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ABSTRACT

Arkopal Choudhury: Missing Data Imputation Using Machine Learning and Natural
Language Processing for Clinical Diagnostic Codes

(Under the direction of Michael R. Kosorok)

Imputation of missing data is a common application in supervised classification

problems, where the feature matrix of the training dataset has various degrees of miss-

ingness. Most of the former studies do not take into account the presence of the class

label in the classification problem with missing data. A widely used solution to this

problem is missing data imputation based on the lazy learning technique, k-Nearest

Neighbor (KNN) approach. We work on a variant of this imputation algorithm using

Gray’s distance and Mutual Information (MI), called Class-weighted Gray’s k-Nearest

Neighbor (CGKNN) approach. Gray’s distance works well with heterogeneous mixed-

type data with missing instances, and we weigh distance with mutual information (MI),

a measure of feature relevance, between the features and the class label. This method

performs better than traditional methods for classification problems with mixed data,

as shown in simulations and applications on University of California, Irvine (UCI) Ma-

chine Learning datasets (http://archive.ics.uci.edu/ml/index.php).

Data being lost to follow up is a common problem in longitudinal data, especially

if it involves multiple visits over a long period of time. If the outcome of interest is

present in each time point, despite missing covariates due to follow-up (like outcome

ascertained through phone calls), then random forest imputation would be a good

imputation technique for the missing covariates. The missingness of the data involves

more complicated interactions over time since most of the covariates and the outcome

have repeated measurements over time. Random forests are a good non-parametric
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learning technique which captures complex interactions between mixed type data. We

propose a proximity imputation and missForest type covariate imputation with random

splits while building the forest. The performance of the imputation techniques used is

compared to existing techniques in various simulation settings.

The Atherosclerosis Risk in Communities (ARIC) Study Cohort is a longitudinal

study which started in 1987-1989 to collect data on participants across 4 states in the

USA, aimed at studying the factors behind heart diseases. We consider patients at the

5th visit (occurred in 2013) and enrolled in continuous Medicare Fee-For-Service (FFS)

insurance in the last 6 months prior to their visit, so that their hospitalization diagnos-

tic (ICD) codes are available. Our aim is to characterize the hospitalization of patients

having cognitive status ascertainment (classified into dementia, mild cognitive disorder

or no cognitive disorder) in the 5th visit. Diagnostic codes for inpatient and outpatient

visits identified from CMS (Centers for Medicare & Medicaid Services) Medicare FFS

data linked with ARIC participant data are stored in the form of International Clas-

sification of Diseases and related health problems (ICD) codes. We treat these codes

as a bag-of-words model to apply text mining techniques and get meaningful cluster of

ICD codes.
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CHAPTER 1: INTRODUCTION

Missing data imputation has been an area of research for quite some time now. It

had been been first worked on by Donald B. Rubin and Roderick J.A. Little since the

1970s (Rubin 1977, Little and Rubin 1987). However most of the applications has

been on simple problems involving missing data where parametric models have been

chosen as a method of imputation and in most cases, the data matrix had just a few

missing values (the percentage of missingness was low). There has been relatively less

work done on imputation (substitution by estimation) of missing values by

non-parametric methods like nearest neighbors, principal components, trees, etc.

Non-parametric methods not only provide a flexible setting to apply the imputation

methods on, but also are less biased than parametric methods in general. The only

disadvantage suffered by non-parametric methods is the interpretability but it is

counteracted by the other advantages and thus we prefer to look at these methods.

The other setting where missing data imputation has not been worked out on is in

relation to supervised classification problems when the outcome variable is known.

Thus, we explore methods which will make use of the outcome variable while

imputing the values in the data matrix. In Chapter 2 of this manuscript we look into

the Class-weighted Gray’s k-Nearest Neighbor (CGKNN) technique, which is a

method of imputation for classification problems and works well for heterogeneous

mixed type data too. This technique takes the class variable into account while

imputing the data matrix in classification problem and this leads to better

classification performance after imputation of the data matrix.

We also look into longitudinal data cases where the measures of various
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covariates are missing over different time periods, but the outcome is present at each

time period. This is different from loss due to follow up as in the latter case, we

would have the outcome missing as well for later time periods. An example of the

former type of missingness would be the Atherosclerosis Risk in Communities (ARIC)

Study Cohort where 15,792 participants who took part in the 1st visit back in

1987-1989 across 4 states in the USA (ARIC investigators 1989) and only 6,538

people returned for the 5th visit in 2011-2013. Out of the 9,254 individuals who did

not come to the 5th visit, for a fraction of them, certain variables of interest could be

ascertained through phone calls. Diabetes is one such outcome measured in the 5th

visit for the 6,538 participants and some of the remaining 9,254 participants partially

lost to follow up. However, a lot of covariate information is missing for participants

whose diabetic status was ascertained through phone calls. There are not many

studies in non-parametric missing data imputation techniques in longitudinal studies.

We use a modified random forest technique using random splits (Ishwaran and Lu

2008) to impute the characteristics of the longitudinal dataset which has missingness

due to follow-up or other reasons, followed by a prediction of the outcome using a

suitable model. We are particularly interested in extending this idea from simulation

settings to measuring the prevalence of diabetes among the ARIC participants and

the factors which affect it, but due to the partial drop-outs, this measure would be

biased. We use the Out-Of-Bag (OOB) error estimate of random forests to compute

our imputation performance. The details of this is discussed in Chapter 3 which deals

with variety of random forest imputation techniques in longitudinal datasets..

Present day medication and insurance health care are run on ICD codes

(International Classification of Diseases and related health problems) which are

clinical diagnostic codes. We propose to transform these ICD-9 codes to a

bag-of-words model by treating them as text. In the ARIC dataset, we consider
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participants at the 5th visit and enrolled in continuous Medicare Fee-For-Service

(FFS) Insurance in the 6 months prior to their visit, so that their hospitalization

diagnostic (ICD-9) codes are available. Our aim is to distinguish between the

hospitalization of patients who have been diagnosed with dementia from those

without dementia at the 5th visit in the ARIC study, by clustering their

hospitalization diagnostic codes using text mining methods. The cognitive status

diagnosis is taken from the 5th visit of the ARIC study. Our initial clustering of ICD

codes using Non-negative Matrix Factorization (NMF) looks good when combined

with Gram Schmidt Orthogonalization. We hope to get meaningful patterns of

comorbidity preceding dementia using better text mining methods, to predict the

onset of the disease. The details of this is discussed in Chapter 5, which deals with

using natural language processing to cluster ICD codes in hospitalization records and

distinguish between the comorbidity patterns of the patients with and without a

dementia, before the official diagnosis of the disease.

The rest of this manuscript is organized as follows. A new method of missing

data imputation for classification problems used nearest neighbors is introduced and

shown in rigorous details in Chapter 2. A random forest based missing data

imputation technique for longitudinal datasets and its proposed application to the

ARIC dataset is described in Chapter 3. Chapter 4 deals with a new way of looking

into Clinical Diagnostic Codes by applying Natural Language Processing on them,

and we look into applying the techniques of text mining on Medicare FFS Insurance

enrolled patients of the ARIC cohort, in particular. The future work of each chapter

is mentioned in the discussion section at the end of each chapter.
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CHAPTER 2: MISSING DATA IMPUTATION FOR
CLASSIFICATION PROBLEMS

2.1 Introduction

Many of the commonly used classification algorithms such as Classification and

Regression Trees (CART) (Breiman et al. 1984) and Random Forests (Breiman 2001)

do not have rigorous techniques for handling missing values in training data. Ignoring

the datapoints with missing values and running the classification algorithm on

complete cases only leads to loss of vital information (Little and Rubin 2002). The

occurrence of missing data is one of the biggest challenges for data scientists solving

classification problems in real-world data (Duda et al. 2012). These datasets can come

from any walk of life, ranging from medical data (Troyanskaya et al. 2001) and survey

responses to equipment faults and limitations (Le Gruenwald 2005). The reason for

missingness can be human error in inputting data, incorrect measurements,

non-response to surveys, etc. For example, an industrial database maintained by

Honeywell, a company manufacturing and servicing complex equipment, has more

than 50% missing data (Lakshminarayan et al. 1999) despite regulatory requirements

for data collection. In wireless sensor networks, often due sensor faults, local

interference or power outage (Le Gruenwald 2005) we can encounter missing data. In

medical fields, patient health care records are often a by-product of patient care

activities rather than an organized research protocol which leads to significant loss of

information (Cios and Moore 2002). This leads to almost every patient record lacking

some values as well as each attribute/feature having missing values. More than 40%

of the datasets in the UCI Machine Learning Repository have missing values
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(Newman et al. 2008).

Classification problems are aimed at developing a classifier from training data so

that a new test observation can be correctly classified into one of the groups/classes.

The class membership is assumed to be known for each observation of the training set

whereas the corresponding attributes/features may have some missing values. The

test dataset consists of new observations having the corresponding features but no

class labels. The goal of the classification problem is to assign class labels to the test

set (Alpaydin 2009). In our problem setup, we assume that some of the features are

missing at random (MAR) for the training as well as the test dataset. One approach

to classification is ignoring the observations with missing values and building a

classifier. This is only feasible when the missingness is insignificant, however, and it

has been demonstrated that even with a 5% missingness, proper imputation increases

the classification accuracy (Farhangfar et al. 2008). We focus on imputation of

missing values in the training as well as the test dataset so as to improve the overall

performance of the classifier on the test data. Our proposed method takes into

account the class label during imputation of the training features, and this ensures an

overall improvement in classification.

The work related to missing data imputation can be divided into two categories,

single imputation and multiple imputation. Single imputation strategies provide a

single value for the missing datum. The earliest single value imputation strategy was

Mean Imputation (Little and Rubin 2002) which ignores the input data distribution

by imputing just one value for all missing instances of a feature. Other highly used

single imputation methods are hot deck and cold deck imputation (Little and Rubin

2002), C4.5 (Quinlan 1993) and prediction based models (Schafer 1997). C4.5 works

well with discrete data but not with numerical data, which has to be discretized to

apply the algorithm (Tsai et al. 2008). Prediction based models depend on the correct
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modeling of missing features and the relationship between them. Usually, incomplete

datasets obtained from studies cannot be modeled accurately. The problem with

single imputation techniques, in general, is they reduce the variance of the imputed

dataset. These techniques are unable to calculate the standard error or confidence

interval of the imputed values in the dataset. They are also very case-specific as they

can meaningfully impute data only when the model is known or when the data is

either numerical or discrete.

To solve the problems of single imputation, multiple imputation strategies

generate several imputed datasets from which confidence intervals can be calculated.

Multiple imputation is a process where several imputed datasets are created and the

variance between these datasets reflect their uncertainty measures (Rubin 1977,

Farhangfar et al. 2007). The earliest multiple imputation technique was the

Expectation-Maximization (EM) Algorithm (Dempster et al. 1977). The EM

Algorithm and its variants such as EM with bootstrapping (Honaker et al. 2011),

assumes a parametric density function which fails miserably for features without a

parametric density. A recent generalization of the EM Algorithm called Pattern

Alternating Maximization with Lasso Penalty (MissPALasso) (Städler et al. 2014) has

been applied to datasets with high dimensionality (p >> n), but also assuming

normality. Bayesian multiple imputation algorithms have been applied only to

multivariate normal samples (Li 1988, Rubin and Schafer 1990).

Regression Imputation (Gelman and Hill 2006) is also a popular multiple

imputation technique where each feature is imputed using other features as predictor

variables for the regression model. Sequential Regression Multivariate Imputation

(SRMI) improves upon this by fitting appropriate predictive regression models and

drawing values from the calculated model (Raghunathan et al. 2001). Incremental

Attribute Regression Imputation (IARI) constructs a sequence of regression models to
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iteratively impute the missing values and also uses the class label of each sample as a

predictor variable (Stein and Kowalczyk 2016). In Multiple Imputation using Chained

Equations (MICE), the conditional distribution of each missing feature must be

specified given the other features (Buuren and Oudshoorn 1999). It is assumed that

the feature matrix has a full multivariate distribution from which the conditional

distribution of each feature is derived. The full distribution need not be specified, as

long as the distribution of each feature is stated, a feature called fully conditional

specification (Buuren 2007). MICE can handle mixed types of data. It has options for

predictive mean matching, linear regression, binary and polytomous logistic

regression, etc., and uses the Gibbs sampler to generate multiple imputations.

However, for a given set of conditional distributions, a multivariate distribution may

not exist (Buuren et al. 2006). The ideas of MICE and SRMI are combined in the

MissForest approach (Stekhoven and Bühlmann 2011) which fits a random forest on

the missing feature, using the other features as covariates and then predicts the

missing values. This procedure is iterative and can handle mixed data, complex

interactions, and high dimensions.

Machine Learning techniques such as Fuzzy c-Means (Sefidian and Daneshpour

2019), Multilayer Perceptrons (MLP) (García-Laencina et al. 2013) and k-Nearest

Neighbors (KNN) (Batista and Monard 2002) are useful non-parametric approaches

to imputation of missing data. Various machine learning algorithms such as k-Nearest

Neighbors (KNN), Support Vector Machines (SVM) and decision trees have been used

in imputation by framing the imputation problem as an optimization problem and

solving it (Bertsimas et al. 2017). The Nearest Neighbor Imputation (NNI) approach

is simple since there is no need to build a predictive model for the data. The basic

KNN Imputation (KNNI) algorithm was first used for estimating DNA microarrays

with the contribution of the k-Nearest Neighbors weighted by Euclidean distance
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(Troyanskaya et al. 2001). The sequential KNN method was proposed using

cluster-based imputation (Kim et al. 2004), followed by an iterative variant of the

KNN imputation (IKNN) (Brás and Menezes 2007), both of which improves on

KNNI. The Shelly Neighbors (SN) method improves the KNN rule by selecting only

neighbors forming a shell around the missing datum, among the k closest neighbors

(Zhang 2011). The first significant work in improving KNN imputation for

classification based problems uses a Mutual Information (MI)-weighted distance

metric as a measure of closeness of a feature to the class label (García-Laencina et al.

2009). The method is called Mutual Information based k-Nearest Neighbor

(MI-KNN) Imputation. However, the distance metric used is Euclidean distance,

which does not perform well with mixed-type data (Huang and Lee 2006).

Alternatively, Grey Relational Analysis is shown to be more appropriate for capturing

proximity between two instances with mixed data as well as missingness. Based on

this, a Grey KNN (GKNN) imputation approach was built based on Grey distance

instead of Euclidean distance and it was shown to outperform traditional KNN

imputation techniques (Huang and Lee 2004, Zhang 2012). This grey distance-based

KNN imputation is weighted by mutual information between features (measure of

inter-feature relevance) and shown to outperform IKNN, GKNN and Fuzzy k-Means

Imputation (FKMI) (Li et al. 2004) in most settings, and is called the Feature

Weighted Grey k-Nearest Neighbor (FWGKNN) method (Pan et al. 2015). However,

this method does not take into account each feature’s association with the class label,

which is crucial when dealing with classification problems. The FWGKNN method

also assumes inter-dependency of features.

We propose a Class-weighted Grey k-Nearest Neighbor (CGKNN) imputation

method where we calculate the MI of each feature with respect to the class label in

the training dataset, use it for calculating the weighted Grey distance between the
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instances, and then find the k-Nearest Neighbors of an instance with missing values.

Using k-Nearest Neighbors, the missing value is imputed according to the weighted

Grey distance. Our contributions can be summarized as follows:

1. We use a combination of Mutual Information between each feature and the

classifier variable Y to weigh the Grey distance between instances in the feature

matrix X. This metric is suited for tuning out any unnecessary features for

classification and then finding the nearest neighbors relevant for imputation.

2. We solve an imputation problem with no underlying assumptions on the

structure of the feature matrix X except that the data is missing completely at

random (MCAR) or missing at random (MAR). Our method (CGKNN) is

non-parametric in nature and does not assume any dependence between the

individual features. This performs well even when the features are independent

of each other.

3. The proposed CGKNN imputation method is suited well for classification

problems where the training as well as the test datasets have missing values.

The feature matrix can be mixed-type, i.e., have categorical and numeric data.

Our method is suitable for mixed-data classification problems faced with

missing values. Moreover, our problem approach takes much less time to

initialize than the most similar alternative method, Feature Weighted Grey

k-Nearest Neighbor (FWGKNN).

The remainder of this paper is organized as follows. In Section 2, we review the

KNN imputation techniques used in previous work and then provide a detailed

outline of our method. We also discuss how it can be extended to the test dataset for

classification and also derive the time complexity of our algorithm. In section 3, we

test our proposed method against 6 standard methods in simulation settings. We
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evaluate our imputation method (CGKNN) in different simulation settings with

classification where we artificially introduce missingness. We compare it with

standard multiple imputation algorithms MICE and MissForest as well as the

previous KNN based algorithms, Iterative KNNI (IKNN), Mutual Information based

KNNI (MI-KNN), Grey KNNI (GKNN) and Feature-Weighted Grey KNNI

(FWGKNN). In section 4, we demonstrate how our algorithm performs with

classification tasks involving 3 UCI Machine Learning Repository datasets. We also

check for improvement of classification accuracy after imputation of the missing data.

Our method gives the best classification performance out of all evaluated methods.

We conclude with a discussion and scope for future work in section 5.

2.2 Methodology

In this section, we pose the missing data problem which is encountered in

classification tasks. We introduce the nearest neighbor (NN) approach and the

previous works done on implementing variations on the KNN imputation approach.

This is followed by the concepts of mutual information (MI) and grey relational

analysis (GRA) used by our method of Class-weighted Grey k-Nearest Neighbor

(CGKNN) imputation approach (Choudhury and Kosorok 2020). We then formalize

our imputation algorithm and calculate its time complexity.

2.2.1 Formulation of the Problem

Let X = {Xi}ni=1 be an n× p-dimensional dataset of n independent observations

with p features/attributes and Y a response variable of the class labels influenced by

X. We assume no dependence structure between the features in X. Let D be an

n× p-dimensional matrix indicating the missingness of corresponding values in the
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dataset X. In practice, we obtain a random sample of size n of incomplete data

associated with a population (X, Y,D), called the training data (Hastie et al. 2009)

used to train the classifier

D = {(Xi, Yi, Di)}ni=1, (2.1)

where all the class labels in {Yi}ni=1 are observed, Xi = (Xij)
p
j=1 = (Xi1, ..., Xip)

represents the p features of the i-th observation along with indicator variables

Di = (Dij)
p
j=1 such that

Dij =


0, Xij is missing

1, otherwise.
(2.2)

Without loss of generality, we can assume for each i, the observation Xi = (Xij)
p
j=1

contains p0 categorical features for j ∈ {1, 2, ..., p0} and p1 continuous features for

j ∈ {p0 + 1, ..., p0 + p1} such that p0 + p1 = p. Let the j-th categorical feature contain

kj different values and the j-th continuous variable representing the (p0 + j)-th

feature of Xi, indexed by j ∈ {1, ..., p1} take values from a continuous set Cj ⊂ R. For

each of the categorical features, we can map the kj different values to the first kj

natural numbers, such that Xi ∈ {1, ..., k1} × ...× {1, ..., kp0} × C1 × ...× Cp1 ⊂ Rp.

In this setting, we can assume that {(Xi, Yi)}ni=1 satisfy the model

Yi = g(Xi), i = 1, 2, ..., n, (2.3)

where g(.) is an unknown function mapping a p-dimensional number (belonging to a

subspace of Rp) to a discrete set G representing the class labels and Yi ∈ G . We

assume that G contains m values and thus the classification problem is based on m

classes.

The task of any classification algorithm is to use the training dataset
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{(Xi, Yi)}ni=1 to estimate g(.), which is referred to as ‘training’ a classifier ĝ(.). Given

a new set of ` observations, X ′ = {X ′i}`i=1, called the test dataset (Hastie et al. 2009),

the classifier predicts the corresponding class Y ′ = {Y ′i }`i=1 using Ŷ ′i = ĝ(X ′i). Note

that the test dataset X ′ can also contain missing values. Many classification

algorithms have been shown to perform better in terms of classification accuracy after

imputing the missing values in the feature matrix X (Farhangfar et al. 2008, Luengo

et al. 2012) and then training the classifier. In this paper, we propose a nearest

neighbor based imputation algorithm which is used to impute the missing values in X

and then train the classifier ĝ(.). The same algorithm can be extended to the test

dataset and impute the missing values in X ′.

In general, there are three different missing data mechanisms as defined in the

statistical literature (Little and Rubin 2002):

1. Missing Completely at Random (MCAR): When the missingness of X does not

depend on the missing or observed values of X. In other words, using D is as

defined in (3.2),

P (D|X) = P (D), for all X (2.4)

2. Missing at Random (MAR): When the missingness of X depends on the

observed values of X but not on the missing values of X. If we split the training

dataset X into two parts, observed Xobs and missing Xmis, then

P (D|X) = P (D|Xobs), for all Xmis (2.5)

3. Not Missing at Random (NMAR): When the data is neither MCAR or MAR,

the missingness of X depends on the missing values of X itself. This sort of

missingness is difficult to model as the observed values of X give biased
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estimates of the missing values.

P (D|X) = P (D|Xobs, Xmis) (2.6)

For our problem, we assume that the missing data mechanism of X is either MCAR

or MAR.

2.2.2 k-Nearest Neighbors (KNN) Imputation Algorithm

KNN is a widely used instance-based, lazy-learning algorithm (Wu et al. 2008).

The basic assumption behind instance-based learning methods is that the instances of

a dataset with missing values would lie “close” to other instances with similar

properties (Aha et al. 1991). The KNN approach has been extended to imputation of

missing data in various datasets (Troyanskaya et al. 2001). KNN imputation

techniques work well when the distribution of the dataset is unknown. The basic

algorithm works by calculating k nearest observations (out of the n− 1 possible

observations) from a particular observation with missing values. The distances are

calculated using pre-imputed values in each observation. After calculating the k

closest neighbors, mean of the other observations is used for imputation of continuous

features and mode is used for imputation of the categorical features. Note that we do

not create any predictive model in KNN imputation since it is an instance-based

learning algorithm. Observations with multiple missing values of different type

(continuous or categorical) can be imputed by KNN imputation.

2.2.2.1 Distance Metric for Mixed Data

Let there be two input vectors, Xa and Xb - whose features can be both

continuous as well as categorical. The Heterogeneous Euclidean Overlap Metric
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(HEOM) (Batista and Monard 2003), denoted as d(Xa, Xb), is defined as

d(Xa, Xb) =

√√√√ p∑
j=1

dj(Xaj, Xbj)2 , (2.7)

dj(Xaj, Xbj) =


1, Daj ∗Dbj = 0 from (3.2)

d0(Xaj, Xbj), Xj is categorical

dN(Xaj, Xbj), Xj is quantitative

(2.8)

d0(Xaj, Xbj) =


0, Xaj = Xbj

1, Xaj 6= Xbj

(2.9)

dN(Xaj, Xbj) =
|Xaj −Xbj|

max(X.j)−min(X.j)
, (2.10)

where max(X.j) means the maximum value of n observations of feature X.j and

min(X.j) means the minimum value of X.j when it is quantitative. The distance

ranges from 0 to 1 and also takes the value 1, when either of the observations are

missing.

There are two challenges in successfully implementing the KNN imputation

approach to missing data - selecting k and suitable neighbors. One obvious option is

choosing k using only non-missing parts (Kim et al. 2004). The algorithm moves

forward by artificially inducing missingness in the non-missing data and for various

values of k, it checks the predictive performance of imputing the artificial missing

data. The value of k with the least error in prediction of missing values is chosen. In

our proposed approach, we determine this parameter optimally using cross-validation

on an initially mean or mode imputed dataset (Stone 1974).
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2.2.2.2 KNN Imputation

Let us focus on the problem where the j-th input feature of Xi is missing (i.e.,

Dij = 0 from (2.2)) and has to be imputed. The distances from Xi to all other

instances ({Xk}nk=1,k 6=i) in the training set are computed using HEOM defined by

(2.7)-(2.10), the k-nearest neighbors are chosen with least distances. Let

AXi
= {a`}k`=1 represents the set of k-nearest neighbors of Xi arranged in increasing

order of its distance as defined by (2.7)-(2.10). The k-closest cases are selected after

instances with missing entries in the incomplete feature are imputed using mean or

mode imputation, depending on the type of feature (Troyanskaya et al. 2001).

After choosing k-nearest neighbors, the missing value imputation is estimated

from the feature values of AXi
. For continuous variables, the imputed value (X̃ij) is

X̃ij = (1/k)
∑k

`=1 a`j. The weighted version of this average is based Xi (Dudani 1976),

such that

X̃ij =

∑k
`=1w` a`j

k ∗
∑k

`=1w`
, w` =

1

d(Xi, a`)
2 , (2.11)

where w` denotes the corresponding weight of the `-th nearest neighbor a` and

d(Xi, a`) is as defined in (2.7)-(2.10).

For categorical or discrete variables, we impute the mode of the j−th feature of

{a`}k`=1 to X̃ij. This assumes all neighbors have the same importance in the

imputation stage (Troyanskaya et al. 2001). An improvement to this is assigning a

weight w` to each a`, with closer neighbors having greater weights. Using an approach

similar to a distance-weighted KNN classifier (Dudani 1976), a suitable choice of w` is

w`(Xi) =
d(ak, Xi)− d(a`, Xi)

d(ak, Xi)− d(a1, Xi)
, (2.12)

where d(., .) is defined in (2.7)-(2.10) and w` is assigned a value of 1 when
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d(ak, Xi) = d(a1, Xi), that is, all the distances are equal. Otherwise, for k (> 1)

neighbors, 0 ≤ w` ≤ 1. Suppose the j-th input feature X.j has V possible discrete

values with nv being the number of samples in AXi
whose j−th feature has value

v, v = 1, 2, ..., V . The weighted mode is chosen by the category v∗ calculated by the

category with the maximum weight in AXi
given by

v∗ = arg max
v

{
nv∑
`=1

w`(Xi)

}
. (2.13)
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Algorithm 1 Iterative KNN (IKNN) Imputation (García-Laencina et al. 2009)

Input: (X, Y,D) with X ⊂ Rn×p containing missing entries and Y the class labels.

Output: Imputed feature matrix X̃ with no missing values.

Procedure:

1. Initialization: Given the training dataset X, the missing values of p0 categor-

ical features are imputed by mode imputation and the missing values of the p1

continuous features are imputed by mean imputation using the observed data.

We call the initially imputed matrix X̃0.

2. Choosing k: We use this imputed matrix, X̃0, to calculate the optimum value

of k using 10-fold cross validation (Stone 1974) to minimize the misclassification

rate of predicting the class labels Y . This is the k used for choosing the nearest

neighbors.

3. Iterative Step: Consider the iteration number t (≥ 1). In the t-th iteration,

the imputed matrix X̃ t is obtained by imputing the missing continuous features

(with corresponding Dij = 0) using (2.11) and missing categorical features using

(2.12)-(2.13). This step is repeated until the stopping criteria is reached.

4. Stopping Criterion: We stop at the d-th iteration when a stopping criteria is

met. The stopping criteria we propose is

max
i,j:Dij=0

|X̃d
ij − X̃d−1

ij | < ε, (2.14)

where ε = 10−4 is the chosen accuracy level.
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2.2.3 Mutual Information (MI) for Classification

We can see that the above imputation algorithm does not consider the class label

Y while computing the k-nearest neighbors. We can solve this using an effective

procedure where the neighborhood is selected by considering the input feature

relevance for classification (García-Laencina et al. 2009). This input feature relevance

for classification is measured by calculating the Mutual Information (MI) between the

feature X.j and the class variable Y .

2.2.3.1 Notion of MI

Suppose a discrete random variable X has a probability density function (pdf)

given by p(x) = P (X = x) where x ∈ Support(X). The entropy of a random variable

X is given by

H(X) = −
∑

x∈Supp(X)

p(x) log p(x), (2.15)

where log has base 2 in information theory, with the unit of entropy being bits. Now

consider two random variables, X and Y . The joint entropy of X and Y is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y), (2.16)

where p(x, y) is the joint pdf of X and Y , both of them being discrete. The

conditional entropy for the same pair of variables is given by

H(Y |X) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x), (2.17)

where p(y|x) is the conditional pdf of Y given X.
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For continuous random variables, the entropy of X is defined by

H(X) = −
ˆ
x

p(x) log p(x) dx, (2.18)

and the joint and conditional entropy of continuous random variables X and Y is

given by

H(X, Y ) = −
ˆ
x

ˆ
y

p(x, y) log p(x, y) dy dx, (2.19)

H(Y |X) = −
ˆ
x

ˆ
y

p(x, y) log p(y|x) dy dx, . (2.20)

Mutual information (MI) is based on entropy and it quantifies the uncertainty of

X given Y . For discrete random variables X and Y it is

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (2.21)

and for continuous random variables it is

I(X;Y ) =

ˆ
x

ˆ
y

p(x, y) log
p(x, y)

p(x)p(y)
dx dy (2.22)

The entropy and MI satisfy the following relationship

I(X;Y ) = H(Y )−H(Y |X), (2.23)

which is the reduction of the uncertainty of Y when X is known (Kullback 1997) since

it can be re-written as I(X;Y ) = H(X) +H(Y )−H(X, Y ). Compared to the

Pearson correlation coefficient which only measures linear relationships, MI can

measure any relationship between variables (Kullback 1997). MI ranges from −1 to 1
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with MI being 0 for two independent variables.

2.2.3.2 Computation of MI in Classification Problems

Consider the class label Y for an m-class classification problem and let the

number of observations in the y-th class be ny such that n1 + n2 + ...+ nm = n, as

mentioned in (2.1). In terms of classification problems, we are interested in finding

the relevance of the j-th feature X.j with the class label Y , which is measured by

their Mutual Information (MI) given by

I(X.j;Y ) = H(Y )−H(Y |X.j), (2.24)

In this equation, we have to estimate H(Y ) and H(Y.j) to get Î(X.j;Y ). Note that Y

is always discrete and the entropy of class variable Y can be computed using (2.15) as

Ĥ(Y ) = −
m∑
y=1

p̂(y) log p̂(y), (2.25)

where we estimate p(y) by p̂(y) = ny/n. The estimation of H(Y |X.j) can be obtained

from (2.17) when X.j is discrete and from (2.20) when X.j is continuous. For discrete

feature variables, estimating the probability densities can be achieved by means of a

histogram approximation (Kwak and Choi 2002). We can estimate p̂(x, y) and p̂(y|x)

by histogram approximation to get

Ĥ(Y |X.j) = −
∑

x∈Supp(X.j)

m∑
y=1

p̂(x, y) log p̂(y|x), (2.26)

For continuous features, entropy estimation is not straightforward due to the

problem of estimation of p(y|x.j), where y is discrete and x.j is continuous. Note that
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we need to estimate the conditional density of x.j at the m classes represented by y

and not the joint density. We can use a Parzen window estimation approach to

estimate p(x.j) (Kwak and Choi 2002) given by

p̂(x.j) =
1

n

n∑
i=1

φ(x.j − xij, h), (2.27)

where φ(.) is the window function and h is smoothing parameter. Rectangular and

Gaussian functions are suitable window functions (Duda et al. 2012) and if h is

selected appropriately, p̂(x.j) converges to p(x.j) (Kwak and Choi 2002). We can

calculate p(x.j|y) using the Parzen window approach

p̂(x.j|y) =
1

ny

∑
i∈Iy

φ(x.j − xij, h), (2.28)

where Iy is the set of observations with class label y. Finally, we the use Bayes rule

and (2.27)-(2.28) to estimate p(y|x.j) as

p̂(y|x.j) =
p̂(x.j|y) p̂(y)

p̂(x.j)
, (2.29)

and then estimate H(Y |X.j) from (2.20) by replacing the integral by summation over

training observations and using p(x, y) = p(x) p(y|x) to arrive at

Ĥ(Y |X.j) = −
∑
x.j

p̂(x.j)

ny∑
y=1

p̂(y|x.j) log p̂(y|x.j). (2.30)

Using the Parzen window approach, along with (2.25) and (2.30), we can calculate the

Mutual Information from (2.24) between any feature X.j and the class variable Y ,

which measures the relevance of the feature X.j in classification. Using this, a weight

λj is assigned to each feature X.j in Mutual Information based KNNI (MI-KNN)
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(García-Laencina et al. 2009), such that

λj =
I(X.j;Y )∑p
j′=1 I(X.j′ ;Y )

, (2.31)

and then the distance between instances is calculated similar to (2.7):

dI(Xa, Xb) =

√√√√ p∑
j=1

λjdj(Xaj, Xbj)2, (2.32)

where dj(Xaj, Xbj) is as defined in (2.8). Using this feature relevance weighted

distance, replacing d with dI (from (2.32)) in (2.11)-(2.12), and following Algorithm 1,

we obtain the MI-KNN imputation algorithm (García-Laencina et al. 2009).

2.2.4 Grey Relational Analysis (GRA) based KNNI

Grey System Theory (GST) has been developed to tackle systems with partially

known and partially missing information (Deng 1982). The system was named grey

since missing data is represented by black whereas known data is white, and this

system contains both missing and known data. To obtain Grey-based k-nearest

neighbors, we used Grey Relational Analysis (GRA) in our algorithm which is

calculating Grey Distance between two instances. Grey distance measures similarity

of two random instances, which involves the Grey Relational Coefficient (GRC) and

the Grey Relational Grade (GRG).

Consider the setup in (2.1) where the training dataset has n observations and p

features. The Grey Relational Coefficient (GRC) between two instances/observation

Xa and Xb, when the j-th feature is continuous and observed for both instances, is

GRC (Xaj, Xbj) =
∆min + ρ ∆max

|Xaj −Xbj| + ρ ∆max

, (2.33)
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where ∆min = minc mink |Xak −Xck|, ∆max = maxc maxk |Xak −Xck|, ρ ∈ [0, 1]

(usually ρ = 0.5 is taken (Deng 1982)), b, c ∈ {1, 2, ..., n}, and, k, j ∈ {1, 2, ..., p} and

for categorical feature j, GRC(Xaj, Xbj) is 1 if they have the same values, 0

otherwise. If either Xaj or Xbj is missing, then GRC(Xaj, Xbj) is 0. The Grey

Relational Gradient (GRG) between the instances is defined as:

GRG(Xa, Xb) =
1

p

p∑
j=1

GRC(Xaj, Xbj), (2.34)

where a ∈ {1, 2, ..., n}. We note that if GRG(Xa, Xb) is larger than GRG(Xa, Xc)

then the difference between Xa and Xb is less than the difference between Xa and Xc,

which is the opposite of the Heterogenous Euclidean Overlap Metric (HEOM) (2.7)

defined in Section 2.2.2.1. The Grey Relational Gradient satisfies the following axioms

which makes it a distance metric (Deng 1982):

1. Normality: The value of GRG(Xa, Xb) is between 0 and 1.

2. Dual Symmetry: Given only two observations Xa and Xb in the relational space,

then GRG(Xa, Xb) = GRG(Xb, Xa).

3. Wholeness: If 3 or more observations are made in the relational space then

GRG(Xa, Xb) is generally not equal to GRG(Xb, Xa) for any b.

4. Approachability: GRG(Xa, Xb) decreases as the difference between Xaj and Xbj

increases, other values in (2.33) and (2.34) remaining constant.

GRA is generally preferred over metrics such as Heterogeneous Euclidean

Overlap Metric (HEOM) for grey systems with missing data (Huang and Lee 2004).

It gives us a normalized measuring function for both missing/available and

categorical/continuous data due to its normality. It also gives whole relational orders
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due to its wholeness over the entire relational space. So instead of d(Xa, Xb) in (2.7),

if we use GRG(Xa, Xb) to select the k-nearest neighbors and then proceed with the

KNN Imputation technique without using weights, then it becomes Grey KNN

(GKNN) Imputation (Zhang 2012).

2.2.5 Transformation of the Data

Before we apply our version of the algorithm, we make some transformation of

the continuous features contained in the training dataset, since we deal with a wide

variety of features whose ranges vary vastly. For example, the range of marks in a 10

point exam would be less than the range of marks for a 100 point exam, and both

these marks may be in the same training dataset. The distance metric and

subsequently the k-nearest neighbor would be biased unless the ranges of the

continuous variables are normalized. In our algorithm, we transformed the j-th

feature of observation Xi as

X ′ij =
Xij −minaXaj

maxaXaj −minaXaj

, (2.35)

where a, i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., p}. Thus (2.35) ensures all the continous

variables are between 0 and 1. Note that the distance metric associated with

categorical variables (Euclidean or Grey-based) lie within 0 and 1 as well.

2.2.6 The Proposed Class-weighted Grey k-Nearest Neighbor (CGKNN)

Algorithm

We consider the class weight λj associated with the j-th attribute X.j and use

this to weigh the Grey Relational Gradient (GRG) between two observations Xa and
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Xb as follows

GRG(Xa, Xb) =

p∑
j=1

λj GRC(Xaj, Xbj). (2.36)

Since GRG(Xa, Xb) increases for closer neighbors unlike the other distance metrices,

we use d(Xa, Xb) = 1−GRG(Xa, Xb) in section 2.2.2.2 and then measure the distance

between instances to choose the k-nearest neighbors, {a`}k`=1. From (2.11), we derive

that the corresponding weights of a` are

w` =
1

(1−GRG(Xi, a`))2
. (2.37)

Using these weights, we impute the continuous variables, and the new definition of

d(Xa, Xb) in (2.12)-(2.13) is used to impute the categorical variables for our

Class-weighted Grey KNN (CGKNN) Imputation Algorithm. The algorithm is:
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Algorithm 2 Class-weighted Grey k-Nearest Neighbor (CGKNN) Imputation

Input: (X, Y,D) withX ⊂ Rn×p containing missing entries and Y them class labels.

Output: Imputed feature matrix X̃ with no missing values.

Procedure:

1. Data pre-processing: First we transform the continuous features of X as

suggested by 2.2.5 using (2.35) so that their ranges equal 1.

2. Initialization: We use the class labels in Y to split X into {Xy}my=1. For each

class y, given Xy, we pre-impute the missing values of p0 categorical features by

mode imputation and the missing values of the p1 continuous features by mean

imputation using the observed data in that class. We call it X̃0.

3. Mutual Information: Calculate the mutual information or the class weights

λj of the attributes X.j using (2.24)-(2.31).

4. Choosing k: We use this imputed matrix, X̃0, to calculate the optimum value

of k using 10-fold cross validation by minimizing the misclassification rate.

5. Iterative Step: Consider iteration t (≥ 1) and class y. For each instance i in

the class y which has a missing value, calculate the GRG of that instance with

all other instances of the class y. We find the k nearest neighbors {v`}k`=1. Using

the weights w` as described in (2.37), the imputed matrix X̃y,t is obtained with

d(Xa, Xb) = 1 − GRG(Xa, Xb). This is repeated for each y until all missing

values are imputed to obtain X̃ t = {X̃y,t}my=1. If the stopping criterion is not

met, then the iteration on t continues.

6. Stopping Criterion: We stop at the d-th iteration when a stopping criteria is

met. The stopping criteria we propose is

max
i,j:Dij=0

|X̃d
ij − X̃d−1

ij | < 10−4, (2.38)

26



2.2.7 Time Complexity of the Algorithm

Consider the setup (2.1) with n observations, p features and m classes. The time

complexity for calculating the GRG in the biggest class containing (say) nj

observations is O(njp) and the average processing time for sorting the GRGs is

O(nj log nj). If we assume d iterations are taken for the algorithm to converge, then

the algorithm has a complexity of O(d n2
j p log nj) to impute an nj × p matrix. We do

this for m classes and thus the time complexity for imputing an n× p matrix is

O(md n2
j p log nj). Now, generally nj < n whenever m > 1, which implies

log nj < log n, and nj ∗m ≥ n since nj was the biggest class. This gives rise to the

inequality

O(md n2
j p log nj) < O(d n2 p log n).

We initially calculate the Mutual Information of each attribute with the class

variable, which takes O(n p) time along with the imputation of the mean/mode which

again takes O(p) time and choosing an optimum k which takes O(10 ∗ n p r) time if

we assume r values of k are tested using 10-fold cross-validation. So our total

complexity becomes O(md n2
j p log nj + np+ p+ 10npr) which can be approximated

to O(md n2
j p log nj) if the value of nj is large compared to r. We note that this time

complexity is similar to Grey KNNI (GKNN) and Feature-Weighted Grey KNNI

(FWGKNN) but less than the O(d n2 p log n) complexity of Iterative KNNI (IKNN)

and the Grey-Based Nearest Neighbor (GBNN) algorithm (Huang and Lee 2004).

2.3 Simulation Studies

In this section we explore the performance of our proposed Class-weighted

Grey KNN (CGKNN) algorithm in recovering missing entries and improving the

classification accuracy, and we report on computational efficiency of the algorithm.
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We compare our method with 6 other well-established methods which are as follows:

• MICE (Multiple Imputation using Chained Equations): The MICE

algorithm developed by Van Buuren and Oudshoorn (Buuren and Oudshoorn

1999) uses multiple imputation assuming that the columns of X are Fully

Conditionally Specified (FCS). We assume an imputation model for predicting

missing values in each variable, based on the other variables. Generally, for

continuous covariates, predictive mean matching is used for imputation. For

categorical covariates, logistic regression is used for unordered covariates and

proportional odds model for ordered covariates.

• MissForest: This is an iterative imputation method based on a random forest

developed by Stekhoven and Buhlmann (Stekhoven and Bühlmann 2011). This

non-parametric algorithm is basically similar to MICE except that each

predictive mode for imputation is random forest for both categorical and

continuous variables. This method has an inbuilt imputation error estimate

using the out-of-bag error estimate.

• Iterative k-Nearest Neighbor imputation (IKNN): In this method, k

nearest instances are computed from the instance with a missing value, using

Euclidean Distance as metric. Initial imputation is done using mean or mode

imputation, followed by a calculation of the weighted mean or mode of the k

nearest neighbors for each missing attribute. This process is done iteratively

until the matrix is imputed with convergence between successive iteration steps.

• Mutual Information based k-Nearest Neighbor imputation

(MI-KNN): Mean or mode imputation is used as a preliminary estimate in

this approach. We measure the relevance of each feature in the classification

problem similar to the approach described in (2.2.3), and uses a weighted
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Euclidean distance to measure the distance between instances, with the mutual

information being the weights (García-Laencina et al. 2009). All imputed

instances and all complete instances are considered to be known information for

estimating missing values iteratively. The missing values are then imputed

based on the weighted mean or mode of the nearest neighbors.

• Grey k-Nearest Neighbor imputation (GKNN): We use mean or mode

imputation for an initial imputed matrix. This imputation method uses GRA to

calculate the distance between instances and thus calculate k nearest neighbors

for missing value imputation (Zhang 2012). The dataset is divided into separate

parts based on the class label and imputation method is simultaneously

performed on each of them. The imputed values are again weighted mean or

mode of the k nearest neighbors, with the distances and weights calculated by

GRA.

• Feature Weighted Grey k-Nearest Neighbor (FWGKNN): This

approach employs Mutual Information (MI) to measure inter-feature relevance

in the X matrix. It then uses a weighted version of GRA to find the distance

between instances and weighs them by the inter-feature relevance (Pan et al.

2015). The difference between FWGKNN and our CGKNN algorithm is that

the mutual information is computed between the class variable Y and the

features X.j in our algorithm whereas it is I(X.i, X.j) for the FWGKNN

algorithm. Our approach is focused towards classification relevance instead of

inter-feature relevance.
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2.3.1 Performance Measure

We measure the performance of each algorithm according to the following

metrics:

• Root mean square error (RMSE): This measures how accurate or precise

the imputation algorithm is as follows:

RMSE =

√√√√ 1

np

n∑
i=1

p∑
j=1

(Xij − X̃ij)
2
, (2.39)

where ei is the true value, ẽi is the imputed value of the missing data, and m

denotes the number of missing values.

• Classification accuracy (CA): We develop the imputation algorithm to assist

in classification. After imputation of the dataset X, it is used in a suitable

classification algorithm, whose accuracy is defined intuitively as follows:

CA =
1

n

n∑
i=1

I(Ỹi = Yi), (2.40)

where n is the number of observations of X, Ỹi is the predicted class value, Yi is

the actual class value and I(.) is the indicator function.

2.3.2 Simulation Scenarios:

2.3.2.1 Missing Completely at Random (MCAR) Example

We use an artificial example to demonstrate the effect of mutual information

with the class variable while selecting the k-Nearest Neighbors. We took a separable

example with four cubes drawn in a three dimensional space. Fig. 4.7 shows this
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artificial problem. Two cubes belong to class 1, and they are centered on (0, 0, 0) and

(−0.2,−0.4, 0.4). The remaining two cubes are labeled with the class 2, being

centered on (−0.6,−0.6, 0.5) and (0.4,−0.2,−0.2). In all the cubes, the width is equal

to 0.20, and they are composed of 100 samples which are uniformly distributed inside

the cube. In this problem, the MI values between the three attributes and the target

class are computed: 0.69 for x1, 0.67 for x2, and 0.38 for x3.

Figure 2.1: 3D Centers of Each Class Represented Without Noise Variables

To this 3 dimensional, 2 class dataset we add 20 U[-1,1] variables. For these

irrelevant variables, the MI between the feature and class variable is almost 0. We try

to find out what happens when we add irrelevant attributes to classification. We

insert 10% and 20% of missing data to x1, which is most relevant according to MI.

The missingness of data in x1 is generated completely at random, which means it does

not depend on the variable values in the matrix X.

This advantage is clearer for higher percentages of missing values, as it is shown

by the differences in Table 1. The class weighting procedure based on the MI concept
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discards the irrelevant features, and the selected neighborhood for missing data

estimation tends to provide reliable values for solving the classification task. We

provide a detailed analysis of how all the 6 algorithms performed in this simulation

setting with n = 400, p = 23 and m = 2 classes in Table 2.1. Note that we used

predictive mean matching as the imputation model for MICE. We also

Table 2.1: RMSE Upon Convergence for the Toy Dataset

Missing Rate MICE MissForest IKNN MI-KNN GKNN FWGKNN CGKNN
10% 0.2067 0.0915 0.2585 0.1023 0.2443 0.1155 0.0983
20% 0.3847 0.1943 0.3746 0.1852 0.3372 0.1803 0.1598

We empirically show the convergence of the nearest neighbor-type algorithms by

plotting the RMSE against the iterations for the various algorithms in the case where

10% of the data is missing completely at random. The number of iterations plotted in

Figure 3.2 is the maximum iterations taken by all of the algorithms to converge.

Figure 2.2: Convergence of RMSE for Nearest Neighbors Algorithms at 10% MCAR
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We also calculated the classification accuracy using the Naive Bayes method on

the non-imputed and imputed datasets with 10% and 20% missing data, with the help

of 10-fold cross validation process, using 80% of the data as training data. The

resulting improvement in accuracy for both the cases is highest for our CGKNN

Algorithm, as shown in Table 2.2.

Table 2.2: Classification Accuracy (%) for the Toy Dataset

Missing Rate 10% 20%
No Imputation 90.44 85.29

MICE 91.91 86.76
MissForest 92.65 91.18

IKNN 89.71 87.82
MI-KNN 92.11 90.24
GKNN 90.20 89.20

FWGKNN 92.19 90.84
CGKNN 92.92 91.93

2.3.2.2 Missing at Random (MAR) Example

For this section, we illustrate how our method performs with respect to the six

other techniques. We simulate our data from the multivariate normal distribution and

then artificially introduce missingness in the data, at random (MAR), by letting the

probability of missingness depend on the observed values. We take the number of

classes m = 4, the number of attributes p = 5 and generate n = 100 observations for

each class. Specifically,

X
(k)
i ∼ N(µ(k),Σ(k)), i = 1, 2, ..., 100, k = 1, ..., 4,

where k stands for the k−th class, µ(k) ∼ U [−1, 1]5 ∀ k and Σ(k)’s are randomly

generated 5 ∗ 5 positive definite matrices using partial correlations (Joe 2006). This

simulation procedure ensures us that we do not have the same mean and variance for
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two different classes during simulation. Also, the missingness is induced using a

logistic model on the missingness matrix D. In real life, we often encounter covariates

which are demographic in nature and thus non-missing. For this example, we assume

X
(k)
i1 , X

(k)
i2 and X(k)

i3 to be non-missing and the missingness of X(k)
i4 and X(k)

i5 to be

dependent on these demographic, non-missing variables, for each class k. Recall the

n ∗ p missing matrix D, which we modify to a layered 3D matrix D(k), k = 1, .., 4 with

n ∗ p ∗m entries. We assume D(k)
i1 , D

(k)
i2 , D

(k)
i3 to be all 1 and

D
(k)
i4 ∼ Ber(expit(p11 + p21 ∗X(k)

i1 + p31 ∗X(k)
i2 + p41 ∗X(k)

i3 )), (2.41)

D
(k)
i5 ∼ Ber(expit(p12 + p22 ∗X(k)

i1 + p32 ∗X(k)
i2 + p42 ∗X(k)

i3 )) (2.42)

where expit(x) = ex

1+ex
and p′ijs are vectors of size p = 5 chosen by us.

We provide a detailed analysis of how all the 6 algorithms performed in this

simulation setting with n = 100, p = 5 and m = 4 classes in Table 2.3. Note that we

used predictive mean matching as the imputation model for MICE. The plot for

empirical convergence of the nearest neighbors algorithms are given in figure 2.3 when

there is 20% missing data.

Table 2.3: RMSE Upon Convergence for the Toy MAR Dataset

Missing Rate MICE MissForest IKNN MI-KNN GKNN FWGKNN CGKNN
10% 0.1301 0.0902 0.1407 0.1071 0.1299 0.1229 0.0887
20% 0.2084 0.1177 0.1750 0.1423 0.1508 0.1196 0.1075

We also calculated the classification accuracy using the Naive Bayes method on

the non-imputed and imputed datasets with 10% and 20% missing data, with the help

of 10-fold cross validation process. The resulting improvement in accuracy for both

the cases is highest for our CGKNN Algorithm, as shown in Table 2.4.
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Figure 2.3: Convergence of RMSE for Nearest Neighbors Algorithms at 20% MAR

Table 2.4: Classification Accuracy (%) for MAR Dataset

Missing Rate 10% 20%
No Imputation 75.13 72.50

MICE 79.09 77.32
MissForest 83.75 80.11

IKNN 85.48 83.91
MI-KNN 88.26 86.37
GKNN 86.38 84.12

FWGKNN 89.01 87.30
CGKNN 90.29 87.31

2.4 Applications to UCI Machine Learning Repository Datasets

We evaluate the effectiveness of our imputation algorithm on 3 datasets obtained

from UCI Machine Learning Repository (Newman et al. 2008), the Iris (Fisher’s Iris

Dataset), Voting and Hepatitis datasets, having respectively, characteristics

mentioned in Table 2.5.
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Table 2.5: Characteristics of the UCI Datasets Used for Data Analysis

Dataset Instances Features Classes Feature type % Missing Rate
Iris 150 4 3 Continuous 0

Voting 435 15 2 Categorical 4.14
Hepatitis 155 19 2 Mixed (both) 5.39

We represent the Mutual Information (MI) of each feature in these datasets in the

graphs shown in Fig. 2.4 - 2.6, and use it as the weights for our CGKNN algorithm.

Figure 2.4: MI for the Sepal and Petal Lengths and Widths of Iris Dataset

Figure 2.5: MI for Voting Dataset
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Figure 2.6: MI for Hepatitis Dataset

We then introduce 3 different rates of artificial missingness at random (MAR) -

5%, 10% and 20%. Then we run each of the imputation algorithms and calculate the

RMSE of imputation after each algorithm converges. For MICE, we used predictive

mean matching for continuous variables and polytomous logistic regression for

categorical variables. Looking at Table 2.6 - Table 2.8 note that in almost all cases,

our algorithm CGKNN performs better than the other algorithms, usually at higher

percentages of missing values. MICE performs the worst in most cases, followed by

MissForest, probably because they do not take into account any sort of feature

relevance.

Table 2.6: Comparison of RMSE of Iris Dataset

Missing Rate MICE MissForest IKNN MI-KNN GKNN FWGKNN CGKNN
5% 0.0729 0.0619 0.0588 0.0503 0.0534 0.0506 0.0509
10% 0.1205 0.1302 0.1107 0.1025 0.1038 0.0995 0.0950
20% 0.1427 0.1420 0.1241 0.1146 0.1246 0.1106 0.1001

We use a Naive Bayes classifier on the Iris dataset with 5% - 20% missingness

and see that our CGKNN algorithm outperforms the closest approach FWGKNN and

also GKNN, when used as an imputation approach before the classifier. The CGKNN
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Table 2.7: Comparison of RMSE of Voting Dataset

Missing Rate MICE MissForest IKNN MI-KNN GKNN FWGKNN CGKNN
5% 0.0928 0.0919 0.0874 0.0791 0.0820 0.0770 0.0779
10% 0.1029 0.1002 0.0949 0.0870 0.0929 0.0868 0.0827
20% 0.1521 0.1601 0.1574 0.1446 0.1099 0.1088 0.1049

Table 2.8: Comparison of RMSE of Hepatitis Dataset

Missing Rate MICE MissForest IKNN MI-KNN GKNN FWGKNN CGKNN
5% 0.0913 0.0890 0.0785 0.0711 0.0792 0.0739 0.0714
10% 0.1029 0.1002 0.1107 0.0870 0.1038 0.0994 0.0921
20% 0.1967 0.1858 0.1592 0.0839 0.0980 0.0898 0.0823

algorithm also converges quite fast with respect to classification accuracy as shown in

Fig. 2.7.

Figure 2.7: Classification Accuracy for the Iris Dataset at (a) 5% (b) 10% and (c)
20% Rates of Missingness After Using NN Imputation
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2.5 Discussion

Missing data is a classical drawback for most classification algorithms. However,

most of the missing data imputation techniques have been developed without taking

into account the class information, which is always present for a supervised machine

learning problem. k-Nearest Neighbors is a good technique for imputation of missing

data and has shown to perform well against many other imputation procedures. We

have proposed a method which not only takes into account the class information, but

also uses a better metric to calculate the nearest neighbors in KNN imputation. Our

Class-weighted Grey k-Nearest Neighbor (CGKNN) approach has same time

complexity as the previous algorithms and even better than some KNN imputation

algorithms like Grey-Based k-Nearest Neighbor (GBNN) and Iterative k-Nearest

Neighbor (IKNN) imputation. We have shown that it outperforms all the other

algorithms in simulated settings, as well as high rates of missingness in actual

(non-simulated) datasets as far as imputation is concerned. We also show that it

improves the accuracy of classification better than other imputation procedures. We

do not make any assumptions regarding the variables of the feature matrix and thus,

for any classification problem, our method can be used to impute missing data in the

feature matrix.

However, an open problem is the selection of k in our nearest neighbors approach

and we have chosen it through cross-validation and this method takes time. The

reason why k is difficult to predict is because we do not have anything to validate the

true value of k in our datasets. A potential future research could be to select the

value of k in a smart, effective manner without involving cross-validation. Our

algorithm has not been theoretically proven to converge, although it has been shown

empirically. Finding the rate of convergence of our CGKNN algorithm is a good
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theoretical problem to consider.

Another potentially interesting future research topic would be to extend this idea

to regression problem where the outcome Y is continuous instead of categorical. The

imputation of the data matrix X could be done with the help of information from Y

since they are assumed to be related in a regression setting. We could also look into

better methods of measuring the relationship between the features and class variable

than mutual information (MI) and then use them as weights for the Grey distance.

Another potential future research paper is to develop an algorithm which imputes and

classifies simultaneously, thus yielding a better classification in a single step instead of

imputation and classification at two different stages. This idea has already been

worked on in Learning Vector Quantization (LVQ) (Villmann et al. 2006) but can be

vastly improved.

The most difficult challenge, however, to find imputation techniques when the

data is Not Missing at Random (NMAR). It is difficult to model this setting without

making strong assumptions, and much development is still possible in that area. The

main difficulty is to tackle the problem without assuming anything that may cause a

bias - and that is not possible. Hopefully, new ideas will crop up in the future which

will make NMAR problem easier to handle.

40



CHAPTER 3: RANDOM FOREST IMPUTATION OF MISSING
COVARIATES FOR LONGITUDINAL DATA MODELS

3.1 Introduction

Longitudinal studies are prone to huge losses or missingness in terms of the

number of participants due to follow up. Particularly in older populations, the reason

for this loss to follow up is death. The other reasons may be serious like loss of

mobility, shifting to a different part of the country, loss of memory or may be trivial

like non-compliance. For all reasons other than death, the participants may be called

up to partially recover the data, without a proper physical visit. An example is the

Atherosclerosis Risk in Communities (ARIC) Study Cohort where there are 15,792

participants who took part in the 1st visit back in 1987-1989 across 4 states in the

USA (ARIC investigators 1989) and only 6,538 people returned for the 5th visit in

2011-2013, which represents just 41.7 % of the original number of participants. For

these 6,538 participants, diabetes was an outcome which was universally measured

and a lot of other covariates were taken like blood pressure, glucose levels, etc. But

these covariates had some missingness due to non-response (during the visit), storage

problems or fault of the data collector. For the remaining 9,254 participants, those

who were alive were called up to partially collect data on covariates for which physical

visit was not needed. Diabetes status was ascertained for some of these 9,254 patients

lost to follow-up, along with a few covariate values. However, most covariate values

could not be recorded.

We are interested in dealing with longitudinal data where the outcome of interest

is measured at each timepoint, but covariate values are missing at various timepoints
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for some of the participants due to lack of a physical visit or other data recording

problems. As shown in many studies (Enders 2010), ignoring observations with

missing values and going ahead with the inference problem to be addressed leads to a

loss of power and information. Some imputation problems are only for continuous

data (Aittokallio 2009) whereas many parametric imputation techniques have a high

computational complexity (Liao et al. 2014). Most of the parametric techniques have

a bias associated with it if the model is misspecified. To ease the restrictions, fully

conditional specification of the covariates had been used, but it is not easy to specify

for complicated interactions (Bartlett et al. 2015).

Due to the complexities of dealing with imputation parametrically,

non-parametric techniques of imputation has been primarily developed in recent

years, for longitudinal studies. Machine learning methods in particular have been

explored among non-parametric methods. Not much research has been done into

imputing missing data using random forests for a longitudinal study model. Most of

the erstwhile research on missing data imputation for longitudinal models has been

parametric or very heuristic in nature like maximum likelihood based parametric

methods and EM based algorithms (Ibrahim and Molenberghs 2009), hot and cold

deck imputation (Spratt et al. 2010) and predictive mean matching (PMM) and a

combination of logistic at item level and multivariate normal regression at class levels

(Nooraee et al. 2018). An application of missing data imputation for longitudinal

datasets in the ARIC study was done for the lung function capacities of black and

white people of the cohort over visits 1 and 5 (Mirabelli et al. 2016), and the method

for multiple missing data imputation used was inverse probability weighting (IPW) on

the condition-of-being-alive method that was used to estimate the lung function

decline and to construct weights that depend on the probability of dropout among

those participants who are still alive, while removing the possibility at risk for
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dropout those who died before being examined at the next ARIC visit.

The first research done in machine learning-based imputation of longitudinal

data was using Partial Logistic Artificial Neural Network (PLANN) regularised within

the evidence-based framework with Automatic Relevance Determination (ARD),

together known as PLANN-ARD (Fernandes et al. 2008). For the simplicity and

robustness of non-parametric methods, machine learning methods have been often

preferred in missing data imputation. A promising approach can be random forests,

developed first by Tin Kam Ho and then worked on by Breiman (Breiman 2001) and

patented on by Adele Cutler (3185828).

Random forests have a huge advantage over traditional machine learning

algorithms because it is comparatively faster to train, addresses complicated

non-linear interactions, handles mixed data type and can easily scale to high

dimensions without over-fitting. Random forest as an imputation technique has been

studied before. The performance of the imputation technique is given by the

Out-of-Bag (OOB) error of the RF models used in imputation. The first stride in

random forest imputation was using the proximity algorithm by the R-package

randomForest developed from Breiman’s original idea (Liaw et al. 2002). The next

approach in this area was using “on-the-fly imputation” algorithm which involves

growing a survival tree simultaneously while imputing the missing values in the

dataset (Ishwaran and Lu 2008). The third approach involves unsupervised learning

in the imputation problem, where each covariate is treated as a dependent variable

which is the outcome of a random forest grown from the other covariates. This

approach is called missForest (Stekhoven and Bühlmann 2011) and is quite popular

since it has been shown to outperform MICE and IKNN (Iterative k-Nearest

Neighbors) algorithms.

We propose to use the various types of random forest imputation techniques by
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using random splits while growing the tree to increase the computational speed of the

methods (Tang and Ishwaran 2017). We apply various random forest imputation

methods to simulated longitudinal datasets with datapoints missing both completely

at random (MCAR) and at random (MAR). We compare the performance with

traditional non-parametric imputation techniques like MICE (Buuren and Oudshoorn

1999) and iterative kNN (IKNN) (Troyanskaya et al. 2001).

The remainder of this chapter is organized as follows. In Section 2, we formally

state the problem of missingness in longitudinal data and then propose the various

imputation techniques using random forests. We shall show the variant of random

forest imputation which we propose for longitudinal data. In Section 3, we test our

proposed imputation methods, including their randomized versions, against MICE

and Iterative kNN (IKNN) imputation in various simulation settings with data

missing completely at random and at random. We check how our method performed

against all the other methods. We conclude with a discussion of application to the

ARIC dataset and scope for future work in Section 4.

3.2 Methodology

3.2.1 Formulation of the Problem

As stated before, we deal with longitudinal datasets where the response is

observed or recorded for each timepoint either by a physical visit or phone call. Due

to various reasons, the covariate values may be missing partially or wholly for a few

participants at certain timepoints. Let X = {Xijk}ni=1 be the n× t× p data matrix

where Xijk represents the k-th covariate of the i-th subject/individual at time point j.

We assume there are n individuals, p covariates and t time points. Similarly,

Y = {Yij}ni=1 is the n× t response matrix where Yij represents the i-th subject
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response at time point j. Y can be a continuous or categorical variable observed

across t timepoints. There are n subjects for t time points. We consider the

longitudinal data {(Xijk, Yij)}ni=1 with n subjects. We assume the following model to

be satisfied by the data

E(Yij|Xij) = f(Xij), i = {1, 2, ..., n}, j = {1, 2, ..., t}, (3.1)

where f(.) is a continuous or categorical real-valued function, Xij = {Xijk}pk=1 has

missing entries and Y is completely observed. Now, there may be demographic

covariates in X which do not change with time and are recorded for each of the n

subjects in the initial visit. We still make t copies of these demographic variables so

that the data matrix X has a dimension of n× t× p and is easier for notation - but it

will be treated differently during imputation as we will soon explain.

We denote the missing entries in the data matrix X by the indicator matrix

D = {Dijk}ni=1 with same dimensionality as X and

Dijk =


0, Xijk is missing

1, otherwise.
(3.2)

We assume the data matrix contains mixed-type data. Without loss of generality, we

can assume for each (i, j) pair, the subject Xij = {Xijk}pk=1 contains p0 categorical

features for j ∈ {1, 2, ..., p0} and p1 continuous features for j ∈ {p0 + 1, ..., p0 + p1}

such that p0 + p1 = p. Let the j-th categorical feature contain kj different values and

the j-th continuous variable representing the (p0 + j)-th feature of Xi, indexed by

j ∈ {1, ..., p1} take values from a continuous set Cj ⊂ R. For each of the categorical

features, we can map the kj different values to the first kj natural numbers, such that

Xij ∈ {1, ..., k1} × ...× {1, ..., kp0} × C1 × ...× Cp1 ⊂ Rp.
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We assume that the data is missing at random (MAR), that is, the distribution

of D does not depend on the missing values in X but rather the observed values,

P (D|X) = P (D|Xobs), for all Xmis (3.3)

We propose tree-based approaches to impute the n× t× p data matrix X, since

it will have complicated interactions between the p dimensional covariates

{Xij}, i = 1, 2, ..., n, j = 1, 2, ..., t.. Decision trees divide the feature matrix intuitively

into classes and assigns a predicted value to each partition (Friedman et al. 2001).

Classification and Regression Trees (CART) have been built in 1984 (Breiman et al.

1984) as a reproducible method to use decision trees to model the outcome variable.

We then move on to random forest (RF), first introduced by Tin Kam Ho (Ho 1995),

and later developed by Leo Breiman (Breiman 2001) and Adele Cutler who registered

“Random Forests” as a trademark (3185828), which aggregates several trees that make

decisions after some random selection at each internal tree node.

3.2.2 Classification and Regression Trees (CART)

In this section, we generally state how Classification and Regression Trees

(CART) are used for longitudinal data setting. As stated previously, the time-varying

response matrix Y has n× t entries and the time-varying as well as demographic

covariates (replicated t times) are recorded in the data matrix X with dimension

n× t× p. Both Y and the p two dimensional matrices Xij, representing the entries of

the p covariates can be either continuous or categorical, which means X is a mixed

dataset. Let us consider the k−th feature of the dataset X filled with a series of

binary splits, each of which can be written as I{X..k ≤ c}. When the split is made to

form the tree, subjects in timepoints with {X..k ≤ c} fall into one area of the split and
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those with {X..k > c} fall into the other area made by the split. A splitting point is

called an internal node. The terminal nodes are the final end points.

We can define the regions in the partitioned data matrix X as Rm,m = 1, ...,M ,

where M is the number of terminal nodes. Let the average outcome of the terminal

node m be written as

ĉm =
n∑
i=1

t∑
j=1

YijI{Xij. ∈ Rm}∑n
a=1

∑t
b=1 I{Xab. ∈ Rm}

,

then we may estimate f(Xij) = E[Yij|Xij] with

f̂(Xij) =
M∑
m=1

ĉmI{Xij. ∈ Rm}.

So the predicted value of a new data point is equal to the average of observed

outcomes across all training set data points, over all different timepoints, in the same

terminal node as the new data point.

In the greedy approach to build a tree, all the p variables and their possible cut

points are considered at each node, and we move forward with the cut point which

gives a maximum gain in terms of a suitable criteria. To choose the variable and cut

point for each node, minimization of the sum of squares is performed:

min
k,c

min
a

∑
i,j:Xij.∈Rl(k,c)

(Yij − a)2 + min
b

∑
i,j:Xij.∈Rg(k,c)

(Yij − b)2
 ,

where Rl(k, c) = {X|X..k ≤ c} and Rg(k, c) = {X|X..k > c}. Note that a and b are

estimated by the average outcomes in Rl and Rg, respectively. For missing data

problems, when X..k is not observed, it is left out of the calculation of split points.

Further insights into how the trees are grown for various imputation techniques are
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given in section 3.2.4. The stopping criteria for tree growth is a minimum (terminal)

node size. In other words, a terminal node must have at least the minimum node size.

When all terminal nodes can no longer be split, growing the tree is completed, and we

call this the maximal tree T0.

To decrease over-fitting, cost-complexity pruning is then used to cut back the

maximal tree. Define T to be a subtree of T0, and |T | to be the total number of nodes

in the tree T . A sequence of subtrees is constructed by sequentially collapsing

non-terminal nodes that lead to the smallest value of

1

M

M∑
m=1

∑
i,j:Xij.∈Rm

(Yij − ĉm)2.

The tree within this sequence that minimizes the cost complexity criterion,

Cα(T ) =
M∑
m=1

∑
i,j:Xij.∈Rm

(Yij − ĉm)2 + αM,

is then selected as the final tree. α may be chosen by minimizing the cross-validated

sum of squares.

The above concept of regression may also be extended to classification (since the

name is Classification and Regression Trees) in longitudinal studies where the

splitting criteria are based on node impurity measures such as misclassification error

or Gini index. The predicted class of a data point in a classification problem with K

distinct classes is

arg max
k∈1:K

{p̂mk},

where p̂mk is the proportion of observations in terminal node m with the class k. In

this entire section describing CART, only single trees are used which may have high

bias - the solution to which is using a combination of trees called random forest. For

48



growing the tree in a general CART setting, only complete cases are chosen. For

missing data cases, the trees are grown after pre-imputation or out-of-bag imputation

as described in Section 3.2.4.

3.2.3 Random Forests

To improve the instability of CART and produce better predictions, Breiman

later developed random forests (RF) (Breiman 2001) after it was introduced by Tin

Kam Ho (Ho 1995), as a combination of bagging with CART. In RF, B bootstrapped

samples are drawn from the data, and a tree is grown for each sample. Growing a tree

in RF differs from growing a tree from CART in that not all p variables are

considered in a greedy approach at each node. Instead, q ≤ p variables are randomly

selected and evaluated as the potential split variable. Once the forest has been grown,

we may then retrieve an estimate from each tree: f̂ b(Xij), for b = 1, . . . , B, and a

bootstrapped estimate is f̂(Xij) = 1
B

∑B
b=1 f̂

b(Xij). For classification, a majority vote

is taken across the trees for the predicted class of a new data point.

Additionally, trees in RF are not pruned. Because RF incorporates bootstrapping

and the variables are selected at random, over-fitting is mitigated, and pruning is not

necessary. The random variable selection reduces the correlation between each of the

trees, thereby reducing the variance in the average across trees. This isn’t to say RF

avoids overfitting. Let p∗ be the number of relevant variables such that p∗ << p.

Especially with small q, it becomes unlikely that the relevant variables are sampled at

each node. However, with q large enough, RF still performs quite well. It is typically

recommended to use q = bp/3c.

The default parameter for the number of trees to grow in the R package

randomForest (Breiman 2001) is 500. However, the growing of trees can be stopped
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once the out of bag (OOB) error reaches a desired level of convergence. This error is

defined by averaging the prediction error for each subject among all trees for which

the subject was not apart of the bootstrapped sample. The OOB error is similar to

the error estimated from n-fold cross-validation, making random forest a convenient

method in that it is able self-evaluate as trees are grown.

Variable importance (VI) measures can be calculated one of two ways with RF.

The first uses the Gini index: the improvement in the split-criterion provided by

splitting on the jth variable is cumulatively summed across all trees. Alternatively,

OOB prediction errors are compared before and after randomly permuting values for

the jth variable. The increase in prediction error is averaged across all trees, and that

average is considered as the variable importance. This feature of RF allows us to

observe which variables drove construction of the forest the most.

Similar to CART, RF can still make bad splits near the start of the tree, leading

to an overall poor fit after later splits. The bagging mechanism of RF reduces this

error by averaging across many de-correlated trees. By using the tree building criteria

described in Section 3.2.2, we can grow RF in longitudinal data and use that for

building a predictive model to estimate (3.1).

3.2.4 Random Forest Imputation

We now look into this section as how we can extend the idea of building a

random forest for longitudinal datasets to imputation of the covariates (both

time-varying and demographic) in the dataset X using random forest models built

with the help of response matrix Y which is fully observed. A basic imputation

algorithm for any longitudinal dataset is called “Strawman imputation” which is the

initial imputation of any dataset with missing values. It is a quick way to impute by

50



replacing continuous covariate values with the mean among observed values (over all

the timepoints) and categorical covariate values with mode among all observed values

at all timpoints, with ties broken at random. A basic study of these random forest

algorithms in cross-sectional data has been performed (Tang and Ishwaran 2017). We

look into three basic imputation algorithms using RFs in longitudinal data, where all

the algorithms are iterated until they converge:

(A) Proximity Imputation (RFprx): We preimpute the data, grow the forest and

impute the missing values using a proximity matrix described later.

(B) On-the-fly Imputation (RFotf ): We simultaneously impute data while

growing the forest and then impute again at the end when the forest is built.

(C) Unsupervised or missForest Imputation (RFunsv): We preimpute the data

and grow a forest for each covariate with a missing value, using the other covariates as

explanatory variables. We use each of these grown forests to predict the missing

values of the covariates.

3.2.4.1 Proximity Imputation (Rprx/Rprx.R)

In proximity imputation (Liaw et al. 2002), we first preimpute the longitudinal

study dataset X using Strawman imputation and Y is complete (as per our study

setting). We fit a random forest model on this imputed data {Xijk}pk=1, using the

response Y according to the method described in the previous sections. From the

random forest model, we get a proximity matrix which has dimensions nt× nt for

each of the n× t replicates of a covariate. The (i, j)−th entry of this matrix records

how many times observation i was present in the same terminal node of a tree as

observation j in the bootstrap samples considered for building B trees in the random

forest. Using the proximity entries of each observation with the other observations as

weights, when an observation is missing, the weighted mean of that feature over all

51



the (originally) non-missing observations are taken if the feature is continuous and the

weighted mode is taken if the feature is categorical. This newly imputed dataset is

used to grow a new RF on the longitudinal data and a new proximity matrix is

calculated. This procedure is iterated until convergence. For the demographic

covariates, instead of considering all the non-missing observations in the nt× nt

entries, we can just look at the average of the non-missing observations in the first

n× n entries because the other entries are just a replicate of this sub-matrix. We refer

to this proximity imputation as Rprx.

A modification of this method is random splitting, which is different from

non-random or deterministic splitting where all possible split points are checked for

the splitting variables, say Xsplit. In random splitting, a maximum of msplit(≥ 0)

random split points are checked for each of the variables in Xsplit and the best split is

chosen based on the splitting criteria. Each tree of the random forest model is grown

in this way then the proximity matrix is calculated for imputation, just like Rprx.

This is different from deterministic splitting since the split points are chosen

randomly in the covariate space. The advantage of random splitting is that it is much

faster than deterministic splitting. We denoted this randomized split version of

proximity imputation as Rprx.R.

3.2.4.2 On-the-fly Imputation (OTFI, Rotf/Rotf.R)

The disadvantage of Rprx is that the prediction would be biased since we consider

the non-missing observations only, while building the tree. A remedy for this would

be to impute simultaneously while building the tree. On-the-fly imputation (Ishwaran

and Lu 2008) was developed in Survival Forests and it can be extended to

longitudinal data. The steps to simultaneously impute and grow the tree are called

random forest on-the-fly imputation or Rotf . We start by considering only
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non-missing observations in X to calculate the split statistic at various split points,

while growing a tree. Let us say X..k is the covariate chosen for splitting to create two

nodes. Now each of the n× t observations in data matrix X must be put in one of the

nodes. For a particular observation, say ab-th observation, if Xabk is missing, then it is

imputed temporarily by a random value of the non-missing observations of X..k, which

are in the bag (among the bootstrap samples). This imputed value is used to decide

which side of the split the observation Xabk will be placed. When all the n× t

observations of X are split, the imputed data are reset to missing. This process is

repeated until the tree is fully grown in the bootstrap sample. Now we have a fully

grown tree whose missing values have been temporarily imputed during growth. After

the trees are created in the random forest, the originally missing values at all the

terminal nodes are reset to missing. They are imputed by the mean or mode (if their

corresponding feature is continuous or categorical) of the terminal node data from the

out-of-bag observations whose values for X..k are non-missing.

Note that while growing the tree, the imputed value in Xabk is only used to

decide which node the observation Xab. will be placed in and not to calculate the split

statistic. All split statistics are calculated from the non-missing values only. This

entire process is iterated until the imputed matrices of two simultaneous iterations are

close with respect to Root Mean Square Error (RMSE). Just like the previous

algorithm, we use the random splitting method to calculate the best split out of msplit

random split points of the splitting variables Xsplit. This faster version of the

out-of-bag imputation algorithm is called Rotf.R.

3.2.4.3 Unsupervised or missForest Imputation (Runsv/Runsv.R)

We notice that both Rprx and Rotf require the response matrix Y to grow the

random forest and thus they are supervised methods to build the random forest. The
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unsupervised random forest imputation technique is based on the missForest

imputation technique (Stekhoven and Bühlmann 2011). Here we take each of the p

features of the data matrix X at t time points with n entries, and perform

Strawman’s imputation to get an initially imputed matrix, where the imputation is

done for each feature at each time point (so, t× p means or modes are computed).

For a time-varying f -th feature at a time point o, say X.of , let us say a few

observations are missing out of the n subjects. We grow a random forest model with

X.of as the response and all other features in the same time point o, {X.ok}k 6=f , and

the same f−th feature at all other timepoints, {X.jf}j 6=o as the independent

explanatory variables. So, in essence, we choose (t− 1) + (p− 1) columns as

explanatory variables to grow a random forest and impute the missing values of X.of

from the prediction of the random forest model thus grown.

For the demographic covariates, say d−th feature X..d, we just need to impute at

the initial timepoint. So, we impute using the other covariates at timepoint 1 as the

explanatory variable, {X.1k}k 6=d. These (p− 1) columns are selected as explanatory

variables to grow a random forest with {X.1d} as the response. The missing values are

predicted from the random forest model thus grown. After all the time-varying and

demographic covariates are imputed, we get an imputed matrix, which is again used

iteratively to grow t× p different random forests, until convergence. This process is

called unsupervised random forest imputation RFunsv since the response variable Y is

not required. A similar random split version as the previous algorithms, where each

time the random forest models are grown using msplit random split points for each of

the t× p random forests. This version is much faster and termed as randomized

unsupervised random forest imputation RFunsv.R.
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3.3 Simulation Studies

In this section we explore the performance of our 3 random forest based

algorithms, RFunsv, RFotf , and RFprx and their randomized versions against MICE

and IkNN imputation.

• MICE (Multiple Imputation using Chained Equations): The MICE

algorithm developed by Van Buuren and Oudshoorn (Buuren and Oudshoorn

1999) uses multiple imputation assuming Fully Conditional Specification (FCS)

of the variables of X. This means that the conditional distribution of each

variable given other variables is known. We assume an imputation model for

each variable, based on the other variables. We use predictive mean matching in

general for continuous variables and various forms of logistic regression for

categorical variables. For multiple unordered valued categorical variables, we

use polytomous logistic regression. We use proportional odds model for ordered

categorical variables.

• Iterative k-Nearest Neighbor imputation (IKNN): In this method, mean

or mode imputation is done as preliminary imputed values for the corresponding

type of variable. This is followed by calculating k closest instances to the

instance with a missing value, through Euclidean distance as distance metric.

The original missing values are imputed using weighted mean or mode of the

attribute values of the k nearest neighbors, using reciprocal of the squared

distance from the original observation as weights for continuous case and a

function of the scaled similarity metric as weights for mode in the categorical

case.
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We measure the performance by accuracy of prediction using Root Mean Square

Error (RMSE) as follows:

RMSE =

√√√√ 1

m

m∑
i=1

(ei − ẽi)2, (3.4)

where ei is the true value, ẽi is the imputed value of the missing data, and m denotes

the number of missing values. We consider the following longitudinal models for our

simulation experiments:

1. Fixed Effects Model: Yij = X ′ijβ + εij, where Yij represents the i-th subject at

time point j. X ′ij and β are p-dimensional, non-stochastic variables, ε′ijs are

normal with mean 0 and variance structure such that they are independent

when j is fixed but dependent when i is fixed and time-point j is varied. Y

being the sum of a stochastic and a combination of non-stochastic variables, has

the same distribution as ε.

2. Mixed Effects Model: Yij = X ′ijβ +X ′ijb+ εij, where b is the random effect in

the mixed effects model which is normally distributed with mean 0 and variance

Σ (a p× p matrix).

We take the number of time-points t = 4, the number of time-varying

covariates/attributes p = 5 and generate n = 100 subjects for each time-point.

Specifically we generate a p dimensional vector,

Xij ∼ N(µj,Σj), i = 1, 2, ..., 100, j = 1, ..., 4,

where j stands for the j−th time-point, µj ∼ U [−1, 1]5 ∀ j and Σj’s are randomly

generated 5 ∗ 5 positive definite matrices using partial correlations (Joe 2006). This
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simulation procedure ensures us that we do not have the same mean and variance for

two different time-points during simulation. We also generate the variance Σ of b from

the same randomly generated 5 ∗ 5 positive definite matrices using partial correlations

(Joe 2006). For each simulation setting, β was fixed and generated from U [−1, 1]5.

The correlation structure of εij was chosen as compound symmetric where

Cov(εij, εik) = σ2[I{j = k}+ ρ.I{j 6= k}].

3.3.1 Missing Completely at Random (MCAR)

For this section, we introduce missingness completely at random, in the datasets

generated, via a missingness matrix D described before. The 0’s of the matrix D are

generated by Uniform random variables, and the parameters for the two models are

taken as:

• Fixed effects model covariance terms: σ2 = 1 and ρ = 0.2,

• Mixed effects model covariance terms: σ2 = 0.5 and ρ = 0.1.

We record the final RMSE of each algorithm, after it converges, with 10% and 20%

missingness in the data. Note that we used predictive mean matching in MICE and

for each example, n = 100, p = 5 and t = 4 time points. Table 3.1 gives the RMSE of

each algorithm for the fixed effects model and Table 3.2 gives the RMSE for the

mixed effects model. We observe from the RMSE of each imputation method that the

randomized versions of each random forest imputation algorithm performs nearly as

good as the original method - while being computationally much faster. The

On-the-fly imputation algorithm (RFotf ) generally performs the best in MCAR

simulations and a close competitor is the unsupervised random forest imputation

based on missForest (RFunsv).
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Table 3.1: RMSE Upon Convergence for MCAR Fixed Effects Model

Missing % IKNN MICE RFprx RFprx.R RFotf RFotf.R RFunsv RFunsv.R
10% 0.2201 0.1602 0.1421 0.1604 0.1032 0.1313 0.1031 0.1278
20% 0.3534 0.2837 0.1813 0.2058 0.1501 0.1599 0.1632 0.1734

Table 3.2: RMSE Upon Convergence for MCAR Mixed Effects Model

Missing % IKNN MICE RFprx RFprx.R RFotf RFotf.R RFunsv RFunsv.R
10% 0.2212 0.2408 0.1820 0.2203 0.1691 0.1902 0.1799 0.1812
20% 0.3009 0.3136 0.2341 0.2599 0.1822 0.2013 0.1832 0.1920

We can empirically plot the convergence of RMSE of the algorithm, as shown

below in Figure 4.7. We can see that the On-the-fly random forest imputation

performs the best, and is closely followed by the unsupervised random forest

imputation, which uses missForest.

Figure 3.1: RMSE for all the RF Algorithms at 20% MCAR
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3.3.2 Missing at Random (MAR)

For this section, we illustrate how our methods performs with respect to the

other techniques. We simulate our longitudinal data from the multivariate normal

distribution according to the same parameters taken at the MCAR examples, and

then artificially introduce missingness in the data, at random (MAR), by letting the

probability of missingness depend on the observed values. Also, the missingness is

induced using a logistic model on the missingness matrix D. In real life, we often

encounter time-independent covariates which are demographic in nature and often

non-missing. For this example, we assume Xij1, Xij2 and Xij3 to be non-missing and

the missingness of Xij4 and Xij5 to be dependent on these demographic, non-missing

variables, for each class k. Recall the n× t× p missing matrix D, where we assume

Dij1, Dij2, Dij3 to be all 1 and

Dij4 ∼ Ber(expit(p11 + p21 ∗Xij1 + p31 ∗Xij2 + p41 ∗Xij3)), (3.5)

Dij5 ∼ Ber(expit(p12 + p22 ∗Xij1 + p32 ∗Xji2 + p42 ∗Xij3)) (3.6)

where expit(x) = ex

1+ex
and p′ijs are vectors of size p = 5 chosen by us.

For the MAR model, we take the fixed and mixed effects model described in the

section before. We provide a detailed analysis of how all the 5 algorithms performed

in this simulation setting with n = 100, p = 5 and t = 4 time points in Table 3.3 and

3,4. Note that we used predictive mean matching as the imputation model for MICE.

We can see that in MAR model, the unsupervised random forest imputation

technique based on missForest (RFunsv) performs the best. Also, just like the MCAR

model, the randomized versions of each imputation algorithm performs quite good

with respect to the original random forest imputation technique.
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Table 3.3: RMSE Upon Convergence for MAR Fixed Effects Model

Missing % IKNN MICE RFprx RFprx.R RFotf RFotf.R RFunsv RFunsv.R
10% 0.2992 0.2507 0.1385 0.1392 0.1108 0.1472 0.1003 0.1102
20% 0.3895 0.3499 0.1820 0.1956 0.1477 0.1607 0.1225 0.1304

Table 3.4: RMSE Upon Convergence for MAR Mixed Effects Model

Missing % IKNN MICE RFprx RFprx.R RFotf RFotf.R RFunsv RFunsv.R
10% 0.3021 0.3056 0.2092 0.2218 0.1747 0.2232 0.1491 0.1561
20% 0.4255 0.4012 0.2577 0.2619 0.1984 0.2107 0.1723 0.1815

We can empirically plot the convergence of RMSE of the algorithm, as shown

below in Figure 3.2. We can see that the randomized unsupervised random forest

imputation technique (RFunsv.R) performs quite well with respect to the best

technique, RFunsv, and it is computationally much faster.

Figure 3.2: RMSE for the 5 Algorithms at 20% MAR
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3.4 Discussion

We notice that for all the longitudinal models we considered in our simulation

studies, the randomized versions perform well with respect to the non-randomized

versions but take less time to compute. Hence, the fastest and reasonably accurate

algorithm is the randomized unsupervised random forest imputation, Runsv.R, for both

MCAR and MAR cases. The most accurate imputation algorithm for the MCAR

missingness case is the on-the-fly imputation method, Rotf and for the MAR

missingness case is the missForest based imputation method, Runsv. This method is

suitable for imputation in categorical outcomes as well.

We plan to write an ARIC manuscript proposal to use the each visits data for

diabetes indicators of each participants as well as some of the relevant covariates

which affect diabetes, like diet and exercise factors which are also a part of the ARIC

questionnaire, and collected at the visits. These factors would provide the covariate

values needed for the longitudinal data model with diabetes as the outcome. For

individuals who have dropped out of the study but have not died, we can take

information about their covariates from the initial visits as well as the telephone calls,

if answered. The participants who did not respond to telephone interview would have

to be dropped from our study since it does not fit our imputation model. The

imputation of covariates would help provide a better prediction model for diabetes.

Our main task going ahead is to develop a random forest procedure to impute the

outcome of interest, diabetes, for dropouts without any data from telephonic

interviews (classic drop-out case). A good idea may be to use demographic,

time-independent variables like sex, race, age, etc. taken at the beginning of the study

- so that we could ascertain the diabetes status of a lot of non-compliant participants,

and calculate an unbiased prevalence of diabetes in the ARIC study cohort.
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CHAPTER 4: NATURAL LANGUAGE PROCESSING FOR
CLINICAL DIAGNOSTIC CODES

4.1 Introduction

The final topic of this manuscript deals with converting the ICD codes into 5

word texts and then using text mining methods to cluster them. International

Classification of Diseases (ICD) codes are known as International Statistical

Classification of Diseases and related health problems and it is a group of codes

developed mainly for clinical diagnostic purposes - used for statistical and

epidemiological purposes afterwards. The ICD is maintained by the World Health

Organization (WHO), which is the directing and coordinating authority for health

diagnostic codes for classifying diseases - including complaints, social situations,

surroundings and wide variety of other things like external causes of injury or disease.

These ICD codes are revised after every few years and is currently in its 10th revision,

called ICD-10 codes, since 1994 (ICD classifications, 2014), with the 11-th

classification soon to arrive - but not widely used yet.

The ICD codes are a group of 5 alphanumeric symbols which provides a

standardized method for the classification of patient’s signs and symptoms at any

medical encounter. They are used for both inpatient and outpatient settings. We

decide to look at these codes as text from a book. Each patient hospitalization is

treated as a document and each ICD code is treated as a term or a word and this is

how we treat this as a bag-of-words model. This concept has not been explored too

much in the past and very few attempts have been made to cluster these codes

(Erraguntla et al. 2012, Pereira et al. 2013). We try to use text mining methods on
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these ICD codes, to get meaningful cluster of symptoms related to a particular

disease. We denote the document-term matrix to be X which is a n× p matrix and it

may be very sparse given that there are less patients than the 5-digit ICD codes. Here

the n represents all possible ICD-9 codes and p represents the number of

hospitalizations of the patients, if the hospitalizations are looked at separately. So we

must choose a suitable text mining method to cluster the ICD codes in that case. One

possibility is to truncate the ICD codes to 3-digit codes which reveal the symptoms

broadly, as in heart or lung or kidney disease and thus it can be used to make the

matrix less sparse. This approach has been used before to rank hospitals and validate

models (Cerrito 2008).

In our problem, we deal with a special longitudinal dataset where the data has

been collected for more than 25 years across 4 states to find an exhaustive list of

factors affecting heart diseases. The Atherosclerosis Risk in Communities (ARIC)

study is a prospective cohort study designed to evaluate the causes of atherosclerosis

and its clinical effects in a general population based sample of adults. Men and

women, aged 45-64 years, were recruited and enrolled from four U.S. communities:

Forsyth County, North Carolina; Jackson, Mississippi; suburbs of Minneapolis,

Minnesota; and Washington County, Maryland. Follow-up examinations occurred in

1990 - 1992 (Visit 2 with n = 14,348, 93% of those still alive; when participants were

48-67 years of age), 1993-1995 (Visit 3), 1996-1998 (Visit 4) and 2011-2013 (Visit 5

with n = 6,538, 65% of those still alive, when participants were 65-90 years of age).

In the 5th visit of this study, participants had been diagnosed with dementia,

mild cognitive disorder or no cognitive disorder. Our aim is to characterize the

participants affected by dementia and identify the reasons for hospitalizations that

may have preceded visit 5 of the ARIC study. In the 5th visit, the participants were

classified into groups of ‘dementia’, ‘mild cognitive disorder’ and ‘no cognitive
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disorder’ based on their cognitive status. We group the ‘mild cognitive disorder’ and

‘no cognitive disorder’ participants into the ‘no dementia’ group. We basically look

into the hospitalizations of the participants whose cognitive status ascertainment was

done in Visit 5 and also enrolled in Medicare FFS insurance, so that a list of ICD-9

codes would be available for each of their hospitalizations prior to their Visit 5. We

look into 5 years of hospitalization of each of these eligible candidates, prior to the

5th visit in the ARIC study. ICD-9 codes have been used to classify hospitalized

patients into dementia category before (Pippenger et al. 2001), but no clustering

effort has been made into a group of hospitalizations over many patients.

The rest of the chapter is organized as follows: section 2 contains Methodology

summarizing the methods used to cluster the ICD-9 codes of the patients

hospitalization, section 3 contains the results of the clustering of hospitalizations and

section 4 contains a discussion of the results and further work which can be done for

clustering these ICD-9 codes.

4.2 Methodology

4.2.1 Principal Components Analysis (PCA)

This is an unsupervised clustering method which is used to cluster numbers as

well as text (Pearson 1901). We convert a set of correlated variables to linearly

uncorrelated variables called principal components by orthogonalization. If there the

feature matrix is n× p then the maximum number of principal components is

min (n− 1, p). The principal components of a data matrix X are obtained by

maximizing the variance of the matrix, such that the first principal component is

obtained by w(1) = arg max{wTXTXw
wTw

} and after (k − 1) principal components are

obtained, the k-th component is subsequently obtained by X̂k = X −
∑k−1

s=1 Xw(s)w
T
(s).
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Through this process we obtain an eigenvalue decomposition of the data matrix X.

We can easily check that in this process, any combination of principal components is

orthogonal to any combination of a different set of principal components.

4.2.2 Non-negative Matrix Factorization (NMF) with Gram Schmidt

Orthogonalization

As a preliminary analysis, we have tried non-negative matrix factorization

(NMF) coupled with Gram-Schmidt orthogonalization to make the components

orthogonal. In general, non-negative matrix factorization (Lee and Seung 2001) is

similar to PCA except that we use it to find the patterns with the same direction of

correlation. The idea is to break up a data matrix into K factors such that

Xn×p = Wn×KHK×p =
K∑
k=1

W:,kHk,:

where K << p and X ≥ 0 is a non-negative data matrix. W ≥ 0 is a set of

non-negative observation factors and W:,k is a mixture of observations that comprise

the k-th factor. Hkj ≥ 0 is a set of non-negative feature factors, often sparse (mixture

factors). Hk,: ≥ 0 is a mixture of features that comprise the k-th factor.

Non-negative matrix factorization is often used in topic modelling and text

mining. Let X be a matrix of news articles (rows) by words (columns) whose entries

are word counts in the articles. Then Xn×p = Wn×KHK×p =
∑K

k=1W:,kHk,: is a sum of

K topics. Xij = W T
i,:H

T
:,j =

∑K
k=1WikHkj.

Here the outer product of k-th column of W (W:,k) and k-th row of H (Hk,:) is

the topic k, like gay marriage. Hk,: are the non-zero words contributing to topic k,

like marriage, gay, equal, etc. W:,k are the non-zero news articles belonging to topic k,

like “NC allows officials to refuse to perform gay marriages" (NY Times).
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In our application, X is a matrix of people’s hospitalizations (rows) by ICD-9

codes of the the corresponding hospitalization (columns) whose entries are word

(frequency) counts. Then Xn×p = Wn×KHK×p =
∑K

k=1W:,kHk,: is a sum of K

hospitalization clusters. Here the outer product of k-th column of W (W:,k) and k-th

row of H (Hk,:) is the hospitalization cluster k, like hospitalization for leg fracture.

W:,k are the non-zero hospitalizations belonging to hospitalization cluster k, like

serious hospitalizations. Hk,: are the non-zero words (ICD-9 codes) contributing to

hospitalization k, like bone fracture, bleeding, etc.

We basically calculate the NMF of the non-negative document-term matrix X by

minimizing the Frobenius norm,

min
W,H
||X −WH||F s.t. W ≥ 0, H ≥ 0

where the Frobenius norm is basically defined for a n× p matrix X with entries Xij as

||X||F =

√√√√ n∑
i=1

p∑
j=1

|Xij|2

After factorization of the matrix X we calculate the importance of the ICD-9 codes in

each of the K factors by taking the rows of H, i,e, H1,:, H2,:, ..., HK,:.

We follow up NMF with Gram-Schmidt orthogonalization (Cheney and Kincaid

2009) which makes the row vectors of H orthogonal to each other. This ensures that

the ICD codes in the clusters are unique. This is equivalent to imposing a restriction

HH ′ = I while calculating the NMF of X.

The ideal number of clusters K (rank) is chosen by finding the point of inflection

of the RSS plot against a range of clusters in the NMF. It can also be chosen where

the dispersion measure of the NMF decreases sharply. The number of ICD-9 codes for
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each of the clusters is also chosen by the same point of inflection rule of the

importance measure of the factors, which is basically plotting the values of the rows

of H in increasing order. Basically the point of inflection is where the first derivative

is maximized and so it can be approximated by finding the point which has the

maximum second order difference.

After finding all the important ICD-9 code in the K clusters, plot a dendrogram

to show how each of the ICD-9 codes are clustered with each other. A dendrogram is

a bottom up tree structure which measures the hierarchical relationship between

objects based on their distance. We make a dendrogram based on the ICD-9 code

membership in each of the clusters before Gram-Schmidt Orthogonalization.

We take each of the
∑n

i=1mi hospitalizations of n patients and treat them as

independent observations. Each hospitalization has a group of 3 digit ICD-9 codes

accompanying it and we treat these as words of a paragraph (in a document) since

each code represents the diagnosis of a symptom. We group the hospitalizations by

the number of days the hospitalization discharge occurred prior to visit 5. The reason

for grouping is that a single hospitalization would have only a handful of the 999

possible 3-digit ICD-9 codes and the resulting document-term matrix would be

extremely sparse - like taking the term frequencies of a single paragraph in a

document. So, we take a group of hospitalizations to form a document in the problem

- much like a group of paragraphs make a document. For each 30 days of

hospitalization, we treat all the hospitalizations as a single document and obtain the

document-term matrix which is to be clustered.
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4.3 Results

For our ARIC dataset looking into 5th visit participants with Medicare FFS

Insurance, we have a total of 1951 hospitalizations in 5 years prior to diagnosis of

dementia. Out of 1951, 1327 hospitalizations are for people classified as mild cognitive

disorder or no cognitive disorder, which we mark as "non-dementia" category. The

remaining 624 hospitalizations are of dementia patients. We also observe 197 different

ICD-9 codes for non-dementia patients and 139 different codes for dementia patients.

We group the 1327 and 624 hospitalizations based on the number of days of the

discharge date falls before Visit 5. All hospitalizations in the 30 day periods before

visit 5 is grouped into 1 document (recall the document-term matrix and over 5 years

of hospitalization, 62 documents can be formed. So for dementia patients, the

document-term matrix consists of 32 documents (n) and 624 terms or ICD-9 codes

(p). For the non-dementia patients, the document-term matrix consists of n = 32

documents and p = 1327 terms or ICD-9 codes.

The diagnostics of the NMF for dementia patients are given in Figure 4.1 below.

As we can see, the dispersion measure is minimum for K = 4 and we choose that as

our number of clusters.
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Figure 4.1: Dementia Patient Clustering Diagnostics

We analyze the dementia hospitalizations using NMF with Gram-Schmidt

orthogonalization using K = 4. We select only those ICD-9 codes from each of the

cluster whose importance lies above the aforementioned point of inflection of the

curve. The importance plots of the ICD-9 codes for each of the 4 clusters are given

below in figure 4.2.
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Figure 4.2: Importance Measures of the Clusters
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Finally we make a dendrogram of the important ICD-9 codes for dementia as

given in Figure 4.3 and it shows that the most prevalent symptoms relate to

endocrinal, psychotic and genitourinary disorders.

Figure 4.3: Dendrogram of Important ICD-9 Codes in Dementia Patients With
Hospitalizations Binned in 30 Day Groupings

We can find the list of three-digit ICD-9 code summary below (Source:

Wikipedia) in Figure 4.4.

Figure 4.4: General Meaning of 3 Digit ICD-9 Codes
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The diagnostics of the NMF for dementia patients are given in Figure 4.5 below.

As we can see, the dispersion measure is minimum for K = 4 and we choose that as

our number of clusters.

Figure 4.5: Non-dementia Patient Clustering Diagnostics

So, we analyze the non-dementia hospitalizations using NMF with Gram-Schmidt

orthogonalization using K = 4. We select only those ICD-9 codes from each of the

cluster whose importance lies above the aforementioned point of inflection of the

curve. The importance plots of the ICD-9 codes for each of the 4 clusters are given

below in figure 4.6.
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Figure 4.6: Importance Measures of the Clusters
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Finally we make a dendrogram of the important ICD-9 codes for non-dementia

patients are given in Figure 4.7 and we can see that those ICD-9 codes relate to

esophageal, circulatory, skin and skeletal disorders. This is in contrast to the ICD-9

codes in the dementia patient clusters.

Figure 4.7: Dendrogram of Important ICD-9 Codes in Non-dementia Patients With
Hospitalizations Binned in 30 Day Groupings

4.4 Discussions

We can find a greater frequency of codes for genitourinary and cerebral

degeneration in participants with a positive dementia classification. Dementia affected

participants had a greater frequency of ICD-9 codes for depression, heart failure,

acute renal failure, and hormonal disorders, as compared to those with no cognitive

impairment. In contrast, the ICD-9 codes for non-dementia patients were more

general as it related to various other types of disorders throughout the body. Our

goal, which was achieved, was to show ICD-9 code clusters for hospitalization of

dementia patients differ from non-dementia patients.

The clustering methods used by us would be an improvement of the existing

methods developed before in the University of Chicago which estimates Network

Memberships by Principal Component Analysis (PCA) and Simplex Vertices Hunting,

and also another topic estimation based on Singular Value Decomposition (SVD) (Jin
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et al. 2017, Ke and Wang 2017). We hope to improve on the existing methods and

develop predictive models for ARIC dataset hospitalizations, based on the ICD-9

codes.
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