heterogeneous WANs.

6.2 Other Work

The following is a brief summary of other work done by the author in parallel with this dissertation

during his doctoral study.

Enabling workflow repeatability with virtualization support.1 Repeatability of scientific workflows is

crucial for scientific research, since workflows often need to be replayed over time in varying environments

to reproduce and re-validate results previously generated by them. However, it is challenging to not only

reproduce results but also achieve consistent performance and resource consumption in varying time and

space. Hence, this work focuses on developing a comprehensive abstraction, referred to as workflow virtual

appliance (WVA), which encapsulates every aspect of a scientific workflow from infrastructure to application

with virtualization support to achieve the workflow repeatability. Specifically, it relies on the IaaS service to

capture the resource subscription in the underlying infrastructure. On top of that, the WVA abstracts various

resources using HTCondor (Litzkow et al., 1987) and exposes a unified interface to the workflows for job

scheduling among the distributed resources. For the workflow, Pegasus (Deelman et al., 2016) is adopted as

the standard workflow framework to abstract a DAG-based workflow, which is representative for the majority

of scientific workflows. A middleware named WRAP is developed to orchestrate the various components

within a WVA and across WVA instances. As a result of the experimental evaluation, the system acheives

strongly consistent repeatability for the Montage (Bharathi et al., 2008) and exomic alignment workflows.

This work is a driving case for RADII, in which we extend the abstraction to general data-centric scientific

applications beyond solely workflows.

6.3 Future Work

Chunk-based data caching and deduplication. In Chapter 4, we elaborate on a file-based caching mech-

anism and algorithm for computation caching, in which the atomic unit of caching is a file that contains

1Details of this contribution have been published in the following paper:
F. Jiang, C. Castillo, C. Schmitt, A. Mandal, P. Ruth, and I. Baldin, “Enabling workflow repeatability with virtualization support,”
Proceedings of the 10th Workshop on Workflows in Support of Large-Scale Science - WORKS ’15, pp. 1–10, 2015.
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the intermediate or output data of a task. The major problem with the file-based caching is that files have

heterogeneous sizes and therefore cannot well fit in a cache, causing space fragmentation and wasting valuable

cache space. The potential solution is to use chunk-based caching (Cho et al., 2012b; Lim et al., 2014), in

which data is stored in the unit of uni-sized chunks that can fully utilize the cache space and therefore avoid

space fragmentation. Moreover, chunk-based caching can further save cache space through fine-grained data

deduplication (Bhagwat, Deepavali and Eshghi, Kave and Long, Darrell DE and Lillibridge, Mark, 2009;

Lillibridge et al., 2013), since it has a higher probability that there are chunks sharing identical contents, in

which case only a single copy needs to be cached. However, there are two challenges to overcome in order to

realize chunk-based caching at the geo-distributed scale. First, it takes extra time and computing power to

marshal/unmarshal data from/to chunks, introducing additional delay for cache insertion and retrieval. Second,

it may incur significant overhead to index and orchestrate geo-distributed chunks. With the chunk-based

caching, it is expected to observe higher utilization rate of cache space.

Container-level network abstraction. We introduce a VM-level network abstraction in Chapter 3 and a

container-based computing system in Chapter 5. However, although being functional, it is inadequate to

apply the VM-level network abstraction to the container-based computing system due to the mismatch in

granularity of control and consequently complicates the system design. With the popularity of micro-service

architecture and container network interface (CNI)2, the network abstraction can be enhanced with finer

granularity of control over applications – instead of creating a single virtual network shared among multiple

applications running on the same VM cluster, each application can have a dedicated virtual network that

connects solely its own distributed, containerized services. The fine-grained network abstraction approach

can make a profound impact on many aspects. First, it creates better isolation among applications with

simplicity since they communicate within their own isolated virtual networks. Second, it reduces the network

complexity perceived by the SDN controller, since every application has a dedicated SDN controller which

only oversees components associated with the specific application. Last, the network abstraction is more

lightweight than the VM-level approach – a software switch can run as a container rather than fully occupy

a VM; definition and configuration of a network are mostly logical and software-based, and therefore can

be automated. The new network abstraction may create opportunties for innovations in networking for

micro-service architecture, which is an area not yet thoroughly investigated.

2CNI: https://github.com/containernetworking/cni
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Layer-based container image cache management. With a container-based computing system as introduced

in Chapter 5, downloading of container images may contribute a major portion of data ingestion of the system.

Despite the large size of container images, these images share a significant amount of identical contents that

are redundantly downloaded, causing waste of network bandwidth and storage space and delaying application

start-up (Anwar et al., 2018; Zheng et al., 2018). Even worse, although a container image implements a

union file system built on top of multiple data layers, the state-of-the-art container daemon, namely Docker,

only allows full image deletion upon space shortage, lowering the average space utilization rate and forcing

duplicate image downloading. Further, it seldom implements any logic for automatic image management

but burdens users to make decisions on image deletion, which is often shortsighted or even blind, further

aggravating the problem. Hence, it is compelling to develop a system that automatically caches popular data

layers of container images to avoid duplicate image downloading and speed up application start-up.

Use of preemptible resources across cloud. Preemptible resources typically have a bargain price on most

cloud platforms for the risk of being preempted. Taking advantage of preemptible resources in the cloud can

potentially achieve substantial cost saving. For instance, by using preemptible instances on GCP, we manage

to cut the cost for a genomic analysis by over 80%. There is a plethora of literature leveraging preemptible

resources offered by a single cloud provider to save cloud expenses (Chohan et al., 2010; Qu et al., 2016;

Pucher et al., 2017; Tordini et al., 2018), which limits applications from scaling out across cloud and taking

advantage of price discrepancies among cloud providers. Hence, it is intriguing to enable use of preemptible

resources across cloud while satisfying SLAs of applications, which potentially yields extra cost saving while

improving application reliability.
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