
POLY(2-OXAZOLINE)-BASED POLYMERIC MICELLE PLATFORM FOR DRUG DELIVERY 

 
Duhyeong Hwang 

 
A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial 

fulfilment of the requirement for the degree of Doctor of Philosophy in the Division of 
Pharmacoengineering and Molecular Pharmaceutics in the Eshelman School of Pharmacy 

 
Chapel Hill 

2020 

 
  Approved by:   

  Alexander V. Kabanov  

       Leaf Huang   

               Shawn D. Hingtgen  

  Timothy R. Gershon  

  Chad V. Pecot  	



	 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

© 2020 
Duhyeong Hwang 

ALL RIGHTS RESERVED 



	 iii 

ABSTRACT 
 

Duhyeong Hwang: Poly(2-oxazoline)-based polymeric micelle platform for drug delivery 
(Under the direction of Alexander V. Kabanov) 

 

 Polymeric micelles (PMs) have been extensively utilized as drug delivery platform. 

Particularly, potent hydrophobic small molecules were encapsulated in the PMs to alleviate 

toxicity issues and improve therapeutic outcomes. We attempt to provide detailed information on 

PMs for hydrophobic small molecules, such as the design of block copolymers (BCP) and 

current clinical outcomes from PMs. In particular, we aim to describe advanced analytical 

approaches for elucidating molecular interactions for effective solubilization. 

This dissertation includes a novel computer-aided strategy for rational design of PM-

based delivery systems for poorly soluble drugs. We have developed novel descriptors of drug-

polymer complexes that were employed to build models to predict both drug loading efficiency 

(LE) and loading capacity (LC). These models were used for virtual screening of drug libraries 

and eight drugs for the experimental validation. Three putative true positive as well as three 

putative negative hits were confirmed (implying 75% prediction accuracy). The success of the 

computational strategy suggests its broad utility for rational design of drug delivery systems. 

This dissertation involves the study of poly(2-oxazoline) micelles (POx) for treatment of 

medulloblastoma. For patients with SHH-subgroup medulloblastoma, SHH-pathway inhibition 

may be more effective and less toxic than current non-targeted therapy. We successfully 

solubilized SHH-pathway inhibitor, vismodegib, in POx micelles (POx-vismo) and showed the 

PM formulation improved drug efficacy, demonstrated in the treatment of medulloblastoma  
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animal model. Mechanistic studies revealed that POx-vismo decreased vismodegib binding to 

serum proteins and improved brain and tumor drug penetration without penetration of the 

nanoparticle carrier into the CNS.  

This dissertation also includes the development of novel poly(2-oxazoline)-based block 

copolymer with the aromatic heterocyclic side chains and demonstration of its application as a 

drug delivery platform. The copolymer was synthesized via the condensation of N,N-

dimethylbiguanide with the methyl ester side chain in poly(2-methoxycarboxyethyl-2-oxazoline) 

block (PMestOx). Successful encapsulation into these micelles has been demonstrated for several 

poorly soluble drugs. The capability of this new copolymer to solubilize a uniquely diverse set of 

active pharmaceutical ingredients suggests potential applications in drug delivery. 

In summary, poly(2-oxazoline)-based PM platforms are versatile drug delivery platform 

and exhibit the broad potential for ideal drug delivery of therapeutic small molecules. 



	 v 

To my parents Hadong Hwang and Soonja Lee and my wife, Hyunji Lee. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 vi 

ACKNOWLEDGEMENT 

 
First of all, I would like to express my sincere gratitude and appreciation to my supervisor, 

Dr. Alexander Kabanov, who offered me a tremendous educational opportunity in his group as a 

graduate student. He always provided me constant support, insightful guidance and feedback 

throughout my graduate journey. I am truly blessed to have such a remarkable and exceptional 

mentor. His passion and sense of humor will forever inspire me along my scientific journey. 

I would like to especially thank Dr. Marina Sokolsky for her dedicated support and 

guidance. Marina continuously provided encouragement and was always enthusiastic to assist in 

any way she could throughout the research project.  

 I would also like to thank my committee members, Dr. Leaf Huang, Dr. Timothy Gershon, 

Dr. Shawn Hingtgen and Dr. Chad Pecot for their precious guidance and advices. They advised 

me through the obstacles in completion of my research and reviewed all my progress and 

dissertation. 

Moreover, I want to express my gratitude to UNC Eshelman School of Pharmacy for 

allowing me pursuing higher education. I also like to acknowledge my colleagues and friends, Dr. 

Chaemin Lim, Dr. Youngee Seo, Dr. Junghyun Kim, Dr. Junghyun Seo, Dr. Hyesun Hyun, Dr. 

Yongsu Kwon, Dr. Olesia Gololobova, Jacob Ramsey, Naoki Makita, Dr. Ryo Kojima, Natasha 

Vinod, Ali Altitinchi, Dina Yamaleyeva, Jimmy Fay, Dr. Lida Ghazanfari, Matt Haney, Dr. Ayelet 

David, Jubina Bregu, Bridget Newman, Yuling Zhao, Christian Long, Dr. Elena Batrakova and all 



	 vii 

past and present members of the kabanov laboratory for their sincere friendship and kindly help. 

Especially, I will never forget the happiness, frustration, jokes, and parties we had as well as the 

inspiring scientific conversations. I would like to acknowledge BRIC imaging core facility and 

UNC animal facility for their assistance especially Dr. Hong Yuan, Dr. Zibo Li, and Charlene 

Santos 

I would particularly thank my parents, my wife Hyunji, my parents-in-law, brother-in-law 

and my sister for their unconditional support and love all along the journey. The completion of my 

dissertation would not have been possible without their support, patience, faith and love. 

  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 viii 

TABLE OF CONTENTS 

 

LIST OF TABLES……………………...………………………………………………………………..xi 

LIST OF FIGURES..…………...…………………………………………………………………...…..xii 

LIST OF ABBREVIATIONS AND SYMBOLS……….……...……………………………………xiv 

CHAPTER I: POLYMERIC MICELLE SYSTEMS FOR DELIVERY OF  
PHYSICALLY ENTRAPPED HYDROPHOBIC SMALL MOLECULES………………………..1 

 1.1 Summary………………………………………………………………………………1 

 1.2 Introduction……………………………………………………………………………2 

 1.3 Functionalities of PM as delivery platform for hydrophobic small molecules……..…5 

  1.3.1 Anti-fouling polymers in BCP………………………………………………6 

1.3.2 Hydrophobic polymers in BCP……………………………………………...11 

 1.4 Drug–polymer molecular interaction within PM:  
theory, modeling and experimental approaches………………………………………….13 

1.4.1 Theoretical approaches …………………………………………….………………16 

1.4.2 Computational modeling approaches …………………….………………………...21 

1.4.3 Experimental approaches …………………………………….………………..…...23 

1.5 General considerations regarding physicochemical properties of PMs ……………...28 

1.6 PMs in clinical trials and regulatory approval for human……………………….…...31 

1.6.1 Clinical status of PM formulations ………………………………………...31 

1.6.2 Bioequivalence of PM formulations ………………...……………..………36 

1.6.3 PM formulations for combination therapy………………...…….....………37



	 ix 

1.7 Conclusion…………………………………………………………...………………39 

References..……………………………………………………………………………...43 

CHAPTER II: CHEMINFORMATICS-DRIVEN DISCOVERY  
OF POLYMERIC MICELLE FORMULATIONS FOR POORLY  
SOLUBLE DRUGS ………………………………………………………………………….…..55 

 2.1 Summary………………………………………………………….…………….……55 

 2.2 Introduction…………………………………………………………….…….………56 

 2.3 Materials and Methods………………………………………………….……………60 

 2.4 Results…………………………………………………………………….….………72 

 2.5 Discussion……………………………………………………………………………81 

 References...……………………………………………………………………...………96 

CHAPTER III: POLY(2-OXAZOLINE) MICELLES WITH  
VISMODEGIB ENHANCES TARGETING OF SHH PATHWAY 
IN GENETIC MODEL OFMEDULLOBLASTOMA................................................................101  

 3.1 Summary……………………………………………………………………………101 

 3.2 Introduction………………………………………………………………...…….…102 

 3.3 Materials and Methods……………………………………...………………………106 

 3.4 Results………………………………………………………………………………116 

 3.5 Discussion………………………………………………..…………………………124 

 References...………………………………………………….…………………………142 

CHAPTER IV: NOVEL POLY(2-OXAZOLINE) BLOCK  
COPOLYMER WITH AROMATIC HETEROCYCLIC  
SIDE CHAINS AS A DRUG DELIVERY PLATFORM ...........................................................147  

 4.1 Summary……………………………………………………………………………147 

 4.2 Introduction…………………………………………………………………………148 

 4.3 Materials and Methods…………………………………..………………….………150 



	 x 

 4.4 Results………………………………………………………………………………159 

 4.5 Discussion………………………………………………..…………………………166 

 References…...……………………………………….…………………………………188 

CHAPTER V: SUMMARY AND FUTURE EXPERIMENTS...……………………………...192 

  
  



	 xi 

LIST OF TABLES 

 

Table 1.1 Hydrophilic polymers commonly used for constructing PMs..……………………..….41 

Table 1.2 Hydrophobic polymers commonly used for constructing PMs ………………...……..42 

Table 2.1 List of nine polymers used in this study with  
specification of block sizes and end group ………………………………………………………83 

Table 2.2 List of 25 compounds tested alone at 8 mg with  
their respective clusters, LE and LC, LogP, MW, and number of performed experiments.……..84 

Table 2.3 List of three drugs with highest LE variability tested at 8 mg/mL ………..…………..85 

Table 2.4 Statistical characteristics of LC and LE  
QSPR models based on 5-fold external cross-validation ………………………….…….……….86 

Table 2.5 List of positive and negative hits with experimental values ……………….………….87 

Table 2.6 Top 15 compounds ranked by LE and LC for 8 mg drug vs. 10 mg polymer ……..….89 

Table 3.1 Actual vismodegib concentration, LE (%), LC (%), and  
size distribution of POx-vismo micelles prepared at indicated drug:polymer ratios ……..….…129 

Table 4.1 Loading efficiency (LE%) and capacity (LC%)  
in P2 or PMeOx-PcBOx for each drug in each feeding ratio.…………………..………………173 

  
  



	 xii 

LIST OF FIGURES 

 

Figure 2.1 Study design ……………………………………………………….…………………90 

Figure 2.2 Coverage of chemical space by previously tested drugs  
and compounds rationally selected to increase structural diversity ………………….……..……91 

Figure 2.3 General scheme of descriptor calculation for polymers ………………….…………..92 

Figure 2.4 Descriptor calculation of drug-polymer complexes ……………………….…………93 

Figure 2.5 Results of cluster analysis of 25 compounds tested alone at 8 mg………………..….94 

Figure 2.6 Variable importance for the five models developed…………………..…………...…95 

Figure 3.1 Comparison of normal and G-Smo mice at P15. (A) Head shape and  
(B) H&E stained sagittal sections of the cerebellar region of normal and G-Smo mice ……….130 

Figure 3.2 (A) Particle size distribution measured by DLS (B) Zeta  
potential and (C) morphology (D) Stability of the POx-vismo micelles  
at 4 ºC (E) Size of particles after reconstitution of lyophilized POx-vismo 
(F) Vismodegib release from POx-vismo incubated in fetal bovine serum solution………...…131 

Figure 3.3 Pharmacodynamic response to POx-vismo and c-vismo .……………………….….132 

Figure 3.4 Comparison of weight gain between POx-vismo and c-vismo ……………..………133 

Figure 3.5 Increased efficacy of POx-vismo compared to c-vismo……………………….……134 

Figure 3.6 Widespread vismodegib distribution in the brain, with increased 
retention after POx-vismo administration, demonstrated by IR-MALDESI .………………..…135 

Figure 3.7 Pharmacokinetic profile of POx-vismo and C-vismo in tumor mice …………….…136 

Figure 3.8 POx-vismo show enhanced drug delivery .………………………………………….138 

Figure 3.9 Differential distribution of vismodegib and  
POx components of POx-vismo in the vascular and CNS compartments ………..………….…139 

Figure 3.10 Protein binding study of vismodegib.…………………………………...…………141 

Figure 4.1 Synthesis of PMeOx-PcBOx via N,N-dimethylbiguanide condensation.…….……..174 

Figure 4.2 1H NMR spectra of PMeOx-PMestOx and reaction mixture  



	 xiii 

(PMeOx-PMestOx and N,N-dimethylbiguanide free base in DMF) (lower).……………..……175 

Figure 4.3 1H NMR spectra of PMeOx-PMestOx and PMeOx-PcBOx .………………….……176 

Figure 4.4 Overlay of the 1H NMR spectra of PMeOx-PMestOx, cBG  
and PMeOx-PcBOx (1H NMR ((CD3)2SO, 298 K) ..……………………………………...……177 

Figure 4.5 Overlay of the 13C NMR spectra of PMeOx-PMestOx, cBG  
and PMeOx-PcBOx (13C NMR ((CD3)2SO, 298 K) ...……..……….……………………..……178 

Figure 4.6 (A) UV spectra of PMeOx-PcBOx, cBG, PMeOx-PMestOx and  
N,N-dimethylbiguanide, (B) Acid-base titration curves and derivative plot dOH/dpH  
as a function of pH of PMeOx-PcBOx, cBG, PMeOx-PMestOx and saline. (C) TEM  
image of self-assembled PMeOx-PcBOx ………………………………………………………179 

Figure 4.7 MALDI-TOF MS analysis of PMestOx and PcBOx homopolymers ……………….180 

Figure 4.8 Volume based size distribution of (A) PMeOx-PcBOx and  
(B) DachPt-PMeOx-PcBOx (lower) measured by DLS …………………………………......…181 

Figure 4.9 2D NOESY NMR spectra of (a) PMeOx-PcBOx (1 mg/mL)  
and (b) PMeOx-PMestOx (1 mg/mL) in D2O.……………………………………….…………182 

Figure 4.10 Measurement of the CMC of PMeOx-PcBOx  
in DI water by light scattering measurement …………………………………...…………..…..183 

Figure 4.11 Differential solubilization of drugs indicated by their maximum LC ……………..184 

Figure 4.12 TEM image, Release profile and stability profile .………………………...………185 

Figure 4.13 (A) Evaluated drug structures and (B) comparison of  
the maximal LC of each drug in PMeOx-PcBOx and P2 micelles with  
the molecular characteristics of these drugs .………….………………………………..………186 

Figure 4.14 Cytotoxicity and IC50 values of PMeOx-PcBOx,  
DachPt-PMeOx-PcBOx and free oxaliplatin in (A) 344SQ murine  
NSCLC cells and (B) MDA-MB-231human breast cancer cells …………….…………………187 

 
  
  



	 xiv 

LIST OF ABBREVIATIONS AND SYMBOLS 

 

ABC   accelerated blood clearance 

ACN   acetonitrile 

API   active pharmaceutical ingredient 

AUC   area under the curve 

BCP   block copolymer 

BSA   bovine serum albumin 

cBG   N,N,6-trimethyl-1,3,5-triazine-2,4-diamine 

CBMA   poly(carboxybetaine methacrylate) 

CCR   correct classification rate 

CL   clearance 

CLL   chronic lymphocytic leukemia 

CMC   critical micelle concentration 

COA   certificate of the analysis 

CuI   cucurbitacine 

DachPt   dichloro(1,2-diaminocyclohexane)platinum(II) 

DLS   dynamic light scattering 

DMF   N,N-dimethylformamide 

DOSY   diffusion-ordered spectroscopy 

DOX   doxorubicin 

DP   degree of polymerization 

EDA   electron deficient aromatic structure 



	 xv 

EFS   event-free survival 

FH   Flory-Huggins 

G-Smo   hGFAP-Cre/SmoM2 

Gd   gadolinium 

GFA   genetic function approximation 

GRAS   generally regarded as safe 

HABA   2-(4’-hydroxybenzeneazo)benzoic acid 

HBA   hydrogen bonding acceptor 

HBD   hydrogen bonding donor 

HPMA   poly[N-(2-hydroxypropyl)methacrylamide] 

HR   hazard ratio 

HTS   high throughput screening 

ICP-MS  inductively coupled plasma mass spectrometry 

LC   loading capacity 

LE    loading efficiency 

MALDI-TOF MS Matrix-assisted laser desorption/ionization time-of-flight mass 

spectroscopy  

MBC   metastatic breast cancer 

MD   molecular dynamics 

MeOTf   methyl trifluoromethanesulfonate 

Mn   manganese 

mPEG-b-PDLLA methoxy-poly(ethylene glycol)-block-poly(D,L-lactide) 

MTA   molecularly targeted agent 



	 xvi 

NCL   National Characterization Lab 

NMP   n-methyl pyrrolidone 

NMR   nuclear magnetic resonance 

NOESY  nuclear overhauser effect spectroscopy 

NSCLC  non-small cell lung cancer 

OOB   out-of-bag 

ORR   overall response rate 

P(Asp)   poly(aspartic acid) 

P(Glu)   poly(glutamic acid) 

P(Sar)   poly(sarcosine) 

PAA   poly(amino acid) 

PAcM   poly(N-acryloyl morpholine) 

PBL   poly(butylactone) 

PBuOx   poly(2-butyl-2-oxazoline) 

PCL   poly(caprolactone) 

PCNA   proliferating cell nuclear antigen 

PDLLA  poly(D,L-lactide) 

PDMA   poly(N,N-dimethyl acrylamide) 

PDMS   poly(dimethylsiloxane) 

PEG   poly(ethylene glycol) 

PEG-b-P(CB-co-LA) methoxy-poly(ethylene glycol)-b-poly(carbonate-co-lactide) 

PEO   poly(ethylene oxide) 

PEtOx   poly(2-ethyl-2-oxazoline) 



	 xvii 

PFS   progress free survival 

PK    pharmacokinetic 

PLGA   poly(lactide-co-glycolide) 

PM   polymeric micelle 

PMeOx  poly(2-methyl-2-oxazoline) 

PMestOx  poly(2-methoxycarboxyethyl-2-oxazoline) 

PMMA  polymethylmethacrylate 

POx   poly(2-oxazoline) 

POx-PTX  paclitaxel in poly(2-oxazoline)-based polymeric micelle 

POx-vismo  vismodegib in POx micelle 

PPO   poly(propylene oxide) 

pRB   phosphorylated RB 

PTX   paclitaxel 

PVL   poly(valerolactone) 

PVP   polyvinylpyrrolidone 

QSPR   quantitative-structure properties relationship 

RES   reticuloendothelial 

RF   random forest 

Ru   ruthenium 

SANS   small angle neutron scattering 

SBMA   poly(sulfobetaine methacrylate) 

SiRMS   simplex representation of molecular structure 

SITUA   stable isotope tracer ultrafiltration assay 



	 xviii 

SLL   small lymphocytic lymphoma 

Smo   Smoothened 

SOLE   support vector regression-based online learning equipment 

SP   solubility parameter 

SRM   selected reaction monitoring 

ssNMR  solid-state nuclear magnetic resonance 

TEM   transmission electron microscopy 

TME   tumor microenvironment 

USFDA  US Food and Drug Administration 

Vd   volume of distribution 

 

 



	 1 

CHAPTER I: POLYMERIC MICELLE SYSTEMS FOR DELIVERY OF PHYSICALLY 
ENTRAPPED HYDROPHOBIC SMALL MOLECULES1 

 

1.1 SUMMARY 

Polymeric micelles (PMs) have been extensively utilized as drug delivery platforms for the 

optimized delivery of various therapeutic compounds over the last three decades. Particularly, 

hydrophobic small molecules with high potency and severe toxicity were encapsulated in PMs and 

PMs have shown the potential to improve pharmacokinetic (PK) profile of encapsulated drugs in 

preclinical animal models. Though PMs have shown enhanced efficacy with superior safety profile 

for the therapeutic drugs, clinical outcomes of PMs are still poor and further development is needed 

for human use. In this review, we attempt to provide detailed information on PMs for potential 

hydrophobic small molecules such as the design of block copolymers (BCPs), analysis of 

hydrophobic drug encapsulation in PMs, and current clinical outcomes from PM formulations in 

clinical trials. In particular, we aim to describe the latest studies on advanced analytical approaches 

for elucidating detailed molecular interactions within the core of PMs for effective solubilization 

as well as advanced analytical techniques for characterizing nanomedicine’s PK profiles.  

																																																								
1 This chapter previously appeared as a manuscript soon to be submitted 
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1.2 Introduction 

Biocompatible polymers have been extensively employed in pharmaceutical science as 

excipients for traditional pharmaceutical research, such as basic drug dosage forms, and in current 

research, such as nanomedicine for enhancing therapeutic outcome of potent drugs [1, 2]. About 

three decades ago, amphiphilic block copolymers (BCP) were conceived as solubilizing agents for 

hydrophobic therapeutic compounds and forms polymeric micelles (PM) in aqueous solution [3, 

4]. Since then, the applications of amphiphilic BCPs on the design of PM as therapeutics have 

been extensively developed [5-8]. A plethora of novel BCPs have been proposed to develop novel 

PM-based delivery system as potential nanomedicines for humans [9-12]. Many significant 

advances on PMs have shown the potential for ideal delivery of therapeutic modalities in 

preclinical animal models, and such advances have driven several PM formulations to enter 

clinical trials for regulatory approval [12, 13].  

The design of BCP are intended to effectively encapsulate therapeutic compounds into PM 

via various molecular interactions, resulting in the improvement of the pharmacokinetic (PK) 

profile of the therapeutic compounds alongside the protection of the cargo from the external 

environment [14]. Ideal PM formulations are expected to improve therapeutic outcome based on 

the functionalities of the PM. The PK profile of the therapeutic compounds in PM may differ from 

native compounds as PM are capable of releasing the cargo in a controlled manner from the core 

during systemic circulation. Also, structural factors of PM, such as the hydrophilic shell effectively 

avoids both unexpected drug loss from serum component (albumin) and opsonization by 

complement system which typically results in rapid clearance from systemic circulation [15, 16]. 

Based on those functionalities derived from PM, overall PK profile of the therapeutic compounds 

such as maximum systemic concentration (Cmax), area under the curve (AUC), clearance (CL), 
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volume of distribution (Vd), and biodistribution of the therapeutic compounds could be improved 

[13]. By virtue of the functionalities of the PM, ideal PMs are expected to reduce the toxicity of 

the therapeutic compounds. The safety profile of the therapeutic compounds within PM could 

improve therapeutic outcomes since the therapeutic window of the therapeutic compounds could 

be expanded. For examples, side effects of the anticancer drugs such as paclitaxel (PTX) and 

doxorubicin, such as neurotoxicity and cardiotoxicity, are some of the most importants factor that 

governs the dosage regimen for effective treatment of cancers. These also greatly affect the quality 

of life of the patients [9, 17]. Those side effects could be alleviated in both preclinical and clinical 

studies by using PM formulations. 

PM systems primarily exploits block copolymer (BCP) for delivery of potentially active 

therapeutic compounds such as small molecule drugs, proteins, and nucleic acids [2]. The desired 

physicochemical properties of BCPs will vary based on the physicochemical properties of each 

therapeutic compounds. For examples, generally hydrophobic small molecules could be 

encapsulated in BCPs with hydrophobic blocks [18, 19], while nucleic acids require polycationic 

segments in the BCP to be encapsulated in PM via electrostatic interactions [20, 21]. Among those 

applications, exploitation of BCP as the carrier of hydrophobic small molecules in order to 

solubilize the drugs and form nano-sized micelle formulation has shown the potential to improve 

the therapeutic outcome of the small molecule drugs. For example, paclitaxel (PTX) has been 

physically encapsulated in PM formulation using BCPs to improve therapeutic outcome of PTX 

and alleviate drug-induced side effect such as neurotoxicity in both preclinical studies and clinical 

trials [6, 8, 10, 22]. Since then, several PTX-loaded polymeric micelles entered clinical trials, 

resulting in one PM formulation, Genexol® PM, having received regulatory approval in South 

Korea and other countries as a cancer therapeutic.  
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In this review, we attempt to describe BCP systems for the effective delivery of 

hydrophobic small molecules. BCP segments which play an essential role in solubilization of 

hydrophobic small molecules as well as hydrophilic BCP segments for effective anti-fouling 

properties will be described. Also, multi-disciplinary approaches for investigating detailed 

molecular interaction between hydrophobic drug and BCPs will be introduced to improve the 

understanding of the solubilization of hydrophobic drugs by BCPs and to aid in the informed 

development of ideal PMs for effective delivery.  
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1.3 Functionalities of PMs as a delivery platform for hydrophobic small molecules 

Amphiphilic BCPs self-assemble in aqueous media to form PMs that have hydrophilic shell 

for protection of the cargo and hydrophobic core for solubilizing poorly soluble small molecules. 

In general, diblock copolymer (A–B) or triblock copolymer (A–B–A) of hydrophilic 

(A)/hydrophobic (B) segments are employed for the preparation of PM formulation. Structural 

factors such as molecular weight of the block copolymer, molar ratio of hydrophilic and 

hydrophobic segments, and encapsulating hydrophobic drugs may affect the formation of PM, 

thereby varying the size and morphologies in aqueous solution [23-25]. 

The hydrophilic shell has anti-fouling properties that prohibit the binding of serum 

components which ultimately protects the encapsulated drug in the core, thus avoiding unexpected 

loss of the cargo from the PM during systemic circulation. For this purpose, minimizing the 

interaction between PMs and external plasma components, such as serum proteins or the 

complement system, is necessary (Table 1.1). Otherwise, hydrophobic drugs within the core of the 

PM could be easily cleared from the body by plasma protein adsorption or the activation of 

complements system and subsequent recognition by the reticuloendothelial system (RES) during 

systemic circulation [26, 27]. Thus, several hydrophilic blocks were introduced in the structure of 

BCPs to endow anti-fouling properties on the PM so as to improve the systemic circulation and in 

vivo stability of PM [28, 29]. The functionalities of hydrophilic shell of PMs were extensively 

studied and according to those studies physicochemical properties of hydrophilic polymers such 

as molecular weight and surface density were closely related to the anti-fouling properties of PM 

in in vivo studies [16, 30]. 

The hydrophobic block is another component of BCPs which is intended to solubilize 

poorly soluble drugs in the core and control the release of the drug from the PM (Table 1.2) [31-
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33]. Hydrophobic interactions are the main molecular interaction for solubilizing hydrophobic 

drugs in amphiphilic BCPs, and such interaction between the drug and hydrophobic block of BCPs 

may retard the overall release rate of the drug. Additional molecular interactions existing in the 

core, such as hydrogen bonding and pi-pi interactions, may strengthen the molecular interactions 

in the core and thereby decreasing the release rate of the hydrophobic drugs [34]. Many 

hydrophobic polymers have been synthesized which show capacity to solubilize hydrophobic 

drugs. Moreover, the solubilization process, in terms of molecular interactions within the core, was 

investigated using several scientific approaches [35-38].  

 In this section, frequently employed polymers of BCPs will be identified and their 

functionalities as delivery platforms will be discussed. 

 

1.3.1 Anti-fouling polymers in BCP 

Polyethylene glycol (PEG) 

PEG has been the most frequently employed as hydrophilic shell-forming segment for 

BCPs due to its safety profile in human and classification as Generally Regarded as Safe (GRAS) 

by US Food and Drug Administration (USFDA). When PEG forms the hydrophilic shell of the 

PM, its hydrophilicity and flexibility enable the PM to avoid the adsorption of plasma protein and 

opsonization processes that may cause the unexpected rapid clearance of the cargo and PM during 

systemic circulation by the RES system [30]. PEG with molecular weights ranging from 10 kDa 

to 60 kDa are an ideal molecular weight for endowing nanoparticles with effective anti-fouling 

properties and are commonly being employed to prepare BCPs for drug delivery [28, 39, 40]. The 

mechanism of anti-fouling process of PEG has been comprehensively investigated in many studies 

revealing that steric repulsions by PEG mainly minimize the adsorption of plasma components on 
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PM and the physical properties of PEG such as sufficient flexibility and aqueous solubility play a 

significant role on the anti-fouling properties of PEG [32]. Based on the surface density and the 

MW of PEG when forming the shell of PMs, the conformation of PEG on the surface of PM, such 

as brush or mushroom, may affect the anti-fouling properties of the hydrophilic shell [30, 41]. 

Also, it was reported that PEG conformation on the PMs ultimately affect the circulation time and 

clearance of PM in in vivo [30].  

Synthesis of PEG is usually done by ring-opening anionic polymerization of ethylene oxide 

and this synthetic process generates well-defined PEG with narrow molecular weight distribution 

[42, 43]. The modification on the end group of PEG by appropriate chemical reagents (end-capping 

moiety) could expand the structural versatility of PEG [44]. The chemical versatility of the end 

group of PEG includes additional reactive moieties for ligand labeling and enables further 

conjugation with other species of polymers to prepare specific BCPs. 

The accelerated blood clearance (ABC) phenomenon of PEG has gained a lot of attention 

due to its detrimental effects on nanoparticle therapeutics with PEG shielding [45]. It is well 

studied that systemic exposure of PEG may cause accelerated blood clearance (ABC) phenomenon 

in humans [46]. This phenomenon mainly arises from initial exposure of PEG in PEG-coated 

nanoparticle therapeutics and subsequent development of anti-PEG antibodies in the body. ABC 

phenomenon mainly occurred in human patients treated with PEGylated proteins as well as 

liposomal formulation coated with PEG [47]. In the case of human patients treated with PEG-

uricase, about one third of the treatment group had developed anti-PEG antibodies in the body, 

resulting in poor efficacy [48]. The clinically approved doxorubicin liposome formulation, Doxil®, 

has shown to induced the ABC phenomenon in human patients mainly due to the development of 

anti-PEG antibodies in the body after the initial treatment of Doxil® [49]. The effect of hydrophilic 
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chains of liposomal formulation on the genesis of ABC phenomenon was extensively studies by 

Dr. Szoka’s group [50]. They found that both PEG hydrophilic shells and Poly(2-methyl-2-

oxazoline) hydrophilic shells on liposomes induced the ABC phenomenon in rats after the initial 

dose of the same liposomes. Other hydrophilic polymers such as HPMA, PVP 

(poly(vinylpyrrolidone)), PDMA (poly(N,N-dimethyl acrylamide)), and PAcM (poly(N-acryloyl 

morpholine)) did not cause the ABC phenomenon, indicating they are potentially safe hydrophilic 

polymers with anti-fouling properties.  

Interestingly, in contrast to ABC phenomenon from liposome with PEG shielding and 

PEGylated proteins, previous studies revealed that polymeric micelle formulations with PEG 

shielding did not induce significant ABC phenomenon in preclinical animal models as determined 

by the reduced anti-PEG antibody production. According to Shiraishi et al., anti-PEG antibodies 

did not affected the PK of PEG-b-poly(b-benzyl L-aspartate) PMs, while the PK profile of PEG-

liposomes was marked by significantly decreased circulation times [51]. Another study revealed 

that hydrophobic block of PEG-conjugate was closely related to the binding of anti-PEG antibodies 

on PEG-conjugate. That is, proximal hydrophobic block is another key factor for the binding of 

PEG-specific anti-PEG antibodies on PEG moieties to induce ABC phenomenon [52]. In the case 

of PEG-coated liposomes, hydrophobic segments were more exposed for anti-PEG antibodies, 

while the structured polymeric micelle formulation was effective in restricting anti-PEG antibodies 

from approaching the hydrophobic blocks of BCPs. Thus, PM formulations may be less of a 

concern in promoting the ABC phenomenon due repeated injection of the PM formulation. 
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Poly(2-oxazoline)s 

Poly(2-oxazoline)-based block copolymers (POx) recently gained a lot of interest as novel 

biomaterials due to their biocompatibility and chemical versatility [53]. Hydrophilic poly(2-

oxazolines)s such as poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxaozoline) 

(PEtOx) have shown the anti-fouling properties to repel the adsorption of plasma components on 

PM in both in vitro and in vivo. These studies demonstrated the potential of POx as a stealth PMs 

[54]. POx can be readily synthesized via living cationic ring-opening polymerization and recently 

BCPs composed of POx have demonstrated scalable synthesis and chemical versatility [54]. 

As for anti-fouling properties of POx, Zhang et al reported that both PMeOx and PEtOx 

had extremely low protein adsorption and cell adhesion that is comparable to that of PEG-coating 

[55]. Interestingly, the modification on the end group of those polymers had minimal effect on the 

protein adsorption, but the length of the polymer was significantly related to the anti-fouling 

properties. Another study done by Pidhatika et al clarified long-term anti-fouling properties of 

PMeOx coatings [56]. They found that PMeOx had excellent anti-fouling properties comparable 

to PEG for a short term of protein exposure. However, for a long term exposure of media exposure, 

it was found that only PMeOx could maintain the anti-fouling properties due to the lack of 

degradation of PMeOx in biological fluids. In case of PEG, though it had anti-fouling properties 

at the early time points, it gradually degraded in biological fluids, resulting in the loss of anti-

fouling properties. Currently, only PEtOx is approved as food additives by USFDA [57] and the 

safety profile of POx in human such as biodegradation of POx needs to be investigated for clinical 

development of POx-based PM formulations. 
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Other reported anti-fouling polymers 

 Several other hydrophilic polymers have been identified and have shown anti-fouling 

properties in preclinical models, suggesting their potential to be applied as shielding agents in 

PMs. 

Hydrophilic poly(amino acid)s (PAAs) were employed in amphiphilic BCPs as the anti-

fouling agents in outer surface of PMs. Biodegradability of PAAs by endogenous proteases in vivo 

potentially guarantees the safety of these materials in the body [58]. Synthesis of hydrophilic PAAs 

could be done via ring-opening polymerization by using N-carboxyanhydride of amino acids to 

generate poly(aspartic acid) (P(Asp)), poly(glutamic acid) (P(Glu)), and poly(sarcosine) (P(Sar)) 

[59]. Among hydrophilic PAAs, P(Sar) has shown effective anti-fouling properties for PMs in 

recent studies [60, 61]. 

Polysaccharides such as dextran, heparin, chitosan, hyaluronic acid, and chondroitin sulfate 

have shown anti-fouling properties and inhibited protein adsorption on the particle surface in 

biological fluids. Interestingly, some studies revealed that dextran as a shielding agent for 

nanoparticles showed anti-fouling effects and prolonged circulation in animal models in several 

studies. A comprehensive and concise review on polysaccharides as anti-fouling agents was 

reported by Doh et al and this review may provide useful information for researchers in selecting 

suitable polysaccharides with anti-fouling properties [62].  

Poly(vinylpyrrolidone) (PVP) has been employed in several studies to investigate anti-

fouling properties of PVP. PVP can be synthesized via radical polymerization and it has been 

traditionally been used as an excipient in formulation design [63]. Allegedly, both the pyrrolidone 

moiety and amide groups in side chain are closely related to the anti-fouling properties of PVP, 

but comprehensive mechanisms of the anti-fouling properties are still unknown [64]. 
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Several other hydrophilic polymers such as poly(N,N-dimethyl acrylamide) (PDMA), 

poly[N-(2-hydroxypropyl)methacrylamide] (HPMA), poly(dimethylsiloxane) and zwitterionic 

polymers have been reported as anti-fouling macromolecules [65-67]. Those polymers are 

expected to be developed as BCPs for efficient delivery of hydrophobic small molecules as PM 

formulations.  

 

1.3.2 Hydrophobic polymers in BCP 

Hydrophobic segments of BCPs play an essential role in solubilizing and encapsulating 

hydrophobic drugs in the core of PMs. The segregated core of the PMs features a hydrophobic 

environment where encapsulated drug can stably reside in the core during the systemic circulation 

and gradually release the cargo into the external environment. Hydrophobic segments of the BCPs 

can vary widely in their structure in order to effectively encapsulate hydrophobic drugs [68]. 

Commonly employed hydrophobic polymers are polyethers, polyesters, and recently POx based 

polymers such as poly(2-n-butyl-2-oxazoline) have gained much attention due to their high loading 

capacity for physically encapsulating hydrophobic drugs. 

Polyethers have been used as the core-forming segment for encapsulating hydrophobic 

drugs. Generally, polyethers are synthesized via ring-opening anionic polymerization of alkenes 

to produce well-defined polymers with low PDI MW distributions [69]. Poly(propylene oxide), 

poly(butylene oxide), poly(styrene oxide) have shown hydrophobic properties which have the 

capacity to solubilize hydrophobic drugs  [70, 71]. Poly(ethylene oxide)-poly(propylene oxide)-

poly(ethylene oxide) copolymers, which are called Poloxamer or Pluronic® under the trademark 

of BASF, are often exploited as BCPs for solubilizing hydrophobic drugs and preparing PM 

formulations [72]. Particularly, Pluronic® polymers were employed to manufacture the SP1049C 
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formulation which is composed of the mixture of Pluronic® F127 and Pluronic® L61. Doxorubicin 

loading was 8.2 % and SP1049C had an particle size of 30 nm and well-defined spherical 

morphology in aqueous solution [72]. 

 Polyesters are other exemplary polymer candidates which are frequently used in the 

formulation design of PMs. Synthesis of polyesters is commonly done by ring-opening 

polymerization (ROP) of cyclic esters and this synthetic strategy is known to produce high 

molecular weight polyesters with narrow polydispersity [73]. Examples of polyesters for 

solubilizing hydrophobic drugs are poly(caprolactone) (PCL), Poly(butylactone) (PBL), 

poly(valerolactone) (PVL), and poly(lactide-co-glycolide) (PLGA) [74, 75]. The BPCs composed 

of the hydrophobic polyesters and hydrophilic polymers such as PEG were often utilized to 

formulate PM systems. Micelle formulation prepared using PCL-b-PEG-b-PCL showed high 

loading capacity up to 28 % [76]. Genexol® PM formulation exploits methoxy-poly(ethylene 

glycol)-block-poly(D,L-lactide) (mPEG-b-PDLLA) (mPEG = 2,000 g/mol and PDLLA = 1750 

g/mol, PDI = 1.0–1.2) to solubilize PTX and form PM formulation in aqueous media [77]. 

Polyesters pose significant advantages due to their biodegradability. The degradation process of 

the polyester back bone in vivo prevents the undesired accumulation of the polymer in the body, 

thus reducing the risk of chronic toxicity.  

POx BCPs were recently introduced for drug delivery applications and have shown its 

potential as a drug carrier [53]. Triblock copolymer of POx consists of hydrophobic poly(2-n-

butyl-oxazoline) (PBuOx) in the core with two flanking hydrophilic PMeOx blocks have shown 

unprecedentedly high loading capacity for many hydrophobic drugs [22, 78]. Our group previously 

reported several polymeric micelle systems composed of POx-BCPs. The triblock copolymer 

composed of poly(2-methyl-2-oxazoline) (PMeOx) and poly(n-butyl-2-oxazoline) (PBuOx) 
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(PMeOx-block-PBuOx-block-PMeOx), such as PMeOx-b-PBuOx-b-PMeOx, was mainly 

exploited to prepare PM formulations. We have screened potential hydrophobic drug candidates 

and found that many hydrophobic drugs can be efficiently solubilized in this POx system with 

extremely high loading capacity. For example, PTX was extremely well-solubilize in POx up to 

PTX concentration of 40 mg/mL in aqueous solution to form well-defined spherical micelles with 

a size of less than 50 nm [22]. The maximum loading capacity of PTX in POx was up to 50 % 

which potentially minimizes the amount of excipients in formulation design. Stability studies 

confirmed that the POx-PTX (POxol) was stable in aqueous media for a month without any loss 

of PTX from the formulation and in sink conditions PTX was released from the formulation with 

approximately 100% released at 24 hours. A number of other hydrophobic drugs such as etoposide, 

3rd generation of taxanes, and vismodegib were able to solubilize in the POx micelle system with 

high loading capacity [79-81]. Due to its high loading capacity and safety profile, the POx system 

has drawn a lot of interest for use as a polymer carrier for drug delivery.  

The synthesis of POx can be achieved via living cationic ring opening polymerization 

process which provides a versatile library of polymer structure with various degrees of 

polymerization (DP) and limited side reactions [54]. The safety profile analysis of POx polymers 

in humans have not been conducted yet, which might be a mandatory step for proceeding to the 

clinical trials using POx-based therapeutics in the future. 

 

1.4 Drug-polymer molecular interaction within PM: theory, modeling and experimental 
approaches 
 
 The self-assembly of amphiphilic BCPs composed of immiscible blocks elicits the 

formation of micelle architecture in aqueous media when above the critical micelle concentration 

(CMC) [82]. Several factors such as molecular weight, molar fraction of blocks, chemical structure 
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of each block of the BCP, and the condition of aqueous solution (polymer concentration, 

temperature, ionic strength, and pH) may affect the size and morphology of micelle in solution 

[82]. The assembled micelles feature highly ordered macromolecular structure and segregated 

hydrophobic compartment in the core with hydrophilic shell on outer surface of the micelle which 

confines the overall micelle structure. From a thermodynamics perspective, the self-assembly 

process is driven by the which minimization of interfacial free energy [14]; 1) the aggregated 

hydrophobic segment which is decreasing the interfacial area with the aqueous environment which 

reduces interfacial free energy and 2) minimized interfacial free energy by stretched hydrophilic 

segments which reduces the interaction between hydrophobic segment and water. Kinetic stability 

of the assembled micelles reveals the dynamic status of the micelles in aqueous media and its 

stability in solution over time [82]. Upon dilution or external environmental changes, the dynamics 

among individual micelles such as exchange of individual polymers and the merging/disruption of 

the micelle structure indicates the stability of the micelle structure over time [82]. 

Mainly driven by hydrophobic interaction between hydrophobic small molecules and 

amphiphilic BCPs which have segregated hydrophobic compartments, the hydrophobic small 

molecules can be physically encapsulated in the core of the micelle during self-assembly process 

which brings about the formation of polymeric micelle in aqueous solution. The hydrophobic 

interactions among encapsulated drug and hydrophobic block not only assist the formation of the 

micelle, but also further stabilize micelle structure in solution. Additional hydrophobic interaction 

(cohesive forces) such as van der Waals forces driven by the proximity of hydrophobic drug and 

hydrophobic segment of the polymer in the core could lower CMC of the micelle, resulting in 

further stabilization of the micelle structure upon dilution [83, 84]. Other molecular interactions 
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such as hydrogen bonding or pi-pi interaction are known to affect CMC values of drug-loaded 

PMs, which facilitate enhanced stability of the micelle [85].  

Theoretical understanding of solubilization process of poorly soluble drugs by hydrophobic 

segment of block copolymer can be helpful to design novel chemical structure of delivery carrier 

so that efficient delivery system can be constructed, while sparing loss of time and cost for 

experiments based on trial-and-error learning for the formulation design. Various computational 

approaches have been proposed to predict the compatibility between drug and polymer during the 

encapsulation process, such as solubility parameters (SP) [86], Flory-Huggins (FH) parameters 

[87], molecular dynamics (MD) [88], and quantitative-structure properties relationship (QSPR) 

[89]. Validating the prediction data from aforementioned approaches has been performed by 

experimental approaches and the interpretation from those investigations gave us comprehensive 

insight into the plausible molecular interactions during micelle formation and a guidance to the 

development of molecular interaction-based delivery system.  

In depth physicochemical analysis of drug-loaded PM by experimental approaches have 

revealed detailed molecular interaction between the drug and the polymer both during self-

assembly process and in dynamics of PM in solution. In-depth investigation of the molecular 

interactions provides explanations for the role of structural factors of both components in PMs. 

Recent studies on the experimental analysis of PM have shown that the drug-polymer compatibility 

was achieved via more complex molecular interactions than simple hydrophobic interaction [79, 

90, 91]. In this section, we will describe computational and experimental approaches to explain 

the solubilization process by PM and showcase the recent progress on the characterization of PM 

for efficient design of polymer-based delivery system.  
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1.4.1 Theoretical approaches  

Hildebrand and Hansen solubility parameters 

Solubility parameters (SP) originally attempted to described the miscibility of two 

components, where similar SP values are predicted to be miscible [92, 93]. Hildebrand and Hansen 

approaches have been largely employed to calculate SP; Hildebrand proposed SP calculation based 

on the square root of the cohesive energy density to describe molecular self-interaction energies, 

which provides a numerical value indicating the miscibility of two components and given in MPa 

(Equation 1). 

 

!"# = %&'(
) = *+,-  (Equation 1) 

 Where: 

 !"# = Hildetrand	solubility	parameter- , 

 +?@A = cohesive	energy, 

 F = total	volume, 

 *+, = cohesive	energy	density 

 

According to the Hildebrand SP, two components are predicted to be miscible when the 

difference in SPs is less than 3.7 MPa. In order to take a wider range of molecular interaction such 

as dissimilar patterns of polar and hydrogen-bonding interactions into consideration, Hansen SP is 

expressed as partial energies of cohesion, which described as the square root of a sum of dispersion, 

dipolar, and hydrogen-bonding component (Equation 2) [92]. 
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!GH = (JKL + JNL + JAL)-   (Equation 2) 

 Where: 

 !GH = Hansen	solubility	parameter- ,  

 JK = partial	dispersion	component, 

JN = partial	dipole– dipole	component, 

 JA = partial	hydrogen– bonding	component 

 

 In case of Hansen SP, two components are predicted to be miscible when the difference in SPs is 

less than (or equal) to the Hansen SP sphere radius (Equation 3) [93]. 

 

4(JKR − JKL)L + (JNR − JNL)L + (JAR − JAL)L ≤ U@L (Equation 3) 

Where:  

 JK = partial	dispersion	component, 

JN = partial	dipole– dipole	component, 

 JA = partial	hydrogen– bonding	component, 

 U@L = radius	of	interaction	spehre	in	Hansen	space 

 

  Interestingly, several studies on the compatibility prediction by the calculation of Hansen 

SP values of drug and macromolecules revealed that enthalpies of mixing derived from the 

calculation of SP could indicate the compatibility of drug and polymer for the solubilization. From 

this point of view, several studies tried to elucidate the correlation of SP on the solubilization of 

hydrophobic drugs by amphiphilic polymers.  
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An exemplary study from Dr. Allen group showcased the application of solubility 

parameter as the indicator of polymer-drug compatibility in order to formulate anticancer drug, 

ellipticine [94]. The physicochemical analysis of polymer–drug pairs was performed and the 

difference in total and partial solubility parameters were compared in order to predict polymer–

drug compatibility. The partial and total solubility parameters of polymer candidates and ellipticine 

were calculated using the group contribution method. Interestingly, the drug loading efficiency for 

micelle formulation by each polymer candidates were in a good correlation by the prediction of 

polymer–drug compatibility using solubility parameter. Also, along with the compatibility 

prediction, the release profile of ellipticine from each formulation was closely released; compatible 

polymer such as polycaprolactone (PCL) had sustained release of ellipticine up to 6 days, while 

incompatible polymer such as poly(D,L-lactide) (PDLLA) showed faster release of ellipticine 

within 3 days. These results indicate that solubility parameters could be applied for the prediction 

of polymer–drug compatibility including solubilization process and in vitro drug release profile.  

 

 Flory-Huggins solution theory  

 Flory-Huggins (FH) theory was introduced in 1940s and has been utilized to describe the 

thermodynamic behavior of polymer solution by the estimation of the Gibbs free energy change 

for mixing of a polymer and a solvent [95, 96]. FH parameter,	WXY , is a scalar quantity that indicate 

the thermodynamic interaction contributing the enthalpy of mixing of polymer and a solvent 

(Equation 4) [95, 96].  

 

WXY =
∆Y[\]
^_`abc

  (Equation 4) 

Where:  
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 WXY = Flory–Huggins	interaction	parameter 

∆!efg = enthalpy	change	upon	creation	of	a	binary	mixture, 

 i = Boltzmann	constant, 

 l = Absolute	temperature  

 HR = number	of	molecules	of	solvent 

 ∅L = volume	fraction	of	polymer 

 

According to FH theory, two components are predicted to be miscible if WXY is less than 

0.5, whereas phase separated if WXY > 0.5. Values can be obtained by either SP values calculated 

for each component or MD approach. Compared to the values calculated from SP values, the 

combination of and MD produces more reliable predictions on drug-polymer compatibility due to 

MD approaches being able to include the conformational factors such as hydrogen bonding or 

spatial distribution of hydrophobic drug in the core [97]. The FH theory has been further developed 

in order to predict the compatibility of polymer and drug in drug formulation development. 

Recently, several studies have reported the utility of FH theory for the efficient design of polymer 

for drug delivery. 

  Michael et al reported the application of FH interaction parameter for the prediction of the 

solubilization of model drug, bicalutamide in methoxy-poly(ethylene glycol)-b-poly(carbonate-

co-lactide) (PEG-b-P(CB-co-LA)) block copolymer. Chemical modification of methoxy-

poly(ethylene glycol)-b-poly(L-lactide) (PEG-b-PLLA) with carbonate moieties enhanced the 

loading of bicalutamide and the prediction made by FH interaction according to the addition of 

carbonate groups were consistent with the actual drug loading amount in the micelle formulation 

[98]. In another study, Mahmud et al. reported that the calculation by FH interaction parameters 
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for cucurbitacine I (CuI) and various block copolymer candidates for the efficient solubilization 

and controlled release of CuI from micelle system [99]. They found that the prediction by FH 

parameters were correlated with the compatibility of polymer–drug resulting in higher loading of 

the drug in the micelle formulation. Interestingly, the release profile of the drug was not closely 

related to FH parameters, rather related to the viscosity of the core in the micelle which probably 

hinder the diffusion of the drug from the core of micelle.   

 More recently, some studies revealed that FH parameter calculations by solubility 

parameters do not effectively indicates the solubility of hydrophobic drugs in PM formulations. 

Lubtow et al reported that empirical determinations of the properties of poorly soluble drugs were 

more important and the prediction by FH to obtain the reliable prediction data [100]. Also, HSP 

were able to predict the trend regarding good and poor solubilized, but the overall prediction 

capacity was unsatisfying. Thus, calculation of FH interaction parameters with molecular 

dynamics (MD) is often employed in order to improve the prediction for polymer–drug 

compatibility. Erlebach et al. recently reported their work on the evaluation of polymer–drug 

compatibility in PEG-PLA micelle system [101]. They obtained FH interaction parameter from 

MD simulation, thereby explicitly includes specific interaction between the drug and polymer 

chains; MD simulations were able to effectively include molecular interactions such as hydrogen 

bonding, conformational factors of drug and polymer in micelle. The prediction from those FH 

parameters was closely related to the encapsulation of hydrophobic molecules in a given polymer 

system, PEG-PLA. Though FH parameters have been largely exploited for prediction of 

compatibility of polymer–drug, these two different studies indicate us the necessity of the 

development of smarter prediction system for drug solubilization process. 
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1.4.2 Computational modeling approaches  

Molecular dynamics (MD) 

Computational approaches such as molecular dynamics (MD) has been extensively utilized 

to investigate the molecular interactions on PM and obtain microscopic insight of molecular 

interaction in modeling [102]. MD is theoretically based on Newton’s second low and traces the 

successive molecular motions or conformational changes of the components in solution based on 

the computation of the interactions among molecules in the modeling [103]. In case MD simulation 

on PM formulations, the interactions among hydrophobic drug and BCPs are computed to generate 

the next successive conformations in a given modeling, which indicates the process of self-

assembly including the drug loading in the core [102]. To elucidate the molecular dynamics of 

drug delivery system such as polymeric micelle, fully atomistic simulations are often inappropriate 

due to the time scale of the simulation (usually in the order of microseconds or longer for molecular 

interaction within PM), thus coarse-grained (CG) simulations are more frequently exploited, which 

the number of degree of freedom is reduced in order to expedite the molecular simulations [102]. 

A number of MD modeling on PM formulations have been conducted to investigate the drug 

loading and molecular interactions within PM formulation. 

Patel et al. successfully performed a series of studies on MD modeling for PM formulation 

to elucidate the essential factors on hydrophobic solubilization using poly(ethylene glycol)-b-

poly(caprolactone) (PEG-b-PCL) [104-106]. In their first study, they found that MD modeling 

could successfully predict the solubility of model drugs (finofibrate and nimodipine) in PEG-b-

PCL with a good agreement of experimental data. In subsequent studies, the MD modeling figured 

out that another model drug (cucurbitacin) had enhanced solubility in a given polymer with 

increasing PCL/PEG ratio due to additional polar interactions and hydrogen bonds among 
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cucurbitacin and PCL block. When PCL block was branched to form PEG-b-3PCL, curcubitacin 

solubility was further enhanced, which is consistent with the outcome from the MD simulation. 

This study clearly explained how the molecular interaction might be occurring in the core of the 

micelle with model drug and why effective solubilization of the model drug could be possible by 

the model polymer via MD simulation.  

 

QSPR (Quantitative structural properties relationship) 

MD approaches are often inappropriate for the prediction in large data sets since the MD 

simulations of large number of PM formulation will require enormous time and cost for such scale 

of simulation [102]. Instead, statistical approaches can be exploited for the prediction of polymer–

drug compatibility and several promising studies have been published recently that highlight the 

utility of statistic-based computational approach. Quantitative structure-property relationship 

(QSPR) modeling is based on the statistical analysis of data set, which previously commonly 

exploited in the field of medicinal chemistry and chemical toxicology for the prediction of 

efficacy/toxicity of small molecules [107]. Recently, several researches conducted QSPR 

modeling for the prediction of solubilization and have reported promising results. According to 

Wu et al QSPR model of doxorubicin loaded PM on four/six-arm star polymers structures using 

genetic function approximation (GFA) algorithm [89]. The star polymers consisted of six polymers 

of four-miktoarm star polymers (PCL)2(PDEA-b-PPEGMA)2, four polymers of six-miktoarm star 

polymers (PCL)3(PDEA-b-PPEGMA)3 and three polymers of four homoarm star polymers (PCL-

b-PDEA-b-PPEGMA)4. The relationship between drug loading and polymer structure via QSPR 

approach revealed the quantitative estimation of the drug loading in specific polymers described 

above. 
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For maximize the capacity of prediction by QSPR, a larger data set is required to have a 

statistical analysis by QSPR, which might potentially improve the predictability by QSPR. 

Recently, our group has published cheminformatics-driven discovery of PM formulation for water-

insoluble drugs in order to showcase the rationale design of PM formulation by QSPR approach 

[78]. Total 41 hydrophobic drugs were tested in PM formulation by using poly(2-oxazoline)-based 

block copolymer at different concentration either individually and in combination with another 

drugs, which produces 408 data points as micelle formulation that provides both loading efficiency 

(LE) and loading capacity (LC) in PMs. With the statistical analysis by QSPR with given dataset 

above, QSPR approach could predict the solubility of model hydrophobic drugs in POx polymer 

in terms of both LE and LC with high accuracy up to 75 %. This study demonstrates the prediction 

capacity of statistics-based approach for drug solubilization and the potential of computer-aided 

design of drug delivery system.  

 

1.4.3 Experimental approaches 

Experimental approaches have been mainly used to determine the physicochemical 

properties of micelle formulation. Generally, drug loading/release profile and size distribution of 

micelle have been regarded as the key properties of the polymeric micelle system that largely affect 

pharmacokinetic profile in vivo. However, molecular-level understanding of the formation of PM 

via self-assembly is rarely reported though important and promising to understand the internal 

structure of PM. Detailed molecular interaction between drug and polymer can elucidate the 

conformational factors that governs the formation of the core and the stability of PM in aqueous 

solution. For this purpose, experimental approaches to investigate the molecular-level interaction 

is highly warranted to efficiently design novel polymers for drug delivery. Vague assumption on 
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the core of PM, namely simple hydrophobic region for dissolving hydrophobic drugs derived from 

simple core-shell structure of PM, may not be valid and it is necessary to explore the 

microstructures within PM that potentially govern the solubilization capacity of PMs as well as 

potentially PK profiles of PM in vivo. In this section, advanced experimental approaches to reveal 

molecular interaction within the core of PM will be introduced and the application of these 

approaches in previous literature will be discussed. Particularly, Dr. Luxenhofer group have 

reported several pioneering as well as pragmatic studies on experimental approaches for 

elucidating detailed molecular-level interactions within POx micelle architecture. Thus, this 

section will be rather focused on POx-based micelle systems that could be possibly applicable 

other PM systems for hydrophobic small molecule delivery. 

 

Nuclear magnetic resonance (NMR)  

Advanced NMR techniques have been employed for characterization of PMs to reveal the 

molecule interaction between drug and polymer in PMs. Solid-state NMR (ssNMR) can be a valid 

experimental approach to realize non-covalent molecular interaction within the core of PM since 

the changes in the chemical shifts and the respective line widths may provide clear evidences for 

drug loading and corresponding molecular interactions and local environment with hydrophobic 

segment of BCPs. The applications of ssNMR on PM have been recently published and revealed 

interesting results that provides us detailed insight into the internal core of PM. The work by Callari 

et al. showcased the utility of 1D and 2D solid-state NMR spectroscopy (ssNMR) to investigate a 

correlation between drug loading and physicochemical properties of micelle formulation, which 

ultimately affects in vitro cytotoxicity [108]. The micelle formulation was prepared using 

glycopolymer composed of a fructose hydrophilic block and a PMAA block and by the conjugation 
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of platinum drug (Phen-Pt) with carboxylic groups of the PMMA block. From ssNMR analysis of 

their micelle formulation, they found that, based on the loading of platinum drug via conjugation, 

swelling and mobility of core and shell of the micelle was largely affected, resulting in the higher 

cellular uptake and subsequent higher toxicity in low loading micelle. The low loading micelle had 

softer hydrophilic shell and enhanced interaction of sugar moieties with cells, resulting in higher 

uptake and higher toxicity.  

Another study done by Poppler et al reported the investigation of structural model of PMs 

with various drug loading via physical entrapment by using ssNMR [91]. They used poly(2-

oxazoline)-based block copolymers and curcumin as model hydrophobic drug to prepare PM 

formulation in the study. Interestingly, ssNMR analysis revealed that the degree of curcumin 

loading in PM affected the localization of the drug in the core, where primarily curcumin 

accumulated in the core at low loading via hydrogen bonding between phenolic OH group of cur 

cumin and amide group of polymer backbone, whereas, as the drug saturated towards high loading 

in the micelle, the drug located at the hydrophilic-hydrophobic interface via molecular interaction 

between carbonyl-carbon of hydrophilic polymer and and interpolymer structure among 

hydrophilic chains. 

2D NMR techniques were applied to examine the molecular interaction within PMs. 

Recently, Haider and coworkers reported their finding on the role of hydrophilic block on the 

solubilization of hydrophobic drugs in block copolymer system and rebutted the oversimplified 

structure of PMs in previous literature [109]. According to their results, it was highlighted that the 

interaction between hydrophilic segment of block copolymer and hydrophobic drug affects the 

physicochemical properties of PMs; unprecedentedly high loading capacity of poly(2-oxazoline)-

based block copolymer was possible in part due to the function of hydrophilic segment of block 
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copolymer, poly(2-methyl-2-oxazoline)s (PMeOx). On the contrary, poly(2-ethyl-2-oxazoline)s 

(PEtOx) as hydrophilic shell were not able to achieve such high loading capacity due to the 

interaction with hydrophobic drug loaded in the core as the loading capacity increases, resulting 

in the collapse of the PMs in aqueous solution. The interaction between hydrophilic shell and the 

drug in the core was extensively analyzed via NMR techniques. 1H diffusion-ordered spectroscopy 

(DOSY) study revealed the averaged diffusion coefficient of each PMs which indicates 

hydrodynamic volumes of each PMs, which indicate the molecular interactions between 

hydrophilic shell and loaded hydrophobic drug. The DOSY analysis could precisely measure the 

characteristics of PMs (hydrodynamic volumes), while the difference of hydrodynamic size by 

dynamic light scattering (DLS) was marginal in each PMs. Moreover, nuclear overhauser effect 

spectroscopy (NOESY) analysis could analyze micelle structures in aqueous media and reveal that 

PEtOx units are in close proximity of hydrophobic core, while PMeOx units are remaining 

separated from the core. This novel study indicates significant but less known factors, the role of 

hydrophilic segment in block copolymers, for designing novel polymers for efficient PM delivery 

system. 

 

Small angle neutron scattering (SANS) 

SANS is an experimental method to investigate macromolecular structure ranging from 

nanometer to micrometer by using elastic neutron scattering at small angle of scattering. Earlier 

studies reported the analysis of PM by SANS to reveal the microstructure of PMs such as CMC 

and morphologies of micelle core and corona [110]. More recently, further applications of SANS 

on the analysis of the architecture of PM have been published that disclosed microstructures in the 

core of PMs that derived from the interactions between model drug and BCPs. 
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Schultz et al. reported interesting study on the morphological change of PM formulation 

upon the incorporation of paclitaxel in POx-based PM (POx-PTX) [79]. Dynamic light scattering 

(DLS) analysis of POx-PTX revealed that the hydrodynamic size distribution of POx in the 

absence of PTX was about 200 nm, while POx-PTX PM had well-defined spherical micelles by 

the incorporation of PTX in POx. Further physicochemical analysis of POx-PTX by SANS 

revealed that wormlike micelle of POx in the absence of PTX was changed to spherical 

morphology above a certain level of PTX encapsulation (>8% PTX loading), where the 

encapsulation of paclitaxel in the core formed raspberry-like micellar core and drove the overall 

micelle structure into spherical in aqueous media. Each raspberry microstructures had several nm 

size and were aggregated each other to form the core of POx-PTX. This study firstly showed the 

microstructures in PMs that potentially assists extraordinary high-loading capacity of POx-based 

PMs. 

Dr. Luxenhofer group recently reported an interesting study about the structural changes 

of PM depending on drug loading that enables ultra high loading capacity via SANS techniques 

[109]. By constructing PMs using model drug, curcumin, and model polymers synthesized from 

poly(2-oxazoline) and poly(2-oxazine), they figured out the residence of curcumin in the core and 

partitioning of the drug along with the loading capacity. At low loading capacity, curcumin mainly 

resides in the core of the micelle. As the loading of curcumin increases, an inner shell is formed 

which favorably interacts with curcumin and assists further solubilization up to ultra-high loading 

capacity. This is the first study that revealing the unexpected role of hydrophilic chain in drug 

solubilization process by BCP that further assists drug solubilization by the formation of inner-

shell. The author concluded that core-inner shell-outer shell enabled such ultra-high loading 

capacity of curcumin in given PMs beyond our current knowledge as well as expectation. 



	 28 

1.5 General considerations regarding physicochemical properties of PMs 

Physicochemical properties of PM products are closely related to the success of novel PM 

in clinical trials. The physicochemical properties must be well analyzed to validate the 

characteristics of the PM products as the form of certificate of the analysis (COA) to avoid 

unexpected inconsistency of the physicochemical properties from the manufacturing process of 

the PM [111, 112].  

First of all, loading capacity of drug within PM and ratio of drug to excipient can be one 

of the significant factors for successful PM products as therapeutics. Higher loading capacity of 

PM is highly warranted as it potentially reduces the amount of excipient being used in the 

formulation, thus minimizing unexpected toxicity derived from the excipients. The toxicity derived 

from excipients have often occurred in patients and it was the main reason for limiting dosage of 

drug formulation for treatment. For examples, Taxol® formulation consists of Cremophor ER and 

anhydrous ethanol [113]. Though Taxol® have shown anti-cancer efficacy on human patients and 

still approved for humans, these toxic excipients caused severe toxicity issue in human patients 

and forced minimizing the dosage of Taxol®, resulting in reducing dose of PTX [113]. Due to 

biocompatibility profile of BCPs, PM formulation that encapsulates PTX have shown reduced 

excipient-derived toxicity. For instance, it was proven that General PM formulation was much 

safer than Taxol® in cancer patients (390 and 200 mg/m2, respectively) and no hypersensitivity 

reactions which often observed in Taxol® treatment [9]. NK105 formulation also have shown 

improved safety profile in clinical trial. In phase III trial in 2016, it was reported that NK105 could 

reduce PTX-related toxicity with higher dose compared to Taxol® [114]. Another study done 

previously by our group showed that high loading capacity of PTX in POx micelle formulation 

had superior safety in preclinical animal model [22]. POx formulation could encapsulate paclitaxel 
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up to 1:1 ratio of drug and excipient, resulting in loading capacity of 50%. Maximum tolerated 

dose of paclitaxel in mouse was about 7.5 fold higher in POx micelle (150 mg/kg) compared to 

that of Taxol (20 mg/kg) [22]. This study indicates that both biocompatibility of excipient and high 

loading capacity are required to minimize excipient-derived toxicity. High loading capacity is also 

important for combinational PM formulation that may contain two or more drugs in a single 

micelle as combination therapy. For effective and safe delivery of drug combination, the 

combination drugs should be well-solubilized in PM so that the amount of the excipient and 

injection volume could be minimized for parenteral injection [115, 116].  

Secondly, hydrodynamic size of PM would be another important factor to consider for 

clinical application of potential PMs. It is well-established that the size distribution of 

nanomedicine may affect biodistribution of nano-sized particles when administered, resulting in 

either extended systemic circulation or faster clearance from the body. Particles with size ranging 

over 200 nm may be caught by the liver, while too smaller size of nanoparticles less than 10 nm 

would be easily cleared by the kidney [117]. In previous studies, it was proven that size from 50 

nm–100 nm is effective in terms of systemic circulation in preclinical model, suggesting ideal 

particle size distribution is necessary for efficacy of PMs [118, 119]. In terms of the size of PMs 

in clinical trials, one can see the size of those PM formulations are less than 100 nm [6, 8]. Thus, 

one may speculate that size range from 20 nm to 100 nm can be conceived as good properties as 

PMs. Of course, other factors that affect the hydrodynamic size of PMs must be clarified to confirm 

the effect of the size of PM in systemic circulation. Such factors are 1) effect of dilution of PMs 

by plasma that might alter the hydrodynamic size of PMs during administration, 2) surface charge 

and morphology/shape of PMs that affects biodistribution of PMs in systemic circulation, and 3) 
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release profile of drug from PMs which subsequently affect the hydrodynamic size of PMs in 

systemic circulation.  

Stability of PM and drug release profile from PM in systemic circulation are important 

factors in that these dynamic status of PMs govern drug exposure to systemic circulation. First of 

all, CMC of PM should be low enough to endure extreme dilution upon infusion, thus the micelle 

structure would be intact during the systemic circulation to avoid unexpected drug loss and achieve 

ideal delivery of the drug [2]. Also, it should be noted that PM formulation in which drug loaded 

via hydrophobic interaction exists as dynamic state, resulting in gradual drug release into external 

environment [120]. In fact, unlike PM formulations prepared via stable covalent conjugation which 

may only react upon external stimuli and release the cargo via the cleavage of the covalent bond, 

PM formulations that physically encapsulate hydrophobic drugs are gradually releasing drug via 

both diffusion of the drug from the core and drug binding to serum proteins. Thus, PM formulation 

may exist in systemic circulation as dynamic state, resulting in various forms of hydrophobic drug; 

encapsulated drug and unencapsulated drug (free (unbound) drug and protein–bound drug)). For 

careful evaluation of those forms that highly related to therapeutic outcome, the stable isotope 

tracer ultrafiltration assay (SITUA) was previously reported by Skoczen et al and this approach 

enabled the analysis of drug forms in systemic circulation in preclinical animal model [121].  The 

approach uses isotopes of the model drug and separate the aforementioned forms by 

ultracentrifugation method. For examples, paclitaxel isotopes were employed in preclinical animal 

model to investigate the dynamics of Genexol® PM in mouse model (Summary for US FDA, Inter-

Agency Award 224-16-3001S). Meticulous analysis of drug forms in vivo may indicate PK 

profiles and subsequent therapeutics outcome from given formulation as well as possibility of 
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bioequivalence to reference formulation that assist further possibility for clinical trials via 

505(b)(2) approval process. 

Manufacturing process of PM should be well considered in order to produce micelle 

formulation with consistent physicochemical properties and desired scale of production. The 

selection of applicable manufacturing process may largly impact on characteristics of the final PM 

formulation such as drug loading, size distribution and stability of PM in aqueous media. Several 

manufacturing processes have been introduced to produce PM in a larger scale such as film 

hydration method [78], co-solvent evaporation [122], direct dissolution [123], dialysis [124], and 

oil-in-water emulsion [124]. For manufacturing of PM several factors should be considered such 

as the usage of organic solvent, number of overall steps, yield of the PM from the pure drug and 

excipient, sterilization process for endotoxin-free formulation, and final formulation design 

(solution or lyophilized powder for reconstitution with injectable distilled water). Supposedly, 

minimal step of manufacturing of PM is highly warranted and for this purpose, thin film hydration 

method could be the best option since 1) less number of step 2) easy to remove organic solvent 

during film formation 3) no needs to dialysis and avoid potential contamination from water. As 

the final formulation, lyophilized powder form is a better option since it may be helpful to avoid 

potential contamination or drug release/degradation of micelle formulation in aqueous media.  

 

1.6 PMs in clinical trials and regulatory approval for human 

1.6.1 Clinical status of PM formulations  

A large number of PM formulations for physical entrapment of hydrophobic small 

molecules have been reported in literature since the earliest reports on PM formulations and such 
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contribution by researchers has generated PM formulations that have reached clinical trials in USA 

[4]. 

 

Genexol® PM 

  Genexol® PM (Cynviloq®) is a PM formulation incorporating PTX as active 

pharmaceutical ingredient (API) originally developed by Samyang Biopharm and the first PM 

formulation approved for human use in South Korea and other countries for the patient with 

metastatic breast cancer (MBC), non-small cell lung cancer (NSCLC), and ovarian cancer. Block 

copolymer composed of methoxy-poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-b-

PDLLA) (mPEG = 2,000 g/mol and PDLLA = 1750 g/mol, PDI = 1.0–1.2) was employed to 

manufacturing the product by solid dispersion method and the micelle featured nano-sized PM 

with well-defined spherical structure in aqueous media (20–50 nm in diameter and 16.7% loading 

capacity of PTX in PM) [6]. In sink condition, paclitaxel was slowly released out with 65% 

released at 24 hours and 95% released at 48 hours.  

In phase I trial revealed that General PM had shown improved safety in healthy human 

candidates and less hypersensitivity reaction after treatment [9]. The dose was determined as to 

390 mg/m2 for Genexol® PM and 200 and 300 mg/m2 for Taxol® and Abraxane®, respectively [9]. 

Based on safety profile of Genexol® PM, in multi-centered phase II study was performed on cancer 

patients with advanced breast cancer non-small cell lung cancer (NSCLC) with the dose ranged 

from 230 to 435 mg/m2, which is higher than the common dose for Taxol® (approx. 170 mg/m2) 

[10]. Phase II study on MBC patients reported anticancer efficacy of Genexol® PM with the overall 

response rate (ORR) of 58.5%, which is superior than that of Abraxane (47.6%) and Taxol (21–

54%). With effective therapeutic outcome in clinical trials conducted in South Korea, Genexol® 



	 33 

PM received regulatory approval in South Korean and other countries (Philippines, India, and 

Vietnam) for the treatment of human cancers such as MBC, NSCLC, and ovarian. 

Clinical development of Genexol® PM in USA (under the trade name of Cynviloq®) was initiated 

by Sorrento Therapeutics after the exclusion distribution rights to Genexol® PM was acquired by 

Sorrento Therapeutics in 2013. In 2014, bioequivalence studies of Cynviloq® versus Abraxane® 

were conducted in patients with metastatic or locally recurrent breast cancer and patients with 

NSCLC (NCT02064829). Preliminary positive data in eight patients was reported in 2014 which 

possibly support bioequivalence and the bioequivalence of Cynviloq® to Abraxane® could grant 

505(b)(2) pathways by the FDA, which potentially expedite the regulatory process as the pathway 

could eliminate the extensive clinical trials to validate efficacy versus the standard of care. 

Unfortunately, no updates are available on the bioequivalence on this potential PTX-loaded 

nanomedicine since Cynviloq® was acquired in 2015 by NantWorks which was founded by Dr. 

Patrick Soon-Shiong, who developed Abraxane®. 

 

NK105 

NK105 is PTX-loaded PM formulation that was originally developed by Dr. Kataoka in 

early 1990s and advanced to clinical trials (phase III completed, NCT01644890). Block copolymer 

composed of poly(ethylene glycol)-block-poly(aspartate) (PEG-b-P(Asp)) (PEG = 12,000 g/mol 

and P(Asp) = 8,000 g/mol) was chemically modified, where P(Asp) was conjugated with 4-phenyl-

1-butanol via esterification reaction to enhance drug-polymer compatibility and drug loading in 

the micelle [8]. About half of carboxylic acid groups in P(Asp) was converted to 4-phenyl-1-

butanolate and loading capacity of PTX in NK105 was 23% and hydrodynamic size of NK105 in 

aqueous media was 85 nm.  
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In a phase I trial, NK105 at the dose of 150mg/m2 showed significantly enhanced PTX 

exposure to tumor and increased drug concentration in blood compared to that of Taxol® at the 

dose of 210 mg/m2 [114]. Also, side effect of PTX such as neurotoxicity was less seen in the group 

of NK105 than in the group of Taxol®. Subsequent phase II trial of NK105 on the patients with 

advanced stomach cancer revealed that the clinical efficacy of NK105 was modest with ORR of 

25%, the median progress free survival (PFS) of 3.0 months, and the median overall survival (OS) 

of 14.4 months [125]. In July 2016, phase III study completed and the results from the study 

revealed that NK105 could not reach primary end point of the study in patient with metastatic or 

recurrent breast cancer [126]. In clinical trials, NK105 could only demonstrate the safety profile 

of PTX over conventional products. 

 

SP1049C 

SP1049C is doxorubicin (DOX)-loaded Pluronic®-based PM formulation developed by Dr. 

Kabanov group and entered Phase II clinical trials that have shown positive results [11]. The 

formulation was prepared using a blending of two Pluronic® block copolymers (L61 and F127) 

that consist of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) at 1:8 weight ratio of 

L61:F127 [72]. Physicochemical analysis of SP1049C revealed that the micelle had well-defined 

spherical morphology with a size of less than 30 nm and DOX loading capacity in SP1049C was 

8.2 %. According to Batrakova et al, Pluronic® L61 exhibited sensitization of resistant cancer cell, 

thereby enhancing the cytotoxicity of DOX and F127 showed stabilization of DOX-loaded micelle 

formulation in aqueous solution [72].  

In phase I clinical trial for SP1049C in 1999, SP1049C exhibited similar PK profile of 

DOX to conventional DOX formulation with similar MTD dose of 70 mg/m2 in the patients with 
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metastatic or recurrent solid tumors [127]. Interestingly, DOX-related toxicity such as hand–food 

syndrome was less seen in the group of SP1049C compared the group of conventional DOX.  

Later, Phase II trial of SP1049C demonstrated improved efficacy of DOX in the patients with 

advanced carcinoma of the esophagus and gastroesophageal junction with response rate of 47% 

and clinical benefit (response rate accompanying stable disease) of 89% [11]. The phase II study 

confirmed that the efficacy of SP1049C was comparable to that of conventional DOX treatment 

(the median OS of 10 months and PFS of 6.6 months). In 2008, FDA granted an orphan drug 

designation for SP1049C, however, since then no clinical data has reported. 

 

Nanoxel-M 

Nanoxel-M is PM formulation for docetaxel (DTX) that developed by Samyang Biopharm 

and currently under clinical evaluation. Block copolymer composed of methoxy-poly(ethylene 

glycol)-block-poly(D,L-lactide) (mPEG-b-PDLLA) was exploited to manufacture Nanoxel-M via 

thin-film hydration method, thereby producing nano-sized micelle solution that has mono disperse 

and narrow size distribution with hydrodynamic size of 25.4 nm with a short term of stability up 

to 6 h in saline [128]. 

Phase I clinical trial was conducted in South Korean and the study reported that Nanoxel-M had 

superior safety profile than conventional docetaxel formulation in patients with advanced solid 

tumor [128]. Due to its comparable efficacy and superior safety, Nanoxel-M received regulatory 

approval in South Korea in 2013. Currently phase II (NCT02639858) and phase III trials (NCT-

2982395) are recruiting cancer patients in South Korea to evaluate Nanoxel-M antitumor efficacy.
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1.6.2 Bioequivalence of PM formulations 

Complicated process of PM dynamics in systemic circulation requires advanced analytic 

technique to investigate release process of the drug from PM and several forms of PMs which are 

closely related to therapeutic outcome. Indeed, when PMs administered systemically, PMs may 

exist in several forms; a) PM-encapsulated, b) unencapsulated, free/unbound, and (c) 

unencapsulated, protein-bound [121]. The ratio of all three fraction may vary based on the 

physicochemical properties of the drug such as protein-binding, aqueous solubility, and drug–

polymer compatibility. Identification of PM forms in systemic circulation is essential to investigate 

the therapeutic efficacy of drug based on PK profile of PM as well as to determine bioequivalence 

of one nanoformulation to reference nanomedicine.  

National Characterization Lab (NCL) have investigated comprehensively on a novel 

bioanalytical technique to fractionate nanomedicine subpopulation in preclinical model. Recently 

they reported summary for study on nanomedicine bioequivalence which showcase pragmatic 

methodology as the guidance for the measurement of PM subpopulations in serum [121]. They 

reported extensive bioequivalence studies on several nanomedicines to compare PK profiles to 

reference products (Janssen’s Doxil® vs. Sun Pharma’s Doxorubicin hydrochloride (DOX•HCl) 

liposome formulation and Celgene’s Abraxane® vs. Samyang’s Genexol®-PM) (Summary for US 

FDA, Inter-Agency Award 224-16-3001S). The stable isotope tracer ultrafiltration assay (SITUA) 

was employed in the analysis of serum samples of animal model in order to separate the 

subpopulation of each product. Analysis by the SITUA method demonstrated that both DOX 

nanoformulations (Doxil® and Sun Pharma’s formulation) had comparable PK parameters 

(unencapsulated DOX and encapsulated DOX). Also, PTX nanoformulations (Abraxane® and 

Samyang’s Genexol®-PM) showed very similar PK profiles of PTX subpopulations. However, 
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bioequivalence analysis by statistical analysis (two one-sided t-test) revealed that both DOX 

nanoformulations and PTX nanoformulations were not bioequivalent. This novel methodology 

showcased advanced analysis of subpopulations of nanoformulation which closely related to 

therapeutic outcome as well as pragmatic analytical approach to determine bioequivalence of one 

formulation to reference product to grant 505(b)(5) regulatory process.  

 

1.6.3 PM formulations for combination therapy 

 Combination therapy has been largely exploited for treatment of various type of cancer, 

based on related pathways on oncogenesis or combination of the agents that affects tumor 

microenvironment (TME) [129]. Frequently employed type of combinations are 1) combination 

of chemotherapies for killing cancer cells, 2) combination of chemotherapy with additional agents 

such as TME modifiers, or more recently 3) combination of immunotherapy with anticancer agents 

to induce anti-tumor immunotherapy [129]. Ideal combination therapy requires precise drug 

combination exposure to induce synergistic therapeutic efficacy, thus administration and 

subsequent disposition of combination to target tissue with desired ratio of the combination is 

highly warranted [130]. For combination therapy of potent small molecules, therapeutic outcome 

of the combinations of the small molecules are hindered due to their physicochemical properties 

that ultimately affect PK profile of the combination therapy. One of main factors that determine 

PK profile of small molecule drug is aqueous solubility including lipophilicity as these 

physicochemical properties hinder the administration via parenteral route and increase non-

specific serum protein binding. For this reasons, effective solubilization of hydrophobic small 

molecules which ultimately co-encapsulation of combination in single micelle is of essential 

importance for successful combination therapy for hydrophobic small molecules. In clinics, one 
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liposomal formulation, CPX-351 (Vyxeos®) received regulatory approval by USFDA in August 

2017 for treatment of adult patients with chronic lymphocytic leukemia (CLL) or small 

lymphocytic lymphoma (SLL) [131]. The clinical trials on CPX-351 revealed a significantly 

reduced mortality risk with increase in the median overall survival (Hazard ratio (HR) of 0.69; P 

= 0.005)  

Currently no PM formulations for combination therapy is FDA approved for treatment of 

cancers, but PM formulation design of pharmacologically effective drug combination is highly 

warranted in order to deliver drug combo to target site at the desired ratio of the combination. For 

this purpose, PM formulations have been frequently employed to 1) solubilize drug combinations 

in the micelle formulation, 2) deliver drug combination to target site with desired ratio of 

combination therapy. 
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1.7 Conclusion 

PM formulation for hydrophobic small molecules have been extensively studied over three 

decades as an ideal delivery platform for drug delivery. With successful preclinical results, several 

PM formulations have entered clinical trials, but only a few have received regulatory approval for 

human use. The main reasons for these failures in clinical trials were limited efficacy of the drug 

in the PMs and the toxicity profiles of the encapsulated drug. 

In this review, we extensively described PM formulations for delivery of hydrophobic 

small molecules. BCP segments required for forming amphiphilic copolymers were described in 

order to aid in the proper selection of BCP components for the efficient solubilization of target 

hydrophobic small molecules. To improve our understanding on drug solubilization, multi-

disciplinary approaches for investigating detailed molecular interactions between hydrophobic 

segments of BCPs and encapsulated drugs were described. Interestingly, hydrophobic interaction, 

which is occurring in the core of PMs, is much more complex than simple hydrophobic 

compartment providing hydrophobic environment for the drugs. Indeed, conformational factors 

were closely related to the solubilization process and even the hydrophilic shell plays a significant 

role in improving drug solubility in PMs.  

Clinical investigations of PM formulations have revealed promising therapeutic outcomes 

for human use, while we also have witnessed a number of clinical trial failures from other PM 

formulations. Comprehensive analysis of PK profile of PM formulations in preclinical models and 

subsequent correlation of PK profile in human patients are highly warranted. For these reasons, 

advanced PK analysis of PMs to investigate subpopulations of PMs is necessary, and recently 

SITUA method has revealed dynamic status of PMs in systemic circulation.  
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PM formulations hold a clinical importance as delivery platform for potential hydrophobic 

small molecules, and for this purpose current PM formulation systems have to further evolve to 

serve as efficient drug carriers. We believe that the comprehensive analysis of drug encapsulation 

and subsequent drug release profile in systemic circulation will provide us insight for the future 

design of novel PM systems for human use. 
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Polymer Chemical structure Synthesis 

PEG1 
 

PEG 

Ring-opening anionic 
polymerization 

Poly(2-oxazoline)s 

                       
Poly(2-methyl-2-oxazoline)      Poly(2-ethyl-2-oxazoline) 

Living cationic ring-
opening polymerization 

Polyamino acids 

                                  
Poly(aspartic acid)         Poly(sarcosine)         Poly(glutamic acid) 

Ring-opening 
polymerization of 

amino acid derivatives  

polysaccharides 

                
       Dextran                        Chitosan                   Hyaluronic acid 

Enzymatic synthesis  

Miscellaneous 

                                                      
                          PVP2                  PDMA3                  PDMS4 

                             
                      HPMA5            CBMA6                     SBMA7 

- 

1 poly(ethyleneglycol), 2 polyvinylpyrrolidone, 3 poly(N,N-dimethylacrylamide),4 poly(dimethylsiloxane),5 poly[N-(2-
hydroxypropyl) methacrylamide], 6 poly(carboxybetaine methacrylate), 7 poly(sulfobetaine methacrylate) 
 
Table 1.1 Hydrophilic polymers commonly used for constructing PMs 
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Polymer Chemical structure Synthesis 

Polyethers 

                                    
Poly(propylene oxide)    Poly(butylene oxide)    Poly(styrene oxide) 

Anionic ring-opening 
polymerization 

Polyesters 
                   

       Poly(butyrolactone)                Poly(lactide-co-glycolide) 

               
         Poly(valerolactone)                        Poly(caprolactone) 

Polycondensation 
reaction 

Polyamino acids 

                       
                   Poly(L-lysine)                              Poly(histidine) 

Ring-opening 
polymerization of 

amino aid derivatives 

Poly(2-oxazoline)s 

                                      
Poly(2-isopropyl-2-oxazoline)    Poly(2-n-propyl-2-oxazoline) 

 

 
Poly(2-n-butyl-2-oxazoline) 

Living cationic ring-
opening polymerization 

Table 1.2 Hydrophobic polymers commonly used for constructing PMs 
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CHAPTER II: CHEMINFORMATICS-DRIVEN DISCOVERY OF POLYMERIC 
MICELLE FORMULATIONS FOR POORLY SOLUBLE DRUGS1 

 
 2.1 Summary 

Many drug candidates have failed therapeutic development because of their poor aqueous 

solubility. We have conceived a novel computer-aided strategy for rational design of polymeric 

micelle-based delivery systems for poorly soluble drugs. As part of this strategy, we have 

developed novel descriptors of drug-polymer complexes that were employed to build models to 

predict both drug loading efficiency (LE) and loading capacity (LC). These models were used for 

virtual screening of drug libraries and eight drugs predicted to have either high LE and high LC 

(four positive hits) or low LE and low LC (four negative hits) were selected for the experimental 

validation. Three putative true positive as well as three putative negative hits were confirmed 

(implying 75% prediction accuracy). Fortuitously, simvastatin, a putative negative hit, was found 

to have the desired micelle solubility, i.e., high LE and LC.  Podophyllotoxin and simvastatin, with 

LE of 95% and 87%, respectively, and LC of 43% and 41%, respectively, were among the top five 

compounds ever studied for their solubility in polymeric micelles. The success of the 

computational strategy described herein suggests its broad utility for rational design of drug 

delivery systems.  

																																																								
1	This chapter previously appeared as an article in press. The original citation is as follows: Alves, 
Vinicius et al., “Cheminformatics-driven discovery of polymeric micelle formulations for poorly 
soluble drugs”, Science Advances, 2019, DOI: 10.1126/sciadv.aav9784	
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2.2 Introduction 

One of the major obstacles for the development of highly potent pharmaceuticals is their 

poor aqueous solubility, which is characteristic of approximately 40 percent of drug candidates 

[1]. This undesired property could significantly delay or even halt the progression of drug 

candidates to the clinic. Various drug delivery systems based on liposomes [2], nanoparticles [3], 

nanogels [4], and polymeric micelles [5] have been studied intensely to improve the solubilization 

of drugs and drug candidates [6], but relatively few of them have been advanced to clinical 

products. Various characteristics of such systems have been considered such as physiological 

barriers, physicochemical properties of drugs, and carrier-forming materials. However, despite 

certain progress in developing practically useful delivery systems, this experimental approach has 

remained time consuming and expensive. The need to employ rational, computer-aided approaches 

to designing delivery systems for drug molecules has been previously articulated in the literature 

[7]. Such approaches can enable early decisions to streamline the development process and 

decrease the attrition of drug candidates by matching them with their preferred delivery systems. 

However, while computational methods found broad application in the field of drug discovery, 

they have not yet become equally popular in the area of drug delivery. Most computational studies 

have relied on molecular docking and molecular dynamics to offer insights concerning molecular 

interactions between drugs and carriers [8-10]. For instance, molecular dynamics approaches have 

been applied to better understand the micelle structure of polymers [11] and to simulate drug 

loading into a delivery system [12], while mathematical modeling have been applied to investigate 

the hydrogel drug release [13]. Shi. et al. [14] have applied molecular docking to identify small 

molecules as optimal building blocks for designing an optimal telodendrimer for doxorubicin. The 

authors synthesized a series of nanocarriers and experimentally validated their findings. One of 
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the nanocarriers has shown improved delivery properties, lower toxicity, and superior anticancer 

effects. More recently, another docking-based method to predict the drug affinity for PLA-PEG 

nanoparticles and their effective drug loading was reported [15]. While targeting mechanistic 

aspects of drug loading into delivery systems or drug release from these systems, such approaches 

are computationally expensive, which makes it difficult to expect their routine application in 

pharmaceutics; besides, such approaches do not target directly the prediction of drug loading 

efficiency and/or capacity.  

There have been also some studies using statistical approaches as applied to modeling and 

design of drug delivery systems. Such approaches known as Quantitative Structure-Property 

Relationships (QSPR) modeling found especially prolific use both in medicinal chemistry and 

chemical toxicology [16-17] but much less so in drug delivery, perhaps, mostly due to the scarcity 

of experimental data. A recent study reported the development of a series of QSPR models to 

assess the loading of doxorubicin in polymeric micelles using the genetic function approximation 

algorithm [18], but since these models were developed for one drug only, they are not generalizable 

across multiple drugs. In another recent study, the authors predicted fouling release activity for 

polymer coating materials [19]. Transgene expression efficacy of polymers obtained from 

aminoglycoside antibiotics has been modeled using an online web tool named “Support vector 

regression-based Online Learning Equipment” (SOLE) [20].  

Previously, we have successfully developed [21] and applied [22] QSPR models to predict 

loading of amphiphilic drugs into liposomes. However, liposomes by design are not the best 

system for incorporation of various poorly water-soluble molecules since loading of such 

molecules is constrained by the structure of the lipid bilayers. Recently, we have developed a novel 

polymeric micelle system formed by amphiphilic block copolymers of hydrophilic poly(2-methyl-
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2-oxazoline) (PMeOx) and hydrophobic poly(2-butyl-2-oxazoline) (PBuOx). This system 

exhibited an exceptionally high solubilization for some hydrophobic drugs such as taxanes [23-

24]. However, poly(2-oxazoline)s (POx) micelles could not solubilize every poorly water-soluble 

drug equally well. Mechanisms of encapsulation of poorly water soluble drugs into the polymeric 

micelle systems have been previously studied [25-26], but they continue to be poorly understood, 

and so far, there have been no approaches that would assure success of loading experiments for 

any selected drugs or drug candidates. 

Our previous studies have led us to assert that POx micelles with very high solubilization 

of some drugs and very poor solubilization of others represent both practically important and 

descriptive example to evaluate a computer-aided approach to rational design of a polymeric 

micelle-based delivery systems for poorly soluble drugs. Herein, as a proof-of-concept, we have 

(i) rationally selected a set of about 21 poorly soluble and chemically diverse drugs from the 

Selleck Chemicals library (http://www.seleckchem.com/) and tested them for loading efficiency 

(LE) and loading capacity (LC) to supplement previously collected data on 20 compounds; (ii) 

compiled, curated, and integrated all LE and LC data for all drugs tested experimentally in one of 

our laboratories; (iii) developed novel chemical descriptors for polymers and drug-polymer 

complexes; (iv) generated and interpreted QSPR models for drug loading into polymeric micelle-

based delivery systems; (v) identified, by virtual screening, drugs with poorly aqueous solubility 

predicted to have either high or low LE and LC; and (vi) experimentally measured LE and LC 

values of selected virtual screening hits and successfully validated model predictions. To the best 

of our knowledge, this is the first study on rational design of drug delivery systems that combines, 

in a single workflow, rationally designed experimental data collection to enable model 

development, computational modeling of drug loading into polymeric micelles, and effective 
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experimental validation of predicted formulation properties for the studied drug delivery systems. 

The success of this investigation suggests that computational approaches could substantially 

streamline and accelerate the development of novel and effective drug delivery systems. 
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2.3 Materials and Methods 

Study Design 

The overall workflow for computer-aided design of novel polymeric micelle-based 

delivery systems for poorly soluble drugs is shown in Fig. 1. Prior to this study, 20 compounds 

were tested for solubilization in POx micelles (step 0), which was not enough for building 

predictive QSPR models. Therefore, we rationally selected an additional set of 21 poorly soluble 

and chemically diverse drugs from the Selleck Chemicals library and tested them for loading 

efficiency (LE) and loading capacity (LC) to supplement previously collected data (step 1). The 

full dataset for all drugs tested experimentally was compiled, curated, integrated, and analyzed 

(step 2) and chemical descriptors for polymers and drug-polymer complexes that were developed 

specifically for this study were calculated (step 3). Then, QSPR models for drug loading into 

polymeric micelle-based delivery systems were generated and validated (step 4). Finally, we 

applied these models for virtual screening of the available drug library to identify compounds with 

poor aqueous solubility predicted to have either high or low LE and LC. We selected four 

putatively positive and four putatively negative hits for the experimental validation. In summary, 

this workflow combines rational design of the experimental data collection to enable model 

development, computational modeling of drug loading into polymeric micelles, and experimental 

validation of predicted formulation properties for selected drug delivery systems. 

 

Polymeric micelle preparation 

Poly(2-oxazoline) micelles loaded with single drug or multiple drugs were prepared via the 

thin-film hydration method [23]. Predetermined amount of polymer and drugs were solubilized in 

an organic solvent (e.g., acetone, acetonitrile, and ethanol) and mixed together. The organic solvent 
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was then removed under a stream of nitrogen gas or air (40 ºC) to produce a thin film of 

intrinsically mixed drug-polymer blend. In order to completely remove the residual solvents and 

obtain dry film, the films were deposited in the vacuum chamber (approx. 0.2 mbar) overnight. 

Subsequently, the formed thin films were rehydrated with the desired amounts of aqueous saline 

or bi-distilled water and then solubilized at either room temperature or upon heating at 50–60 ºC 

for 5–20 min to produce drug loaded polymeric micelle solutions. The rehydration time was 

dependent on either the drug concentration or the composition of the drugs or the multi-drug 

mixtures. The polymeric micelles loaded with the single drug were prepared accordingly with the 

final polymer concentration of 10 g/L and each drug feed concentration of 2, 4, 6, 8, 10, and 

sometimes 15 g/L. The polymeric micelles co-loaded with multiple drugs were prepared using the 

same final polymer concentration (10g/L) and predetermined concentrations of each drug 

components of multiple drug mixtures. The polymers used in this work are presented in Table 1.  

In every case, the formulations were stable for at least 24 hours when the analysis of the 

drug incorporation was done. Prepared micelle samples were allowed to cool to room temperature 

and centrifuged at 10,000 rpm for 3 min (Sorvall Legend Micro 21R Centrifuge, Thermo 

Scientific) to remove precipitates. The transparent supernatant solutions of micelle samples were 

used for the quantification of the amounts of drugs solubilized in the polymeric micelle. The 

amounts of drugs encapsulated in polymeric micelles were analyzed via HPLC system (Agilent 

Technologies 1200 series). The micelle samples were diluted with mobile phase (specified below) 

and injected (10 µL) into the HPLC column (Agilent eclipse plus C18 3.5 µm column (4.6mm × 

150mm). Predetermined mixtures of acetonitrile (ACN)/water (v/v) were used as the mobile phase. 

For PTX, AZD8055, olaparib, imiquimod, NVP-BEZ235, ABT-263, ABT-737, sabutoclax, 

LY2109761, AZD5363, LY364947, and the combination of each of these drugs with PTX, a 
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mixture of acetonitrile/water (50%/50% v/v, 0.01% trifluoroacetic acid) was used as the mobile 

phase. For VE-822, vismodegib, and their combination, a mixture of acetonitrile/water (35%/65% 

v/v, 0.01% trifluoroacetic acid) was used as the mobile phase. For PTX, wortmannin, LY294002, 

LY294002 HCl, etoposide (ETO), cisplatin prodrug (C6) [37], and the combination of 

wortmannin/PTX, LY294002/PTX, LY294002 HCl/PTX, ETO/cisplatin prodrug (C6), a mixture 

of acetonitrile (ACN)/water (50%/50% v/v) was used as the mobile phase. For PTX, brefeldin, 

cisplatin prodrug (C6), and the combination of brefeldin/PTX, cisplatin prodrug (C6)/PTX, a 

mixture of acetonitrile/water (40%/60% v/v) was used as the mobile phase. For PTX, KU55933, 

LDN 57444, and the combination of KU55933/PTX, LDN 57444/PTX, a mixture of 

acetonitrile/water (70%/30% v/v) was used as the mobile phase. For PTX, ETO, VE-822, and the 

combination of PTX/ETO/VE-822, a stepwise gradient was used. First, the analyte was eluted for 

13 minutes with acetonitrile/water (30%/70% v/v, 0.01% trifluoroacetic acid) followed by a 

second 2-minute elution change from ACN/water (30%/70% v/v, 0.01% trifluoroacetic acid) to 

ACN/water (60%/40% v/v, 0.01% trifluoroacetic acid). Then, the analyte was eluted for 15 

minutes. These measurements produced each drug concentration for each polymeric micelle 

composition (mg/mL). The flow rate was 1 mL/min, and column temperature was 40 °C. Detection 

wavelengths were determined by the drugs solubilized. The full description of platinum complexes 

with sufficient hydrophobicity for encapsulation in POx micelles are described in the 

Supplementary Materials (Description of platinum complexes) as well as the compilation of all 

experimental data on solubilization of drugs in POx micelles (Compiling all experimental data). 

The LE (Equation 1) and LC (Equation 2) were calculated as follows:  

The LE (Equation 1) and LC (Equation 2) were calculated as follows:  

#+	 % = epqrs
epqrs	tppup

×100       Equation (1) 



	 63 

#*	(%) = epqrs
epqrsyez'{|[uq

×100       Equation (2) 

 

Datasets  

Creation of drug-polymer micellar solubilization dataset 

Prior to this study, we have collected LE and LC data on 20 drugs chosen from the 

DrugBank (http://www.drugbank.ca/) that belonged to different structural classes. All these 

compounds had considerable issues with aqueous solubility. Many of these compounds were not 

approved by FDA or failed as treatments for solid tumors due to their toxicity. We hypothesized 

that solubilization of these compounds using our POx micelle system would greatly improve their 

anticancer efficacy. However, although we have demonstrated a very high solubilization capacity 

some of the drugs using POx micelles, we have also seen compounds where this technology was 

less helpful. 

 

Rational design of a chemically diverse library of poorly soluble drugs 

The chemical space formed by 20 previously tested compounds combined with the Selleck 

library of FDA-approved drugs was analyzed by plotting the barycentric coordinates in the space 

of SiRMS descriptors of all the 788 drugs. Barycentric coordinates correspond to the location of 

points of a simplex (a triangle, tetrahedron, etc.) in the space defined by the vertices [38]. In this 

case, a simplex is defined by all the SiRMS descriptors of a particular chemical substance. 

Barycentric coordinates were determined using Methods of Data Analysis module of the HiT 

QSAR software [39]. Then, we have selected the insoluble or poorly soluble drugs as preliminary 

candidates for solubilization in POx polymeric micelle delivery systems. The selected compounds 
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were subject to further chemical diversity sampling following a procedure similar to that described 

in Kuz’min et al. Ultimately, the collection of 61 molecules covering maximal chemical space for 

investigation of their loading efficiency was obtained. Twenty-one compounds were selected from 

this collection based on diversity of both clinical applications and mechanisms of action as well as 

availability and cost, and these compounds were tested for LC and LE. Thus, the total experimental 

dataset for model building included 20 compounds tested previously and 21 new compounds 

selected from the Selleck library as described above. 

 

Selleck database 

This dataset containing 853 FDA-approved drugs was retrieved from 

http://www.selleckchem.com/. After curation, 768 compounds remained, and a diverse subset of 

61 molecules was selected from this dataset as described above (cf. also Step 1 in Fig. 1).  

DrugBank database 

This dataset containing 7,133 drug entries, including FDA-approved small-molecule drugs, 

nutraceuticals, illicit, withdrawn, and experimental drugs, was retrieved from the DrugBank 

website (http://www.drugbank.ca/). After curation, 6,461 drugs were kept for virtual screening.  

 

Data curation 

We have compiled all the data on drug loading into polymeric micelles generated over the 

years in our experimental laboratory. Originally, the dataset consisted of 408 records for 41 

compounds tested in different concentrations and combinations for loading into micelles made of 

seven different polymers. Most of the compounds were tested in different concentrations and under 

different laboratory conditions. As part of the data curation procedure, each record was manually 
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inspected. Chemical structures were retrieved from either ChemSpider 

(http://www.chemspider.com/) or SciFinder (https://scifinder.cas.org) databases using the 

Chemical Abstracts Service (CAS) registry numbers and chemical names. The dataset was 

thoroughly curated according to the workflows developed by our group [40-43]. Briefly, structural 

normalization of specific chemotypes, such as aromatic and nitro groups, was performed using 

ChemAxon Standardizer (v. 16.10.24.0, ChemAxon, Budapest, Hungary, 

http://www.chemaxon.com). Organometallic compounds and mixtures were kept. After structure 

standardization, the structural duplicates were identified using HiT QSAR [39]. During this 

process, we identified 33 records that appeared more than once (up to twelve times), totaling 108 

duplicates. The records describing the mixtures containing three drugs (nine records) and eight 

cases of real duplicates, where the experiment was performed more than once for the same drug-

polymer complex, were removed from the modeling process. The concordance of property values 

for duplicated records was very high (average deviation was equal to 7.6%), thus, only one record 

associated with the averaged property value was kept for modeling. The high concordance between 

values for true duplicative measurements indicated high experimental reproducibility. The 

following experimental conditions were retained and used as descriptors for model building: 

polymer and drug solvent, total solvent volume before evaporation, hydration solvent, and 

hydration temperature. The final curated dataset of 391 records is available in the Supplementary 

Information (Data File S1).   
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Molecular descriptors 

SiRMS descriptors 

2D Simplex Representation of Molecular Structure (SiRMS) descriptors [27] (number of 

tetratomic fragments with fixed composition and topological structure) were generated by the HiT 

QSAR software [39]. At the 2D level, the connectivity of atoms in a simplex, atom type, and bond 

nature (single, double, triple, or aromatic) have been considered. SiRMS descriptors account not 

only for the atom type, but also for other atomic characteristics that may influence biological 

activity of molecules, e.g., partial charge, lipophilicity, refraction, and atom ability for being a 

donor/acceptor in hydrogen-bond formation (H-bond). For atom characteristics with continuous 

values (charge, lipophilicity, and refraction), the division of the entire value range into definite 

discrete groups has been carried out. The atoms have been divided into four groups corresponding 

to their (i) partial charge A≤-0.05<B≤0<C≤0.05<D; (ii) lipophilicity A≤-0.5<B≤0<C≤0.5<D; and 

(iii) refraction A≤1.5<B≤3<C≤8<D. For H-bond characteristic, the atoms have been divided into 

three groups: A (acceptor of hydrogen in H-bond), D (donor of hydrogen in H-bond), and I 

(indifferent atom). The usage of sundry variants of differentiation of simplex vertexes (atoms) 

represents the principal feature of the SiRMS approach [44]. Detailed description of HiT QSAR 

and SiRMS can be found elsewhere [27,39]. 

 

Polymer descriptors 

Each block of the polymer was described by the number of its repetitions in the polymer. 

In addition, traditional SiRMS descriptors were calculated for simplified polymer representation 

as a pseudo small molecule with all repetitive monomers introduced only once. Overall scheme of 

descriptor calculation for polymers developed for this study for the first time is shown in Fig. 3.  
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Descriptors for drug-polymer complexes 

We have modified the SiRMS approach developed earlier to calculate descriptors for 

organic compound mixtures [28, 29] to make it suitable for the QSPR analysis of drug-polymer 

complexes as follows. Each complex was represented as a binary mixture consisting of the drug 

molecule and a simplified representation of a polymer as a pseudo small molecule as described in 

the previous section. Then, the simplex descriptors were calculated as usual. Bounded simplexes 

describe only single components of the mixture (compounds A or B), when unbounded simplexes 

can describe both the constituent parts and the mixture as a whole. It is necessary to indicate 

whether the parts of unbounded simplexes belong to the same molecule or to different ones. In the 

latter case, such unbounded simplexes will not reflect the structure of a single molecule but will 

characterize a pair of different molecules. Simplexes of this kind are specific for a given drug-

polymer complex (Fig. 4). Special mark is used during descriptor generation to distinguish such 

"mixture" simplexes from ordinary ones. The mixture composition is taken into account, i.e., 

descriptors of constituent parts (compounds A and B) are weighted according to their molar 

fraction and mixture descriptors are multiplied by the doubled molar fraction of the minor 

component. If in the same task both drug-polymer complexes (mixtures) and pure compounds have 

been considered, pure compounds are considered as a mixture with composition A1B0. In this case, 

only descriptors of the pure compound A will be generated with the weight equal to 1. Thus, the 

structure of every mixture is characterized by both descriptors of the mixture as well as of its 

individual constituents. 

A simpler approach was used for complexes consisting of a polymer and a mixture of drugs. Here 

the polymer was represented in the same way, but descriptors for all the members of such mixture 

of drugs-polymer complex were calculated separately, weighted according to their concentration 
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and then summarized in one string corresponding to a given complex. This approach was used for 

datasets containing both drug-polymer and mixture of drugs-polymer complexes. It allowed the 

use of the maximal amount of available experimental data for model building. In the end, constant, 

near constant, and cross-correlated variables (r ≥ 0.9) were removed to reduce the dimensionality 

of the chemical space without loss of important information. 

 

Experimental conditions 

Certain experimental conditions were used as features, in addition to molecular descriptors, 

to describe the system under the investigation. Specifically, we have considered solvents used to 

prepare both polymer and drug samples, total solvent volume before evaporation, hydration 

solvent, and hydration temperature. 

 

Cluster analysis 

Chemical clusters were generated by the Sequential Agglomerative Hierarchical Non-

overlapping method implemented in the ISIDA/Cluster software [45]. Briefly, the software 

generates a dendrogram of the parent-child relationships between clusters and a heat map of the 

proximity matrix colored according to the pairwise chemical similarity between compounds. This 

approach is well known; it has been extensively used by our [46-48] and other groups [45-49]. Of 

course, clusters are data-specific, e.g., if the new data would be introduced to the dataset, clusters 

might change. However, repeating cluster analysis for the same dataset will result in the same 

clusters. In this study, we used clustering only to analyze whether LogP and MW are relevant for 

drug loading of similar compounds. We did not use cluster analysis to predict loading parameters, 

which was done by QSPR models. 
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QSPR modeling 

Binary QSPR models were developed and rigorously validated according to the best 

practices of QSPR modeling [50]. Models were developed with random forest (RF) algorithm [51]. 

One thousand trees were built for each forest and the outputs of all trees were aggregated to obtain 

one final prediction. In each tree, ca. 1/3 of the set of N compounds were sampled by bootstrap as 

out-of-bag (OOB) set and the remaining compounds were used as a training set. The best split by 

the CART algorithm [52] among the m randomly selected descriptors from the entire pool in each 

node was chosen and each tree was then grown to the largest possible extent; there was no pruning. 

The predicted classification values are defined by the majority voting for one of the classes. Thus, 

each tree predicts values for only those compounds that are not included in the training set of that 

tree (for OOB set only). The final model is chosen by the lowest error for prediction of the OOB 

set. 

Models were built using the QSAR module in the R package (https://r-forge.r-

project.org/projects/qsarr/) implemented in KNIME (https://www.knime.com/). We followed the 

“Mixtures out” procedure for the validation of QSAR models of mixtures described by Muratov 

et al. [28] In this method, all data points corresponding to mixtures composed of the same 

constituents, but in different ratios, are simultaneously removed and placed in the same external 

fold. Thus, every mixture is present either in the training or external set, but never in both sets. 

This approach allows one to minimize the influence of known information on the prediction and 

obtain reliable results for predicting novel drug-polymer complexes created by known polymer 

and a new drug. Thus, we combined “Mixtures out” strategy with 5-fold external cross-validation 

procedure [16, 53]. 
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Briefly, the full set of compounds with known experimental activity was divided into five 

subsets of equal size. Each subset (20% of the compounds) was selected once as a test set, while 

the other subsets (80% of the compounds) were merged into a training set to develop a model. This 

procedure was repeated with the other subsets, allowing each one of the five subsets to be used 

once as a test set. In addition, 30 rounds of Y-randomization test [40] were performed for each 

dataset to ensure that the accuracy of models was not obtained due to chance correlations.  

The QSPR models were built for two endpoints: LE and LC. For LE, the model was generated 

using the threshold of 80%. Thresholds of 10, 20, 30, and 40% were separately applied to build 

four models for LC. Such system of binary models would allow us to predict LC within certain 

ranges (0-10%; 10-20%; 20-30%; 30-40%, 40-50%), which is more informative than standard 

binary prediction. Compounds predicted above the threshold by all the individual models were 

selected as positive hits, while those predicted below the threshold were selected as negative hits. 

The applicability domain of the models was calculated as Dcutoff = <D>+ZsD~�ÄÅÇÇ =< D > +ZÜ, 

where ZZ is a similarity threshold parameter defined by a user (0.5 in this study), and <D>< D > 

and ss are the average and standard deviation, respectively, of all Euclidian distances in the 

multidimensional descriptor space between each compound and its nearest neighbors for all 

compounds in the training set [54]. 

 

Statistical analysis 

The following statistical metrics were used to assess different aspects of performance of 

classification models (Equations 3-7): 

Correct Classification Rate (CCR): 

2
)( yspecificitysensitivitCCR +

=
     Equation (3) 
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Sensitivity (Se): 

ivesFalseNegatvesTruePositi

vesTruePositi

NN
N

Se
+

=
     Equation (4) 

Specificity (Sp): 
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vesTrueNegati

NN
N
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+

=
     Equation (5) 

Positive Predictive Value (PPV): 
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N

PPV
+

=
    Equation (6) 

Negative Predictive Value (NPV): 
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NPV
+

=
     Equation (7)  
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2.4 Results 

Rational design of a diverse set of poorly soluble drugs 

In the absence of rational approaches to the experimental design, the discovery of new 

suitable drug-POx systems is left to serendipity, implying high cost and time-consuming effort. 

Thus, we endeavored to develop computational QSPR models capable of accurate prediction of 

drug molecules with high LE and LC values in POx micelles that could be formulated using this 

drug delivery system and thereby, achieve much greater therapeutic efficacy (see Fig. 1 and Study 

Design section). Prior to this study, only 20 compounds were tested for solubilization in POx 

micelles. Among these, we have serendipitously discovered several drugs with good or excellent 

solubilization in POx micelles whereas at the same time many compounds were found to have 

poor micelle solubilization properties. These data were not sufficient for building predictive QSPR 

models. Furthermore, chemical diversity of these compounds was limited as compared to that of a 

drug library represented by 768 chemicals from the Selleck collection of FDA-approved drugs 

(Fig. 2). Therefore, using a diversity-sampling approach, we rationally selected a set of chemically 

diverse drug molecules that were poorly soluble or insoluble. The resulting expanded set of 61 

molecules was chemically diverse and structurally representative of the chemical space of FDA-

approved drugs (Fig. 2). From these 61 compounds, 21 drugs were selected based on their clinical 

indications and respective biological pathways, as well as price and availability followed by their 

testing using our standard experimental protocols to ensure data consistency. Combining the 

results of testing obtained on these 21 compounds as well as on 20 compounds tested previously, 

we thus obtained a unique training set of 41 compounds comprising 408 experimental data points. 

The complete micelle solubilization data for single and binary drug combination are given in the 
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Data File S1. These data were used for molecular modeling studies (see Cheminformatics analysis 

section). 

Cheminformatics analysis 

We have compiled a dataset of 41 compounds investigated in several concentrations and 

under different experimental conditions. Originally, our collection included 408 data points for 

these 41 compounds reflecting different drug concentrations, structural diversity of POx polymers, 

and experimental conditions (see Materials and Methods). In our previous studies, we have 

employed standard chemical descriptors of molecules and/or certain experimental conditions to 

establish a correlation with drug loading or bioactivity, respectively. Modeling of drug loading 

into polymeric micelles proved to be a more challenging exercise as drug chemical descriptors and 

experimental conditions were found insufficient to enable the development of statistically 

significant models.  

To address this challenge in this study, we have developed novel descriptors of drug-

polymer systems reflective of the chemical structures of both small molecules and polymers. These 

new descriptors were developed on the basis of SiRMS descriptors [27] originally devised for 

small organic molecules and later adapted for mixtures of organic molecules [28, 29]. These new 

descriptors were obtained by considering drug-POx systems as stoichiometric mixtures of 

polymers (represented by unique monomeric blocks used for their synthesis) and drug molecules 

(see Methods for more detail).  

We have also observed (see Chemical Data Curation Section) that drug concentration and 

other experimental conditions had a strong influence on both LE and LC. For instance, although 

drug concentration does not influence the encapsulation effectiveness, most of the compounds that 

could be solubilized had high both LE and LC values for low drug concentration. When the 
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polymeric micelle is saturated with the drug and if the drug concentration is higher than the 

saturation point, the polymer may collapse. Therefore, to achieve the best LE and LC, compounds 

were tested using a variety of concentrations and experimental conditions. All the concentrations 

and experimental conditions were used as additional descriptors of drug-polymer complexes for 

both model building and virtual screening to improve model accuracy.  

To illustrate the influence of polymer structure, experimental conditions, MW, and LogP 

on the compound solubilization in POx micelle, we have identified clusters of drugs tested at 8 

mg/mL, i.e., at the highest concentration used for testing the largest number of drugs. For this 

analysis, original SiRMS descriptors were normalized and low variance descriptors (threshold = 

0.1) were removed. Hierarchical clustering was performed using SciPy package 

(https://www.scipy.org/) in Python 3.6 (https://www.python.org/) based on Euclidean distance and 

the Ward method [30]. A heatmap of proximity matrix and dendrogram are reported in Fig. 5. The 

summary of clusters showing the LE and LC (mean, standard deviation, and maximum value) for 

the drugs tested at 8 mg is shown in Table 2. 

As can be seen in Table 2, similar compounds belonging to the same cluster could have 

considerably different LE values. For instance, the cisplatin prodrug derivatives (Cluster 1) had 

optimal chain length of six carbons (Cisplatin prodrug, C6), with maximum LE = 85.1%. The 

analogs with four and ten carbons had similar LE, while the one with eight carbons had the lowest 

LE. VE-822 and NVP-BEZ235 have similar LogP and MW, which in turn were different from 

those of the remaining compounds (LY364947 and Imiquimod) in cluster 2. There, only VE-822 

showed high LE max (83.34%), but Imiquimod, LY364947, and NVP-BEZ235 were not soluble 

in POx micelles. Compounds in Cluster 3 contain similar chemical features, but only AZD5363 

shows high LE (63.8%respectively). In Cluster 4, LY294002 and EFV also have similar LogP and 



	 75 

MW, but only EFV presents high LE max (86.23). In Cluster 7, ABT-263 and ABT-737 have 

similar chemical structures and similar MW and LogP, but the LE max for both compounds are 

drastically different with maximal LE of 100% for ABT-263 and maximal LE of 7.3% for ABT-

737. 

These results show that the knowledge of chemical structure alone is not sufficient to 

evaluate whether a compound has a good chance to be highly soluble in polymeric micelles. 

Moreover, even the same drug combined with different polymers or even with the same polymer 

but under different experimental conditions may exhibit very different LE. Variable importance 

estimated from all developed models indicated that some experimental conditions (hydration 

solvent, hydration temperature, and total solvent volume before evaporation) had very high scores 

(Fig. 6). For instance, combination of DTX (10 mg/mL) and polymer P6 has been tested twice 

under the same experimental conditions, varying only the hydration solvent. When DTX was 

dissolved in deionized water, LE of 81.8% and LC of 44.9% were observed; using mix of deionized 

water, saline, and phosphate-buffered saline led to the increase of both LE and LC to 90% and 

47.4%, respectively.  

This analysis illustrates the need to consider the experimental conditions that define the 

outcome of the loading process as important descriptors of the system. To reflect on this point 

further, we shall highlight several factors that need to be considered to enable predictive models 

with much higher accuracy than historical success rate of purely experimental investigations: (i) 

close interaction between experimental and computational groups; (ii) rational design of the 

training set; (iii) special descriptors of drug-polymer complexes reflecting the interactions between 

drugs and micelles; (iv) the use of experimental conditions available for our datasets as descriptors, 

such as solvents in which both polymer and drug samples were prepared, their volumes before 
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evaporation, hydration solvent, and hydration temperature; and (v) experimental validation of drug 

delivery properties for selected both negative and positive hits. Our analysis further highlights the 

importance of recording and employing all parameters/characteristics related to the experiment. 

For instance, we have traced the size and morphology data for 15 drug-polymer complexes. 

Although these data are insufficient to be used for model building, our preliminary observations 

show that most drug-polymer complexes look like worms or spheres, while the specific polymer 

used in this study alone only forms worm-like structures. The particle size also changes upon the 

transition from worms to spheres induced by the drug and the transition point clearly depends on 

the selected drug. In addition, at a certain point, which is different for each drug, we have observed 

saturation and sediment formation. The particle size and morphology along with the micelle 

stability and drug release characteristics are important parameters for the pharmacological 

performance of these drug delivery systems [31]. We anticipate that as we generate and collect 

new data on size and morphology and other parameters, we will be able to incorporate this data 

explicitly into our models. 

Our data analysis showed that the optimal combination of the experimental conditions 

varies from case to case. Overall, this indicates the following: (i) the importance of experimental 

conditions for drug solubilization; (ii) the necessity of choosing the optimal solvent, temperature, 

etc., for each specific drug-polymer combination; (iii) a need to use experimental conditions as 

descriptors during modeling and virtual screening; and (iv) requirement to select not only the 

computational hits for experimental confirmation, but also optimal experimental conditions 

(solvent, temperature, etc.) to improve the success rate.  

In addition, the type and length of block chains of polymers showed to be important, as we 

shall discuss below. Table 3 presents summary data for three drugs tested at 8 mg/mL with the 
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highest experimental variability. As one can see, LE values for DTX vary from 1.56% to 80.06%. 

Three variables that change their values include polymer batch, mass of the polymer, and hydration 

temperature. It is possible to see that, when tested in different polymers, DTX is more soluble in 

polymer P8 (LE = 57.59%) than in polymer P2 (LE = 1.56%) when the mass of the latter polymer 

is 10 mg. However, when the mass of polymer P2 increased to 20 mg, a LE of 80.06% was 

achieved. For LDN-57444, the variation in the polymer and drug solvent, the total solvent volume 

before evaporation, and hydration temperature led to a difference of 26% in the LE. Lastly, the LE 

of PTX varied from 2.44% to 100%. In this case, the difference is mostly due different polymers. 

Both the P2 (LE = 2.44%) and the P8 (35.72%) presented low LE, while P1 (LE = 86.1%), P4 

(100%), and P6 (LE = 91.18%), presented high LE. 

Most of the POx polymers used in our studies (P1, P3, P4, P5, P6) are tri-block copolymers: 

poly(2-methyl-2-oxazoline)-block-poly(2-butyl-2-oxazoline)-block-poly(2-methyl-2-oxazoline) 

(P(MeOx-b-BuOx-b-MeOx)), differing in the chain length of each block. These differences, 

however, all within 10-15% variability typical for batch-to-batch variations, were not expected to 

result in any substantial difference in solubilization. Polymer P2 is a di-block copolymer P(MeOx-

b-BuOx); it had a decreased ability to solubilize PTX and DTX compared to the respective tri-

block, which illustrated the effect of the copolymer architecture [32]. The tri-block polymer P8 

contains a few aromatic 2-benzyl-2-oxazoline (BzOx) units copolymerized with aliphatic BuOx 

(P(MeOx-b-co-BuOx/BzOx-b-MeOx)). Another polymer (P7) is a tri-block containing 2-nonyl-2-

oxazoline (NOx) units instead of BuOx units in the hydrophobic block (P(MeOx-b-NOx-b-

MeOx)). Both modifications obtained by adding aromatic groups or long chain alkyl groups to the 

core of the POx micelle appear to have adverse effects on the solubilization of PTX [33]. These 

observations reinforce the importance of building QSPR models incorporating all available 
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information about both chemical structures of drugs and polymers as well as the experimental 

conditions to predict new positive hits with high confidence.  

The results of the cluster analysis confirmed that LogP and MW alone are not sufficient to 

predict drug loading. Thus, we developed series of robust and externally predictive (CCR = 0.76-

0.85) binary QSPR models for forecasting LC and LE. Corresponding statistical characteristics 

estimated by 5-fold external cross-validation are summarized in Table 4. All models showed both 

high sensitivity (>70%) and specificity (>76%), as well as high positive predictive (PPV, >75%) 

and negative predictive (NPV, >76%) values. 

 

Virtual screening of DrugBank and experimental evaluation 

We have employed our QSPR models for virtual screening of the DrugBank database in 

order to identify drugs predicted to have both high LE and high LC for POx micelles. Aqueous 

solubility of drugs was used for initial filtering. Only compounds classified as poorly soluble (< 

10 mg/ml) including those defined as practically insoluble (< 0.1 mg/ml) [34] were selected. All 

remaining compounds were paired with the polymer of interest and the LE and LC values for the 

drug loading into polymeric micelles were predicted by respective models. Rational design of the 

training set allowed all DrugBank compounds chosen for virtual screening to be inside models’ 

applicability domains. Selected hits were dissimilar from the training set, but they were still found 

inside the applicability domain of the model, which increased our confidence in predictions. 

Then, four compounds (podophyllotoxin, rutin, teniposide, and diosmin) predicted to have 

high solubilization in POx micelles and four compounds (olanzapine, simvastatin, spironolactone, 

and tamibarotene) predicted to be insoluble in POx were selected for experimental validation. Low 
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aqueous solubility of these compounds was confirmed experimentally before the experimental 

evaluation of the LE and LC in POx. 

Experimental results for these eight drug-POx complexes are shown in Table 5. Overall, 

we have reached 75% experimental hit rate. Thus, three out of four drugs predicted as positive hits 

displayed moderate to excellent solubilization in POx micelles. Podophyllotoxin, rutin, and 

teniposide could be solubilized under certain experimental conditions (i.e., feed ratio of polymer 

10 mg/mL) at concentrations as high as 8 mg/mL. Podophyllotoxin presented exceptional ability 

for incorporation into POx micelles as it could be solubilized under the experimental conditions at 

concentrations as high as 8 mg/mL, with LE = 95.2% and LC = 43.2%. Teniposide showed LE = 

85% and LC = 14.5 at 8 mg/mL, while rutin presented LE = 45.1% and LC = 26.5%. Diosmin was 

a false positive, i.e., insoluble in POx micelles. Conversely, one of the predicted negative hits, 

olanzapine, showed very low or negligible LC and LE at all studied drug feed concentrations. 

Specifically, the concentration of olanzapine did not exceed 1 mg/mL. The very low LC and LE 

of this drug implies that at least about 90% or even 99% of the drug is lost upon formulation. 

Spironolactone and tamibarotene showed high solubilization, but only at low concentrations. 

These drugs were solubilized at 2 mg/mL with LE of 89.7% and 82.9%, respectively, and LC of 

14.2% and 15.2%, respectively, but both featured very low solubilization when tested at 8 mg/mL 

(LE = 20.9% and LC = 14.3% for spironolactone and LE = 9.9% and LC = 7.4% for tamibarotene). 

As an instance of fortuitous mis-prediction, simvastatin was found to be a false negative, i.e., it 

was soluble in POx micelles at concentrations as high as 7 mg/mL, with LE of 87.2% and LC of 

41.1%. Most likely, Simvastatin was mis-predicted because its nearest neighbor, Wortmannin, (Tc 

= 0.72) has poor solubility in POx micelles. Although Wortmannin presents moderate solubility 

in POx micelles when tested mixed with PTX, this drug alone has low both LE (2.3-5.8%) and LC 
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(0.9-2.2%). Irrespective of the reasons, mis-prediction of simvastatin represents a fortuitous 

prediction error as this drug appears to greatly benefit from POx solubilization. 

Overall, four compounds showed good solubility, with both LE and LC values among the 

top 15 compounds ever tested by our group (Table 6). Podophyllotoxin and simvastatin 

demonstrated exceptional ability for incorporation into POx micelles. Podophyllotoxin and its 

analogs have shown several important biological activities (e.g., cytotoxic, antiviral, and 

antifungal) [35], therefore the discovery of new formulations described here may have a significant 

impact on the development of this drug candidate. The case of simvastatin (negative hit) with high 

LE and LC is an example of a fortuitous error of prediction, since this drug appears a great 

candidate for POx solubilization. Simvastatin depends on solubilization enhancements techniques 

to achieve optimal bioavailability and the improved solubilization with POx could potentially 

improve its bioavailability and pharmacological response [36]. Overall, three out of four positive 

and one negative hit showed highly desirable solubilization properties.  

As one can see from Table 6, variation of both LE and LC values is small for almost all drugs. At 

the same time, both PTX and DTX had much higher standard deviation than the other compounds. 

In the course of preclinical development, these two compounds have been studied very extensively 

in the variety of experimental conditions. This observation reinforces the high impact of 

experimental conditions on the studied properties. 
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2.5 Discussion 

We have developed and successfully used a computer-aided strategy for the rational design 

of novel drug-polymeric micelle combinations. Our approach employed special, novel descriptors 

of drug-polymer complexes for building predictive models of drug solubility in polymeric 

micelles, virtual screening of drug library, and experimental validation of selected hits. Another 

unique aspect of this investigation was that in addition to previously collected data, we have 

generated new experimental data for compounds selected rationally from the library of approved 

drugs. This was done solely to enable model development for sufficiently large and chemically 

diverse dataset. In total, 41 drugs tested in different concentrations both individually and in binary 

combinations for loading into four different polymeric micelles (408 data points) were used for 

modeling. This allowed us to develop the set of binary QSPR models for predicting both LE and 

LC of drugs in polymeric micelles.  

The high predictive power of the developed models (external balanced accuracy of 76–

85%) was confirmed by the “mixtures out” approach [28, 29] especially designed for estimating 

true predictivity of the QSPR model obtained for compound mixtures (see Methods for additional 

detail). The developed models were employed for virtual screening of the DrugBank database and 

four drugs with high (positive hits) along with four drugs with low (negative hits) predicted LE 

and LC were prioritized for testing. Predicted LE and LC values for three positive and three 

negative computational hits were confirmed experimentally. Luckily, the remaining negative hit, 

simvastatin, with LE = 87% and LC = 41%, had, in fact, desired delivery properties. Moreover, 

simvastatin and podophyllotoxin (LE = 95% and LC = 43%) were among the top five compounds 

ever studied in POx loading experiments. This is especially important because simvastatin’s 

solubilization rate is too low to achieve optimal bioavailability [36] and podophyllotoxin has 
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several desired biological properties (e.g., cytotoxic, antiviral, and antifungal) [35]; therefore, the 

discovery of new formulations described here may have a significant impact on the further 

development of both drugs.  

Another significant advantage of the proposed computer-aided strategy for rational design 

of formulations for poorly soluble drugs is the significant increase in success rate. Thus, our 

modeling set of 41 compounds tested in advance of model development included 20 compounds 

with significant solubility in POx micelles (that were used to develop models reported herein), 

implying ca. 48% experimental hit rate. In contrast, the use of models developed with this 

modeling set to design new formulations increased the hit rate from 48% to 75%, i.e., nearly two-

fold. The success of this study illustrates the power of computer-aided design of novel drug 

delivery systems and calls for a broader application of computational modeling approaches in drug 

delivery. 
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Polymer  Publication b-methyl b-butyl co-benzyl b-nonyl b-methyl End group 
P1  n/a 37 21 0 0 36 piperazine 
P2 (32) 45 25 0 0 0 piperazine 
P3 (56) 40 21 0 0 34 piperazine 
P4 n/a 44 26 0 0 38 piperazine 
P5 n/a 47 26 0 0 36 piperazine 
P6 (24, 32, 33) 33 26 0 0 45 piperazine 
P7 (32) 34 0 0 12 37 piperazine 
P8 (32) 34 13 5 0 34 amino group 
 
Table 2.1 List of nine polymers used in this study with specification of block sizes and end 
group.  
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Table 2.2 List of 25 compounds tested alone at 8 mg with their respective clusters, LE and LC (minimum, maximum, mean, and 
standard deviation values), LogP, MW, and number of performed experiments.  

Drug Cluster LE (%) LC (%) LogP MW No. of 
experiments Min Max Mean Std. Dev Min Max Mean Std. Dev 

Cisplatin prodrug (C10) 1 53.65 53.65 53.65 0 23.85 23.85 23.85 0 9.11 639.22 1 
Cisplatin prodrug (C4) 1 58.5 58.5 58.5 0 31.9 31.9 31.9 0 2.28 471.03 1 
Cisplatin prodrug (C6) 1 84.8 84.8 84.8 0 40.4 40.4 40.4 0 4.56 527.09 1 
Cisplatin prodrug (C8) 1 24.09 24.09 24.09 0 10.71 10.71 10.71 0 6.84 583.15 1 
Imiquimod 2 1.36 3.3 2.42 0.98 1.05 2.6 1.88 0.78 2.71 240.14 3 
LY364947 2 0.8 0.8 0.8 0 0.6 0.6 0.6 0 3.45 272.11 1 
NVP-BEZ235 2 1.8 1.8 1.8 0 1.4 1.4 1.4 0 4.92 469.19 1 
VE-822 2 77 83.34 80.17 4.48 13.3 40 26.65 18.88 3.77 463.17 2 
AZD5363 3 60.1 63.8 62.27 1.93 32.5 33.8 33.27 0.68 2.44 428.17 3 
AZD7762 3 38 38 38 0 23.3 23.3 23.3 0 1.5 362.12 2 
LDN-57444 3 5.5 31.5 18.5 18.38 4.2 20.1 12.15 11.24 5.01 395.98 2 
Olaparib 3 23.9 23.9 23.9 0 16.1 16.1 16.1 0 2.44 434.18 1 
Brefeldin 4 0 0 0 0 0 0 0 0 2.36 280.17 1 
EFV 4 86.23 86.23 86.23 0 40.82 40.82 40.82 0 4.63 315.03 1 
KU55933 4 13.6 13.6 13.6 0 9.8 9.8 9.8 0 5.93 394.07 2 
LY294002 4 1 1 1 0 0.8 0.8 0.8 0 4.97 307.12 1 
Wortmannin 4 2.55 2.55 2.55 0 2 2 2 0 0.71 428.15 1 
AZD8055 5 50.8 50.8 50.8 0 28.9 28.9 28.9 0 3.41 465.24 1 
LY2109761 5 9.3 9.3 9.3 0 6.9 6.9 6.9 0 2.84 441.22 1 
ETO 6 90.15 95.2 91.83 2.92 41.9 43.2 42.33 0.75 0.78 588.18 3 
ABT-263 7 100 100 100 0 44.4 44.4 44.4 0 10.69 973.3 1 
ABT-737 7 7.3 7.3 7.3 0 5.5 5.5 5.5 0 9.85 812.26 1 
DTX 8 1.56 80.06 46.4 40.43 1.23 31.54 18.99 15.81 2.41 807.35 3 
PTX 8 2.44 100 63.088 42.16 1.56 45.4 30.378 18.54 2.96 853.33 5 
Sabutoclax 9 11.6 11.6 11.6 0 8.5 8.5 8.5 0 10.37 700.28 1 
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Drug Polymer 
batch 

Polymer 
mass (mg) 

Polymer and 
drug solvent 

Total solvent 
volume before 
evaporation 
(µL) 

Hydration 
solvent 

Hydration 
temperature 

LE 
(%) LC (%) 

DTX P2 20 ethanol 500 DI water 50 80.06 24.2 
DTX P2 10 ethanol 500 DI water 50 1.56 1.23 
DTX P8 10 ethanol 500 DI water 60 57.59 31.54 
LDN-
57444 P1 10 acetonitrile 130 saline 20 31.5 20.1 

LDN-
57444 P1 10 ethanol 250 saline 60 5.5 4.2 

PTX P1 10 acetone 400 saline 60 86.1 40.8 
PTX P2 10 ethanol 500 DI water 50 2.44 1.56 
PTX P4 10 ethanol 500 DI water 60 100 45.4 
PTX P6 10 ethanol 500 DI water 60 91.18 42.17 
PTX P8 10 ethanol 500 DI water 60 35.72 21.96 

 
Table 2.3 List of three drugs with highest LE variability tested at 8 mg/mL. 
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Model CCR Sensitivity PPV Specificity NPV 
LC 10 0.83 ± 0.03 0.89 ± 0.02 0.85 ± 0.04 0.77 ± 0.06 0.83 ± 0.03 
LC 20 0.82 ± 0.07 0.75 ± 0.10 0.81 ± 0.07 0.88 ± 0.05 0.84 ± 0.06 
LC 30 0.85 ± 0.06 0.82 ± 0.11 0.77 ± 0.08 0.89 ± 0.05 0.92 ± 0.04 
LC 40 0.83 ± 0.11 0.70 ± 0.24 0.83 ± 0.12 0.96 ± 0.03 0.93 ± 0.05 
LE 80 0.76 ± 0.05 0.76 ± 0.05 0.75 ± 0.10 0.76 ± 0.13 0.76 ± 0.03 

 
Table 2.4 Statistical characteristics of LC and LE QSPR models based on 5-fold external cross-validation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

86 



87 

Positive hits 
 Predicted by QSPR Experimental 
Name Water solubility Concentration (mg) LE 80 LC 10 LC 20 LC 30 LE (%) LC (%) 
Podophyllotoxin Very slightly soluble 15 NA NA NA NA 23.8 26.3 

10 1 1 1 1 58.7 37.0 
8 1 1 1 0 95.2 43.2 
4 1 1 0 0 95.6 27.7 
2 1 1 0 0 100.0 16.7 

Rutin Slightly soluble 15 NA NA NA NA 3.9 5.6 
10 1 1 1 1 6.5 6.1 
8 1 1 1 0 45.1 26.5 
4 1 1 1 0 60.3 19.5 
2 1 1 0 0 74.5 13.0 

Teniposide Insoluble 15 NA NA NA NA 1.5 2.2 
10 1 1 1 1 6.1 5.7 
8 1 1 1 1 85.0 14.5 
4 1 1 1 0 76.1 23.3 
2 1 1 0 0 85.0 14.5 

Diosmin Slightly soluble 15 NA NA NA NA Insoluble Insoluble 
10 1 1 1 1 Insoluble Insoluble 
8 1 1 1 0 Insoluble Insoluble 
4 1 1 1 0 Insoluble Insoluble 
2 1 1 0 0 Insoluble Insoluble 

 
Table 2.5 List of positive and negative hits with experimental values. 
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Table 2.5 List of positive and negative hits with experimental values.  
  

Negative hits 
Name Water solubility Concentration (mg) LE 

80 
LC 
10 

LC 
20 

LC 
30 

LE (%) LC (%) 

Olanzapine Insoluble 15 NA NA NA NA 9.7 12.7 
10 0 0 0 0 6.1 5.8 
8 0 0 0 0 4.1 3.2 
4 0 0 0 0 7.0 2.7 
2 0 0 0 0 42.3 7.8 

Simvastatin Insoluble 15 NA NA NA NA 5.0 7.0 
10 0 0 0 0 19.9 16.6 
8 0 0 0 0 87.2 41.1 
4 0 0 0 0 74.6 23.0 
2 0 0 0 0 87.2 14.8 

Spironolactone Insoluble 15 NA NA NA NA 3.4 4.9 
10 0 0 0 0 31.8 24.1 
8 0 0 0 0 20.9 14.3 
4 0 0 0 0 53.8 17.7 
2 0 0 0 0 82.9 14.2 

Tamibarotene Insoluble 15 NA NA NA NA 0.9 1.3 
10 0 0 0 0 2.0 1.9 
8 0 0 0 0 9.9 7.4 
4 0 0 0 0 87.3 25.9 
2 0 0 0 0 89.7 15.2 
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Table 2.6 Top 15 compounds ranked by LE and LC for 8 mg drug vs. 10 mg polymer.   

Compound name LE % (mean) LC % (mean) 
ABT-263 100 44.4 
Podophyllotoxin 95.2 43.2 
ETO 91.83 ± 2.92 42.33 ± 0.75 
Simvastatin 87.2 41.1 
Efavirenz 86.23 40.82 
Cisplatin prodrug (C6) 84.8 40.4 
VE-822 80.17 ± 4.48 26.65 ± 18.88 
PTX 63.09 ± 42.16 30.38 ± 18.54 
AZD5363 62.27 ± 1.93 33.27 ± 0.68 
Cisplatin prodrug (C4) 58.5 31.9 
Teniposide 57.2 31.4 
Cisplatin prodrug (C10) 53.65 23.85 
AZD8055 50.8 28.9 
DTX 46.40 ± 40.43 18.99 ± 15.81 
Rutin 45.1 26.5 
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Figure 2.1 Study design 
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Figure 2.2 Coverage of chemical space by previously tested drugs and compounds rationally 

selected to increase structural diversity. Barycentric coordinates are calculated using 2D SiRMS 

(molecular fragments) descriptors differentiated by atom type. 
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Figure 2.3 General scheme of descriptor calculation for polymers 
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Figure 2.4 Descriptor calculation of drug-polymer complexes. nA and nB are molar fractions of 
components A and B (nA < nB). 
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Figure 2.5 Results of cluster analysis of 25 compounds tested alone at 8 mg. Heatmap and 
dendrogram of the distance matrix are both colored according to structural similarity (red/yellow 
= similar; blue/violet = dissimilar). 
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Figure 2.6 Variable importance for the five models developed. (Top) All the 81 variables used to 
build the models. (Bottom) Top 15 important variables identified. 
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CHAPTER III: POLY(2-OXAZOLINE) MICELLES WITH VISMODEGIB ENHANCES 
TARGETING OF SHH PATHWAY IN GENETIC MODEL OF MEDULLOBLASTOMA1 

5 

3.1 SUMMARY  

The distribution of drugs from the blood into brain tumors is limited by the blood-brain 

barrier (BBB) and serum protein binding, reducing the efficacy of brain tumor treatment. Here we 

report a nanoparticle delivery system based on poly(2-oxazoline) micelles (POx) that addresses 

these obstacles, bringing new efficacy to promising brain tumor therapies under development. The 

SHH-pathway inhibitor vismodegib, effectively treats SHH-dependent basal cell carcinoma, but 

has not been as effective in medulloblastoma. We formulated vismodegib in POx micelles (POx-

vismo) and show that this nanoparticle formulation improved vismodegib efficacy for 

medulloblastoma, demonstrated in the treatment of endogenous medulloblastomas that form in 

vivo in transgenic hGFAP-Cre/SmoM2 (G-Smo) mice. Importantly, while extra-neural toxicity 

often limits the dosing of systemically-administered brain tumor therapies, POx-vismo 

formulation reduced systemic toxicity. Mechanistic studies show that nanoparticle delivery 

decreased vismodegib binding to serum proteins and improved brain and tumor drug penetration 

without penetration of the nanoparticle carrier into the CNS. The POx system is a versatile drug 

delivery platform, and our results show the broad potential for POx micelle delivery to make 

existing brain tumor treatments newly effective.

																																																								
1 This chapter previously appeared as a manuscript soon to be submitted. 
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3.2 Introduction 

Current therapy for medulloblastoma, with surgery, radiation and chemotherapy, allows 

most medulloblastoma patients to survive >5 years, but causes long-term neuro-cognitive injury. 

Personalized medicine using molecularly targeted agents (MTAs) directed against the particular 

genetic addictions and vulnerabilities of tumor cells may target medulloblastoma cells with greater 

effectiveness and specificity, potentially improving therapeutic efficacy and toxicity [1]. About 

one-third of medulloblastomas show SHH pathway hyper-activation, and for these patients, 

targeted inhibition of SHH signaling may improve therapy [2]. Vismodegib, a small molecule 

inhibitor of SHH receptor component Smoothened (SMO), is FDA-approved for the treatment of 

basal cell carcinoma and is under clinical evaluation in other SHH-driven cancers such as 

metastatic colorectal, advanced stomach and pancreatic cancer [3]. In medulloblastoma 

vismodegib treatment produces initial responses, but these responses in have been short-lived, 

consistently ending in treatment failure [4-6].  

The physicochemical properties of vismodegib may limit its brain bio-availability and 

contribute to its limited efficacy for medulloblastoma. Due to the physicochemical properties of 

vismodegib in combination with its extremely low aqueous solubility (0.1 ug/ml in at pH 7.0), and 

oral bioavailability of 31.8%, the drug is currently approved as oral dosage form [7]. However, 

oral administration of vismodegib presents a challenge in pediatric population most at risk for 

medulloblastoma [8]. Vismodegib has high affinity to serum proteins, including acid-glycoprotein 

and albumin, aqueous solubility of vismodegib is extremely low (0.1 ug/ml in at pH 7.0) resulting 

in >99% of the drug circulating in protein bound form [9]. Data from human studies show that the 

low unbound fraction of vismodegib in blood limits its brain bioavailability. In a Phase I study of 

vismodegib in pediatric medulloblastoma patients, the ratio of CSF vismodegib to the total drug 
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in the plasma was 0.0026, however once the ratio was calculated relative to non-protein bound 

drug it was as high as 0.53 (0.26–0.78) [10]. These data highlight the potential for reduced protein 

binding to improve vismodegib pharmacokinetics in the CNS. 

A variety of nanoparticles, which are 1-100 nm structures, have been employed for drug 

delivery to the brain. Several classes of nanoparticles have been developed for delivery of 

hydrophobic molecules, such as PLGA based nanoparticles, liposomes and polymeric micelles.  

Several nanoparticle-based therapeutic products have been approved for clinical use, and more are 

currently under development or clinical evaluation [11, 12]. Encapsulation of drugs in 

nanoparticles has been shown to enhance the solubility of hydrophobic agents, to extend their 

systemic circulation, to provide sustained release of the drug, to improve drug exposure, to enhance 

drug accumulation in target tissues and to minimize the off-site effects [13, 14]]. Importantly, these 

systems may enhance drug delivery without depending on the expression of a receptor that cancer 

cells might down-regulate to become resistant. Polymeric micelles, formed by the self-assembly 

of amphiphilic block polymers are a nanoparticle technology that has shown promise in clinical 

implementation [15]. For example, Genexol-PM, paclitaxel-loaded nanoparticle system 

comprising a block copolymer of poly(ethylene glycol) (PEG) and poly(DL-lactide) (PLA) by 

Samyang Biopharmaceuticals is clinically approved in South Korea [16]. Similarly, NC-6004, a 

cisplatin-loaded polymeric micelle system based on PEG and modified poly(L-glutamic acid) 

developed by Nanocarrier showed enhanced platinum exposure both in plasma and tumor in 

preclinical studies and is currently evaluated in Phase III clinical studies. [17]. However, these 

systems have been limited by rather low drug loading and/or chemical structure of the loaded 

drugs.  
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POx polymer micelles represent core-shell structures, in which the core and shell can be 

easily fine-tuned to optimize drug incorporation and release and to modify drug pharmacokinetics 

and biodistribution [18]. These optimizations are enabled by the flexibility and richness of the POx 

polymer chemistry, which has a polar backbone and side groups of diverse structure and polarity 

[19, 20]. We have previously shown that nanoparticle-sized micelles formed from poly(2-

oxazoline) amphiphilic block copolymers (POx polymer) can be used to deliver poorly soluble 

drugs and drug combinations across broad spectrum of chemical space [21, 22]. POx-formulated 

drugs form stable micelles of narrow size range (10-100nm), which can be lyophilized and re-

dispersed without loss of the particle size, drug loading, or drug activity [23, 24]. The POx polymer 

micelle system is unique in its ability to incorporate unprecedentedly large amounts of insoluble 

drugs [23, 24]. We hypothesized that loading vismodegib into POx micelles, would improve drug 

delivery to the brain and tumor and make previously failed brain tumor therapies newly effective.  

         In this report, we developed and evaluated POx-vismo, a POx polymer micelle formulation 

of vismodegib, for the treatment of medulloblastoma. To test this formulation, we generated mice 

with primary medulloblastomas by breeding transgenic SmoM2 mice that harbor a Cre-dependent, 

oncogenic, constitutively active allele of Smo [25], with GFAP-Cre mice that express Cre 

recombinase in stem cells of the developing brain [26]. The resulting G-Smo mice develop 

medulloblastoma with 100% frequency by P10 (Figure 3.1) and if left untreated die from tumor 

progression by P20 [27]. We treated G-Smo mice with either POx-vismo or control formulations 

of vismodegib in oral suspension or dissolved in NMP/PEG mixture as control parenteral 

formulation (c-vismo) and then compared efficacy and pharmacokinetics. This preclinical study 

showcases the translational potential of POx micelles to improve the therapeutic efficacy of 
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vismodegib in SHH-driven and highlights the broad potential of the POx platform for optimizing 

drug delivery for brain tumor therapy.  
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3.3 Materials and Methods 

Materials 

All materials for the synthesis of poly(2-oxazoline) block copolymer (Methyl 

trifluoromethanesulfonate, 2-methyl-2-oxazoline, 2-n-buthyl-2-oxazoline), N-Methyl-2-

pyrrolidone (NMP), poly (ethylene glycol) with 300 average molecular weight (PEG300), FSA 

powder and Acetone were purchased from Sigma Aldrich (St. Louis, MO). Vismodegib free base 

was purchased from LC Laboratories (Woburn, MA). For the c-vismo formulation, vismodegib 

was dissolved in n-methyl pyrrolidone (NMP) and then diluted in polyethylene glycol 300 

(PEG300) to a final vismodegib concentration of 21 mg/mL. No vismodegib precipitation was 

observed.  

Water and acetonitrile (HPLC grade) were purchased from Fisher Scientific Inc. (Fairlawn, 

NJ). PCNA antibody for immunohistochemistry was purchased from Abcam (Cat# ab92552; 

Cambridge, MA). Alexa-647-conjgated antibodies to pRB were purchased from Cell Signaling 

Technology (cat# 8974; Danvers, MA). To prepare tumors for flow cytometry, papain was 

purchased from Worthington Biochemical Corporation (Lakewood, NJ) and Fix&Perm® cell 

fixation and permeabilization kit was purchased from Thermo Fisher Scientific. 

Preparation of POx-vismo micelles  

The amphiphilic triblock copolymer (P(MeOx39-b-PBuOx25-b-PMeOx39)), Mn = 8.2 

kg/mol, PDI = 1.11)) was synthesized and characterized as previously described (21). Vismodegib-

loaded polymeric micelle formulation (POx-vismo) was prepared by the thin film hydration 

method (23). Briefly, stock solutions of the polymer and vismodegib (10 mg/ml in acetone) were 

mixed together at the pre-determined ratios (2:10-8:10 drug to polymer w/w ratios). The organic 

solvent was evaporated at 60 ºC under a stream of nitrogen gas to form a thin-film of drug-polymer 
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homogenous mixture. To obtain well-dried thin film, the films were dried in the vacuum chamber 

(approx. 0.2 mbar) overnight.  Next, the thin films were rehydrated with saline and then incubated 

at 60 ºC for 10 min to self-assembly into drug-loaded polymeric micelles solution. The formed 

POx-vismo micelles were centrifuged at 10,000 rpm for 3 minutes (Sorvall Legend Micro 21R 

Centrifuge, Thermo Scientific) to remove non-loaded vismodegib.  

Characterization of POx-vismo micelles 

The Zave and the polydispersity index (PDI) of POx-vismo were determined using a Nano-

ZS (Malvern Instruments Inc., UK) dynamic light scattering (DLS) equipment. Briefly, each 

sample was diluted with saline to yield 1 mg/mL final polymer concentration before the 

measurement. Zave and the polydispersity index (PDI) of POx-vismo were determined by 

cumulate analysis. Results are the average of three independent micelle samples measurements.  

 The morphology of POx-vismo micelles was determined using a LEO EM910 TEM 

operating at 80 kV (Carl Zeiss SMT Inc., Peabody, MA). Digital images were obtained using a 

Gatan Orius SC1000 CCD Digital Camera in combination with Digital Micrograph 3.11.0 

software (Gatan Inc., Pleasanton, CA). One drop of each diluted Vismodegib nanoparticle solution 

(dilute 500 or 1000 times using saline) was deposited on a copper grid/carbon film for 5 min and 

excess solution was wiped off using fine filter paper. Then one drop of negative staining solution 

(1% uranyl acetate) was added and allow to dry for 10 s prior to the TEM imaging.  

 The final concentration of vismodegib in POx-vismo micelles was determined by HPLC 

(Agilent Technologies 1200 series) using Agilent eclipse plus C18 3.5 µm column (4.6mm × 

150mm) with a mixture of acetonitrile/water (30%/70% v/v, 0.01% trifluoroacetic acid mobile 

phase. The samples were diluted with mobile phase to final concentration of 100 µg/mL of 

vismodegib (and injected (10 µL) into the HPLC system. The flow rate was 1.0 mL/min, and 
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column temperature was 40 °C. Detection wavelength was 245 nm. Vismodegib concentration was 

quantified against free vismodegib analytical standards. 

Loading efficiency (LE) and loading capacity (LC) caculations. The following equations 

were used to calculate LE and LC of vismodegib in POx-vismo micelles:  

LE (%) = Mdrug/ (Mdrug added) × 100%,    (1) 

LC (%) = Mdrug / (Mdrug + Mexcipient) × 100%,   (2) 

Where Mdrug and Mexcipient are the mass of the solubilized drug and polymer excipient in the 

solution, while Mdrug added is the weight amount of the drug added to the dispersion during the 

preparation of the micelle formulation.  

Stability of POx-vismo micelles was evaluated by measuring both the loading of 

vismodegib in the POx-vismo micelles as well as the Zave and PDI of the micelles overtime. The 

POx-vismo micelles solutions (10 mg/mL of polymer concentration) were incubated in saline at 4 

oC for 1 month. At pre-determined time points the aliquots were removed and the vismo 

concentration was measured by HPLC and the Zave and PDI of the POx-vismo were measured by 

DLS as previously described.  

 

Nanoparticle stability after lyophilization  

Freshly prepared POx-vismo micelles solution (100 µL, 1 mg/mL of vismodegib in saline) 

was immediately frozen in liquid nitrogen for 5 min and lyophilized to obtain white powder of 

POx-vismo. Powder formulation of POx-vismo was resuspended in DI water to form POx-vismo 

micelles solution. Zave and PDI of resuspended POx-vismo were measured by DLS. The actual 

drug loading in POx-vismo was confirmed by HPLC analysis as described above. For HPLC 
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analysis, resuspended POx-vismo solution was centrifuged (10,000 rpm and 3 minutes) to remove 

any drug or polymer precipitate formed during the resuspension of the lyophilized powder. 

 

Release of vismodegib from POx-vismo micelles 

Release of vismodegib from POx-vismo micelles was investigated using membrane 

dialysis method against 10% solution of BSA in phosphate buffered saline (pH 7.4) at 37 C. 

Briefly, POx-vismo was diluted in saline to final concentration of 0.6 mg/mL of vismodegib. 

Subsequently, 100 µL of the diluted POx-vismo solutions were loaded into floatable Slide-A-Lyzer 

MINI dialysis devices (500 µL capacity, 3.5 kDa MWCO; Thermo Fisher Scientific). The dialysis 

devices (n=3) were floated in 20 mL of 10% BSA in PBS solution in compliance with the perfect 

sink conditions requirements. At each time point the samples were withdrawn from dialysis 

devices and the amount of vismodegib was quantified by HPLC. Drug release profiles were 

constructed by plotting the percentage of vismodegib released from POx-vismo micelles over time.  

 

Mouse breeding  

Medulloblastoma-prone G-Smo mice were generated from the cross between hGFAP-Cre 

(generously shared by Dr. Eva Anton, UNC) and SmoM2loxP/loxP (Jackson labs, Stock #005130) 

mouse lines. All mice were of species Mus musculus and crossed into the C57BL/6 background 

through at least five generations. All animal studies were carried out with the approval of the 

University of North Carolina Institutional Animal Care and Use Committee under protocol 16-

099.  
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Measurement of pharmacodynamic response by pRB quantification 

Groups of 4 replicate mice G-Smo mice were injected IP on postnatal days 12 with the 

indicated dose and formulation of vismodegib. After the indicated interval, tumors from these mice 

were dissected free and dissociated as previously described [46]. Briefly, we incubated tumors in 

papain (20 units/ml; Worthington Biochemical Corporation) at 37°C for 15 min. Tumors were then 

triturated and cells were separated from the debris by centrifugation in a discontinuous density 

gradient of ovomucoid inhibitor. Dissociated cells were then treated with the Fix & Perm® Cell 

Fixation and Permeabilization Kit per manufacturer instructions (Thermo Fisher Scientific). Fixed 

cells were incubated in 1:50 dilution of anti-phospho-Rb/Alexa Flour® 647 conjugated (Cell 

Signaling Technology) and 1:100 dilution of FX Cycle™ Violet Stain for 2 hours in the dark on 

ice. Flow cytometry was then performed on an LSR Fortessa (BD Biosciences). Technical controls 

included no stain, single-stained and fluorescence-minus-one samples. 

 

Tumor pathology studies 

Groups of 4 replicate mice G-Smo mice were injected IP on P10-12 with the indicated dose 

and formulation of vismodegib. After 24 hours, mouse brains including tumors were harvested, 

fixed, embedded in paraffin and processed for IHC as previously described [47] using antibodies 

to PCNA (Cell Signaling Technology, Danvers, MA, USA). Similarly, mouse brains including 

tumors were harvested from mice in the survival study as they reached the humane end point or 

P35 and processed for IHC. Stained slides were digitally acquired using an Aperio ScanScope XT 

(Aperio, Vista, CA, USA).  

 

 



	 111 

In vivo toxicity studies 

Toxicity of Pox-vismo and c-vismo was evaluated in healthy Wt C57BL/6 mice. We 

administered vismodegib in the indicated doses and formulations to groups of 3 replicate mice on 

days P10-P12 and then every over day until P21. Mice were weighed daily and examined for health 

defects. As mice at P12-21 are expected to gain weight steadily, we used the weights of age 

matched littermate controls to define the expected weight at each time point. Mice consistently 

weighing less than 90% of the controls were considered to be growth impaired.  

In vivo efficacy studies 

G-Smo mice were randomized into the indicated treatment groups with a minimum of 8 

replicate mice per group. The indicated treatments were administered IP daily on P10-P12 and 

then every over day until P35, unless mice first developed symptoms of tumor progression. 

Symptoms of tumor progression included hunched posture, paucity of movement, ataxia and 

weight loss.  All mice with symptomatic tumors were euthanized. The EFS was defined as the 

survival time until the development of symptoms. Survival times for each group were compared 

by Log Rank analysis. 

 

IR-MALDESI Imaging of the spatial distribution of vismodegib 

For MALDESI imaging, 2 replicate G-Smo mice were injected with each formulation. 

Mouse brains were dissected free and placed on a foil barrier over dry ice for rapid freezing. 10 

µm frozen sections of brains in the sagittal place were prepared in a cryotome, briefly thaw-

mounted on glass microscope slides that had been uniformly coated with prednisolone as an 

internal standard using a pneumatic sprayer (TM-Sprayer, HTX Technologies, Carrboro, NC, 

USA), and then maintained at -10 °C on the sample stage of the IR-MALDESI source chamber 
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prior to analysis. The stage translated the sample step-wise across the focused beam of an IR laser 

(l = 2.94 µm, IR-Opolette 2371; Opotek, Carlsbad, CA, USA), which desorbed sample material 

from adjacent 100µm diameter sampling locations. An electrospray (50/50 mixture of 

methanol/water (v/v) with 0.2% formic acid) ionized the desorbed neutral molecules, and resulting 

ions were sampled into a high resolving power Thermo Fisher Scientific Q Exactive Plus (Bremen, 

Germany) mass spectrometer for synchronized analysis. The mass spectrometer was operated in 

positive ion mode from m/z 200 to 800, with resolving power of 140,000FWHM at m/z 200. With 

high mass measurement accuracy (MMA) within 5 ppm maintained using protonated and sodiated 

adducts of diisooctyl phthalate as two internal lock masses at m/z 391.28428 and 413.26623, 

vismodegib and prednisolone were identified as protonated molecular ions [M+H+]+ at m/z 

421.01695 and m/z 361.20095, respectively. To generate images from mass spectrometry data, 

raw data from each voxel was converted to the mzXML format using MSConvert software [48]. 

These mzXML files were interrogated using MSiReader, a free software developed for processing 

MSI data [49].  

 

Pharmacokinetic analysis  

3 replicate G-Smo mice were used for each dose and formulation. The mice were injected 

IP on P12 with 100 mg/kg POx-vismo or 100 mg/kg c-vismo. At indicated sampling times, 4 

replicate mice were euthanized. From these mice, blood samples were collected by cardiac 

puncture. The brains, including forebrain and tumor tissue, were also removed, washed in ice- cold 

saline, weighted, homogenized in a glass tissue homogenizer (TearorTM, BioSpec Products, Inc.) 

and spiked with internal standard (reserpine) solution and calibration standard solution. 

Subsequently, samples were treated with 1% formic acid in acetonitrile and then centrifuged to 
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obtain the supernatant. The supernatants were transferred to 96-well plate, acetonitrile was 

evaporated and the reconstitution solution (acetonitrile/water/0.1% formic acid) was added to each 

sample. The plate was centrifuged again and the supernatant that transferred to analysis plate 

(tomec). After sealing the analysis plate with Easy Pierce foil, tissue samples were analyszed by 

LC-MS. Chromatographic separation was carried out on a HALO PFP colum (2.1×50 mm, 5 µm; 

Advanced Materials Technology, Wilimington, DE, USA) using a Shimadzu UFLC system 

equipped with a binary pump, a vacuum degasser and an autosampler (PAL system, Lake Elmo, 

MN, USA). The column oven was maintained at 40 °C. The mobile phase consisting of water and 

acetonitrile (containing 0.1% of formic acid) (90:10, v/v) was performed at a flow rate of 0.5 

mL/min. The samples were kept at 4 °C in the autosampler. The mass spectrometry was performed 

on Thermo TSQ Quantum Ultra (Thermo Fisher Scientific, Waltham, MA, USA). Ionization was 

operated using an atmospheric pressure chemical ionization (APCI) source in positive ion mode. 

The APCI source was operated with an ionspray voltage of 5000 V. The capillary temperature was 

300 °C. The MS recordings were carried out in selected reaction monitoring (SRM) mode with 

specific ion transitions of precursor ion to product ion at m/z 647.4→191.2 with collision energy 

(CE) of 38 eV, declustering potential (DP) of 85 V and entrance potential (EP) of 15 V for TY501, 

and at m/z 473.3→143.3 with CE of 23 eV, DP of 55 V and EP of 10 V for IS. The total analytical 

time was 5 min. PK analysis was performed using Phoenix Winnonlin. Initial estimates, AUC, and 

Cmax was determined using naïve pooling NCA. A one compartment model was fit to the data 

and PK parameters Ka, Vd, and CL were obtained from the models. Simulations were executed 

using the obtained parameters. All statistical significance was at the 95% confidence level. 
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NMR analysis  

G-Smo mice were injected IP on P12 with 50-100 mg/kg POx-vismo or 50-100 mg/kg c-

vismo. 4h post injection, 3 replicate mice were euthanized. From these mice, blood samples were 

collected by cardiac puncture. The brains, including forebrain and tumor tissue, were also 

removed, washed in ice- cold saline and frozen. 600 µl of 100% acetonitrile was added to the 

frozen tissue (70-200 mg), then tissue was homogenized with pestle, frozen and thawed. Next, 400 

µl of water was added, followed by the thorough vortexing.  The sample was frozen and thawed 

again. Supernatant was separated by centrifugation and lyophilized. The powder was resuspended 

in 600 µl deuterated methanol.  The 1H NMR spectra were acquired at 25 °C using a 19.97 T 

Brucker spectrometer equipped with a 5 mm HCN NMR probe with a one-pulse sequence using a 

90° flip angle, with a 1.5 s presaturation pulse on residual water, a 2.5 s acquisition time and 1.5 s 

relaxation time resulting in a 4 s repetition time. The sweep width was 6,000 Hz and acquired with 

15,000 complex points, and 128 transients. 

All NMR spectra were processed using ACD/1D NMR Manager software (version 12.0; 

Advanced Chemistry Development). Imported FIDs were zero-filled to 32,000 points, and an 

exponential line broadening of 0.3 Hz was applied before Fourier transformation. Phase and 

baseline correction were conducted for the spectra. Peaks were integrated and values were 

exported to Excel for data processing. 

 

BSA binding analysis 

Vismodegib binding to bovine serum albumin (BSA) was evaluated by measuring decrease 

in fluorescence emission spectra of tryptophan residues of BSA. Increasing concentrations of POx 

vismo or c-vismo were incubated in fetal bovine serum diluted with PBS to final BSA 
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concentration of approx. 40mg/ml for 15 min at 25 ºC. Emission spectra were recorded from 300 

to 440 nm after excitation at 295 nm using SpectraMax M5 spectrometer. Both excitation emission 

slits were set at 1 nm.  Presented data represents average of triplicate samples. To evaluate the 

release of vismodegib and binding to BSA over time, POx-vismo or c-vismo samples were added 

to 250 µl of FBS and incubated at 37 ºC for predetermined time points. After the incubation, the 

samples were transferred to a prewarmed 10 kDa MWCO Vivacon filter tube and spun at 12,000xg 

for 10 min at 37 ºC. Filtrates were mixed with acetonitrile and analyzed on HPLC. Presented data 

represents average of triplicate sample. 

 

Statistical analysis 

Statistical analyses for pharmacokinetic profile of vismodegib were performed using the 

two-tailed student’s t-test (Graphpad Prism, version 5.1.). For the survival analyses, the Log Rank 

test was used. 
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3.4 Results 

Vismodegib can be effectively formulated in poly(2-oxazoline) micelles.  

We prepared POx-vismo polymeric micelles using POx polymer P(MeOx39-b-BuOx25-b-

MeOx39) (Mn = 8.2 kg/mol, Ð (Mw/Mn) = 1.11). We generated micelles with vismodegib:POx 

polymer  ratios of 2:10, 4:10, 6:10 and 8:10 w/w (drug to polymer) using the thin film method 

[21]. Briefly, we dissolved vismodegib free base and POx polymer in acetone, mixed the 

components at the desired ratio, and then allowed the solvent to evaporate, leaving a film. We then 

added saline, and after gentle agitation and heating, drug-loaded micelles formed spontaneously. 

At all tested ratios, the loading efficiency (LE, %) of vismodegib was nearly 90% and the loading 

capacity was 13.5-42.4% w/w depending on the drug:polymer ratio (Table 3.1). POx-vismo 

micelles had an intensity-mean z-averaged particle size (Zave) of 25-40 nm, narrow size 

distribution (PDI < 0.1) as determined by DLS (Figure 3.2A). The POx-vismo micelles had a 

neutral surface charge of 8 mV (Figure 3.2B). The particle size and spherical morphology of POx-

vismo micelles was further confirmed by transmission electron microscopy (TEM) (Figure 3.2C). 

At 8:10 vismo:POx ratio, the aqueous concentration of vismodegib in POx-vismo solution was 

7.36 mg/mL, which is 73,600-fold higher than the aqueous solubility of free vismodegib (0.1 

µg/mL at pH 7.0) [9]. The POx-vismo micelles were stable during storage at 4 ºC.  No drug 

precipitation was observed by visual inspection of the POx-vismo solution. The stability of drug 

loading and particle size distribution were confirmed by HPLC and DLS respectively (Figure 

3.2D). The POx-vismo micelles were also stable after lyophilization; lyophilized POx-vismo 

micelles could be re-dispersed in water, keeping their drug loading and particles size unchanged 

(Figure 3.2E). Vismodegib release from the micelles was studied under the perfect sink conditions. 
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Vismodegib was continuously released from the micelles with approximately the 25% of the drug 

released in 2h and 90% released in 12h (Figure 3.2F).  

 

Suppression of mitogenic SHH signaling vismodegib in G-smo mice.  

Our prior studies of vismodegib administered in the c-vismo formulation at a dose of 100 

mg/kg to transgenic medulloblastoma-bearing mice showed initial tumor suppression, followed by 

rapid recurrence and no increase in event-free survival (EFS) [28]. The initial SHH pathway 

suppression confirmed that the model was vismodegib-responsive despite the initiating Smo 

mutation, and that the dose was adequate to produce a pharmacodynamic effect. The absence of a 

clinically relevant benefit highlighted the need for improved implementation for the therapy to be 

effective. 

To determine if nanoparticle formulation improved the efficacy of vismodegib, we 

compared G-Smo mice treated with either c-vismo or POx-vismo (Figure 3.1). To analyze the 

initial suppression of SHH signaling, we harvested tumors 24 hours after a single 100 mg/kg dose 

of either formulation. Tumors were dissociated, fixed and stained with antibodies to 

phosphorylated RB (pRB) to mark proliferating cells, which were quantified by flow cytometry. 

We found that both formulations dosed at 100 mg/kg were equally effective in suppressing pRB 

(p=0.9987) (Figure 3.3A), confirming the pharmacodynamic effect of the dose. We then compared 

tumor pathology after 3 daily doses of either c-vismo or POx-vismo. We again found similar 

suppression of proliferation, with reduced tumor size and expression of pRB; analysis of 

Proliferating Cell Nuclear Antigen (PCNA) produced similar results (Figure 3.3B). These data 

show that POx-vismo showed similar pharmacodynamics and was at least as effective as c-vismo 

in the initial suppression of SHH signaling in the tumor.  
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POx-vismo reduces systemic toxicity of vismodegib 

To determine whether nanoparticle delivery altered the systemic toxicity of vismodegib, 

we placed healthy P10 mouse pups on escalating regimens of POx-vismo or c-vismo and then 

compared their growth to that of untreated age-matched littermate controls (Figure 3.4).  Mice 

were injected IP with either c-vismo or POx-vismo on postnatal days 10-12 and then every other 

day until P35, and all mice including littermate controls were weighed daily. Another group was 

dosed orally with c-vismo. Weight gain for mice on 100 mg/kg POx-vismo IP was similar to 

untreated controls. In contrast mice on oral vismodegib or IP c-vismo at 100 mg/kg showed 

significantly decreased weight gain, and this reduced growth was matched by POx-vismo at the 

50% higher dose of 150 mg/kg. These studies show that systemic toxicity, detected by reduced 

weight gain, was markedly less in POx-vismo-treated mice and compared to oral or c-vismo IP.  

 

POx-vismo micelles prolong survival in GEMM model of SHH medulloblastoma  

To determine whether nanoparticle delivery affected the therapeutic efficacy of 

vismodegib when administered as an on-going treatment, we compared the survival of G-Smo 

mice on a regimen of either POx-vismo or c-vismo. Because vismodegib is typically administered 

as an oral agent in patients, we also evaluated the efficacy of oral vismodegib in G-Smo mice as 

an additional control. We randomized G-Smo mice to 4 groups: c-vismo 100 mg/kg oral, c-vismo 

100 mg/kg i.p , POx-vismo at 100 mg/kg i.p and  or saline-injected controls. Mice were dosed on 

days 10, 11 and 12 and then every other day until day 35, or until the humane endpoint of 

progressive tumor symptoms. The survival time to the humane endpoint was considered the EFS. 

The EFS for G-Smo mice in the saline-injected control group was less than 20 days, consistent 

with our prior data [29, 30]. Treatment with c-vismo i.p or oral vismodegib at 100 mg/kg both 
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failed to extend the EFS significantly. However, treatment with 100 mg/kg POx-vismo 

significantly improved the EFS (p < 0.001 Log-rank test) with median EFS increasing from 15 to 

22 days and 30% of mice surviving to 35 days (Figure 3.5A). To determine if the failure to extend 

the survival following the treatment with c-vismo was due to systemic toxicity, we dosed another 

group of mice with c-vismo at 50 mg/kg. Although a significant pharmacodynamic response was 

detected (Figure 3.3A), 50 mg/kg c-vismo did not extend survival.  

We evaluated the tumor pathology in POx-vismo-treated mice that survived beyond the 20 

day survival time of all of groups. In each of these mice, we found regions of highly proliferative 

cells within the cerebellum, interspersed with regions of differentiated, non-proliferative cells 

(Figure 3.5B). The regions of non-proliferative cells indicate that vismodegib effectively 

interrupted SHH-driven proliferation and restricted tumor growth, accounting for increased 

survival. However, the consistent presence of proliferating cells in adjacent regions shows this 

response was still partial, and POx-vismo, while more effective, was not curative as a single agent.   

 

POx micelles improve the delivery and retention of vismodegib in tumor and 
forebrain  

 
To analyze the effect of POx nanoparticle delivery on drug distribution in the CNS, we 

compared vismodegib concentrations in the forebrain and tumor at different intervals after 

administration, using infrared matrix assisted laser desorption electrospray ionization (IR-

MALDESI). IR-MALDESI uses infrared laser scanning across frozen tissue sections to excite the 

overlying matrix of ice, causing desorption of endogenous and exogenous ions that can be detected 

mass spectrometry. This technique quantifies the concentrations of species at all detected 

molecular weights with spatial resolution, generating ion-specific heatmaps. We validated this 

technique by imaging endogenous cholesterol, which we found to be at relatively high 
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concentration in normal brain. Cholesterol concentrations were significantly different in normal 

forebrain compared to tumor (p=7.44 x 10-104; Figure 3.6A). We used IR-MALDESI to map 

vismodegib concentrations in sections containing forebrains and tumors from G-Smo mice that 

were injected IP on P10 with a single 100 mg/kg dose vismodegib, formulated as either c-vismo 

or POx-vismo. MALDESI detected vismodegib in both tumor and forebrain when harvested 4 

hours after injection of either c-vismo or POx-vismo; in contrast to cholesterol, vismodegib 

concentrations were not significantly different in tumors compared to adjacent forebrain (p=0.630; 

Figure 3.6B). However, POx-vismo treated mice showed higher vismodegib signal at 4h post 

injection and persistent vismodegib signal 24 hours after administration, while vismodegib was 

not detectable after 24 hours in c-vismo treated mice. MALDESI thus demonstrated homogenous 

drug distribution across tumor and forebrain 4 hours after administration of either POx-vismo and 

c-vismo, and longer lasting vismodegib exposure in both tumor and forebrain after POx-vismo 

administration.  

 To compare the pharmacokinetics of vismodegib administered as c-vismo or POx-vismo, 

we harvested serum, forebrain and medulloblastoma samples from P10 G-Smo mice at varied 

intervals after a single 100 mg/kg IP dose of either formulation. We then subjected all samples to 

extraction vismodegib quantification by LC-MS. This analysis showed that POx-vismo produced 

faster and more long-lasting vismodegib accumulation in tumors, with a higher overall tissue drug 

exposure. The concentration of vismodegib in tumors reached maximal levels 2h after POx-vismo 

administration, compared to 4h after c-vismo administration. Moreover, the peak vismodegib 

concentrations in serum, forebrain and tumors were significantly higher following POx-vismo than 

c-vismo (p=0.0063; Figure 3.7A-C). While vismodegib was not differentially detected at 24 hours 

in the MS analysis, in contrast to the IR-MALDESI analysis, this difference may be due to the 
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extraction required for MS, which may lower the sensitivity of the assay relative to MALDESI, 

which analyzes unextracted tissue.  

The tumor:serum (Figure 3.8A)  and forebrain:serum (Figure 3.8B) ratios for vismodegib 

were higher for POx-vismo formulation, indicating improved overall distribution across the BBB 

when free and protein bound fractions in serum are considered together. Consistent with higher 

peaks and more sustained concentrations, the total tumor vismodegib exposure, measured as area 

under the curve (AUC) was significantly higher in tumor and forebrain following administration 

of POx-vismo compared to c-vismo (Figure 3.8C). POx-vismo also significantly decreased the 

calculated volume of distribution (Vd) (Figure 3.8D) and clearance (CL) (Figure 3.8E) of 

vismodegib, indicating that nanoparticle formulation reduced the distribution to non- target organs 

and improved the retention of the drug in the target tissues. Analysis of vismodegib distribution in 

non-tumor mice, showed similar results (Figure 3.7), indicating that the improved CNS penetration 

of vismodegib adminsgtered as POx-vismo was not due to tumor-specific changes in the BBB.  

 

Increased CNS drug delivery occurs without brain exposure to the nanoparticle 
carrier 

 
We developed NMR methods to quantify separately the vismodegib and POx 

concentrations in samples of serum, forebrain and tumor. We generated samples for NMR studies 

by administering POx-vismo at concentrations of 50, 100, and 150 mg/kg to tumor bearing mice. 

We then harvested tumor, forebrain and blood samples 4 hours later and subjected samples to 

extraction and NMR analysis. We identified signature peaks for vismodegib and POx that could 

be measured in serum and brain samples following in vivo POx-vismo administration (Figure 

3.9A). In serum samples, vismodegib and POx peaks increased in proportion to dose (Figure 3.9A 

insets). However, only serum samples showed POx polymer concentrations that increased with 
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dose, and POx polymer was undetectable in forebrain and tumor at all tested doses (Figure 3.9B). 

In contrast, vismodegib concentrations in tumor, serum and forebrain all increased linearly with 

dose of POx-vismo and similarly increased with dose of c-vismo (Figure 3.9C). The dissociated 

serum:brain distributions of vismodegib and POx indicate that the mechanism of improved brain 

and tumor distribution with PO-x vismo does not involve the POx nanoparticles crossing the BBB.  

 

Nanoparticle carrier reduces vismodegib binding to serum albumin and improves 
bioavailability.   

 
The exclusion of the nanoparticle carrier from the CNS suggested that the mechanism of 

nanoparticle effect may occur in the blood. As the penetration of vismodegib into the brain is 

known to be affected by its binding to serum protein, we determined if POx formulation changes 

the serum protein binding of vismodegib. We compared albumin binding of vismodegib in POx-

vismo and c-vismo formulations by measuring the quenching of the fluorescence of albumin 

tryptophan [31].  We mixed escalating doses of either POx-vismo or c-vismo with FBS solution 

(final BSA concentration of approx., 40mg/ml, similar to its concentration in plasma) and then 

measured tryptophan fluorescence after incubating the samples for 15 min at 25 ºC. The 

fluorescence quenching was lower for samples incubated with POx-vismo versus c-vismo. 

indicating that POx formulation reduced albumin binding (Figure 3.10A, B). Conversely, the 

intensity ratio at 340 nm was consistently higher for POx-vismo at each step in the increase of 

drug (Figure 3.10C). Next, we evaluated protein binding over time at 37 ºC to mimic in vivo 

temperature. After 30 minutes, over 30% of total vismodegib remained unbound, decreasing to 

10% over 4 hours. In contrast, the unbound fraction of c-vismo was marginal at 30 minutes. This 

is consistent with the improved tumor:serum and forebrain:serum ratio measured at early time 

points (up to 4h) following administration of either POx-vismo or c-vismo (Figure 3.10A,B). 
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These data show that POx nanoparticle encapsulation reduces vismodegib protein binding, which 

may be the mechanism for improved CNS penetration of vismodegib in POx-vismo. 
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3.5 Discussion  

Vismodegib has shown clinical efficacy for treatment of SHH-driven cancers but has not 

been effective for SHH subtype medulloblastoma [5, 32]. similarly, we previously found that 

vismodegib solubilized and administered IP, failed to prolong survival in medulloblastoma-

bearing mice despite initial SHH pathway suppression [28]. We now show that optimizing 

vismodegib delivery using nanoparticles markedly improves efficacy and reduces systemic 

toxicity, providing strong support for the use of the POx nanoparticle platform.  We have 

previously found that the poly(2-oxazoline) micelles are versatile system for encapsulating small 

molecule agents in nanoparticles [23, 24], for example solubilizing and delivering the 

investigational ATR inhibitor VE-821 to into the CNS in vivo [33].  

The structural properties of amphiphilic polymer (poly(2-oxazoline)s) are the driving 

factors in the formation of POx-vismo; a hydrophobic block, poly(2-n-butyl-2-oxazoline), 

provides a hydrophobic core for the encapsulation of poorly soluble drug while hydrophilic block, 

poly(2-methyl-2-oxazoline), endows POx-vismo stealth properties that may effectively prevent 

serum protein binding. Using the poly(2-oxazoline) system, we generated POx-vismo micelles that 

showed highly uniform nanometer-scale particles with Zave of 38 nm and a loading capacity of 

42% w/w. The high loading capacity POx-vismo enhanced drug solubility in aqueous solution, 

relative to the native compound. Moreover, POx-vismo was stable in aqueous media for a month 

without any changes on both drug encapsulation and size distribution and lyophilized POx-vismo 

provides an identical nanoformulation when reconstituted with water, which may facilitate clinical 

implementation.  

Our analyses show that POx formulation increased drug exposure in the CNS, in both 

medulloblastoma and forebrain and reduced systemic exposure, providing an explanation for both 
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improved anti-tumor effect and reduced toxicity. POx-vismo produced higher peak vismodegib 

concentrations in tumor and forebrain, and vismodegib concentrations persisted for longer after 

POx-vismo administration producing a higher AUC.  Although even low doses of vismodegib can 

induce a pharmacodynamic response, exposure to sub-optimal concentrations of cytotoxic drugs 

is associated with development of resistance and failure to respond to treatment [34, 35]. 

Resistance to vismodegib develops rapidly and was identified as main reason for treatment failure 

[36, 37]. Achieving high and sustained drug concentration in the target tumor tissues may reduce 

resistance and produce effects sufficiently sustained to prolong survival. Although increased 

penetration and accumulation of nanoparticle delivered drugs into brain tumors could be associated 

with tumor-specific changes in BBB, our PK data show that improved CNS penetration did not 

depend on the presence of tumor, but rather was also seen in WT mice. The decreased global 

volume of distribution of vismodegib in POx-vismo-treated mice supports lowered exposure in 

extra-neural organ systems as the mechanism of reduced systemic toxicity.  

Our NMR studies provide important insight into the mechanism through which POx 

nanoparticle encapsulation improves pharmacokinetics. NMR allowed us to simultaneously detect 

the polymer carrier and the drug, without the need to chemically modify their structures, which 

was shown to affect polymers biodistribution [38]. We found that the vismodegib component of 

POx-vismo enters the brain and brain tumor, while the POx component does not. This finding 

indicates that the nanoparticle carrier releases its payload outside the BBB and underscores the 

importance of the effect of the nanoparticle carrier on drug dynamics in the blood compartment. 

Free vismodegib is known to pass through the BBB and within this context, our finding that 

nanoparticle encapsulation reduces vismodegib serum protein binding, are highly significant. 

Taken together, our data demonstrate a mechanism in which POx nanoparticle delivery improves 
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drug penetration into normal brain and brain tumors by increasing the free drug available for 

passage across the BBB. Importantly, since the nanoparticle does not enter into the CNS, there is 

reduced potential that it will cause untoward effects on the normal brain. 

Our work advances the development of nanoparticle drug delivery for brain tumors by working 

entirely in a primary, genetic model. Diverse nanoparticles have shown efficacy against 

medulloblastoma cell lines either in vitro or in xenografts. Nanoparticles consisting of high-density 

lipoprotein, for example have shown in vitro efficacy [39]. Similarly, glutathione-triggered 

nanoparticles generated by crosslinking albumin with N,N’-Bis(acryloyl)cystamine have been 

shown to deliver chemotherapeutics in vitro [40]. Poly(lactic-co-glycolic acid) conjugated to 

polyethylene glycol (PLGA-PEG)-based nanoparticles delivering the SHH pathway inhibitor HPI-

1 have been shown effective in flank xenografts in mice [41]. An important next step or these 

promising technologies is to test nanoparticles against brain tumors that form in genetically 

engineered mice in which tumors grow in the intracranial space, with an endogenous BBB and 

surveilled by an intact immune system.  

Similar to our studies of PO-x vismo, iron oxide nanoparticle-based therapy (NP-CP-PEI), 

which uses particles coated with polyethyleneimine-PEG copolymer, has been tested in a primary 

mouse glioma model. NP-CP-PEI effectively delivered siRNAs that knocked down the activity of 

the target gene product and produced a therapeutically relevant effect [42, 43]. These studies using 

a different nanoparticle that may work through different mechanisms, significantly advanced the 

field by providing in vivo evidence of the potential of nanoparticle-based therapy in a primary 

tumor model. POx-vismo represents a new advance in demonstrating that this highly versatile 

delivery system, with known capacity to load a variety of therapeutic agents, can facilitate drug 

delivery tumors within the CNS through a newly defined mechanism.  
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Our data clearly show that in mice POx-vismo is less a toxic and more effective alternative 

to conventional vismodegib. While the ability of POx-micelles to deliver vismodegib to brain 

tumors in humans remains to be tested, the barriers to implementation in humans are not different 

than for other investigational agents. Indeed, the parenteral administration of POx-vismo presents 

advantages in the pediatric population, where orally administered therapies are problematic [8]. 

The simplicity of polymeric micelles, which do not depend on binding to a specific receptor, may 

also be an important feature.  

Phase 1 trials in humans will be needed to define safe POx-vismo regimens that can be 

tested for efficacy. Phase 1 trials to test the safety of POx-micelles loaded with other agents are 

currently on-going and early results of one phase 1 trial showed that poly(2-oxazoline) 

nanoparticles similar to POx micelles in this study were well tolerated [44]. The improved efficacy 

of POx-vismo and the need for more effective treatments for SHH-driven cancers support the 

testing of POx-vismo in humans.    

The persistence of proliferating medulloblastoma cells in mice treated until P35 with POx-

vismo highlights the need for combinations of pharmacologic agents to forestall resistance. 

Vismodegib-resistant cells may have different, specific sensitivities that may be defined in future 

studies of up-regulated signaling pathways in recurrent tumors [45]. Such studies may identify 

drugs that can combine with vismodegib to achieve cures through targeted therapies.  

The versatility of the POx system as a potential carrier for diverse agents allows for 

delivery of vismodegib combined with other specific inhibitors or chemotherapeutic agents. Our 

data show that optimization through nanoparticle formulation can improve the therapeutic index 

and efficacy of systemically administered pharmaceutical agents for brain tumor therapy, with the 

potential to improve survival and quality-of-life for brain tumor patients. The POx system is a 
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versatile drug delivery platform, and our results show the broad potential for POx micelle delivery 

to make existing brain tumor treatments newly effective. 
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Table 3.1 Actual vismodegib concentration, LE (%), LC (%), nanoparticles size and size 

distribution of POx-vismo micelles prepared at indicated drug:polymer ratios. (n = 3 ± SD) 

  
  

Ratio of 
drug:polymer 

by weight 

Theoretical drug 
concentration 

(mg/ml) 

Actual drug 
concentration 

(mg/ml) 
LE (%) LC (%) z-ave diameter 

(nm) PDI 

2:10 2.00 1.57 ± 0.01 78.6 ± 0.5 13.6 ± 0.08 26.6 ± 2.4 0.07 ± 0.01 

4:10 4.00 3.26 ± 0.06 81.6 ± 1.5 24.6 ± 0.5 34.5 ± 5.3 0.03 ± 0.01 

6:10 6.00 4.88 ± 0.1 81.3 ± 1.7 32.6 ± 0.7 41.5 ± 5.9 0.03 ± 0.01 

8:10 8.00 7.36 ± 0.15 92.0 ± 1.9 42.4 ± 0.9 38.3 ± 0.3 0.08 ± 0.01 
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Figure 3.1 Comparison of normal and G-Smo mice at P15. (A) Head shape and (B) H&E stained 

sagittal sections of the cerebellar region of normal (left) and G-Smo (right) mice. 
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 Figure 3.2 POx-vismo micelles form stable, nanometer-scale spheres.  (A) Particle size 

distribution measured by DLS (z-average, Dz) (B) Zeta potential (50) and (C) morphology, 

shown by TEM. Scale bar = 200 nm (left), 50 nm (right). (D) Stability of the POx-vismo 

micelles at 4 ºC as determined by actual drug measurements (left) and size distribution (right) 

over time. (E) Size of particles after reconstitution of lyophilized POx-vismo. (F) Vismodegib 

release from POx-vismo incubated in fetal bovine serum solution (10% in PBS) at 37 ºC over 

time.   
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Figure 3.3 Pharmacodynamic response to POx-vismo and c-vismo. (A) Flow cytometry 

quantification of pRB+ cells in untreated tumors and in tumors 24h after a single administration 

of POx-vismo and c-vismo at the indicated doses, compared to POx vehicle-injected controls. In 

the 2D plots, cells representative replicates treated as indicated are plotted according to pRB 

intensity versus DNA content. The dotted line indicates the threshold of detection for pRB. The 

pRB+ fractions for all replicates in each treatment group are graphed to the right, with columns 

indicating the means and error bars indicating the SEM. (B) PCNA immunofluorescent staining 

of sagittal medulloblastoma sections from representative P13 G-Smo mice, 24h after three daily 

IP injections of the indicated formulation. Nuclei are counterstained with DAPI. 
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Figure 3.4 Comparison of weight gain shows that mice tolerate POx-vismo better than c-vismo. 

The weights of mice treated with the indicated formulations are graphed over time. The gray 

range indicates the mean weights ± SEM of littermate controls.  
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Figure 3.5 Increased efficacy of POx-vismo compared to c-vismo. (A) Kaplan-Meier survival 

curve for G-Smo mice treated POx-vismo or c-vismo at the indicated doses, compared to no 

treatment; *** indicates p < 0.001 (vs. No treatment). All other curves showed no statistically 

significant difference compared to No treatment. (B) PCNA immunofluorescent staining (red), in 

a sagittal medulloblastoma section from a representative P35 G-Smo mouse, treated with 100 

mg/kg of POx-vismo (P35). Nuclei are counterstained with DAPI. Red arrowhead indicates a 

region of proliferative tumor. Blue arrowhead indicates a differentiated, non-proliferative region. 
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Figure 3.6 Widespread vismodegib distribution in the brain, with increased retention after POx-

vismo administration, demonstrated by IR-MALDESI. (A) Left panel, contour of brain sample 

showing forebrain and medulloblastoma (MB) and right panel, IR-MALDESI analysis of 

cholesterol in a control brain (m/z :369). (B) IR-MALDESI analysis of vismodegib (m/z: 421) in 

representative sagittal brain sections from G-Smo mice following a single dose of c-vismo at 4h 

(left) and 24h (right) (C) IR-MALDESI MSI analysis of vismodegib (m/z: 421) as in (B) 

following a single dose of POx-vismo at 4h (left) and 24h (right).  
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D	PK	parameters	

Tumor-bearing mice 

Parameters 
POx-vismo C-vismo 

Serum Tumor Forebrain Serum Tumor Forebrain 

AUC (0–∞) 

(ng*hr/mL) 
992869.75 574591.17 626488.79 706435.87 350346.09 351019 

Vd (mL) 4.73 - - 11.41 - - 

CL (mL/hr) 0.683 - - 0.809 - - 

Wild-type mice 

Parameters 
POx-vismo C-vismo 

Serum Cerebellum Forebrain Serum Cerebellum Forebrain 

AUC (0–∞) 

(ng*hr/mL) 
1062953.1 644605.5 704583.85 540380.3 288539.5 269031.6 
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Vd (mL) 3.77 - - 10.29 - - 

CL (mL/hr) 0.649 - - 1.22 - - 

AUC(0–∞),	area	under	the	curve	from	time	0–infinite;	Vd,	volume	of	distribution;	CL,	total	body	

clearance.	

 

Figure 3.7 Pharmacokinetic profile of POx-vismo and C-vismo in tumor mice. Vismodegib 

concentrations in (A) serum (upper: POx-vismo, lower: C-vismo), (B) Tumor (cerebellum) 

(upper: POx-vismo, lower: C-vismo) and (C) forebrain (upper: POx-vismo, lower: C-vismo), 24 

h after following single IP injections of POx-vismo or C-vismo at 100 mg/kg, *p < 0.05, **p < 

0.005, ***p < 0.0005. (D) PK parameters at given formulations from tumor-bearing mice and 

wild-type mice. For A-C, dots indicate data from individual replicates and error bars are the 

SEM. 
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Figure 3.8 POx-vismo show enhanced drug delivery. (A) Tumor:serum and (B) forebrain:serum 

ratio of vismodegib, (C) AUC, (D) volume of distribution and (E) total clearance of vismodegib 

following administration of 100 mg/kg of  POx-vismo or C-vismo in tumor bearing mice. *p < 

0.05, **p < 0.005, ***p < 0.0005. 
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Figure 3.9. Differential distribution of vismodegib and POx components of POx-vismo in the 

vascular and CNS compartments. (A) NMR spectra with the signature peaks for vismodegib and 

POx highlighted, Insets show dose-dependent changes in regions of representative spectra from 

serum samples that correspond to vismodegib or POx. Note that POx peak is a broad peak that 

spans several, more narrow peaks for unrelated molecules. To maximize specificity, we 

integrated an area within the broad POx peak that falls between unrelated peaks. The area under 
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this portion of the curve was proportional to POx concentration over the range of tested 

standards.  (B) POx concertation in serum, tumor and forebrain following IP injection of POx-

vismo (C) vismodegib level from POx-vismo and c-vismo injection. *p < 0.05, **p < 0.005, 

***p < 0.0005. For B-C, dots indicate data from individual replicates and error bars are the SEM. 
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Figure 3.10 Protein binding study of vismodegib (A) Tryptophan fluorescence quenching assay 

by addition of either POx-vismo or C-vismo at given concentration of vismodegib (right), (B) the 

fraction of unbound vismodegib by addition of either Pox-vismo or C-vismo in diluted FBS 

solution. (C) unbound vismodegib after the incubation in FBS. Each point is mean ± SEM. 

 

 

 

 

  



	 142 

REFERENCES 
 

1.  Sharma, S.V. and Settleman, J., 2007. Oncogene addiction: setting the stage for molecularly 
targeted cancer therapy. Genes & development, 21(24), pp.3214-3231. 
 
2. Rimkus, T.K., Carpenter, R.L., Qasem, S., Chan, M. and Lo, H.W., 2016. Targeting the sonic 
hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers, 8(2), p.22. 
 
3. Vismodegib granted FDA approval for treatment of basal cell carcinoma. 2012. Oncology 
(Williston Park) 26, 174, 213. 
 
4. Yauch, R.L., Dijkgraaf, G.J., Alicke, B., Januario, T., Ahn, C.P., Holcomb, T., Pujara, K., 
Stinson, J., Callahan, C.A., Tang, T. and Bazan, J.F., 2009. Smoothened mutation confers 
resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science, 326(5952), pp.572-574. 
 
5. Robinson, G.W., Orr, B.A., Wu, G., Gururangan, S., Lin, T., Qaddoumi, I., Packer, R.J., 
Goldman, S., Prados, M.D., Desjardins, A. and Chintagumpala, M., 2015. Vismodegib exerts 
targeted efficacy against recurrent sonic hedgehog–subgroup medulloblastoma: results from phase 
II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. Journal of Clinical 
Oncology, 33(24), p.2646. 
 
6. DOXIL approved by FDA. 1995. AIDS Patient Care 9, 306. 
 
7. Aditya, S. and Rattan, A., 2013. Vismodegib: A smoothened inhibitor for the treatment of 
advanced basal cell carcinoma. Indian dermatology online journal, 4(4), p.365. 
 
8. Batchelor, H.K. and Marriott, J.F., 2015. Formulations for children: problems and 
solutions. British journal of clinical pharmacology, 79(3), pp.405-418. 
 
9. Graham, R.A., Hop, C.E., Borin, M.T., Lum, B.L., Colburn, D., Chang, I., Shin, Y.G., Malhi, 
V., Low, J.A. and Dresser, M.J., 2012. Single and multiple dose intravenous and oral 
pharmacokinetics of the hedgehog pathway inhibitor vismodegib in healthy female 
subjects. British journal of clinical pharmacology, 74(5), pp.788-796. 
 
10. Gajjar, A., Stewart, C.F., Ellison, D.W., Kaste, S., Kun, L.E., Packer, R.J., Goldman, S., 
Chintagumpala, M., Wallace, D., Takebe, N. and Boyett, J.M., 2013. Phase I study of vismodegib 
in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium 
study. Clinical Cancer Research, 19(22), pp.6305-6312. 
 
11. Barenholz, Y.C., 2012. Doxil®—the first FDA-approved nano-drug: lessons learned. Journal 
of controlled release, 160(2), pp.117-134. 
 
12. Yamamoto, Y., Kawano, I. and Iwase, H., 2011. Nab-paclitaxel for the treatment of breast 
cancer: efficacy, safety, and approval. OncoTargets and therapy, 4, p.123. 
 



	 143 

13. Misra, R., Acharya, S. and Sahoo, S.K., 2010. Cancer nanotechnology: application of 
nanotechnology in cancer therapy. Drug discovery today, 15(19-20), pp.842-850. 
 
14. Ferrari, M., 2005. Cancer nanotechnology: opportunities and challenges. Nature reviews 
cancer, 5(3), pp.161-171. 
 
15. Kataoka, K., Harada, A. and Nagasaki, Y., 2012. Block copolymer micelles for drug delivery: 
design, characterization and biological significance. Advanced drug delivery reviews, 64, pp.37-
48. 
 
16. Lee, K.S., Chung, H.C., Im, S.A., Park, Y.H., Kim, C.S., Kim, S.B., Rha, S.Y., Lee, M.Y. and 
Ro, J., 2008. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle 
formulation of paclitaxel, in patients with metastatic breast cancer. Breast cancer research and 
treatment, 108(2), pp.241-250. 
 
17. Mochida, Y., Cabral, H. and Kataoka, K., 2017. Polymeric micelles for targeted tumor therapy 
of platinum anticancer drugs. Expert opinion on drug delivery, 14(12), pp.1423-1438. 
 
18. He, Z., Wan, X., Schulz, A., Bludau, H., Dobrovolskaia, M.A., Stern, S.T., Montgomery, S.A., 
Yuan, H., Li, Z., Alakhova, D. and Sokolsky, M., 2016. A high capacity polymeric micelle of 
paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer 
activity. Biomaterials, 101, pp.296-309. 
 
19. Lorson, T., Lübtow, M.M., Wegener, E., Haider, M.S., Borova, S., Nahm, D., Jordan, R., 
Sokolski-Papkov, M., Kabanov, A.V. and Luxenhofer, R., 2018. Poly (2-oxazoline) s based 
biomaterials: A comprehensive and critical update. Biomaterials, 178, pp.204-280. 
 
20. Seo, Y., Schulz, A., Han, Y., He, Z., Bludau, H., Wan, X., Tong, J., Bronich, T.K., Sokolsky, 
M., Luxenhofer, R. and Jordan, R., 2015. Poly (2-oxazoline) block copolymer based formulations 
of taxanes: effect of copolymer and drug structure, concentration, and environmental 
factors. Polymers for Advanced Technologies, 26(7), pp.837-850. 
 
21. Luxenhofer, R., Schulz, A., Roques, C., Li, S., Bronich, T.K., Batrakova, E.V., Jordan, R. and 
Kabanov, A.V., 2010. Doubly amphiphilic poly (2-oxazoline) s as high-capacity delivery systems 
for hydrophobic drugs. Biomaterials, 31(18), pp.4972-4979. 
 
22. Han, Y., He, Z., Schulz, A., Bronich, T.K., Jordan, R., Luxenhofer, R. and Kabanov, A.V., 
2012. Synergistic combinations of multiple chemotherapeutic agents in high capacity poly (2-
oxazoline) micelles. Molecular pharmaceutics, 9(8), pp.2302-2313. 
 
23. Wan, X., Beaudoin, J.J., Vinod, N., Min, Y., Makita, N., Bludau, H., Jordan, R., Wang, A., 
Sokolsky, M. and Kabanov, A.V., 2019. Co-delivery of paclitaxel and cisplatin in poly (2-
oxazoline) polymeric micelles: Implications for drug loading, release, pharmacokinetics and 
outcome of ovarian and breast cancer treatments. Biomaterials, 192, pp.1-14. 
 



	 144 

24. Wan, X., Min, Y., Bludau, H., Keith, A., Sheiko, S.S., Jordan, R., Wang, A.Z., Sokolsky-
Papkov, M. and Kabanov, A.V., 2018. Drug Combination synergy in worm-like polymeric 
micelles improves treatment outcome for small cell and non-small cell lung cancer. ACS 
nano, 12(3), pp.2426-2439. 
 
25. Mao, J., Ligon, K.L., Rakhlin, E.Y., Thayer, S.P., Bronson, R.T., Rowitch, D. and McMahon, 
A.P., 2006. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog 
pathway. Cancer research, 66(20), pp.10171-10178. 
 
26. Zhuo, L., Theis, M., Alvarez-Maya, I., Brenner, M., Willecke, K. and Messing, A., 2001. 
hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. genesis, 31(2), 
pp.85-94. 
 
27. Schüller, U., Heine, V.M., Mao, J., Kho, A.T., Dillon, A.K., Han, Y.G., Huillard, E., Sun, T., 
Ligon, A.H., Qian, Y. and Ma, Q., 2008. Acquisition of granule neuron precursor identity is a 
critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer 
cell, 14(2), pp.123-134. 
 
28. Ocasio, J., Babcock, B., Colaneri, A., Taylor, M., Wilhelmsen, K. and Gershon, T., 2018. 
MBRS-51. SINGLE CELL TRANSCRIPTOMIC ANALYSIS DEFINES DISCRETE 
SUBPOPULATIONS IN SHH-DRIVEN MEDULLOBLASTOMAS THAT ARE 
DIFFERENTIALLY AFFECTED BY VISMODEGIB. Neuro-Oncology, 20(Suppl 2), p.i139. 
 
29. Williams, S.E., Garcia, I., Crowther, A.J., Li, S., Stewart, A., Liu, H., Lough, K.J., O'Neill, S., 
Veleta, K., Oyarzabal, E.A. and Merrill, J.R., 2015. Aspm sustains postnatal cerebellar 
neurogenesis and medulloblastoma growth in mice. Development, 142(22), pp.3921-3932. 
 
 
30. Gershon, T.R., Crowther, A.J., Tikunov, A., Garcia, I., Annis, R., Yuan, H., Miller, C.R., 
Macdonald, J., Olson, J. and Deshmukh, M., 2013. Hexokinase-2-mediated aerobic glycolysis is 
integral to cerebellar neurogenesis and pathogenesis of medulloblastoma. Cancer & 
metabolism, 1(1), p.2. 
 
31. Sułkowska, A., 2002. Interaction of drugs with bovine and human serum albumin. Journal of 
molecular structure, 614(1-3), pp.227-232. 
 
32. Tang, J.C., Hanke, C.W. and Caro, I., 2018. Vismodegib and the Hedgehog Pathway Inhibitors: 
A Historical Perspective to Current Clinical Application. Journal of drugs in dermatology: 
JDD, 17(5), pp.506-508. 
 
33. Lang, P.Y., Nanjangud, G.J., Sokolsky-Papkov, M., Shaw, C., Hwang, D., Parker, J.S., 
Kabanov, A.V. and Gershon, T.R., 2016. ATR maintains chromosomal integrity during postnatal 
cerebellar neurogenesis and is required for medulloblastoma formation. Development, 143(21), 
pp.4038-4052. 
 



	 145 

34. Liu, W.M., Oakley, P.R. and Joel, S.P., 2002. Exposure to low concentrations of etoposide 
reduces the apoptotic capability of leukaemic cell lines. Leukemia, 16(9), pp.1705-1712. 
 
35. Wang, E.C., Sinnott, R., Werner, M.E., Sethi, M., Whitehurst, A.W. and Wang, A.Z., 2014. 
Differential cell responses to nanoparticle docetaxel and small molecule docetaxel at a sub-
therapeutic dose range. Nanomedicine: Nanotechnology, Biology and Medicine, 10(2), pp.321-
328. 
 
36. Rudin, C.M., Hann, C.L., Laterra, J., Yauch, R.L., Callahan, C.A., Fu, L., Holcomb, T., 
Stinson, J., Gould, S.E., Coleman, B. and LoRusso, P.M., 2009. Treatment of medulloblastoma 
with hedgehog pathway inhibitor GDC-0449. New England Journal of Medicine, 361(12), 
pp.1173-1178. 
 
37. Metcalfe, C. and de Sauvage, F.J., 2011. Hedgehog fights back: mechanisms of acquired 
resistance against Smoothened antagonists. Cancer research, 71(15), pp.5057-5061. 
 
38. Fonge, H., Huang, H., Scollard, D., Reilly, R.M. and Allen, C., 2012. Influence of formulation 
variables on the biodistribution of multifunctional block copolymer micelles. Journal of controlled 
release, 157(3), pp.366-374. 
 
39. Bell, J.B., Rink, J.S., Eckerdt, F., Clymer, J., Goldman, S., Thaxton, C.S. and Platanias, L.C., 
2018. HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Scientific 
reports, 8(1), pp.1-10. 
 
40. Catanzaro, G., Curcio, M., Cirillo, G., Spizzirri, U.G., Besharat, Z.M., Abballe, L., Vacca, A., 
Iemma, F., Picci, N. and Ferretti, E., 2017. Albumin nanoparticles for glutathione-responsive 
release of cisplatin: New opportunities for medulloblastoma. International journal of 
pharmaceutics, 517(1-2), pp.168-174. 
 
41. Chenna, V., Hu, C., Pramanik, D., Aftab, B.T., Karikari, C., Campbell, N.R., Hong, S.M., 
Zhao, M., Rudek, M.A., Khan, S.R. and Rudin, C.M., 2012. A polymeric nanoparticle 
encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary 
mutational resistance to Smoothened antagonists. Molecular cancer therapeutics, 11(1), pp.165-
173. 
 
42. Kievit, F.M., Wang, K., Ozawa, T., Tarudji, A.W., Silber, J.R., Holland, E.C., Ellenbogen, 
R.G. and Zhang, M., 2017. Nanoparticle-mediated knockdown of DNA repair sensitizes cells to 
radiotherapy and extends survival in a genetic mouse model of glioblastoma. Nanomedicine: 
Nanotechnology, Biology and Medicine, 13(7), pp.2131-2139. 
 
43. Kievit, F.M., Wang, K., Ozawa, T., Tarudji, A.W., Silber, J.R., Holland, E.C., Ellenbogen, 
R.G. and Zhang, M., 2017. Nanoparticle-mediated knockdown of DNA repair sensitizes cells to 
radiotherapy and extends survival in a genetic mouse model of glioblastoma. Nanomedicine: 
Nanotechnology, Biology and Medicine, 13(7), pp.2131-2139. 
 



	 146 

44. Moreadith, R.W., Viegas, T.X., Bentley, M.D., Harris, J.M., Fang, Z., Yoon, K., Dizman, B., 
Weimer, R., Rae, B.P., Li, X. and Rader, C., 2017. Clinical development of a poly (2-
oxazoline)(POZ) polymer therapeutic for the treatment of Parkinson’s disease–Proof of concept 
of POZ as a versatile polymer platform for drug development in multiple therapeutic 
indications. European Polymer Journal, 88, pp.524-552. 
 
45. Bertrand, K.C., Faria, C.C., Skowron, P., Luck, A., Garzia, L., Wu, X., Agnihotri, S., Smith, 
C.A., Taylor, M.D., Mack, S.C. and Rutka, J.T., 2018. A functional genomics approach to identify 
pathways of drug resistance in medulloblastoma. Acta neuropathologica communications, 6(1), 
pp.1-6. 
 
46. Lee, H.Y., Greene, L.A., Mason, C.A. and Manzini, M.C., 2009. Isolation and culture of post-
natal mouse cerebellar granule neuron progenitor cells and neurons. JoVE (Journal of Visualized 
Experiments), (23), p.e990. 
 
47. Garcia, I., Crowther, A.J., Gama, V., Miller, C.R., Deshmukh, M. and Gershon, T.R., 2013. 
Bax deficiency prolongs cerebellar neurogenesis, accelerates medulloblastoma formation and 
paradoxically increases both malignancy and differentiation. Oncogene, 32(18), pp.2304-2314. 
 
48. Kessner, D., Chambers, M., Burke, R., Agus, D. and Mallick, P., 2008. ProteoWizard: open 
source software for rapid proteomics tools development. Bioinformatics, 24(21), pp.2534-2536. 
 
49. Robichaud, G., Garrard, K.P., Barry, J.A. and Muddiman, D.C., 2013. MSiReader: an open-
source interface to view and analyze high resolving power MS imaging files on Matlab 
platform. Journal of the American Society for Mass Spectrometry, 24(5), pp.718-721. 
 
50. Zarogouldis, P., Karamanos, N.K., Porpodis, K., Domvri, K., Huang, H., Hohenforst-Schimdt, 
W., Goldberg, E.P. and Zarogoulidis, K., 2012. Vectors for inhaled gene therapy in lung cancer. 
Application for nano oncology and safety of bio nanotechnology. International journal of 
molecular sciences, 13(9), pp.10828-10862. 
  



	 147 

CHAPTER IV: NOVEL POLY(2-OXAZOLINE) BLOCK COPOLYMER WITH 
AROMATIC HETEROCYCLIC SIDE CHAINS AS A DRUG DELIVERY PLATFORM14 
 

 

4.1 SUMMARY 

Here we report a novel poly(2-oxazoline)-based block copolymer with the aromatic 

heterocyclic side chains in one block and demonstrate its potential application as a drug delivery 

platform. The copolymer was synthesized via the condensation of N,N-dimethylbiguanide with the 

methyl ester side chain in poly(2-methoxycarboxyethyl-2-oxazoline) block (PMestOx) of the 

PMeOx-PMestOx diblock copolymer. We confirmed the N,N-dimethylbiguanide condensation 

with PMestOx and the complete conversion of the side chain to the N,N-dimethyl-1,3,5-triazine-

2,4-diamine-6-ethyl moiety by physicochemical analysis. The PMeOx-PcBOx copolymer self-

assemble into polymeric micelles in aqueous solution. Successful encapsulation into these micelles 

has been demonstrated for 1) several poorly soluble drugs, such as bruceantin and LY2109761, 

and 2) dichloro(1,2-diaminocyclohexane)platinum(II) (DachPt). The first class of drugs is 

incorporated possibly via hydrogen bonding and pi-pi interactions with the PcBOx side groups, 

while the second one is likely forms coordination bonds with the same side groups. The capability 

of this new copolymer to solubilize a uniquely diverse set of active pharmaceutical ingredients 

suggest potential application in drug delivery. 

  

																																																								
1	This chapter previously appeared as an article in press. The original citation is as follows: 
Hwang, Duhyeong et al., “Novel poly(2-oxazoline) block copolymer with aromatic heterocyclic 
side chains as a drug delivery platform”, Journal of Controlled Release, 2019, DOI: 
10.1016/j.jconrel.2019.06.037 
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4.2 Introduction 

With an increasing number of approved drugs, the design of novel drug molecules has 

become more complicated. The challenge in drug design is the concurrent demand for achieving 

higher therapeutic potency with proper physicochemical properties and lowering toxicity. Large 

pharmaceutical companies employ high throughput screening (HTS) to find lead compounds, but 

the structure optimization that takes place after HTS often results in therapeutic failure. It is well-

known that the increased structural complexity of therapeutic compounds is positively correlated 

to drug development success rate [1]. Ergo, the use of additional strategies, such as rational drug 

design, is a necessity to help simplify this complex, failure-prone process [2]. One potential 

approach to simplify drug development is to take advantage of drug delivery systems.  Drug 

delivery systems can enhance the therapeutic efficacy and expand the viable drugs by 

compensating for undesirable physicochemical properties of therapeutic agents and modulating 

their pharmacokinetics, biodistribution, and cellular uptake [3-5].  

Among a variety of drug delivery systems, the most successful approach thus far is the 

encapsulation of physicochemically challenging active pharmaceutical ingredients (APIs) in 

nanoparticles [6, 7]. Currently, several drug delivery-based products are approved for the clinic, 

and many clinical and preclinical studies are in progress [8]. For example, the liposomal 

formulation of Amphotericin B dramatically decreased the risk of systemic side effects of the 

compound [9]. Abraxane®, a nanoparticle albumin–bound paclitaxel, has eliminated the use of 

toxic excipients [10], and lipid nanoparticle formulations can transform siRNA into a useful 

therapeutic which acts on a previously undruggable target [11]. 

However, the majority of reported nanoformulations are limited by the API’s physicochemical 

properties. For example, liposomes are suitable carriers for hydrophilic, slightly basic compounds 



	 149 

[12, 13]. On the other hand, previously reported polymeric micelles are most suitable to load 

hydrophobic drugs, because the driving force for drug encapsulation is overwhelmingly due to 

hydrophobic interactions [3].  

N,N-dimethylbiguanide, known more commonly as metformin, has largely been used as an anti-

diabetic medication. It has a strong capacity to form hydrogen bonds due to its nitrogen-rich 

structure [14]. It was also reported that N,N-dimethylbiguanide can condense with alkyl ester 

compounds to form heteroaromatic (triazine) ring structures which exhibit strong pi-pi interactions 

[15]. We designed a novel polymer functionalized with the condensed form of N,N-

dimethylbiguanide based on poly(2-oxazoline)s which takes advantage of hydrogen bonding and 

pi-pi stacking interactions inherent in this structure. These new interactions may assist in the 

solubilization of otherwise incompatible small molecules. The novel polymer self-assembles into 

nanoparticles in aqueous medium and shows the ability to encapsulate a diverse space of 

therapeutic agents. Taken together, this novel polymer may increase the success rate of drug 

development. 
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4.3 Materials and Methods 

 Chemicals 

 All chemicals for polymer synthesis and dichloro(1,2-diaminocyclohexane)platinum(II) 

(DachPt) were purchased from Sigma-Aldrich (St. Louis, MO). Oxaliplatin was purchased from 

LC Laboratories (Woburn, MA). Metformin hydrochloride (N,N-dimethylbiguanide 

hydrochloride) was purchased from Tokyo Chemical Industry Co., Ltd. (Portland, OR). N,N,6-

trimethyl-1,3,5-triazine-2,4-diamine (cBG) was purchased from Santa Cruz Biotechnology 

(Dallas, TX). 2-methoxycarboxyethyl-2-oxazoline (MestOx) was synthesized as previously 

reported [16]. For synthesis of the polymers, the reagents (methyl trifluoromethanesulfonate 

(MeOTf), 2-methyl-2-oxazoline (MeOx), MestOx, 2-n-butyl-2-oxazoline (BuOx)) and solvent 

(acetonitrile (ACN)) and others were dried by refluxing over calcium hydride (CaH2) under inert 

nitrogen gas and subsequently distilled prior to use [17]. P[MeOx35-b-BuOx20-b-MeOx35] (P2) was 

synthesized as described previously [17].  Cell counting kit (CCK-8) was purchased from Dojindo 

Molecular Technologies (Rockville, MD).  

 

 Polymer characterization 

 NMR spectra were recorded on an INOVA 400 at room temperature (RT). The spectra 

were calibrated using the solvent signals (CDCl3 7.26 ppm, (CD3)2SO 2.50 ppm, D2O 4.80 ppm). 

Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) 

was performed on a Sciex 5800 MALDI-TOF/TOF mass spectrometer and 2-(4′-

Hydroxybenzeneazo)benzoic acid (HABA) (20 mg/mL in acetonitrile) was used as the matrix. Gel 

permeation chromatography (GPC) was performed on a GPCmax VE-2001 system (Viscotek) (RI 

detector mode, PSS SEC column (GRAM 100Å 8 x 300 mm, SDV 5µm) with N,N-
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Dimethylformamide (DMF) (25 mM LiBr, 1 mL/min) as eluent and calibrated against 

Polymethylmethacrylate (PMMA) standards. 

 

 Synthesis of Methyl-P[MeOx60-b-MestOx30]-piperidine (PMeOx-PMestOx) 

 Under dry and inert conditions, 32.2 mg (0.2 mmol, 1 eq) of initiator (MeOTf) and 1015 

mg (11.93 mmol, 60 eq) of MeOx monomer were dissolved in 4 mL dry acetonitrile at RT. The 

mixture was stirred at 80 ºC for 4 h. After cooling to RT, the monomer for the second block, 

MestOx (942 mg, 6.01 mmol, 30 eq), was added and the mixture was stirred at 80 ºC overnight. 

The polymer was terminated by addition of 0.1 mL piperidine (1.01 mmol, 5 eq) and the mixture 

was stirred overnight at RT. An excess of K2CO3 was added to the mixture, and then the mixture 

was allowed to stir for 12 h. After filteration of the mixture, 5 mL of chloroform-methanol mixture 

(1:1) was added to the filtrate containing the product (PMeOx-PMestOx). After precipitation of 

the polymer by ice-cold diethyl ether (approximately 50 times the volume of polymer solution of 

diethyl ether was added), the product was isolated by centrifugation and organic solvent was 

decanted. The polymer product was dissolved in ~50 mL of DI water and dialyzed against DI water 

(3.5 kDa membrane) for 3 days, changing the water every day, to remove organic solvent and any 

remaining monomers. The resulting solution was lyophilized, and the polymer was obtained as a 

white powder (1428 mg, 73%). GPC (DMF (25 mM LiBr)): Mn = 13.4 kg/mol (PDI 1.038); 1H 

NMR (D2O, 298 K): 2.4–2.7 (4H, CO-CH2-CH2-CO-OCH3); 3.2–3.7 (7H, -N-CH2-CH2, -CO-O-

CH3); 1.8–2.0 (3H, -CO-CH3). 
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 Synthesis of Methyl-P[MeOx60-b-(2-N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl-
2-oxazoline)30]-piperidine (PMeOx-PcBOx)  
 
 N,N-dimethylbiguanide  (Metformin) free base was prepared as previously reported [18]. 

Briefly, metformin hydrochloride (4.51 g, 27.27 mmol) was suspended in isopropyl alcohol (i-

PrOH) (40 mL) and potassium hydroxide (1.83 g, 32.62 mmol) was added to the suspension at 50 

ºC. The white slurry was stirred at 50 ºC for 2 h, and then the mixture was cooled to RT. The 

resulting mixture was filtered and the filter-cake was washed with acetone (2 x 10 mL). The 

combined filtrates were concentrated under reduced pressure yielding a white solid (metformin 

free base). Yield: 98% (3.45 g); 1H NMR (400 MHz, D2O) δ 3.07 (s, -N-(CH3)2). Subsequently, 

N,N-dimethylbiguanide free base (1.55 g, 12.02 mmol (20-fold excess amount of MestOx unit in 

polymer)) was added to a solution of PMeOx-PMestOx (200 mg, 22.2 µmol (0.6 mmol of total 

MestOx unit)) in dimethylformamide (DMF) (15 mL). The mixture was stirred at 75 ºC for 48 h 

to form PcBOx.  The reaction mixture was then diluted with DI water and dialyzed against DI 

water to completely remove unreacted free N,N-dimethylbiguanide and organic solvent. The 

polymer was obtained as a white powder (162 mg, 81% yield) after lyophilization from water. 1H 

NMR (D2O, 298 K): 2.2–2.7 (4H, CO-CH2-CH2-C3N3(NH2)(N(CH3)2); 2.6–3.0 (6H, 

C3N3(NH2)(N(CH3)2); 3.1–3.7 (4H, -N-CH2-CH2-); 1.8–2.0 (3H, -CO-CH3). 

 

 Analysis of PMeOx-PcBOx structure 

 UV-Vis spectroscopic analysis was performed to investigate the formation of poly(2-N,N-

dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl-2-oxazoline) (PcBOx) structure in PMeOx-PcBOx. 

Samples (PMeOx-PcBOx, PMeOx-PMestOx, and cBG, and N,N-dimethylbiguanide) were 

dissolved (equimolar N,N-dimethylbiguanide or cBG units) in DI water and UV absorption spectra 

were measured over the wavelength range of 200 to 300 nm in 1 nm steps. (SpectraMax M5, 
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Molecular Devices). In order to investigate the mass shift of PMestOx after conjugation with N,N-

dimethylbiguanide and confirm the formation of the defined structure using MALDI-TOF/TOF 

analysis, we synthesized a PcBOx homopolymer from MestOx homopolymer with a degree of 

polymerization (DP) of 10 as described above. MALDI-TOF/TOF was performed on a Sciex 5800 

MALDI-TOF/TOF mass spectrometer and 2-(4′-Hydroxybenzeneazo)benzoic acid (HABA) (20 

mg/mL in acetonitrile) was used as the matrix. Polymer samples were dissolved in acetonitrile (2 

mg/mL). Analytes were prepared by mixing 10 µL of matrix and 5 µL of polymer samples. 

Samples were applied using the dried droplet method. 

 

 Titration analysis 

 PMeOx-PcBOx (12 mg) was dissolved in 10 mL 0.01N HCl solution and titrated with 0.1N 

NaOH solution added in increments of 0.020 mL after the pH values were stabilized. Titration 

assay for control samples (saline, cBG and PMeOx-PMestOx) was performed at the same molar 

concentration of cBG units with the same volume of titrant. Derivative ∆OH/∆pH was plotted from 

the obtained titration curves to investigate the buffering-capacity of samples. 

 

 Self-assembly of PMeOx-PcBOx in aqueous solution and particle formation 

 Briefly, the sample was diluted with DI water to yield 1 mg/mL final polymer concentration 

before the measurement. Particle z-average effective diameter and polydispersity index (PDI) were 

measured by dynamic light scattering (DLS) (Nano-ZS, Malvern Instruments, UK). Results are 

the mean of three independent sample measurements. The morphology of PMeOx-PcBOx particle 

in aqueous media was determined using a LEO EM910 TEM operating at 80 kV (Carl Zeiss SMT 

Inc., Peabody, MA). One drop of PMeOx-PcBOx solution (1 mg/mL final polymer concentration) 
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was deposited on a copper grid/carbon film for 5 min and excess solution was wiped off using fine 

filter paper. Then one drop of negative staining solution (1% uranyl acetate) was added and 

allowed to dry for 10 s prior to the TEM imaging. Digital images were obtained using a Gatan 

Orius SC1000 CCD Digital Camera in combination with Digital Micrograph 3.11.0 software 

(Gatan Inc., Pleasanton, CA). Two dimensional nuclear Overhauser effect spectroscopy (2D 

NOESY) NMR measurement were performed for both PMeOx-PMestOx and PMeOx-PcBOx in 

D2O at 1 mg/mL polymer concentration to investigate the molecular interactions of the polymers 

in aqueous media. Critical micelle concentration (CMC) of PMeOx-PcBOx was determined by 

DLS [19]. PMeOx-PcBOx solution in DI water (1 mg/mL) was gradually diluted with DI water 

and derived count rates (kcps) were measured in triplicate after mixing. The CMC was taken as 

the polymer concentration at which a significant and consistent increase in derived count rate was 

observed [19].  

 

 Drug encapsulation 

 Encapsulation of water-insoluble drugs and in vitro drug release 

 Drug-encapsulated polymeric nanoparticle formulations were prepared by the thin film 

hydration method as previously described [17]. For bruceantin, LY2109761, imiquimod, 

paclitaxel, SN-38, LY364947, GDC-0941, aclacinomycin A, wortmannin, and GW788388 stock 

solutions of PMeOx-PcBOx and drugs in chloroform:methanol (9:1) solution were mixed together 

at the pre-determined ratios (3:10 drug to polymer w/w ratio (LY2109761), 2:10 w/w ratio 

(bruceantin and imiquimod), 1:10 w/w ratio (paclitaxel, SN-38, wortmannin, LY364947, GDC-

0941, aclacinomycin A, GW788388)). Ratios were determined by starting at 1:10 ratios and then 

proceeding to higher (2:10 and 3:10) if the 1:10 ratios had high encapsulation efficiency. The 
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organic solvent was evaporated at 58 ºC under a stream of inert gas to form a thin-film of drug-

polymer homogenous mixture. Next, the thin films were hydrated with saline and then incubated 

for 5-10 min at 45 ºC to form drug-encapsulated polymeric micelle solutions. All samples were 

prepared with 2 mg of polymer and hydrated with 200 µL of saline. The formed micelle solutions 

were centrifuged at 10,000 rpm for 3 minutes (Sorvall Legend Micro 21R Centrifuge, Thermo 

Scientific) to remove any precipitate of unloaded drug or polymer. The final concentration of drugs 

in PMeOx-PcBOx micelles was analyzed by HPLC (Agilent Technologies 1200 series) using a 

mixture of acetonitrile/water (70%/30% v/v for bruceantin, imiquimod, wortmannin, GW788388 

and paclitaxel; 50%/50% v/v for LY2109761, GDC-0941, aclacinomycin A, LY364947, and SN-

38) as the mobile phase. The samples were diluted with mobile phase to final concentration of 

~100 µg/mL of drugs and injected (10 µL) into the HPLC system. The flow rate was 1.0 mL/min, 

and column temperature was 40 °C. Detection wavelength were 227 nm for bruceantin, paclitaxel, 

LY2109761, GDC-0941, GW788388, aclacinomycin A, LY364947 and SN-38 and 254 nm for 

imiquimod and wortmannin. Drug concentration was quantified against free drug calibration 

curves.  

 The drug release from PMeOx-PcBOx nanoparticle was studied using the membrane 

dialysis method against phosphate buffered saline (PBS), pH 7.4 at 37 ºC. Briefly, the drug loaded 

PMeOx-PcBOx nanoparticle formulations (paclitaxel and Bruceantin) were diluted with saline to 

obtain solution of approximately 0.1 mg/mL of polymer. Then the diluted nanoparticle 

formulations (100 µL) were placed in 100 µL floatble Slide-A-Lyzer MINI dialysis devices with 

a MWCO of 3.5 kDa (Thermo Scientific) and suspended in 20 mL of PBS to comply with sink 

conditions. Three devices were used for every time point. At each time point, the samples were 

withdrawn from the dialysis device and the remaining drug amount of sample were quantified by 
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HPLC as described above. Stability of both nanoparticle formulations (paclitaxel and Bruceantin) 

was investigated via monitoring drug loading (HPLC) and size distribution (DLS) for 8 days at 4 

ºC. 

 

 Accounting for molecular characteristics of insoluble drugs 

 The number of hydrogen bond acceptors and donors in each drug substance were counted 

by Chem3D. The number of rotatable bonds in each drug substance was counted as previously 

reported [20]. Briefly, any single bond not in ring structures, except for the bonds connected to the 

terminal atom and the bonds present in amide bonding, were counted as 1. The Log P values of 

polymer unit structures and each drug substance were predicted by Chem3D. The definition of 

electron deficient aromatic ring herein is an aromatic ring, which has more electron withdrawing 

atoms or groups than electron donating atoms or groups. The score of each drug substance is the 

number of the parameters which meet our criteria: 1) electron deficient aromatic ring is present, 

2,3) the number of hydrogen bonding acceptors and donors are more than 6 and 2, respectively, 4) 

LogP is less than 3, and 5) the number of rotatable bonds is more than 5. 

 

 Encapsulation of platinum-based drug (DachPt) 

 DachPt powder (5 mg) was suspended in PMeOx-PcBOx (10 mg) aqueous solution (3 mL) 

and the reaction mixture was refluxed for 48 h. After that the mixture was cooled to RT and 

centrifuged to precipitate free DachPt. Clear supernatant solution was then dialyzed against DI 

water for 3 days in 3.5 kDa dialysis membrane and lyophilized to obtain powder form of DachPt-

loaded PMeOx-PcBOx (DachPt-PMeOx-PcBOx). Actual Pt loading was measured via Inductively 

coupled plasma mass spectrometry (ICP-MS) analysis using NexION 300D inductively coupled 
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plasma mass spectrometer (PerkinElmer, USA) equipped with SC4-DX autosamplers (ESI, USA). 

Decomposition of the samples matrix was performed by heating at 70 °C for 20 h after the addition 

of trace metal grade nitric acid (20% aqueous solution) and hydrochloric acid (5% aqueous 

solution). Digested samples were diluted (1:10) with DI water, a second dilution (1:100) was 

performed with 2% nitric acid. ICP-MS was operated in standard mode, all operating parameters 

were optimized to meet requirements as defined by the manufacturer prior to method calibration 

and analysis. Calibration curves were constructed using a zero point standard and a six point 

calibration curve in a range 1-100 ppb. Five replicates were analyzed per sample. Quantification 

was performed with Bi as an internal standard.  

 

 Loading efficiency (LE) and loading capacity (LC) calculations 

 The following equations were used to calculate LE and LC of drug in PMeOx-PcBOx 

micelles:  

 LE (%) = Mdrug/ (Mdrug added) × 100%,    (1) 

 LC (%) = Mdrug / (Mdrug + Mexcipient) × 100%,   (2) 

Where Mdrug and Mexcipient are the mass of the solubilized drug and polymer in the solution 

respectively, while Mdrug added is the weight amount of the drug added to the dispersion during 

the preparation of the micelle formulation. 

 

 Cell culture and cytotoxicity 

 In vitro cytotoxicity of DachPt-PMeOx-PcBOx, oxaliplatin, and PMeOx-PcBOx was 

evaluated in MDA-MB-231 and 344SQ cancer cell lines by following previously reported method 

[21] using [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-
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tetrazolium, monosodium salt] (WST-8) (Cell-Counting Kit-8 assay). Briefly, cells were seeded 

in 96-well plates at a density of 5,000 cells/well 24 h prior to the treatment. Subsequently, cells 

were treated with DachPt-PMeOx-PcBOx, oxaliplatin, or PMeOx-PcBOx in full medium at the 

same concentration of platinum. Following 72 h, the incubation medium was removed, and 100 

µL of fresh medium with WST-8 (10 µL/well) was added and incubated for 4 h at 37 °C. 

 Subsequently, absorbance was read at 450 nm using a plate reader (SpectraMax M5, 

Molecular Devices). Cell survival rates were calculated and normalized to the control untreated 

wells. Data represents average of six replicates in means ± standard deviation (SD). The mean 

drug concentration required for 50 % growth inhibition (IC50) was determined using Graphpad 

Prism 7 software.  
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4.4 Results 

 Polymer synthesis and post-polymerization modification. 

 We first synthesized PMeOx-PMestOx diblock copolymer as the starting material via 

living cationic ring-opening polymerization [16] and then converted it to N,N-dimethylbiguanide 

derivative by the polymer analogous condensation reaction of the MestOx block with N,N-

dimethylbiguanide (Figure 4.1). The full conversion of PMestOx was confirmed by 1H NMR 

spectra (1H NMR (CDCl3, 298 K)) of the reaction mixture as the methyl ester signal of the polymer 

(at δ 3.5 ppm) disappeared after the condensation with N,N-dimethylbiguanide (Figure 4.2). The 

block length and the molecular weight of the PMeOx-PMestOx precursor were confirmed via 1H 

NMR spectroscopy (1H NMR (D2O, 298 K)) (Figure 4.3) (PMeOx = 60, PMestOx = 30, Mn = 9.9 

kg/mol) and gel permeation chromatography (Mn = 13.4 kg/mol, PDI = 1.038).  

 After the purification of PMeOx-PcBOx, 1H NMR spectrum of precursor (PMeOx-

PMestOx), cBG, and PMeOx-PcBOx were analyzed to confirm the conversion of cBOx structure 

(1H NMR ((CD3)2SO, 298 K)). The disappearance of the methyl ester signal (marked by arrow in 

Figure 4.4A and not present in 4.4C) suggests that there was a complete conversion from methyl 

ester to a new structure. The 1H NMR spectrum of the newly synthesized side chain was nearly 

identical to that of the reference molecule (cBG) (Figure 4.4B and 4.4C) indicating that the 

condensed cBG-like ring structure was formed on the side chain of the polymer, consistent with 

PcBOx. Also, new peaks attributed to protons g and f appeared at 3.0 ppm and 6.6 ppm, 

respectively. There were no changes exhibited in the NMR spectrum of the other polymer block 

(PMeOx) (Figure 4.4A and 4.4C, proton a). This suggests the conversion of PMeOx-PMestOx to 

PMeOx-PcBOx was successful and proceeded without side reactions. The 13C NMR spectrum of 

PMeOx-PcBOx was also identical to that of the reference molecule (cBG) (Figure 4.5) indicating 
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the formation of cBG strucrue on the side chain of the polymer and the disappearance of the methyl 

ester signal (51 ppm) suggests a complete conversion from methyl ester to cBG structure. Also, 

new peaks attributed to four carbons appeared at 36 ppm, 165.4 ppm, 168.8 ppm, and 176.5 ppm. 

There were no changes exhibited in the NMR spectrum of the other polymer block (PMeOx) 

(Figure 4.5). 

 We performed UV-Vis spectroscopic analysis to investigate the formation of the PMeOx-

PcBOx structure. As shown in Figure 2A, the UV spectrum of the PMeOx-PcBOx showed specific 

peak absorbance around 227 nm while uncondensed N,N-dimethylbiguanide did not show 

particular UV absorbance. We found only PMeOx-PcBOx exhibited a clear peak absorbance 

around 227 nm (PMeOx-PcBOx) confirming the formation of the PcBOx structure. These results 

suggest the methyl ester group in PMestOx had been condensed with N,N-dimethylbiguanide to 

form PcBOx. The PMeOx-PcBOx and cBG UV measurements were done with equimolar amounts 

of cBG molecules and PcBOX side chains, meaning we would expect nearly identical absorbance, 

which we see in Figure 4.6A. This, along with the NMR data, indicate a full conversion of the 

PMestOx unit to PcBOx. 

 To show the mass shift of PMestOx unit after conjugation with N,N-dimethylbiguanide, 

MALDI-TOF analysis was performed on PcBOx homopolymer with DP of 10. MALDI-TOF MS 

of the PMestOx revealed the expected spacing of 157.07 m/z corresponding to the MestOx 

monomer, while after the condensation reaction the spacing increased to 236.14 m/z. This data 

provides evidence supporting the condensation of N,N-dimethylbiguanide with PMestOx yielding 

the PcBOx structure (spacing of 236.14 m/z corresponding to repeating unit of PcBOx) (Figure 

4.7). 
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 The pH-dependent protonation of PMeOx-PcBOx polymer in saline was evaluated by 

titration (Figure 4.6B). The titration curve and dOH/dpH curve of cBG clearly showed its proton 

buffering profile and its pKa was estimated to be around 5. PMeOx-PcBOx copolymer also had 

similar but broader protonation profile, whereas PMeOx-PMestOx didn’t show any proton 

buffering capacity.  This indicatesthe protonation profile of PMeOx-PcBOx was derived from the 

cBG moiety.  

 

 Self-assembly of PMeOx-PcBOx copolymer  

 Self-assembly of PMeOx-PcBOx copolymer and formation of particles in aqueous media 

was investigated by DLS and confirmed by TEM. The particles had a volume measured diameter 

of 28.0 nm and PDI of 0.28 as determined by DLS (Figure 4.8). The particles were non- spherical, 

with partially elongated morphology (Figure 2C). The dual spherical and elongated morphologies 

contribute to the high PDI value in the DLS measurements. 

 To confirm the molecular interaction among PMeOx-PcBOx in aqueous media, two 

dimensional Nuclear Overhauser Effect Spectroscopy (2D NOESY) NMR measurements were 

conducted. In the spectra of 2D NOESY NMR (Figure 4.9), PMeOx-PcBOx particles show strong 

correlation of PcBOx protons (2.6 ppm to 3.0 ppm, 6H, C3N3(NH2)(N(CH3)2) with other PcBOx 

protons (2.2 ppm to 2.7 ppm, 4H, CO-CH2-CH2- C3N3(NH2)(N(CH3)2) and protons of the polymer 

backbone (3.1 ppm to 3.7 ppm, 3.1–3.7 (4H, -N-CH2-CH2-). This highlights some of the 

intramolecular and intermolecular interactions present in the PMeOx-PcBOx polymer. In the case 

of PMeOx-PMestOx, 2D NOESY NMR did not show any correlation of protons of PMeOx-

PMestOx. Taken together, this evidence supports that the molecular interaction of PMeOx-PcBOx 
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arises from PcBOx structure and contributes to the the polymer self-assembly into particles in 

aqueous media. 

  To investigate the effect of polymer concentration on the formation of the particle in 

aqueous solution, the CMC of PMeOx-PcBOx was determined by DLS. Light scattering intensity 

and count rate of the particle was monitored over a range of PMeOx-PcBOx concentrations and 

the point where derived count rate becomes constant corresponds to the CMC. As shown in Figure 

4.10, the CMC of PMeOx-PcBOx was approximately 40 mg/L in DI water. 

 

 Solubilization of poorly soluble small molecules 

 We examined several poorly soluble active pharmaceutical ingredients to assess their 

solubilization in PMeOx-PcBOx polymeric micelles and compared it with the solubilization of 

these molecules in the micelles of our reference polymer P[MeOx35-b-BuOx20-b-MeOx35] (P2) 

[17, 22-24]. The molecules examined belonged to different classes including transforming growth 

factor β (TGF-β) receptor inhibitors (LY2109761, GW788388 and LY364947), protein synthesis 

inhibitors (bruceantin), toll-like receptor (TLR) 7 agonist (imiquimod), phosphatidylinositol 3-

kinase (PI3K) inhibitors (wortmannin and pictilisib (GDC-0941)), microtubule inhibitor 

(paclitaxel), and topoisomerase inhibitors (Aclacinomycin A and SN-38).  In these experiments, 

we kept the polymer concentration constant at 10 mg/ml and varied the feed concentration of the 

drug until its maximal solubility was observed. We screened drugs at various ratios, beginning at 

1:10 (drug:polymer), and increased the ratio until maximal solubility was obtained. As shown in 

Figure 4.11, PMeOx-PcBOx micelle formulation displayed a reasonably good capacity for 

solubilization of several poorly soluble drug compounds (see also Table 4.1). In particular, we 

solubilized nearly ~3.28 mg/mL of LY2109761 with 24.7% LC and little if any drug precipitate 
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(82% LE). Bruceantin also showed reasonably good maximal solubilization in this formulation: 

1.87 mg/ml, 11.5% LC, 65 % LE. On the other hand, paclitaxel and other drugs were not as soluble 

as LY209761and bruceantin (6.8% LC for aclacinomycin A, 6.3% LC for paclitaxel, 4.3% LC for 

GDC-0941, 3.8% LC for wortmannin), while LY364947 (0.3% LC) GW788388 (0.2% LC), 

Imiquimod (undetectable) and SN-38 (undetectable) were practically insoluble. Comparison of the 

solubilization profile of these molecules for PMeOx-PcBOx and P2 triblock copolymer micelles 

reveals distinct selectivity of each polymer for some of these APIs (Figure 4.11, see also Table 

4.1). With P2, we observed the ultra-high loading of bruceantin with least amount of drug 

precipitate (as much as 9.98 mg/ml, 50.0 % LC, 99 % LE). Also, as previously reported [17], 

paclitaxel was solubilized at maximal concentration of 6.89 mg/ml (41% LC and 86 % LE). 

LY2109761 showed fairly high solubilization in P2 micelles (1.5 mg/ml, 14.0% LC, 78 % LE) 

although it was distinctively less than that observed in PMeOx-PcBOx micelles. Solubilization of 

aclacinomycin A was low but generally comparable in both micelle systems. On the other hand, 

GDC-0941 and wortmannin were practically insoluble in P2 system, while theywere distinctively 

more soluble in PMeOx-PcBOx. The other compounds tested (GDC-0941, LY364947, SN-38, and 

Imiquimod) were practically insoluble in both micelle solutions.  

 PMeOx-PcBOx micelle formulations displayed sub-100nm size distribution in DLS 

measurement; 85 nm for paclitaxel (PDI = 0.298, Dv10 = 23.3 nm, Dv50 = 34.6 nm, Dv90 = 80.9 

nm), 60 nm for bruceantin (PDI = 0.48, Dv10 = 17.2 nm, Dv50 = 25.2 nm, Dv90 = 42.9 nm), and 

50 nm for LY2109761 (PDI = 0.4, Dv10 = 15.5 nm, Dv50 = 21.5 nm, Dv90 = 34.8 nm).  TEM 

images of both formulations are shown in Figure 4.12A and 4.12B and small-sized particles 

(approximately 30 nm) were observed in both formulations, corresponding to the DLS 
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measurement (volume-based). Small portions of particle aggregate were observed in both 

formulations and this may explain the relatively high value of PDI.  

 We investigated the relese profile of encapsulated drugs (Paclitaxel and Bruceantin) in 

PMeOx-PcBOx. Both Paclitaxel and Bruceantin were continuously released from PMeOx-PcBOx 

nanoparticle, with over 80% of drugs being released at 24 hour time point (Figure 4.12C). The 

release rates were similar for Bruceantin in both of the polymers. Interestingly, the release rate was 

very different for Paclitxael in P2 vs. PMeOx-PcBOx (Figure 4.12D). After 24 hours, most of the 

PTX was released in PcBOx whereas not even 50% was released from P2. This kind of release 

data is consistent with previously published data at this low (10:1) polymer:drug feeding ratio [22].  

Both paclitaxel and Bruceantin formulation in PMeOx-PcBOx were proven stable for 8 days at 4 

ºC as we monitored the drug loading and size distribution (Figure 4.12E and 4.12F). 

 Finally, we summarized the relationship between LC and the physicochemical properties 

of the drug molecules that could be related to the interaction with PMeOx-PcBOx (Figure 4.13). 

The designated potentially “influential” parameters are the presence of electron deficient aromatic 

structures (EDA), the numbers of hydrogen bonding acceptors (HBA) and donors (HBD), LogP, 

and the number of rotatable bonds (RBN). 

 

 Water-soluble DachPt encapsulation 

 We investigated whether the cBG side chain of the PMeOx-PcBOx copolymer can 

facilitate incorporation of platinum drug (DachPt) in the polymeric micelles via coordination 

bonding. The loading was accomplished by co-incubation of the DachPt and PMeOx-PcBOx 

micelles in the aqueous solution followed by separation of the drug loaded micelles from 

unincorporated drug. The total platinum mass percent in the resulting DachPt-PMeOx-PcBOx 
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formulation was about 17.7 % as measured by ICP-MS. When converted to the equivalent content 

of DachPt this value results in ~34.5% LC. The analysis of DachPt-PMeOx-PcBOx formulation 

by DLS revealed a unimodal size distribution with an effective diameter of ~35 nm and PDI of 

0.49 (Figure 4.8B), The increase of the particle size and polydispersity when compared to the free 

PMeOx-PcBOx micelles (~28 nm, PDI = 0.28), was possibly due to conformational changes in 

the core-forming block and volume increase induced by DachtPt incorporation.  

 

 In vitro cytotoxicity DachPt-PMeOx-PcBOx formulation 

 We evaluated the in vitro cytotoxicity of DachPt-PMeOx-PcBOx in comparison with the 

free oxaliplatin in 344SQ murine NSCLC cells and MDA-MB-231 human breast cancer cell lines. 

The cytotoxicity was measured by the CCK-8 assay. Free polymer PMeOx-PcBOx was found to 

be non-toxic in both cell lines up to 4 mg/mL dose. On the other hand, PMeOx-PcBOx-DachPt 

displayed platinum concentration-dependent cytotoxicity profile in both cell lines, albeit the 

corresponding its IC50 exceeded those of oxaliplatin by 10 to 50 times (Figure 4.14).  
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4.5 Discussion 

 The motivation for our work was to develop an alternative polymer for drug 

nanoformulations which is compatible with drugs that cannot be otherwise formulated in existing 

drug delivery platforms. Previously, we described a poly(2-oxazoline)-based polymeric micelle 

platform, which is unique in its ability to incorporate large amounts of insoluble compounds, as 

demonstrated across many drugs and drug candidates, such as taxanes [17, 25]. The hydrophobic 

PBuOx block in P2 (P[MeOx35-b-BuOx20-b-MeOx35]) has polar and hydrated amide 

functionality in each repeating unit. These micelles represent a unique dueal polar/hydrophobic 

environment for incorporation of drug molecules, such as Paclitaxel [17, 26]. These interactions 

are facilitated, perhaps, by the relatively small size and flexibility of the of the butyl side chain in 

the BuOx. In fact, substitution of the butyl group for a more hydrophobic nonyl group results in a 

drastic decrease in the solubility of taxanes in these poly(2-oxazoline) based micelles [17, 26]. 

 The resultant injectable aqueous micellar solutions are readily prepared and are stable for 

days and weeks. These formulations can contain up to 50-100 g/L of poorly soluble drugs [22, 24, 

25]. The drug to polymer wt. ratio in these micellar formulations is also up to a hundred times 

better than the amounts of excipients in the current formulations. For example, for paclitaxel, the 

amount of P2 polymer per 1 g of drug is ~100– and ~10– times less than the amounts of excipients 

used in Taxol® and Abraxane®, respectively [22]. This high loading contributes strongly to the 

widening of the therapeutic window and allows high dose therapy as the excipient-based toxicity 

is drastically reduced [22].  

 While BuOx-based polymers, such as P2, have been extremely successful solubilizers for 

over two dozen drugs and drug candidates, there are many compounds which have failed to display 

equally good solubilization in this system [26]. This has raised a necessity for the structural 
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modification of the block copolymers to improve solubility of the otherwise failing to be 

formulated drugs. Advancement in this area has been achieved recently by Luxenhofer group who 

modified the hydrophobic block in such polymers by replacing a substituted poly(2-oxazoline) for 

a substituted poly(2-oxazine), which has an additional methylene group in the backbone of the 

main chain [27]. The hydrophilic blocks (PMeOx) in the new copolymers remained unmodified. 

A novel selectivity of the new poly(2-oxazine)-based copolymers differentiating them from 

poly(2-oxazolines) with respect to the drugs that they can solubilize was observed [26, 27]. In 

particular, P2 was highly effective in solubilizing paclitaxel, but much less effective with 

curcumin. In contrast, a copolymer containing a hydrophobic block made of 2-n-propyl-2-oxazine, 

which is a structural isomer of BuOx, had a clear solubilization preference for curcumin vs. 

Paclitaxel [26, 27]. 

 In the present study, we sought to develop a novel polymeric micelle platform with 

differential solubilizing capacity that could bring these therapeutic advantages to a new array of 

insoluble drug compounds. We employed a very different approach to modification of the polymer 

hydrophobic block. Rather than adjusting the polymer backbone or adding a longer alkyl side 

chain, we completely replaced the alkyl side chain of PBuOx for a substituted aromatic 

heterocyclic ring. To test this approach, we designed and synthesized a novel poly(2-oxazoline) 

diblock copolymer, PMeOx-PcBOx, with an N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl 

side chain in the “hydrophobic block.” The copolymer structure has been confirmed by the 1H 

NMR, 2D NOESY NMR, MALDI-TOF MS, and UV-Vis spectroscopic analysis. The copolymer 

demonstrated the ability to self-assemble into micelle-like structures. 

 Next, we evaluated the drug loading capacity of this newly developed copolymer. We used 

drugs across the chemical space, including those molecules that have failed to be solubilized in P2 
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polymer. For the selected drugs that were not well formulated in P2 micelles, such as LY2109761 

(and Wortmannin and GDC-0941 to lesser extents), the new block copolymer displayed a good 

solubilization capacity superior to that of P2. Despite having lower hydrophobicity of the core-

forming block than P2 (the estimated LogP value of cBOx is -0.27 while that of BuOx is 1.61), 

PMeOx-PcBOx can still solubilize a variety of drug compounds. Interestingly, all poorly soluble 

compounds that show reasonably good solubilization in PMeOx-PcBOx micelles (bruceantin and 

LY2109761,) are moderately hydrophobic and have LogPs of 1.4 and 2.8 respectively. At the same 

time the more hydrophobic compounds with LogP around 4 and above (including, paclitaxel) are 

less soluble or practically insoluble in these micelles. 

 The capability of N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl side chain to engage in 

multiple interactions with the drug molecules is likely to be important for drug solubilization. In 

particular, N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl has a three-heteroatom aromatic ring, 

which is highly electron deficient. It is known that electron-deficient aromatic rings can form stable 

pi-pi stacking dimers in part due to strong interactions between pi electrons and sigma electron-

deficient orbitals [28]. When considering this feature, N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-

ethyl groups may enable strong pi-pi stacking interactions both with each other, resulting in the 

self-assembly of the PcBOx blocks in the micelle core, and with drug molecules, some of which 

also have electron deficient aromatic rings. Indeed, of all the studied drugs, this new polymer has 

a clear “preference” for LY2109761, which has highly electron deficient aromatic rings. 

 Additionally, the N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl side chain can serve as 

both a hydrogen bond acceptor and a hydrogen bond donor. Since hydrogen bond formation 

requires strict conformational angle and distance [29], the rigid 1,3,5-triazine ring may act as a 

molecular “scaffold” enabling efficient hydrogen bonding with selected drugs. At the same time, 
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flexibility of the drug structure may be important for their ability to adjust the angles and distances 

necessary for maximal hydrogen bonding with the cBOx units. This may explain a tendency for 

better solubilization observed for some drugs having higher number of rotatable bonds. 

Interestingly, PMeOx-PcBOx micelles appeared to have solubilization preference for some of the 

compounds that have higher hydrogen bonding capacity and greater number of rotatable bonds, 

which is known to be detrimental for drug absorption into target cells [30]. Thus, the new PMeOx-

PcBOx block copolymer, and the overall class of poly(2-oxazolines) with side chains containing 

substituted aromatic heterocycles, may hold the potential to expand the design space of APIs and 

spark the development of novel polymeric micelle formulations based on multiple drug-polymer 

interactions.  

 It could be useful to quantify and correlate the physicochemical properties of drug 

molecules and their solubilization in PMeOx-PcBOx micelles. For this purpose, we attempted to 

develop a simplified scoring system using the presence of electron deficient aromatic structures 

(EDA) as an indicator for pi-pi stacking interaction, the numbers of hydrogen bonds acceptors 

(HBA) and donors (HBD) as indicators for hydrogen bonding, LogP as an indicator of 

hydrophobicity, and rotatable bonds number (RBN) as indicator for the ease with which a drug 

molecule can exhibit specific interactions with the PcBOx side chains. We could not establish a 

clear and simple correlation between any one parameter and drug solubilization in the PMeOx-

PcBOx polymeric micelles. However, when taking into account multiple parameters, this system 

showed some ability to rationalize the drug solubilization. For instance, bruceantin does not have 

an electron deficient aromatic ring whereas GW788388 does. But the solubilization of bruceantin 

in PMeOx-PcBOx micelles was high, whereas that of GW788388 was low. This difference could 

be explained by additional interactions bruceantin may have in the core of the micelles that 
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GW788388 does not have (bruceantin Score=4, GW788388 Score=2). At the same time, the higher 

point total in this scoring system does not necessarily mean that a given drug is more soluble than 

another drug with a lower score. A higher score simply means that there is a higher probability of 

some solubility being achieved. For example, aclacinomycin A scored the highest among all 

analyzed compounds (Score=5), but its solubilization was far from best and comparable to that of 

wortmannin that does not have a high hydrogen bonding capacity and has a relatively low number 

of rotatable bonds. The modest solubilization of aclacinomycin A may be connected to its 

relatively large volume (molecular mass 811.86 g/mol). Similarly, paclitaxel has a relatively high 

score (Score=4) but shows modest solubilization, which in addition to the high molecular mass of 

this drug (853.90 g/mol) may be also induced by its high LogP value. With a larger data set created 

the relative contributions of each parameter could perhaps be, elucidated and optimized to account 

for differences in the drug solubilization. A prediction of the success of compounds applicable for 

a given polymeric micelle formulation would allow the rational design of the copolymers, or 

conversely, the selection of APIs, which are preferable for a given polymeric micelle system. We 

hope that this scoring system can provide some intuition for the design of more complex 

computational models to accurately predict drug solubility in these unique micelle systems. 

 While relying on different mechanisms for loading hydrophobic drugs, the micelles were 

still able to produce a similar release profile for Bruceantin. Additionally, for Paclitaxel, the 

PcBOx allowed access to a different, more complete, release profile at the given 1:10 drug to 

polymer ratio. Utilizing different block structures, it is possible to tune the release profile of the 

polymeric micelles. This could be advantageous for tuning in vivo drug pharmacokinetic 

properties to reduce toxicity or increase therapeutic efficacy. 
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 Heteroaromatic compounds such as substituted 1,3,5-triazine in cBOx are well known to 

form chelating complexes with a variety of metal species including Ag, Au, Cu, and Pt [28]. In 

this regard we evaluated and successfully loaded in the PMeOx-PcBOx micelles DachPt, which is 

an active form of the platinum chemotherapeutics, oxaliplatin and miriplatin. The resulting 

DachPt-PMeOx-PcBOx formulation displayed an anticancer activity in two different cancer cell 

lines, albeit in each cell line it had higher IC50 values than oxaliplatin. This difference in IC50 

could be attributed to two factors; 1) the cell uptake mechanism is different between nanoparticle 

(DachPt-PMeOx-PcBOx) and small molecules (oxaliplatin), and 2) the onset of the cell damage is 

delayed for DachPt-PMeOx-PcBOx due to slower DachPt release mechanism compared to 

oxaliplatin that readily forms DachPt in cytosolic reducing conditions [31]. Further investigation 

is warranted to elucidate the mechanism of DachPt release in physiological conditions and cell 

uptake of the DachPt-PMeOx-PcBOx formulation.  

 Platinum drugs are widely used chemotherapies of cancer, but are known to cause 

peripheral neuropathy, especially sensory ataxia, due to the accumulation in the dorsal root 

ganglion [32]. To reduce this adverse effect, and maximize the therapeutic index, various delivery 

systems are explored for this drug class [33, 34]. More generally, metal nanoparticle systems are 

interesting subjects not just for therapeutics, but also for diagnostics and imaging especially in the 

field of oncology [35]. For example, manganese (Mn) or gadolinium (Gd) containing nanoparticles 

can be used as MRI contrast agents [36, 37] and gold nanoparticles are known to be useful as CT 

contrast agents [38]. Ruthenium (Ru) organometallic complexes were reported as 

photoluminescence imaging agents that can detect hypoxic tumors [39]. While the new polymer 

class described in this work may not have applications in all these instances, it is truly remarkable 
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that the same polymer excipient displays ability for incorporating both poorly soluble APIs as well 

as relatively well solubilized metal complexes used in chemotherapy. 

 In conclusion, we have designed a novel poly(2-oxazoline)-based block copolymer with a 

heterocyclic, aromatic side chain that can be used for 1) solubilization of a unique set of poorly 

soluble compounds that have previously failed in other polymeric systems, as well as 2) loading 

of platinum drugs through metal complexation. It is promising that the new block copolymer class 

can expand the application of polymeric micelle technologies to a new set of drugs and impact the 

drug design space by providing alternatives to hydrophobic interactions as a means of 

incorporation of poorly soluble APIs in the micelles. Future studies well validate this conclusion 

for a higher number of compounds and elucidate drug/polymer interaction mechanisms important 

for predictions of drug solubilization. 
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Table 4.1 Loading efficiency (LE%) and capacity (LC%) in P2 or PMeOx-PcBOx for each drug 
in each feeding ratio. Maximum LE% and LC% were highlighted and SD were calculated only 
for them.  
  

SD SD
LE% LC% LE% LC% LE% LC% LE% LC% LE% LC% LC% LE% LC% LE% LC% LE% LC% LE% LC% LC%

Imiquimod 6.1 0.6 0.1 0.0 0.0 0.0
LY2109761 100.0 9.1 81.7 14.0 0.4 91.5 8.4 92.0 15.5 95.9 22.4 82.1 24.7 0.2
Bruceantin 100.0 9.1 100.0 16.7 100.0 28.6 100.0 44.4 99.8 49.9 0.3 65.2 11.5 0.7

SN-38 0.0 0.0 0.0 0.1 0.0 0.0
LY364947 12.2 1.2 6.1 1.2 0.4 3.2 0.3 -
GDC-0941 9.8 1.0 0.5 44.5 4.3 -

Aclacinomycin	A 40.3 3.9 16.5 3.2 12.0 4.6 1.6 36.6 6.8 0.8
Paclitaxel 100.0 9.1 100.0 16.7 100.0 28.6 86.1 40.8 1.6 66.9 6.3 1.9

Wortmannin 16.2 1.6 0.2 46.6 3.8 1.1
GW788388 13.1 1.3 0.1 2.3 0.2 -

- -

10:1 10:2

- -

- -

-

-
-

P2
Drug

PMeOx-PcBOx
10:1 10:210:4 10:8 10:310:10 10:4

-

-
-

-

-

-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-
-

- -

- -
-

- -
- -

-

-
-

-
-

-
-
-



	 174 

 
Figure 4.1 Synthesis of PMeOx-PcBOx via N,N-dimethylbiguanide condensation. 
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Figure 4.2 1H NMR spectra of PMeOx-PMestOx (upper) and reaction mixture (PMeOx-
PMestOx and N,N-dimethylbiguanide free base in DMF) (lower) (CDCl3, 298K). 
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Figure 4.3 1H NMR spectra of PMeOx-PMestOx (upper) and PMeOx-PcBOx (lower) (D2O, 
298K). 
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Figure 4.4 Overlay of the 1H NMR spectra of PMeOx-PMestOx, cBG and PMeOx-PcBOx (1H 
NMR ((CD3)2SO, 298 K). 
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Figure 4.5 Overlay of the 13C NMR spectra of PMeOx-PMestOx, cBG and PMeOx-PcBOx (13C 
NMR ((CD3)2SO, 298 K). 
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Figure 4.6 (A) UV spectra of PMeOx-PcBOx, cBG, PMeOx-PMestOx and N,N-
dimethylbiguanide in the range of 200–300nm. (B) Acid-base titration curves (left) and 
derivative plot dOH/dpH as a function of pH (right) of PMeOx-PcBOx, cBG, PMeOx-PMestOx 
and saline. (C) TEM image of self-assembled PMeOx-PcBOx. Scale bar = 200 nm (left), 50 nm 
(right).  
  



	 180 

 
 Figure 4.7 MALDI-TOF MS analysis of PMestOx and PcBOx homopolymers. 
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Figure 4.8 Volume based size distribution of (A) PMeOx-PcBOx (upper) and (B) DachPt-
PMeOx-PcBOx (lower) measured by DLS with 1 mg/mL polymer solution in DI water. 
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Figure 4.9 2D NOESY NMR spectra of (a) PMeOx-PcBOx (1 mg/mL) and (b) PMeOx-
PMestOx (1 mg/mL) in D2O. 
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Figure 4.10 Measurement of the CMC of PMeOx-PcBOx in DI water by light scattering 
measurement.  
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Figure 4.11 Differential solubilization of drugs indicated by their maximum LC in PMeOx-
PcBOx (blue bars) and P2 (orange bars). Polymers concentration 10 mg/mL. (n=3 for all drugs 
and polymers except for GW788388, GDC-0941, and LY364947 in PMeOx-PcBOx groups, 
which has n=1). 
  



	 185 

 
Figure 4.12 TEM image of (A) Paclitaxel-PMeOx-PcBOx formulation and (B) Bruceantin-
PMeOx-PcBOx formulation, Release profile of (C) paclitaxel (left) and bruceantin (right) from 
PMeOx-PcBOx nanoparticle formulation and (D) paclitaxel (left) and bruceantin (right) from P2 
polymer and stability profile of (E) Paclitaxel-PMeOx-PcBOx formulation and (F) Bruceantin-
PMeOx-PcBOx formulation (n=3) 
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Figure 4.13 (A) Evaluated drug structures and (B) comparison of the maximal LC of each drug 
in PMeOx-PcBOx and P2 micelles with the molecular characteristics of these drugs. The scores 
correspond to the presence of electron deficient aromatic rings (EDA), the numbers of hydrogen 
bonding acceptors and donors (HBA and HBD, respectively), lipophilicity (LogP) and the 
number of rotatable bonds (RBN).   
  



	 187 

 
Figure 4.14 Cytotoxicity and IC50 values of PMeOx-PcBOx, DachPt-PMeOx-PcBOx and free 
oxaliplatin in (A) 344SQ murine NSCLC cells and (B) MDA-MB-231human breast cancer cells. 
DachPt-PMeOx-PcBOx concentration is presented as the oxaliplatin equivalent concentration. 
PMeOx-PcBOx concentration is presented as the block copolymer concentration equivalent to 
that in DachPt-PMeOx-PcBOx formulation. 
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CHAPTER V: SUMMARY AND FUTURE EXPERIMENTS 

 

In this dissertation, I reviewed PM formulations for the delivery of hydrophobic small 

molecules. BCP segments required for forming amphiphilic copolymers were described in order 

to aid proper selection of the component of BCPs for efficient solubilization of target hydrophobic 

small molecules. To improve our understanding on drug solubilization, multi-disciplinary 

approaches were described for investigating detailed molecular interaction between hydrophobic 

segment of BCPs and encapsulated drug. In addition, important issues on physicochemical 

properties of PMs and clinical outcome of PMs were explored to draw the attention on advanced 

PK analysis of PMs to investigating subpopulation of PMs in clinical investigation. 

 In Chapter II, we report a novel computer-aided strategy for rational design of PMs for 

poorly soluble drugs. We have developed novel descriptors of drug-polymer complexes that were 

employed to build models to predict both drug loading efficiency (LE) and loading capacity (LC) 

via QSPR approach. Total 41 hydrophobic drugs were tested in PM formulation by using poly(2-

oxazoline)-based block copolymer at different concentration either individually and in 

combination with another drugs, which produces 408 data points as micelle formulation that 

provides both loading efficiency (LE) and loading capacity (LC) in PMs. With the statistical 

analysis by QSPR with given dataset above, QSPR approach could predict the solubility of model 

hydrophobic drugs in POx polymer in terms of both LE and LC. Three putative true positive as 

well as three putative negative hits were confirmed (implying 75% prediction accuracy). The 

success of the computational strategy suggests its broad utility for rational design of drug delivery  
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systems. 

In Chapter III, we report that optimized vismodegib delivery using PMs markedly improves 

efficacy and reduces systemic toxicity, providing strong support for the use of the POx platform. 

Vismodegib has shown clinical efficacy for treatment of SHH-driven cancers but has not been 

effective for SHH subtype medulloblastoma. Using POx system, we generated POx-vismo 

micelles that showed highly uniform nanometer-scale particles with Zave of 38 nm and high loading 

capacity. Our analyses show that POx formulation increased drug exposure in the CNS, in both 

medulloblastoma and forebrain and reduced systemic exposure, providing an explanation for both 

improved anti-tumor effect and reduced toxicity. Our NMR studies provide important insight into 

the mechanism through which POx nanoparticle encapsulation improves pharmacokinetics. The 

persistence of proliferating medulloblastoma cells in long-term treatment with POx-vismo 

highlights the need for combinations of pharmacologic agents to forestall resistance. Our results 

indicate that optimization through nanoparticle formulation can improve the therapeutic index and 

efficacy of systemically administered pharmaceutical agents for brain tumor therapy, with the 

potential to improve survival and quality-of-life for brain tumor patients. 

In Chapter IV, we report a novel poly(2-oxazoline)-based block copolymer with a 

heterocyclic, aromatic side chain that can be used for 1) solubilization of a unique set of poorly 

soluble compounds that have previously failed in other polymeric systems, as well as 2) loading 

of platinum drugs through metal complexation. It is promising that the new block copolymer class 

can expand the application of polymeric micelle technologies to a new set of drugs and impact the 

drug design space for poorly soluble drugs by providing alternatives to hydrophobic interactions 

as a means of incorporation of poorly soluble APIs in the micelles. Future studies well validate 
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this conclusion for a higher number of small molecule compounds and elucidate drug/polymer 

interaction mechanisms important for predictions of drug solubilization. 

 

 


