
INDIVIDUALIZED COGNITIVE DECLINE AND THE IMPACT OF GUT MICROBIOME 
COMPOSITION. 

 
 
 
 
 

L. Grant Canipe III 
 
 
 
 
 

A dissertation presented to the faculty of the University of North Carolina at Chapel Hill in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Psychology & 

Neuroscience (Developmental Psychology). 
 
 
 
 
 

Chapel Hill 
2020 

 
 

 
 
 

Approved by: 

Carol L. Cheatham 

Jean-Louis Gariepy 

Kelly S. Giovanello 

Peter A. Ornstein 

Eva H. Telzer 



 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

© 2019 
L. Grant Canipe III 

ALL RIGHTS RESERVED



 iii 

ABSTRACT 

L. Grant Canipe: Individualized Cognitive Decline and the Impact of Gut Microbiome Composition 
(Under the direction of Carol L. Cheatham) 

 

 The U.S. population is aging at its greatest rate in history. An older average population will 

increase the number of age-related cognitive issues. Elucidation of factors that contribute to decline with 

age and methods to prevent or decrease the incidence of cognitive dysfunction in the aging population is 

vital to offset the impact of the age shift. Validation of tests to identify and predict decline is the first step, 

but must be paired with an increased understanding of the inter- and intra-individual differences that 

influence cognitive decline. One difference, gut microbiome diversity, changes within the person across 

their lifespan and varies among individuals. An individual’s gut microflora can significantly influence 

gut-brain communication, brain function, and behavior. 

 The study was focused on identification and prediction of cognitive decline using CANTAB and 

visual ERP as well as exploring the relation between gut-microbiome diversity and cognitive 

performance. Participants underwent tests to evaluate cognitive decline over time: the MoCA, a 

CANTAB battery for behavioral cognitive assessment, and an electrophysiological evaluation via a 

passive oddball paradigm and an active detection task. The role of microbiome diversity in cognitive 

decline was investigated, ERP measures were validated against CANTAB measures, the predictive 

relation between MoCA and future cognitive outcomes were characterized, and the utility of ERP PCA 

factors and CANTAB outcomes to predict future ERP and CANTAB performance were shown. 

 Three CANTAB measures (RTI, SWM, and RVP) were independently confirmed to significantly 

relate to selected ERP measures in both the active detection and the passive oddball tasks. Baseline 

MoCA score and change in MoCA score significantly predicted outcomes in the CANTAB battery and 
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ERP tasks at follow-up. The study also included the design and implementation of novel methodology 

with two-step temporospatial PCA to successfully predict future performance on ERP with baseline 

performance on the same task, which, to this author’s knowledge, is the first known use of this method for 

this purpose. Finally, significant relations between gut-microbiome diversity and healthy cognitive 

function were revealed, where lower microbial diversity significantly relates to poorer cognitive 

performance on both behavioral (CANTAB) and electrophysiological (ERP) measures.  
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CHAPTER 1: INTRODUCTION 

 The proportion of the U.S. population aged 65 or older will peak at approximately one in five 

adults by the year 2035. Rising healthcare needs and costs are the paramount issues caused by a shifting-

age landscape; decline in cognitive function paired with an increase in age-related cognitive disorders will 

impact American lifestyle. Elucidation of methods to prevent or decrease the incidence of cognitive 

dysfunction in the aging population could serve as a tool to offset the impact of the age shift. 

Understanding, identifying, and predicting cognitive decline are the first steps in determining the factors 

that contribute to declining brain health and in developing methods to prevent and ameliorate its effects.   

Executive control measures, such as speed of information processing, working memory, and 

inhibitory control, decline linearly with age. The neurobiological changes and psychological functions 

associated with aging and mild cognitive decline (MCD) have been studied, but there are inconsistencies 

in methodology and study paradigms. Auditory event-related potentials (ERP), an electrophysiological 

technique, and the Cambridge Neuropsychological Test Automated Battery (CANTAB) have shown 

promise in the identification of MCD. However, due to the potential for loss of hearing with age, I 

suggest that visual ERP paradigms should be utilized and, moreover, validated with standardized 

behavioral assessments. Researchers have identified markers in ERP waveforms for early detection of 

age-related decline and prediction of future decline, but they require further elucidation. With this 

research study, my goal was to identify early indicators of cognitive decline and MCD using CANTAB 

and visual ERP. Participants underwent a set of tests to evaluate cognitive decline over time: the Montreal 

Cognitive Assessment (MoCA), a CANTAB battery for behavioral cognitive assessment, and an 

electrophysiological evaluation via the passive oddball paradigm and an active detection task. 
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Inter- and intra-individual differences are essential points of consideration when studying 

cognition. Differences like genetics, nutrient intake, education, and many other factors within and 

between individuals complicate studies of cognitive decline. The identification and control of relevant 

covariates are imperative to identifying and understanding factors for cognitive decline. One difference 

between individuals - gut microbiome diversity and composition - changes within the person across his or 

her lifespan as well as varying among individuals. Recent research on the gut microbiome has shown that 

an individual's gut microflora can significantly influence gut-brain communication, brain function, and 

behavior by indirectly causing changes in internal homeostasis. Effects occur directly via immune 

activation or indirectly, through the production of neuro-metabolites. In this study, I investigate the role of 

microbiome diversity in cognitive function for older adults.  

Defining Cognitive Aging  

Aging can be defined in a myriad of ways, but most definitions describe some form of change of 

abilities and/or functions across time such as changes in cognition. “Older age” can be defined as age in 

years - 65-80 with >80 being “elderly.”  For most, aging often means a decline in many facets of life, 

such as cognitive function and development of dementia. Whereas many theories have aimed to explain 

why we age, and some have stood the test of time by indicating ways to slow or fight aging, many 

outcomes remain inevitable such as declining short-term and working memory function, delayed reaction 

time, and slowed recall of semantic and episodic memory (Beckman & Ames, 1998; Brown & Park, 

2003; Harman, 1956; Hayflick, 1979, 2007; Medawar, 1952; Salthouse, 2000; Salthouse, Atkinson, & 

Berish, 2003; Vina, Borras, Abdelaziz, Garcia-Valles, & Gomez-Cabrera, 2013; G. C. Williams, 1957).  

For the present study, mild cognitive decline (MCD) is defined as greater than expected change in 

cognitive function after considering age and education. If confirmed by clinical diagnosis, this change 

may then be defined as mild cognitive impairment (MCI). No MCI diagnoses were obtained in this study. 

I argue that by providing the proper characterization, methods that provide MCD classification could 

allow for the study of differences between typical and atypical cognitive aging without relying on a more 

costly, time-consuming, and difficult to obtain clinical diagnosis. Individuals who are experiencing 
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MCI/D may show an increased risk for Alzheimer’s disease (AD) and other dementias (Etgen, 2015; 

Levy, 1994). However, no definitive evidence exists that MCI/D individuals progress to a demented state 

(Etgen, 2015; T. Smith, Gildeh, & Holmes, 2007). Some cognitive domains are impacted heavily in 

typical (non-diseased) aging (e.g., working memory, processing speed, inhibitory control), and changes in 

these domains are to be expected, while other domains should remain relatively unaffected (e.g., verbal 

acquisition and semantic memory; Baltes, 1993; Brown & Park, 2003; P. A. Reuter-Lorenz & Park, 

2010). Non-demented MCI/D could represent an accelerated form of typical aging, as indicated by a 

decline in processing speed and in specific aspects of executive control such as working memory and 

inhibitory control (Karbach & Verhaeghen, 2014; Salthouse et al., 2003; Verhaeghen, 2011; Y. Zhang, 

Han, Verhaeghen, & Nilsson, 2007).  

The early identification and accurate assessment of cognitive decline is imperative to creating 

successful public health interventions and preventing future decline. The first step would be to identify 

factors that improve cognitive function across the lifespan to maximize positive outcomes (Salthouse, 

2009). Therefore, we must identify factors that contribute to and predict decline before it advances.  

Is aging developmental? 

Although growth and change in the structure and function of the human brain do not end after 

adolescence, it does not occur as rapidly as in the first two decades of life. Studies of cognition in 

adulthood span a much broader age range compared to childhood. Measurable decline in performance in 

key domains accompanies typical aging. The development of cognitive dysfunction, or age-related 

decline, varies significantly between individuals, and often these differences can be attributed to 

noticeable alterations in structure and function of critical brain regions in individuals experiencing global 

(not domain specific) cognitive decline when compared to healthy individuals experiencing no decline 

(Braver & Barch, 2002; Braver et al., 2001; Etgen, 2015; Levy, 1994; Persson & Reuter-Lorenz, 2008; 

Pudas et al., 2013).  

The human brain undergoes significant changes in both structure and function across our lifespan 

(Casey, Tottenham, Liston, & Durston, 2005), and it is essential to consider what is meant by 
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development, or change, with age. Advances in neuroimaging techniques allow the tracking of changes in 

healthy adults across time. Findings indicate a fine-tuning of cortical function as individuals develop from 

infancy to adolescence (Casey et al., 2005). Essential functions – such as sensory and motor processing – 

and their supporting brain regions, mature first. Following the development of these regions, associated 

areas involved in top-down control of behavior develop (Gogtay et al., 2004; Sowell et al., 2003; Sowell 

et al., 2004). Studies of young to elderly adults suggest that behaviors, and their associated brain regions, 

decline in the reverse pattern (Albright, Kandel, & Posner, 2000; Persson et al., 2006; Persson & Reuter-

Lorenz, 2008; Pfefferbaum et al., 1994; Pudas et al., 2013; Sowell et al., 2003).  Essentially, basic 

functions are the least susceptible to decline, and higher-order functions are the first to be affected. 

During both development and decline, there are numerous contributing factors to the timing and outcome. 

Neuroscientific and psychological investigations in the last two decades have resulted in 

publications on the healthy aging brain and the articulation of neural-based theories of cognitive aging (P. 

A. Reuter-Lorenz & Park, 2010). Still, a great deal of disagreement exists as to the exact mechanisms 

behind cognitive decline with age. Advances in tracking of cognitive changes in healthy adults across 

time indicates that decline mimics the patterns of brain development in early life in a backwards fashion 

where higher order functions decline first and basic functions go largely unaffected (Harada, Natelson 

Love, & Triebel, 2013). In development, there is a fine-tuning of cortical function as individuals develop 

from infancy to adolescence (Casey et al., 2005) and essential functions, such as sensory and motor 

processing (and their corresponding brain regions), mature first. Then, associated areas involved in top-

down control of behavior develop (Gogtay et al., 2004; Sowell et al., 2003; Sowell et al., 2004). As such, 

basic functions are the least susceptible to decline, and higher-order functions are the first to be affected 

(Baltes, 1993; Harada et al., 2013). During both development and decline there are numerous contributing 

factors to the timing and outcome. 

Several neurobiological variables have emerged as potential characteristics for decline. Some of 

the variables that have been found to exhibit nearly continuous age-related declines from age 30 onward 

are measures of regional brain volume (Arfanakis et al., 2013; Bartzokis et al., 2001; Bryant et al., 2013; 
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Colcombe et al., 2006), myelin integrity (Hsu et al., 2008), cortical thickness (Salat et al., 2004), 

serotonin receptor activity (Sheline, Mintun, Moerlein, & Snyder, 2002), hippocampal and striatal 

dopamine binding (Backman, Lindenberger, Li, & Nyberg, 2010; Backman, Nyberg, Lindenberger, Li, & 

Farde, 2006; Verney et al., 1985), accumulation of neurofibrillary tangles (Del Tredici & Braak, 2008), 

and concentrations of various brain metabolites (Kadota, Horinouchi, & Kuroda, 2001). Along with these 

biological factors, cross-sectional comparisons of cognitive abilities across adulthood indicate declines in 

average cognitive performance (e.g. processing speed and executive control) in individuals tracked from 

age 30 to 75 (Salthouse, 1996; Salthouse et al., 2003; Schroeder, Lipton, Ritter, Giesser, & Vaughan, 

1995). 

Empirically documenting aging 

Since the early 1990s, psychology has experienced the emergence of cognitive neuroscience and 

a surge of novel information about the brain. Whereas molecular biology approaches have combined 

many scientific fields, cognitive neuroscience owes much of its rise to the joining of psychology and 

systems approaches of neuroscience (Albright et al., 2000). The field of developmental psychology has 

provided a roadmap to use in surveying the structure and function of the brain. Performing any higher-

order cognitive task is linked to the activation of many parts of the brain. In cognitive tasks of higher 

complexity, such as memory formation and delayed recall, several brain areas are involved. Cognitive 

neuroscience approaches afford cognitive scientists the ability to draw parallels between human brain 

anatomy and behavior, allowing for identification of relevant brain regions and actions (Albright et al., 

2000).  

Brain aging is heterogeneous in the pattern of structural decline (Lockhart & DeCarli, 2014). 

Atrophy is present across the whole brain, but it is evident that the degree of change varies by area and 

type of tissue. The effects of aging are most evident in the cerebral cortex (e.g., superior frontal, middle 

frontal, and superior parietal cortex), and the rates of atrophy fluctuate, where some areas show more 

significant atrophy early and other areas later (Lockhart & DeCarli, 2014). Regions of the prefrontal 

cortex (e.g., dorsolateral & inferior frontal gyrus) are heavily recruited in working memory tasks. 
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Evidence from comparing performance on simple tasks, such as digit span, with more complex tasks 

requiring executive function, such as the N-back task, between younger and older adults shows that in the 

simpler tasks there is little difference in success or time to completion between the age groups. However, 

functional imaging indicates that whereas recognition (behavioral measure) is equivalent, there are 

pronounced activation (structural measure) differences (see Reuter-Lorenz & Park, 2010 for review). For 

example, it has been shown that frontally-mediated executive processes are recruited to support working 

memory performance but are more cognitive resource-dependent as well as cognitive resource-limited, 

resulting in diminished activation and performance on high-load tasks in older adults. If significantly 

more of the prefrontal cortex (PFC) is recruited for simple tasks, and it fails to activate on complex tasks, 

measures of activation in working memory tasks could be an excellent marker to track typical aging 

(relative to younger adults).  

The study of memory serves as a useful example for illustrating changes in cognition with typical 

aging and helps differentiate between typical and atypical decline. Cognitive neuroscientists have 

elucidated some of the mechanisms of memory. There are two independent forms of memory: explicit and 

implicit memory (Albright et al., 2000). The study of these types of memory is itself subdivided into two 

parts: first, the systems problem of memory, concerned with the where, and second, the molecular 

problem of memory, concerned with the how (Albright et al., 2000). Explicit memory has been shown to 

involve, although briefly, the medial temporal lobe (MTL) - initially shown by work with patients like the 

famous H.M. in the studies of Penfield and Milner (1958), and confirmed in animal models (Milner, 

1998). Studies support the possibility that the MTL, which commonly includes the hippocampus, may 

direct reorganization by binding together separate cortical regions that store the whole event memory. 

Researchers suggest that after a sufficient amount of time has passed, the hippocampal formation may no 

longer be needed for storage or retrieval, and long-term memory may become wholly dependent on the 

neocortex (Squire & Alvarez, 1995).  

Studies of amnesic patients and healthy adults have confirmed that multiple memory systems 

exist and that those systems are in themselves mediated by distinct neural systems (Giovanello & 
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Schacter, 2012; Giovanello & Verfaellie, 2001). For example, working memory is unaffected in those 

experiencing amnesia, even when those patients show little to no long-term memory for new events 

(Baddeley & Warrington, 1970; Giovanello & Verfaellie, 2001). However, the reverse pattern is also 

observed. Patients with damage to the left inferior parietal lobe show decreased repetition and reduced 

auditory verbal span (Giovanello & Verfaellie, 2001; Murray, Ramage, & Hopper, 2001). Patients with 

damage to the left frontal regions are characterized by diminished phrase length and poor articulation 

(Murray et al., 2001; Shallice & Warrington, 1977). Additionally, imaging studies of healthy adults have 

shown that executive control processes are mediated by the cingulate and dorsolateral prefrontal cortices 

(Giovanello & Schacter, 2012; Giovanello & Verfaellie, 2001; E. E. Smith & Jonides, 1999). Thus, 

advances in testing and theory offer the opportunity to improve our assessment strategies, leading to the 

development of novel techniques for identifying, rehabilitating, and monitoring cognitive function across 

time.  

The hippocampus is crucial for long-term episodic memory, but the exact role this structure plays 

is still controversial (Bird & Burgess, 2008). Electrophysiological studies in rodents have elucidated the 

neural bases of episodic memory (Aggleton & Brown, 1999; Bird & Burgess, 2008). Knowledge about 

the hippocampus has been acquired from a variety of sources. Some of this knowledge has been gleaned 

from studying patients with bilateral MTL damage or, with milder effects, selective damage to the 

hippocampus itself (Bird & Burgess, 2008; Milner, 1998; Scoville & Milner, 1957; Zola-Morgan, Squire, 

& Amaral, 1986). In aging, these patients are impaired in acquiring new explicit memories, while short-

term memory, procedural memory, and long-term episodic memories are preserved. Given the evidence 

discussed above, it is unlikely that the hippocampus itself that is responsible for the decline in function 

for healthy aging adults as once thought, but decline in this area may be a useful indicator of atypical 

decline and future diseased states. 

Relevant to the current study is the localization of higher order cognitive functions. Using 

cognitive neuroscience methods, one can discern both spatial and temporal resolution of brain function 

during a given task (Albright et al., 2000; P. A. Reuter-Lorenz & Park, 2010; Zamroziewicz & Barbey, 
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2016). In other words, these methods offer the ability to say when and for how long an anatomical area 

(where) is active and when information is being exchanged between areas. The use of joint or paired 

event-related potential (ERP), magnetic resonance imaging (MRI), and functional MRI (fMRI) methods 

allow the study of the brain based on electrophysiological, electromagnetic, and hemodynamic 

measurement, respectively. From this, one can determine which brain areas are activated by a task, how 

long the task is being processed, and the transfer of information and communication with other brain 

areas. I explain in the theoretical section below how the transfer of information and the bidirectional 

communication between brain areas may be vital to understanding cognitive aging. Recent work 

illustrates that it is possible to follow the flow of processing during cognitive tasks across brain areas and 

to determine whether areas have circular or bidirectional interactions (Anwar et al., 2016). For example, 

in cognitive aging, advances in cognitive science allow tracking of pathology across time. Using cognitive 

neuroscience approaches, scientists can now search functional changes such as the speed of processing, 

total activation of brain regions, and measures of executive control and memory function.  

As noted in this section, age-related differences in cognitive function are well defined in the 

spatial domain. As such, I have primarily used spatial descriptions of cognitive aging.  In the temporal 

domain, brain activation measures such as ERPs have been used to help understand atypical cognitive 

decline. However, in typically aging older adults, temporal activation is not clearly defined, and a greater 

understanding of temporal brain activation in healthy older adults would be beneficial. In this study, I 

attempt to show these similarities between task performance and temporal measures of brain activation 

using behavioral and electrophysiological assessments by evaluating the relation between behavioral 

outcomes in the MoCA and CANTAB with the temporal activation measures of ERPs.  

Processing Speed 

Processing speed underlies the ability to identify, discriminate, integrate, interpret, and respond to 

visual and verbal information. Responses for speeded tests are typically motoric (e.g., written response, 

check a response, etc.) or oral (e.g., saying an object's name, reading numbers or letters aloud). 

Behavioral measures of processing speed provide an estimation of how efficiently a subject can perform 
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basic tasks or processing of novel information. Whereas these tasks usually do not assess higher-order 

processes, they frequently require some degree of simple decision making and can indicate the 

automaticity of the process being evaluated, the efficiency of discrimination, and the speed of decision-

making. From a neuroscience perspective, processing speed may be measured temporally as time to peak 

processing (ERP), or spatially as peak change in blood flow (fMRI, fNIRS). In cognitive aging, slowing 

in processing speed may be an indicator of decline.  

The evidence for the role of age-related cognitive slowing as the cause of cognitive decline is 

pervasive in the literature (Salthouse, 1996), but is not the only contributing factor (Finkel, Reynolds, 

McArdle, & Pedersen, 2007; Sliwinski & Buschke, 1999). Methods such as measuring decision speed or 

perceptual speed can be used to evaluate the processing speed of older adults (Salthouse, 2000). Decision 

speed is based on the time to respond to complex content and confounded by an individual's relevant 

cognitive abilities. Perceptual speed, in contrast, is measured by the speed of responding to simple content 

such as simple comparisons. Additionally, psychomotor speed (e.g., repetitive finger tapping) or reaction 

time can be used. Mental chronometry, the study of reaction time, can be assessed in a choice reaction 

time paradigm with visual stimuli and manual keypress responses. Finally, cognitive neuroscientists 

observe variables that are postulated to reflect the time course of an innate response, such as the latency 

of a particular component of a brain's response to a stimulus (e.g., event-related potentials; Salthouse, 

2000). Latency to peak processing in the ERP and reaction time in the CANTAB were used in the present 

study to investigate cognitive decline.  

Working memory 

Speed of processing is highly correlated with short-term and working memory (Salthouse, 1991; 

Schneider-Garces et al., 2009; Verhaeghen, 2011). Working memory (WM) is typically defined as a 

system for temporarily holding information and using it for complex cognitive tasks (Baddeley, 1992) and 

has acted prominently in cognitive theories of aging (Salthouse, 1996). Additionally, WM has become the 

central focus of neuroscience research on aging (Rajah & D'Esposito, 2005; Rypma & D'Esposito, 2000). 

WM can be tested using span tasks, where stimuli such as shapes, letters, or sounds are presented in a 
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specific order, and the participant must repeat the stimuli in the correct order immediately following a 

delay. WM declines with age and is linked to changes in activation in the dorsolateral prefrontal cortex 

(Rypma & D'Esposito, 2000). Recruitment of additional prefrontal circuitry at the less challenging levels 

of a WM task results in a higher level of peak activation in older adults at lower task demands when 

compared to younger adults (Cappell, Gmeindl, & Reuter-Lorenz, 2010; Salthouse, 1991; Schneider-

Garces et al., 2009). In this study, behavioral and electrophysiological measures were used to investigate 

the age-related decline in WM. 

Executive Control 

Executive control is comprised of mechanisms that modulate various operations of cognitive sub 

-processes and regulate the dynamics of cognition (Carlson & Moses, 2001; Miyake et al., 2000; 

Pennington & Ozonoff, 1996). Cognitive control is the brain's ability to configure itself for the 

performance of tasks through adjustments in perception, response bias, and the active maintenance of 

contextual information (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Botvinick, Cohen, & Carter, 

2004). In aging, deficits in cognitive function can be widespread across the cognitive system. Theories 

have emerged (e.g., CRUNCH and STAC-r;Goh & Park, 2009; P.A. Reuter-Lorenz & Cappell, 2008; P. 

A. Reuter-Lorenz & Park, 2014) in which scientists suggest that increased activation in the cortical areas 

of the brains of older adults indicates decline in neural efficiency and compensation by activation of 

additional brain areas to perform cognitive tasks (Cappell et al., 2010; Mattay et al., 2006; Persson et al., 

2006; Pudas et al., 2013; P.A. Reuter-Lorenz & Cappell, 2008; Schneider-Garces et al., 2009). Thus, 

changes in overall cortical function (e.g., slower processing) are likely, and a diverse set of executive 

control functions may show a decline. 

The excitatory or activational aspects of attention are preserved in older adults, while inhibitory 

processes become deficient (Hasher & Zacks, 1988; R. West & Alain, 2000). However, more recently it 

has been suggested that aspects of attentional selection may also be compromised with age (Amer, 

Campbell, & Hasher, 2016; Johnson, Mitchell, Raye, & Greene, 2004; P. A. Reuter-Lorenz & Park, 

2010). With the emergence of brain imaging, specific inhibitory impairment has been documented in 
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older adults. In contrast to Hasher et al. (1988), more recent work suggests that activational aspects are 

indeed compromised with age (Johnson et al., 2004) showing a marked difference in dorsolateral 

prefrontal cortex. There are several correlates of inhibitory dysfunction with age that indicate altered 

engagement of prefrontal processes and impaired top-down control (P. A. Reuter-Lorenz & Park, 2010). 

Quantifying the ability to inhibit prepotent responses or the ability to detect differences between rapidly 

occurring stimuli has been proven an effective method to differentiate cognitive function between 

individuals (Carlson, Moses, & Breton, 2002). The use of inhibitory control and attention selection to 

define cognitive aging have been challenged, but brain imaging techniques support their utility by 

documenting impairments in associated brain areas. Changes in attentional selection and the ability to 

successfully perform detection tasks are evidenced in brain-based measures that involve an altered 

engagement of prefrontal processes and impaired top-down control at earlier stages of input processing 

(Amer et al., 2016; Braver et al., 2001; Hasher, Stoltzfus, Zacks, & Rypma, 1991; P.A. Reuter-Lorenz & 

Cappell, 2008; P. A. Reuter-Lorenz & Park, 2010; Weisz & Czigler, 2006; R. West & Alain, 2000; R. L. 

West, 1996; Wolk, Manning, Kliot, & Arnold, 2013). By identifying changes in attentional selection and 

performance on detection tasks we may be able to more accurately identify age-related cognitive decline 

and do so earlier.  

Detection tasks could prove to be a reliable way to differentiate atypical from typical cognitive 

aging (Friedman, 2003; Kirino, Belger, Goldman-Rakic, & McCarthy, 2000; Pato & Czigler, 2011; Setti 

et al., 2011; Sugamata, Zeng, Hozumi, Tanaka, & Hirata, 2002). In this study, the ability to perform 

detection tasks will be tested in the RVP and active detection task and will be used to investigate age-

related decline. In order to appropriately investigate age-related decline, however, it is crucial also to 

understand other ways cognitive aging is explained and some of the factors that contribute to (and 

possibly prevent) decline.   

How do we explain cognitive aging? 

As discussed earlier, in the past learning and memory deficits in older adults were attributed to 

hippocampal damage, but advances in the specificity of testing and better imaging techniques indicate 
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that this may not be true in typical aging (Allegri, Glaser, Taragano, & Buschke, 2008; Bizon, Lee, & 

Gallagher, 2004; Claesson, Cusack, O'Sullivan, & Greene-Diniz; Driscoll, 2003; Driscoll et al., 2006). In 

typical aging, a decline in the frontal cortical activity is suggested as a better identifier of cognitive 

decline (Gutchess et al., 2005; Lister & Barnes, 2009; MacPherson, Phillips, & Della Sala, 2002; Persson 

et al., 2006; Persson & Reuter-Lorenz, 2008; Pudas et al., 2013). I suggest that there is a distinct 

difference between cortical activation in individuals with decline that is, or will become, atypical 

compared to those experiencing typical decline. In the present study, I have identified these differences by 

comparing cortical activity in a well-characterized cohort of typically and atypically declining older 

adults. This study provided the unique opportunity to follow-up with an original cohort to track the 

progression of, and advancement to, mild cognitive decline (MCD) while also tracking changes in 

characterizing information and cognitive and behavioral assessments.    

Even though aging research has a rich history that resulted in theories on which we can base 

interventions, cognitive issues in the aging population are still pervasive (Beckman & Ames, 1998; 

Brown & Park, 2003; Harman, 1956; Hayflick, 1979, 2007; Medawar, 1952; Salthouse, 2000; Salthouse 

et al., 2003; Vina et al., 2013; G. C. Williams, 1957). Historically, researchers relied on psychological 

constructs of cognitive aging using behavioral assessments to infer problematic states (Botwinick, West, 

& Storandt, 1978; Neugarten, 1979). However, as discussed, researchers utilizing cognitive neuroscience 

approaches to cognitive aging have provided structural and functional information to define age-related 

cognitive decline (Goh & Park, 2009; Kugler, Taghavy, & Platt, 1993).   

Theoretical Approaches 

In an attempt to explore the “black box” of the brain, cognitive scientists have been attempting to 

incorporate new models of cognition into theories of cognitive aging (Clark, 2013). When observed on a 

basic level, the brain is just a bundle of cells that create what we call perception. This bundle of cells 

accomplishes “perception” by matching incoming inputs with top-down expectations and predictions 

using hierarchical generative models (Clark, 2013) that aim to minimize prediction error within a cascade 

of cortical processes. When utilized in developmental cognitive neuroscience approaches, the hypothesis 
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of the brain as a hierarchical prediction machine provides a framework to understand cognition and 

behavior. If the brain is applying error-correction to a cascade of mental processes, then it is likely to 

generate unintended errors in later stages by replacing pertinent information. This natural occurrence of 

errors has led to an evolution of a system for brain processing that contains many checks and balances in 

underlying processes. Many of these processes are a one-way cascade with checkpoints throughout, but 

some of these checkpoints may send information backward. 

In recent studies, it has been shown that some cortical processes may be bidirectional or circular 

and not just unidirectional (see Anwar et al. (2016); Zainuddin and Thuret (2012) for logic). If true, in 

these cascades of processing, high-level systems (e.g. MTL-PFC) show they may be predicting inputs and 

influencing, or “communicating,” these inputs to lower-level systems (ex. sensory system). This influence 

is likely based on the high-level system’s emerging model of casual structure - the source of the signal. 

An error in predicting the lower-level input results in the higher-level model adapting to reduce 

discrepancy (Casey et al., 2005; Clark, 2013).  

We have all experienced being fooled by illusions of depth or size as our higher-order executive 

functions attempt to correct, or make sense of, what our lower-level systems are observing. These 

processes, when operating over multiple high-level models that are, allow for a brain that encodes a rich 

body of information that identifies the source of the signals that frequently flood it (Clark, 2013). The 

variety and consistency with which stimuli bombard these systems mean that the brain is continuously 

computing multiple probability distributions at any given moment. This probability calculation is 

constant, where the predictive probability of a given outcome is continually changing as the different sets 

of outcomes are distinguished only by their relative probability of actually occurring. 

Not all systems have been proposed as bidirectional, but many have (such as memory). 

Bidirectionality is important because the bidirectional hierarchical structure allows the system to infer the 

prior stimulus and calculate new probabilities. By doing this, the system can use its best current model by 

employing "iterative estimation" (Clark, 2013; Dempster, Laird, & Rubin, 1977; Neal & Hinton, 1998). 

By slight extension of the idea of hierarchical generative models, one can assume that the brain can also 
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adapt, generating new routines to reduce the discrepancy between high- and low-level systems, 

diminishing the impact of a poorly functioning cog in the machine that is the brain. Via this extension, I 

am suggesting an hypothesis of compensation to explain (at least to some extent) cognitive dysfunction. I 

suggest an application of this theory, that some form of compensation or reutilization is occurring, where 

over-activation (compensation) would be measurably higher in MCD individuals compared to non-MCD 

individuals, or, as suggested below, at high levels of difficulty re-utilization cannot account for the 

differences and a failure in performance is observed.  

In older adults, in order to reduce error and maintain minimal discrepancy between cognitive 

systems, there is activation of additional brain areas resulting in over-activation. This over-activation 

would indicate that scaffolding of resources among systems could diminish resource deficits due to age. 

The Scaffolding Theory of Aging and Cognition (STAC; P.A. Reuter-Lorenz & Cappell, 2008) model 

integrates these ideas with ideas from cognitive neuroscience. STAC is based on the idea that the aging 

brain is subject to a range of challenges, which can include but are not limited to, amyloid deposits, 

neuronal atrophy, and deterioration of white matter. The result is functional alterations, such as 

dedifferentiation and decreased medial-temporal lobe activation (Persson & Reuter-Lorenz, 2008; P. A. 

Reuter-Lorenz & Park, 2010). According to STAC, the brain responds to these challenges by forging 

alternative neural circuitry. The result is a network that may function less efficiently than the networks of 

younger individuals, but still produce the same outcomes and behaviors. This scaffolding process permits 

individuals to maintain a high level of cognitive function even in advanced age. Its occurrence is apparent 

in the pattern of over-activation, primarily in the frontal cortex. It is important to note, however, that 

whereas the capacity for the aging brain to perform processes such as neurogenesis decline with age, the 

STAC model assumes that all mechanisms remain functional enough to provide the means for creating 

new neural circuitry. This assumption is not particularly viable as a wholistic application to cognitive 

aging, however, because in some circumstances new neural circuitry is not created. 

Neuroimaging has indicated that older adults sometimes show greater brain activation than 

younger adults when observed on identical tasks (Goh & Park, 2009; P.A. Reuter-Lorenz & Cappell, 
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2008; P. A. Reuter-Lorenz & Park, 2014). One interpretation of this finding is that the brain of older 

adults recruits greater resources on lower-level cognitive tasks than young adults. Declines in neural 

efficiency with age lead to engaging more neural circuits (P.A. Reuter-Lorenz & Cappell, 2008; P. A. 

Reuter-Lorenz & Park, 2010; Schneider-Garces et al., 2009; Souza, 2016). I suggest that this fits the 

conclusion above: correction made by the predictive machine. This over-activation in older adults results 

from utilization of frontal and bilateral recruitment, compared to more focal activation in younger adults. 

As load increases younger adults will shift to an overactive or bilateral pattern to address the increased 

demands (Goh & Park, 2009; P.A. Reuter-Lorenz & Cappell, 2008; P. A. Reuter-Lorenz & Park, 2014). 

Older adults have likely tapped out their neural resources at the lower load. As a result, in the more 

demanding task, older adults will show under-activation and a decline in task performance compared to 

their younger counterparts - known as the compensation-related utilization of neural circuits hypothesis, 

or CRUNCH. CRUNCH is upheld in studies of executive control and working memory (Cappell et al., 

2010; Mattay et al., 2006; Schneider-Garces et al., 2009), and a longitudinal model indicates that 

overactivation predicts future cognitive decline (Persson et al., 2006).  

A crucial component to STAC and CRUNCH is that this scaffolding is not a process that begins 

in old age, but a process that is occurring throughout the lifespan. Neuroscientific findings indicate that 

neurogenesis, synaptogenesis, neuronal apoptosis, and synaptic pruning are occurring at a rapid rate in 

early life as the child's existing circuity is utilized to scaffold the creation of new connections, thereby 

allowing acquisition of new cognitive skills (Petersen, van Mier, Fiez, & Raichle, 1998). The STAC 

model was updated in 2014 (Reuter-Lorenz & Park, 2014) to reflect this utilization of the model at all 

ages. The revised STAC (STAC-r) is redefined in light of more recent longitudinal data that incorporate 

measures across the lifespan. STAC-r improves upon the previous model, allowing it to better predict and 

lend understanding to cognitive status and the rate of cognitive change over time. 

Factors that influence cognitive decline 

Just as describing age-related cognitive decline is important, understanding the factors that 

contribute to it is of equal value in attempting to slow or stop this change. There is a large list of factors 
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that may contribute to cognitive decline, but the first factor should come as no surprise: age. Aging is the 

most prevalent risk factor for experiencing cognitive decline and developing cognitive impairments like 

dementia (Sahathevan, 2015). Other non-modifiable factors, aside from age, may include someone’s sex 

or genetic background. A person's genotype and resulting phenotype can have profound impacts on the 

decline observed with aging. An analysis in twin studies has indicated that some cognitive domains 

associated with aging are highly heritable, such as processing speed and general cognitive ability (Lee et 

al., 2011). Furthermore, a decline in the expression of genes related to mitochondrial metabolism is 

predictive of selective neuronal vulnerability, a characteristic of neurons in brain areas most affected by 

typical aging (X. Wang, Michaelis, & Michaelis, 2010). Nutrigenomics indicate an individual's genotype 

impacts his/her ability to obtain and process certain vital nutrients for healthy brain function (Kussmann, 

Krause, & Siffert, 2010). Moreover, with age comes years of exposure to other factors that may influence 

cognitive changes such as environmental exposure, diet and nutrition differences, physical activity, job 

type, social wellbeing, and educational attainment, just to name a few. Whereas there have been 

significant advancements in describing cognitive aging, the significant intraindividual differences of 

studying someone with 65+ years of “factors” makes studying and applying theories of cognitive aging 

difficult. 

Individual Characteristics and Disease States Contributing to Cognitive Decline 

Body composition is heavily linked to development of diseases as well as cognitive function and 

the risk for development of cognitive disturbances in adults. Obesity in middle age has been identified as 

a risk factor for developing cognitive decline in old age (Wirth & Smoliner, 2015). This relation is also 

true in the opposite direction, where lower body mass index showed lower rates of decline in old age 

(Yaffe et al., 2009; Zhou, Flaherty, Huang, Lu, & Dong, 2010). Other studies conclude that higher BMI is 

related to lower cognitive performance throughout all age groups (Gunstad et al., 2007; Yaffe et al., 2009; 

Yaffe et al., 2004). Importantly, intentional weight loss in obese participants is shown to enhance 

cognitive performance in adults without dementia (Siervo et al., 2012).  
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Body mass itself is likely not the cause of decline in mental capacities and likely serves as a 

proxy for underlying issues, especially in the elderly, because increased BMI is significantly correlated 

with increased incidents of diseases that increase inflammation, reduce blood flow, and limit nutrient 

uptake. Moreover, the distinction between intentional weight loss and weight loss that is unexpected is 

important in older adults. In elderly individuals, a decline in BMI that was unintentional could include an 

unhealthy loss of muscle and bone in addition to fat (Shatenstein, Kergoat, & Reid, 2007). The likelihood 

for a loss of muscle and bone may be so high that, for elderly who are obese, staying that way could be a 

sign of stable cognitive function (Inelmen, Sergi, Coin, Girardi, & Manzato, 2010). Because obesity and 

fat mass throughout the lifespan are modifiable risk factors for cognitive decline with age, I collected data 

on the BMI, waist circumference, exercise level, and diet of my participants. 

Aging is associated with an increase in inflammation due to typical environmental exposure, 

cellular aging, certain diseases (e.g. diabetes), or even dysbiosis in our body systems such as the gut that 

can cause numerous health effects. Neuroinflammation in particular involves microglia that contribute to 

deficits in neural plasticity. Inflammation, which is evidence of an immune response, is one of several 

factors known to regulate adult neurogenesis (Kohman, DeYoung, Bhattacharya, Peterson, & Rhodes, 

2012). This impact on neurogenesis is indicated by microglia shown to express an inflammatory 

phenotype which reduces cell proliferation, survival, and function of new neurons. In contrast, microglia 

displaying the alternate phenotype have been shown to support adult hippocampal neurogenesis (Kohman 

et al., 2012). Therefore, the level of inflammation in otherwise healthy older adults should correspond 

with cognitive function. Arfanakis and colleagues (2013) showed these hypothesized differences in 

microglia and inflammation to be accurate by performing MRI DTI on non-demented, otherwise healthy, 

elderly subjects with varying levels of inflammation. Their findings indicated that higher levels of 

inflammation might be associated with lower integrity of microstructures of the corpus callosum of 

elderly individuals, which was also paired with reduced higher-order visual cognition with increased 

inflammation. But again, the causes of inflammation can be widespread. With this study, I attempted to 

address a few believed causes of inflammation by controlling for age and some body composition factors, 



 

 18 

evaluating measures of gut dysbiosis and, on a limited scale, determining the relations among dietary 

factors, cognitive function, and the gut-microbiome. 

Protective Factors 

Several factors, such as higher education attainment and higher socioeconomic status, are 

protective against age-related cognitive decline (Alwin, McCammon, Wray, & Rodgers, 2008; Sheffield 

& Peek, 2011). For this review, however, the focus will be on three closely related and easily modifiable 

lifestyle factors that have been shown to have a positive impact on brain function across the lifespan: 

physical activity, diet, and nutrition. I then argue that these last two may be crucially linked to the gut 

microbiome for processing and utilization by the body. 

In humans, epidemiological evidence shows that physical activity is associated with increased 

cerebral blood flow and neuronal connectivity (Burdette et al., 2010) and improved brain volume 

(Colcombe et al., 2006). However, results of randomized trials of physical activity and tests of cognitive 

function have been mixed, at best. Some promising evidence exists that better physical fitness is 

associated with improved attention and processing (Pontifex, Hillman, & Polich, 2009), and that exercise 

has mediating effects on cognition by positively influencing depression scales, stress levels, and sleep and 

diet quality (Sibley, 2008). A key example with a large cohort of older adults, Sink and colleagues (2015), 

was a clinical trial designed to test if a 24-month physical activity program resulted in improved cognitive 

function when compared to a health education program in a large cohort (n=1,635) of elderly individuals. 

Whereas the physical activity group experienced no decline in cognitive function, there were no 

significant differences between those older adults who participated in the physical activity compared to 

the health education only group. This study would benefit from a control group to identify the potential 

cognitive effect of the health education. Despite epidemiological evidence showing support for the 

positive impact of exercise on cognitive function in elderly adults, clinical trials have failed to reinforce 

this finding. Therefore, there is the potential that physical activity may keep the aging brain stable for 

some time, but it may not improve function when used alone. It is possible that there is a synergy between 
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the different aspects of a healthy lifestyle (e.g., between diet and exercise) that must be present for the 

benefits to emerge. 

In today’s modern world, food has become increasingly plentiful, palatable, and affordable, while 

physical activity has become increasingly unnecessary and obstructed. In America, for example, the 

chronic excess of calories eaten compared to calories burned is an important factor contributing to decline 

in cognitive function (Cheatham, 2014; Mirowsky, 2015). The ever-growing substitution of mechanical 

power for human physical activity and increasingly sedentary work-life activities challenge the body’s 

need for cardiovascular, respiratory, and metabolic fitness (Mirowsky, 2015).  Aside from the increased 

incidence of obesity and its impact (see previous discussion above), the increase in caloric intake does not 

coincide with an increase in vital nutrients (Davis, 2009; Davis, Epp, & Riordan, 2004). Diet and 

resulting nutrient intake of the individual could have a substantial impact on cognition and be an 

important protective factor against age-related cognitive decline (Donini, Poggiogalle, Pinto, Giusti, & del 

Balzo, 2015; Guesry, 1998; Mirowsky, 2015).  

In addition, many foods contain fewer vital nutrients than their earlier forms from decades past 

(Blasbalg, Hibbeln, Ramsden, Majchrzak, & Rawlings, 2011). The United Nations Standing Committee 

Report in 2006 stated that even in industrialized nations diet alone was not sufficient to attain needed 

nutrient for healthy body function (UN Report of the Standing Committee on Nutrition at its thirty-third 

session, 2006). More recently, however, the National Institute on Aging have begun to recommend 

against many supplements that were once recommended for older adults as they are ineffective or, in 

some cases, harmful (DHS, 2015; W.H.O., 2017). Regardless of over- or under-nutrition, older adults can 

still be malnourished due to a plethora of nutritional, social, functional, or psychological factors (Donini 

et al., 2015).  Therefore, it is not only important that an individual monitor energy expenditure and 

activity level but also that he or she consume nutrient-dense diets that support cognitive function.  

In this study, I investigate, on a limited scale, the impact of some diet and nutrition measures 

especially as they relate the to gut microbiome. Recent studies have shown that consumption of diets rich 

in antioxidants and anti-inflammatory components may lower the risk of cognitive decline and alter our 
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gut-microbiome (discussed in the next section) (Dauncey, 2014; Joseph, Cole, Head, & Ingram, 2009; 

Mena, Calani, Bruni, & Del Rio, 2015; J. Spencer, 2010).  

A review of nutritional compounds thought to be memory enhancers (e.g., phosphatidylcholine 

(PC), citicoline, antioxidants) suggested mild effects (McDaniel, Maier, & Einstein, 2003). Antioxidants 

are suggested to help neutralize free-radicals and oxidative stress, which damage tissues and increase with 

age. Results with vitamin E and C showed no effect in MCI or AD patients on memory measures 

(McDaniel et al., 2003). However, antioxidants like polyphenols have shown an impact on reduction of 

oxidative stress and may improve cognitive functions in older adults (Cabezas et al., 2015; Casadesus et 

al., 2004; Krikorian et al., 2010). Polyphenol rich foods have also been shown to attenuate microglial 

activation and reduce inflammatory markers that are both attributed to improved gut microbiome diversity 

(Mena et al., 2015; Shukitt-Hale et al., 2008; C. M. Williams et al., 2008; Willis et al., 2010).  

The Microbiome 

Emerging hypotheses about the gut microbiome and its relation to the brain are revealing an all-

encompassing system within the body that can explain, in part, the effects of diet on cognitive function 

(Caracciolo, Xu, Collins, & Fratiglioni, 2014; Leung & Thuret, 2015b; Noble, Hsu, & Kanoski, 2017).  

Inter- and intra-individual differences are constant points of consideration in studies of age-related 

cognitive decline. Non-modifiable factors of the individuals can explain some of the differences. Others, 

such as an individual's ability to take in and process nutrients, can change across the course of the lifespan 

or as the result of lifestyle choices of the individual. An individual's gastrointestinal flora can have an 

enormous impact on the ability of the gut microbiome to deliver the ingredients needed for a healthy 

brain. 

The human gastrointestinal tract (GIT) is a natural habitat for a large and active community of 

microbiota known as microflora. These bacteria number 104 cells and can be classified into over 1,000 

diverse types (Lim et al., 2015). Recent exploration of the gut microbiome has shown that an individual's 

gut microflora can significantly influence gut-brain communication, brain function, and behavior 

(Claesson et al., 2011; Cryan & Dinan, 2012; Dinan & Cryan, 2017; Dinan, Stilling, Stanton, & Cryan, 
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2015). This influence is bidirectional and essential for maintaining homeostasis. Top-down 

communication of the brain to the GIT can change blood flow and secretions of digestive factors 

(Grenham, Clarke, Cryan, & Dinan, 2011).  

With the exception of the study of infection, the fields of neuroscience and microbiology are 

rarely studied together. Progress in the study of gut microbiota, however, and its influence on human 

health and disease has triggered an interest in the manner in which this community affects normal 

physiology. The skin and mucosal surfaces of most vertebrates contain a vast array of microbiota 

containing bacteria, fungi, parasites, and viruses. Specifically, more than 100 trillion bacteria reside in the 

human GIT. This number is remarkably 10-100 times more than the quantity of eukaryotic cells in our 

bodies (Morgan & Huttenhower, 2012). Colonization of gut microbiota begins at birth and is established 

by the first three years of life resulting in a mutualistic symbiosis between host and microorganism. Gut 

microbiota contribute to a variety of important developmental and homeostatic processes in adult life. For 

example, gut microbes play a key role in metabolic function by breaking down complex polysaccharides 

in the diet, regulation of gut motility, GI barrier homeostasis, and fat distribution. Although the variety of 

individual microorganisms varies widely between individuals, it has been suggested they all fall into three 

separate enterotypes, each described by a single genus; Bacteroides, Prevotella, and Ruminococcus.  

The influence on gut-brain communication, brain function, and behavior is bidirectional and 

essential for maintaining homeostasis (Grenham et al., 2011). Moreover, the gut microbiome can 

influence brain function and behavior directly via production of metabolites essential for cognitive 

function (i.e., memory and attention; Manderino et al., 2017; Mayer, Knight, Mazmanian, Cryan, & 

Tillisch, 2014), immune activation (e.g., inflammation; Bajaj et al., 2012; Biagi et al., 2010; Grenham et 

al., 2011; McHardy et al., 2013; Noble et al., 2017), and microbial neuro-metabolites (Cryan & Dinan, 

2012; Dinan et al., 2015; Moloney, Desbonnet, Clarke, Dinan, & Cryan, 2014; Vernocchi, Del Chierico, 

& Putignani, 2016). There are multiple ways the gut microbiome can influence CNS function. One aspect 

that has amassed a convincing number of confirmatory results is the role of the vagus nerve. Vagus-

dependent pathways have been shown to be involved in microbiota-brain communication, with vagotomy 
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preventing microbiota-modulated changes in behavior (Leung & Thuret, 2015b). With both efferent and 

afferent divisions, the vagus nerve plays a fundamental role in enabling signals in both directions. 

Activiation of the vagus nerve is also known to have marked anti-inflammatory capacity, which is 

protective against microbial-induced sepsis (Dinan et al., 2015). Potentially one of the most important 

examples of neurotransmitter control by the microbiome is the relation between levels of the probiotic 

bacterium Bifidobacterium infantis and altered levels of metabolized tryptophan into serotonin (Grenham 

et al., 2011; O'Mahony, Clarke, Borre, Dinan, & Cryan, 2015). Furthermore, indirect effects of the gut 

microbiota on the innate immune system can result in alterations in behavior due to changes in circulating 

levels of pro- and anti-inflammatory cytokines that directly affect brain function in areas such as the 

hypothalamus – where corticotrophin releasing hormone, the dominant regulator of the HPA axis, is 

released. Brain derived neurotrophic factor (BDNF) plays a pivotal role in supporting the survival of 

existing neurons, and encourages the growth of new neurons and synapse formation. Studies in germ free 

animals have produced evidence that the lack of a few key microbes in the gut limits or completely stops 

the generation of BDNF, resulting in significant reductions in activity observed in the dentate gyrus of the 

hippocampus and related behavioral disfunction. 

The emerging hypotheses about the gut microbiome and its relation to the brain are crucial to 

understanding the effects of diet on cognitive function (Caracciolo et al., 2014; Leung & Thuret, 2015b; 

Noble et al., 2017).  Microbial diversity decreases with age, but there is stability in the total number of 

microbes (Biagi et al., 2010; Claesson et al., 2011). Scientists are beginning to build a body of research on 

the so-called "gut-microbiome-brain" axis. Through this axis, the gut microbiome affects behavior and 

modulates brain plasticity via mechanisms such as inflammation and altered blood flow (Faraco et al., 

2018; Santoro et al., 2014) and change in neurotransmitter availability (Bravo et al., 2011; Janik et al., 

2016). So-called “inflammaging,” or chronic low-grade inflammation, as well as specific inflammatory 

diseases like the metabolic syndrome, arthritis, and fibrosis, has been shown to have a strong relation to 

all forms of aging - particularly cognitive decline (Arfanakis et al., 2013; Bennett et al., 2015; Howcroft 

et al., 2013; Kohman & Rhodes, 2013; Misiak, Leszek, & Kiejna, 2012; Mu, Ogawa, & Kawada, 2010; 
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Noble et al., 2017; Santoro et al., 2014; X. Wang et al., 2010; Yaffe et al., 2004). I predict that this 

inflammation may be partially mediated by microbes in our gut and therefore, dysbiosis of the gut 

microbiome. 

Researchers exploring the gut-microbiome-brain axis provide evidence for the gut microbiome's 

modulation of brain function, which could contribute to changes in cognition during aging, but more 

investigation is required (Anderson et al., 2017; Caracciolo et al., 2014; Leung & Thuret, 2015a; Lim et 

al., 2015; Manderino et al., 2017). Pyrosequencing-based characterization of the human intestinal 

microbiome using 16s rRNA-based methods has provided evidence of altered bacterial composition in 

individuals experiencing cognitive decline compared to individuals with typical cognitive function (Bajaj 

et al., 2016; Bajaj et al., 2012; Rampelli et al., 2013), but those studies have been limited to 

institutionalized populations. Studies investigating cognitive function in healthy older adults are 

incredibly limited (Anderson et al., 2017; Manderino et al., 2017), and fail to use any of the cognitive 

neuroscience or developmental methods used in the current study. By adding to the growing evidence for 

the association with cognitive function and differences in microbiome diversity and composition, a study 

such as this one could provide evidence for the role of the gut microbiome in age-related cognitive 

decline. I hypothesized that individuals with poorer microbial diversity as measured by a calculated 

Shannon alpha diversity score would show poorer cognitive function as measured by behavioral 

(CANTAB) and electrophysiological (ERP) measures. 

Several metrics were considered for Specific Aim 4a of the present study to best classify the 

microbiome samples of the participants. The raw metrics of Richness (total number of identified genera) 

and their Relative Abundance was too variable across the sample (6,000 reads to 22,000 reads for 90 to 

240 genera), and unidentified genera could not be included in counts. One common solution for poorly 

understood and classified biomes is the use of diversity indices. A diversity index is a mathematical 

measure of species diversity in a community, and these metrics typically provide more information about 

community composition than simple Richness because they take the relative abundance of different 

species into account. The use of relative abundance provides important information about rarity and 
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commonness of a species in a community, which is essential when trying to understand a poorly 

understood community such as the microbiome of the healthy older adult gut. There are two types of 

diversity indices relevant to this study, alpha and beta diversity. Alpha and beta diversity indicate the 

number of species found in a particular community (e.g., an individual's gut) and the variation of the 

species composition between two communities (e.g., comparing two microbiome samples), respectively. 

Beta diversity accomplishes its comparison by taking into account the alpha diversity of the communities 

being compared and the number of unique species in each community. 

Shannon alpha diversity is one of the most common alpha diversity metrics in gut-microbiome 

research, and was selected as the alpha metric for Specific Aim 4. Shannon diversity accounts for both the 

abundance and evenness of the species present – the proportion of species relative to the total number of 

species is calculated, and then multiplied by the natural logarithm of this proportion before being summed 

across all species and multiplied by -1.  

Beta diversity calculation is more complicated and can be seen as the sum of two components: 

turnover and nestedness. Turnover is the difference between communities solely in relation to which 

species exist in each. Nestedness is how much the species composition of a site with a lower species 

richness is a subset of a site with higher species richness. Therefore, one could calculate and compare beta 

diversity values based on species presence/absence and/or relative abundance, which means using a 

measure of alpha diversity to calculate beta diversity. Some commonly used beta metrics used in 

microbiome analyses include Bray Curtis, Euclidean, and Unifrac (weighted (quantitative) or unweighted 

(qualitative)). Unifrac is unique in that it uses comparison to the phylogenetic tree, allowing it to factor in 

evolutionary distances to the results (Hamady & Knight, 2009). A weighted unifrac highlights diversity 

differences due to changes in relative taxon abundance (e.g., a set of taxa flourish because a limiting 

nutrient source becomes abundant), whereas an unweighted unifrac is only informative when 

communities differ primarily by what can live in them (e.g., high temperatures), in part because 

abundance information can obscure significant patterns of variation (Lozupone et al., 2007).  
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Screening & Behavioral Testing 

Now that some of the factors known to impact cognitive aging have been discussed, it is vital to 

understand in more detail how age-related cognitive decline is tested. Fluid cognitive abilities (i.e., 

memory, attention, and cognitive speed) can be tested alongside crystalized abilities (i.e., language, 

general knowledge, reading) in cognitive tests to evaluate the cognitive fitness of an individual. In 

cognitive aging, particularly in cases of decline with dementia, crystallized as well as fluid abilities can be 

influenced. Targeted assessments can serve as quick screening tools to determine the cognitive state of 

older adults and serve as an inexpensive way to determine if additional evaluation is necessary. However, 

certain considerations should be taken in to account when selecting a test, such as which test is most 

appropriate to use and the procedure for testing. A balance must be struck between a test that is brief 

enough to be done quickly and efficiently to minimize burden on participants and a test that is detailed 

enough to evaluate relevant domains of cognitive function effectively to provide an in-depth assessment 

of an individual's strengths and weaknesses. Ease of administration, scoring, and test-taking time are 

important aspects in the choice of cognitive tests, as is the sensitivity and specificity of the test. An 

additional consideration when serial assessments are required is whether practice effects bias the 

performance. 

The following descriptions and proposed testing practices have been adapted from the APA 

Working Group on Older Adults and its evaluation by Mahendran and colleagues (Mahendran, Chua, 

Feng, Kua, & Preedy, 2015; "What practitioners should know about working with older adults," 1998). It 

is important to note, though, that there is a great deal of inter-individual difference in age-related 

cognitive decline as well as intra-individual variability in the extent of decline across domains.  Physical 

health, disease, current life events, diet, nutrition, and the individual’s premorbid cognitive function all 

play vital roles in the individuals’ testing outcomes (Mahendran et al., 2015). These factors can vary by 

day, and even hour or minute, depending on the factor. These points are particularly important for 

clinicians whose goal is to efficiently and effectively diagnose patients who are experiencing decline. The 

development of clinical cognitive assessments that combine tests of multiple domains, such as MMSE, 
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MoCA, WAIS-IV, and CANTAB might be the answer for clinicians as long as they maintain a grounding 

in the primary literature.  

However, this is only true if the clinician or researcher controls/tests for the additional, non-

domain-specific factors that may be at play (Mahendran et al., 2015). To diminish these confounds and 

improve validity and reliability of these tests, the clinician or researcher should limit stress on the 

individual, use only tests designed for older adults, be certain the individual is in no pain or distress, and 

make sure testing time and duration is suitable for optimal cognitive functioning in older adults (de Jager 

et al., 2014; Mahendran et al., 2015). The researcher can use questionnaires to identify outside stress, 

anxiety, and depression in the individual's life, as well as get information about when and what they eat 

and the amount of exercise they get daily. In the testing environment, the researcher should be sure to 

familiarize the individual with the environment, ensure adequate lighting and comfortable temperature, 

and make certain the participant understands the instructions (Mahendran et al., 2015). 

MMSE, MoCA, and WAIS 

The two most common assessments used with older adults are the Mini-Mental State 

Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). The MMSE consists of 30 items 

that cover verbal function, memory abilities, and construction (Mahendran et al., 2015). Because the 

MMSE screens crystallized abilities, its utility in detecting early or mild cognitive changes in healthy 

adults is limited and when compared to other screening methods scores the lowest at sensitivity to MCD 

with a ceiling effect observed in healthy populations. The MoCA is a well-validated and reliable 

screening tool for detecting age-related changes in cognition as well as detecting other cognitive 

dysfunctions (Mahendran et al., 2015; Nasreddine et al., 2005; T. Smith et al., 2007). The cognitive 

functions tested are attention and working memory, short-term recall, visuospatial abilities, language, and 

executive control, such as divided attention, and semantic fluency and abstraction. The MoCA is superior 

to other screening tests of cognitive decline in detecting MCI and early AD (Nasreddine et al., 2005). 

When compared to the other most common screening tool for cognitive decline - MMSE - the sensitivity 

and specificity of MoCA to detect MCI were 90% and 87% compared to 18% and 100% using the MMSE 
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(Nasreddine et al., 2005), respectively. The sensitivity of the MoCA is vital to the study for 

characterization of the study population.  

The Weschler Adult Intelligence Scale (WAIS-IV) is one of the most commonly used tests in 

clinical practice (Archer, Buffington-Vollum, Stredny, & Handel, 2010). The WAIS-IV is an excellent 

predictor of several measures due to its sensitivity to the neuropsychological deficit (Lezak, Howieson, & 

Loring, 2004). Additionally, the test provides the individual with strengths and weaknesses that could be 

used for treatment planning or intervention. WAIS-IV assesses multiple areas of intellectual ability, 

which provides the researcher or clinician with an overall IQ score as well as the specific index scores. 

WAIS-IV is comprised of 10 core subtests and five supplemental subtests that span four indices. Those 

indices are verbal comprehension, perceptual reasoning, working memory, and processing speed 

(Wechsler, 2014).  

CANTAB 

As the study of age-related cognitive decline evolves and matures, it is crucial that there are 

reliable, valid, and sensitive measures developed to identify and track the development of decline. 

Behavioral tests that can act as proxies for the underlying processes identified by expensive and time-

consuming brain imaging techniques will be an essential step in improving health outcomes in an aging 

population. These tests should assess how the individual responds to everyday challenges and should 

discriminate between different states with the sensitivity to parse intra- and inter-individual differences 

(de Jager et al., 2014). 

The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a computer interface 

for assessing cognitive function. The use of semi-automated computer interfaces for assessment of 

cognitive function has gained traction in both clinical and research settings in the last decade. Because 

they can be run individually or within a customizable battery, they have great appeal for researchers and 

clinicians in several areas of cognitive science and the study of various populations. High levels of 

adoption are likely due to the numerous logistical advantages when compared to the traditional testing 

practices. Scoring is automated; raw scores can be compared to normative data; and you can assess 
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multiple cognitive domains within one automated program. Also, due to the computerized nature of these 

batteries, score reports and data can be efficiently and accurately produced and entered into study 

databases (Schatz & Browndyke, 2002). A recent review of computerized cognitive testing for older 

adults concluded that large numbers of available batteries and an ease of use could be beneficial to 

researchers and clinicians. However, selection of the correct battery for each application is imperative 

(Zygouris & Tsolaki, 2015) 

The CANTAB has also been shown to discriminate between typical adults and various other 

clinical populations, including those with MCI and AD (Egerhazi, Berecz, Bartok, & Degrell, 2007). 

Studies in these populations are still limited. Lack of measurement validity in healthy adults makes it 

challenging to make predictions and track the potential cognitive decline in healthy aging. The good news 

is that many researchers are beginning to show CANTAB's validity in the last few years, with 

undoubtedly more to come (Egerhazi et al., 2007; Lenehan, Summers, Saunders, Summers, & Vickers, 

2015; P. J. Smith, Need, Cirulli, Chiba-Falek, & Attix, 2013). Currently, CANTAB has a set array of tests 

and specific battery for cognitive decline, and an abbreviated version of this battery was utilized in the 

present study. 

The CANTAB has been successfully validated against traditional neuropsychological tests (P. J. 

Smith et al., 2013). Of the computerized testing batteries, the CANTAB is probably the most widely 

utilized, with a mention in over 1,300 peer-reviewed article or book chapters as of 2015 (Lenehan et al., 

2015). As such, it has been shown to have adequate discrimination abilities, successfully showing 

differentiation within healthy, typically-aging, adult samples; normative samples (De Luca et al., 2003); 

and clinical populations of mild cognitive impairment and AD (Egerhazi et al., 2007). A lack of studies to 

measure healthy young and older adults have limited the ability for researchers to use the CANTAB to 

make predictions and track the potential cognitive decline in healthy aging. However, researchers have 

taken up the task of improving the validity of the CANTAB to predict future decline and differentiate 

between the different domains of cognitive function (Egerhazi et al., 2007; Lenehan et al., 2015; P. J. 

Smith et al., 2013). Furthermore, researchers have used the CANTAB in conjunction with brain imaging 
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techniques, to begin to understand the structure-to-function relation of the CANTAB outcomes 

(Chamberlain et al., 2011; Egerhazi et al., 2007), and have successfully shown relations to spatial 

cognitive function (e.g. WM and DLPFC), but the understanding of the relation to temporal measures 

(ERP) remains limited.  

Imaging 

Electroencephalography (EEG) is a recording of electrical signals given off by cortical neurons in 

the brain, resulting in the output of brain "waves" or "waveforms" used to analyze brain function.  When 

an EEG is time-locked to a stimulus and averaged across multiple trials, an event-related potential (ERP) 

is produced. The ERP is made up of several components or waves  (e.g., N200, P300, and slow wave 

(SW); Bressler & Ding, 2006; Sur & Sinha, 2009). The study of ERPs has shown promise for use in 

diagnosis of age-related cognitive decline (Bamidis et al., 2014; Bennys, Rondouin, Benattar, Gabelle, & 

Touchon, 2011; Dustman, Shearer, & Emmerson, 1993; Jackson & Snyder, 2008; Papaliagkas, 

Kimiskidis, Tsolaki, & Anogianakis, 2008; Vallesi, 2011). Most researchers center their work on 

identification or diagnosis of cognitive decline, MCI, and AD, but do not track or attempt to predict age-

related decline.  

Researchers are exploring the potential for ERP measures to predict and track decline using the 

N200 and P300 components (Duncan et al., 2009; Papaliagkas, Kimiskidis, Tsolaki, & Anogianakis, 

2011; Polich, 2007), but these studies may be confounded in that they rely on auditory paradigms. I 

suggest that loss of hearing with age could confound the evidence reported in these studies. Less recent 

ERP studies have utilized visual paradigms, but were not designed to differentiate types of decline; lack 

the benefit of current definitions and theories in the field; and rely on equipment that produce less 

specificity (Friedman, 2000; Kugler et al., 1993; Polich, 1996; Schroeder et al., 1995). Only three out of 

thirteen studies in a meta-analysis of recent studies of P300 and cognitive decline by Jiang et al. (2015) 

used any form of a visual stimulus (Parra, Ascencio, Urquina, Manes, & Ibanez, 2012; P. Wang et al., 

2013).  
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 The P300 waveform refers to the positive peak of the waveform occurring 250-400 msec after an 

auditory stimulus but as late as 700 msec after a visual stimulus (Sur & Sinha, 2009). The P300 waveform 

is clinically useful as an index of cognitive function because it involves functions originating in 

widespread brain regions, including temporal and parietal lobes (Papaliagkas et al., 2011). When elicited 

in the oddball paradigm, the P300 latency (time to peak processing) has been shown to increase with 

normal aging while amplitude (the difference between the pre-stimulus baseline voltage and the largest 

peak) decreases (Dustman et al., 1993; Golob, Irimajiri, & Starr, 2007). Along with increased latency, the 

P300 amplitude is reduced in MCI and AD patients compared to healthy controls (Bennys et al., 2011; 

Brannon, Libertus, Meck, & Woldorff, 2008; Lai, Lin, Liou, & Liu, 2010; Papaliagkas et al., 2008; 

Papaliagkas et al., 2011). 

 The most common task used to elicit the P300 is the oddball task. In this task, a participant is 

instructed to attend to a string of stimuli, either auditory or visual, occurring one at a time. In the study, I 

used visual oddball tasks, in which familiar and novel pictures are presented. Depending on the age group 

and goals of the study, the length, number, and ratio of novel/familiar varies (Polich, 2007). The 

participant is instructed to either merely observe (passive) or instructed to press a button when the novel 

stimulus appears on the screen (active). The utility of the passive oddball task is the removal of the button 

pressing confound, meaning the only brain activity observed should be the activity of processing novel vs. 

familiar pictures. Conversely, an active oddball paradigm allows for examining the ability to perform a 

detection task, an activity shown to be affected by age and related to prefrontal activation (Kirino et al., 

2000; Kutas, Iragui, & Hillyard, 1994; O'Connell et al., 2012). In the study, I compared an ERP detection 

task with cognitive behavioral detection tasks from CANTAB. 

To my knowledge, no researchers have used a passive visual oddball ERP paradigm to study 

cognitive decline. In the study, I investigated if visual oddball paradigms will show similar identification 

and predictive qualities as auditory paradigms. I have generated evidence of the utility of the visual 

oddball paradigm in studying age-related cognitive decline. The use of passive and active tasks will 

facilitate the identification of changes in processing speed and cortical activation. 
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Conclusions 

 It is important to the prediction and treatment of age-related cognitive decline that knowledge of 

the factors that contribute to decline are paired with and assessed by behavioral and biological predictors 

of cognitive aging. The study was designed to elucidate evidential and predictive neuropsychological and 

behavioral indicators of cognitive decline while examining potential biological influences, such as the gut 

microbiome. The goal was accomplished by utilizing electrophysiological, behavioral, and biological data 

collected from an existing cohort of older adults. I extended the findings of a 6-month intervention study 

by reevaluating the cohort cross-sectionally at 6, 18, and 30 months after the final appointment. 

Specific Aims 

The specific aims of the present study were: 

Specific Aim 1: To validate electrophysiological measures against behavioral cognitive measures of 

cognitive decline. I will collect data from 66- to 82-year olds at 6, 18, or 30 months after the final 

assessment from the parent study. I will then determine the relation between behavioral performance on 

the CANTAB and electrophysiological measures on two ERP tasks. I will enter the data into a regression 

analysis. I hypothesize that a significant relation will exist between ERP measures of latency and 

amplitude during active and passive oddball paradigms and working memory, reaction time, and 

inhibitory control tests in the CANTAB.   

Specific Aim 2: To determine the relation between baseline characteristics (MoCA and known 

aging resiliency factors) and cognitive outcomes (ERP and CANTAB) across time. 

Specific Aim 2a: To determine the relation between baseline MoCA and task-based ERP 

outcomes. I will determine if performance on the electrophysiological paradigms are predicted by 

baseline MoCA score. To accomplish this, electrophysiological measures will be regressed on to 

MoCA score. Time since baseline and changes in mental health and lifestyle will be included as 

covariates. I hypothesize that lower scores on the MoCA will relate to longer latencies to respond 

and to peak amplitude on correct trials on the active oddball task, and less differentiation between 

a novel and familiar stimuli in the passive oddball task.  



 

 32 

Specific Aim 2b: To determine the relation between baseline MoCA score and behavioral 

task performance on CANTAB. I will determine if outcomes of the RTI, SWM, and RVP tasks 

of CANTAB are predicted by MoCA score at baseline. Again, I will determine these differences 

using regression analysis where CANTAB measures will be regressed on to MoCA score. Time 

since baseline and changes in mental health and lifestyle will be included as covariates. I 

hypothesize that lower MoCA score will relate to poorer performance on CANTAB tasks of 

SWM, RTI, and RVP. 

Specific Aim 3: To identify behavioral and brain activity measures that predict cognitive decline. I 

will examine the relation between performance on behavioral and electrophysiological tasks at baseline 

and after 6, 18, or 30 months from the final appointment to determine if performance at baseline predicts 

performance at follow-up. I will regress follow-up outcomes on baseline outcomes, controlling for 

baseline MoCA score. Time since baseline and changes in mental health and lifestyle will be included as 

covariates. I hypothesize that ERP and CANTAB outcomes at baseline will successfully predict 

performance on those same tasks, where individuals initially showing poorer performance (classified as 

MCD at baseline) will continue showing poorer performance at follow-up. 

Specific Aim 4: To explore microbiome factors that may influence brain activity and may be related 

to the progression of cognitive decline. I will collect microbiome specimens from participants returning 

at follow-up. I will then examine the relation between microbiome diversity and measures of brain 

activity, working memory, and reaction time. I expect that microbiome diversity will predict brain activity 

outcomes. 

Specific Aim 4a: To determine measures of microbiome diversity and composition. I will use 

the outcomes of 16s rRNA sequencing of the microbiome from the participants of the follow-up 

to determine the appropriate outcome variable(s) of the microbiome to use in answering specific 

aim 4b. After sequencing, the genera constituting the microbiome will be identified. The selection 

of the appropriate variable(s) for specific aim 4b will depend on the overall composition of the 

study sample. Based on the number and types of genera present in my study population, potential 
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variables will be identified, such as total number of species, number of known symbiotic species, 

or number of identified unique species. Additionally, individual genera that may impact cognitive 

function will be identified based on the compositions of the study sample and investigation of the 

literature at the time of analysis.   

Specific Aim 4b: To determine whether microbiome diversity relates to brain activity. I will 

use multiple regression to determine if microbiome composition relates to latency and amplitude 

in the cortex during the two oddball ERP paradigms and identify additional covariates of 

microbiome composition, such as diet and pharmaceutical use, to include in analyses. I 

hypothesize that individuals with a lower score on the microbiome diversity measure identified in 

specific aim 4a will have increased latency on both tasks and show less differentiation in 

amplitude between the novel and familiar pictures on the oddball task. Furthermore, I hypothesize 

that there will be a linear relation between the decline in the microbiome measure and decreased 

brain activity. Additionally, regression analysis will be used to determine if microbiome 

composition relates to decline from baseline to follow-up appointments. I hypothesize that lower 

diversity measures will relate most strongly with individuals with more significant decline. 

Finally, I hypothesize that several genera will be identified within the study population that relate 

to brain activity measures and group classification and that some, if not all, of these relations will 

be supported by recently published literature or can be supported by the rich dataset of this study 

population.  

Specific Aim 4c: To determine if microbiome composition relates to decline across time. I 

will utilize multiple regression to determine if microbiome composition relates to decline from 

baseline to follow-up appointments. The relation will be assessed for MoCA score, CANTAB 

outcomes, and ERP outcomes. Chosen microbiome composition variable(s), change in MoCA 

score, from time 1 to time 2, age, education, IQ, and Time will be entered in to the model to 

predict cognitive outcomes while controlling for baseline MoCA score.
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CHAPTER 2: METHODS 

The Study Sample 

Baseline 

In the parent study (baseline), participants were enrolled in a 6-month randomized controlled trial 

of the effects of blueberry consumption on MCD in older adults 65 to 79 years old. Potential participants 

were screened for MCD and were invited to enroll if they were healthy and were beginning to experience 

MCD (but not dementia) or experiencing no cognitive decline as measured by the MoCA. Inclusion 

criteria were consumption of less than 5 daily servings of fruits and vegetables; no diagnosis of dementia, 

AD, central nervous system disorders, psychiatric disorders, gastrointestinal or digestive problems, or 

diabetes; body mass index (BMI) less than 35; not taking medications known to enhance cognition, to 

produce cognitive side effects, or to restrict cerebral blood flow); and right-handed. Informed consent was 

obtained from all subjects, and the study remains approved by the IRB for follow-up. A total of 133 

participants were enrolled, with eighty-eight (n=88) individuals being classified as experiencing cognitive 

decline (MCD) and forty-five (n = 45) classified as no decline. The baseline data from the parent study 

were used as the baseline in the proposed study. In the parent study, a number of cognitive and behavioral 

tests were performed as well as diet recalls and self-report questionnaires for potential covariates. All 

participants also underwent vision screening to rule out visual impairments. 

Follow-Up 

For the current study, I contacted all participants (N = 133) via phone call and invited them back 

to the Cheatham Nutrition & Cognition Lab at the UNC-CH Nutrition Research Institute (NRI) to 

participate in a follow-up study that took place 6, 18, or 30 months after the final appointment of the 

parent study (baseline measurement), over two-thirds (n = 92) returned for the follow-up. See Table 1 for 

characteristics of the cohort. Participants were compensated for their time and travel expenses at the same
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rate as the initial study. I screened for all initial inclusion criteria and repeated all tests (described below) 

from the baseline appointment including diet recall and covariate questionnaires. Table 2 outlines all 

assessments performed at each session and the number of individuals performing each assessment at each 

session. A power analysis using G*Power 3.1 (Faul, Erdfelder, Buchner, & Lang, 2009) based on similar 

studies indicated that in the analyses planned to answer SAs 1, 2, 3, and 4 to achieve a power of at least 

90% (Cohen, 1977), using a moderate effect size of f 2 = 0.3, I needed to bring back at least 80 

individuals.  Since the proposal of this study, and the resulting data collection and analysis, I chose to add 

additional statistical tests to the original design in order to better address my specific aims. Each statistical 

approach is described below by specific aim. 

Screening/group assignment  

 The participants were originally grouped using the MoCA. The MoCA consists of eight sections 

to test recall memory, executive function, attention, orientation, abstraction, visuospatial skills, and 

naming. Each section is weighted and scored according to the guidelines established by Nasreddine et al. 

(2005). Cognitive decline group status was determined as a score less than 26 out of 30 on the MoCA 

(Nasreddine et al., 2005; T. Smith et al., 2007). The same researcher scored all MoCAs, and 25% were 

reassessed by a second researcher. Reliability in this sample reached 92.6%. Participants were screened 

and divided into groups at baseline in the parent study based on their MoCA score. MoCA was used again 

at the follow-up to assess participants, and I have used parent study group membership as a covariate in 

analyses where appropriate to control for the potential confound in trajectories caused by the berries. 

Methods 

Diet Recalls  

The NDSR 24-hour dietary record procedure was used to obtain three days of dietary intake. 

Participants were instructed to choose three days in the same week leading up to their appointment to 

record their diet for 24 hours in a diet journal. The diet journal was then brought to the session and 

reviewed with a researcher using the 4-pass methodology. Twenty-four hour diet recalls are considered 

the most valid mechanism for determining a person’s diet (Baranowski, 2013; Thompson et al., 2002). 
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Diet recalls were conducted using the 4-pass methodology described below. Data collection was guided 

by and entered into the Nutrition Data System for Research (NDSR). 

First pass - Quick list: The interviewer entered the data from the participants diary while the 

participant completed several of the paper-based assessments. Then, the interviewer did an initial 

walk-through of the information. “We’ll be talking about what you ate or drank on XX. After you 

got up on XX morning, what was the first time you had something to eat or drink? What did you 

eat or drink at that time? Did you eat or drink anything else at that time? What was the next time 

on XX that you had something to eat or drink? What did you eat or drink. . .?” The interviewer 

repeated this process to cover XX’s intake in chronological order. Then, the participant was asked 

“Can you remember any other times on XX that you had something to eat or drink?” 

Second pass - Review: The interviewer repeated back everything the participant reported at each 

time, and asked “Can you think of anything else you ate at that time?” and “Can you think of 

anything else you drank at that time?” (The interviewer repeated this process for XX’s intake in 

chronological order.) Due to the access to the diary, this step was often unnecessary, but if many 

things had been added to the recall list that had not been recorded, the interviewer completed 

these steps before moving to the third pass. 

Third pass - Details: The interviewer asked the interviewer to name each eating occasion 

(response options: work breakfast, breakfast, work lunch, lunch, dinner, supper, snack), identify 

the location of each meal (response options: home, school, somewhere else), provide details about 

each item, indicate additions to items, and indicate amounts consumed for each item. The 

interviewer began with the earliest time on XX morning and continued in chronological order to 

cover XX’s intake. 

Fourth pass - Final review: Each eating occasion was reviewed with the participant for 

correctness. The interviewer began with the earliest time the first morning and repeated this 

process in chronological order to cover intake. Then, the participant was asked one final time 

“Can you remember any other times that you had something to eat or drink on XX?” 
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ERP acquisition  

 In a protocol consisting of three tests, EEG was recorded from each participant and from 

recordings, ERPs were extracted. For recording, the participant was fitted with a 128-sensor geodesic net 

(GSN; Philips Neuro, Inc., Eugene, OR, USA). Measurements of the participant's head were obtained to 

ensure proper net size, and correct placement of the landmark sensors.  Application of the net required 

approximately 10 minutes and is well tolerated by the participants.  Impedances were checked and 

corrected, if necessary, to below 50 kΩ.  The participant was then seated 45 cm from a monitor in the 

testing room (separate from the acquisition room) while stimuli were presented by E-Prime 2.0 software 

(Psychology Software Tools, Inc, Sharpsburg, PA, USA). Data were digitized, referenced to a single point 

at the vertex, and stored by NetStation software (Philips Neuro, Inc., Eugene, OR, USA). The NetStation 

system utilizes a digital clock to time-lock the E-prime presentation of the stimuli to the NetStation EEG 

recording. 

   For all tests, stimuli were displayed on a computer in the testing room, and pictures are displayed 

on a black background. In the first test (reaction time), the participant was instructed to respond with a 

button press: 1 for a red car and 2 for a blue car. Reaction times were displayed on the screen between 

stimulus presentations. For the second test (active detection), participants were instructed to respond 

accordingly to a series of Xs and Os that appeared on the screen by pressing a key for an X, and not 

pressing a key for an O. The active response (X) occurred in 20% of trials, whereas the inhibited response 

(O) occurred in the other 80% of trials. I utilized this task as a detection task. Finally, on the third test 

(passive visual oddball), the participant was instructed to observe pictures that occurred on the screen. 

After an habituation period of 10 presentations of the familiar picture, the participant viewed 120 pictures 

randomly ordered by E-Prime consisting of the familiar (40), a frequent-novel (40), or a trial-unique (40) 

image. In the study, I utilized the active detection and oddball tasks for examination of SAs 1, 2, 3, and 4. 

The reaction time test was tested for its appropriateness as a covariate and was found to not be necessary. 

ERP waveforms were visually assessed for anomalies, after being subjected to lowpass (30 Hz) 

and highpass (0.3 Hz) filtering and segmented into individual segments corresponding to stimulus 
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presentation and trial length. Bad channels were detected by the software using moving averages and a 

threshold of 250 µV. Segments that included more than 12 (>10%) bad channels were rejected. After 

completion of the visual inspection, individual channels were replaced as necessary using spherical spline 

interpolation. Data were then baseline corrected using the mean voltage during the 100 ms that precede 

the stimulus presentation. Finally, trials were averaged within the condition (i.e., novel, novel unique, and 

familiar; Target and Standard). The resulting file was visually examined, and negative and positive 

deflection windows of interest were chosen. Windows for active detection were 50-190 ms and 100-800 

ms, respectively. Windows for passive oddball were 210-350 ms and 350-900 ms, respectively. After 

visual inspection of the continuous data (and review of the relevant literature), sensor clusters of interest 

were chosen, and data were averaged across those clusters. See Appendix A for sensor clusters on the 

EGI 128-sensor net. Then, clusters were individually assessed for mean amplitude, peak amplitude, and 

latency to peak amplitude within the determined segment window for each deflection (positive or 

negative) for both tasks. In the current study, windows and sensor clusters were consistent with the parent 

study. Visual representations of these windows in the grand averaged waveform data for the passive 

oddball and detection tasks are displayed in Figures 1 & 2, respectively. Finally, in order to compare 

ERP variables across time, as well as to explore additional ways to evaluate the study sample, the 

averaged-referenced and baseline corrected files were entered into MatLab, and using EEGLab, Fieldtrip, 

and ERPToolkit base program code was written to perform temporospatial principle components analysis 

(PCA) on each test at each timepoint to produce unique factors for analysis (Barry, 2014; Dien, 2012). 

The process of the two-step PCA is outlined in greater detail in the results section.  

CANTAB  

The CANTAB system consists of standardized measures of cognitive function that have been 

computerized on a touch-screen instrument that automatically stores data as the participants complete the 

test battery. The CANTAB offers several benefits, as many tests can be done on one platform. Language 

ability does not skew results and requires minimal reading and direction. The tests chosen for this study 
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were determined by Cambridge Cognition as the recommended battery (Egerhazi et al., 2007; Lenehan et 

al., 2015). All participants completed the tasks below in the same order. 

Motor Task (MOT): Motor Task is a baseline test of motor function to ensure the participant can 
correctly press the screen and participate in the study. Thus, outcome measures from this task are 
not used in analyses. The participant will see a series of flashing Xs on the screen that they must 
touch. 
 
Reaction Time (RTI): The Reaction Time task (RTI) is a measure of reaction time, movement 
time, and response accuracy for a condition in which the stimulus is predictable (simple reaction 
time) and for a condition in which the stimulus is unpredictable (5-choice reaction time). It 
familiarizes the participant with the press-pad and provides simple and choice reaction and 
movement times. The participant will first hold down a button on the press pad. A yellow dot 
appears inside a circle. The participant releases the button as quickly as possible and touches the 
spot where the yellow dot appeared. The second section will show five circles on the screen, and 
the yellow dot could appear in any of them. The participant will again release the button as 
quickly as possible and press the spot where the yellow dot appears. 
 
Spatial Working Memory (SWM): Spatial Working Memory is a working memory and planning 
task that incorporates heuristic strategy. The participant will see boxes on the screen – each of 
which contains a blue token. The objective is to find the blue tokens in the correct order. The 
participant must remember which boxes have already been searched, and identify those 
containing a blue token. The test starts with four boxes and increases to eight boxes. 
 
Paired Associates Learning (PAL): Paired Associates Learning is a memory task requiring 
participants to identify where they have seen patterns on the screen. The participant was first 
shown a screen with 6 boxes. The boxes revealed patterns in random order. Participants had to 
remember the location of each pattern, and the number of patterns to remember increased from 2 
to 8 with each successful trial. 
 
Rapid Visual Information Processing: Rapid Visual Information Processing (RVP) measures the 
ability to sustain attention over a period of time, which requires both working memory and 
selective attention, and is a sensitive measure of frontal-parietal function. A white box appears in 
the center of the screen, and single digits appear inside the box in pseudo-random order.  
Participants are instructed to watch the digits change and press the button when a 3-digit target 
sequence appears. The task is presented in two parts. The practice involves one 3-digit target 
sequence. The test stage involves three 3-digit sequences. Increases in latency to respond to the 
target sequences and the participant’s ability to successfully identify the target have been 
negatively correlated with cognitive function (Chamberlain et al., 2011). 
 

Microbiome samples  

After they consented to provide fecal samples following cognitive testing, participants were 

provided a fecal specimen collection kit and instructions for collection at home. The kit included all 

necessary items for home collection of fecal samples and provided four individual samples from the same 

stool for analysis. The kit included a shipping container and a prepaid shipping label to be mailed back to 
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The Cheatham Nutrition & Cognition Lab where the sample was processed for storage and later DNA 

extraction. A survey (Appendix B), to be filled out at the time of collection, was also included with the 

kit. The survey asks participants about any recent antibiotic use as well as other health and lifestyle 

factors that could influence their sample. Alternatively, the participant could also drop off the samples in 

person during operating hours at the NRI. Once all samples were collected, DNA was isolated and sent to 

the Human Microbiome Core at UNC-Chapel Hill for library preparation. 

Processing of 16S rRNA sequence data was completed with BiolockJ, a bioinformatics pipeline 

frame work for metagenomics analysis written in the department of bioinformatics at UNC Charlotte by 

Michael Sioda (Sioda, 2018; https://github.com/msioda/BioLockJ). Paired-end sequences were merged 

with Paired-End read merger (PEAR, v 0.9.10) (J. Zhang, Kobert, Flouri, & Stamatakis, 2014) using 

default arguments, excluding sequences for which primers do not match or for which ten base pairs do not 

overlap.   

In the initial analysis performed prior to the pipeline output, the taxonomic assignment was 

performed with the Ribosomal Database Project (RDP) Classifier v2.12 (confidence threshold=80%) (Q. 

Wang, Garrity, Tiedje, & Cole, 2007). In secondary analysis, sequences were processed through QIIME 

v1.9.1 (Quantitative Insights Into Microbial Ecology;Caporaso et al., 2010), where BioLockJ multiplexed 

the pEAR merged reads as QIIME input, UCLUST for deriving Operational Taxonomic Units (OTUs) by 

clustering sequences at 97% similarity (Edgar, 2010), and open-reference assignment of OTUs using the 

Silva (132 release) reference database (Quast et al., 2013). In the pipeline, BioLockJ was directed to run 

the QIIME alpha_diversity script to calculate the Shannon Alpha diversity metric (Peet, 1974). Beta-

diversity was assessed with Principal Coordinates Analysis (PCoA), using Bray-Curtis dissimilarity 

matrixes of microbial-abundance-based distances (Faith, Minchin, & Belbin, 1987). For taxonomy-

specific analysis, we excluded operational taxonomic units (OTUs) that are present in <25% of 

participants, and transform raw taxonomic counts as log10[(RC/n)(x/N)+1], where RC is the total raw 

taxon count for a participant and n is the total count across all taxa for a participant, x is the total across 

all OTUs and participants and N is the total number of participants (McCafferty et al., 2013).  We 
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conducted multivariable-adjusted regression models for the diversity measure of microbial community 

composition concerning measures of cognitive function. Regression analysis of individual genera 

controlled for multiple comparisons using the Benjamini-Hochberg method for false discovery rate (FDR) 

(Benjamini & Hochberg, 1995).  
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CHAPTER 3: RESULTS 

Data Reduction and Analyses 

 All data were inspected for assumptions of the general linear model, including normal 

distribution, linearity, and homoscedasticity of residuals. All regressions included collinearity diagnostics 

– tolerance, Variance Inflation Factor (VIF), and Condition Index (Belsley, Kuh, & Welsch, 1980; 

Menard, 1995; Snee & Marquardt, 1984). A VIF >10, and sometimes more conservatively >5, has been 

considered to be an unacceptably high level of collinearity, which would place the interpretation of results 

in question. Belsley et al. (1980) suggest, however, a condition index (>30 tolerance) is a more 

appropriate measure because even low correlations among each independent variable can add up to high 

collinearity in the full model. Moreover, these rules should be interpreted in the context of other factors 

that influence the stability of the regression coefficient (O’Brien, 2007). Due to the large number of ERP 

variables entered into the regressions in all four specific aims, and the assumed cross-correlations (and 

likely collinearity) between the sensor clusters in the ERP outcomes, I report Condition Index (CI) 

measures for all models. I had neither a VIF above 6 nor CI above 30 in my analyses, indicating the 

results meet moderate to conservative levels of control. The Greenhouse-Geisser adjustment was used 

where relevant for ERP data. Age, Gender, Education, Current Occupation, Marital Status, Patient Health 

Questionnaire Score, Body Mass Index, Healthy Eating Index, MoCA, GAD, Stressful Life Events, 

PASE, and Time Since Baseline were tested as potential covariates before each set of analyses by 

regressing the outcome variables onto each potential covariate in turn. Relevant covariates are described 

for each model for each specific aim below. Statistical analyses were conducted with SPSS (IBM Corp. 

Released 2017. IBM SPSS Statistics for Macintosh, Version 26.0) except for the principal components 

analyses (PCA), which was conducted with Matlab (version 9.6.0 (R2019a). Natick, Massachusetts: The 
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MathWorks Inc.) and the ERP PCA Toolkit (Dien, 2012). A detailed description of PCA analyses is 

included in the results for Specific Aim 3. 

Before beginning the study, several variables of a priori interest were selected for CANTAB and 

ERP.  CANTAB variables of interest were selected by, first, choosing those variables that quantify speed 

of processing, planning time, and working memory function. After data collection, the variables were 

evaluated with bivariate correlations to determine a single variable that best represented all measures for a 

given test based on which variable within each test was most related to all others. The three chosen 

variables were, RTI five-choice reaction time, SWM strategy score (high scores indicate a poor use of the 

best strategy), PAL total errors (adjusted for the number of trials), and RVP mean latency to (correct) 

response (adjusted for the number of responses). In ERP, the Frontal, Frontal Right, Frontal Left, Midline, 

Temporal Right, and Temporal Left were selected from the calculated clusters as relevant based on the 

literature. 

Specific Aim 1 

 Three CANTAB measures (RTI, SWM, RVP) were independently assessed via multivariate 

linear regression to determine the extent to which they predicted selected ERP measures. To avoid issues 

of multiple comparisons, data compiled in a priori ERP clusters of interest (Frontal Z, Frontal Right, 

Frontal Left, Temporal Left, Temporal Right, and Midline) were regressed onto the CANTAB variable of 

interest, resulting in six models for each of the two ERP tasks - minimum amplitude, maximum 

amplitude, mean amplitude of the negative deflection, latency to the negative deflection, mean amplitude 

of the positive peak, and latency to the positive peak. A stepwise method was also employed to determine 

if the determined covariates, Baseline Group and Education, were appropriate in the model. Significant 

multivariate results were followed up in reduced models when appropriate. 

Reaction Time  

Detection task. Reaction time significantly predicted activity in the Temporal Left cluster for two 

measures during the active response. First, it significantly predicted the mean amplitude of the negative 

deflection, F(1,62) = 5.353 p = .024 adj. R2 = .066 b = -.284 VIF = 1 CI = 10.933. Second, reaction time 
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significantly predicted the maximum amplitude when education was included as a covariate, F(1,62) = 

7.057 p = .002 adj. R2 = .163 b = -.369 CI = 4.395 (Figure 3). No other ERP outcomes were significant at 

any cluster locations. The models indicate that as reaction time increases the mean amplitude of the 

negative deflection and maximum amplitude of the positive peak decrease.  

Passive oddball. Reaction time significantly predicted the latency to the negative deflection in 

the Frontal Right cluster and the latency to the positive peak in the Temporal Left cluster during the 

Novel stimulus, F(1,75) = 4.026 p = .048 adj. R2 = .038 b = -.226 VIF = 1 CI = 11.383, and F(1,75) = 

5.225  p = .025 adj. R2 = .044 b = .255 VIF = 1 CI = 11.383, respectively. The mean amplitude of the 

negative deflection in the Temporal Left cluster during the Familiar stimulus was also significantly 

predicted by reaction time, F(1,75) = 4.513  p = .037 adj. R2 = .044 b = -.238 VIF = 1 CI = 11.383 

(Figure 4). No other ERP outcomes were significant at any cluster locations. The models indicate that, 

during the Novel stimulus, as reaction time increases the latency to the negative deflection decreases and 

the latency to the positive peak increases.  

Spatial Working Memory 

 Detection task. Spatial working memory (strategy score) significantly predicted the latency to 

the positive peak during the inhibited response in the Midline and Frontal Clusters, F(1,64) = 10.444 p = 

.002 adj. R2 = .127 b = .375 VIF = 1 CI = 12.645, and F(1,64) = 5.414 p = .023 adj. R2 = .064 b = .279 

VIF = 1 CI = 12.645 (Figure 5). No other ERP outcomes were significant at any cluster locations. The 

models indicate that as strategy score on SWM increases (poorer strategy use), the latency to the positive 

peak increases as well.  

 Passive oddball. Spatial working memory significantly predicted the latency to the negative 

deflection in the Frontal Right cluster during the Familiar stimulus, F(1,78) = 7.316  p = .008 adj. R2 = 

.074 b = -.293 VIF = 1 CI = 12.353. Next, it predicts the mean amplitude of the negative deflection in the 

Temporal Right cluster during the Novel stimulus and the Frontal Left cluster during the Familiar 

stimulus, F(1,78) = 4.163  p = .045 adj. R2 = .038 b = -.225 VIF = 1 CI = 12.353, and F(1,76) = 3.456  p = 

.021 adj. R2 = .085 b = .346 VIF = 1 CI = 19.337 (Figure 6). No other ERP outcomes were significant at 
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any cluster locations. The models indicate that as SWM strategy increases (poorer strategy use) latency to 

the negative deflection decreases and mean amplitude increases during the Familiar stimulus, while mean 

amplitude during the Novel stimulus increases.  

Rapid Visual Information Processing 

 Detection task. Mean latency to response in the RVP task significantly predicted minimum 

amplitude in the Temporal Right cluster during the active response when Education was included, F(1,63) 

= 6.635 p = .002 adj. R2 = .148 b = -.294 VIF = 1.026 CI = 12.349. RVP also significantly predicts the 

maximum amplitude in the Frontal Right and Temporal Right clusters during the active response, F(1,64) 

= 4.995 p = .029 adj. R2 = .058 b = .269 VIF = 1 CI = 9.621, and F(1,64) = 14.983 p < .000 adj. R2 = .177 

b = .269 VIF = 1 CI = 9.621 (Figure 7). No other ERP outcomes were significant at any cluster locations. 

The models indicate that as the mean latency to a response increases in the RVP task the minimum 

amplitude decreases and maximum amplitude increases.  

 Passive oddball. RVP (mean latency to response) significantly predicted two attributes of the 

positive peak in the Frontal Left cluster during the Familiar stimulus; first, the mean amplitude of the 

positive peak, F(1,79) = 6.648  p = .012 adj. R2 = .066 b = .279 VIF = 1 CI = 10.245; then, the maximum 

amplitude, F(1,79) = 7.829  p = .006 adj. R2 = .079 b = .3 VIF = 1 CI = 10.245 (Figure 8). No other ERP 

outcomes were significant at any cluster locations. The models indicate that as the latency to response in 

RVP increases the mean amplitude of the positive peak and the maximum amplitude during a familiar 

stimulus increases. 

Specific Aim 2 

  Specific Aim 2 was investigated in two different ways to fully capture the relation between 

baseline characteristics of my participants and their cognitive outcome at follow-up. First, ERP and 

CANTAB variables were regressed onto the baseline MoCA score as initially designed, and those results 

are discussed first. Second, I was interested in whether the change in MoCA score may be a better 

predictor of follow-up cognitive assessment performance, so a MoCA change score was created where the 

baseline score was subtracted from follow-up score. A positive change score indicates a decline in 
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performance on the task. In all analyses, multiple linear regression was used, and Age, Time Since 

Baseline, and Education were included as covariates.  

Baseline MoCA 

 ERP. Baseline MoCA score significantly predicted the mean amplitude of the positive peak in 

the Frontal Right cluster, F(1,64) = 3.233  p = .046 adj. R2 = .063 b = .294 VIF = 1 CI = 23.843. No other 

ERP outcomes were significant at any cluster locations. The model indicates that as baseline MoCA score 

increases, in the detection task, the mean amplitude of the positive peak increases.  

 CANTAB. Baseline MoCA score significantly predicted SWM and PAL outcomes when Time 

Since Baseline and Age were included in the model, F(3,86) = 8.444  p < .000 adj. R2 = .201 b = -.437 

VIF = 1.088 CI = 8.545, F(3,86) = 8.683  p < .000 adj. R2 = .204 b = -.265 VIF = 1.074 CI = 8.533. No 

other CANTAB outcomes were significant. The models indicate that as MoCA score increases (improves) 

SWM strategy score decreases (improves) and total errors on PAL also decreases. 

Change in MoCA Score 

 ERP. Change in MoCA score significantly predicts the latency to the negative deflection in the 

Frontal Right cluster during the active response of the detection task, F(1,65) = 4.807  p = .032 adj. R2 = 

.055 b = -.262 VIF = 1 CI = 1.626. The mean amplitude and latency to the positive peak in the Midline 

cluster and the latency to the positive peak in the Frontal cluster during the Familiar stimulus in the 

passive oddball task is significantly predicted by change in MoCA score, F(1,80) = 6.874  p = .034 adj. R2 

= .043 b = -.234 VIF = 1 CI = 1.555, and F(1,80) = 7.282  p = .008 adj. R2 = .072 b = -.289 VIF = 1 CI = 

1.555, F(1,80) = 6.136  p = .015 adj. R2 = .060 b = -.267 VIF = 1 CI = 1.555, respectively. Also, Change 

in MoCA predicts latency to positive peak in the Temporal Left and Frontal clusters during the Novel 

stimulus, F(1,80) = 7.272  p = .009 adj. R2 = .072 b = -.289 VIF = 1 CI = 1.555. and F(1,80) = 4.100  p = 

.046 adj. R2 = .037 b = -.221 VIF = 1 CI = 1.555, respectively. No other ERP outcomes were significant at 

any cluster locations. The models indicate that as change in MoCA score increases (better performance) 

latency to the negative deflection in the detection task decreases. As change in MoCA score increases the 
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mean amplitude of and latency to the positive peak in the passive oddball task decrease during the 

familiar stimulus, and latency to the positive peak during the novel stimulus decreases.  

 CANTAB. Change in MoCA score significantly predicts mean latency to response in the RVP 

task when Time Since Baseline and Age are included in the model, F(3,87) = 5.391  p = .002 adj. R2 = 

.128 b = -.227 VIF = 1 CI = 2.093. No other CANTAB outcomes were significant. The model indicates 

that as the change in MoCA score increases (better performance) latency to response decreases in the 

RVP task.  

Specific Aim 3 

  Specific aim 3 presented a unique challenge when deciding how to properly compare the ERP 

outcomes at both time points because the ERPs from the baseline appointment were collected on an older 

version of NetStation. Such that baseline ERPs were sampled at 250 samples/sec whereas the follow-up 

ERPs were sampled at 1000 samples/sec. Moreover, the attributes of the ERPs used in Specific Aims 1-3 

(e.g., latency to peak at six different clusters) are too numerous to test individually for fear of multiple 

comparisons and producing Type I errors. Therefore, even though the windows and clusters were 

consistent, the variables of interest could not be compared in the initially proposed regression model. A 

solution that allowed for the normalizing of all ERP outcomes irrespective of timepoint and would 

produce better, less correlated components for comparison was to perform a temporal-spatial principal 

components analysis (PCA; Dien, 2012).  

Generating the PCA Factors 

  A temporal-spatial PCA was performed on the ERPs from baseline appointment for the active 

detection and the passive oddball tasks to determine unique spatiotemporal factors that could help 

determine the relation among the individual ERP components across both time points (Curran & Dien, 

2003; K. M. Spencer, Dien, & Donchin, 1999). Methods are described in detail in Dien (2012) and briefly 

here. A spatial PCA followed a temporal PCA. A Promax rotation was used, which involved first 

applying a Varimax rotation and then relaxing it to allow for correlated factors. At each step of the PCA 

the number of factors retained was determined by evaluating a Scree plot (Cattell, 1966; Cattell & 
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Jaspers, 1967) and the parallel test (Horn, 1965), which compares the Scree of the dataset to that obtained 

from an entirely random dataset, and the intersection of these two lines is determined as the number of 

factors. At the temporal step, 22 factors were retained for the Oddball task and 23 for the active detection 

task.  

  Separate spatial PCAs were performed on each of the 22 or 23 temporal factors. Seven spatial 

factors were produced for each of the temporal factors for the oddball task and 12 for the detection task. 

Seven temporospatial factors were retained for the oddball and five for the detection task based on 

statistical modeling and windowing performed on the jack-knife PCAs using the EP Toolkit (Barry, 2014; 

Curran & Dien, 2003; Dien, 2012). The spatial PCA procedure forced identical scalp topographies and 

sample rate for a given factor across all conditions, but factors (and individuals) are free to differ in 

amplitude. The application of identical scalp topographies and sampling rate at the second step was 

essential for the comparisons of the two time points 

. Finally, the determined factor loadings for the baseline study were applied to the ERPs from the follow-

up study, which produced temporospatial factors for each test that are identical in time course and sensor 

cluster but differ individually by timepoint and participant on amplitude (microvolts).   

Predicting follow-up ERP with Baseline ERP 

  The newly generated PCA factors for each time point were then entered into a hierarchical 

multiple linear regression model. Baseline MoCA score was forced into the model to control for 

differences in MCD characterization, leaving only the change in brain function. The inclusion of baseline 

MoCA score did increase measures of collinearity (CI, specifically), but tolerance and VIF remained 

within conservative levels. Time Since Baseline, Baseline Group, Age, and Education were tested in 

subsequent hierarchical models but were not necessary. Each baseline factor was regressed onto its paired 

follow-up factor, and due to the exploratory nature and initial selection of factors not being a priori, a 

Bonferroni correction was made setting the significant p-value at .003. 

 Oddball. Factors 2, 3, and 4 (TF2SF1, TF2SF2, TF2SF3; Figure 9 A, B, & C) for the Familiar 

condition significantly predicted their counterparts, F(2,52) = 6.405  p = .003 adj. R2 = .167 b = .449 VIF 



 

 49 

= 1 CI = 21.942, F(2,52) = 7.899  p = .001 adj. R2 = .204 b = .460 VIF = 1 CI = 20.010, and F(2,52) = 

6.417  p = .003 adj. R2 = .167 b = .408 VIF = 1 CI = 20.197, respectively. Factors 2 and 3 (TF2SF1, 

TF2SF2; Figure 9 D & E) also significantly predicted their counterpart for the Novel condition, F(2,52) 

= 11.993  p < .000 adj. R2 = .289 b = .562 VIF = 1 CI = 21.870, and F(2,52) = 6.754  p = .002 adj. R2 = 

.176 b = .448 VIF = 1 CI = 22.138, respectively. Thus, higher amplitude at baseline is predictive of 

continued higher amplitude at follow-up. Regressions were followed up with robust ANOVAs with 

Bonferroni correction (alpha = .008) to test the difference between Familiar and Novel amplitude at each 

selected factor. The model for Factor 5 (TF3SF3) was significant TWJt/c(3, 40) = 10.13  p = .00014  MSe 

= 0.792262 and contrasts indicated that Familiar was significantly different than Novel, TWJt/c(3, 48) = 

14.41  p = .00054  Mse = 0.792262. 

 Detection task. Factors 2 and 3 (TF2SF3, TF3SF3; Figure 10 A&B) for the inhibited response 

condition significantly predicted their counterparts, F(2,58) = 13.277  p < .000 adj. R2 = .290 b = .554 

VIF = 1 CI = 20.912, and F(2,58) = 11.989  p < .000 adj. R2 = .268 b = .551 VIF = 1 CI = 21.656, 

respectively. Factors 1 and 4 (TF1SF1, TF5SF1; Figure 10 C&D) also significantly predicted their 

counterparts for the active response condition, F(2,58) = 10.291  p < .000 adj. R2 = .236 b = .512 VIF = 1 

CI = 20.703, and F(2,58) = 13.729  p < .000 adj. R2 = .298 b = .552 VIF = 1 CI = 24.359, respectively. 

The model indicates that, again, higher amplitude at baseline predicts higher amplitude at follow-up. 

Again, I evaluated the chosen factors for differences between the inhibited response and active response 

conditions using robust ANOVAs with Bonferroni correction (alpha = .008). The model for Factor 4 

(TF5SF1) was significant, TWJt/c(1, 60) = 121.86  p < .00001  Mse = 1.531.  

Predicting follow-up CANTAB performance with Baseline performance 

 To assess whether baseline CANTAB performance predicted CANTAB performance at follow-

up, measures were regressed onto the counterpart baseline measure controlling for baseline MoCA score. 

Three of the four models did not include additional covariates, whereas the RVP model included Time 

Since Baseline. A hierarchical model indicated that Education could increase the explained variance of 

the SWM model significantly (p = .04), but inclusion in the model caused a significant increase in the 
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Condition Index (CI = 34.153). Education and Baseline MoCA score significantly predict each other (r = 

-.402, p < .001). Therefore, I chose to exclude Education from the SWM model. Similarly, the inclusion 

of Time Since Baseline was suggested in the RVP model (p = .04).  

RTI, PAL, SWM, and RVP all significantly predicted their counterpart outcome at follow-up, 

F(2,84) = 16.517  p < .000 adj. R2 = .265 b = .528 VIF = 1 CI = 25.913, F(2,88) = 33.272  p < .000 adj. R2 

= .418 b = .573 VIF = 1 CI = 24.670, F(2,87) =  36.611 p < .000 adj. R2 = .445 b = .531 VIF = 1 CI = 

29.268, and F(3,87) = 16.718  p < .000 adj. R2 = .344 b = .577 VIF = 1 CI = 29.051, respectively. 

Interpretation of the model suggests that performance at baseline on the CANTAB is significantly 

predictive of follow-up performance, where poorer performance on the task at baseline predicts continued 

poorer performance at follow-up.  

Specific Aim 4 

Determining the Measure of Microbiome Composition 

Shannon alpha diversity, one of the most common alpha diversity metrics in gut-microbiome 

research, was selected as the alpha metric for Specific Aim 4. Shannon diversity accounts for both the 

abundance and evenness of the species present – the proportion of species relative to the total number of 

species is calculated, and then multiplied by the natural logarithm of this proportion before being summed 

across all species and multiplied by -1.  

As a reminder, Beta Diversity is a much more complicated measure of diversity, and can be seen 

as the sum of two components: turnover and nestedness. Turnover is the difference between communities 

solely in relation to which species exist in each. Nestedness is how much the species composition of a site 

with a lower species richness is a subset of a site with higher species richness. Therefore, one could 

calculate and compare beta diversity values based on species presence/absence and/or relative abundance, 

which means using a measure of alpha diversity to calculate beta diversity. Several variables of interest 

were chosen on which to calculate beta diversity, Healthy Eating Index, MoCA score, Education, Berry 

Consumption (discussed later), and the four selected CANTAB variables. Unfortunately, after significant 

time and effort, the calculation of either weighted or unweighted unifrac on the present microbiome 
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dataset was unsuccessful. The principal coordinates analysis (PcoA) run to quantify the turnover and 

nestedness of the alpha metric failed. With the PcoA I attempted to determine the individual components 

(the change in relative taxa relative to a metadata field) that uniquely explain the variance between 

communities (participants microbiomes). In all instances, the PcoA could explain approximately 95% of 

the variance with a single metadata field, which changed with each calculation (not the metadata attribute 

itself causing the significance). The significantly high predictive quality of each PcoA rendered the results 

useless as a predictive indicator of diversity. Therefore, for testing specific aims 4b and 4c, Shannon 

diversity was used as the characterizing metric of the microbiome data. 

Statistical Analyses 

Data met assumptions of normality and were subjected to stepwise multiple regression analysis, 

with controls for repeated measures and relevant covariates, to assess the relation between microbiome 

diversity measures of interest and the CANTAB and ERP variables using SPSS (IBM Corp. Released 

2017. IBM SPSS Statistics for Macintosh, Version 26.0). Before beginning the analysis of the data, 

several variables of interest were selected for CANTAB and ERP variables and are discussed below for 

their respective assessment. Significant results were followed up in reduced models when appropriate. 

Age, Gender, Education, Current Occupation, Marital Status, Patient Health Questionnaire Score, Body 

Mass Index, Healthy Eating Index, MoCA, GAD, Stressful Life Events, PASE, and Time Since Baseline 

were tested as potential covariates. It was determined that Education was necessary (p = .020).  

Stepwise multiple regressions were performed for each assessment where Shannon diversity (the 

unknown) was regressed onto the predictors of interest. Whereas the design of this model is atypical in 

the fields of psychology and neuroscience, it is standard practice in the microbiome literature to predict 

Shannon alpha. In the specific aims, it has been indicated that ERP and CANTAB are known measures of 

cognitive function and are sensitive to changes due to aging.  The gut-microbiome, is therefore, the 

unknown in the equation. Dynamic interactions exist among environment, microbiome, and host. To 

study the complicated interactions among these factors, unique models must be built. One such model to 

explore the association between microbiome and host is to evaluate whether the composition of the 
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microbiome (a “dysbiotic” microbiome) is linked to the health or disease of host. Based on the research 

hypotheses, the null statistical hypothesis is “there is no difference of microbiome composition in age-

related cognitive decline.” Therefore, in Specific Aim 4, placing microbiome diversity as the dependent 

variable in all models is warranted (Xia & Sun, 2017). 

Relation Among CANTAB Measures and Microbiome Diversity  

 Two of the CANTAB outcome variables used in Specific Aim 4 differed from those in Specific 

Aims 1-3 due to the exploratory nature of this aim. The selected variables were as follows: Simple 

Reaction Time (RTI) as a measure of reaction time, Total Errors Adjusted (PAL) as a measure of visual 

memory, Mean Time to First Success (six-step; SWM) as a measure of working memory and planning, 

and Mean Latency to Response (RVP) as a measure of sustained attention (working memory and selective 

attention). 

  Data were entered into a stepwise regression using all the predictors (RTI, PAL, SWM, RVP, and 

Education). Shannon alpha was predicted by PAL and SWM (p = .007).  The model, including only PAL 

(p = .025) and SWM (p = .024), accounted for 11.7% of the variance and statistically significantly 

predicted Shannon alpha, F(2,56) = 4.846 adj. R2= .117, b = -.293 and b = - .248, respectively. The model 

indicates that as the total number of errors (PAL; Figure 11) and mean trials to success (SWM; Figure 

12) increases alpha diversity decreases. See Table 3 for results of the model.  

Relation Among ERP Measures and Microbiome Diversity 

 The same a priori clusters of interest from specific aims 1-3 (Frontal Z, Frontal Right, Frontal 

Left, Temporal Left, Temporal Right, and Midline) were entered into a stepwise regression to predict 

microbiome diversity measures. 

 Detection task. For the detection task, six stepwise regressions were performed to determine if 

ERP measures predicted microbiome diversity. Each regression tested a model for an individual ERP 

attribute (minimum amplitude, mean amplitude of the negative deflection, or latency to the negative peak) 

for Target or Standard conditions and included all clusters of interest. Education was not selected to 

remain in the model for any of the regressions. 
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The minimum amplitude as well as the mean amplitude for the Frontal Z cluster for the Target 

condition significantly predicted Shannon alpha, F(1,46) = 4.202 p = .022 adj. R2 = .089 b = .330 VIF = 1 

CI = 3.347 (Figure 13), and F(1,46) = 4.361 p = .042 adj. R2 = .067 b = .294 CI = 1.771 (Figure 14), 

respectively. The model indicates that as the amplitude the negative deflection increases alpha diversity 

also increases and as the mean amplitude across the window (50-190ms) increases diversity also 

increases. See Table 4 for results of these two models. When these significant variables are placed into 

the same model, the model emerges as insignificant, F(2,45) = 2.887 p = .066 R2 = .114. 

When clusters were tested in a stepwise regression together (e.g. Frontal for each ERP attribute), 

there is an indication that frontal and midline clusters show a significant relation to microbiome diversity. 

In the Target condition the minimum amplitude significantly predicts Shannon alpha in the Frontal. 

Frontal Right, and Midline sensors, F(1,46) = 5.611 p = .022 adj. R2 = .089 b = .164 VIF = 1 CI = 3.347, 

F(1,46) = 4.742 p = .035 adj. R2 = .074 b = .194 VIF = 1 CI = 3.251, and F(1,46) = 4.206 p = .046 adj. R2 

= .064 b = .289 CI = 3.630, respectively. 

  Passive Oddball. For the passive oddball task, stepwise multiple regressions were performed in 

an identical fashion to the detection task to evaluate if the minimum or maximum amplitude, mean 

amplitude of the positive or negative deflection, or latency to the positive or negative peak for Familiar 

and Novel Unique stimuli predicted microbiome diversity as measured by Shannon alpha. Education was 

not selected to remain in the model for any of the regressions. 

The latency to the negative deflection for Familiar in the Frontal Right cluster significantly 

predicted Shannon alpha, p = .024 F(1,55) = 5.373 adj. R2 = .072 b = -.298 CI = 20.726, suggesting that 

as latency increases to the negative deflection alpha diversity decreases (Figure 15). See Table 5 for 

results of this model. 

The max amplitude as well as the mean amplitude from 350-1500ms at the Temporal Left cluster 

predicted Shannon alpha during the Familiar condition, F(1,55) = 5.456 p = .023 adj. R2 = .074 b = -.300 

CI = 4.735 (Figure 16); F(1,55) = 5.225 p = .026 adj R2 = .070 b = -.295 CI = 1.888 (Figure 17). The 

model for the positive peak when observing a familiar stimulus suggests that as the amplitude of the peak 
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increases alpha diversity decreases and as the mean amplitude increases across the window diversity 

decreases. See Table 5 for results of this model. When these significant variables are placed into the same 

model, the model again emerges as significant, F(2,54) = 3.397 p = .041 R2 = .112. 

When clusters were tested in a stepwise regression together (e.g. Frontal for each ERP attribute), 

there is an indication that frontal and temporal clusters show a significant relation to microbiome 

diversity. In the Familiar condition negative latency and maximum amplitude significantly predict 

Shannon alpha. The negative latency in the Frontal Right cluster significantly predicts Shannon alpha, 

F(1,55) = 5.373 p = .024 adj. R2 = .072 b = -.012 VIF = 1 CI = 20.726. The maximum amplitude in the 

Temporal Left cluster significantly predicts Shannon alpha, F(1,55) = 5.164 p = .024 adj. R2 = .074 b = -

.374 VIF = 1 CI = 4.735.   

Added Hypotheses for Conference Presentation 

Other Individual Factors Influencing Cognition and Microbiome Diversity 

  To address Specific Aim 4c, several additional variables collected about the participants were 

evaluated for their relation to microbiome diversity. In particular, several dietary variables were 

evaluated, the Healthy Eating Index, three fiber content measures of the diet (total, soluble, and 

insoluble), total fat content of the diet, two protein content measures (animal and plant), and berry 

consumption. Interestingly, plant protein content, total dietary fiber, and insoluble dietary fiber 

significantly predict a change in MoCA score, but do not predict Shannon diversity, F(1,90)=5.503, 

p=.021, R2=.047, F(1,90)=5.133 p=.026 R2=.043, and F(1,90)= 5.104, p=.026, R2=.043, respectively. 

Only berry consumption was significantly related to Shannon diversity. 

Berry consumption. Evidence is emerging regarding the modulatory activity of dietary 

polyphenols on the gut microbiome, but the influence is still poorly understood. In turn, the gut 

microbiome is known to contribute to the production of polyphenol metabolites. Moreover, recent 

evidence suggests that gut microbiome diversity relates to many health outcomes, such as cognitive 

function. Still, there are no published studies investigating a free-living human sample of older adults to 

determine the relation between berry consumption and gut microbiome composition. I quantified 
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associations between berry consumption and gut microbial diversity and composition. I hypothesized that 

a positive linear relation exists between berry consumption and Shannon diversity. Based on existing 

literature (Bamberger et al., 2018; Mena et al., 2015; Wu et al., 2011), I further hypothesized that berry 

consumption would be associated with Enterobacteriaceae and Clostridium, specifically. 

Using the individual 3-day diet recalls collected at the follow-up appointment, I queried the 

NDSR database of calculated food totals for each participant and extracted daily individual food totals. I 

then isolated those individuals who consumed any polyphenol-rich berry. Once berry consumers were 

identified, the total number of servings per day was calculated and summed across the three days. The 

resulting variable, Total Berry Servings, was then used to evaluate the relation between berry intake and 

Shannon diversity.   

Multivariable-adjusted regression models were used to assess whether Total Berry Servings 

predict Shannon diversity. As before, Education was included in the model. Among participants who 

consumed berries (n=22; servings=0.13-4.87), consumption was significantly positively related to the 

Shannon Diversity Index, F(2,18)=4.310, p=.03, r2=.324. Further, berry consumption was associated with 

a higher relative abundance of Enterobacteriaceae and Clostridium spp., F(1,19)=4.310, p=.046, r2=.152, 

and F(1,19)=5.822, p=.026, r2=.194, respectively. The model indicates that berry consumption was 

positively associated with gut microbial diversity and two genera known to be influenced by polyphenols, 

confirming the association found in controlled studies using a free-living sample. See Appendix D for 

poster from conference presentation. 
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CHAPTER 4: DISCUSSION 

 In the present study, I identified early indicators of cognitive decline using CANTAB and visual 

ERP as well as explored the relation of gut-microbiome diversity to cognitive performance. Participants 

underwent a set of tests to evaluate cognitive decline over time: the Montreal Cognitive Assessment 

(MoCA), a CANTAB battery for behavioral cognitive assessment, and electrophysiological evaluation via 

the passive oddball paradigm and an active detection task. I identified a collection of unique relations 

among the variables tested. One difference between individuals, gut microbiome diversity and 

composition, changes within the person across his or her lifespan as well as varying among individuals. 

Recent research on the gut microbiome has shown that an individual’s gut microflora can significantly 

influence gut-brain communication, brain function, and behavior by indirectly changing internal 

homeostasis. In this study, I investigated the role of microbiome diversity in cognitive decline, validated 

ERP against CANTAB measures, characterized predictive relation between the MoCA and future 

cognitive outcomes, and showed the utility of ERP PCA factors and CANTAB outcomes to predict future 

ERP and CANTAB performance.  

In older adults, executive functions are in decline most likely due to changes in activation and 

utilization of specific brain areas. Healthy aging is associated with increased brain activity in the PFC 

(during simple tasks)(Persson et al., 2006), alterations in the MTL (Pudas et al., 2013), altered 

hippocampal function during working memory tasks (Pudas et al., 2013), and improved performance and 

transfer of working memory skills (Borella et al., 2014). This pattern is part of the CRUNCH (Schneider-

Garces et al., 2009), which posits that older adults use more cortical resources than younger adults in 

order to perform at the same level, and with the most difficult tasks, reduced cortical activation is 

exhibited (See STAC-R; Goh & Park, 2009). These changes in and attributes of cognitive function can be 
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observed in behavioral and electrophysiological tasks such as the ones in this study, and some 

aspects of these changes have been confirmed by my results.  

Relation of CANTAB and ERP 

 Three CANTAB measures (RTI, SWM, and RVP) were independently confirmed to significantly 

relate to selected ERP measures in both the active detection task and the passive oddball task.  

The N1 Component of the ERP 

The peak of the negative deflection in a visual active oddball or detection task, commonly 

referred to as the “visual N1,” typically occurs around 75 to 180ms post-stimulus, is most commonly 

evaluated at central and frontal electrode sites, and is part of the visual evoked potential – a series of 

voltage deflections observed in response to presentation of visual stimuli (Luck & Hillyard, 2009; 

Mangun, 1995; Mangun & Hillyard, 1991; Naatanen, 1982; Thorpe, Fize, & Marlot, 1996). This time 

course and spatial specificity match the negative window (50-190ms) and clusters selected in the active 

detection task. In my study, the amplitude of the visual N1 is influenced by selective attention and is 

therefore used to study attentional processes (Kok, 1999; Mangun, 1995; Martinez et al., 2006; McDowd 

& Filion, 1992). The visual N1 is a sensory component evoked by any visual stimulus, reflecting a critical 

mechanism of attention that indicates whether or not attention was appropriately allocated, and is a 

manifestation of a critical sensory gating mechanism of attention (Luck & Hillyard, 2009; Vogel & Luck, 

2000). One would expect the N1 component to be enhanced under conditions that require a decision, such 

as the detection task of the present study. As a result, individuals with better cognitive function (improved 

attention allocation) would be expected to have a higher peak amplitude of the N1 when identifying a 

target stimulus. Below I relate two CANTAB tasks – RTI and RVP – to the N1 component. 

RTI. Reaction time was assessed as the response time during the five-choice task in RTI. The 

five-choice task was selected due to the more complex nature compared to the simple (one-choice) task as 

it is expected that more significant differentiation would exist at higher cognitive demand. Reaction Time 

(RTI) was a measure of simple and choice reaction time, movement time, and vigilance during several 

reaction time trials. Both the simple (one-step) and the 5-choice serial reaction time variable used for the 
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analyses in this study were chosen because they are analogues to a well-characterized animal behavior 

paradigm (5-Choice Serial Reaction Time; 5-CSRT). In the rat, the 5-CSRT shows sensitivity to discrete 

lesion sites in the PFC (Fizet, Cassel, Kelche, & Meunier, 2016). It would be expected that participants 

with MCD would show declined accuracy and slower latency on the RTI task. 

During the non-response of the detection task, RTI predicted a reduction in the total deflection 

(negative amplitude) of the N1 component (Figure 3B). The reduction in the amplitude of the N1 as 

reaction time increases indicates poorer attentional allocation, resulting in poorer decision making about 

the stimulus (Luck & Hillyard, 1994; Luck & Hillyard, 2009).  It was hypothesized that as reaction time 

increases, ERP measures of cognitive function would decline. Results in the active detection task support 

to this hypothesis at the N1. With cognitive decline, the N1 component should show a reduction in 

amplitude and does, thereby supporting the conclusion of poor activation and attentional selection with 

poorer cognitive function as measured by RTI. The use of 5-choice time when comparing to the detection 

task in ERP may introduce a confound of test dissimilarity, because when compared to the simple 

reaction time task, the 5-choice task requires encoding of spatial location and the ERP detection task does 

not. As I discuss below, this confound could explain some of the results that do not support the 

hypothesis.  

RVP. In order to evaluate what even higher task demands would do to processing ability, the 

mean latency to a response during the RVP task was selected. Mean latency differs from the reaction time 

task in that memory of a sequence has to be maintained, and evaluation of a string of numbers must be 

done before a response is given. Rapid Visual Information Processing (RVP) was intentionally placed last 

in the battery of tests. By placing the most difficult task last, I intended to take advantage of some 

cognitive fatigue late in the appointment to assess the underlying mechanisms of CRUNCH and STAC-r 

– declines in more difficult cognitive tasks. Performance on the RVP task has been shown to be 

associated with activation in the frontal and parietal lobes and the networks that connect them (Coull et 

al., 1995). Therefore, RVP was an accurate measure of the ability to utilize multiple connected systems 
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and assess higher order cognitive processes while still using a variable that could easily be compared to 

the temporal activation measures in the ERP. 

During the detection task, RVP predicted that as latency to response increases the minimum 

amplitude decreases (Figure 7B). A reduction in N1 amplitude during the active response indicates 

cognitive dysfunction as attentional allocation should be increased (eliciting an increase in N1 amplitude). 

A decrease in N1 amplitude supports the hypothesis that RVP performance predicts cognitive decline 

measures in ERP attributes. 

The N2 Component of the ERP 

Another essential ERP component is the N2, the negative waveform that peaks between 200-

350ms, which has been found to reflect executive cognitive control functions in adults – particularly a 

measure of attentional processing (Luck & Hillyard, 1994; Luck & Hillyard, 2009). In a passive oddball 

task, such as the one in the present study, the latency to peak amplitude should differ between familiar 

and novel pictures. When an individual has been exposed repeatedly to an image (the familiar), the need 

to process the information about that image diminishes over time and attention to the image will fall 

linearly to that need and latency should decrease. Therefore, better cognitive function as measured in the 

passive oddball paradigm during the selected window of the negative deflection (210-350 ms) would be 

indicated by shorter latency in the Familiar condition. 

RTI. During the novel stimulus of the passive oddball task, latency to the N2 decreases as 

reaction time increases (Figure 4A). Shorter latency to the N2 indicates shorter attentional processing and 

is not what one would expect during the Novel stimulus for typical cognition. Instead, latency is expected 

to be longer during the novel stimulus, indicating this reduced latency may indicate poorer attentional 

activation (Luck & Hillyard, 1994; Luck & Hillyard, 2009). Reaction time also significantly predicts the 

reduced amplitude of the N2 during the familiar stimulus (Figure 4C), indicating what would be 

considered better cognitive function, which does not support my hypothesis that increased reaction time 

would indicate poorer performance. So, the results provide mixed information about the relation between 

RTI reaction time and the N2 ERP component. The most likely explanation for this relation is the 
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dissimilarities between the two tasks, namely the lack of a response in passive oddball and significant 

differences in the type of visual stimulus. I propose here that visual dissimilarity of the two tasks may 

confound the results and a simple reaction time test may not adequately characterize the activational ERP 

aspects of a low-stakes visual oddball paradigm. 

SWM. The Spatial Working Memory (SWM) task measured the ability to retain spatial 

information and to manipulate remembered items in working memory. The test is a sensitive measure of 

frontal lobe and executive function dysfunction. SWM performance is impaired by damage to the PFC, 

especially the dorsolateral PFC (Owen et al., 1990; Manes et al., 2002). Moreover, in neuroimaging 

studies in healthy participants, SWM performance is associated with activations in the dorsolateral and 

mid ventrolateral PFC (Owen et al., 1996). Therefore, SWM performance would be significantly impaired 

in mild to moderate AD and should show significant differences between MCD and non-MCD 

participants. The spatial working memory strategy score was selected as it is the most inclusive variable 

of the different factors required to perform well in the SWM task. A higher strategy score on the SWM 

task indicates an increase in the number of attempts and/or time to discovery of all objects corrected to the 

comparison of a “perfect” strategy versus the strategy utilized. The results indicate several significant 

findings between the SWM task and ERP outcomes. 

Spatial Working Memory significantly predicted two aspects of the ERP during the passive 

oddball task (during the familiar stimulus; Figure 6). Poorer strategy score predicts reduced latency to and 

increased amplitude of the negative deflection. Reduction in latency to the N2 is historically indicative of 

better cognitive function, so this finding is perplexing, but the relation may be indicative of poor 

attentional control in general (Luck & Hillyard, 1994; Luck & Hillyard, 2009). In support of the literature, 

however, one would predict a decrease in amplitude of the N2 for the familiar stimulus in healthy 

cognitive function. So, in contradiction to the latency, the increased amplitude of the N2 confirms the 

relation between SWM and the N2 component. This contradictory evidence could be explained by the 

simplicity of the passive oddball paradigm. As with the RTI task, the lack of a response in the passive 

oddball task may be a confound for which we should control. In future studies, an active oddball task will 
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be added to better elucidate the relation between the two tasks. It is important to add, though, that during 

the novel stimulus, the finding that amplitude is higher when SWM performance is poorer may indicate 

that SWM performance is a valid measure of the additional cognitive utilization during tasks in cognitive 

decline as posited by STAC-r and the CRUNCH. 

The P3 Component of the ERP 

A third visual ERP component, the P3, is a positive peak occurring after 300ms and typically 

before 700ms following a visual stimulus presentation and alterations in it have been strongly linked to 

typical and atypical cognitive aging (Jiang et al., 2015; Knott et al., 2004; Papaliagkas et al., 2011; Parra 

et al., 2012; Polich, 2007; Pontifex et al., 2009). The P3 differs from the N1 and N2 components as it 

does not link to a physical attribute of a stimulus but rather to a person’s cognitive response to the 

stimulus. For this reason, it is commonly considered an “endogenous potential” and is most commonly 

attributed to the process of decision making. More accurately, the P3 reflects processes involved in 

stimulus evaluation or categorization; commonly measured in an oddball paradigm – low-probability 

(Novel) items mixed with high-probability (Familiar) items (Jiang et al., 2015; Kirino et al., 2000; Pato & 

Czigler, 2011; Polich, 1996). Much like the N2 component, the overall existence or amplitude of a P3 

should be higher for less-probable, novel, events and small in amplitude or non-existent for more 

probable familiar events. This observed outcome, however, is reliant upon healthy cognitive function – 

the ability to successfully discriminate between stimuli via appropriate attentional orientation and 

effective visual memory storage and retrieval. Therefore, individuals experiencing cognitive decline 

might be expected to show increased latency to and amplitude of the P3 component, especially in the 

Familiar condition. If this is true, during the passive oddball paradigm, older adults experiencing 

cognitive decline would have a higher maximum amplitude during the positive inflection window. 

RTI. During the non-response of the detection task RTI predicted a reduction in the positive peak 

(positive amplitude) of the P3 (Figure 3A). The reduction in the maximum amplitude during what would 

likely be a P3 component could indicate that participants with poorer reaction time do not reach full 

activation during the decision-making of whether to press the button. However, the literature would 
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suggest that the amplitude of the P3 would show no change or an increase with decline in cognitive 

performance when there is no decision or action to be made (Jiang et al., 2015; Kirino et al., 2000; Pato & 

Czigler, 2011; Polich, 1996). The opposite relation is observed when performance is measured by the RTI 

task. Because the RTI task is visually different than the detection task, the relation between the two tasks 

may not be reflective of the hypothesized cognitive processes and may represent an unknown attribute. In 

a future study, I will design tasks that are more visually similar. It is also possible that I have incorrectly 

characterized the functional aspects of the reaction time variable for RTI, where the task cannot 

appropriately characterize the activational aspects of the ERP during the detection phase of processing. 

Additionally, the two tasks are both relatively simple in that they do not require a great deal of resources 

for success. The relation should be tested again with tasks of increased complexity and greater similarity 

in visual stimuli.    

During the novel stimulus of the passive oddball task, latency to the P3 increased as reaction time 

increased (Figure 4B). The potential for reduced attentional activation noted in the N2, above, is also 

supported by the increased latency to the P3 component as this indicates time to decision making and 

response to the stimulus has been increased. Evaluation of the results indicates support for the conclusion 

that increased reaction time predicts poorer attentional activation, resulting in a delay in processing and 

subsequent decision making indicated by the P3 component. 

RVP. During the detection task, RVP predicted that as latency to response increases the 

maximum amplitude (P3) increases (Figure 7A). The increase in maximum amplitude may indicate 

overactivation in cognitively declined individuals compared to those with better RVP performance, but 

these data cannot provide support for this conclusion at this time. 

Evaluation of the relation between RVP and passive oddball ERP attributes indicates a significant 

relation between RVP performance and two aspects of the P3 component during the familiar stimulus 

(Figure 8). As mean latency to response increase in the RVP task, the mean and maximum amplitude of 

the P3 increases. In healthy cognitive function, the P3 should be reduced during the familiar stimulus, 
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indicating that poorer RVP performance predicts overactivation, and therefore cognitive decline, during 

the ERP task. 

SWM. SWM strategy score significantly predicted longer latency to the positive peak during the 

non-response of the detection task in two ERP clusters (Figure 5). For the non-response and more 

common stimulus, analysis of the literature would suggest that the P3 would be shorter in time to 

activation and reduced in amplitude (Jiang et al., 2015; Kirino et al., 2000; Pato & Czigler, 2011; Polich, 

1996). An increase in latency to the P3 during the common stimulus indicates slower decision making 

about the stimulus and therefore poorer cognitive function, supporting the hypothesis that poorer 

performance on the SWM task would relate to poorer cognitive function as measured by the ERP task. 

Conclusion 

In consideration of the relation between ERP and CANTAB measures, I suggest that there are 

inviting relations for future exploration, but designing ERP tasks that are more visually similar to the 

CANTAB tasks is highly desirable. The goal of Specific Aim 1 was to explore the relation between 

CANTAB and ERP measures, and in that effort, RTI and ERP tasks are related, but additional exploration 

needs to be performed to determine the underlying mechanisms. SWM and RVP tasks show more 

straightforward and clear relations to the two ERP tasks than RTI, but all three would benefit from a study 

designed to reduce the noted confounds. Even without these improved investigations, significant 

conclusions can be drawn. I suggest that these relations are highly valuable in both a research and clinical 

settings. These results indicate that a relation does exist between the behavior measured by the CANTAB 

and the processes occurring in the brain of older adults. This knowledge of form to function could reduce 

the necessary burden of identifying decline in older adults by reducing the tests needed during physician 

visits and screening for new studies of cognitive decline.  

How does baseline global measure predict follow-up performance? 

  I chose to explore this question in two ways to best capture the relation between baseline 

characteristics of my participants and their cognitive outcomes at follow-up. First, I regressed follow-up 

ERP and CANTAB variables onto baseline MoCA scores including covariates. Then, I repeated the 
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regressions with a MoCA change score instead of the baseline MoCA score including covariates. The 

difference score was calculated by subtracting baseline score from the score at follow-up. Both 

approaches indicated significant relations, and I discuss the merits of each below.   

An additional CANTAB task to test paired associate learning was utilized in Specific Aim 2. 

Paired Associates Learning (PAL) assesses visual memory and learning, and has been shown to be 

particularly useful for assessing patients with non-demented types of cognitive dysfunction. Satisfactory 

performance on PAL is dependent on functional integrity of the temporal lobe, particularly the entorhinal 

cortex (Owen et al., 1995), and older adults with AD show a marked deficit on this task that predates the 

gross cognitive decline associated with the diagnosis (Blackwell et al., 2004). Moreover, PAL 

performance is sensitive to subtle cognitive impairments that are present in individuals who will likely 

progress to MCI and AD (Juncos-Rabadan, Pereiro, Facal, Reboredo, & Lojo-Seoane, 2014). 

Baseline MoCA 

When assessing the active response in the detection task, baseline MoCA significantly predicted 

the mean amplitude of the positive peak (P3). Higher MoCA scores at baseline predicted the increased 

mean amplitude of the P3. During the active response, increased activation at the P3 is suggested by the 

literature in healthy cognitive function (Bourisly, 2016; Chapman et al., 2011; Cid-Fernandez, Lindin, & 

Diaz, 2014; Fjell & Walhovd, 2001), so the relation with better MoCA score is supported.  

 Baseline MoCA score significantly predicted outcomes in the SWM and PAL tests for CANTAB 

at follow-up. The hypothesis that better MoCA score at baseline predicts better performance on CANTAB 

at follow-up is supported by the data as an increase in MoCA score predicts lower (better) strategy score 

on SWM and fewer errors in the PAL task. The identification of this relation between CANTAB and 

MoCA improves our ability for early diagnosis. True to the history of the MoCA, a brief and inexpensive 

screening with the MoCA could be used clinically to determine if further testing with the CANTAB is 

warranted. 
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Change in MoCA Score 

  Change in MoCA score significantly predicts several ERP outcome measures at follow-up. First, 

as the change in MoCA score increases (better performance) latency to the N1 decreases. Reduction in 

latency to the N1 component indicates better attention. Thus, these results support the hypothesis that 

relative stability between baseline and follow-up on the MoCA predicts better brain function.  MoCA 

change also significantly predicts mean amplitude of and latency to the positive peak in multiple ERP 

clusters during the familiar stimulus in the passive oddball task: Better MoCA change score predicts the 

reduced amplitude of and latency to the P3 when viewing the familiar stimulus. In the familiar condition, 

a healthy brain should have reduced activation and earlier peak processing as there is no processing to be 

performed on the stimulus; therefore, these findings support the relation between better change score and 

better cognitive function at follow-up. Finally, change in MoCA also predicted the latency to the P3 in the 

novel stimulus, where a better change score predicts decreased latency to the P3 increases. Again, better 

cognitive function as measured by the passive oddball task should be indicated by faster processing and 

shorter latency to peak processing; therefore, the results continue to support the hypothesis.   

  Change in MoCA score also significantly predicts mean latency to response in the RVP task. 

Better MoCA change score predicts a shorter latency to correct response. This relation with latency 

supports the improved processing speed results above and further supports the hypothesis that reduced 

change in MoCA score from baseline to follow-up predicts better cognitive function at follow-up. These 

associations of CANTAB to MoCA change score are key findings for developing tools for early 

identification of decline and prediction of future decline. As with the relation to better baseline MoCA 

score, the knowledge that stability in MoCA score is also predictive of better cognitive function allows 

clinicians to better understand the needs of aging adults and provides the potential for earlier intervention.  

Do behavioral and electrophysiological tasks predict follow-up performance on those tasks? 

 Both ERP and CANTAB measures from baseline were successfully used to predict future 

performance on those tasks at follow-up. The use of two-step PCA transformation on the ERPs proved to 

be a successful method to allow for the comparison of ERP factors at two time points and to determine if 
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baseline ERP measures can predict later ERP outcomes. To my knowledge, this is the first execution of a 

temporospatial PCA on ERP tasks like those in this study, and furthermore, this is the first use of this 

method to predict ERP outcomes across time. 

Predicting Follow-Up ERP with Baseline ERP 

 In the passive oddball paradigm, three temporospatial (440-445ms) factors that represented 

similar electrode locations to the Frontal Left (Factor 2, TF2SF1, Factor 4, TF2SF3) and the Frontal Right 

(Factor 3, TF2SF1) clusters showed significant predictive value to determine performance in these 

locations from baseline to follow-up. For the Familiar condition, factors 2, 3, and 4 from baseline 

significantly predicted their counterpart at follow-up where greater amplitude at baseline predicted greater 

amplitude at follow-up. Additionally, Factors 2 and 3 show the same positive relation in the novel 

condition. The temporal component of these factors is likely indicative of P3 amplitude at three unique 

spatial locations. In the future, with the data in hand, I will be able to select for temporospatial factors 

such as these a priori at each step of the PCA, attending to both sensor location and temporal relativity to 

better predict the attributes measured in the task for older adults.  

An additional factor, Factor 5 (TF3SF3), did not significantly predict future ERP outcomes, but 

did show promise for identification of other factors. Even though Factor 5 did not significantly predict 

future outcomes, it does closely resemble the positive slow wave that was observed at the end of the 

epoch in my older adults. Its temporal location was 769-773ms, and it incorporated electrodes most 

closely related to the Frontal Right and CentralZ clusters. An overall ANOVA model was significant, 

indicating significant differences in the conditions among individuals, and a contrast indicated a 

significant amplitude difference between the Familiar and Novel conditions. By predicting a difference 

between Novel and Familiar conditions, Factor 5 proves itself as an avenue for future exploration to 

differentiate between individuals experiencing decline and those who are not.  

  In the detection task, factors that represent a wider range of temporal and spatial variety showed 

significant predictive value to determine performance in those factors from baseline to follow-up. Factor 

1 (TF1SF1) represents a similar spatial location to the Frontal and Midline clusters and amplitude from 
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819-823ms. Factor 1 was included because the positive slow wave in the detection task appeared to 

extend to the end of the 1500ms window for many older adults, and this factor is a good candidate for 

future exploration. Factor 2 (TF2SF3) spatially represents electrodes in the Frontal and Frontal Left 

clusters while representing the temporal window of 480-487ms, which is likely a P3b component. Factor 

3 (TF3SF3) is very close to Factor 2 in temporal space at 319-323ms and likely represents the P3a, but is 

best represented by electrodes between the Temporal Right and Frontal Right clusters. Lastly, Factor 4 

(TF5SF1) represents temporally (191-195ms) what would likely be the N1 and is represented by 

electrodes located on the base of the skull along the backline outside of any of the clusters, but is most 

closely related to the Temporal Right cluster. Factor 4 was also significant in the robust ANOVA 

evaluating amplitude differences between inhibited and active conditions indicating that it may be a valid 

measure of the N1 component. Like the factors produced for the oddball task, I will use these results to 

support the a priori selection of factors at each step in future studies to help better elucidate what these 

factors can tell us about change in cognitive function in older adults.  

 These PCA results provide a robust new avenue for exploration of electrophysiological attributes 

of healthy older adults and could be used to develop new methods for early identification of cognitive 

decline. The identification of individual factors that predict future activation one, two, or three years later 

could be instrumental in developing new methodology for clinicians to identify and track cognitive 

decline. 

Predicting Follow-up CANTAB Performance with Baseline Performance 

  The evaluation of CANTAB measures to predict themselves over time was highly significant, but 

if repeated in the future, reduction in collinearity should be explored. Even with high Condition Index 

levels, the VIF and tolerance factors remained low, and models were highly significant easily passing the 

conservatively adjusted p-value of .0003. RTI, PAL, SWM, and RVP at baseline all significantly 

predicted their counterpart at follow-up where poorer performance on the task at baseline predicts poorer 

performance at follow-up.   
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Conclusions 

 Specific Aim 3 became one of the most novel and learning-intensive explorations of the four aims 

due to the utilization of PCA methods that have not been used in this way previously. As a first step into 

exploring the predictive qualities of initial testing on future outcomes, the aim was a success. As noted, 

there are some methodological changes that I will make in future studies such as using these findings to 

develop an a priori approach to factor selection and the addition of additional ERP tasks that would add 

diversity in the types of waveforms present in the ERPs. The significant findings that indicate predictive 

quality of both ERP and CANTAB measures could prove promising for early intervention and treatment 

of MCD and the prevention of dementia. 

How does microbiome diversity relate to cognitive function in older adults? 

Behavioral and electrophysiological measures of cognitive function in older adults were 

investigated in relation to alpha diversity, a measure of the varieties of species in the gut-microbiome, to 

test the hypothesis that a relation exists between gut microbial diversity and cognitive performance. The 

results indicate that there is an association between behavioral measures (paired-associate learning and 

spatial working memory) and calculated alpha diversity of the gut microbiome, where poorer performance 

(indicative of cognitive dysfunction) predicted lower gut-microbiome diversity (Appendix C – Canipe, 

Sioda, & Cheatham, Submitted). The findings support the hypothesis that cognitive performance, as 

measured by a standardized behavioral assessment, is related, negatively, to poor microbial diversity in 

the gut. Furthermore, results indicate that there is a significant predictive relation between several 

electrophysiological cognitive measures and gut-microbiome diversity. 

The results indicate several significant findings. First, the minimum and mean amplitude of the 

negative deflection in the Frontal region of the ERPs of participants during the Target condition of a 

detection task significantly predict alpha diversity. The same relation is observed in the passive oddball 

task where the latency to the negative deflection in the Frontal Right cluster was shown to predict 

Shannon alpha significantly. Adding to the significant relation between Shannon alpha and brain activity 
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during the passive oddball task, the max and mean amplitude of the positive deflection for the Familiar 

condition in the Temporal Left cluster was also predictive of Shannon alpha. 

 One would expect the N1 component to be enhanced under conditions that require a decision, 

such as the detection task of the present study. As a result, individuals with better cognitive function 

(improved attention allocation) would be expected to have a higher peak amplitude of the N1 when 

identifying a target stimulus. The relation between alpha diversity of the microbiome and amplitude of the 

N1 for Target in the ERPs of participants suggests that individuals with greater amplitude (more negative) 

have greater microbiome diversity, supporting the hypothesis that increased microbial diversity in the gut 

relates to better cognitive function.  

  Better cognitive function as measured in the passive oddball paradigm during the selected 

window of the negative deflection (210-350 ms) is assumed to be an N2 and as such, would be indicated 

by shorter latency in the Familiar condition. In the present study, it was shown that an increase in latency 

to peak amplitude in the Familiar condition predicts a decrease in alpha diversity of the gut microbiome. 

This finding supports the hypothesis that microbial diversity in the gut is related to sustained attention.  

 Much like the N2 component, the overall existence or amplitude of a P3 should be higher for less-

probable novel events and small in amplitude or non-existent for the more probable familiar events. This 

observed outcome, however, is reliant on healthy cognitive function – the ability to successfully 

discriminate between stimuli via appropriate attentional orientation and effective visual memory storage 

and retrieval. Therefore, individuals experiencing cognitive decline might be expected to show increased 

latency to and amplitude of the P3 component, especially in the familiar condition. If this is true, during 

the passive oddball paradigm, older adults experiencing cognitive decline would have a higher maximum 

amplitude during the positive inflection window. Indeed, measures for mean amplitude from 350-1500ms 

during the Familiar condition predicted Shannon alpha, where an increase in both measures of amplitude 

predicted a decrease in gut-microbiome diversity. Again, this supports the hypothesis that gut-microbiome 

diversity relates to healthy cognitive function. 
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Finally, as part of presentation given at a nutrition conference (Appendix D), I showed that berry 

consumption significantly predicts microbiome diversity. In a free-living human sample, total servings of 

berries were positively associated with gut microbial diversity. Further, I confirmed associations between 

specific genera and polyphenols in controlled studies previously reported by others. The inclusion of 

berries in the daily diet may contribute to increases in the diversity of gut microflora, which in turn may 

lead to improvements in related health issues such as inflammatory disease and cognitive dysfunction. 

Future studies and analyses should aim at refining our understanding of the interplay among berries, 

influential gut microflora, and health outcomes. 

Significance 

  The interpretation of the findings suggests significant implications about the relation that exists 

between gut-microbiome diversity and healthy cognitive function. Conclusions of previous studies in 

humans suggested a relation between poor microbiome health and observed behavioral measures in 

individuals diagnosed with illnesses or taking medications known to impact the gut microbiome 

negatively, but specific measures of microbial disposition and measured cognitive or clinically quantified 

behavioral outcomes have been limited (Anderson et al., 2017; Bajaj et al., 2016; Bajaj et al., 2012; 

Caracciolo et al., 2014; Dinan et al., 2015). Animal models of microbiome diversity and behavior have 

revealed a clear link between specific gut bacteria and unique cognitive and behavioral outcomes (Bravo 

et al., 2011; Janik et al., 2016; Marchesi et al., 2016; O'Mahony et al., 2015; Sampson & Mazmanian, 

2015), but high levels of specificity in the individual microbes discovered to impact the gut-brain axis 

have made it challenging to translate useful predictions for humans (especially older adults). 

With this study, I have attempted to bridge this gap between loosely attributed relations among 

behavior and gut-brain interactions in humans and the understanding of the microbial impact on brain 

function observed in highly-controlled animal studies. The bridging of these gaps and previously 

disparate fields of science (psychology, neuroscience, microbiology, and bioinformatics) has been 

accomplished by combining clinically validated behavioral measures and electrophysiological measures 

of brain activity with robust quantification and characterization of gut-microbiome data collected from a 
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large cohort of older adults. The initial analysis of the data from this large cohort will contribute to the 

growing knowledge about the gut-brain axis. The present study is limited in that it has only evaluated a 

diversity metric, and further analyses of the dataset should be performed as improved knowledge of 

individual microbes becomes available. Without a doubt, however, the findings presented have revealed 

new hypotheses and future directions for impactful follow-up work. Most importantly, the work reported 

here is the first in a program of research that will add to our knowledge and ability to reduce the effects of 

age-related cognitive decline in our population by identifying individual biomarkers of cognition in 

healthy older adults.  

General Discussion and Conclusions 

The present study adds to our understanding of age-related cognitive decline by elucidating some 

of the measures of cognitive function sensitive to change and proving the validity of these tests to predict 

future outcomes. The study supports many ideas in the literature on cognitive decline and fills gaps in 

knowledge I previously identified by validating CANTAB and ERP and showing, for the first time, the 

use of a passive visual oddball paradigm with older adults. The utility of ERP in cognitive decline 

assessment has been strengthened as it has been validated with common clinical assessments of 

CANTAB and the MoCA, and a new technique for the longitudinal study of ERPs has been introduced 

with PCA analysis.  

The improved validation of visual ERP to identify and predict cognitive (dys)function in healthy 

older adults adds strength to previous results that indicated that auditory ERPs were effective predictors 

of MCD and different dementias. In the first and second specific aims, attributes of the visual ERP are 

effectively shown to relate to valid behavioral measures in the CANTAB, and will allow clinicians to 

better understand the activational aspects of patient’s brains during reaction time and memory tasks 

without costly and time-consuming brain imaging techniques like EEG. In Specific Aim 2 I further 

strengthen the validity of visual ERP and CANTAB to identify and predict cognitive decline by 

presenting relations between baseline and change scores of the global assessment the MoCA. As 

mentioned, validation to predict both baseline and change score of the MoCA could greatly improve our 
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ability for early identification of cognitive decline in presently healthy adults before atypical decline 

begins as well as reduce the burden and cost of unneeded tests by eliminating onerous testing on patients 

who do not need them. 

Also of critical importance in my study was the development of two new methodologies (PCA 

and gut-microbiome) not previously used in the study of age-related cognitive decline, especially in 

healthy older adults. First, the utilization of two-step PCA methods to compare to ERP timepoints had 

never been performed. This new method shows promise in the development of several new lines of 

investigation to use ERP attributes to identify and predict cognitive decline, possibly before it even begins 

on a measurable level. I plan to use the data collected from this initial method building step to develop 

new a priori hypotheses in future studies with older adults and publish these methods, and predictions to 

help grow the field.  

Furthermore, with this study, I have described and investigated some of the contributing factors to 

cognitive decline, the most important of which is the novel understanding provided by the newly defined 

relations between cognition and gut-brain interactions in healthy older adults. I add several new ideas to 

the body of literature that have not been directly investigated before, such as gut-microbiome diversity in 

free-living older adults. Cognitive decline is highly individualistic in its development and involves the 

influence of the many factors that can contribute to its progression. However, with proper early 

identification, and continued growth in knowledge of its influencers, we may succeed in slowing or 

stopping it in the population before it becomes a burden too significant for humanity to bear. 
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TABLES 

Table 1. Cohort Characteristics at Baseline 
   

N 92 
Age at baseline (years) 71.98 ± 4.21 
Sex (%) 

 

M 44.57 
F 55.43 

Race (%) 
 

White 96.77 
Black or African American 2.15 

American Indian/Alaskan Native 1.08 
Native Hawaiian or other Pacific Islander 0.0 

Marital Status (%)  
 

Single/Never Married 3.23 
Married 75.27 
Separated/Divorced 6.45 
Widowed 15.05 

Education (%) 
 

Less than high school degree 3.33 
High school degree 14.44 

Some college 30.00 
2 year college degree 11.11 
4 year college degree 23.33 
Master’s Degree 16.67 
Doctoral Degree 0.00 
Professional Degree 1.11 

Avg BMI 
  

Baseline 27.41 ± 3.85 
Avg MoCA Score 

 

Baseline 24.54 ± 2.49  
Avg Full IQ Score 

 

Baseline 106.18.2 ± 10.87 
Avg PASE Score 

 

Baseline 146.45 ± 62.27 
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Table 2. Chart of Assessments at Each Session 

Assessment Baseline Follow-up 
Time to 

collect 
Both Sessions 

    6m 18m 30m 

Medical History Questionnaire 113 92 10m 9 22 53 

Eye Test 113 - 3m - - - 

Demographic Questionnaire 113 - 3m - - - 

Montreal Cognitive Assessment 113 92 15m 9 22 53 

Multifactorial Memory Questionnaire 113 92 10m 9 22 53 

Self-report of Memory 113 92 5m 9 22 53 

Informant Report 113 92 - 9 22 53 

Generalized Anxiety Disorder-7 113 92 3m 9 22 53 

Patient Health Questionnaire 113 92 3m 9 22 53 

Anthropometric 

(Ht, Wt, Waist of Circumference) 
113 92 3m 9 22 53 

Blood pressure 113 92 5m 9 22 53 

Physical Activity Questionnaire 113 92 5m 9 22 53 

Stressful Life Event 113 92 5m 9 22 53 

3-day Diet Recall 113 92 30m 9 22 53 

Weschler Adult Intelligence Scale-IV 113 - 75-90m - - - 

Electrophysiological Paradigm/ ERP 113 92 45m 9 22 53 

CANTAB 113 92 45m 9 22 53 

iDXA 113 - 15m - - - 

Blood Draw 113 - 5m - - - 

Urine Collection 113 - 5m - - - 

Fecal stool sample collected - 68 ~1 wk* 8 12 43 

Number indicates number of individuals completing the assessment at each time point. * Fecal samples arrived on average 1 

week from the follow-up appointment. 
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Table 3. Model-building results from stepwise regressions   

 Variables Entered b SD p-Value Model R-Square 

Shannon 

Alpha 

Education .098 1.519 .139 .148 

Reaction Time (RTI) .070 64.284 .210 

Mean Time Success 

(SWM) 
-.248 1391.810 .029* 

Total Errors (PAL) -.293 22.635 .012* 

Mean Latency (RVP) -.025 71.672 .373 

* Significant at p < 0.05; R-squared: coefficient of determination; SD: standard deviation 
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Table 4. Model Building results from stepwise regressions  

 Variables Entered b SD p-Value Model R-Square 

Shannon 

Alpha 

Education .110 1.519 .279 .087 

Target mean amplitude 

FL 
.002 1.110 .131 

Target mean amplitude 

FR 
-.075 1.198 .127 

Target mean amplitude 

M 
.006 1.051 .038 

Target mean amplitude 

TL 
-.053 .870 .103 

Target mean amplitude 

TR 
-.021 .814 .093 

Target mean amplitude F .294 1.275 .021* 

Shannon 

Alpha 

Education .136 1.152 .339 .109 

Target minimum amplitude 

FL 
-.144 1.430 .469 

Target minimum amplitude 

FR 
.169 1.427 .335 

Target minimum amplitude M -.131 1.386 .734 

Target minimum amplitude 

TL 
-.091 1.417 .519 

Target minimum amplitude 

TR 
-.006 1.459 .968 

Target minimum amplitude F .330 1.819 .022* 

* Significant at p < 0.05; R-squared: coefficient of determination; SD: standard deviation 
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Table 5. Model Building results from stepwise regressions  

 Variables Entered b SD p-Value Model R-Square 

Shannon Alpha 

Education .118 1.532 .368 .089 

Familiar Negative Latency FL -.298 32.447 .871 

Familiar Negative Latency FR -.023 26.117 .024* 

Familiar Negative Latency M .062 28.162 .703 

Familiar Negative Latency TL -.057 39.937 .669 

Familiar Negative Latency TR .023 40.353 .862 

Familiar Negative Latency F .023 34.248 .894 

Shannon Alpha 

Education .136 1.532 .280 -.295 

Familiar Positive mean Amplitude FL -.144 1.067 .214 

Familiar Positive mean Amplitude FR .169 .996 .729 

Familiar Positive mean Amplitude M -.131 1.363 .437 

Familiar Positive mean Amplitude TL -.091 .641 .026* 

Familiar Positive mean Amplitude TR -.006 .876 .472 

Familiar Positive mean Amplitude F .330 1.896 .898 

Shannon Alpha 

Education .228 1.532 .084 .090 

Familiar Max Amplitude FL -.051 1.464 .695 

Familiar Max Amplitude FR .061 1.559 .640 

Familiar Max Amplitude M .126 1.661 .350 

Familiar Max Amplitude TL -.300 .8116 .023* 

Familiar Max Amplitude TR .182 1.253 .218 

Familiar Max Amplitude F .113 2.280 .428 

 * Significant at p < 0.05; R-squared: coefficient of determination; SD: standard deviation 
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FIGURES 

 

Figure 1: Passive Oddball Waveforms by Cluster 

 

 

 

 

 

 

 

 

 

 

Visual representation of the windows selected in Specific Aims 1,2, and 4 and referenced to factor 
locations in Specific Aim 3. Windows for passive oddball were 210-350 ms (N2) and 350-900 ms (P3), 
respectively.  Representations show the grand averaged (all participants) waveform data for the passive 
oddball task in each of the clusters represented in Appendix A; Frontal Left, Frontal Right, Frontal, 
Temporal Left, Temporal Right, and Midline.  
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Figure 2: Detection Task Waveforms by Cluster 

 

 

 

 

 

 

 

 

 

Visual representation of the windows selected in Specific Aims 1,2, and 4 and referenced to factor 
locations in Specific Aim 3. Windows for active detection task were 50-190 ms (N1) and 100-800 ms 
(P3), respectively. Representations show the grand averaged (all participants) waveform data for the 
detection task in each of the clusters represented in Appendix A; Frontal Left, Frontal Right, Frontal, 
Temporal Left, Temporal Right, and Midline. 
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Figure 3: Partial Regression Plot of Reaction Time and ERP Detection Task 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Partial regression plots visually represent the relations between the 5-choice reaction time task during the 
CANTAB and ERP attributes P3 (3A) and N1 (3B) during the detection task when controlling for 
education. As reaction time in the RTI task increases the mean amplitude of the negative deflection (N1) 
and maximum amplitude (P3) of the positive peak decrease; F(1,62) = 5.353 p = .024 adj. R2 = .066 b = -
.284, F(1,62) = 7.057 p = .002 adj. R2 = .163 b = -.369, respectively. 

A 

B 
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Figure 4: Partial Regression Plot of Reaction Time and ERP Oddball 

 

 

 

 

 

 

 

 

 

 

 

 

 

Partial regression plots visually represent the statistically significant relations between performance on the 
5-choice reaction time task in the CANTAB and ERP attributes, N2 and P3, during the passive oddball 
task when controlling for education. During the Novel stimulus, as reaction time increases the latency to 
the negative deflection (N2) decreases (4A) and the latency to the positive peak (P3) increases (4B). 
Furthermore, as reaction time increases the mean amplitude of the negative deflection (N2) decreases 
(4C).  F(1,75) = 4.026 p = .048 adj. R2 = .038 b = -.226, F(1,75) = 5.225  p = .025 adj. R2 = .044 b = .255, 
F(1,75) = 4.513  p = .037 adj. R2 = .044 b = -.238, respectively.   

A 
B

 

C 
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Figure 5: Partial Regression Plot of Spatial Working Memory and ERP Detection Task 

 

 

Partial regression plots visually represent the statistically significant relation between spatial working 
memory strategy score on the CANTAB and the latency to the P3 in two clusters during the ERP 
detection task when controlling for education. As strategy score on SWM increases, the latency to the 
positive peak (P3) increases in frontal and midline clusters. F(1,64) = 10.444 p = .002 adj. R2 = .127 b = 
.375, and F(1,64) = 5.414 p = .023 adj. R2 = .064 b = .279, respectively. 
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Figure 6: Partial Regression Plot of Spatial Working Memory and ERP Oddball Task 

 

 

Partial regression plots visually represent the statistically significant relation between spatial working 
memory strategy score on the CANTAB and the latency to and mean amplitude of the N2 during the ERP 
oddball task when controlling for education. As SWM strategy increases (poorer strategy use) latency to 
the negative deflection decreases and mean amplitude increases during the Familiar stimulus. F(1,78) = 
7.316  p = .008 adj. R2 = .074 b = -.293 & F(1,78) = 4.163  p = .045 adj. R2 = .038 b = -.225. 
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Figure 7: Partial Regression Plot of Rapid Visual Information Processing and ERP Detection  Task 

 

 

 

 

 

 

 

 

 

 

 

 

Partial regression plots visually represent the statistically significant relations between the latency to 
correct response in the RVP task in the CANTAB and N1 and P3 attributes of the ERP during the Target 
response of the detection task when controlling for education. As the mean latency to a response increases 
in the RVP task the minimum amplitude decreases (N1) and maximum amplitude (P3) increases (at 
frontal right and temporal right clusters). F(1,63) = 6.635 p = .002 adj. R2 = .148 b = -.294, F(1,64) = 
4.995 p = .029 adj. R2 = .058 b = .269, and F(1,64) = 14.983 p < .000 adj. R2 = .177 b = .269, 
respectively. 
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Figure 8: Partial Regression Plot of Rapid Visual Information Processing and ERP Oddball Task 

 

 

Partial regression plots visually represent the statistically significant relations between the mean latency 
to correct response during the RVP task of the CANTAB and the P3 attribute of the ERP during the 
passive oddball task when controlling for education. As the latency to response in RVP increases the 
mean amplitude of the positive peak (P3) and the maximum amplitude during a familiar stimulus 
increases. F(1,79) = 6.648  p = .012 adj. R2 = .066 b = .279 VIF = 1 CI = 10.245, F(1,79) = 7.829  p = 
.006 adj. R2 = .079 b = .3.  
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Figure 9: Relative Amplitude Intensity of PCA Factors During ERP Oddball Task  

 

 

 

 

 

 

Visual representation of relative amplitude intensity of the statistically significantly related PCA factors 
(p<0.001) from baseline to follow-up during the passive oddball task. Heatmaps are rescaled and 
rereferenced to the relative amplitude of the scalp at the individual factor’s temporal and spatial location. 
A) Familiar TF2SF1 B) Familiar TF2SF2 C) Familiar TF2SF3 D) Novel TF2SF1 E) Novel TF2SF2 

A B 

C D 

E 

Baseline Follow-up Baseline Follow-up 

Baseline Follow-up Baseline Follow-up 

Baseline Follow-up 
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Figure 10: Relative Amplitude Intensity of PCA Factors During ERP Detection Task 

 

 

Visual representation of relative amplitude intensity of the statistically significantly related PCA factors 
(p<0.001) from baseline to follow-up during the detection task. Heatmaps are rescaled and rereferenced to 
the relative amplitude of the scalp at the individual factor’s temporal and spatial location. A) Standard 
TF2SF3 B) Standard TF3SF3 C) Target TF1SF1 D) Target TF5SF1 

 

D 

A B 

C 

Baseline Follow-up Baseline Follow-up 

Baseline Baseline 
Follow-up 

Follow-up 



 

 88 

Figure 11: Partial Regression Plot of Alpha Diversity and Paired Associates Learning  

 

Partial regression plot visually represents the statistically significant relation between Shannon alpha 
diversity and performance on the paired associates learning (PAL) task (total errors made) when 
controlling for education. As the total number of errors on PAL increases alpha diversity decreases, 
p<0.05. 
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Figure 12: Partial Regression Plot of Alpha Diversity and Spatial Working Memory  

 

Partial regression plot visually represents the statistically significant relation between Shannon alpha 
diversity and performance on the spatial working memory task (mean time to success) when controlling 
for education. As mean time to success on SWM increases alpha diversity decreases, p<0.05. 
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Figure 13: Partial Regression Plot of Alpha Diversity and Minimum Amplitude During the Target 

 

Partial regression plot visually represents the statistically significant relation between Shannon alpha and 

the amplitude of the N1 attribute of the ERP during the detection task when controlling for education. The 

minimum amplitude for the Frontal cluster for the Target condition significantly predicted Shannon Alpha 

p<0.05. As the amplitude of the negative deflection increases alpha diversity also increases. 
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Figure 14: Partial Regression Plot of Alpha Diversity and Mean Amplitude During the Target 

 

Partial regression plot visually represents the statistically significant relation between Shannon alpha and 
the amplitude of the N1 attribute of the ERP during the detection task when controlling for education. The 
mean amplitude for the Frontal cluster for the Target condition significantly predicted Shannon alpha, 
p<0.05. As the mean amplitude across the window increased diversity also increased. 
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Figure 15: Partial Regression Plot of Alpha and Latency to the Negative Deflection During Familiar 

 

Linear regression plot visually represents the statistically significant relation between Shannon alpha and the 
latency to the N2 attribute of the ERP during the oddball task when controlling for education. The latency to 
the negative deflection for Familiar in the Frontal Right cluster significantly predicted Shannon alpha, p<0.05. 
As latency to the N2 increases alpha diversity decreases.  
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Figure 16: Partial Regression plot of Alpha and Max Amplitude During the Familiar Condition 

 

Partial regression plot visually represents the statistically significant relation between Shannon alpha and 
the amplitude of the P3 attribute of the ERP during the Oddball task when controlling for education. The 
maximum amplitude at the Temporal Left cluster predicted Shannon alpha during the Familiar condition, 
p<0.05. As the amplitude of the P3 increases alpha diversity decreases. 
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Figure 17: Partial Regression Plot of Alpha and Mean Amplitude During the Familiar Condition 

 

Partial regression plot visually represents the statistically significant relation between Shannon alpha and 
the amplitude of the P3 attribute of the ERP during the oddball task when controlling for education. The 
mean amplitude at the Temporal Left cluster predicted Shannon alpha during the Familiar condition, 
p<0.05. As the mean amplitude of the P3 increases alpha diversity decreases. 
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APPENDIX A: SENSOR MAP INDICATING CLUSTERS 

 

Sensor map showing the clusters used in analyses: FrontalZ (4,10, 11, 16, 18, 19), FrontalL 

(24,27,28,34,33), FrontalR (116, 117, 122, 123, 124), TemporalL (50, 46, 51, 47, 42, 52), TemporalR (93, 

92, 98, 97,102,101), and Midline (15, 16, 11, 6, VREF, 55). 
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APPENDIX B: GUT MICROBIOME SURVEY 
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APPENDIX C: CANIPE, SIODA, CHEATHAM
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APPENDIX D: POSTER PRESENTED AT BERRY HEALTH BENEFITS SYMPOSIUM 
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